WorldWideScience

Sample records for beta radiography

  1. An ISPA-camera for $\\beta$-radiography

    CERN Document Server

    Puertolas, D; Leutz, H; Gys, Thierry; D'Ambrosio, C

    1996-01-01

    We have developed a new type of beta-camera based on an Imaging Silicon Pixel Array (ISPA)-tube combined with planar plastic scintillators or with SiY2O5(Ce)-scintillating powder. The ISPA-tube consists of a photocathode viewed at 3 cm distance by a silicon anode divided into 1024 rectangular (75 microm x 500 microm) detector pixels, each bump-bonded to its equally-sized electronic pixel. Depending on the beta-detector thickness we achieved spatial resolutions (FWHM) between 105 microm (63Ni source and 30 microm thick plastic scintillator) and 240 microm (90Sr-90Y source and 120 microm thick plastic scintillator) by covering the detectors with brass templates. With their four 60 microm wide slits oriented parallel to the long pixel edges we simulated small sized beta-strips. The impact of detector thickness is explained by multiple scattering, angular aperture of the template slits and scintillating light distribution at the ISPA-photocathode. Beta detection sensitivities were measured with calibrated...

  2. Neutron Radiography

    OpenAIRE

    Reddy, A. R.; Rao, M. V. N.

    2012-01-01

    The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  3. Neutron Radiography

    Directory of Open Access Journals (Sweden)

    A. R. Reddy

    1982-07-01

    Full Text Available The field of neutron radiography with special reference to isotopic neutron radiography has been reviewed. Different components viz., sources, collimators, imaging systems are described. Various designs of neutron radiography facilities, their relative merits and demerits , the appropriateness of each design depending on the object to be radiographed, and economics of each technique are also dealt. The applications of neutron radiography are also briefly presented.

  4. Industrial radiography

    International Nuclear Information System (INIS)

    Industrial radiography is a non-destructive testing (NDT) method which allows components to be examined for flaws without interfering with their usefulness. It is one of a number of inspection methods which are commonly used in industry to control the quality of manufactured products and to monitor their performance in service. Because of its involvement in organizing training courses in all the common NDT methods in regional projects in Asia and the Pacific and Latin America and the Caribbean and in many country programmes, the Agency is aware of the importance of standardizing as far as possible the syllabi and training course notes used by the many experts who are involved in presenting the training courses. IAEA-TECDOC-628 ''Training Guidelines in Non-destructive Testing'' presents syllabi which were developed by an Agency executed UNDP project in Latin America and the Caribbean taking into account the developmental work done by the International Committee for Non-destructive Testing. Experience gained from using the radiography syllabi from TECDOC-628 at national and regional radiography training courses in the Agency executed UNDP project in Asia and the Pacific (RAS/86/073) showed that some guidance needed to be given to radiography experts engaged in teaching at these courses on the material which should be covered. The IAEA/UNDP Asia and Pacific Project National NDT Coordinators therefore undertook to prepare Radiography Training Course Notes which could be used by experts to prepare lectures for Level 1,2 and 3 radiography personnel. The notes have been expanded to cover most topics in a more complete manner than that possible at a Level 1, 2 or 3 training course and can now be used as source material for NDT personnel interested in expanding their knowledge of radiography. Refs, figs and tabs

  5. Neutron radiography

    International Nuclear Information System (INIS)

    This introduction is addressed to an audience active in diverse forms of neutron source applications but not directly familiar with neutron radiography. Neutron radiography is, of course, similar to, and complementary to, radiography using x-rays. However, neutrons, being sensitive to the nuclear properties of materials, provide information fundamentally different from x-rays. For example, neutrons can penetrate many dense metals such as uranium, lead, bismuth or steel, and can reveal details of internal hydrogenous components: explosives, lubricants and gaskets. For nuclear fuel inspection neutron radiography offers the ability to penetrate dense uranium-238 and contrast the isotopes U-235 or Pu-239 and also offers the ability to discriminate against unwanted interference from gamma radiation. In addition to advantages in industrial applications, there are special situations in fields such as medical diagnostics, dentistry, agriculture and forensic science. Comprehensive accounts of applications in the field can be found in the proceedings of the world conferences on neutron radiography: USA (1981), FRANCE (1986). A third conference in this series is scheduled for May 1989 in Japan

  6. Digital radiography.

    Science.gov (United States)

    Mattoon, J S

    2006-01-01

    Digital radiography has been used in human medical imaging since the 1980s with recent and rapid acceptance into the veterinary profession. Using advanced image capture and computer technology, radiographic images are viewed on a computer monitor. This is advantageous because radiographic images can be adjusted using dedicated computer software to maximize diagnostic image quality. Digital images can be accessed at computer workstations throughout the hospital, instantly retrieved from computer archives, and transmitted via the internet for consultation or case referral. Digital radiographic data can also be incorporated into a hospital information system, making record keeping an entirely paperless process. Digital image acquisition is faster when compared to conventional screen-film radiography, improving workflow and patient throughput. Digital radiography greatly reduces the need for 'retake' radiographs because of wide latitude in exposure factors. Also eliminated are costs associated with radiographic film and x-ray film development. Computed radiography, charged coupled devices, and flat panel detectors are types of digital radiography systems currently available. PMID:16971994

  7. Industrial radiography

    International Nuclear Information System (INIS)

    This publication is meant to be a manual for industrial radiography. As such the manual concentrates on the practical aspects, presenting existing radiographic system and techniques of operation to satisfy specified quality requirements. The manual also reviews the safety aspect of performing radiographic work. (author) systems

  8. Neutron radiography

    International Nuclear Information System (INIS)

    The digital processing of the neutron radiography images gives the possibility for data quantification. In this case an exact relation between the measured neutron attenuation and the real macroscopic attenuation coefficient for every point of the sample is required. The assumption that the attenuation of the neutron beam through the sample is exponential is valid only in an ideal case where a monochromatic beam, non scattering sample and non background contribution are assumed. In the real case these conditions are not fulfilled and in dependence on the sample material we have more or less deviation from the exponential attenuation law. Because of the high scattering cross-sections of hydrogen (σs=80.26 barn) for thermal neutrons, the problem with the scattered neutrons at quantitative radiography investigations of hydrogenous materials (as PE, Oil, H2O, etc) is not trivial. For these strong scattering materials the neutron beam attenuation is no longer exponential and a dependence of the macroscopic attenuation coefficient on the material thickness and on the distance between the sample and the detector appears. When quantitative radiography (2 D) or tomography investigations (3 D) are performed, some image correction procedures for a description of the scattering effect are required. This thesis presents a method that can be used to enhance the neutron radiography image for objects with high scattering materials like hydrogen, carbon and other light materials. This method uses the Monte Carlo code, MCNP5, to simulate the neutron radiography process and get the flux distribution for each pixel of the image and determine the scattered neutrons distribution that causes the image blur and then subtract it from the initial image to improve its quality.

  9. Muon Radiography

    CERN Document Server

    Morris, Christopher

    2005-01-01

    The interaction of muons with matter is dominated by the Coulomb interaction. The Coulomb interaction can be factored into the interaction with electrons which results in continuous energy loss and eventual stopping of the charged particle with very small changes in the direction while the interaction with the atomic nuclei results in relatively larger angle changes with only small changes in the energy. Each if these interactions provides a radiographic signal which can be used to study the internal structure of objects. These radiographies will be contrasted with each other, and some data obtained with cosmic ray muons will be presented.*

  10. neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography (or radiology) is a diverse filed that uses neutrons of various energies, subthermal, thermal, epithermal or fast in either steady state or pulsed mode to examine objects for industrial, medical, or other purposes, both microscopic and macroscopic. The applications include engineering design, biological studies, nondestructive inspection and materials evaluation. In the past decade, over 100 different centers in some 30 countries have published reports of pioneering activities using reactors, accelerators and isotopic neutron sources. While film transparency and electronic video are most common imaging methods for static or in motion objects respectively, there are other important data gathering techniques, including track etch, digital gauging and computed tomography. A survey of the world-wide progress shows the field to be gaining steadily in its diversity, its sophistication and its importance. (author)

  11. Industrial radiographies

    CERN Multimedia

    2005-01-01

    The Radiation Protection group wishes to remind CERN staff responsible for contractors performing X-ray inspections on the CERN sites that the firms must apply the legislation in force in their country of origin, in particular with regard to the prevention of risks relating to ionizing radiation. Industrial radiography firms called on to work on the CERN sites must also comply with the rules laid down in CERN's Radiation Safety Manual and be registered in the relevant CERN database. Since CERN is responsible for safety on its own site, a number of additional rules have been laid down for this kind of work, as set out in Radiation Protection Procedure PRP30 https://edms.cern.ch/file/346848/LAST_RELEASED/PRP30.pdf The CERN Staff Member responsible for the contract shall register the company and issue notification that an X-ray inspection is to be performed via the web interface at the following address: http://cern.ch/rp-radio

  12. International Neutron Radiography Newsletter

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing...

  13. Digital chest radiography

    DEFF Research Database (Denmark)

    Debess, Jeanne Elisabeth; Vejle-Sørensen, Jens Kristian; Thomsen, Henrik;

    2015-01-01

    of clinical supervisors. Optimal collimation is determined by European and Regional Danish guidelines. The areal between current and optimal collimation is calculated. The experimental research is performed in September - October 2014 Siemens Axiom Aristos digital radiography system DR using 150 kV, 1,25 -3......Purpose: Quality improvement of basic radiography focusing on collimation and dose reduction in digital chest radiography Methods and Materials:A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from...

  14. Radiography - A conceptual approach

    International Nuclear Information System (INIS)

    Aim: The purpose of this article is to describe interdisciplinary comparison of the attributes of the concept of radiography in health sciences, physics and technology on the grounds of concept analysis. Background: The concept of radiography is widely used in health sciences, physics and technology. However, the content of the concept may vary. In order to clarify the concept of radiography, the concept must be systematically examined and defined in linguistic form. Method: The concept of radiography was analysed by using the evolutionary method of concept analysis. The data were collected through discretionary sampling and consisted of literature and Internet pages. Qualitative content analysis was employed for analysing the data. Findings: As a result of concept analysis, the concept of radiography in health sciences was determined as expertise of radiographers in the use of radiation, which is dual, dynamic, social and situation-related in nature, and typically based on versatile synthesis. Regarding the attributes identified, the concept of radiography has both similarities and differences between health sciences, physics and technology. Conclusions: The concept of radiography was found to be more abstract, wider, more complex and more radiographer-centred in health sciences than in other disciplines. The content of the concept of radiography seems to vary according to the discipline

  15. Digital chest radiography

    DEFF Research Database (Denmark)

    Debess, Jeanne Elisabeth; Johnsen, Karen Kirstine; Thomsen, Henrik

    2015-01-01

    Background: Chest radiography is one of the most common examinations in radiology departments. In 2013 approximately 80,000 chest x-rays were performed on women in the fertile age. Even low dose for the examinationCorrect collimation Purpose: Quality improvement of basic radiography focusing...... on collimation and dose reduction in digital chest radiography Methods and Materials A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from one hundred fifty self-reliant female patients between 15 and 55 years...... of age are included in the study. The clinical research is performed between September and November 2014 where 3rd year Radiography students collect data on four Danish x-ray departments using identical procedures under guidance of clinical supervisors. Optimal collimation is determined by European...

  16. Neutron radiography, techniques and applications

    International Nuclear Information System (INIS)

    After describing the principles of the ''in pool'' and ''dry'' installations, techniques used in neutron radiography are reviewed. Use of converter foils with silver halide films for the direct and transfer methods is described. Advantages of the use of nitrocellulose film for radiographying radioactive objects are discussed. Dynamic imaging is shortly reviewed. Standardization in the field of neutron radiography (ASTM and Euratom Neutron Radiography Working Group) is described. The paper reviews main fields of use of neutron radiography. Possibilities of use of neutron radiography at research reactors in various scientific, industrial and other fields are mentioned. Examples are given of application of neutron radiography in industry and the nuclear field. (author)

  17. International Neutron Radiography Newsletter

    OpenAIRE

    Domanus, Joseph Czeslaw

    1986-01-01

    At the First World Conference on Neutron Radiography i t was decided to continue the "Neutron Radiography Newsletter", published previously by J.P. Barton, as the "International Neutron Radiography Newsletter" (INRNL), with J.C. Doraanus as editor. The British Journal of Non-Destructive Testing (BJNDT) has agreed to publish the INRNL in i t s column "NDT Bookcase". The Revue Practique de Control Industriel has also agreed to publish the French version of the INRNL. Up t i l l now 12 issues of...

  18. Radiography at CERN

    CERN Multimedia

    HSE Unit

    2014-01-01

    What is industrial radiography? It is a non-destructive method with a wide variety of applications, such as inspecting the quality of a weld. It uses high-energy radioactive sources or an X-ray generator.   Is this inspection technique used at CERN? Yes, it is widely used at CERN by the EN-MME Group, which outsources the work to one or more companies, depending on the workload. Is it possible to carry out radiography anywhere at CERN? Yes, it is possible to carry out radiography in any building/accelerator/experiment area at CERN (including in areas which are not normally subject to radiological hazards). When is radiography carried out? It normally takes place outside of working hours (7 p.m. to 6 a.m.). How will I know if radiography is taking place in my building? If this activity is planned in a CERN building, notices will be affixed to all of its main entrance doors at least 24 hours in advance. What are the risks? There is a risk of exposure to very high levels of radiation, dep...

  19. Broadening the radiography spectrum

    International Nuclear Information System (INIS)

    The text discuses the mammography in breast screening and evaluation of breast cancer; Small parts ultrasounds at plaza imaging solutions; role of a Radiographer in mammography-new perspective; Medical imaging education in africa; Caring for the paediatric patient as to broaden radiotherapy spectrum; Problems and challenges in care for children undergoing radiotherapy; Paediatric radiotherapy, management and side effects; The principles of pattern recognition of skeletal structures; the place of distance learning education in broadening the radiography spectrum; the curriculum and budgeting image; sonographer's guide; Computed radiography- X-Ray with vision; digital Radiography in Kenya today; Particle Therapy at Ithemba Labs; The role of lung perfusion and ventilation study in the evaluation of the pulmonary embolism and lastly, an overview of Head and neck treatment at Kenyatta National hospital radiotherapy

  20. Real-time radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bossi, R.H.; Oien, C.T.

    1981-02-26

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components.

  1. Real-time radiography

    International Nuclear Information System (INIS)

    Real-time radiography is used for imaging both dynamic events and static objects. Fluorescent screens play an important role in converting radiation to light, which is then observed directly or intensified and detected. The radiographic parameters for real-time radiography are similar to conventional film radiography with special emphasis on statistics and magnification. Direct-viewing fluoroscopy uses the human eye as a detector of fluorescent screen light or the light from an intensifier. Remote-viewing systems replace the human observer with a television camera. The remote-viewing systems have many advantages over the direct-viewing conditions such as safety, image enhancement, and the capability to produce permanent records. This report reviews real-time imaging system parameters and components

  2. Are radiography lecturers, leaders?

    International Nuclear Information System (INIS)

    This review article aims to explore the concept of radiography lecturers acting as leaders to their student followers. Through a brief review of the literature, a definition of leadership is suggested and some leadership theories explored. The path-goal theory, leader–member exchange theory and the contemporary theory of transformational leadership are examined more closely. Links between lecturer-leader behaviour and student motivation and learning are tentatively suggested with transformational leadership appearing to offer the optimal leadership style for lecturers to adopt. The paucity of literature relating directly to radiography is acknowledged and areas for further research are suggested. The article concludes with some of the author's practical ideas for incorporating transformational leadership styles and behaviours into radiography education today

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  5. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  6. Neutron induced electron radiography

    International Nuclear Information System (INIS)

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 μm in 24 μm of aluminum at a resolution of 32 μm. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  7. Manual on industrial radiography

    International Nuclear Information System (INIS)

    This manual is intended as a source of educational material to personnel seeking certification as industrial radiographers, and as a guide and reference text for educational organizations that are providng courses in industrial radiography. It covers the basic principles of x-ray and gamma radiation, radiation safety, films and film processing, welding, casting and forging, aircraft structures and components, radiographic techniques, and records

  8. Artifacts in digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Min, Jung Whan [Dept. of Radiological Technology, Shin Gu University, Sungnam (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Technology, Korea University, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Beakseok Culture University, Cheonan (Korea, Republic of)

    2015-12-15

    Digital Radiography is a big part of diagnostic radiology. Because uncorrected digital radiography image supported false effect of Patient’s health care. We must be manage the correct digital radiography image. Thus, the artifact images can have effect to make a wrong diagnosis. We report types of occurrence by analyzing the artifacts that occurs in digital radiography system. We had collected the artifacts occurred in digital radiography system of general hospital from 2007 to 2014. The collected data had analyzed and then had categorize as the occurred causes. The artifacts could be categorized by hardware artifacts, software artifacts, operating errors, system artifacts, and others. Hardware artifact from a Ghost artifact that is caused by lag effect occurred most frequently. The others cases are the artifacts caused by RF noise and foreign body in equipments. Software artifacts are many different types of reasons. The uncorrected processing artifacts and the image processing error artifacts occurred most frequently. Exposure data recognize (EDR) error artifacts, the processing error of commissural line, and etc., the software artifacts were caused by various reasons. Operating artifacts were caused when the user did not have the full understanding of the digital medical image system. System artifacts had appeared the error due to DICOM header information and the compression algorithm. The obvious artifacts should be re-examined, and it could result in increasing the exposure dose of the patient. The unclear artifact leads to a wrong diagnosis and added examination. The ability to correctly determine artifact are required. We have to reduce the artifact occurrences by understanding its characteristic and providing sustainable education as well as the maintenance of the equipments.

  9. Radiography – How do students understand the concept of radiography?

    International Nuclear Information System (INIS)

    Background: Radiography as a concept has mainly been associated with the functional role of the radiographer. The concept has been studied from a theoretical point of view. However, there is a lack of a theoretical foundation and research on the actual substance of the term radiography used in education. It is therefore important to undertake an investigation in order to determine how students after three years education understand the subject of radiography. Aim: The aim of this study was to analyse how students in the Swedish radiographers' degree program understand the concept of radiography. Method: A concept analysis was made according to the hybrid model, which combines theoretical, fieldwork and analytical phases. A summative content analysis was used to identify the number and content of statements. The empirical data were collected from questionnaires answered by radiography students at four universities in Sweden. Findings: All radiography students' exemplified radiography with statements related to the practical level although some of them also identified radiography at an abstract level, as a subject within a discipline. The attribute ‘An interdisciplinary area of knowledge’ emerged, which is an attribute on the abstract level. The practical level was described by four attributes: Mastering Medical Imaging’, ‘To accomplish images for diagnosis and interventions’, ‘Creating a caring environment’ and ‘Enabling fruitful encounters’. Conclusion: The hybrid model used was a versatile model of concept development. The results of this study have increased the understanding of what characterizes the concept of radiography in a Swedish context. - Highlights: • This concept analysis of radiography was undertaken according to a hybrid model. • In radiography humanistic aspects are emphasized, a shift from the technological perspective. • The attributes demonstrate the essence and interdisciplinary nature of radiography. • This

  10. Quantitative film radiography

    International Nuclear Information System (INIS)

    We have developed a system of quantitative radiography in order to produce quantitative images displaying homogeneity of parts. The materials that we characterize are synthetic composites and may contain important subtle density variations not discernible by examining a raw film x-radiograph. In order to quantitatively interpret film radiographs, it is necessary to digitize, interpret, and display the images. Our integrated system of quantitative radiography displays accurate, high-resolution pseudo-color images in units of density. We characterize approximately 10,000 parts per year in hundreds of different configurations and compositions with this system. This report discusses: the method; film processor monitoring and control; verifying film and processor performance; and correction of scatter effects

  11. Radiography with Polarised Neutrons

    OpenAIRE

    Schulz, Michael

    2010-01-01

    The combination of neutron radiography with one dimensional polarisation analysis developed in this thesis allows the spatially resolved determination of the magnetic properties of weakly ferromagnetic substances. This method can yield valuable information on the nature of the underlying phase transition. The requirements for all components of the experimental setup and their influence on the maximum spatial resolution are discussed extensively in this work. Radiographic as well as tomographi...

  12. Digital radiography in space.

    Science.gov (United States)

    Hart, Rob; Campbell, Mark R

    2002-06-01

    With the permanent habitation of the International Space Station, the planning of longer duration exploration missions, and the possibility of space tourism, it is likely that digital radiography will be needed in the future to support medical care in space. Ultrasound is currently the medical imaging modality of choice for spaceflight. Digital radiography in space is limited because of prohibitive launch costs (in the region of $20,000/kg) that severely restrict the volume, weight, and power requirements of medical care hardware. Technological increases in radiography, a predicted ten-fold decrease in future launch costs, and an increasing clinical need for definitive medical care in space will drive efforts to expand the ability to provide medical care in space including diagnostic imaging. Normal physiological responses to microgravity, in conjunction with the high-risk environment of spaceflight, increase the risk of injury and could imply an extended recovery period for common injuries. The advantages of gravity on Earth, such as the stabilization of patients undergoing radiography and the drainage of fluids, which provide radiographic contrast, are unavailable in space. This creates significant difficulties in patient immobilization and radiographic positioning. Gravity-dependent radiological signs, such as lipohemarthrosis in knee and shoulder trauma, air or fluid levels in pneumoperitoneum, pleural effusion, or bowel obstruction, and the apical pleural edge in pneumothorax become unavailable. Impaired healing processes such as delayed callus formation following fracture will have implications on imaging, and recovery time lines are unknown. The confined nature of spacecraft and the economic impossibility of launching lead-based personal protective equipment present significant challenges to crew radiation safety. A modified, free-floating radiographic C-arm device equipped with a digital detector and utilizing teleradiology support is proposed as a

  13. Proton radiography in plasma

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, L., E-mail: luca.volpe@mib.infn.it [Universita degli Studi di Milano-Bicocca, Piazza della scienza 3, Milano 20126 (Italy); Batani, D.; Morace, A. [Universita degli Studi di Milano-Bicocca, Piazza della scienza 3, Milano 20126 (Italy); Nicolai, Ph.; Regan, C. [CELIA, Universite de Bordeaux, CNRS, CEA, F33405 (France); Ravasio, A. [LULI, UMR 7605, CNRS, CEA, Universite Paris VI, Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2011-10-11

    Generation of high intensity and well collimated multi-energetic proton beams from laser-matter interaction extends the possibility to use protons as a diagnostic tool to image imploding target in Inertial Confinement Fusion (ICF) experiments. Due to the very large mass densities reached during implosion, protons traveling through the target undergo a very large number of collisions. Therefore the analysis of experimentally obtained proton images requires care and accurate numerical simulations using both hydrodynamic and Monte Carlo codes. The impact of multiple scattering needs to be carefully considered by taking into account the exact stopping power for dense matter and for the underdense plasma corona. In our paper, density, temperature and ionization degree profiles of the imploding target are obtained by 2D hydrodynamic simulations performed using CHIC code. Proton radiography images are simulated using the Monte Carlo code (MCNPX; adapted to correctly describe multiple scattering and plasma stopping power) in order to reconstruct the complete hydrodynamic history of the imploding target. Finally we develop a simple analytical model to study the performance of proton radiography as a function of initial experimental parameters, and identify two different regimes for proton radiography in ICF.

  14. Euratom Neutron Radiography Working Group

    OpenAIRE

    Domanus, Joseph Czeslaw

    1986-01-01

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made ...

  15. Quality assurance in digital radiography

    International Nuclear Information System (INIS)

    At present, there is no standard way of evaluating performance characteristics of digital radiography systems. Continuous measurements of performance parameters are necessary in order to obtain images of high quality. Parameters of quality assurance in digital radiography, which can be evaluated with simple, quick methods, are spatial resolution, low-contrast detectability, dynamic range and exposure dose. Spatial resolution was determined by a lead bar pattern, whereas the other parameters were measured by commercially available phantoms. Performance measurements of 10 digital subtraction angiography (DSA) units and one digital radiography system for unsubtracted digital radiography were assessed. From these results, recommendations for performance parameter levels will be discussed. (author)

  16. Pediatric musculoskeletal computed radiography

    International Nuclear Information System (INIS)

    Background. In conventional radiography, a film-screen system serves as the X-ray detector and the film also functions as an archival and display medium. Unlike film-screen radiography, these functions are uncoupled in computed radiography (CR). CR uses conventional radiographic equipment to expose an image on a storage phosphor plate instead of a film-screen combination. Objective. To review the basic concepts of CR and to provide a background for discussion of specific musculoskeletal applications of CR in children. Materials and methods. Various aspects of musculoskeletal CR in children are presented based on our 4 years' experience and a review of the literature. Results. A greater amount of scatter capture occurs with storage phosphor CR than with a film-screen system in the 70- to 120-kVp range. This is attributed to a lower K-absorption edge of barium in the barium fluorohalide (BaFBr) compound used in the imaging plate. A significant reduction of scatter to primary radiation, improvement in bony trabecular sharpness, and improvement in line pair resolution can be achieved in pediatric musculoskeletal imaging using an air gap without an increase in the skin entrance dose as compared to the non-grid table top technique. With CR, in addition to proper radiographic exposure technique, one needs to preprogram and select the optimal processing technique for each anatomic region, projection and age group of the child. Conclusion. The main advantages of CR in pediatric musculoskeletal imaging consist of a reduction in radiation dose for many applications, improved contrast resolution, near elimination of repeat radiographs related to exposure errors, and digital processing capabilities for image enhancement, storage, retrieval, display and transmission. The current limitations of CR include the moderately high start-up cost, the long learning curve to produce optimal films, and the reduced spatial resolution. (orig.). With 8 figs., 2 tabs

  17. Radiography with polarised neutrons

    International Nuclear Information System (INIS)

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd1-xNix and Ni3Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd1-xNix and Ni3Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni3Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature TC on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with different ordering temperatures. This procedure was

  18. Radiography with polarised neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Michael L.

    2010-08-20

    In this thesis I present a new technique for the spatially resolved investigation of the magnetic properties of bulk samples. Standard one dimensional neutron depolarisation analysis is combined with neutron radiography to a method we call Neutron Depolarisation Imaging (NDI). The experimental setup which was installed at the neutron radiography beam line ANTARES at FRM II consists of a double crystal monochromator, neutron polariser, spin flipper, polarisation analyser and a position sensitive CCD detector. A comprehensive discussion of the requirements for these components is given and the limitations of the method are shown. The maximum spatial resolution which can be achieved with a neutron radiography setup is determined by the collimation of the neutron beam and the distance between sample and detector. Different types of polarisers have been tested and their advantages and disadvantages are discussed. A double crystal monochromator and a new type of polariser employing polarising neutron supermirrors based on the principle of an optical periscope were developed and tested during this work. Furthermore, NDI measurements on various samples of the weakly ferromagnetic materials Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al are presented. Neutron depolarisation radiography and tomography measurements were conducted with a spatial resolution as high as 0.3 mm on Pd{sub 1-x}Ni{sub x} and Ni{sub 3}Al samples. The feasibility of NDI experiments under hydrostatic pressures up to 10 kbar was shown on a sample of Ni{sub 3}Al using a modified Cu:Be clamp cell. A decrease of the ordering temperature by 2 K under hydrostatic pressure was determined from the NDI measurements and shows the potential of the method for further high pressure experiments. Additionally a method was developed which in principle allows to obtain the intrinsic dependence of the ordering temperature T{sub C} on the ordered moment Ms from NDI measurements on inhomogeneous samples containing regions with

  19. Fast neutron radiography using photoluminescent imaging plates

    International Nuclear Information System (INIS)

    Fast neutron radiography (FNR) and resonance neutron radiography (RNR) are complementary to the conventional radiography with high energy gamma-rays or brems-strahlung radiation used for the inspection of thick metal objects. In both non-destructive methods, the contrast sensitivity and the penetration power can be improved by using higher energy neutrons. At present direct techniques based either n Solid State Nuclear Track detectors (SSNTDs) or scintillating screens and transfer techniques using activation threshold detectors and radiographic films are applied for the detection of fast neutron images. Rather low detection sensitivity of film and SSNTD based fast neutron imaging methods and also rather poor inherent image contrast of SSNTD pose a problem for FNR in the fast neutron energy region 1-15 MeV interesting for NDT. For more efficient detection of fast neutron images the use of novel highly sensitive photoluminescent imaging plates (IP) in combination with threshold at the KFKI research reactor. The conventional IP produced by FUJI Photo Film Co. for the detection of beta and X-ray radiation were used. The threshold activation detectors were the reactions 115In(n, n') 115mIn, 64Zn(n,p) 64Cu, 56Fe(n, p)56Mn, 24Mg(n, p)24Na and 27Al(n, α)24Na. These threshold reactions cover the fast neutron energy region between 0,7 MeV and 12 MeV. Pure, commercially available metals 0,1 mm to 0,25 mm thick made of In, Zn, Fe, Mg and Al were used as converter screens. The very high sensitivity of IP, the linearity of their response over 5 decades of exposure dose and the high dynamic digitalisation latitude enabled fast neutron radiography of image quality comparable to the quality of thermal NR. In our experimental conditions (φn∼ 108 n/cm2s, RCd ∼ 2) the neutron exposure and IP exposure periods were still practical and comparable to the half life of the corresponding reaction products (half an hour to several hours). Even with the 27Al(n.α)24Na reaction having a

  20. Resonance neutron radiography

    International Nuclear Information System (INIS)

    The production of images by the use of neutrons having energies in the resonance region is described. Two-dimensional position-sensitive neutron detectors are used to produce transmission images using neutron time-of-flight techniques at the National Bureau of Standards' electron linac facility. Two types of detectors are described. The first is a crossed-wire proportional counter using 3He as the neutron-sensitive component. The second type utilizes a multichannel plate electron multiplier and a resistive anode readout. A lithium glass scintillator is the neutron-sensitive component in the latter detector. Resonance neutron radiography, using these detectors, has the capability of producing images with isotopic and chemical element discrimination in a complex matrix with a resolution of 1 mm or better. (Auth.)

  1. A Portable Electron Radiography System

    CERN Document Server

    Merrill, Frank E; Harmon, Frank; Hunt, Alan W; King, B J; Morris, Christopher

    2005-01-01

    The technique of charged particle radiography has been developed and proven with 800 MeV protons at LANSCE and 24 GeV protons at the AGS. Recent work at Los Alamos National Laboratory in collaboration with the Idaho Accelerator Center has extended this diagnostic technique to electron radiography through the development of an inexpensive and portable electron radiography system. This system has been designed to use 30 MeV electrons to radiograph thin static and dynamic systems. The system consists of a compact 30 MeV pulsed electron linear accelerator coupled to a quadrupole lens magnifier constructed from permanent magnet quadrupoles. The design features and operational characteristics of this radiography system are presented as well as the radiographic performance parameters.

  2. Euratom neutron radiography working group

    International Nuclear Information System (INIS)

    In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Euratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups on different topics within the field of neutron radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups. (author)

  3. Euratom Neutron Radiography Working Group

    DEFF Research Database (Denmark)

    Domanus, Joseph Czeslaw

    1986-01-01

    reactor fuel as well as establish standards for radiographic image quality of neutron radiographs. The NRWG meets once a year in each of the neutron radiography centers to review the progress made and draw plans for the future. Besides, ad-hoc sub-groups or. different topics within the field of neutron......In 1979 a Neutron Radiography Working Group (NRWG) was constituted within Buratom with the participation of all centers within the European Community at which neutron facilities were available. The main purpose of NRWG was to standardize methods and procedures used in neutron radiography of nuclear...... radiography are constituted. This paper reviews the activities and achievements of the NRWG and its sub-groups....

  4. Angular signal radiography.

    Science.gov (United States)

    Li, Panyun; Zhang, Kai; Bao, Yuan; Ren, Yuqi; Ju, Zaiqiang; Wang, Yan; He, Qili; Zhu, Zhongzhu; Huang, Wanxia; Yuan, Qingxi; Zhu, Peiping

    2016-03-21

    Microscopy techniques using visible photons, x-rays, neutrons, and electrons have made remarkable impact in many scientific disciplines. The microscopic data can often be expressed as the convolution of the spatial distribution of certain properties of the specimens and the inherent response function of the imaging system. The x-ray grating interferometer (XGI), which is sensitive to the deviation angle of the incoming x-rays, has attracted significant attention in the past years due to its capability in achieving x-ray phase contrast imaging with low brilliance source. However, the comprehensive and analytical theoretical framework is yet to be presented. Herein, we propose a theoretical framework termed angular signal radiography (ASR) to describe the imaging process of the XGI system in a classical, comprehensive and analytical manner. We demonstrated, by means of theoretical deduction and synchrotron based experiments, that the spatial distribution of specimens' physical properties, including absorption, refraction and scattering, can be extracted by ASR in XGI. Implementation of ASR in XGI offers advantages such as simplified phase retrieval algorithm, reduced overall radiation dose, and improved image acquisition speed. These advantages, as well as the limitations of the proposed method, are systematically investigated in this paper. PMID:27136780

  5. Use of fluorescent screens for isotope radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, S. K.

    1979-01-01

    Radiographic examination can be performed on items beyond the limitation of conventional isotope radiography without a great loss of resolution. With proper film and screen selection and scatter radiation control, fluorescent screens can be a valuable additional tool for radiography.

  6. Accelerator system for neutron radiography

    International Nuclear Information System (INIS)

    The field of x-ray radiography is well established for doing non-destructive evaluation of a vast array of components, assemblies, and objects. While x-rays excel in many radiography applications, their effectiveness diminishes rapidly if the objects of interest are surrounded by thick, high-density materials that strongly attenuate photons. Due to the differences in interaction mechanisms, neutron radiography is highly effective in imaging details inside such objects. To obtain a high intensity neutron source suitable for neutron imaging a 9-MeV linear accelerator is being evaluated for putting a deuteron beam into a high-pressure deuterium gas cell. As a windowless aperture is needed to transport the beam into the gas cell, a low-emittance is needed to minimize losses along the high-energy beam transport (HEBT) and the end station. A description of the HEBT, the transport optics into the gas cell, and the requirements for the linac will be presented

  7. Neutron-induced alpha radiography

    International Nuclear Information System (INIS)

    A new radiography technique to inspect thin samples was developed. Low energy alpha particles, generated by a boron based screen under thermal neutron irradiation, are used as penetrating radiation. The solid state nuclear track detector CR-39 has been used to register the image. The interaction of the α - particles with the CR-39 gives rise to damages which under an adequate chemical etching became tracks the basic units forming the image. A digital system was developed for data acquisition and data analysis as well as for image processing. The irradiation and etching conditions to obtain the best radiography are 1,3 hours and 25 minutes at 70 deg C respectively. For such conditions samples having 10 μm in thickness can be inspected with a spatial resolution of 32 μm. The use of the digital system has reduced the time spent for data acquisition and data analysis and has improved the radiography image visualization. Furthermore, by using the digital system, it was possible to study several new parameters regarding the tracks which are very important to understand and study the image formation theory in solid state nuclear track detectors, the one used in this thesis. Some radiography images are also shown which demonstrate the potential of the proposed radiography technique. When compared with the other radiography techniques already in use to inspect thin samples, the present one developed in the present paper allows a smaller time to obtain the image, it is not necessary to handle liquid radioactive substances, the detector is insensitive to β, γ, X-ray and visible light. (author)

  8. Educational aspects of industrial radiography

    International Nuclear Information System (INIS)

    The state of art of training and education in non-destructive testing in India, with special reference to industrial radiography is reviewed. Basic requirement of industry and potential of radioisotopes in industrial inspection are also described. Need for an organised training programme in industrial isotope radiography to exploit potentials for benefit of industry concurrent with the safety is stressed. A comprehensive training programme tailored to meet the needs of Indian industry is outlined. Benefits obtained from the course to the industry since the beginning of the training programme are briefly reviewed. (auth.)

  9. Radiation protection in dental radiography

    International Nuclear Information System (INIS)

    In considering the special provisions required in dental radiography, investigations were conducted in Iran. Radiation dose levels in dental radiography were found to be high. Patient exposure from intraoral radiographic examination was calculated, using 50kV X-ray. Thermoluminescent dosimeters were fastened to the nasion, eyes, lip, philtrum, thyroid, gonads and to the right and left of the supra-orbital, infra-orbital temporomandibular joints of live patients. The highest exposure value was for the lower lip. Recommendations concerning educational training and protection of staff and patients were included

  10. Xeroradiography in. beta. -thalassaemia

    Energy Technology Data Exchange (ETDEWEB)

    Scutellari, P.N.; Orzincolo, C.; Tamarozzi, R.

    1985-01-01

    Xeroradiographic investigations of the skull, hand, and elbow were performed on 27 patients with homozygous ..beta..-thalassaemia. The results were compared with plain radiographic examinations. Xeroradiography, because of its technical properties (i.e. edge contrast enhancement and wide latitude), was shown to demonstrate cortical thinning of long bones, swelling of the diploic space in the skull, and reticulated patterns in the elbow better than standard radiography. Moreover, the use of 'positive' mode imaging was shown to have advantages in the study of the skull and extremities.

  11. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Images related to X-ray (Radiography) - Bone About this Site RadiologyInfo.org is produced by: Please note ... you can search the ACR-accredited facilities database . This website does not provide cost information. The costs ...

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available Toggle navigation Test/Treatment Patient Type Screening/Wellness Disease/Condition Safety En Español More Info Images/Videos News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone ...

  13. Industrial Radiography: Principle and Practical

    International Nuclear Information System (INIS)

    The successful and effectiveness of radiography method as a tool to increase quality level and safety of the engineering system and processing plants depend with the level of radiographer knowledge as service provider and also as supervisor. This book was published as effort several local experts to give their knowledge, theory and practical related to radiography technique to the involved public directly or indirectly. This book started with basic physic knowledge that becomes a root to radiography technology. Then, followed by discussion on tools and device that used in radiography work including x-ray machine, gamma projector, film, dark room, and others. Each aspect of radiograph quality also mentioned here to guide the reader on how to produce good radiograph that filled the specification wanted. The good radiograph does not mean anything if it failed to be interpreted correctly. Because of that, this book also explain how to choose good radiograph that qualified to be interpreted and after that how interpretation and evaluation process of object quality inspected was implemented based on image digestion that showed in radiograph. Several code and standard that usually applied in this country also will be referred as well for this work.

  14. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  15. Material examination by neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography as a non-destructive testing technique has played a prominent role in the development of fuel for research and power reactors; studying of dimensional changes due to irradiation; inspection of corrosion in airframe structures and propeller blades; detection of light components and materials in explosive an investigation of diffusion of water into building materials etc. The development of neutron radiography facility by extracting a beam of thermal neutrons through a radial beam port around the Pakistan Research Reactor-1 is described. Graphite block of 30 cm thickness and bismuth block of 25 cm thickness have been used to boost-up thermal neutrons flux level and filter out high energy gamma radiation from the beam respectively. Thermal neutron flux level of the order of 1.06x10/sup 6/ n.cm/sup -2/. s/sup -1/ and a neutron to gamma ratio of the order of 10/sup 5/ n.cm/sup -2/.mR/sup -1/ have been measured at the object position which make the facility useful for investigation of material characteristics an properties applying direct neutron radiography method. The facility has been subjected to modifications and changes in order to enhance thermal neutron flux level and reduce the exposure time for better image quality at the object position. The use of beam purity and sensitivity indicators for determining the beam constituents and resolution of the technique is discussed. Visibility of holes under the lead and acrylic step wedges categorize the facility for direct applications. Neutron cross-sections for different metallic as well as composite materials have been determined by applying neutron radiographic technique. The use of neutron radiography as a complimentary technique to ensure the quality of nuclear fuel in addition to other applications like detection of light components in explosives and pyrotechnic devices is investigated. Detection of corrosion in aluminum joints, deformation in aeronautical components and honeycomb structures is

  16. Industrial Radiography Safety in Australia

    International Nuclear Information System (INIS)

    The first applications of the imaging capability of X-rays were non-medical. Roentgen produced images of his shotgun, a compass and a set of weights in a closed box to show his colleagues. Prior to 1912, X-rays were used little outside the realms of medicine and dentistry because the X-ray tubes failed under the higher voltages required for industrial purposes. However, that changed in 1913 when high vacuum X-ray tubes designed by Coolidge became available. In 1922, industrial radiography took another step forward with the advent of the 200,000-volt X-ray tube that allowed radiographs of thick steel parts to be produced in a reasonable amount of time. In 1931 the American Society of Mechanical Engineers (ASME) permitted approval of fusion welded pressure vessels by x-ray, which promoted an acceptance and use of the method. That application continues. Radium became the initial gamma ray source for industrial radiography. The material allowed radiography of castings up to 30cm thick. During World War II, industrial radiography grew significantly as part of the US Navy's shipbuilding-program, and in 1946 gamma ray sources such as cobalt 60 and iridium 192 became available. These new sources gained rapid popularity because they emitted more intense radiation than radium and were less expensive. Present state: the majority of industrial radiography techniques have changed little since their inception. An image is captured, processed and analysed for evidence of fault or defect. Today however, the images are of higher quality and greater sensitivity, through the use of better quality films, smaller radiation sources and automated processing. Developments in electronics and computers now allow technicians to create a digital image, enhance it, transmit it or store it indefinitely. The most noticeable change in industrial radiography equipment from the technician's view would be the reduction in weight of the equipment for a given kV output. Never the less it remains

  17. Industrial radiography X and Gamma

    International Nuclear Information System (INIS)

    This publication gives a practical orientation on industrial radiography. The first chapters deal with basic facts that are useful for professional work in this field. It comprises topics such as generation of X-rays, equipment being used, radiographic films, sensibility, and the penetrameters used. This publication also describes the most used radiographic techniques and the processing of the radiographic film. It contains practical recommendations on how to obtain a good radiographic inspection. It states the reasons for defects in the radiographies. Two annexes are attached which include tables for the selection of penetrameters according to the ASME and DIN codes as well as the time needed for development and fixing according to the temperature

  18. System for uncollimated digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Han; Hall, James M.; McCarrick, James F.; Tang, Vincent

    2015-08-11

    The inversion algorithm based on the maximum entropy method (MEM) removes unwanted effects in high energy imaging resulting from an uncollimated source interacting with a finitely thick scintillator. The algorithm takes as input the image from the thick scintillator (TS) and the radiography setup geometry. The algorithm then outputs a restored image which appears as if taken with an infinitesimally thin scintillator (ITS). Inversion is accomplished by numerically generating a probabilistic model relating the ITS image to the TS image and then inverting this model on the TS image through MEM. This reconstruction technique can reduce the exposure time or the required source intensity without undesirable object blurring on the image by allowing the use of both thicker scintillators with higher efficiencies and closer source-to-detector distances to maximize incident radiation flux. The technique is applicable in radiographic applications including fast neutron, high-energy gamma and x-ray radiography using thick scintillators.

  19. Radiological security for industrial radiography

    International Nuclear Information System (INIS)

    This report comprises the basic notions of nucleonics, simple calculations for point sources, X-rays, calculations for coatings, standards for radiation protection and industrial radiography instruments. The preceding sums up with the biological effects of ionizing radiation. This is a guide for people who wish to pass examinations, to get the license for radiological safety, for operators on gamma-graphic sources, which work in the country. It is a requirement for work with this kind of radioactive sources

  20. Radiation safety for site radiography

    International Nuclear Information System (INIS)

    This guidance is an update of the 1975 Code of Practice for Site Radiography and is for the use of employers and their radiographers who carry out site work. The subject is discussed under the following headings: Administrative organization, Personnel requirements, Equipment (x-ray and gamma-ray equipment, security, pipeline crawler equipment and safety equipment) Work methods and monitoring, Carriage of sources, Contingency plans, Legal considerations. (U.K.)

  1. Digital radiography vs conventional radiography - a comparison along with its image quality and benefits

    International Nuclear Information System (INIS)

    In digital radiography, information is represented in the form of discrete units, i.e., numbers, and involve the use of computers, whereas in conventional radiography, information is represented in analog or continuous form rather than in discrete fashion

  2. Digital and analogue industrial radiography, application fields

    International Nuclear Information System (INIS)

    Full text: Reusable phosphor screens for computer radiography (CR), amorphous selenium screens for direct radiography (DR), film digitalisation (FD) constitute imaging methods accepted by industry and are used for non-destructive radiographic testing (RT). Economic pressures are involving and affecting digital RT technology. Standards and codes for film radiography and radioscopy qualification do no longer cover the wide range of digital RT applications. It will be our task to optimise the performance of digital RT characterisation and to create appropriate examination methods to use all these new and existent technologies. In the meantime, an increasing automation and control of manual methods of analogue radiography can as well be expected. (author)

  3. Neutron radiography at the HFR Petten

    International Nuclear Information System (INIS)

    This report contains the five papers on neutron radiography activities at the Petten High Flux Reactor (HFR) presented at the Third World Conference on Neutron Radiography which was held in May 1989 in Osaka, Japan. In addition, a survey on neutron radiography in Europe for industry and research as presented at the SITEF NDT symposium 1989 on European Advances in Non-Destructive Testing, held in Toulouse/France in October 1989 is included. The papers compiled here are concerned with: the neutron radiography services available in Petten; the experience with and applications of neutron radiography at Petten; image evaluation and analysis techniques at Petten; the practical utilization of nitrocellulose film in neutron radiography in Europe; an introduction into the basic principles of neutron radiography; an overview of the neutron radiography facilities in Europe for industry and research; and a survey of typical applications of neutron radiography in industry, research and sciences. It is the intention of this compilation to provide a comprehensive overview of the present Petten activities and European facilities in this young and promising field of non-destructive testing of materials and components from the nuclear and the non-nuclear industries and research organizations, and from the sciences

  4. Multiple imaging radiography at LNLS

    Energy Technology Data Exchange (ETDEWEB)

    Hoennicke, M.G. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba (Brazil)], E-mail: marcelohonnicke@yahoo.com.br; Cusatis, C. [LORXI, Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19091, 81531-990 Curitiba(Brazil); Antunes, A. [Departamento de Fisica Aplicada, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil); Safatle, A.M.V.; Barros, P.S.M. [Laboratorio de Oftalmologia Experimental e Comparativa, Departamento de Cirurgia, Faculdade de Medicina Veterinaria, Universidade de Sao Paulo, 05508-900 Sao Paulo (Brazil); Morelhao, S.L. [Departamento de Fisica Aplicada, Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970 Sao Paulo (Brazil)

    2008-01-11

    An analyzer-based X-ray phase-contrast imaging (ABI) setup has been mounted at the Brazilian Synchrotron Light Laboratory (LNLS) for multiple imaging radiography (MIR) purposes. The algorithm employed for treating the MIR data collected at LNLS is described, and its reliability in extracting the distinct types of contrast that can be obtained with MIR is demonstrated by analyzing a test sample (thin polyamide wire). As a practical application, the possibility of studying ophthalmic tissues, corneal sequestra in this case, via MIR is investigated.

  5. Lesion detectability in digital radiography

    Science.gov (United States)

    Gagne, Robert M.; Boswell, Jonathan S.; Myers, Kyle J.; Peter, Guillaume

    2001-06-01

    The usefulness of Fourier-based measures of imaging performance has come into question for the evaluation of digital imaging systems. Figures of merit such as detective quantum efficiency are relevant for linear, shift-invariant systems with stationary noise. However, no digital imaging system is shift invariant, and realistic images do not satisfy the stationarity condition. Our methods for task- based evaluation of imaging systems, based on lesion detectability, do not require such assumptions. We have computed the performance of Hotelling and nonprewhitening matched-filter observers for the task of lesion detection in digital radiography.

  6. Computational radiology in skeletal radiography

    Energy Technology Data Exchange (ETDEWEB)

    Peloschek, Ph.; Nemec, S. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Widhalm, P. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Donner, R. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Pattern Recognition and Image Processing Group, Department of Computer Aided Automation, Vienna University of Technology, Wiedner Hauptstrasse 8-10/020, A-1040 Vienna (Austria); Institute for Computer Graphics and Vision, Graz University of Technology, Inffeldgasse 16, A-8010 Graz (Austria); Birngruber, E. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Thodberg, H.H. [Visiana Aps, Sollerodvej 57C, DK-2840 Holte (Denmark); Kainberger, F. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Langs, G. [Computational Image Analysis and Radiology Lab (CIR), Department of Radiology, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria)], E-mail: georg.langs@meduniwien.ac.at

    2009-11-15

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  7. Computational radiology in skeletal radiography

    International Nuclear Information System (INIS)

    Recent years have brought rapid developments in computational image analysis in musculo-skeletal radiology. Meanwhile the algorithms have reached a maturity that makes initial clinical use feasible. Applications range from joint space measurement to erosion quantification, and from fracture detection to the assessment of alignment angles. Current results of computational image analysis in radiography are very promising, but some fundamental issues remain to be clarified, among which the definition of the optimal trade off between automatization and operator-dependency, the integration of these tools into clinical work flow and last not least the proof of incremental clinical benefit of these methods.

  8. Better imaging: the advantages of digital radiography

    NARCIS (Netherlands)

    P.F. van der Stelt

    2008-01-01

    Background. Digital radiography has been available in dentistry for more than 25 years, but it has not replaced conventional film-based radiography completely. This could be because of the costs involved in replacing conventional radiographic equipment with a digital imaging system, or because imple

  9. Digital chest radiography: collimation and dose reduction

    DEFF Research Database (Denmark)

    Debess, Jeanne; Johnsen, Karen Kirstine; Vejle-Sørensen, Jens Kristian;

    Purpose: Quality improvement of basic radiography focusing on collimation and dose reduction in digital chest radiography Methods and Materials:A retrospective study of digital chest radiography is performed to evaluate the primary x-ray tube collimation of the PA and lateral radiographs. Data from...... one hundred fifty self-reliant female patients between 15 and 55 years of age are included in the study. The clinical research is performed between September and November 2014 where 3rd year Radiography students collect data on four Danish x-ray departments using identical procedures under guidance...... of clinical supervisors. Optimal collimation is determined by European and Regional Danish guidelines. The areal between current and optimal collimation is calculated. The experimental research is performed in September - October 2014 Siemens Axiom Aristos digital radiography system DR using 150 kV, 1,25 -3...

  10. Corrosion Surveillance In Pipe By Computed Radiography

    International Nuclear Information System (INIS)

    Computed Radiography (CR) is a technique of digital industrial radiology which is developed to replace conventional radiography. With a CR system, the detection of the outer and inner wall surface of the pipe is done usually by edge detection and filter algorithms of the profile line at the position under investigation. Applying in industries, radiographic examination shall be performed in accordance with a written procedure. This paper summarizes collected knowledge and experimental results to establish a procedure for radiography applications in monitoring corrosion in small bore pipes. (author)

  11. Charter of good practices in industrial radiography

    International Nuclear Information System (INIS)

    This document describes good practices in the field of industrial radiography. After having presented the main prevention and radiation protection principles, the actors inside and outside of the company, and actors intervening during an operation subcontracting in industrial radiography, this report analyzes the activity: prerequisites for work preparation, prevention coordination, work preparation, transportation, work achievement, return on experience. It addresses personnel training and information, and the dosimetric and medical monitoring of technicians in industrial radiography. Some aspects are addressed in appendix: principles (justification, optimization, and limitation), regulations, intervention form, exposure form, and so on

  12. Neutron-induced alpha radiography; Radiografia com particulas alfa induzida por neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marco Antonio Stanojev

    2008-07-01

    A new radiography technique to inspect thin samples was developed. Low energy alpha particles, generated by a boron based screen under thermal neutron irradiation, are used as penetrating radiation. The solid state nuclear track detector CR-39 has been used to register the image. The interaction of the {alpha} - particles with the CR-39 gives rise to damages which under an adequate chemical etching became tracks the basic units forming the image. A digital system was developed for data acquisition and data analysis as well as for image processing. The irradiation and etching conditions to obtain the best radiography are 1,3 hours and 25 minutes at 70 deg C respectively. For such conditions samples having 10 {mu}m in thickness can be inspected with a spatial resolution of 32 {mu}m. The use of the digital system has reduced the time spent for data acquisition and data analysis and has improved the radiography image visualization. Furthermore, by using the digital system, it was possible to study several new parameters regarding the tracks which are very important to understand and study the image formation theory in solid state nuclear track detectors, the one used in this thesis. Some radiography images are also shown which demonstrate the potential of the proposed radiography technique. When compared with the other radiography techniques already in use to inspect thin samples, the present one developed in the present paper allows a smaller time to obtain the image, it is not necessary to handle liquid radioactive substances, the detector is insensitive to {beta}, {gamma}, X-ray and visible light. (author)

  13. Statistical Uncertainty in Quantitative Neutron Radiography

    OpenAIRE

    Piegsa, Florian M.; Kaestner, Anders P.

    2016-01-01

    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform correct quantitative analysis. This fast and convenient method is applied to real data measured at the cold neutron radiography facility ICON at the Paul Scher...

  14. Imaging beamline for high energy proton radiography

    Institute of Scientific and Technical Information of China (English)

    WEI Tao; YANG Guo-Jun; LONG Ji-Dong; WANG Shao-Heng; HE Xiao-Zhong

    2012-01-01

    Proton radiography is a new tool for advanced hydrotesting.This article will discuss the basic concept of proton radiography first,especially the magnetic lens system.Then a scenario of 50 GeV imaging beamline will be described in every particular,including the matching section,Zumbro lens system and imaging system.The simulation result shows that the scenario of imaging beamline performs well,and the influence of secondary particles can be neglected.

  15. Detective quantum efficiency for neutron radiography detectors

    International Nuclear Information System (INIS)

    Imaging performances of neutron radiography detectors, which consist of neutron-optical photon converter, image optics subsystem and CCD cameral were analyzed elaborately. Firstly, the variation of detective efficiency with the thickness of scintillator and the difference on quantum gain of two typical coupling methods between converter and CCD were discussed. Secondly, modulation transfer function and detective quantum efficiency with different lens coupling methods were described. Lastly, noise equivalent number of quanta was introduced to compare radiography detectors in theory. (authors)

  16. The neutron radiography programme at KAERI

    International Nuclear Information System (INIS)

    The first KAERI neutron radiography facility, which was installed at the research reactor KRR-2(2MW) in early 1980's to utilize for the inspection of the nuclear and non-nuclear objects, was closed at the end of 1995. As a continued programme, a new neutron radiography facility has been installed at HANARO with various upgrades. In this article, its design features, performance characteristics and utilization programme are outlined.

  17. Muon radiography for exploration of Mars geology

    OpenAIRE

    Kedar, S.; H. K. M. Tanaka; C. J. Naudet; Jones, C. E.; J. P. Plaut; F. H. Webb

    2012-01-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size...

  18. Muon radiography for exploration of Mars geology

    OpenAIRE

    Kedar, S.; H. K. M. Tanaka; C. J. Naudet; Jones, C. E.; J. P. Plaut; F. H. Webb

    2013-01-01

    Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays) to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size...

  19. Simulation of proton radiography terminal at IMP

    CERN Document Server

    Yan, Yan; Huang, Zhi-Wu; Wang, Jie; Yao, Ze-En; Wang, Jun-Run; Wei, Zheng; Yang, Jian-Cheng; Yuan, You-Jin

    2015-01-01

    Proton radiography is used for advanced hydrotesting as a new type radiography technology due to its powerful penetration capability and high detection efficiency. A new proton radiography terminal will be developed to radiograph static samples at Institute of Modern Physics of Chinese Academy of Science (IMP-CAS). The proton beam with the maximum energy of 2.6 GeV will be produced by Heavy Ion Research Facility in Lanzhou-Cooling Storage Ring (HIRFL-CSR). The proton radiography terminal consists of the matching magnetic lens and the Zumbro lens system. In this paper, the design scheme and all optic parameters of this beam terminal for 2.6GeV proton energy are presented by simulating the beam optics using WINAGILE code. My-BOC code is used to test the particle tracking of proton radiography beam line. Geant4 code and G4beamline code are used for simulating the proton radiography system. The results show that the transmission efficiency of proton without target is 100%, and the effect of secondary particles ca...

  20. Specialism in radiography - a contemporary history of diagnostic radiography

    International Nuclear Information System (INIS)

    Aim and method: Specialism is relative comparing the unusual to a norm. Origins of radiographers' perceptions of what is a specialism are identified. Semi-structured interviews were conducted with 21 practitioners and 10 leading voices whose combined practice span 1932-2001. Findings: Findings show that the exclusive nature of practice is influential on what is perceived as a specialism. Radiographers held career aspirations that included greater recognition, clinical involvement, autonomy and challenging work. Career aspirations were clinical rather than managerial and extended across modality boundaries. A key barrier to career progression was inequality of opportunity as local medical career requirements were dominant. Characteristics of specialism of diagnostic radiography are identified. Factors influencing the formation of specialism are also identified. Summary: Specialisation was dominant but not necessarily constructive to career progression or additional autonomy. Specialism relates to new areas of practice and is facilitated by service need, clear practice boundaries, visionary management, medical support, role development leading to increased autonomy and additional training and education.

  1. Vertebral Fracture Assessment in Supine Position : Comparison by Using Conventional Semiquantitative Radiography and Visual Radiography

    NARCIS (Netherlands)

    Hospers, Ilone C.; van der Laan, Johan G.; Zeebregts, Clark J.; Nieboer, Patrick; Wolffenbuttel, Bruce H. R.; Dierckx, Rudi A.; Kreeftenberg, Herman G.; Jager, Pieter L.; Slart, Riemer H. J. A.

    2009-01-01

    Purpose: To retrospectively evaluate the accuracy of vertebral fracture assessment (VFA) performed with the patient in the supine position and conventional semiquantitative radiography of the spine by using conventional visual radiography of the spine as the reference standard. Materials and Methods

  2. Mobile real time radiography system

    International Nuclear Information System (INIS)

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights ∼38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility

  3. Modified Bootstrap Sensitometry In Radiography

    Science.gov (United States)

    Bednarek, Daniel R.; Rudin, Stephen

    1981-04-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and stepped-wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped wedge of the Wisconsin X-Ray Test Cassette was used in the bootstrap approach since it provides sufficient exposure latitude to encompass the useful density range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic x-ray equipment.

  4. Proton radiography for clinical applications

    International Nuclear Information System (INIS)

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  5. Mobile real time radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, J.; Taggart, D.; Betts, S. [Los Alamos National Lab., NM (United States)] [and others

    1997-11-01

    A 450-keV Mobile Real Time Radiography (RTR) System was delivered to Los Alamos National Laboratory (LANL) in January 1996. It was purchased to inspect containers of radioactive waste produced at (LANL). Since its delivery it has been used to radiograph more than 600 drums of radioactive waste at various LANL sites. It has the capability of inspecting waste containers of various sizes from <1-gal. buckets up to standard waste boxes (SWB, dimensions 54.5 in. x 71 in. x 37 in.). It has three independent x-ray acquisition formats. The primary system used is a 12- in. image intensifier, the second is a 36-in. linear diode array (LDA) and the last is an open system. It is fully self contained with on board generator, HVAC, and a fire suppression system. It is on a 53-ft long x 8-ft. wide x 14-ft. high trailer that can be moved over any highway requiring only an easily obtainable overweight permit because it weights {approximately}38 tons. It was built to conform to industry standards for a cabinet system which does not require an exclusion zone. The fact that this unit is mobile has allowed us to operate where the waste is stored, rather than having to move the waste to a fixed facility.

  6. Proton radiography for clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Talamonti, C., E-mail: cinzia.talamonti@unifi.i [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Reggioli, V. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); Bruzzi, M. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Bucciolini, M. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Civinini, C. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Marrazzo, L. [Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Menichelli, D. [INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy); Dipartimento di Energetica, Universita degli Studi di Firenze, via S. Marta 3, I-50139 Firenze (Italy); Pallotta, S. [Dipartimento di Fisiopatologia Clinica, Universita degli Studi di Firenze, v.le Morgagni 85, I-50134 Firenze (Italy); INFN, sezione di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Italy); Azienda Ospedaliero-Universitaria Careggi, v.le Morgagni 85, I-50134 Firenze (Italy); Randazzo, N. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Sipala, V. [INFN, sezione di Catania, via S. Sofia 64, I-95123 Catania (Italy); Dipartimento di Fisica, Universita degli Studi di Catania, via S. Sofia 64, I-95123 Catania (Italy)

    2010-01-11

    Proton imaging is not yet applied as a clinical routine, although its advantages have been demonstrated. In the context of quality assurance in proton therapy, proton images can be used to verify the correct positioning of the patient and to control the range of protons. Proton computed tomography (pCT) is a 3D imaging method appropriate for planning and verification of proton radiation treatments, because it allows evaluating the distributions of proton stopping power within the tissues and can be directly utilized when the patient is in the actual treatment position. The aim of the PRoton IMAging experiment, supported by INFN, and the PRIN 2006 project, supported by MIUR, is to realize a proton computed radiography (pCR) prototype for reconstruction of proton images from a single projection in order to validate the technique with pre-clinical studies and, eventually, to conceive the configuration of a complete pCT system. A preliminary experiment performed at the 250 MeV proton synchrotron of Loma Linda University Medical Center (LLUMC) allowed acquisition of experimental data before the completion of PRIMA project's prototype. In this paper, the results of the LLUMC experiment are reported and the reconstruction of proton images of two phantoms is discussed.

  7. Interprofessional working in diagnostic radiography

    International Nuclear Information System (INIS)

    This paper considers interprofessional working within one diagnostic imaging department. The literature is still divided about the long-term impact of interprofessional learning in pre-registration health and social care education, and its impact on the quality of care provided. When reading the literature about interprofessional working the main topics considered by other authors are team working, communication between professionals, stereotyping and tribalism. The results presented are from an ethnographic study in one department with participant observation and semi-structured interviews. The three main aspects discussed in this paper are; tribalism and culture within the diagnostic radiography profession, communication between different professional groups, and a lack of understanding of the roles of other professional groups. It was evident from the results of this study that tribalism and culture, and a lack of understanding were significant barriers to interprofessional working. It was felt by the authors that pre-registration and post-registration interprofessional education could be significant in changing the culture of the NHS in the future as more professionals learn from and about one another

  8. Thorium-uranium fission radiography

    Science.gov (United States)

    Haines, E. L.; Weiss, J. R.; Burnett, D. S.; Woolum, D. S.

    1976-01-01

    Results are described for studies designed to develop routine methods for in-situ measurement of the abundance of Th and U on a microscale in heterogeneous samples, especially rocks, using the secondary high-energy neutron flux developed when the 650 MeV proton beam of an accelerator is stopped in a 42 x 42 cm diam Cu cylinder. Irradiations were performed at three different locations in a rabbit tube in the beam stop area, and thick metal foils of Bi, Th, and natural U as well as polished silicate glasses of known U and Th contents were used as targets and were placed in contact with mica which served as a fission track detector. In many cases both bare and Cd-covered detectors were exposed. The exposed mica samples were etched in 48% HF and the fission tracks counted by conventional transmitted light microscopy. Relative fission cross sections are examined, along with absolute Th track production rates, interaction tracks, and a comparison of measured and calculated fission rates. The practicality of fast neutron radiography revealed by experiments to data is discussed primarily for Th/U measurements, and mixtures of other fissionable nuclei are briefly considered.

  9. Radiation protection and safety in industrial radiography

    International Nuclear Information System (INIS)

    The use of ionizing radiation, particularly in medicine and industry, is growing throughout the world, with further expansion likely as technical developments result from research. One of the longest established applications of ionizing radiation is industrial radiography, which uses both X radiation and gamma radiation to investigate the integrity of equipment and structures. Industrial radiography is widespread in almost all Member States. It is indispensable to the quality assurance required in modern engineering practice and features in the work of multinational companies and small businesses alike. Industrial radiography is extremely versatile. The equipment required is relatively inexpensive and simple to operate. It may be highly portable and capable of being operated by a single worker in a wide range of different conditions, such as at remote construction sites, offshore locations and cross-country pipelines as well as in complex fabrication facilities. The associated hazards demand that safe working practices be developed in order to minimize the potential exposure of radiographers and other persons who may be in the vicinity of the work. The use of shielded enclosures (fixed facilities), with effective safety devices, significantly reduces any radiation exposures arising from the work. This Safety Report summarizes good and current state of the art practices in industrial radiography and provides technical advice on radiation protection and safety. It contains information for Regulatory Authorities, operating organizations, workers, equipment manufacturers and client organizations, with the intention of explaining their responsibilities and means to enhance radiation protection and safety in industrial radiography

  10. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2013-06-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large-scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  11. Muon radiography for exploration of Mars geology

    Directory of Open Access Journals (Sweden)

    S. Kedar

    2012-10-01

    Full Text Available Muon radiography is a technique that uses naturally occurring showers of muons (penetrating particles generated by cosmic rays to image the interior of large scale geological structures in much the same way as standard X-ray radiography is used to image the interior of smaller objects. Recent developments and application of the technique to terrestrial volcanoes have demonstrated that a low-power, passive muon detector can peer deep into geological structures up to several kilometers in size, and provide crisp density profile images of their interior at ten meter scale resolution. Preliminary estimates of muon production on Mars indicate that the near horizontal Martian muon flux, which could be used for muon radiography, is as strong or stronger than that on Earth, making the technique suitable for exploration of numerous high priority geological targets on Mars. The high spatial resolution of muon radiography also makes the technique particularly suited for the discovery and delineation of Martian caverns, the most likely planetary environment for biological activity. As a passive imaging technique, muon radiography uses the perpetually present background cosmic ray radiation as the energy source for probing the interior of structures from the surface of the planet. The passive nature of the measurements provides an opportunity for a low power and low data rate instrument for planetary exploration that could operate as a scientifically valuable primary or secondary instrument in a variety of settings, with minimal impact on the mission's other instruments and operation.

  12. Clinical application of computed radiography

    International Nuclear Information System (INIS)

    Observer performance tests were performed to compare the diagnostic accuracy of digitized storage phosphors and conventional radiography in the detection of microcalcification in the breast and pulmonary nodules. Clustered microcalcifications (0.125-0.177 mm, 0.210-0.250 mm) were randomly superimposed on a human breast specimen. Two types of screen-film systems (Toshiba MM6/Fuji MINC, Kodak MinR/Kodak MinR) and CR images either with unsharp mask or with no image processing (unprocess) were used as imaging systems. Nine readers assessed the capability of screen-films, and unsharp-masked and unprocessed mammograms to detect microcalcifications. Observer performance data were evaluated by receiver operating characteristics (ROC) analysis. Both the area under ROC curve and the true positive localization fraction were used as performance indexes. Two screen-film images provided a higher detectability of microcalcifications than CR images. In the detectability of microcalcifications, unsharp-masked images were superior to unprocessed images, with no statistically significant difference. CR images showed higher false positive fraction than screen-film systems. To assess the detectability of pulmonary nodules, 15 radiologists compared the diagnostic accuracy of screen-film system and CR images, including unprocessed, unsharp-masked, reversed and paired images, in 18 normal volunteers and 18 patients with pulmonary nodules. Overall diagnostic accuracy of CR images, except for reversed images, were comparable to the screen-film system. In case of definite, large nodules, unprocessed, unsharp-masked, and paired images were superior to the screen-film and reversed images. Screen-film and unprocessed images were helpful in cases of tiny nodules without definite contrast. The detectability of pulmonary nodules may be affected by image processing conditions, radiologist' experiences, and characteristics of nodules themselves. (N.K.) 59 refs

  13. Thyroid dose distribution in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bristow, R.G.; Wood, R.E.; Clark, G.M. (Ontario Cancer Institute, Toronto (Canada))

    1989-10-01

    The anatomic position and proven radiosensitivity of the thyroid gland make it an organ of concern in dental radiography. A calibrated thermoluminescent dosimetry system was used to investigate the absorbed dose (microGy) to the thyroid gland resultant from a minimum irradiated volume, intraoral full-mouth radiography technique with the use of rectangular collimation with a lead-backed image receptor, and conventional panoramic radiography performed with front and rear lead aprons. Use of the minimum irradiated volume technique resulted in a significantly decreased absorbed dose over the entire thyroid region ranging from 100% to 350% (p less than 0.05). Because this intraoral technique results in radiographs with greater image quality and also exposes the thyroid gland to less radiation than the panoramic, this technique may be an alternative to the panoramic procedure.

  14. Layout optimization for flash radiography with scatter

    International Nuclear Information System (INIS)

    The paper investigates the layout optimization for flash radiography with scatter using CCD to improve the imaging quality. The best layout is gained with the best factor of merit. The best magnification of the radiography system is 2 with the experimentally measured blur and Gaussian style assumption. The distance from the object to back windows is 50 cm. The best system length is related to the noise, and more noise leads to shorter system. The range of the best length is 3 to 5 m. The test has verified the above results. (authors)

  15. Proton Radiography: Its uses and Resolution Scaling

    Energy Technology Data Exchange (ETDEWEB)

    Mariam, Fesseha G. [Los Alamos National Laboratory

    2012-08-09

    Los Alamos National Laboratory has used high energy protons as a probe in flash radiography for over a decade. In this time the proton radiography project has used 800 MeV protons, provided by the LANSCE accelerator facility at LANL, to diagnose over five-hundred dynamic experiments in support of stockpile stewardship programs as well as basic materials science. Through this effort significant experience has been gained in using charged particles as direct radiographic probes to diagnose transient systems. The results of this experience will be discussed through the presentation of data from experiments recently performed at the LANL pRad.

  16. Statistical Uncertainty in Quantitative Neutron Radiography

    CERN Document Server

    Piegsa, Florian M

    2016-01-01

    We demonstrate a novel procedure to calibrate neutron detection systems commonly used in standard neutron radiography. This calibration allows determining the uncertainties due to Poisson-like neutron counting statistics for each individual pixel of a radiographic image. The obtained statistical errors are necessary in order to perform correct quantitative analysis. This fast and convenient method is applied to real data measured at the cold neutron radiography facility ICON at the Paul Scherrer Institute. Moreover, from the results the effective neutron flux at the beam line is determined.

  17. Radiography Following Perinatal Death: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Oe.E. [Great Ormond Street Hospital for Children NHS Trust, London (United Kingdom). Radiology Dept.

    2006-02-15

    Radiography of the perinatally dead infant provides detailed information about the skeleton and is valuable as an adjunct to autopsy. This article reviews the potential benefits and discusses the pitfalls in assessment of growth stage. Reference charts for individual bone lengths and secondary ossification centers are presented.

  18. Conditions for radiation protection in industrial radiography

    CERN Document Server

    1999-01-01

    The leaflet specifies radiation protection requirements for industrial radiography in Norway. The regulations are directed towards companies using or distributing sealed radioactive sources, x-ray equipment or accelerators in non-destructive material testing (NDT). Technical requirements to the equipment, as well as administrative requirements for use, licensing, qualifications, handling of accidents etc. are given. (Author)

  19. Establishing rigour in qualitative radiography research

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, F.J. [School of Healthcare Professions, University of Salford, Salford M6 6PU (United Kingdom)], E-mail: f.j.murphy@salford.ac.uk; Yielder, J. [Medical Imaging, School of Health Sciences, Unitec, Auckland (New Zealand)

    2010-02-15

    The vast majority of radiography research is subject to critique and evaluation from peers in order to justify the method and the outcome of the study. Within the quantitative domain, which the majority of medical imaging publications tend to fall into, there are prescribed methods for establishing scientific rigour and quality in order to critique a study. However, researchers within the qualitative paradigm, which is a developing area of radiography research, are often unclear about the most appropriate methods to measure the rigour (standards and quality) of a research study. This article considers the issues related to rigour, reliability and validity within qualitative research. The concepts of reliability and validity are briefly discussed within traditional positivism and then the attempts to use these terms as a measure of quality within qualitative research are explored. Alternative methods for research rigour in interpretive research (meanings and emotions) are suggested in order to compliment the existing radiography framework that exists for qualitative studies. The authors propose the use of an established model that is adapted to reflect the iterative process of qualitative research. Although a mechanistic approach to establishing rigour is rejected by many qualitative researchers, it is argued that a guide for novice researchers within a developing research base such as radiography is appropriate in order to establish the credibility and trustworthiness of a qualitative study.

  20. INDUSTRIAL RADIOGRAPHY COURSE, INSTRUCTORS' GUIDE. VOLUME 2.

    Science.gov (United States)

    Texas A and M Univ., College Station. Engineering Extension Service.

    INFORMATION RELATIVE TO THE LESSON PLANS IN "INDUSTRIAL RADIOGRAPHY COURSE, INSTRUCTOR'S GUIDE, VOLUME I" (VT 003 565) IS PRESENTED ON 52 INFORMATION SHEETS INCLUDING THE SUBJECTS SHIELDING EQUATIONS AND LOGARITHMS, METAL PROPERTIES, FIELD TRIP INSTRUCTIONS FOR STUDENTS, WELDING SYMBOLS AND SIZES, SAMPLE REPORT FORMS, AND TYPICAL SHIPPING…

  1. Performances of some mobile neutron radiography systems

    International Nuclear Information System (INIS)

    Present paper describes shortly three different mobile neutron radiography systems in term of characteristic, performances, flexibility, and their main applications for non destructive testing of materials, devices and structures. Examples of applications in different fields, with particular attention to aeronautics (early corrosion detection, turbine blades quality control inspection) and pyrotechnic devices / specific parts inspection, are presented.(author)

  2. Safety Testing of Industrial Radiography Devices

    International Nuclear Information System (INIS)

    The Nuclear Regulatory Commission contracted the Savannah River Technology Center to verify the relevancy of the 10 CFR Part 34 requirements for the normal use of portable gamma radiography systems and to propose recommendations for changes or modifications to the requirements

  3. Radiography of oral cavity disorders [dentistry, stomatology

    International Nuclear Information System (INIS)

    Radiographic examination in odonto-stomatology can he made easier by using intra-oral dental films and a dental X-ray machine. Parallel and bissecting angle techniques allow X-ray pictures to be taken with intra-and extra-oral films. Radiography provides information for diagnosis but it also allows the evaluation of dental treatments

  4. Infection control practices for dental radiography.

    Science.gov (United States)

    Palenik, Charles John

    2004-06-01

    Infection control for dental radiography employs the same materials, processes, and techniques used in the operatory, yet unless proper procedures are established and followed, there is a definite potential for cross-contamination to clinical area surfaces and DHCP. In general, the aseptic practices used are relatively simple and inexpensive, yet they require complete application in every situation. PMID:15218669

  5. Radiography - A new field among health sciences in Finland

    International Nuclear Information System (INIS)

    In order to secure high quality X-ray services and efficient operation of clinical radiography, a study programme in radiography science was implemented at the University of Oulu in 1999. The need for a specific field of science has emerged as a result of social changes, such as the aging population, and the fast development of technology that has caused significant changes in the radiological working environment and clinical radiography. A need for a new, research-based informational foundation of clinical radiography is the basis for the programme. As service producers, radiographers need vast knowledge as well as specific expertise. The research object of radiography science is clinical radiography. If it was studied from the viewpoint of other sciences, the key professional skills of a radiographer would remain unexplored. Implementing an own field of science has enabled the development of radiography from its own bases. Basic research in the field is represented, for example, by the concept analysis of radiography in health sciences. Radiography science should produce research results for both clinical radiography and the instruction of radiography. So far, research results have dealt with the professional decision-making of a radiographer, the influences of computer technology on a radiographer's work and measuring the radiation exposure of a population

  6. Radiography and bone scintigraphy in multiple myeloma: a comparative analysis

    International Nuclear Information System (INIS)

    The sensitivity of radionuclide imaging for detecting skeletal lesions was compared with that of radiography by evaluating 573 different anatomical sites in 41 patients with multiple myeloma. Radiography revealed a significantly greater number of myeloma-related bone lesions than did radionuclide imaging. Of the 179 myeloma-related bone lesions detected when both techniques were applied, 163 were seen by radiography and 82 by radionuclide imaging. Ninety-seven lesions were detected by radiography alone and 16 lesions seen by scintiscanning only, yielding a sensitivity of 91% for the former and of 46% for the latter technique. Radionuclide imaging proved superior to radiography only occasionally in the rib cage, and rarely in other anatomical sites. These findings suggest that radiography is the method of first choice in obtaining a skeletal survey in patients with multiple myeloma. In cases with continued pain, unexplained by standard radiography, the skeletal survey should be supplemented by tomography and radionuclide imaging. (author)

  7. Radiation Safety in Industrial Radiography. Specific Safety Guide (Spanish Edition)

    International Nuclear Information System (INIS)

    This Safety Guide provides recommendations for ensuring radiation safety in industrial radiography used in non-destructive testing. This includes industrial radiography work that utilizes X ray and gamma sources, both in shielded facilities that have effective engineering controls and in outside shielded facilities using mobile sources. Contents: 1. Introduction; 2. Duties and responsibilities; 3. Safety assessment; 4. Radiation protection programme; 5. Training and qualification; 6. Individual monitoring of workers; 7. Workplace monitoring; 8. Control of radioactive sources; 9. Safety of industrial radiography sources and exposure devices; 10. Radiography in shielded enclosures; 11. Site radiography; 12. Transport of radioactive sources; 13. Emergency preparedness and response; Appendix: IAEA categorization of radioactive sources; Annex I: Example safety assessment; Annex II: Overview of industrial radiography sources and equipment; Annex III: Examples of accidents in industrial radiography

  8. Real-Time Neutron Radiography at CARR

    Institute of Scientific and Technical Information of China (English)

    HE; Lin-feng; HAN; Song-bai; WANG; Hong-li; WU; Mei-mei; WEI; Guo-hai; WANG; Yu

    2012-01-01

    <正>A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is less than 2.4 electron per pixel. It is capable of providing

  9. Neutron radiography in the plasma focus

    International Nuclear Information System (INIS)

    Starting with some theoretical considerations, the paper describes the experimental basis for neutron radiography in the plasma focus. With an appropriate combination of scintillator and image converter, average optical density can already be reached at neutron density of about 5 x 104 n/cm2. Contrast studies near the plasma focus with the aid of neutrons have thus become possible for the first time. (author)

  10. Hybrid pixel detector development for medical radiography

    International Nuclear Information System (INIS)

    A 7-year project has been initiated to develop hybrid pixel detectors for medical radiography. Crystalline semiconductor will be bonded to a pixellated readout chip where individual integrated circuits process each event, transferring the position, energy and timing information to the data acquisition controller. Chips will be tiled to produce a large area detector, capable of energy dispersive photon counting at moderate spatial resolution. Preliminary results from studies examining the design features and operation of the device are presented

  11. Installation NR-31R for neutron radiography

    International Nuclear Information System (INIS)

    NR-31R installation, intended for neutron radiography of extended radioactive items using horizontal neutron beam from the nuclear reactor of WWER-type, is described. The installation is located directly in the reactor hall. It comprises the following main units: collimator, radiographic chamber, two containers (upper and bottom), neutron beam trap, distance and local control pannels. Obtaining neutron images of the controlled items is possible at NR-31R installation both by the method of direct exposure, and by the transfer method

  12. Beam characterization at the Neutron Radiography Reactor

    International Nuclear Information System (INIS)

    Highlights: • The project characterized the beam at the Neutron Radiography Reactor. • Experiments indicate that the neutron energy spectrum model may not be accurate. • The facility is a category I radiography facility. • The beam divergence and effective collimation ratio are 0.3 ± 0.1° and >125. • The predicted total neutron flux at the image plane is 5.54 × 106 n/cm2 s. -- Abstract: The quality of a neutron-imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam's effective length-to-diameter ratio, neutron flux profile, energy spectrum, potential image quality, and beam divergence, is vital for producing quality radiographic images. This paper provides a characterization of the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam's effective length-to-diameter ratio and potential image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. The NRAD has an effective collimation ratio greater than 125, a beam divergence of 0.3 ± 0.1°, and a gold foil cadmium ratio of 2.7. The flux profile has been quantified and the facility is an ASTM Category 1 radiographic facility. Based on bare and cadmium covered foil activation results, the neutron energy spectrum used in the current MCNP model of the radiography beamline over-samples the thermal region of the neutron energy spectrum

  13. Calculation methods for neutron radiography spatial resolution

    International Nuclear Information System (INIS)

    Spatial resolution is an important parameter for neutron radiography facility. In this paper, different methods to define the spatial resolution,such as point spread function (PSF), line spread function (LSF), edge spread function (ESF) and modulation transfer function (MTF), are analyzed and compared. MTF turns out to be the best, as it is derived from the linear system theory in a given frequency domain, and gives the maximum amount of useful information on system signal modulation. (authors)

  14. Panoramic radiography and its diagnostic application

    International Nuclear Information System (INIS)

    Panoramic radiography is a term that is applied to the radiographic techniques which record is the dental arches and related structures on one or two extraoral films. It consists of two methods, one using the intraoral anode, and the other employing tomography. Because of an increase in practical application, about 10 kinds of panoramic dental X-ray units were commercially available in U.S.A.

  15. Novel embossed radiography system utilizing energy subtraction

    Science.gov (United States)

    Osawa, Akihiro; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Nagao, Jiro; Abderyim, Purkhet; Tanaka, Etsuro; Izumisawa, Mitsuru; Ogawa, Akira; Sato, Shigehiro

    2008-08-01

    Digital subtraction is useful for carrying out embossed radiography by shifting an x-ray source, and energy subtraction is an important technique for imaging target region by deleting unnecessary region in vivo. X-ray generator had a 100-μm-focus tube, energy subtraction was performed at tube voltages of 40 and 60 kV, and a 3.0-mm-thick aluminum filter was used to absorb low-photon-energy bremsstrahlung x-rays. Embossed radiography was achieved with cohesion imaging using a flat panel detector (FPD) with pixel sizes of 48×48 μm, and the shifting distance of the x-ray source in horizontal direction and the distance between the x-ray source and the FPD face were 5.0 mm and 1.0 m, respectively. At a tube voltage of 60 kV and a tube current of 0.50 mA, x-ray intensities without filtering and with filtering were 307 and 28.4 μGy/s, respectively, at 1.0 m from the source. In embossed radiography of non-living animals, the spatial resolution measured using a lead test chart was approximately 70 μm, and we observed embossed images of fine bones, soft tissues, and coronary arteries of approximately 100 μm.

  16. Gamma radiography applied to aircraft maintenance

    International Nuclear Information System (INIS)

    Gamma-radiography as used in aircraft maintenance was introduced in the 1960's and is almost entirely focussed on the jet engine. It is used to identify cracking, corrosion, distortion, distress, assembly, alignment and wear. The general arrangement of an axial flow engine will permit the placement of a radiographic source in the central shaft. The radiations emitted may be directed at an appropriate angle to the part examined to produce a radiographic image. The techniques presented here are used to monitor the condition of specific rotating and non-rotating components in the gas flow path of high by-pass jet engines. Conventional gamma radiography equipment is used. The source is almost always Iridium-192, of between 800-3000 GBq. It has effective energies of 400-600 kV and a half-life of about 75 days. Exposure control and positioning apparatus is the same as for other industrial radiography with rigid guide tubes to locate the source centrally within the engine. The use of this inspection technique is realised as lower maintenance expenses than would otherwise be possible for the equivalent level of reliability. 19 refs., 12 figs

  17. Assessment of cold neutron radiography capability

    International Nuclear Information System (INIS)

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors goals were to demonstrate and assess cold neutron radiography techniques at the Los Alamos Neutron Science Center (LANSCE), Manual Lujan Neutron Scattering Center (Lujan Center), and to investigate potential applications of the capability. The authors have obtained images using film and an amorphous silicon detector. In addition, a new technique they have developed allows neutron radiographs to be made using only a narrow range of neutron energies. Employing this approach and the Bragg cut-off phenomena in certain materials, they have demonstrated material discrimination in radiography. They also demonstrated the imaging of cracks in a sample of a fire-set case that was supplied by Sandia National Laboratory, and they investigated whether the capability could be used to determine the extent of coking in jet engine nozzles. The LANSCE neutron radiography capability appears to have applications in the DOE stockpile maintenance and science-based stockpile stewardship (SBSS) programs, and in industry

  18. Digital radiography: description and user's guide

    International Nuclear Information System (INIS)

    The presented document arises from the work of the group 'Digital Radiography and sensors' of COFREND. It is a collective work of synthesis aimed to analyze the quality parameters of digital images influencing the answer and the diagnosis brought to a given industrial problem. Five families of digital sensors have been studied: 1. Image Intensifier coupled with CCD devices - 2. scintillators coupled with a CCD device- 3. Flat Panels with indirect conversion - 4. Flat Panels with direct electric conversion - 5. Photostimulable Storage Phosphor Screens). In particular, concerning a complete imaging chain, it deals with the notions of magnification, blur (unsharpness) (geometrical, kinetic or internal to the very sensor), noises, scattered radiation, spatial resolution, which is different from the one of analog detectors such as films, Contrast to Noise Ratio (CNR), sensitivity using IQIs, dynamic range, detection quantum efficiency, persistence and temporal resolution. This document is not a standard; it must be understood as a user's guide, and it approaches some essentials corrections to bring to a sensor in order to optimize his efficiency without losing information during the pre-processing phase in the radiographic acquisition. It also introduces some image processing tools commonly used. It can be used as a source document to the future elaboration of a standardisation document. It augurs not at all of the choice of a digital sensor with regard to the traditional radiographic film, but gives bases of reflection to a radio user for a sensible transfer from the classic radiography to the digital radiography. (authors)

  19. Proton radiography for inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, L.; Batani, D. [University of Milano-Bicocca (Italy); Baton, S.; Perez, F.; Koenig, M. [LULI Ecole Polytechnique-CNRS-UPMC, Palaiseau Cedex (France); Nicolai, Ph.; Vauzour, B.; Santos, J. J. [CELIA, University de Bordeaux (France)

    2011-11-15

    Generation of high-intensity and well collimated multi-energetic proton beams from laser-matter interaction extend the possibility for using protons as a diagnostic to image imploding targets in inertial confinement fusion experiments in the framework of the experimental road map of the Hiper project (the European High Power laser Energy Research facility Project). Due to the very large mass densities reached during implosion processes, protons traveling through the target undergo a very large number of collisions which deviate the protons from their original trajectories reducing the proton radiography resolution below our expectations. Here we present a simple analytical model to study the performance of proton radiography as a function of the main experimental parameters, such as the proton beam energies and targets areal density. This approach leads to define two different criteria for proton radiography resolution (called the 'strong' and the 'weak' conditions) describing different experimental conditions. Finally, numerical simulations using both hydrodynamic and Monte Carlo codes are presented to validate the analytical predictions.

  20. Bacteriological research for the contamination of equipment in chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seung Gu; Song, Woon Heung; Kweon, Dae Cheol [Shinhan University, Uijeongbu (Korea, Republic of)

    2015-12-15

    The purpose is to determine the degree of contamination of the equipment for infection control in chest radiography of the radiology department. We confirmed by chemical and bacterial identification of bacteria of the equipment and established a preventive maintenance plan. Chest X-ray radiography contact area on the instrument patients shoulder, hand, chin, chest lateral radiography patient contact areas with a 70% isopropyl alcohol cotton swab were compared to identify the bacteria before and after sterilization on the patient contact area in the chest radiography equipment of the department. The gram positive Staphylococcus was isolated from side shoots handle before disinfection in the chest radiography equipment. For the final identification of antibiotic tested that it was determined by performing the nobobiocin to the sensitive Staphylococcus epidermidis. Chest radiography equipment before disinfecting the handle side of Staphylococcus epidermidis bacteria were detected using a disinfectant should be to prevent hospital infections.

  1. Radiological protection procedures for industrial applications of computed radiography

    International Nuclear Information System (INIS)

    Due to its very particular characteristics, industrial radiography is responsible for roughly half of the relevant accidents in nuclear industry, in developed as well as in developing countries, according to the International Atomic Energy Agency (IAEA). Thus, safety and radiological protection in industrial gamma radiography have been receiving especial treatment by regulatory authorities of most Member States. The main objective of the present work was to evaluate, from the radioprotection point of view, the main advantages of computed radiography (CR) for filmless industrial radiography. In order to accomplish this, both techniques, i.e. conventional and filmless computed radiography were evaluated and compared through practical studies. After the studies performed at the present work it was concluded that computed radiography significantly reduces the inherent doses, reflecting in smaller restricted areas and costs, with consequent improvement in radiological protection and safety. (author)

  2. First experimental research of low energy proton radiography

    CERN Document Server

    Wei, Tao; Long, Jidong; He, Xiaozhong; Li, Yiding; Zhang, Xiaoding; Ma, Chaofan; Zhao, Liangchao; Shi, Jinshui

    2013-01-01

    Proton radiography is a new scatheless diagnostic tool, and which provides a potential development direction for advanced hydrotesting. Recently a low energy proton radiography system has been developed at CAEP. This system has been designed to use 11MeV proton beam to radiograph thin static objects. This system consists of a proton cyclotron coupled to an imaging beamline. The design features and commissioning results of this radiography system are presented.

  3. Radiation safety in industrial radiography in the Philippines

    International Nuclear Information System (INIS)

    The article presents the application of radiography in almost all sectors of the industry from construction stage of plants, in oil and gas, petrochemical and power industry which are the biggest users of radiography. Industrial radiography is being conducted using a set of operational procedures developed by the level 3 radiographer and approved by the Radiological Health and Safety Officer (RHSO) to ensure safe and successful completion of the activity

  4. Visualization of frosting phenomena by using neutron radiography

    International Nuclear Information System (INIS)

    This study focuses on the frost formation on the fin-tube heat exchanger using neutron radiography. The visualization of the frost formation was estimated by the attenuation of the neutron beam through the water. The visualization image of the neutron radiography shows clearly the frost formation phenomena on the fin-tube heat exchanger. The rapid frost formation was observed at the fin and tube edges. Local mass transfer coefficient can be calculated from the differential images of the neutron radiography. (author)

  5. Digital radiography and advanced imaging techniques in dentistry

    OpenAIRE

    Burcu Keles Evlice; Haluk Oztunc

    2013-01-01

    Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluati...

  6. Heavy-ion radiography applied to charged particle radiotherapy

    International Nuclear Information System (INIS)

    The objectives of the heavy-ion radiography research program applied to the clinical cancer research program of charged particle radiotherapy have a twofold purpose: (1) to explore the manner in which heavy-ion radiography and CT reconstruction can provide improved tumor localization, treatment planning, and beam delivery for radiotherapy with accelerated heavy charged particles; and (2) to explore the usefulness of heavy-ion radiography in detecting, localizing, and sizing soft tissue cancers in the human body. The techniques and procedures developed for heavy-ion radiography should prove successful in support of charged particle radiotherapy

  7. Evaluation of occupational exposure in intraoral radiography

    International Nuclear Information System (INIS)

    The intraoral radiography is widely performed in the dental office due to low cost and agility. The doses in intraoral radiology are considered low, however it is known that doses below the threshold for deterministic radiation has the potential to induce stochastic effects. An intraoral radiography has a risk of inducing fatal cancer or serious in order of 1:10,000,000. Besides the patient, the dentist may also be being exposed to radiation during the work with the radiographics practices. The bibliographies demonstrates the lack of information on radiation protection of dentists, however, the occupational dose reduction was observed in radiology over the past 14 years. This work aims to evaluate the effective dose of radiation to which workers can be exposed dentists in dental offices to perform intraoral radiographs. In this context, a study was be conducted between June 2013 and May 2014 with 44 professionals in Curitiba city. For each dentist was given a personal dosimeter to be used for 30 days. During this period, the number of radiographies and the length of the cable triggers of the X-ray equipment was registered and, the dosimeter´s dose was read. It was observed that the cables triggers meet regulatory standards and allow dentists to get the mean minimum distance of two meters from the radiation source in 93% of cases. Through analysis of the doses, it was concluded that occupational exposures of these workers are within the recommended threshold by regulatory 453/1998 of the Ministry of Health from Brazil. (author)

  8. Technique for chest radiography for pneumoconiosis

    International Nuclear Information System (INIS)

    Routine radiographic chest examinations have been performed using a variety of techniques. Although chest radiography is one of the most commonly performed radiographic examinations, it is often difficult to obtain consistently good quality roentgenograms. This publication provides a simple guide and relatively easy solution to the many problems that radiologic technologists might encounter. The language is purposely relatively simple and care has been taken to avoid difficult mathematical and physical explanations. The intent is to provide an easily referrable text for those who may encounter difficulties in producing acceptable chest radiographs

  9. Digital Radiography Qualification of Tube Welding

    Science.gov (United States)

    Carl, Chad

    2012-01-01

    The Orion Project will be directing Lockheed Martin to perform orbital arc welding on commodities metallic tubing as part of the Multi Purpose Crew Vehicle assembly and integration process in the Operations and Checkout High bay at Kennedy Space Center. The current method of nondestructive evaluation is utilizing traditional film based x-rays. Due to the high number of welds that are necessary to join the commodities tubing (approx 470), a more efficient and expeditious method of nondestructive evaluation is desired. Digital radiography will be qualified as part of a broader NNWG project scope.

  10. Digital radiography in the aerospace industry

    Science.gov (United States)

    Buchanan, R. A.; Bueno, C.; Barry, R. C.; Barker, M. D.

    An account is given of the bases of digital radiography (DR), with a view to the identification of NDE systems with the greatest usefulness to the aerospace industry and the nature of the advanced image processing and reconstruction techniques that have been devised thus far. The spatial resolution of any DR system is fundamentally limited by the number of pixels in the digital image and the system field-of-view. Attention is given to the problems of image geometric unsharpness and radiation quantum noise limits, as well as to the potential role of advanced DR in future NDT of aerospace components.

  11. Advances in neutron radiography at UJV

    International Nuclear Information System (INIS)

    A brief description is given of the development of neutron radiography and of planned development of neutron sources, imaging methods, evaluation methods and instrumentation. Experimental equipment and the application fields are described. The method is used in the metrology of fuel elements, for the study of the penetration of aggressive substances into building materials, for the diagnosis of bone tumors between surgeries, in archaeology, in crack detection of glued joints of honeycombed structures and in imaging the crystalline structure of castings of nickel-based superalloys. (J.P.)

  12. Computed radiography imaging plates and associated methods of manufacture

    Science.gov (United States)

    Henry, Nathaniel F.; Moses, Alex K.

    2015-08-18

    Computed radiography imaging plates incorporating an intensifying material that is coupled to or intermixed with the phosphor layer, allowing electrons and/or low energy x-rays to impart their energy on the phosphor layer, while decreasing internal scattering and increasing resolution. The radiation needed to perform radiography can also be reduced as a result.

  13. Proceeding of 6th short conference on neutron radiography

    International Nuclear Information System (INIS)

    The 6th short conference on neutron radiography was held on August 30 and 31, 1983, at the Research Reactor Institute, Kyoto niversity, as a part of the joint research program of the Institute. During the period since the first meeting in November, 1970, steady development was made in both research and practical use of neutron radiography in Japan owing to the persistent effort of the persons concerned. In the conference, 70 persons participated, and 21 papers were presented. The problems treated were the apparatuses of neutron television, neutron radiography and neutron photography, the various application of neutron radiography, the standard of neutron radiography and others. The high value of neutron radiography and the increasing demand to use this technique were shown in this meeting. Considering the recent rapid development of new technology, it is expected that neutron radiography will find the wide varieties of application in the near future. The proceedings of the conference are published by collecting the gists of papers, hoping to enhance joint effort and the exchange of information to develop neutron radiography. (Kako, I.)

  14. Diagnostics of coated fuel particles by neutron and synchrotron radiography

    International Nuclear Information System (INIS)

    The nondestructive monitoring of coated fuel particles has been performed using contact neutron radiography and refraction radiography based on synchrotron radiation. It is shown that these methods supplement each other and have a high potential for determining the sizes, densities, and isotopic composition of the particle components.

  15. Preliminary Study of Indirect Neutron Radiography Method at CARR

    Institute of Scientific and Technical Information of China (English)

    WEI; Guo-hai; HAN; Song-bai; WANG; Hong-li; HE; Lin-feng; WANG; Yu; WU; Mei-mei; LIU; Yun-tao; CHEN; Dong-feng

    2013-01-01

    The Indirect Neutron Radiography is a powerful technique for non-destructively measuring specimens with radioactivity in the nuclear industrial field.China Advanced Research Reactor(CARR)is an excellent platform for Indirect Neutron Radiography and the experimental conditions based on CARR,mainly the first and the second exposure time,have been calculated and analyzed by the Monte Carlo

  16. The value of panoramic radiography in assessing maxillary sinus inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hae; Jung, Yun Hoa; Nah, Kyung Soo [Department of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Pusan (Korea, Republic of)

    2008-12-15

    To evaluate the value of panoramic radiography in diagnosing maxillary sinus inflammation. A total of 214 maxillary sinuses from 114 panoramic radiographs were assessed in this study. Two independent experienced oral radiologists evaluated the images in random order for sinus inflammation. Using Cone beam CT images as the gold standard, the sensitivity and specificity of panoramic radiography were calculated, and inter- and intraobserver agreement for panoramic interpretation were obtained. The mean sensitivity and specificity of panoramic radiography were 81.0% and 85.6%, respectively. The weighted kappas for inter- and intraobserver agreement of panoramic radiography were 0.56 and 0.60, respectively. Panoramic radiography is a reasonably accurate method for diagnosing maxillary sinus inflammation and can be used for screening. However, additional examinations should be considered in patients with potentially significant pathology.

  17. Phase-contrast radiography with a polychromatic neutron beam

    International Nuclear Information System (INIS)

    The phase-contrast imaging is based not only on the absorption contrast like in the conventional radiography but also on the contributions of the phase shifts induced by the propagation of a coherent radiation through the investigated sample. The strong phase changes on the borders between two media can be observed as sharp intensity variations on the radiography image. So the phase-contrast method is an edge-enhancement method which allows to visualize very fine structures where the conventional radiography provides unsatisfactory results. For the aims of the phase-contrast imaging a radiation with a high spatial but not necessarily chromatic coherence is required. In this way phase-contrast radiography experiments with a polychromatic thermal neutron beam possessing a high spatial transversal coherence can be performed. The reported results show that the developed phase-contrast neutron radiography can be used as a standard non-destructive investigation method

  18. The value of panoramic radiography in assessing maxillary sinus inflammation

    International Nuclear Information System (INIS)

    To evaluate the value of panoramic radiography in diagnosing maxillary sinus inflammation. A total of 214 maxillary sinuses from 114 panoramic radiographs were assessed in this study. Two independent experienced oral radiologists evaluated the images in random order for sinus inflammation. Using Cone beam CT images as the gold standard, the sensitivity and specificity of panoramic radiography were calculated, and inter- and intraobserver agreement for panoramic interpretation were obtained. The mean sensitivity and specificity of panoramic radiography were 81.0% and 85.6%, respectively. The weighted kappas for inter- and intraobserver agreement of panoramic radiography were 0.56 and 0.60, respectively. Panoramic radiography is a reasonably accurate method for diagnosing maxillary sinus inflammation and can be used for screening. However, additional examinations should be considered in patients with potentially significant pathology.

  19. Ensuring Safety in Transition to Digital Radiography in Practice

    International Nuclear Information System (INIS)

    Many countries are currently transitioning from screen-film radiography to digital radiography. Most principles for dose reduction in screen-film radiography, including justification, are relevant to digital systems. However, digital systems have the potential to significantly increase patient dose, possibly due to lack of awareness among imaging personnel. Examination parameters, such as tube voltage, tube current and filtration, have been adopted from screen-film technology without further adjustments. The imaging parameters must be optimized according to the best performance of a particular system. Current safety issues with clinical digital radiography are discussed; these are technology factors, such as automatic exposure factors and exposure index; and human factors, such as inappropriate exposure, no collimation and overexposure. Digital techniques increasingly offer options for dose reduction. Therefore, implementation of dose indicators and dose monitoring is mandatory for digital radiography in practice. Finally, the advantages and challenges of radiographer performed fluoroscopy will also be discussed. (author)

  20. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging

  1. A system for fast neutron radiography

    International Nuclear Information System (INIS)

    A system has been designed and a neutron generator installed to perform fast neutron radiography. With this system, objects as small as a coin and as large as a 19 liter container have been radiographed. The neutron source is an MF Physics A-711 neutron generator which produces 3 x 10[sup 10] neutrons/second with an average energy of 14. 5 MeV. The radiography system uses x-ray scintillation screens and film in commercially available light-tight cassettes. The cassettes have been modified to include a thin sheet of plastic to produce protons from the neutron beam through elastic scattering from hydrogen and other low Z materials in the plastic. For film densities from 1.8 to 3.0, exposures range from 1.9 x 10[sup 7] n/cm[sup 2] to 3.8 x 10[sup 8] n/cm[sup 2] depending on the type of screen and film. The optimum source-to-film distance was found to be 150 cm. At this distance, the geometric unsharpness was determined to be approximately 2.2-2.3 mm and the smallest hole that could be resolved in a 1.25 cm thick sample had a diameter of 0.079 cm

  2. Imaging characteristics in rotational panoramic radiography

    International Nuclear Information System (INIS)

    This study is concerned with imaging quality in rotational panoramic radiography. This imaging technique records an image of a curved layer within the object radiographed. The shape of this layer normally corresponds with the average form of the dental arch. In the centre of the layer a plane can be found which is depicted with a minimum of unsharpness. Unsharpness increases and the horizontal magnification changes as distance increases from that central plane. The image quality of the layer has been analyzed with the use of mathematical models to estimate the performance of the radiographic diagnostic system. Despite the application of these increasingly sophisticated models the question remains: will the results of the calculations based on these models adequately predict the diagnostic effectiveness of this type of imaging system? In this study a comparison is made between the theoretically determined quality of the system and the diagnostic quality using the observer as a measuring instrument. Experiments were carried out to measure the total unsharpness occurring in rotational panoramic radiography. 116 refs.; 114 figs.; 54 tabs

  3. Mature students' perspectives of studying radiography

    International Nuclear Information System (INIS)

    The study set out to explore the experiences of all final year mature students on a diagnostic radiography course, in one United Kingdom University. The aims were to identify any difficulties they may have had and to make recommendations to improve mature students' learning experiences with the hope of lowering attrition rates in this group. A qualitative study involving one-to-one audio recorded interviews was utilised. Analysis of the transcripts of interviews suggested that the group believed that their maturity and previous experiences helped them in the clinical environment and put them in a good position, when asked, to counsel younger students. However for some of the mature students these experiential skills did not extend fully into seeking appropriate support for themselves. The mature students were found to be highly motivated but there was a conflict between balancing clinical and academic aspects of studying as well as balancing studying with home life. The group was found to be unprepared for the volume of academic work and its detrimental effect on family life as they sacrificed other aspects of their lives in order to complete the course. It is recommended that forewarning and forearming prospective mature students be considered by radiography education providers. Setting up and utilising an on-line forum providing a 24/7 peer support environment would aid in coping with academic, clinical or personal problems

  4. Neutron radiography working group test programme

    International Nuclear Information System (INIS)

    Scope and results of the Euratom Neutron Radiography Working Group Test Program are described. Seven NR centers from six European Community countries have performed this investigation using eleven NR facilities. Four test items were neutron radiographed using 30 different film/converter combinations. From film density measurements neutron beam components were determined. Radiographic sensitivity was assessed from visual examinations of the radiographs. About 25,000 dimensional measurements were made and were used for the assessment of accuracies of dimensional measurements from neutron radiographs. The report gives a description of the test items used for the Test Program, the film density and dimensional measurements, and concentrates on the assessment of the measuring results. The usefulness of the beam purity and sensitivity indicators was assessed with the conclusion that they are not suitable for neutron radiography of nuclear reactor fuel. Ample information is included in the report about measuring accuracies which can be reached in dimensional measurements of fuel pins. After a general comparison of measuring accuracies is discussed. Results from different NR facilities are treated separately as are the different kinds of dimensions of the fuel pins. Finally human and instrument factors are discussed. After presenting final conclusions (which take into account the above-mentioned factors) results of other investigations about dimensional measurements are shortly reviewed

  5. Nuclear track radiography of 'hot' aerosol particles

    CERN Document Server

    Boulyga, S F; Kievets, M K; Lomonosova, E M; Zhuk, I V; Yaroshevich, O I; Perelygin, V P; Petrova, R I; Brandt, R; Vater, P

    1999-01-01

    Nuclear track radiography was applied to identify aerosol 'hot' particles which contain elements of nuclear fuel and fallout after Chernobyl NPP accident. For the determination of the content of transuranium elements in radioactive aerosols the measurement of the alpha-activity of 'hot' particles by SSNTD was used in this work, as well as radiography of fission fragments formed as a result of the reactions (n,f) and (gamma,f) in the irradiation of aerosol filters by thermal neutrons and high energy gamma quanta. The technique allowed the sizes and alpha-activity of 'hot' particles to be determined without extracting them from the filter, as well as the determination of the uranium content and its enrichment by sup 2 sup 3 sup 5 U, sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 1 Pu isotopes. Sensitivity of determination of alpha activity by fission method is 5x10 sup - sup 6 Bq per particle. The software for the system of image analysis was created. It ensured the identification of track clusters on an optical imag...

  6. Clinical Applications of Reverse Panoramic Radiography

    Directory of Open Access Journals (Sweden)

    Sujatha S Reddy

    2011-09-01

    Full Text Available The essence of oral and maxil-lofacial radiology is not only to be an important tool in the diagnostic assessment of dental patients but also to equip the clinician with the ability to interpret images of certain maxillocraniofacial structures of importance to dental, medical and surgical practices. Although combinations of several conven-tional x-ray projections can be adequate in a number of clinical situations, radiographic assessment of certain craniofacial structures some-times needs to be facilitated by other imaging modalities. A not-so-recent development called reverse panoramic radiography may be a useful adjuvant to such a situation, at least in the near future. It is essentially a technique where the patient is placed backwards in the panoramic machine in a reverse position in such a way that x-ray beam is directed through the patient’s face and the exit beam then passes through the patient’s head on the opposite side where it is captured on the receptor. The following manuscript is an attempt to throw light on this technique and the impact it may have on dental, medical and surgical practices. The advantages and disadvantages of reverse panoramic radiography and it’s comparison to conventional panoramic radiographs and other skull views are also dis-cussed.

  7. Development of flat panel digital radiography system

    International Nuclear Information System (INIS)

    We developed the Digital Radiography System CXDI-11 which digitizes the X-ray image in high quality by using a self-developed flat panel detector. The CXDI-11 has a large image area of 43 cm x 43 cm (17'' x 17''), and it can display the image on the pre-view monitor after only 3 seconds of exposure. In this report, we present the principle and the physical characteristics of the CXDI-11. The X-ray detector installed in the CXDI-11 is a combination of a rare-earth scintillator and an amorphous silicon flat panel detector (LANMIT). The X-ray is converted to the visible fluorescent light at the scintillator and the light is detected by the LANMIT. The image-processed data is transferred to the DICOM3.0 conformed devices such as the diagnosis work station, the archiver and the laser imager through the network. We also show some measurement results of the dynamic range, the pre-sampling Modulation Transfer Function and the tube voltage dependent sensitivity. The CXDI-11 is superior in real time operation and image quality, thus it is the digital radiography system of the next generation. (author)

  8. High Brightness Neutron Source for Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  9. Control dose in chest radiography after the installation of the computed radiography

    International Nuclear Information System (INIS)

    The aim of this work is to verify patient does after the installation of the computed radiography. Entrance surface doses were obtained from a measurement of the output of the x-ray tube and exposure factor used at posteroanterior (PA) and lateral (LAT) chest in 50 adult patients before and after the installation. The obtained average values were 0.28±0.10mGy in the PA view and 0.8±0.5 mGy in the LAT view with the conventional screen-film system 0.27±0.06 mGy in PA view and 0.69±0.18 mGy in LAT view with the digital radiography system. The results do not exceed the diagnostic reference levels (DRLs) and are constant after the change of system. (Author)

  10. Comparison of conventional radiography and MDCT in suspected scaphoid fractures

    Institute of Scientific and Technical Information of China (English)

    Cyrus; Behzadi; Murat; Karul; Frank; Oliver; Henes; Azien; Laqmani; Philipp; Catala-Lehnen; Wolfgang; Lehmann; Hans-Dieter; Nagel; Gerhard; Adam; Marc; Regier

    2015-01-01

    AIM: To determine the diagnostic accuracy and radiation dose of conventional radiography and multidetector computed tomography(MDCT) in suspected scaphoid fractures.METHODS: One hundred twenty-four consecutive patients were enrolled in our study who had suffered from a wrist trauma and showed typical clinical symptoms suspicious of an acute scaphoid fracture. All patients had initially undergone conventional radiography. Subsequent MDCT was performed within 10 d because of persisting clinical symptoms. Using the MDCT data as the reference standard, a fourfold table was used to classify the test results. The effective dose and impaired energy were assessed in order to compare the radiation burden of the two techniques. The Wilcoxon test was performed to compare the two diagnostic modalities.RESULTS: Conventional radiography showed 34 acute fractures of the scaphoid in 124 patients(42.2%). Subsequent MDCT revealed a total of 42 scaphoid fractures. The sensitivity of conventional radiography for scaphoid fracture detection was 42.8% and its specificity was 80% resulting in an overall accuracy of 59.6%. Conventional radiography was significantly inferior to MDCT(P < 0.01) concerning scaphoidfracture detection. The mean effective dose of MDCT was 0.1 m Sv compared to 0.002 m Sv of conventional radiography.CONCLUSION: Conventional radiography is insufficient for accurate scaphoid fracture detection. Regarding the almost negligible effective dose, MDCT should serve as the first imaging modality in wrist trauma.

  11. A review of digital radiography technology for valve inspection

    International Nuclear Information System (INIS)

    There are thousands of valves in a nuclear power plant (NPP) used for control, safety and checks in various plant systems, so there is a well-identified need for fast and reliable inspection and diagnostics of valves. Digital radiography can provide considerable improvements to the inspection and testing procedures for valves in comparison to classical film radiography. These improvements can lead to significant financial advantages by providing real-time inspection results, significantly reduced inspection and decision-making time, and reduced operational cost. Digital image processing, including digital image enhancement, digital archiving, and digital communication of the images and the results, is also a considerable advantage over classical film radiography technology. Another advantage of digital radiography technology is the improved safety and the reduced environmental impact due to reduced exposure/test times, use of smaller exclusion zones, elimination of chemical processing, and absence of disposable materials. This paper reviews the existing technology and evaluates the potential of digital radiography for inspection and diagnostics of valves. Station needs and requirements are assessed, and the safety, environmental and economical constraints of digital radiography techniques estimated. The advantages and disadvantages of different digital radiography equipment are compared, and their limitations and characteristics studied. (author)

  12. Fundamental of neutron radiography and the present of neutron radiography in Japan

    International Nuclear Information System (INIS)

    Neutron radiography refers to the application of transmitted neutrons to analysis. In general, thermal neutron is used for neutron radiography. Thermal neutron is easily absorbed by light atoms, including hydrogen, boron and lithium, while it is not easily absorbed by such heavy atoms as tungsten, lead and uranium, permitting detection of impurities in heavy metals. Other neutrons than thermal neutron can also be applied. Cold neutron is produced from fast neutron using a moderator to reduce its energy down to below that of thermal neutron. Cold neutron is usefull for analysis of thick material. Epithermal neutron can induce resonance characteristic of each substance. With a relatively small reaction area, fast neutron permits observation of thick samples. Being electrically neutral, neutrons are difficult to detect by direct means. Thus a substance that releases charged particles is put in the path of neutrons for indirect measurement. X-ray film combined with converter screen for conversion of neutrons to charge particles is placed behind the sample. Photographing is carried out by a procedure similar to X-ray photography. Major institues and laboratories in Japan provided with neutron radiography facilities are listed. (Nogami, K.)

  13. Pet fish radiography: technique and case history reports

    International Nuclear Information System (INIS)

    Radiography can be used to aid in the diagnosis and treatment of pet fish diseases. Handling, restraint and radiographic technique for the radiographic examination of pet fish is described. Quality diagnostic images can be obtained with standard radiographic equipment and radiographic techniques. Fishes with undifferentiated sarcoma, swim bladder herniation and scoliosis are three clinical examples that are described where radiography was used in the management of the patient. Conventional radiography appears to be best for evaluating skeletal and swim bladder diseases. Alternate imaging techniques such as computed tomography and magnetic resonance imaging may enhance the evaluation of coelomic soft tissue structures

  14. Digital radiography simulation for industrial applications with MCNPX

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Edmilson M. de; Correa, Samanda C.A.; Silva, Ademir X. da; Lopes, Ricardo T.; Oliveira, Davi F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)], E-mail: emonteiro@con.ufrj.br

    2007-07-01

    The energy dependent response of a BaFBr Image Plate detector was modeled and introduced in MCNPX radiography tally input. To convert MCNPX radiography tally output in 16 bits digital images, a post processing program called PROGRAMA IMAGEM is presented. Simulate images of a steel tube containing corrosion alveoli and grinded defects were compared with experimental images. The radiography technique used in all tests was double wall single image, DWSI, using an Iridium source ({sup 192}Ir) touching the adjacent wall. Visual and perfilometric analysis showed that the methodology used for sensible material simulation and data post-processing makes simulate digital images comparable to experimental images. (author)

  15. Is digital better in dental radiography?

    International Nuclear Information System (INIS)

    In Slovenia, dental radiography was the first field in which projection x-ray imaging using digital detectors was done. At present around 30% of intraoral dental x-ray units use digital detectors. Annual test results were analysed to compare digital systems with film-based ones. The survey results show significantly lower doses of exposure in digital systems. In our opinion digital systems are especially suitable for practitioners who perform a low number of x-ray examinations (e.g. private dentists), because of problems that may arise due to developing a limited number of films. The problem with digital systems could be the ease of deleting an image and performing another examination, the extent of which was not investigated. (authors)

  16. 3-ns flash X-radiography

    International Nuclear Information System (INIS)

    In intense particle beam interaction with targets, flash X-radiography (FXR) has become the standard technique used to observe the target dynamic response to particle irradiation. Most of the development was motivated by the particle-beam inertial-confinement fusion program. The FXR technique is required to observe the hydrodynamic behavior of the critical regions of interest: the interfaces between the target ablator and the pusher, and between the pusher and the fuel. In making these measurements, the instruments developed must overcome an intense X-ray and EMP background associated with the production of particle beams. In the FXR systems described, microchannel plates (MCP) are used extensively as X-ray converters, gated shutters, and intensifiers to provide signal detection, background discrimination, and signal amplification. The MCP's play an important role in the development of these systems. (Auth.)

  17. Oral history in radiography: Listening to pioneers

    International Nuclear Information System (INIS)

    We explore the professional value of the collection and analysis of oral histories in the history of radiography. Drawing on oral histories collected from radiographers, we analyse accounts of experiences to identify common themes, some of which are of current significance, whilst others have faded from existence. 15 oral histories were collected from radiographers whose combined practice spans the years 1930-1973. The sample consists of 6 male and 9 female radiographers. Themes identified in the oral histories include radiographers as invisible pioneers who worked in professionally unclaimed territory and their dangerous working environment. The oral histories reveal the working world of the radiographer as having encompassed a practice ethos where challenges became an accepted part of work. We gain insight into less observable aspects of the radiographer's role, the difficulties they faced, how they invented techniques and equipment, and how they managed their practice including protecting the public from ionising radiation sources.

  18. Oral history in radiography: Listening to pioneers

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, Christine [International Development Facilitator, Robert Winston Building, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S10 2BP (United Kingdom)], E-mail: c.m.ferris@shu.ac.uk; Winslow, Michelle [University of Sheffield, Oral History Society, Academic Unit of Supportive Care, Sykes House, Little Common Lane, Sheffield S11 9NE (United Kingdom)], E-mail: m.winslow@sheffield.ac.uk

    2009-12-15

    We explore the professional value of the collection and analysis of oral histories in the history of radiography. Drawing on oral histories collected from radiographers, we analyse accounts of experiences to identify common themes, some of which are of current significance, whilst others have faded from existence. 15 oral histories were collected from radiographers whose combined practice spans the years 1930-1973. The sample consists of 6 male and 9 female radiographers. Themes identified in the oral histories include radiographers as invisible pioneers who worked in professionally unclaimed territory and their dangerous working environment. The oral histories reveal the working world of the radiographer as having encompassed a practice ethos where challenges became an accepted part of work. We gain insight into less observable aspects of the radiographer's role, the difficulties they faced, how they invented techniques and equipment, and how they managed their practice including protecting the public from ionising radiation sources.

  19. Measuring microfocus focal spots using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Fry, David A [Los Alamos National Laboratory

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification (especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application); (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. When determining microfocus focal spot dimensions using unsharpness measurements both signal-to-noise (SNR) and magnification can be important. There is a maximum accuracy that is a function of SNR and therefore an optimal magnification. Greater than optimal magnification can be used but it will not increase accuracy.

  20. Digital radiography exposure indices: A review

    International Nuclear Information System (INIS)

    Digital radiography (DR) technologies have the advantage of a wide dynamic range compared to their film-screen predecessors, however, this poses a potential for increased patient exposure if left unchecked. Manufacturers have developed the exposure index (EI) to counter this, which provides radiographers with feedback on the exposure reaching the detector. As these EIs were manufacturer-specific, a wide variety of EIs existed. To offset this, the international standardised EI has been developed by the International Electrotechnical Commission (IEC) and the American Association of Physicists in Medicine (AAPM). The purpose of this article is to explore the current literature relating to EIs, beginning with the historical development of the EI, the development of the standardised EI and an exploration of common themes and studies as evidenced in the research literature. It is anticipated that this review will provide radiographers with a useful guide to understanding EIs, their application in clinical practice, limitations and suggestions for further research

  1. KSTAR Application for Fast Neutron Radiography

    International Nuclear Information System (INIS)

    Korea Superconducting Tokamak Advanced Research (KSTAR) is a magnetic fusion device being built at the National Fusion Research Institute in Daejon, Korea. After the successful first operation in 2008, the plasma performance is enhanced and duration of H-mode is extended to around 50 sec. In addition to long-pulse operation, the operational boundary of the H-mode discharge is extended over MHD no-wall limit. The basic design of the setup, based on the typical configuration, was decided for the first step of the experiments. Several type of scintillator is being ready to be examined for the best performance. The first setup will be applied in KSTAR 2015 campaign, and it can characterize the neutron radiation from KSTAR. Based on the data, the optimum design of the setup for fast radiography can be derived

  2. Femoral anteversion measured by ultrasonography and radiography

    International Nuclear Information System (INIS)

    Radiographic and real-time ultrasound measurements of femoral anteversion were compared in an anatomic study of 20 dried adult femurs. The real anteversion (AV) angle was determined by biplanar radiography. In four ultrasound measurements, the linear transducer was kept either horizontal or tilted. The measuring lines were either the anterior tangent of the femoral head-greater trochanter or the anterior tangent of the femoral neck. With the tilted transducer, the correlation between the head-trochanter AV angle and the real AV angle was high (r=0.9452), and slightly less when the anterior neck AV angle was used (r=0.9142). The clinical relevance is that the tilted transducer technique with the head-trochanter tangent is recommended for AV screening in patients with clinical signs of increased femoral anteversion. In adults 8.50 has to be subtracted in order to obtain an approximation of the real AV angle. (orig.)

  3. Reduction of population dose in intraoral radiography

    International Nuclear Information System (INIS)

    First, the relationship between tumor induction especially in thyroid gland and salivary gland as exposure injuries and dental x-ray examination on human group was mentioned. Presumption of population exposure dose at time of examination was discussed from standpoint of genetically significant dose, per caput mean bone marrow dose, leukemia significant dose, and collective dose in thyroid gland. As the result, improvement of space distribution of a dose in intraoral radiography was discussed from standpoints of quality of x-ray and the size of irradiation field, and the distance from a focus to skin in considereation of reduction of exposure dose, and it was further considered by using x-ray film with high sensitivity of nonscreen type film and introducing screen. (Kanao, N.)

  4. Resistive plate chambers for tomography and radiography

    Directory of Open Access Journals (Sweden)

    C. Thomay

    2012-08-01

    Full Text Available Resistive Plate Chambers (RPCs are widely used in high energy physics for both tracking and triggering purposes, due to their excellent time resolution, rate capability, and good spatial resolution. RPCs can be produced cost-effectively on large scales, are of rugged build, and have excellent detection efficiency for charged particles. Our group has successfully built a Muon Scattering Tomography (MST prototype, using 12 RPCs to obtain tracking information of muons going through a target volume of ~ 50 cm × 50 cm × 70 cm, reconstructing both the incoming and outgoing muon tracks. The required spatial granularity is achieved by using 330 readout strips per RPC with 1.5 mm pitch. The RPCs have shown an efficiency above 99% and an estimated intrinsic resolution below 1.1 mm. Due to these qualities, RPCs provide excellent candidates for usage in volcano radiography.

  5. Machine learning applied to proton radiography

    CERN Document Server

    Chen, Nicholas Fang Yew; Ceurvorst, Luke; Ratan, Naren; Sadler, James; Levy, Matthew; Trines, Raoul; Bingham, Robert; Norreys, Peter

    2016-01-01

    Proton radiography is a technique extensively used to resolve magnetic field structures in high energy density plasmas, revealing a whole variety of interesting phenomena such as magnetic reconnection and collisionless shocks found in astrophysical systems. Existing methods of analyzing proton radiographs give mostly qualitative results or specific quantitative parameters such as magnetic field strength, and recent work showed that the line-integrated transverse magnetic field can be reconstructed in specific regimes where many simplifying assumptions were needed. Using artificial neural networks, we suggest a novel 3-D reconstruction method that works for a more general case. A proof of concept is presented here, with mean reconstruction errors of less than 5 percent even after introducing noise. We demonstrate that over the long term, this approach is more computationally efficient compared to other techniques. We also highlight the need for proton tomography because (i) certain field structures cannot be r...

  6. Muscle parameters estimation based on biplanar radiography.

    Science.gov (United States)

    Dubois, G; Rouch, P; Bonneau, D; Gennisson, J L; Skalli, W

    2016-11-01

    The evaluation of muscle and joint forces in vivo is still a challenge. Musculo-Skeletal (musculo-skeletal) models are used to compute forces based on movement analysis. Most of them are built from a scaled-generic model based on cadaver measurements, which provides a low level of personalization, or from Magnetic Resonance Images, which provide a personalized model in lying position. This study proposed an original two steps method to access a subject-specific musculo-skeletal model in 30 min, which is based solely on biplanar X-Rays. First, the subject-specific 3D geometry of bones and skin envelopes were reconstructed from biplanar X-Rays radiography. Then, 2200 corresponding control points were identified between a reference model and the subject-specific X-Rays model. Finally, the shape of 21 lower limb muscles was estimated using a non-linear transformation between the control points in order to fit the muscle shape of the reference model to the X-Rays model. Twelfth musculo-skeletal models were reconstructed and compared to their reference. The muscle volume was not accurately estimated with a standard deviation (SD) ranging from 10 to 68%. However, this method provided an accurate estimation the muscle line of action with a SD of the length difference lower than 2% and a positioning error lower than 20 mm. The moment arm was also well estimated with SD lower than 15% for most muscle, which was significantly better than scaled-generic model for most muscle. This method open the way to a quick modeling method for gait analysis based on biplanar radiography. PMID:27082150

  7. Radiography and tomography with polarized neutrons

    International Nuclear Information System (INIS)

    Neutron imaging became important when, besides providing impressive radiographic and tomographic images of various objects, physical, quantification of chemical, morphological or other parameters could be derived from 2D or 3D images. The spatial resolution of approximately 50 µm (and less) yields real space images of the bulk of specimens with more than some cm3 in volume. Thus the physics or chemistry of structures in a sample can be compared with scattering functions obtained e.g. from neutron scattering. The advantages of using neutrons become more pronounced when the neutron spin comes into play. The interaction of neutrons with magnetism is unique due to their low attenuation by matter and because their spin is sensitive to magnetic fields. Magnetic fields, domains and quantum effects such as the Meissner effect and flux trapping can only be visualized and quantified in the bulk of matter by imaging with polarized neutrons. This additional experimental tool is gaining more and more importance. There is a large number of new fields that can be investigated by neutron imaging, not only in physics, but also in geology, archeology, cultural heritage, soil culture, applied material research, magnetism, etc. One of the top applications of polarized neutron imaging is the large field of superconductivity where the Meissner effect and flux pinning can be visualized and quantified. Here we will give a short summary of the results achieved by radiography and tomography with polarized neutrons. - Highlights: • Radiography and tomography with polarized neutrons yield new results concerning the suppressed Meissner effect and magnetic flux trapping. • Suppressed Meissner effect was observed in pure lead samples and niobium. • Trapped magnetic fields in cylindrical Pb samples are squeezed around the rod axis. • The shape and the amount of trapped fields could be determined and quantified

  8. Image rejects in general direct digital radiography

    International Nuclear Information System (INIS)

    The number of rejected images is an indicator of image quality and unnecessary imaging at a radiology department. Image reject analysis was frequent in the film era, but comparably few and small studies have been published after converting to digital radiography. One reason may be a belief that rejects have been eliminated with digitalization. To measure the extension of deleted images in direct digital radiography (DR), in order to assess the rates of rejects and unnecessary imaging and to analyze reasons for deletions, in order to improve the radiological services. All exposed images at two direct digital laboratories at a hospital in Norway were reviewed in January 2014. Type of examination, number of exposed images, and number of deleted images were registered. Each deleted image was analyzed separately and the reason for deleting the image was recorded. Out of 5417 exposed images, 596 were deleted, giving a deletion rate of 11%. A total of 51.3% were deleted due to positioning errors and 31.0% due to error in centering. The examinations with the highest percentage of deleted images were the knee, hip, and ankle, 20.6%, 18.5%, and 13.8% respectively. The reject rate is at least as high as the deletion rate and is comparable with previous film-based imaging systems. The reasons for rejection are quite different in digital systems. This falsifies the hypothesis that digitalization would eliminates rejects. A deleted image does not contribute to diagnostics, and therefore is an unnecessary image. Hence, the high rates of deleted images have implications for management, training, education, as well as for quality

  9. The Enhanced Workflow and Efficiency of the Wireless Local Area Network (WLAN)-Based Direct Digital Radiography (DDR) Portable Radiography.

    Science.gov (United States)

    Ngan, Tsz-Lung; Wong, Edward Ting-Hei; Ng, Kris Lap-Shun; Jeor, Patrick Kwok-Shing; Lo, Gladys Goh

    2015-06-01

    With the implementation of the PACS in the hospital, there is an increasing demand from the clinicians for immediate access and display of radiological images. Recently, our hospital has installed the first wireless local area network (WLAN)-based direct digital radiography (DDR) portable radiography system. The DDR portable radiography system allows wireless retrieval of modality worklist and wireless transmission of portable X-ray image on the console to the Picture Archiving and Communication System (PACS), via WLAN connection of wireless fidelity (Wi-Fi). The aim of this study was to analyze the workflow and performance between the WLAN-based DDR portable radiography system and the old practice using conventional portable X-ray machine with computed radiography (CR) system. A total of 190 portable chest X-ray examinations were evaluated and timed, using the conventional portable X-ray machine with CR from March to April of 2012 and using the new DDR portable radiography system on December of 2012 (n = 97 for old system and n = 93 for DDR portable system). The time interval of image becoming available to the PACS using the WLAN-based DDR portable radiography system was significantly shorter than that of the old practice using the conventional portable X-ray machine with CR (6.8 ± 2.6 min for DDR portable system; 23 ± 10.2 min for old system; p < 0.0001), with the efficiency improved by 70 %. The implementation of the WLAN-based DDR portable radiography system can enhance the workflow of portable radiography by reduction of procedural steps.

  10. Applications and characteristics of imaging plates as detector in neutron radiography at SINQ

    CERN Document Server

    Kolbe, H; Gunia, W; Körner, S

    1999-01-01

    Imaging plate technique is a commonly accepted method in many fields as in medicine, biology and physics for detection of the distribution of beta- and gamma-radiation or X-rays on large areas. Recently a new type of imaging plate sensitive to neutrons has been developed. The storage layer is doped with gadolinium, which, after absorption of neutrons, produces radiation detectable by the same sensitive crystals used in conventional imaging plates. At the spallation neutron source, SINQ, at the Paul Scherrer Institut (CH) some of the characteristics of the neutron radiography station in combination with the imaging plate technique were investigated. The intensity distribution of the source was measured to check the accuracy for quantification of the image data. Also, the reproducibility of results obtained by this detection system was stated. For a test object, the high selectivity for different neutron absorption is demonstrated at details with low contrast. The obtainable spatial resolution was determined re...

  11. How to create a degree course in radiography: a recipe

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, S. E-mail: Pratt@cf.ac.uk; Adams, C. E-mail: AdamsC1@cf.ac.uk

    2003-11-01

    This article explains how an undergraduate programme is devised and validated. Since 1993, all courses in radiography have been of graduate level with radiography education being based in higher educational institutions. Before a new degree is implemented a review of the existing programme is undertaken. The proposed degree philosophy and learning outcomes need to be determined before the content; its mode of delivery and assessment are developed. Input from stakeholders (such as clinical colleagues) is necessary as well as adherence to policies and strategies for radiography education. Throughout the development process compliance with policy, both national and local, is critical. All radiography programmes have to be validated/accredited by representatives from national organisations--such as The Society and College of Radiographers (SCoR). These representatives scrutinise the proposed degree course documentation; often they may also inspect the clinical and university facilities in which the education and training will take place.

  12. NECTAR: Radiography and tomography station using fission neutrons

    OpenAIRE

    Bücherl, Thomas; Söllradl, Stefan

    2015-01-01

    NECTAR, operated by the Technische Universität München, is a versatile facility for the non-destructive inspection of various objects by means of fission neutron radiography and tomography, respectively.

  13. Establishment of Guidance Levels in General Radiography and Mammography

    International Nuclear Information System (INIS)

    Coordinated project report IAEA ARCAL LXXV-RLA/9/048 Pilot Exercise for Developing and Setting Levels Reference in General Radiography and Mammography as a Tool for Optimizing Radiation Protection and Reduce Patient Exposure in Latin America

  14. How to create a degree course in radiography: a recipe

    International Nuclear Information System (INIS)

    This article explains how an undergraduate programme is devised and validated. Since 1993, all courses in radiography have been of graduate level with radiography education being based in higher educational institutions. Before a new degree is implemented a review of the existing programme is undertaken. The proposed degree philosophy and learning outcomes need to be determined before the content; its mode of delivery and assessment are developed. Input from stakeholders (such as clinical colleagues) is necessary as well as adherence to policies and strategies for radiography education. Throughout the development process compliance with policy, both national and local, is critical. All radiography programmes have to be validated/accredited by representatives from national organisations--such as The Society and College of Radiographers (SCoR). These representatives scrutinise the proposed degree course documentation; often they may also inspect the clinical and university facilities in which the education and training will take place

  15. The zinc sulphide scintillator for fast neutron radiography

    International Nuclear Information System (INIS)

    In this work, a mathematical model was established to estimate luminescence of the neutron radiography scintillator made of ZnS and polypropylene. Scintillators in different thicknesses and compositions were prepared for a radiography experiment using 14 MeV neutrons. The results showed that the optimum parameters of the scintillator were 3-mm in thickness and 1 : 1 to 2 : 1 of weight ratio of ZnS and polypropylene. (authors)

  16. Validity of compton radiography in soft tissue imaging

    International Nuclear Information System (INIS)

    The Compton radiography was shown to be capable of delineating subcutaneous and hepatic inflammations as well as normal muscles and fatty tissues with positive tomoimages. This is an noteworthy feature in contrast to the ordinary x-ray radiography. Computer assistance would probably cultivate its various clinical applicability. Radiological diagnosis of soft tissue morbidities can possibly be assisted to an appreciable degree by this technique. (author)

  17. Lateral radiography of the knee with single-leg standing

    International Nuclear Information System (INIS)

    The purpose of this investigation was to accomplish reproducible radiography of single-leg standing lateral radiography of the knee by adjusting lateral rotation using a ruler to measure foot position. After preliminary assessment of three-dimensional CT of the knees of normal volunteers, the best adjustment of external rotation was estimated. A ruler was made for use in adjusting the angle of knee rotation by measuring foot rotation. Based on the foot rotation measured by this ruler, the positioning of radiography was adjusted to correct rotation. Rotation was estimated by the distance between the posterior edges of the lateral and medial femoral condyles. Fifteen-degree and 17.5-degree rotations were used for correction. Correction of rotation was 17 degrees on average. This helped not only to correct external rotation in the initial radiography but also to correct rotation for repeat radiography. Our method is quantitative and highly reproducible, and it increases the success rate of lateral knee radiography. (author)

  18. Chest X ray effective doses estimation in computed radiography

    International Nuclear Information System (INIS)

    Conventional chest radiography is technically difficult because of wide in tissue attenuations in the chest and limitations of screen-film systems. Computed radiography (CR) offers a different approach utilizing a photostimulable phosphor. photostimulable phosphors overcome some image quality limitations of chest imaging. The objective of this study was to estimate the effective dose in computed radiography at three hospitals in Khartoum. This study has been conducted in radiography departments in three centres Advanced Diagnostic Center, Nilain Diagnostic Center, Modern Diagnostic Center. The entrance surface dose (ESD) measurement was conducted for quality control of x-ray machines and survey of operators experimental techniques. The ESDs were measured by UNFORS dosimeter and mathematical equations to estimate patient doses during chest X rays. A total of 120 patients were examined in three centres, among them 62 were males and 58 were females. The overall mean and range of patient dosed was 0.073±0.037 (0.014-0.16) mGy per procedure while the effective dose was 3.4±01.7 (0.6-7.0) mSv per procedure. This study compared radiation doses to patients radiographic examinations of chest using computed radiology. The radiation dose was measured in three centres in Khartoum- Sudan. The results of the measured effective dose showed that the dose in chest radiography was lower in computed radiography compared to previous studies.(Author)

  19. Comparison of diagnostic accuracy of root perforation, external resorption and fractures using cone-beam computed tomography, panoramic radiography and conventional & digital periapical radiography

    Directory of Open Access Journals (Sweden)

    Wilton Mitsunari Takeshita

    2015-01-01

    Conclusions: CBCT showed the best results in the diagnosis of ERR and VRF. The diagnosis of ERR was the least accurate, panoramic radiography being not appropriate for its diagnosis. CBCT and conventional periapical radiography obtained similar results for the evaluation of RP. So for, RP indicate the conventional periapical radiography because CBCT has a higher radiation dose.

  20. BETA-S, Multi-Group Beta-Ray Spectra

    International Nuclear Information System (INIS)

    1 - Description of program or function: BETA-S calculates beta-decay source terms and energy spectra in multigroup format for time-dependent radionuclide inventories of actinides, fission products, and activation products. Multigroup spectra may be calculated in any arbitrary energy-group structure. The code also calculates the total beta energy release rate from the sum of the average beta-ray energies as determined from the spectral distributions. BETA-S also provides users with an option to determine principal beta-decaying radionuclides contributing to each energy group. The CCC-545/SCALE 4.3 (or SCALE4.2) code system must be installed on the computer before installing BETA-S, which requires the SCALE subroutine library and nuclide-inventory generation from the ORIGEN-S code. 2 - Methods:Well-established models for beta-energy distributions are used to explicitly represent allowed, and 1., 2. - and 3. -forbidden transition types. Forbidden non-unique transitions are assumed to have a spectral shape of allowed transitions. The multigroup energy spectra are calculated by numerically integrating the energy distribution functions using an adaptive Simpson's Rule algorithm. Nuclide inventories are obtained from a binary interface produced by the ORIGEN-S code. BETA-S calculates the spectra for all isotopes on the binary interface that have associated beta-decay transition data in the ENSDF-95 library, developed for the BETA-S code. This library was generated from ENSDF data and contains 715 materials, representing approximately 8500 individual beta transition branches. 3 - Restrictions on the complexity of the problem: The algorithms do not treat positron decay transitions or internal conversion electrons. The neglect of positron transitions in inconsequential for most applications involving aggregate fission products, since most of the decay modes are via electrons. The neglect of internal conversion electrons may impact on the accuracy of the spectrum in the low

  1. The forgotten cousins : dental and chiropractic radiography

    International Nuclear Information System (INIS)

    Radiation protection surveillance methods should be appropriate to the particular use of x-rays employed. Dentists use small fixed position radiation fields with low output machines, making frequent routine visits unnecessary. There are also large numbers of them. On the other hand chiropractors use large fields and potentially high doses as well as a wide variety of projections and filters, which makes routine visits necessary. These differences have not unsurprisingly led to the National Radiation Laboratory adopting quite different approaches to monitoring these domains. In dental radiography past surveys have shown that the x-ray units themselves to be very robust and stable. A simple postal test was developed for dentists. A small number of visits are also made to dental x-ray facilities per year. Because of the greater possible level of hazard involved routine visits are made to chiropractic establishments. Chiropractic radiation protection surveys have now been extended to include calculating patient doses. The wide variety of projections and the extensive use of beam shaping filters and diaphragms means that we had to develop a program (called Chirodos) to allow for these filters in calculating the chiropractic patient doses. Data collected during the radiation protection surveys includes technique factors, filter materials, positions, and shielding. A national database of chiropractic doses has led us to establish reference doses for chiropractic x-ray exams. (author)

  2. Beam Characterization at the Neutron Radiography Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarah Morgan; Jeffrey King

    2013-01-01

    The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

  3. Positioning of the wrist for scaphoid radiography

    Energy Technology Data Exchange (ETDEWEB)

    Toth, Ferenc [Department of Traumatology and Hand Surgery, Medical School of Pecs University, PF.: 99, Akac utca 1, H-7601 Pecs (Hungary)], E-mail: tothf2@yahoo.com; Sebestyen, Andor [Baranya County Health Insurance Fund, Nagy Lajos kiraly utja 3, 7623 Pecs (Hungary); Balint, Lehel [Department of Orthopaedic Surgery, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Mester, Sandor [Szent Gyorgy County Hospital, Seregelyesi u. 3, 8000 Szekesfehervar (Hungary); Szabo, Gyorgy [Department of Orthopaedic Surgery, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Nyarady, Jozsef [Department of Traumatology and Hand Surgery, Medical School of Pecs University, PF.: 99, Akac utca 1, H-7601 Pecs (Hungary); Weninger, Csaba [Department of Radiology, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Angyal, Miklos [Department of Forensic Medicine, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary); Lovasz, Gyorgy [Department of Orthopaedic Surgery, Medical School of Pecs University, Ifjusag u. 13, 7643 Pecs (Hungary)

    2007-10-15

    Purpose: The purpose of this cadaver study was to determine the ideal position of the wrist for scaphoid radiography. Materials and methods: Four cadaver wrists were rotated around their longitudinal axis in 15 deg. increments and exposures were taken. Seven postero-anterior images were taken as well. Thus, 18 images of each wrist were available for assessment. Views were determined in which the main anatomic regions of the scaphoid were visualized undistorted. The size and localization of the overlap of other carpal bones were also evaluated. Finally, views with the best visualization of anatomic landmarks were selected. The results of these three investigations were compared to literature data. Results: We consider the following four images the most valuable in the diagnostic imaging of scaphoid bone: (1) Postero-anterior view in ulnar deviation of wrist and fist position of the hand; (2) oblique view in 60 deg. of pronation; (3) oblique view in 60 deg. of supination; (4) lateral view. Conclusion: We concluded that our four views are sufficient for proper radiographic evaluation of the scaphoid.

  4. Optical compensation device for chest film radiography

    Science.gov (United States)

    Gould, Robert G.; Hasegawa, Bruce H.; DeForest, Sherman E.; Schmidt, Gregory W.; Hier, Richard G.

    1990-07-01

    Although chest radiography is the most commonly performed radiographic examination and one of the most valuable and cost-effective studies in medicine it suffers from relatively high error rates in both missing pathology and false positive interpretations. Detectability of lung nodules and other structures in underpenetrated regions of the chest film can be improved by both exposure and optical compensation but current compensation systems require major capital cost or a significant change in normal clinical practice. A new optical compensation system called the " Intelligent X-Ray Illuminator" (IXI) automatically and virtually instantaneously generates a patient-specific optical unsharp mask that is projected directly on a radiograph. When a radiograph is placed on the IXI which looks much like a conventional viewbox it acquires a low-resolution electronic image of this film from which the film transmission is derived. The transmission information is inverted and blurred in an image processor to form an unsharp mask which is fed into a spatial light modulator (SLM) placed between a light source and the radiograph. The SLM tailors the viewbox luminance by decreasing illumination to underexposed (i. e. transmissive) areas of the radiograph presenting the observer with an optically unsharp-masked image. The IXI uses the original radiograph and will allow it to be viewed on demand with conventional (uniform illumination. Potentially the IXI could introduce the known beneficial aspects of optical unsharp masking into radiology at low capital

  5. Portable Digital Radiography and Computed Tomography Manual

    Energy Technology Data Exchange (ETDEWEB)

    2007-11-01

    This user manual describes the function and use of the portable digital radiography and computed tomography (DRCT) scanner. The manual gives a general overview of x-ray imaging systems along with a description of the DRCT system. An inventory of the all the system components, organized by shipping container, is also included. In addition, detailed, step-by-step procedures are provided for all of the exercises necessary for a novice user to successfully collect digital radiographs and tomographic images of an object, including instructions on system assembly and detector calibration and system alignment. There is also a short section covering the limited system care and maintenance needs. Descriptions of the included software packages, the DRCT Digital Imager used for system operation, and the DRCT Image Processing Interface used for image viewing and tomographic data reconstruction are given in the appendixes. The appendixes also include a cheat sheet for more experienced users, a listing of known system problems and how to mitigate them, and an inventory check-off sheet suitable for copying and including with the machine for shipment purposes.

  6. Neutron radiography and its image resolutions

    International Nuclear Information System (INIS)

    Neutron radiography (NR) is widely applied especially for non-destructive inspection of industrial products. An outline of NR technique is given in this report with few examples of industrial applications. The quality of a NR image depends on many factors. The values of L, D, and L/D are main factors to define a geometrical unsharpness of NR images. A device for accurate measurements of those parameters is proposed and fabricated. Degree of confidence is estimated for measurements of those parameters in detail. Values of L, D, and L/D are measured for our NR facilities with different geometrical conditions by use of the device and the values are compared to the designed values. The quality of the NR image also depends on an inherent unsharpness of its imaging device. The inherent unsharpness is measured as an edge spread function (ESF) and a modulation transfer function (MTF) is derived from the ESF with a technique of the discrete fast Fourier transform (DFFT). Results are compared to theoretically calculated MTF. (author)

  7. A dose monitoring system for dental radiography

    Science.gov (United States)

    Lee, Chena; Kim, Jo-Eun; Symkhampha, Khanthaly; Lee, Woo-Jin; Huh, Kyung-Hoe; Yi, Won-Jin; Heo, Min-Suk; Choi, Soon-Chul; Yeom, Heon-Young

    2016-01-01

    Purpose The current study investigates the feasibility of a platform for a nationwide dose monitoring system for dental radiography. The essential elements for an unerring system are also assessed. Materials and Methods An intraoral radiographic machine with 14 X-ray generators and five sensors, 45 panoramic radiographic machines, and 23 cone-beam computed tomography (CBCT) models used in Korean dental clinics were surveyed to investigate the type of dose report. A main server for storing the dose data from each radiographic machine was prepared. The dose report transfer pathways from the radiographic machine to the main sever were constructed. An effective dose calculation method was created based on the machine specifications and the exposure parameters of three intraoral radiographic machines, five panoramic radiographic machines, and four CBCTs. A viewing system was developed for both dentists and patients to view the calculated effective dose. Each procedure and the main server were integrated into one system. Results The dose data from each type of radiographic machine was successfully transferred to the main server and converted into an effective dose. The effective dose stored in the main server is automatically connected to a viewing program for dentist and patient access. Conclusion A patient radiation dose monitoring system is feasible for dental clinics. Future research in cooperation with clinicians, industry, and radiologists is needed to ensure format convertibility for an efficient dose monitoring system to monitor unexpected radiation dose. PMID:27358817

  8. Computer radiography-X-ray with vision

    International Nuclear Information System (INIS)

    Computer radiography describes an entire process of creating a digital image including acquiring, processing, presenting and managing the image data. the cassettes are special in that they use an imaging plate instead of films. the imaging plate is coated with storage phosphors which captures x-ray as they pass through the patient. the imaging plate is read with a bar code reader and the imaging plate number recorded in the computer. The cassette is then loaded in the reader unit where it is read using infra-red light which excites the particles on the plate which in turn illuminates and picked by photo-sensors which converts the signal into digital pulses. the pulses then run through a board which converts it into an image which is then displayed on the control console. The plate then runs through the erasure section where it is exposed to yellow light, which erases the plate. The IP is then put back in the cassette and locked and can be reused for the next episode

  9. Musculoskeletal magnetic resonance imaging: importance of radiography

    Energy Technology Data Exchange (ETDEWEB)

    Taljanovic, Mihra S.; Hunter, Tim B.; Fitzpatrick, Kimberly A. [Department of Radiology, The University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, AZ 85724, Tucson (United States); Krupinski, Elizabeth A. [Department of Radiology, University of Arizona, 1609 N. Warren, Building 211, AZ 85724, Tucson (United States); Pope, Thomas L. [Department of Radiology, Medical University of South Carolina, 169 Ashley Avenue, P.O. Box 250322, SC 29425, Charleston (United States)

    2003-07-01

    To determine the usefulness of radiography for interpretation of musculoskeletal (MSK) magnetic resonance imaging (MRI) studies. In a 1-year period, 1,030 MSK MRI studies were performed in 1,002 patients in our institution. For each study, the interpreting radiologist completed a questionnaire regarding the availability and utility of radiographs, radiological reports and clinical information for the interpretation of the MRI study. Radiographs were essential, very important or added information in 61-75% of all MSK MRI cases. Radiographs were judged as essential for reading of MRI studies more often for trauma, infection/inflammation and tumors than for degenerative and miscellaneous/normal diagnoses ({chi}{sup 2}=60.95, df=16, P<0.0001). The clinical information was rated as ''essential'' or ''useful'' significantly more often than not ({chi}{sup 2}=93.07, df=16, P<0.0001). The clinical and MRI diagnoses were the same or partially concordant significantly more often for tumors than for trauma, infection/inflammation and degenerative conditions, while in the miscellaneous/normal group they were different in 64% of cases. When the diagnoses were different, there were more instances in which radiographs were not available. Radiographs are an important, and sometimes essential, initial complementary study for reading of MSK MRI examinations. It is highly recommended that radiographs are available when MSK MRI studies are interpreted. (orig.)

  10. Radiation dose reduction in direct digital panoramic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Gavala, Sophia; Donta, Catherine [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece); Tsiklakis, Kostas [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece)], E-mail: ktsiklak@dent.uoa.gr; Boziari, Argyro; Kamenopoulou, Vasiliki [Greek Atomic Energy Commission (Greece); Stamatakis, Harry C. [Department of Oral Diagnosis and Oral Radiology, School of Dentistry, University of Athens, 2 Thivon Street Goudi, 115 27 Athens (Greece)

    2009-07-15

    Objectives: (a) To measure the absorbed radiation doses at 16 anatomical sites of a Rando phantom and (b) to calculate the effective doses including and excluding the salivary gland doses in panoramic radiography using a conventional and a digital panoramic device. Study design: Thermoluminescent dosimeters (TLD-100) were placed at 16 sites in a Rando phantom, using a conventional, Planmeca Promax and a digital, Planmeca PM2002CC Proline 2000 (Planmeca Oy, 00880 Helsinki, Finland) panoramic device for panoramic radiography. During conventional radiography the selected exposure settings were 66 kVp, 6 mA and 16 s, while during digital radiography two combinations were selected 60 kVp, 4 mA, 18 s and 66 kVp, 8 mA, 18 s with and without image processing function. The dosimeters were annealed in a PTW-TLDO Harshaw oven. TLD energy response was studied using RQN beam narrow series at GAEC's Secondary Standard Calibration Laboratory. The reader used was a Harshaw, 4500. Effective dose was estimated according to ICRP{sub 60} report (E{sub ICRP60}). An additional estimation of the effective dose was accomplished including the doses of the salivary glands (E{sub SAL}). A Wilcoxon signed ranks test was used for statistical analysis. Results: The effective dose, according to ICRP report (E{sub ICRP60}) in conventional panoramic radiography was 17 {mu}Sv and E{sub SAL} was 26 {mu}Sv. The respective values in digital panoramic radiography were E{sub ICRP60} = 23 {mu}Sv and E{sub SAL} = 38 {mu}Sv; while using the lowest possible radiographic settings E{sub ICRP60} was 8 {mu}Sv and E{sub SAL} was 12 {mu}Sv. Conclusions: The effective dose reduction in digital panoramic radiography can be achieved, if the lowest possible radiographic settings are used.

  11. A method to optimize the processing algorithm of a computed radiography system for chest radiography.

    Science.gov (United States)

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2007-09-01

    A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images. PMID:17709364

  12. A method to optimize the processing algorithm of a computed radiography system for chest radiography.

    Science.gov (United States)

    Moore, C S; Liney, G P; Beavis, A W; Saunderson, J R

    2007-09-01

    A test methodology using an anthropomorphic-equivalent chest phantom is described for the optimization of the Agfa computed radiography "MUSICA" processing algorithm for chest radiography. The contrast-to-noise ratio (CNR) in the lung, heart and diaphragm regions of the phantom, and the "system modulation transfer function" (sMTF) in the lung region, were measured using test tools embedded in the phantom. Using these parameters the MUSICA processing algorithm was optimized with respect to low-contrast detectability and spatial resolution. Two optimum "MUSICA parameter sets" were derived respectively for maximizing the CNR and sMTF in each region of the phantom. Further work is required to find the relative importance of low-contrast detectability and spatial resolution in chest images, from which the definitive optimum MUSICA parameter set can then be derived. Prior to this further work, a compromised optimum MUSICA parameter set was applied to a range of clinical images. A group of experienced image evaluators scored these images alongside images produced from the same radiographs using the MUSICA parameter set in clinical use at the time. The compromised optimum MUSICA parameter set was shown to produce measurably better images.

  13. Contemporary practice education: Exploring student perceptions of an industrial radiography placement for final year diagnostic radiography students

    International Nuclear Information System (INIS)

    Introduction: There is a paucity of evidence in diagnostic radiography evaluating a career path into industrial imaging despite several higher education institutes stating this route as a career option on graduation. The link between a career in industrial radiography and diagnostic routes is unknown although there are anecdotal examples of individuals transferring between the two. Successfully obtaining a first post job following graduation in diagnostic radiography can be challenging in the current financial climate. A partnership was formed with an energy sector company that offered non-destructive testing/non-destructive evaluation (NDT/NDE) employing industrial radiographic technicians. Method: As an initial pilot, 5 (n = 5) final year diagnostic radiography students visited an industrial radiography site and underwent theoretical and practical training. Following this placement they engaged in a focus group and the student perceptions/responses were explored and recorded. Results: Common themes were identified and categorised via a thematic analysis. These were; radiation safety, physics and technology, widening access, graduate attributes/transferable skill sets and working conditions. Conclusion: Student discussion focussed around the benefits of working conditions in healthcare, the value of technology, safety and physics education in alternative placements and the transferability of skills into other/industrial sectors (e.g. NDT/NDE). Contemporary practice placements are a useful pedagogical approach to develop complex conceptual theoretical constructs, such as radiation physics. An in depth evaluation between the two industries skill sets is postulated. Additionally, this could offer alternative/emerging roles to interested diagnostic radiographers potentially meeting the skill shortage in industrial radiography. - Highlights: • Research in this area is novel. No evidence could be found to evaluate the links. • Students had theoretical

  14. Pediatric digital radiography summit overview: state of confusion

    International Nuclear Information System (INIS)

    On Feb. 4, 2010, the Alliance for Radiation Safety in Pediatric Radiology held a Pediatric Digital Radiography Summit. The goal was for radiologists, radiologic technologists, medical physicists, and vendor representatives, including engineers, medical physicists and education specialists, to discuss the challenges to achieving the ALARA (as low as reasonably achievable) principle in pediatric digital radiography and to lay the groundwork for overcoming these obstacles. This article focuses on the state of confusion that exists for radiologists and radiologic technologists who use digital radiography equipment. Radiologists might have a difficult time accepting lower dose (noisy images), and radiologic technologists might respond by increasing patient exposures, which results in excessive patient doses. For reporting exposures, vendors have a history of using proprietary terms that confuse users. In addition, technical parameters cannot be easily exported for quality assurance, and there is no national standard for digital radiography. Presentations in this minisymposium focus on suggestions for the cooperative development of new technical standards, education and training to improve the quality of digital radiography in pediatric patients and promote radiation protection for children. (orig.)

  15. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  16. Syndesmotic Malreduction after Ankle ORIF; Is Radiography Sufficient?

    Directory of Open Access Journals (Sweden)

    Alireza Manafi Rasi

    2013-12-01

    Full Text Available   Background: Ankle fractures, especially those resulting from external rotation mechanisms are associated with injury to the distal tibiofibular syndesmosis. Some authors have recommended performing CT scanning after open ankle surgery to evaluate the reduction of syndesmosis. In this current study, we aimed to investigate the sensitivity of plain radiography in diagnosing syndesmosis malreduction after open reduction and internal fixation (ORIF in patients with ankle fractures.   Methods: Thirty patients with ankle fractures participated in this prospective study. ORIFs were performed with respect to all of the technical guidelines shown in orthopedic literature for exact syndesmosis reduction, such as fibular length and proper settings. In the operating room, plain radiography was performed in anteroposterior, mortise and lateral views to assess whether syndesmosis was malreduced. If malreduction was detected, the patient was revised. As the gold standard, patients underwent postoperative bilateral CT scanning to investigate the syndesmosis reduction which was then compared to the healthy side. Finally, the sensitivity of plain radiography in the diagnosis of syndesmosis malreduction was determined by comparing this method to CT scanning. Results: In both of the methods we did not find any patient with syndesmosis malreduction. Hence, the sensitivity of plain radiography was determined 100%. Conclusion: Based on our findings, there is no need to perform CT scanning to evaluate syndesmosis reduction after ankle ORIF in patients with ankle fractures. Plain radiography is sufficient and has satisfactory sensitivity in these patients.

  17. Pediatric digital radiography summit overview: state of confusion

    Energy Technology Data Exchange (ETDEWEB)

    Don, Steven [Washington University School of Medicine, St. Louis Children' s Hospital, Mallinckrodt Institute of Radiology, St. Louis, MO (United States)

    2011-05-15

    On Feb. 4, 2010, the Alliance for Radiation Safety in Pediatric Radiology held a Pediatric Digital Radiography Summit. The goal was for radiologists, radiologic technologists, medical physicists, and vendor representatives, including engineers, medical physicists and education specialists, to discuss the challenges to achieving the ALARA (as low as reasonably achievable) principle in pediatric digital radiography and to lay the groundwork for overcoming these obstacles. This article focuses on the state of confusion that exists for radiologists and radiologic technologists who use digital radiography equipment. Radiologists might have a difficult time accepting lower dose (noisy images), and radiologic technologists might respond by increasing patient exposures, which results in excessive patient doses. For reporting exposures, vendors have a history of using proprietary terms that confuse users. In addition, technical parameters cannot be easily exported for quality assurance, and there is no national standard for digital radiography. Presentations in this minisymposium focus on suggestions for the cooperative development of new technical standards, education and training to improve the quality of digital radiography in pediatric patients and promote radiation protection for children. (orig.)

  18. Real-time and in situ solidification of Al-based alloys investigated by synchrotron radiation: a unique experimental set-up combining radiography and topography techniques

    Energy Technology Data Exchange (ETDEWEB)

    Buffet, A.; Haertwig, J.; Baruchel, J. [ESRF-Polygone Scientifique Louis Neel, BP220, 38043 Grenoble cedex (France); Reinhart, G.; Nguyen-Thi, H.; Mangelinck-Noel, N.; Jung, H.; Billia, B. [L2MP, UMR 6137, Univ. P. Cezanne, Campus St-Jerome, Case 142, 13397 Marseille cedex 20 (France); Schenk, T. [Ecole des Mines de Nancy, Parc de Saurupt, CS 14 234, 54042 Nancy cedex (France); Gastaldi, J. [CRMCN, Campus Luminy, Case 913-163, 13288 Marseille cedex 09 (France)

    2007-08-15

    A unique experimental set-up combining X-ray radiography and topography has been recently developed at the ESRF. It allows direct observation of the solidification microstructure by these two complementary imaging techniques. This combined observation offers new possibilities, in particular for the investigation of strains, stresses and defect formation during directional solidification. In this paper we present in detail the experimental device and selected results obtained for two Al-based alloys: Al-3.5 wt% Ni and {beta}-Al{sub 3}Mg{sub 2}. For the first time, we were able to characterize and quantify (by using topography) mechanical phenomena observed by radiography during the growth process. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Computed Radiography Exposure Indices in Mammography

    Directory of Open Access Journals (Sweden)

    Liebner Koen

    2008-08-01

    Full Text Available Studies indicate that computed radiography (CR can lead to increased radiation dose to patients. It is therefore important to relate the exposure indicators provided by CR manufacturers to the radiation dose delivered so as to assess the radiation dose delivered to patients directly from the exposure indicators. The aim of this study was to investigate the performance of an Agfa CR system in order to characterize the dose indicators provided by the system. The imaging plate response was characterized in terms of entrance exposure to the plate and the digital signal indicators generated by the system (SAL - Scanning Average Level and lgM - Logarithmic median for different beam qualities. Several exposures were performed on a mammography unit and the digital signal, expressed as SAL and lgM for each image was correlated with the entrance exposure on a standard ACR phantom. From this, the relationship between the Agfa dose indices (SAL and lgM and the average glandular dose (AGD in mammography was established. An equation was derived to calculate the AGD delivered to the patient as a function of the exposure indicator, lgM, and the kV. The results indicated that the measured AGD at 28kV for a standard breast thickness during routine calibration with the ACR phantom was 1.58mGy (lgM = 1.99, which is within 1.5% of the value calculated using the derived equation for a standard Perspex thickness of 4.2cm using the AEC (1.56mGy. The standard error in using this equation was calculated to be 8.3%.

  20. Occupational exposure in Greek industrial radiography laboratories (1996-2003)

    International Nuclear Information System (INIS)

    More than 40 industrial radiography laboratories are operating in Greece using X-ray or gamma-ray sources and more than 250 workers occupationally exposed to ionising radiation in these facilities are monitored on a regular basis. This study presents the evolution of individual doses received by radiographers during the past years. The mean annual dose (MAD) of all workers as well as of exposed workers is estimated, and correlated to the types of laboratories and practices applied. The MAD of the exposed workers in industrial radiography is compared with the doses of workers in other specialties and with the doses of radiographers in other countries. Furthermore, the study attempts to propose dose constraints for the practices in industrial radiography, according to the BSS European directive and the relevant Greek radiation protection legislation. The proposed value was defined as the dose below which the annual doses of 75% of the exposed radiographers are expected to be included. (authors)

  1. Experimental Study on Neutron Radiography Device Based on Reactor

    Institute of Scientific and Technical Information of China (English)

    LU; Jin; PENG; Dan; HAO; Qian; YU; Bo-xiang; LI; Yi-guo

    2012-01-01

    <正>Neutron radiography is a non-destructive testing developing fast recently, which requires stable and proper neutron source with low γ background. Neutrons from In-hospital Neutron Irradiator (IHNI) could meet this requirement. Based on the neutron beams of IHNI, a collimator is designed and built for neutron radiography. The experiment results show that in the case of IHNI working at normal rated power, the neutron flux at the end of the collimator is 1.43×106 cm-2·s-1; The max collimation ratio (L/D) is 58; the γ dose rate is 6.3×106 mSv/s. In a word, the collimator could be used for neutron radiography.

  2. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    Directory of Open Access Journals (Sweden)

    J. G. Fantidis

    2011-01-01

    Full Text Available Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find defects in the wind turbine blade and reduce the cost of inspection. A transportable neutron radiography system, incorporating an Sb–Be source, has been simulated using the MCNPX code. The simulated system has a wide range of radiography parameters.

  3. Proton Radiography as an electromagnetic field and density perturbation diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, A; Patel, P; Town, R; Edwards, M; Phillips, T; Lerner, S; Price, D; Hicks, D; Key, M; Hatchett, S; Wilks, S; King, J; Snavely, R; Freeman, R; Boehlly, T; Koenig, M; Martinolli, E; Lepape, S; Benuzzi-Mounaix, A; Audebert, P; Gauthier, J; Borghesi, M; Romagnani, L; Toncian, T; Pretzler, G; Willi, O

    2004-04-15

    Laser driven proton beams have been used to diagnose transient fields and density perturbations in laser produced plasmas. Grid deflectometry techniques have been applied to proton radiography to obtain precise measurements of proton beam angles caused by electromagnetic fields in laser produced plasmas. Application of proton radiography to laser driven implosions has demonstrated that density conditions in compressed media can be diagnosed with MeV protons. This data has shown that proton radiography can provide unique insight into transient electromagnetic fields in super critical density plasmas and provide a density perturbation diagnostics in compressed matter . PACS numbers: 52.50.Jm, 52.40.Nk, 52.40.Mj, 52.70.Kz

  4. Time-Resolved Radiography using Chirp-Pulse Proton Beams

    Institute of Scientific and Technical Information of China (English)

    TENG Jian; ZHAO Zong-Qing; ZHU Bin; HONG Wei; CAO Lei-Feng; ZHOU Wei-Min; SHAN Lian-Qiang; GU Yu-Qiu

    2011-01-01

    Protons accelerated by the target normal sheath acceleration(TNSA)mechanism have a wide energy spectrum and are called chirp-pulse protons. The numerical simulation of chirp-pulse proton radiography in an implosion process with single shot is carried out using the Monte Carlo method.Two different methods are proposed.The first method, proton framing radiography ,uses a stack of radiochromic film layers as the detector. Each layer deposits protons with energy corresponding to the Bragg peak, which can record the transient state of the implosion process. The second method, proton streak radiography, uses an external magnetic field to deflect protons. Different energies correspond to different times. By using a slit before the magnetic field, one-dimensional spatial resolution and temporal resolution can be obtained. This method is more suitable for the diagnosis of the implosion process.

  5. NEUTRON RADIOGRAPHY (NRAD) REACTOR 64-ELEMENT CORE UPGRADE

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately +/-1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  6. Study of pipe thickness loss using a neutron radiography method

    International Nuclear Information System (INIS)

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changes in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project

  7. Improved track-etch neutron radiography using CR-39

    International Nuclear Information System (INIS)

    Currently most state-of-the-art setups for neutron radiography use scintillator screens and CCD cameras for imaging. However, in some situations it is not possible to use a CCD and alternatives must be considered. One such alternative is the well-established technique of track-etch neutron radiography, which has as main disadvantages requiring a long time for image recording and generating images with a relatively low contrast. In this work we address these negative issues and report significant improvements to recording and digitizing images using an improved setup consisting of an enriched 10B converter, a CR-39 solid state nuclear track detector and a flatbed scanner. The improved setup enables a significant reduction of the fluence required to obtain a neutron radiography image using this technique. Comparisons are made with imaging using two CCD models in the same beam line, so that the results can be extrapolated for other facilities

  8. Studies of solid propellant combustion with pulsed radiography

    Science.gov (United States)

    Godai, T.; Tanemura, T.; Fujiwara, T.; Shimizu, M.

    1987-01-01

    Pulsed radiography was applied to observe solid propellant surface regression during rocket motor operation. Using a 150 KV flash X-ray system manufactured by the Field Emission Corporation and two kinds of film suppliers, images of the propellant surface of a 5 cm diameter end burning rocket motor were recorded on film. The repetition frame rate of 8 pulses per second and the pulse train length of 10 pulses are limited by the capability of the power supply and the heat build up within the X-ray tube, respectively. The experiment demonstrated the effectiveness of pulsed radiography for observing solid propellant surface regression. Measuring the position of burning surface images on film with a microdensitometer, quasi-instantaneous burning rate as a function of pressure and the variation of characteristic velocity with pressure and gas stay time were obtained. Other research items to which pulsed radiography can be applied are also suggested.

  9. Deterministic simulation of thermal neutron radiography and tomography

    Science.gov (United States)

    Pal Chowdhury, Rajarshi; Liu, Xin

    2016-05-01

    In recent years, thermal neutron radiography and tomography have gained much attention as one of the nondestructive testing methods. However, the application of thermal neutron radiography and tomography is hindered by their technical complexity, radiation shielding, and time-consuming data collection processes. Monte Carlo simulations have been developed in the past to improve the neutron imaging facility's ability. In this paper, a new deterministic simulation approach has been proposed and demonstrated to simulate neutron radiographs numerically using a ray tracing algorithm. This approach has made the simulation of neutron radiographs much faster than by previously used stochastic methods (i.e., Monte Carlo methods). The major problem with neutron radiography and tomography simulation is finding a suitable scatter model. In this paper, an analytic scatter model has been proposed that is validated by a Monte Carlo simulation.

  10. Application of Neutron Radiography to Flow Visualization in Supercritical Water

    Science.gov (United States)

    Takenaka, N.; Sugimoto, K.; Takami, S.; Sugioka, K.; Tsukada, T.; Adschiri, T.; Saito, Y.

    Supercritical water is used in various chemical reaction processes including hydrothermal synthesis of metal oxide nano-particles, oxidation, chemical conversion of biomass and plastics. Density of the super critical water is much less than that of the sub-critical water. By using neutron radiography, Peterson et al. have studied salt precipitation processes in supercritical water and the flow pattern in a reverse-flow vessel for salt precipitation, and Balasko et al. have revealed the behaviour of supercritical water in a container. The nano-particles were made by mixing the super critical flow and the sub critical water solution. In the present study, neutron radiography was applied to the flow visualization of the super and sub critical water mixture in a T-junction made of stainless steel pipes for high pressure and temperature conditions to investigate their mixing process. Still images by a CCD camera were obtained by using the neutron radiography system at B4 port in KUR.

  11. Evaluation of radiography careers information on the Internet

    International Nuclear Information System (INIS)

    The purpose of this paper was to investigate whether information about radiography careers that was placed on the Internet was accessible, accurate, understandable, comprehensive, abundant and attractive to a sample of school children. Additionally this paper investigated whether the sample of school children had access to the Internet and whether they knew how to use it. A self-administered questionnaire was used to assess views on the radiography information, Internet access and knowledge of how to use the Internet. Questionnaire data were then analysed and the Websites were ranked. Thirty-three Websites were evaluated; these gave varying qualities of information with questionnaire scores ranging from 188 to 76. This investigation showed that there are many Websites available about radiography as a career. The site that performed most successfully overall in this evaluation was the NHS Careers Website. This site was ranked highest for the design section but the University of Salford's Website performed top for content

  12. A methodology for radiological accidents analysis in industrial gamma radiography

    International Nuclear Information System (INIS)

    A critical review of 34 published severe radiological accidents in industrial gamma radiography, that happened in 15 countries, from 1960 to 1988, was performed. The most frequent causes, consequences and dose estimation methods were analysed, aiming to stablish better procedures of radiation safety and accidents analysis. The objective of this work is to elaborate a radiological accidents analysis methodology in industrial gamma radiography. The suggested methodology will enable professionals to determine the true causes of the event and to estimate the dose with a good certainty. The technical analytical tree, recommended by International Atomic Energy Agency to perform radiation protection and nuclear safety programs, was adopted in the elaboration of the suggested methodology. The viability of the use of the Electron Gamma Shower 4 Computer Code System to calculate the absorbed dose in radiological accidents in industrial gamma radiography, mainly at sup(192)Ir radioactive source handling situations was also studied. (author)

  13. Costs and benefits of skull radiography for head injury

    International Nuclear Information System (INIS)

    Over a period of 10 weeks, nine accident-and-emergency units in England, Wales, and Scotland took part in an investigation into the use of skull radiography in the management of patients with head injury. The yield of potentially important radiological findings in 4829 patients with uncomplicated head injury was 2 basal, 1 frontal, and 64 vault fractures. In 4 of these patients intracranial haematomas developed, of which 3 would have been suspected clinically and the patients admitted for observation even if skull radiography had not been available. At best, skull radiography could have contributed to the detection of only 1 of the 4 intracranial haematomas. The incidence of unsuspected intracranial haematoma with skull fracture among patients with uncomplicated head injury currently radiographed in the United Kingdom is therefore 1 in 4800. The radiological cost of identifying this 1 patient in our series was Pound43,200. (author)

  14. The applicability of imaging plates in fast neutron radiography

    International Nuclear Information System (INIS)

    Fast neutron radiography (FNR) is an attractive non-destructive inspection technique in terms of the excellent penetration characteristics of fast neutrons in matter. FNR can be the only approach for non-destructive inspection of industrial products which are too thick or too dense for thermal neutron radiography. The imaging plate detector, a two dimensional detector for ionizing radiations, can be over 100 times more sensitive than conventional radiography films. At Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, an FNR system based on D-T accelerator neutron source has been established, with a spatial resolution of 1 mm. In this paper, we report its detector structure and the laboratorial test results. (authors)

  15. NEW INSTRUMENTS AND MEASUREMENT METHODS: Medical ion radiography

    Science.gov (United States)

    Shafranova, M. G.; Shafranov, M. D.

    1980-06-01

    The aim of this review is to acquaint the reader with the principles and methods of ion radiography—a method of studying the inner structure of an object by using heavy charged particles. Along with the refinement of the traditional x-ray method of diagnostics and the development of a number of new methods, such as positron tomography and nuclear magnetic resonance, and in spite of the great advances attained in x-radiography in recent years, a persistent search continues for new, refined methods. First of all, efforts are directed toward seeking effective methods of early diagnosis of tumor lesions with less danger than in x-radiography. Studies have been conducted in a number of countries in the past decade on the possibility of applying heavy charged particles of relatively high energies for these purposes. Ion radiography enables one to obtain a higher contrast image than x-radiography at lower doses of irradiation, and to differentiate soft tissues and to detect in them anomalies of small dimensions. It opens up the possibility of obtaining new diagnostic information. Theoretical studies in the field of ion radiography and experiments on animals, on human tissues, and in a number of cases, on patients, have shown the promise offered by using ions for diagnosing not only tumors, but also a number of other serious lesions. This new field of study has incorporated the experience of particle and nuclear physics and widely employs its variety of investigational methods. This article also treats problems involving the application of accelerators for ion radiography and specifications for the beam parameters and for the particle detectors. This review gives an account of the advances in this new field of studies and the prospects for its development and the difficulties on the pathway of introducing it into practice.

  16. Correction parameters in conventional dental radiography for dental implant

    Directory of Open Access Journals (Sweden)

    Barunawaty Yunus

    2009-12-01

    Full Text Available Background: Radiographic imaging as a supportive diagnostic tool is the essential component in treatment planning for dental implant. It help dentist to access target area of implant due to recommendation of many inventions in making radiographic imaging previously. Along with the progress of science and technology, the increasing demand of easier and simpler treatment method, a modern radiographic diagnostic for dental implant is needed. In fact, Makassar, especially in Faculty of Dentistry Hasanuddin University, has only a conventional dental radiography. Researcher wants to optimize the equipment that is used to obtain parameters of the jaw that has been corrected to get accurate dental implant. Purpose: This study aimed to see the difference of radiographic imaging of dental implant size which is going to be placed in patient before and after correction. Method: The type of research is analytical observational with cross sectional design. Sampling method is non random sampling. The amount of samples is 30 people, male and female, aged 20–50 years old. The correction value is evaluated from the parameter result of width, height, and thick of the jaw that were corrected with a metal ball by using conventional dental radiography to see the accuracy. Data is analyzed using SPSS 14 for Windows program with T-test analysis. Result: The result that is obtained by T-Test analysis results with significant value which p<0.05 in the width and height of panoramic radiography technique, the width and height of periapical radiography technique, and the thick of occlusal radiography technique before and after correction. Conclusion: It can be concluded that there is a significant difference before and after the results of panoramic, periapical, and occlusal radiography is corrected.

  17. Radiation Exposure in the NICU: Computed Radiography versus Digital Detector Radiography.

    Science.gov (United States)

    Oberle, Renee

    2015-01-01

    Medical radiation exposure to pediatric patients has gained national attention in the last few years. New guidelines encourage technologists, managers, radiologists, and equipment manufacturers to tailor imaging to smaller sized patients. With the advent of computed radiography, patient radiation doses have doubled. This literature review addresses how cumulative doses received by highly radiosensitive infants in neonatal intensive care units correspond to similar doses received by infants that later developed radiation induced cancers. While technologist expertise is important for dose management with any receptor technology, converting to digital flat panel detectors can reduce dose to these areas by > 50%, and minimize risks for radiation induced cancers that often do not present until several decades after exposure. PMID:26710555

  18. Finger printing of medieval investment cast idols by radiography

    International Nuclear Information System (INIS)

    Among the various methods, radiography is an important technique that can be used to fingerprint an idol. This is because, these idols are cast structures, and radiography is the most reliable technique for the detection of internal features like casting defects. This paper presents the radiographic methodology adopted and the results of the studies to characterise radiographically three medieval cast idols belonging to different periods 9th, 13th, and 16th century obtained from the government museum Madras. (author). 2 refs., 1 fig., 2 tabs

  19. Proton radiography, nuclear cross sections and multiple Coulomb scattering

    Energy Technology Data Exchange (ETDEWEB)

    Sjue, Sky K. [Los Alamos National Laboratory

    2015-11-04

    The principles behind proton radiography including multiple Coulomb scattering are discussed for a purely imaginary square well nucleus in the eikonal approximation. It is found that a very crude model can reproduce the angular dependence of the cross sections measured at 24 GeV/c. The largest differences are ~3% for the 4.56 mrad data, and ~4% for the 6.68 mrad data. The prospect of understanding how to model deterministically high-energy proton radiography over a very large range of energies is promising, but it should be tested more thoroughly.

  20. Neutron radiography and tomography facility at IBR-2 reactor

    Science.gov (United States)

    Kozlenko, D. P.; Kichanov, S. E.; Lukin, E. V.; Rutkauskas, A. V.; Belushkin, A. V.; Bokuchava, G. D.; Savenko, B. N.

    2016-05-01

    An experimental station for investigations using neutron radiography and tomography was developed at the upgraded high-flux pulsed IBR-2 reactor. The 20 × 20 cm neutron beam is formed by the system of collimators with the characteristic parameter L/D varying from 200 to 2000. The detector system is based on a 6LiF/ZnS scintillation screen; images are recorded using a high-sensitivity video camera based on the high-resolution CCD matrix. The results of the first neutron radiography and tomography experiments at the developed facility are presented.

  1. A radiological health study of industrial gamma radiography in Canada

    International Nuclear Information System (INIS)

    As an occupational group, industrial radiographers receive radiation doses second only to reactor workers. This report is a result of a study carried out to research the causes for this relatively high dose and determine if and how it can be improved. The data presented herein were obtained from questionnaires and field visits to organizations involved in gamma radiography and from the Canadian National Dose Registry. Some applications of radiography such as pipeline work give rise to higher than average doses. When all safety measures are conscientiously aplied, the doses are reasonalbe. However, ignorance, carelessness and indifference account for much unnecessary exposure to radiation. (Auth)

  2. Fast Neutron Radiography at an RFQ Accelerator System

    Science.gov (United States)

    Daniels, G. C.; Franklyn, C. B.; Dangendorf, V.; Buffler, A.; Bromberger, B.

    This work introduces the Necsa Radio Frequency Quadrupole (RFQ) accelerator facility and its work concerning fast neutron radiography (FNR). Necsa operates a 4-5 MeV, up to 50 mA deuteron RFQ. The previous deuterium gas target station has been modified to enable producing a white neutron beam employing a solid B4C target. Furthermore, the high energy beam transport (HEBT) section is under adjustment to achieve a longer flight-path and a better focus. This work presents an overview of the facility, the modifications made, and introduces past and ongoing neutron radiography investigations.

  3. Vibration Analysis of Digital Radiography System for Large Container Inspection

    Institute of Scientific and Technical Information of China (English)

    黄松岭; 李路明; 周立业; 向新程; 安继刚

    2003-01-01

    The cantilever vibration characteristics of a digital radiography system were analyzed to predict the effect of vibration on the performance of a mobile container inspection system. The static deformation,vibration mode and natural frequency of the cantilever of the digital radiography system were calculated with the ALGOR Finite Element System to verify the strength and rigidity of the cantilever. The maximum amplitude of the cantilever vibration occurs as it starts accelerating. The predictions show good agreement with test results, indicating that the finite element model of the cantilever structure accurately models the mechanical characteristics.

  4. Technical and clinical breast cancer screening performance indicators for computed radiography versus direct digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Bosmans, Hilde; Lemmens, Kim; Zanca, Federica; Ongeval, Chantal van; Steen, Andre van [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Hauwere, An de; Thierens, Hubert [Ghent University, QCC, Ghent (Belgium); Herck, Koen van; Bleyen, Luc; Mortier, Griet [Ghent University, Centrum voor Preventie en Vroegtijdige Opsporing van Kanker, Department of Public Health, Ghent (Belgium); Martens, Patrick [Vroegtijdige Opsporing Borstklierkanker West-Vlaanderen vzw, Bruges (Belgium); Putte, Gretel vande; Kellen, Eliane; Limbergen, Erik van [Leuven University Center of Cancer Screening, Leuven (Belgium)

    2013-10-15

    To compare technical and clinical screening performance parameters between computed radiography (CR) and direct digital radiography (DR) systems. The number of women screened with CR was 73,008 and with DR 116,945. Technical and patient dose survey data of 25 CR and 37 DR systems were available. Technical performance was expressed by threshold thickness values at the mean glandular dose (MGD) level of routine practice. Clinical indicators included recall rate (RR), cancer detection rate (CDR), percentage of ductal carcinoma in situ (DCIS), percentage of cancers with T-scores smaller than 1 cm and positive predictive value (PPV). Contrast threshold values for the 0.1-mm gold disk were 1.44 {mu}m (SD 0.13 {mu}m) for CR and 1.20 {mu}m (SD 0.13 {mu}m for DR). MGD was 2.16 mGy (SD 0.36 mGy) and 1.35 mGy (SD 0.32 mGy) for CR and DR respectively. We obtained for CR, respectively DR, the following results: RR in the first round of 5.48 % versus 5.61 %; RR in subsequent rounds of 2.52 % versus 2.65 %; CDR of 0.52 % versus 0.53 %; DCIS of 0.08 % versus 0.11 %; a rate of cancers with T-scores smaller than 1 cm of 0.11 % versus 0.11 %; PPV of 18.45 % versus 18.64 %; none of them was significantly different. Our screening indicators are reassuring for the use of CR and DR, with CR operating at 60 % higher MGD. (orig.)

  5. Measuring microfocal spots using digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Fry, David A [Los Alamos National Laboratory; Ewert, Uwe [BAM

    2009-01-01

    Measurement of microfocus spot size can be important for several reasons: (1) Quality assurance during manufacture of microfocus tubes; (2) Tracking performance and stability of microfocus tubes; (3) Determining magnification is especially important for digital radiography where the native spatial resolution of the digital system is not adequate for the application; and (4) Knowledge of unsharpness from the focal spot alone. The European Standard EN 12543-5 is based on a simple geometrical method of calculating focal spot size from unsharpness of high magnification film radiographs. The following equations are used for the focal spot size measurement: By similar triangles the following equations are presupposed: f/a = U/b and M = (a+b)/a. These equations can be combined to yield the well known expression: U = f(M - 1). Solving for f, f = U/(M-1). Therefore, the focal spot size, f, can be calculated by measuring the radiographic unsharpness and magnification of a known object. This is the basis for these tests. The European standard actually uses one-half of the unsharpness (which are then added together) from both sides of the object to avoid additional unsharpness contributions due to edge transmission unsharpness of the round test object (the outside of the object is measured). So the equation becomes f = (1/2 U{sub 1} + 1/2 U{sub 2})/(M-1). In practice 1/2 U is measured from the 50% to the 90% signal points on the transition profile from ''black'' to ''white,'' (positive image) or attenuated to unattenuated portion of the image. The 50% to 90% points are chosen as a best fit to an assumed Gaussian radiation distribution from the focal spot and to avoid edge transmission effects. 1/2 U{sub 1} + 1/2 U{sub 2} corresponds about to the full width at half height of a Gaussian focal spot. A highly absorbing material (Tungsten, Tungsten Alloy, or Platinum) is used for the object. Either wires or a sphere are used as the object to

  6. Special Topics in Radiography. Chapter 10

    International Nuclear Information System (INIS)

    Up to this point, this handbook has described the use of X rays to form 2-D medical images of the 3-D patient. This process of reducing patient information by one dimension results in an image of superimposed tissues where important information might be obscured. Chapter 11 begins a section of the book involving the creation of cross-sectional medical images through computed tomography (CT), ultrasound and magnetic resonance imaging (MRI). This Chapter describes a number of special X ray imaging modalities and their associated techniques, and forms a transition between projection and cross-sectional imaging. The first of these special topics is dental radiography, which is characterized by a diversity of technology and innovation. The common intraoral radiograph of a single tooth has seen little fundamental change since the time of Roentgen and is, today, along with the simple chest radiograph, the most commonly performed radiographic examination. By contrast, the challenge to create an image of all the teeth simultaneously has placed dentistry at the cutting edge of technology, through the development of panographic techniques and, most recently, with the application of cone beam CT (CBCT). Moreover, the small size of the tooth and the consequent reduced need for X ray generation power promotes equipment mobility. The effect of the need for equipment mobility also forms a special topic that is examined in this chapter. Quantification of the composition of the body is another special X ray imaging technique. Dual energy X ray absorptiometry (DXA) is primarily used to derive the mass of one material in the presence of another, through knowledge of their unique X ray attenuation at different energies. DXA’s primary commercial application has been to measure body mineral density as an assessment of fracture risk and to diagnose osteoporosis; thus, the X ray energies used are optimized for bone density assessment. Currently, there are estimated to be over 50 000

  7. Levered and unlevered Beta

    OpenAIRE

    Fernandez, Pablo

    2003-01-01

    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  8. Digital image processing in neutron radiography

    International Nuclear Information System (INIS)

    Neutron radiography is a method for the visualization of the macroscopic inner-structure and material distributions of various materials. The basic experimental arrangement consists of a neutron source, a collimator functioning as beam formatting assembly and of a plane position sensitive integrating detector. The object is placed between the collimator exit and the detector, which records a two dimensional image. This image contains information about the composition and structure of the sample-interior, as a result of the interaction of neutrons by penetrating matter. Due to rapid developments of detector and computer technology as well as deployments in the field of digital image processing, new technologies are nowadays available which have the potential to improve the performance of neutron radiographic investigations enormously. Therefore, the aim of this work was to develop a state-of-the art digital imaging device, suitable for the two neutron radiography stations located at the 250 kW TRIGA Mark II reactor at the Atominstitut der Oesterreichischen Universitaeten and furthermore, to identify and develop two and three dimensional digital image processing methods suitable for neutron radiographic and tomographic applications, and to implement and optimize them within data processing strategies. The first step was the development of a new imaging device fulfilling the requirements of a high reproducibility, easy handling, high spatial resolution, a large dynamic range, high efficiency and a good linearity. The detector output should be inherently digitized. The key components of the detector system selected on the basis of these requirements consist of a neutron sensitive scintillator screen, a CCD-camera and a mirror to reflect the light emitted by the scintillator to the CCD-camera. This detector design enables to place the camera out of the direct neutron beam. The whole assembly is placed in a light shielded aluminum box. The camera is controlled by a

  9. Realized Beta GARCH

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger; Voev, Valeri Radkov

    2014-01-01

    as the beta. We apply the model to a large set of assets and find the conditional betas to be far more variable than usually found with rolling-window regressions based exclusively on daily returns. In the empirical part of the paper, we examine the cross-sectional as well as the time variation...... of the conditional beta series during the financial crises....

  10. Detection of urinary stones at reduced radiation exposure: a phantom study comparing computed radiography and a low-dose digital radiography linear slit scanning system

    Science.gov (United States)

    Szucs-Farkas, Zsolt; Chakraborty, D. P.; Thoeny, Harriet C.; Loupatatzis, Christos; Vock, Peter; Harald, Bonel

    2010-01-01

    Objective In this experimental study we assessed the diagnostic performance of linear slit scanning radiography (LSSR) compared to conventional computed radiography (CR) in the detection of urinary calculi in an anthropomorphic phantom imitating patients weighing approximately 58 to 88 kg. Conclusion Compared to computed radiography, LSSR is superior in the detection of urinary stones and may be used for pretreatment localization and follow-up at a lower patient exposure. PMID:19457787

  11. Assessment of panoramic radiography as a national oral examination tool: review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo [School of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    2011-03-15

    The purpose of this review is to evaluate the possibility of panoramic radiography as a national oral examination tool. This report was carried out by review of the literatures. Panoramic radiography has sufficient diagnostic accuracy in dental caries, periodontal diseases, and other lesions. Also, the effective dose of panoramic radiography is lower than traditional full-mouth periapical radiography. Panoramic radiography will improve the efficacy of dental examination in national oral examination. However, more studies are required to evaluate the benefit, financial cost, and operation time and also to make selection criteria and quality management program.

  12. Common positioning errors in panoramic radiography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Randon, Rafael Henrique Nunes [Stomathology and Oral Diagnostic Program, School of Dentistry of Sao Paulo, University of Sao Paulo, Sao Paulo (Brazil); Pereira, Yamba Carla Lara [Biology Dental Buco Graduate Program, School of Dentistry of Piracicaba, University of Campinas, Piracicaba (Brazil); Nascimento, Glauce Crivelaro do [Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto (Brazil)

    2014-03-15

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.

  13. Effect of comfort pads and incubator design on neonatal radiography

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xia; Baad, Michael; Reiser, Ingrid; Feinstein, Kate A.; Lu, Zhengfeng [University of Chicago Medicine, Department of Radiology, Chicago, IL (United States)

    2016-01-15

    There has been increasing interest in patient dose reduction in neonatal intensive care units. Removing comfort pads for radiography has been identified as a potential means to decrease patient dose. To assess the effect of comfort pads and support trays on detector entrance exposure (DEE) and image quality for neonatal radiography, and its implication for patient dose. Comfort pads and support trays from three incubator and warmer systems were examined. The attenuation of the primary beam by these structures was measured using a narrow beam geometry. Their effect on DEE and image quality was then assessed using typical neonatal chest radiography techniques with three configurations: (1) both the comfort pad and support included in the beam, (2) only the support tray included and (3) both the comfort pad and support tray removed. Comfort pads and support trays were found to attenuate the primary beam by 6-15%. Eliminating these structures from the X-ray beam's path was found to increase the detector entrance exposure by 28-36% and increase contrast-to-noise ratio by more than 21%, suggesting room for patient dose reduction when the same image quality is maintained. Comfort pads and tray support devices can have a considerable effect on DEE and image quality, with large variations among different incubator designs. Positioning the image detector directly underneath neonatal patients for radiography is a potential means for patient dose reduction. However, such benefit should be weighed against the risks of moving the patient. (orig.)

  14. Radiographer interpretation of trauma radiographs: Issues for radiography education providers

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, Maryann [Division of Radiography, School of Health Studies, University of Bradford, Trinity road, Bradford, West Yorkshire BD5 0BB (United Kingdom)], E-mail: m.l.hardy1@bradford.ac.uk; Snaith, Beverly [Mid Yorkshire Hospitals NHS Trust, Radiology Department, Pinderfields General Hospital, Aberford Road, Wakefield WF1 4DG (United Kingdom)

    2009-05-15

    Background: The role of radiographers with respect to image interpretation within clinical practice is well recognised. It is the expectation of the professional, regulatory and academic bodies that upon qualification, radiographers will possess image interpretation skills. Additionally, The College of Radiographers has asserted that its aspiration is for all radiographers to be able to provide an immediate written interpretation on skeletal trauma radiographs by 2010. This paper explores the readiness of radiography education programmes in the UK to deliver this expectation. Method: A postal questionnaire was distributed to 25 Higher Education Institutions in the UK (including Northern Ireland) that provided pre-registration radiography education as identified from the Society and College of Radiographers register. Information was sought relating to the type of image interpretation education delivered at pre- and post-registration levels; the anatomical range of image interpretation education; and education delivery styles. Results: A total of 19 responses (n = 19/25; 76.0%) were received. Image interpretation education was included as part of all radiographer pre-registration programmes and offered at post-registration level at 12 academic centres (n = 12/19; 63.2%). The anatomical areas and educational delivery methods varied across institutions. Conclusion: Radiography education providers have embraced the need for image interpretation education within both pre- and post-registration radiography programmes. As a result, UK education programmes are able to meet the 2010 College of Radiographers aspiration.

  15. General radiation hygiene and safety aspects in dental radiography

    International Nuclear Information System (INIS)

    A presentation of all essential aspects concerning practical radiation hygiene in dental radiography is given. The report reflects the established opinion and practice of the National Institute of Radiation Hygiene evolved through many years of experience in this field. The principal target group includes all dental staff members in Norway

  16. Neutron radiography for maintenance inspection of military and civilian aircraft

    International Nuclear Information System (INIS)

    As part of a program to develop new and advanced nondestructive inspection techniques, a series of projects has been conducted to develop and evaluate neutron radiography as a nondestructive inspection tool. A major portion of this effort has been directed toward the application of neutron radiography as a maintenance inspection tool for military and civilian aircraft. The availability of 252Cf as a neutron source has enabled the use of neutron-radiography systems in normal maintenance environments for the inspection of flight-line aircraft with a minimum of interference. Neutron radiography has been demonstrated to be a powerful nondestructive inspection tool for a variety of applications involving the detection of organic or non-metallic compounds. Its ability to detect surface and subsurface corrosion in aircraft structure is unmatched by any other inspection technique. This capability of detecting corrosion without component disassembly is particularly significant when corrosion is hidden behind thick metallic structural members. The neutron radiographic technique has been applied successfully to detect corrosion in wing tanks, rear stabilators, aft spar, starboard and port wing, rudder, fuselage skin, and nose landing gears of a variety of fixed-wind aircraft, as well as rotary blades and rotary tail flaps of heliocopters

  17. Point Scattered Function (PScF) for fast neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Mohamed H. [Nuclear and Radiation Engineering Department, Alexandria University, Alexandria 21544 (Egypt)], E-mail: mhmheg@yahoo.com

    2009-08-01

    Fast neutron radiography opened up a new range of possibilities to image extremely dense objects. The removal of the scattering effect is one of the most challenging problems in neutron imaging. Neutron scattering in fast neutron radiography did not receive much attention compared with X-ray and thermal neutron radiography. The purpose of this work is to investigate the behavior of the Point Scattered Function (PScF) as applied in fast neutron radiography. The PScF was calculated using MCNP as a spatial distribution of scattered neutrons over the detector surface for one emitting source element. Armament and explosives materials, namely, Rifle steel, brass, aluminum and trinitrotoluene (TNT) were simulated. Effect of various sample thickness and sample-to-detector distance were considered. Simulated sample geometries included a slab with varying thickness, a sphere with varying radii, and a cylinder with varying base radii. Different neutron sources, namely, Cf-252, DT as well as DD neutron sources were considered. Neutron beams with zero degree divergence angle; and beams with varying angles related to the normal to the source plane were simulated. Curve fitting of the obtained PScF, in the form of Gaussian function, were given to be used in future work using image restoration codes. Analytical representation of the height as well as the Full Width at Half Maximum (FWHM) of the obtained Gaussian functions eliminates the need to calculate the PScF for sample parameters that were not investigated in this study.

  18. Neutron induced electron radiography; Radiografia com eletrons induzida por neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marcos Leandro Garcia

    2008-07-01

    In the present paper a new radiography technique, the 'Neutron Induced Electron Radiography' - NIER, to inspect low thickness samples on the order of micra, has been developed. This technique makes use of low energy electrons as penetrating radiation generated from metallic gadolinium screens when irradiated by thermal neutrons. The conditions to obtain the best image for the conventional X-ray film Kodak-AA were determined by using a digital system to quantify the darkening level of the film. The irradiations have been performed at a radiography equipment installed at the beam-hole no. 8 of the 5 MW IEA-R1 nuclear research reactor of IPEN-CNEN/SP. The irradiation time to obtain the best radiography was 100 seconds and for such condition the technique was able to discern 1 {mu}m in 24 {mu}m of aluminum at a resolution of 32 {mu}m. By visual comparison the images obtained by the NIER shown a higher quality when compared with the ones from other usual techniques the make use of electrons a penetrating radiation and films for image registration. Furthermore the use of the digital system has provided a smaller time for data acquisition and data analysis as well as an improvement in the image visualization. (author)

  19. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    International Nuclear Information System (INIS)

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electron and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.

  20. Qualitative methods in radiography research: a proposed framework

    International Nuclear Information System (INIS)

    Introduction: While radiography is currently developing a research base, which is important in terms of professional development and informing practice and policy issues in the field, the amount of research published by radiographers remains limited. However, a range of qualitative methods offer further opportunities for radiography research. Purpose: This paper briefly introduces a number of key qualitative methods (qualitative interviews, focus groups, observational methods, diary methods and document/text analysis) and sketches one possible framework for future qualitative work in radiography research. The framework focuses upon three areas for study: intra-professional issues; inter-professional issues; and clinical practice, patient and health delivery issues. While the paper outlines broad areas for future focus rather than providing a detailed protocol for how individual pieces of research should be conducted, a few research questions have been chosen and examples of possible qualitative methods required to answer such questions are outlined for each area. Conclusion: Given the challenges and opportunities currently facing the development of a research base within radiography, the outline of key qualitative methods and broad areas suitable for their application is offered as a useful tool for those within the profession looking to embark upon or enhance their research career

  1. Radiography Capabilities for Matter-Radiation Interactions in Extremes

    Energy Technology Data Exchange (ETDEWEB)

    Walstrom, Peter Lowell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Garnett, Robert William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chapman, Catherine A. B [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Salazar, Harry Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Otoole, Joseph Alfred [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barber, Ronald L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gomez, Tony Simon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-04-28

    The Matter-Radiation Interactions in Extremes (MaRIE) experimental facility will be used to discover and design the advanced materials needed to meet 21st century national security and energy security challenges. This new facility will provide the new tools scientists need to develop next-generation materials that will perform predictably and on-demand for currently unattainable lifetimes in extreme environments. The MaRIE facility is based on upgrades to the existing LANSCE 800-MeV proton linac and a new 12-GeV electron linac and associated X-ray FEL to provide simultaneous multiple probe beams, and new experimental areas. In addition to the high-energy photon probe beam, both electron and proton radiography capabilities will be available at the MaRIE facility. Recently, detailed radiography system studies have been performed to develop conceptual layouts of high-magnification electron and proton radiography systems that can meet the experimental requirements for the expected first experiments to be performed at the facility. A description of the radiography systems, their performance requirements, and a proposed facility layout are presented.

  2. Diagnostic reference levels in intraoral dental radiography in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Kyung; Han, Won Jeong; Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Cheonan (Korea, Republic of); Jung, Yun Hoa [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Pusan National University, Yangsan (Korea, Republic of); Yoon, Suk Ja; Lee, Jae Seo [Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Chonnam National University, Gwangju (Korea, Republic of)

    2012-09-15

    The objectives of this study were to survey the radiographic exposure parameters, to measure the patient doses for intraoral dental radiography nationwide, and thus to establish the diagnostic reference levels (DRLs) in intraoral dental X-ray examination in Korea. One hundred two intraoral dental radiographic machines from all regions of South Korea were selected for this study. Radiographic exposure parameters, size of hospital, type of image receptor system, installation duration of machine, and type of dental X-ray machine were documented. Patient entrance doses (PED) and dose-area products (DAP) were measured three times at the end of the exit cone of the X-ray unit with a DAP meter (DIAMENTOR M4-KDK, PTW, Freiburg, Germany) for adult mandibular molar intraoral dental radiography, and corrections were made for room temperature and pressure. Measured PED and DAP were averaged and compared according to the size of hospital, type of image receptor system, installation duration, and type of dental X-ray machine. The mean exposure parameters were 62.6 kVp, 7.9 mA, and 0.5 second for adult mandibular molar intraoral dental radiography. The mean patient dose was 2.11 mGy (PED) and 59.4 mGycm2 (DAP) and the third quartile one 3.07 mGy (PED) and 87.4 mGycm{sup 2} (DAP). Doses at university dental hospitals were lower than those at dental clinics (p<0.05). Doses of digital radiography (DR) type were lower than those of film-based type (p<0.05). We recommend 3.1 mGy (PED), 87.4 mGycm{sup 2} (DAP) as the DRLs in adult mandibular molar intraoral dental radiography in Korea.

  3. New features in cold neutron radiography and tomography Part II: applied energy-selective neutron radiography and tomography

    International Nuclear Information System (INIS)

    The neutron attenuation coefficient drops for many solid materials quite drastically at a defined cold neutron energy known as a Bragg-cut-off in the cross-section diagrams. In many cases, the drop in attenuation for the corresponding elements is significant and this behavior can be exploited to change the material contrast in radiography and tomography images by modifying the spectrum of the applied neutron beam. The energy-dependent experiments were performed at the Prompt Gamma-ray Activation beam line where the irradiation position is at the end of a curved neutron guide, which delivers cold neutrons from the spallation source SINQ (PSI, Switzerland). This beam position gave the opportunity to perform radiography and tomography at low neutron energies. An effective monochromatization of the primary neutron beam was obtained by using a neutron velocity selector. The intensity of the modified beam was still reasonable for radiography images at different neutron energies and the experiments were performed in relatively short measuring times. A variety of samples were studied to illustrate possible applications of energy-selective radiography and tomography. This new neutron imaging technique provided encouraging results and projects of developing permanent facilities for such investigations at PSI and FRM II are under study

  4. Segmental lumbar spine instability at flexion-extension radiography can be predicted by conventional radiography

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, M.T.; Manninen, H.I.; Lindgren, K.-A.J.; Sihvonen, T.A.; Airaksinen, O.; Soimakallio, S

    2002-07-01

    AIM: To identify plain radiographic findings that predict segmental lumbar spine instability as shown by functional flexion-extension radiography. MATERIALS AND METHODS: Plain radiographs and flexion-extension radiographs of 215 patients with clinically suspected lumbar spine instability were analysed. Instability was classified into anterior or posterior sliding instability. The registered plain radiographic findings were traction spur, spondylarthrosis, arthrosis of facet joints, disc degeneration, retrolisthesis, degenerative spondylolisthesis, spondylolytic spondylolisthesis and vacuum phenomena. Factors reaching statistical significance in univariate analyses (P < 0.05) were included in stepwise multiple logistic regression analysis. RESULTS: Degenerative spondylolisthesis (P = 0.004 at L3-4 level and P = 0.017 at L4-5 level in univariate analysis and odds ratio 16.92 at L4-5 level in multiple logistic regression analyses) and spondylolytic spondylolisthesis (P = 0.003 at L5-S1 level in univariate analyses) were the strongest independent determinants of anterior sliding instability. Retrolisthesis (odds ratio 10.97), traction spur (odds ratio 4.45) and spondylarthrosis (odds ratio 3.20) at L3-4 level were statistically significant determinants of posterior sliding instability in multivariate analysis. CONCLUSION: Sliding instability is strongly associated with various plain radiographic findings. In mechanical back pain, functional flexion-extension radiographs should be limited to situations when symptoms are not explained by findings of plain radiographs and/or when they are likely to alter therapy. Pitkaenen, M.T. et al. (2002)

  5. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U.......S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets....

  6. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically...... for US equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures. (2) A betting against beta (BAB) factor, which is long leveraged low-beta assets and short high-beta assets, produces significant positive risk-adjusted returns. (3) When funding constraints tighten......, the return of the BAB factor is low. (4) Increased funding liquidity risk compresses betas toward one. (5) More constrained investors hold riskier assets....

  7. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross......-section of expected returns. Based on a novel highfrequency dataset of almost one-thousand individual stocks over two decades, we find that the two rough betas associated with intraday discontinuous and overnight returns entail significant risk premiums, while the intraday continuous beta is not priced in the cross......-section. An investment strategy that goes long stocks with high jump betas and short stocks with low jump betas produces significant average excess returns. These higher risk premiums for the discontinuous and overnight market betas remain significant after controlling for a long list of other firm characteristics...

  8. Evaluation of different imaging chains in clinical chest radiography

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, H.; Terho, E.O.; Wiljasalo, M.; Wiljasalo, S.; Soimakallio, S. (Kuopio Central Hospital (Finland))

    1984-11-01

    Six imaging techniques in clinical chest radiography have been evaluated: four film-screen combinations in the conventional grid technique and two combinations in the air gap technique. Five parameters characterising the quality of a chest radiograph were evaluated by three radiologists and one chest physician by using a nominal grading scale from -2 to +2 compared with the standard technique. The quality parameters judged were: the visibility of peripheral lung vessels, lung parenchyme, the pulmonary hilum, and lung structure behind the heart shadow, as well as the visibility of miscellaneous findings of clinical interest. The air gap technique was shown to be superior to the ordinary grid technique. The diagnostic quality of chest radiography does not necessarily deteriorate with the screen speed. However, statistically significant differences were noticed, even between techniques which had equal speed and physical resolution.

  9. Digital radiography of the chest in pediatric patients

    International Nuclear Information System (INIS)

    The hopes placed in digital radiography have been fulfilled only partly in pediatric radiology. Specifically, the option of gaining reduced radiation exposure in combination with a similar or even improved image quality was hard to realize. The only portable digital system available for a long time were storage phosphors which were disadvantaged by an extremely limited dose-quantum-efficiency (DQE) in comparison to digital flat panel detectors. New developments and the introduction of the dual-reading system led to image qualities comparable to film-screen-systems with high resolution and achievable without dose increase, sometimes even with dose reduction. A study using an animal model suggests that these systems can even be used in preterm infants with very low birth weights. A new portable flat panel detector by Canon may improve digital chest radiography in pediatric patients. (orig.)

  10. Application of imaging plate neutron detector to neutron radiography

    CERN Document Server

    Fujine, S; Kamata, M; Etoh, M

    1999-01-01

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x10 sup 8 n cm sup - sup 2. It was found that the IP-ND system with Gd sub 2 O sub 3 as a neutron converter material has a higher sensitivity to gamma-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper.

  11. Application of imaging plate neutron detector to neutron radiography

    International Nuclear Information System (INIS)

    As an imaging plate neutron detector (IP-ND) has been available for thermal neutron radiography (TNR) which has high resolution, high sensitivity and wide range, some basic characteristics of the IP-ND system were measured at the E-2 facility of the KUR. After basic performances of the IP were studied, images with high quality were obtained at a neutron fluence of 2 to 7x108 n cm-2. It was found that the IP-ND system with Gd2O3 as a neutron converter material has a higher sensitivity to γ-ray than that of a conventional film method. As a successful example, clear radiographs of the flat view for the fuel side plates with boron burnable poison were obtained. An application of the IP-ND system to neutron radiography (NR) is presented in this paper

  12. The MU-RAY detector for muon radiography of volcanoes

    International Nuclear Information System (INIS)

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m2 prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented

  13. Developing the profession of radiography: Making use of oral history

    International Nuclear Information System (INIS)

    This paper is based on ongoing research into the profession of radiography using the oral history method. Knowledge of radiographic practice as a profession has in the past been based on what is written or learnt from other professions both within and beyond the field of health care. The profession has experienced substantial technological and sociological changes both in training and in practice over the past few decades and these look set to continue into the immediate future. Evidence-based practice is invoked as a quality measure on all health professions, and part of the body of knowledge which forms the evidence base of practice development involves an understanding of how the profession has responded to change and what this might mean for the further changes it is likely to meet. This paper explores the potential role of oral history research as a tool for the development of knowledge about the practice of radiography

  14. Optimisation of resolution in accelerator-based fast neutron radiography

    CERN Document Server

    Rahmanian, H; Watterson, J I W

    2002-01-01

    In fast neutron radiography, imaging geometry, neutron scattering, the fast neutron scintillator and the position-sensitive detector all influence feature contrast, resolution and the signal-to-noise ratio in the image. The effect of imaging geometry can be explored by using a ray-tracing method. This requires following the path of neutrons through the imaging field, which includes the sample of interest. A relationship between imaging geometry and feature detectability can be developed. Monte Carlo methods can be used to explore the effect of neutron scattering on the results obtained with the ray-tracing technique. Fast neutrons are detected indirectly via neutron-nucleon scattering reactions. Using hydrogen-rich scintillators and relying on the recoil protons to ionise the scintillator material is the most sensitive technique available. The efficiency, geometry and composition of these scintillators influence the detectability of features in fast neutron radiography. These scintillator properties have a di...

  15. Simulation study of Fast Neutron Radiography using GEANT4

    International Nuclear Information System (INIS)

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented

  16. Simulation study of Fast Neutron Radiography using GEANT4

    Science.gov (United States)

    Bishnoi, S.; Thomas, R. G.; Sarkar, P. S.; Datar, V. M.; Sinha, A.

    2015-02-01

    Fast neutron radiography (FNR) is an important non-destructive technique for the imaging of thick bulk material. We are designing a FNR system using a laboratory based 14 MeV D-T neutron generator [1]. Simulation studies have been carried using Monte Carlo based GEANT4 code to understand the response of the FNR system for various objects. Different samples ranging from low Z, metallic and high Z materials were simulated for their radiographic images. The quality of constructed neutron radiography images in terms of relative contrast ratio and the contrast to noise ratio were investigated for their dependence on various parameters such as thickness, voids inside high/low Z material and also for low Z material hidden behind high Z material. We report here the potential and limitations of FNR for imaging different materials and a few configurations and also the possible areas where FNR can be implemented.

  17. Developing the profession of radiography: Making use of oral history

    Energy Technology Data Exchange (ETDEWEB)

    Decker, Sola [School of Radiography, Faculty of Nursing, Midwifery and Health Studies, University of Wales, Bangor, Archimedes Centre, Technology Park, Wrexham LL13 7YP (United Kingdom)]. E-mail: rdsa01@bangor.ac.uk; Iphofen, Ron [Faculty of Nursing, Midwifery and Health Studies, University of Wales, Bangor, Archimedes Centre, Technology Park, Wrexham LL13 7YP (United Kingdom)

    2005-11-01

    This paper is based on ongoing research into the profession of radiography using the oral history method. Knowledge of radiographic practice as a profession has in the past been based on what is written or learnt from other professions both within and beyond the field of health care. The profession has experienced substantial technological and sociological changes both in training and in practice over the past few decades and these look set to continue into the immediate future. Evidence-based practice is invoked as a quality measure on all health professions, and part of the body of knowledge which forms the evidence base of practice development involves an understanding of how the profession has responded to change and what this might mean for the further changes it is likely to meet. This paper explores the potential role of oral history research as a tool for the development of knowledge about the practice of radiography.

  18. Computer-aided diagnosis in chest radiography: Beyond nodules

    Energy Technology Data Exchange (ETDEWEB)

    Ginneken, Bram van [University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)], E-mail: bram@isi.uu.nl; Hogeweg, Laurens; Prokop, Mathias [University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht (Netherlands)

    2009-11-15

    Chest radiographs are the most common exam in radiology. They are essential for the management of various diseases associated with high mortality and morbidity and display a wide range of findings, many of them subtle. In this survey we identify a number of areas beyond pulmonary nodules that could benefit from computer-aided detection and diagnosis (CAD) in chest radiography. These include interstitial infiltrates, catheter tip detection, size measurements, detection of pneumothorax and detection and quantification of emphysema. Recent work in these areas is surveyed, but we conclude that the amount of research devoted to these topics is modest. Reasons for the slow pace of CAD development in chest radiography beyond nodules are discussed.

  19. Proton radiography of cylindrical laser-driven implosions

    Energy Technology Data Exchange (ETDEWEB)

    Volpe, L; Jafer, R [Universita di Milano-Bicocca (Italy); Vauzour, B; Nicolai, Ph; Santos, J J; Dorchies, F; Fourment, C; Hulin, S; Regan, C [CELIA, Universite de Bordeaux, CNRS, CEA, F33405 (France); Perez, F; Baton, S [LULI, Ecole Polytechnique-CNRS-UPMC, 91128 Palaiseau Cedex (France); Lancaster, K; Galimberti, M; Heathcote, R; Tolley, M; Spindloe, Ch [RAL, STFC (United Kingdom); Nazarov, W [St. Andrews University (United Kingdom); Koester, P; Labate, L; Gizzi, L A [INO-CNR, Pisa (Italy)

    2011-03-15

    We report on the results of a recent experiment at the Rutherford Appleton Laboratory investigating fast electron propagation in cylindrically compressed targets; a subject of interest for fast ignition. This experiment was performed within the framework of the road map of HiPER (the European High Power laser Energy Research facility Project). Protons accelerated by a ps-laser pulse are used to radiograph a 220 {mu}m diameter, imploded with {approx}200 J of laser light (1 ns {lambda} = 0.53 {mu}m) in four symmetrically incident beams. Results are also compared with those from hard x-ray radiography. Detailed comparison with 2D radiation hydrodyamics simulations is performed with the aid of a Monte Carlo code adapted to describe plasma effects. Finally, a simple analytical model is developed to estimate the performance of proton radiography for given implosion conditions. (brief communication)

  20. The MU-RAY detector for muon radiography of volcanoes

    Energy Technology Data Exchange (ETDEWEB)

    Anastasio, A. [INFN-Napoli (Italy); Ambrosino, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Basta, D. [INFN-Napoli (Italy); Bonechi, L. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); Brianzi, M. [Università degli Studi di Firenze, Firenze (Italy); Bross, A. [Fermilab (United States); Callier, S. [LAL, Orsay (France); Caputo, A. [INGV Osservatorio Vesuviano, Napoli (Italy); Ciaranfi, R. [INFN-Firenze (Italy); Cimmino, L. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); D' Alessandro, R. [Università degli Studi di Firenze, Firenze (Italy); INFN-Firenze (Italy); D' Auria, L. [INGV Osservatorio Vesuviano, Napoli (Italy); La Taille, C. de [LAL, Orsay (France); Energico, S. [CNR- SPIN, Napoli (Italy); INFN-Napoli (Italy); Garufi, F. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Giudicepietro, F. [INGV Osservatorio Vesuviano, Napoli (Italy); Lauria, A. [INFN-Napoli (Italy); Università Federico II, Napoli (Italy); Macedonio, G.; Martini, M. [INGV Osservatorio Vesuviano, Napoli (Italy); Masone, V. [Università Federico II, Napoli (Italy); and others

    2013-12-21

    The MU-RAY detector has been designed to perform muon radiography of volcanoes. The possible use on the field introduces several constraints. First the electric power consumption must be reduced to the minimum, so that the detector can be solar-powered. Moreover it must be robust and transportable, for what concerns the front-end electronics and data acquisition. A 1 m{sup 2} prototype has been constructed and is taking data at Mt. Vesuvius. The detector consists of modules of 32 scintillator bars with wave length shifting fibers and silicon photomultiplier read-out. A dedicated front-end electronics has been developed, based on the SPIROC ASIC. An introduction to muon radiography principles, the MU-RAY detector description and results obtained in laboratory will be presented.

  1. Dose in conventional radiography; Dosis en radiografia convencional

    Energy Technology Data Exchange (ETDEWEB)

    Acuna D, E.; Padilla R, Z. P.; Escareno J, E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    2011-10-15

    It has been pointed out that medical exposures are the most significant sources of exposure to ionizing radiation for the general population. Inside the medical exposures the most important is the X-ray use for diagnosis, which is by far the largest contribution to the average dose received by the population. From all studies performed in radiology the chest radiography is the most abundant. In an X-ray machine, voltage and current are combined to obtain a good image and a reduce dose, however due to the workload in a radiology service individual dose is not monitored. In order to evaluate the dose due to chest radiography in this work a plate phantom was built according to the ISO recommendations using methylmethacrylate walls and water. The phantom was used in the Imaging department of the Zacatecas General Hospital as a radiology patient asking for a chest study; using thermoluminescent dosimeters, TLD 100 the kerma at the surface entrance was determined. (Author)

  2. Correlation of processing and sintering variables with the strength and radiography of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, W.A. (NASA-Lewis Research Center, Cleveland, OH (USA)); Baaklini, G.Y. (Cleveland State Univ., OH (USA))

    1988-01-01

    A sintered Si{sub 3}N{sub 4}-SiO{sub 2}-Y{sub 2}O{sub 3} composition (6Y) was developed that reached four-point flexural average strength/standard deviation values of 857/36, 544/33, and 462/59 MPa at room temperature, 1,200{degree}, and 1,370{degree}C, respectively. These strengths represented improvements of 56, 38, and 21% over baseline properties at the three test temperatures. At room temperature the standard deviation was reduced by over a factor of three. These accomplishments were realized by the iterative utilization of conventional x-ray radiography to characterize structural (density) uniformity as affected by systematic changes in powder processing and sintering parameters. Accompanying the improvement in mechanical properties was a change in the type of flaw-causing failure from a pore to a large, columnar {beta}-Si{sub 3}N{sub 4} grain, typically 40 to 80 {mu}m long, 10 to 30 {mu}m wide, and with an aspect ratio of 5:1.

  3. Correlation of processing and sintering variables with the strength and radiography of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, W.A.; Baaklini, G.Y.

    1986-08-01

    A sintered Si/sub 3/N/sub 4/-SiO/sub 2/-Y/sub 2/O/sub 3/ composition, NASA 6Y, was developed that reached four-point flexural average strength/standard deviation values of 857/36, 544/33, and 462/59 MPa at room temperature, 1200 and 1370 C, respectively. These strengths represented improvements of 56, 38, and 21 percent over baseline properties at the three test temperatures. At room temperature the standard deviation was reduced by over a factor of three. These accomplishments were realized by the iterative utilization of conventional X-radiography to characterize structural (density) uniformity as affected by systematic changes in powder processing and sintering parameters. Accompanying the improvement in mechanical properties was a change in the type of flaw causing failure from a pore to a large columnar beta-Si/sub 3/N/sub 4/ grain typically 40-80 micron long, 10-30 micron wide, and with an aspect ratio of 5:1. 11 references.

  4. Correlation of processing and sintering variables with the strength and radiography of silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, W.A.; Baaklini, G.Y.

    1986-01-01

    A sintered Si/sub 3/N/sub 4/-SiO2-Y/sub 2/O/sub 3/ composition, NASA 6Y, was developed that reached four-point flexural average strength/standard deviation values of 857/36, 544/33, and 462/59 MPa at room temperature, 1200 and 1370 C respectively. These strengths represented improvements of 56, 38, and 21 percent over baseline properties at the three test temperatures. At room temperature the standard deviation was reduced by over a factor of three. These accomplishments were realized by the iterative utilization of conventional x-radiography to characterize structural (density) uniformity as affected by systematic changes in powder processing and sintering parameters. Accompanying the improvement in mechanical properties was a change in the type of flaw causing failure from a pore to a large columnar beta- Si/sub 3/N/sub 4/ grain typically 40 to 80 microns long, 10 to 30 microns wide, and with an aspect ratio of 5:1.

  5. Dedicated phantom materials for spectral radiography and CT

    Science.gov (United States)

    Shikhaliev, Polad M.

    2012-03-01

    As x-ray imaging technology moves from conventional radiography and computed tomography (CT) to spectral radiography and CT, dedicated phantom materials are needed for spectral imaging. The spectral phantom materials should accurately represent the energy-dependent mass-attenuation coefficients of different types of tissues. Although tissue-equivalent phantom materials were previously developed for CT and radiation therapy applications, these materials are suboptimal for spectral radiography and CT; they are not compatible with contrast agents, do not represent many of the tissue types and do not provide accurate values of attenuation characteristics of tissue. This work provides theoretical framework and a practical method for developing tissue-equivalent spectral phantom materials with a required set of parameters. The samples of the tissue-equivalent spectral phantom materials were developed, tested and characterized. The spectral phantom materials were mixed with iodine, gold and calcium contrast agents and evaluated. The materials were characterized by CT imaging and x-ray transmission experiments. The fabricated materials had nearly identical densities, mass attenuation coefficients, effective atomic numbers and electron densities as compared to corresponding tissue materials presented in the ICRU-44 report. The experimental results have shown good volume uniformity and inter-sample uniformity (repeatability of sample fabrication) of the fabricated materials. The spectral phantom materials were fabricated under laboratory conditions from readily available and inexpensive components. It was concluded that the presented theoretical framework and fabrication method of dedicated spectral phantom materials could be useful for researchers and developers working in the new area of spectral radiography and CT. Independently, the results could also be useful for other applications, such as radiation therapy.

  6. Computer-aided recognition of emphysema on digital chest radiography.

    OpenAIRE

    Miniati, Massimo; Coppini, Giuseppe; Monti, Simonetta; Bottai, Matteo; Paterni, Marco; Ferdeghini, Ezio Maria

    2011-01-01

    Background Computed tomography (CT) is the benchmark for diagnosis emphysema, but is costly and imparts a substantial radiation burden to the patient. Objective To develop a computer-aided procedure that allows recognition of emphysema on digital chest radiography by using simple descriptors of the lung shape. The procedure was tested against CT. Methods Patients (N=225), who had undergone postero-anterior and lateral digital chest radiographs and CT for diagnostic purposes, were studied and ...

  7. EVALUATION OF TOTAL AND PARTIAL EDENTULOUS JAWS USING PANORAMIC RADIOGRAPHY

    OpenAIRE

    Peker, İlkay; Toraman Alkurt, Meryem; Yıldırım Biçer, Zeynep

    2015-01-01

    Aim: Panoramic radiography is a diagnostic modality for providing a view of the entire maxillofacial region and used as an initial screening tool to examine partially and completely edentulous jaws in pretreatment assessment. Material-method: This study included digital panoramic images of 321 partially and totally edentulous patients. The images were evaluated for positive radiographic findings including presence of retained radiolucencies, radiopacities, proximity of the mental fragments

  8. Limiting the use of routine radiography for acute ankle injuries.

    OpenAIRE

    Cockshott, W P; Jenkin, J. K.; Pui, M.

    1983-01-01

    In the diagnosis of ankle injuries routine radiography is often productive. An international survey of the average number of radiographs made of injured ankles suggested that two projections are adequate to detect fractures. This was confirmed in a prospective study of 242 patients coming to a hospital emergency department with recent ankle injuries. All the fractures could be identified on an anteroposterior or a lateral projection, although some were more obvious on an oblique view. As well...

  9. Pediatric digital radiography education for radiologic technologists: current state

    International Nuclear Information System (INIS)

    Digital radiography (DR) is one of several new products that have changed our work processes from hard copy to digital formats. The transition from analog screen-film radiography to DR requires thorough user education because of differences in image production, processing, storage and evaluation between the forms of radiography. Without adequate education, radiologic technologists could unknowingly expose children to higher radiation doses than necessary for adequate radiograph quality. To evaluate knowledge about image quality and dose management in pediatric DR among radiologic technologists in the U.S. This communication describes a survey of 493 radiologic technologists who are members of the American Society of Radiologic Technologists (ASRT) and who evaluated the current state of radiological technologist education in image quality and dose management in pediatric DR. The survey included 23 survey questions regarding image acquisition issues, quality assurance, radiation exposure and education in DR of infants and children. Radiologic technologists express many needs in areas of training and education in pediatric DR. Suggested improvements include better tools for immediate feedback about image quality and exposure, more information about appropriate technique settings for pediatric patients, more user-friendly vendor manuals and educational materials, more reliable measures of radiation exposure to patients, and more regular and frequent follow-up by equipment vendors. There is a clear and widespread need for comprehensive and practical education in digital image technology for radiologic technologists, especially those engaged in pediatric radiography. The creation of better educational materials and training programs, and the continuation of educational opportunities will require a broad commitment from equipment manufacturers and vendors, educational institutions, pediatric radiology specialty organizations, and individual imaging specialists. (orig.)

  10. Dosimetry in dental radiology. Dentascan spiral CT versus panoramic radiography

    International Nuclear Information System (INIS)

    The study compares the doses absorbed by the dentomaxillary area in spiral CT and panoramic examinations. The dose measurements demonstrate that patients receive smaller doses with panoramic radiography than with spiral CT with Dentascan. After following for some variations from instrumental differences, they are in substantial agreement with literature data. Further investigations are needed considering the radiobiological risk related to the growing spread of Dentascan examinations

  11. Impeller Metrology for Pipeline Compressors Using Computed Radiography

    International Nuclear Information System (INIS)

    A new, quantitative method is described to measure features in pipeline impellers using computed radiography (CR). This capability, with an accuracy approaching 5 mils, is required to optimize the impeller design for high efficiency. The large area coverage, simplicity, and high spatial resolution of CR are ideal for this application. A novel phantom and image processing algorithm chain was used to demonstrate measurement repeatability of 99.9% (1 mil) using CR

  12. Development of imaging techniques for fast neutron radiography in Japan

    International Nuclear Information System (INIS)

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper

  13. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    OpenAIRE

    Dangendorf, V.; Laczko, G; Kersten, C.; Jagutzki, O.; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the...

  14. Absorbed radiation by various tissues during simulated endodontic radiography

    Energy Technology Data Exchange (ETDEWEB)

    Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.

    1989-06-01

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.

  15. Development of imaging techniques for fast neutron radiography in Japan

    CERN Document Server

    Fujine, S; Yoshii, K; Kamata, M; Tamaki, M; Ohkubo, K; Ikeda, Y; Kobayashi, H

    1999-01-01

    Neutron radiography with fast neutron beams (FNR) has been studied at the fast neutron source reactor 'YAYOI' of the University of Tokyo since 1986. Imaging techniques for FNR have been developed for CR-39 track-etch detector, electronic imaging system (television method), direct film method, imaging plate and also fast and thermal neutron concurrent imaging method. The review of FNR imaging techniques and some applications are reported in this paper.

  16. Neutron Radiography Analysis of a Transient Liquid Phase Joint

    OpenAIRE

    Ballhausen, H.; Abele, H.; Eccleston, R. S.; Gaehler, R.; Smith, A. J.; A. Steuwer; Van Overberghe, A.

    2006-01-01

    Neutron radiography in many cases is the only non-destructive technique available for the analysis of a wide range of samples from metallurgy, materials engineering and materials testing. In this paper the potential of the technique is illustrated for a transient liquid phase (TLP) joint. TLP bonding produces interface free and stress free joints. The quality and properties of the joint depend on the diffusion of an interlayer into the base material. A TLP joint is visualised and the diffusio...

  17. Neutron radiography of heated high-performance mortar

    OpenAIRE

    Weber B; Wyrzykowski M.; Griffa M.; Carl S.; Lehmann E.; Lura P.

    2013-01-01

    Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  18. Wind Turbine Blade Nondestructive Testing with a Transportable Radiography System

    OpenAIRE

    Bandekas, D. V.; Potolias, C.; J. G. Fantidis

    2011-01-01

    Wind turbines are becoming widely used as they are an environmentally friendly way for energy production without emissions; however, they are exposed to a corrosive environment. In addition, as wind turbines typically are the tallest structures in the surrounding area of a wind farm, it is expected that they will attract direct lightning strikes several times during their operating life. The purpose of this paper is to show that the radiography with a transportable unit is a solution to find ...

  19. Neutron radiography of heated high-performance mortar

    Directory of Open Access Journals (Sweden)

    Weber B.

    2013-09-01

    Full Text Available Neutron radiography was applied to investigate the water distribution in mortar samples heated from one side to 600 °C. In mortar, aggregates and anhydrous cement are almost transparent to neutrons, while hydration products and water-filled capillary pores bear the largest attenuation. The evolution of the moisture profile shows a sharp dehydration front and accumulation of water due to condensation of water vapor behind this front.

  20. Preliminary study on indirect neutron radiography method at CARR

    International Nuclear Information System (INIS)

    China Advanced Research Reactor (CARR) is an excellent platform for indirect neutron radiography (INR). The experimental conditions of the INR at CARR were calculated and analyzed by the Monte Carlo method, based on which the first and the second exposure time was calculated. The INR experiment was carried out with the sample of dummy fuel rods at one of the CARR's thermal neutron beam channel, and the methods of processing and analyzing the neutron images were also studied. (authors)

  1. Application of X-ray radiography to archaeology

    International Nuclear Information System (INIS)

    X-ray imaging techniques including radiography and scanning tomography are now often applied to archaeological and historical objects. In this report results of three imaging techniques are showed: radiography, X-ray scanning tomography and emissiography. X-ray radiography was applied to examine the technique used for a bronze object. The object was one of the national treasure from Horyuji-temple, Dragon-head Pitcher. The examination proved that the pitcher body was separated into three pieces and that the bronze was fairly homogeneous from 3 to 4 mm. The Pitcher was supposed to be made in Japan at the middle of the seventh century. A small gilt bronze statuette was investigated by an industrial X-ray scanner. The statuette about 30 cm high is supposed to be made in the seventh or eighth century. The head of the statuette was scanned by X-rays of 350kV. The computed tomograms revealed an inlaid metal and scraped hollow. It is supposed that the statuette was cast twice. The first casting might have failed causing the hollow and the missing part of the head. The hollow was scraped before the following casting so that the newly cast part would be tightly joined to the body. A piece of metal was inlaid to the missing part. A silver inlaid sword was excavated at a historic site called Etafunayama Kofun in Kumamoto in 1873. Seventy-five letters were discovered on the back of the sword, and they were regarded as important reference in studying Japanese history around the fifth century. However, the letters became illegible because of severe surface corrosion. So emissiography or electron radiography was used. All letters and even the details could be read. (author)

  2. Quantitative microfocal radiography accurately detects joint changes in rheumatoid arthritis.

    OpenAIRE

    Buckland-Wright, J C; Carmichael, I.; Walker, S R

    1986-01-01

    Microfocal radiography, producing x5 magnified images of the wrist and hands with a high spacial resolution (25 microns) in the film, permitted direct measurement of erosion area and joint space width in patients with rheumatoid arthritis. The magnitude of errors relating to direct measurement, repositioning the wrist and hand on successive x ray visits, repeated identification of erosions and their area calculation were assessed. The coefficients of variation for length and area measurements...

  3. Turnover Rate Simulation Using GEM Detector on Neutron Radiography

    Institute of Scientific and Technical Information of China (English)

    SHAN; Chao; LI; Xiao-mei; HU; Shou-yang; ZHOU; Jing; JIAN; Si-yu; BAI; Xin-zhan; YE; Li; ZHOU; Shu-hua

    2012-01-01

    <正>With the advantages of high counting rate, high resolution ratio and high compatibility, GEM (Gas Electron Multiplier) detector has becoming the hot topic in the field of gas detector. Using GEM on neutron radiography, we need a suitable neutron converter. By the action on the converter and ingoing neutron, the outgoing particles could be an alpha or proton, which are charged particles. The charged

  4. Real-time radiography at the NECTAR facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Lehrstuhl fuer Radiochemie (RCM), Technische Universitaet Muenchen (TUM), Walther-Meissner-Str. 3, 85748 Garching (Germany)

    2011-09-21

    A feasibility study has shown that real-time radiography using fission neutrons is possible at the NECTAR facility, when using an improved detection system for fast variations (Buecherl et al., 2009 ). Continuing this study, real-time measurements of slowly varying processes like the water uptake in medium sized trunks (diameter about 12 cm) and of slow periodic processes (e.g. a slowly rotating iron disk) are investigated successfully using the existing detection system.

  5. Dosimetric evaluation in panoramic and tele-radiography procedures

    International Nuclear Information System (INIS)

    The present work had as an objective to evaluate the skin surface entrance dose in panoramic and tele radiography procedures in three clinics in Recife - Pernambuco - Brazil, and to contribute with data for the determination of reference levels for super cited extra oral procedures, for this purpose, operational conditions in 3 clinics were evaluated in Recife, aiming to evaluate the existence and integrity of the radioprotection equipment, manner and conditions of image processing; and radiographic equipment parameters such as the dimension of the irradiation filed, the total filtration, the exposure time and the potential applied to the X ray tube. For an estimation of the skin entrance dose of the patient, the phantom Randon Alderson and thermoluminescence dosemeters were used. From these values and the conversion factors determined by the Monte Carlo technique, with the phantom MAX it was possible to estimate the dose absorbed in the organ due to the tele radiography procedures. Regarding panoramic radiography the study showed that the more elevated doses occurred in the parotid gland region which is near rotational venters. In the case of tele radiography the highest dose value occurred in the regions corresponding to the temporal lobe of the brain, followed by linfonodes, ears and parotid glands. The doses absorbed in the eyes and the thyroid gland were, 0.037 mGy and 0.002 mGy in Clinic A and 0.062 mGy and 0.003 mGy in Clinic C, respectively. Regarding equipment test, inadequacy was found in the beam collimation in Clinic A and in the reproducibility of the X ray exposure in Clinic C. The total filtration in both clinics was inadequate.(author)

  6. Absorbed radiation by various tissues during simulated endodontic radiography

    International Nuclear Information System (INIS)

    The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures

  7. Flash-x-radiography for fuel motion studies

    International Nuclear Information System (INIS)

    The paper is primarily intended to be a status report on recent activities in the Flash X-ray Radiography/Cinematography area. Studies in the area of source definition as well as associated experimental limitations are discussed. The implications of machine current upon precision uncertainty in measurements of changes in areal density are presented. The radiographic techniques presently being evaluated are discussed. Performance estimates representative of this type of diagnostic tool are presented. Comparison with other results is made

  8. A note on digital dental radiography in forensic odontology

    OpenAIRE

    Sher-Lin Chiam

    2014-01-01

    Digital dental radiography, intraoral and extraoral, is becoming more popular in dental practice. It offers convenience, such as lower exposure to radiation, ease of storing of images, and elimination of chemical processing. However, it also has disadvantages and drawbacks. One of these is the potential for confusion of the orientation of the image. This paper outlines one example of this, namely, the lateral inversion of the image. This source of confusion is partly inherent in the older mod...

  9. Pediatric digital radiography education for radiologic technologists: current state

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, Gregory; Culbertson, John; Carbonneau, Kira [American Society of Radiologic Technologists, Albuquerque, NM (United States); John, Susan D. [University of Texas Medical School at Houston, Department of Diagnostic and Interventional Imaging, Houston, TX (United States); Children' s Memorial Hermann Hospital, Department of Pediatric Radiology, Houston, TX (United States); Goske, Marilyn J.; Smith, Susan N. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Charkot, Ellen [The Hospital for Sick Children, Diagnostic Imaging and Vascular Access, Toronto (Canada); Herrmann, Tracy [University of Cincinnati, Raymond Walters College, Department of Allied Health, Blue Ash, OH (United States)

    2011-05-15

    Digital radiography (DR) is one of several new products that have changed our work processes from hard copy to digital formats. The transition from analog screen-film radiography to DR requires thorough user education because of differences in image production, processing, storage and evaluation between the forms of radiography. Without adequate education, radiologic technologists could unknowingly expose children to higher radiation doses than necessary for adequate radiograph quality. To evaluate knowledge about image quality and dose management in pediatric DR among radiologic technologists in the U.S. This communication describes a survey of 493 radiologic technologists who are members of the American Society of Radiologic Technologists (ASRT) and who evaluated the current state of radiological technologist education in image quality and dose management in pediatric DR. The survey included 23 survey questions regarding image acquisition issues, quality assurance, radiation exposure and education in DR of infants and children. Radiologic technologists express many needs in areas of training and education in pediatric DR. Suggested improvements include better tools for immediate feedback about image quality and exposure, more information about appropriate technique settings for pediatric patients, more user-friendly vendor manuals and educational materials, more reliable measures of radiation exposure to patients, and more regular and frequent follow-up by equipment vendors. There is a clear and widespread need for comprehensive and practical education in digital image technology for radiologic technologists, especially those engaged in pediatric radiography. The creation of better educational materials and training programs, and the continuation of educational opportunities will require a broad commitment from equipment manufacturers and vendors, educational institutions, pediatric radiology specialty organizations, and individual imaging specialists. (orig.)

  10. Review and Prospect of Cobalt-60 Digital Radiography Inspection Technology

    OpenAIRE

    AN Ji-gang

    2015-01-01

    This article is a review and prospect of the research, development and industrialization of Cobalt-60 digital radiography inspection technology based on the national requirements in the recent 20 years, which is leaded by Institute of Nuclear and New Energy Technology (INET) of TsinghuaUniversity. The research purpose, innovative approach and main academic achievements of this technology were described systematically. The industrial equipment varieties, performance, running condition and appl...

  11. Chest Radiography Findings in Primary Pulmonary Tuberculosis in Children

    OpenAIRE

    Milković, Đurđica; Richter, Darko; Zoričić-Letoja, Ivka; Raos, Miljenko; Koncul, Ivan

    2005-01-01

    Plain chest radiography plays a major role in the diagnosis and follow-up of pulmonary tuberculosis in childhood. The aim of our study was to investigate the distribution of characteristic chest radiographic findings at diagnosis in children with pulmonary tuberculosis. The age of the patients and the type and localization of radiographic changes at admission were retrospectively analyzed. We reviewed chest radiographs in 204 children admitted from January 1, 1991 until June 30, 1994 for newl...

  12. Diagnostic reference levels in intraoral dental radiography in Korea

    OpenAIRE

    Kim, Eun-Kyung; Han, Won-Jeong; Choi, Jin-Woo; Jung, Yun-Hoa; Yoon, Suk-Ja; Lee, Jae-Seo

    2012-01-01

    Purpose The objectives of this study were to survey the radiographic exposure parameters, to measure the patient doses for intraoral dental radiography nationwide, and thus to establish the diagnostic reference levels (DRLs) in intraoral dental X-ray examination in Korea. Materials and Methods One hundred two intraoral dental radiographic machines from all regions of South Korea were selected for this study. Radiographic exposure parameters, size of hospital, type of image receptor system, in...

  13. Advantages and limits of 14-MeV neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Brzosko, J.S. (Istituto Avogadro di Tecnologia, S.R.L., Ravenna (Italy) Stevens Inst. of Tech., Hoboken, NJ (United States)); Robouch, B.V. (Ass. EURATOM-ENEA, Centro Ricerche Energie, Frascati (Italy)); Ingrosso, L. (Avogadro Energy Systems Inc., New York (United States)); Bortolotti, A. (Ferrara Univ. (Italy)); Nardi, V. (Stevens Inst. of Tech., Hoboken, NJ (United States) Ferrara Univ. (Italy))

    1992-10-01

    The paper evaluates the potentials of fast-neutron radiography (FNR) for the inspection of bulky, solid objects. Data for both a fast (E[sub n] = 14.7 MeV) and a slow (E[sub n] = 0.1 eV) neutron source are compared. The reproduction of images consists of Monte Carlo simulations of (a) the neutron random walk in a slab (iron, SiC ceramic, and polyethelene (CH[sub 2])[sub n] plastic) with a void, (b) the process of neutron recording in a detector, and (c) a print-out of images. For a general analysis, 3D-MCSC-RWR software operates without simplification of either the FNR design or the nuclear data files. The results first show the feasibility of the use of 14-MeV neutron radiography, then the superiority of FNR over slow-neutron radiography in-the-field when the thickness of the full slab is over 1 cm and requires a resolution better than 0.1 mm. Examples of some numerically simulated images as well as FNR scaling functions are shown. A review of the available fast-neutron sources reveals that only plasma-focus machines would simultaneously meet all FNR requirements: Y[sub n] [>=] 10[sup 13] n/pulse, small-source dimensions and mobility.

  14. Advantages and limits of 14-MeV neutron radiography

    International Nuclear Information System (INIS)

    The paper evaluates the potentials of fast-neutron radiography (FNR) for the inspection of bulky, solid objects. Data for both a fast (En = 14.7 MeV) and a slow (En = 0.1 eV) neutron source are compared. The reproduction of images consists of Monte Carlo simulations of (a) the neutron random walk in a slab (iron, SiC ceramic, and polyethelene (CH2)n plastic) with a void, (b) the process of neutron recording in a detector, and (c) a print-out of images. For a general analysis, 3D-MCSC-RWR software operates without simplification of either the FNR design or the nuclear data files. The results first show the feasibility of the use of 14-MeV neutron radiography, then the superiority of FNR over slow-neutron radiography in-the-field when the thickness of the full slab is over 1 cm and requires a resolution better than 0.1 mm. Examples of some numerically simulated images as well as FNR scaling functions are shown. A review of the available fast-neutron sources reveals that only plasma-focus machines would simultaneously meet all FNR requirements: Yn ≥ 1013 n/pulse, small-source dimensions and mobility

  15. Assessment of Nugget Size of Spot Weld using Neutron Radiography

    Directory of Open Access Journals (Sweden)

    Triyono

    2011-08-01

    Full Text Available Resistance spot welding (RSW has been widely used for many years in the fabrication of car body structures, mainly due to the cost and time considerations. The weld quality as well as the nugget size is an issue in various manufacturing and processes due to the strong link between the weld quality and safety. It has led to the development of various destructive and non-destructive tests for spot welding such as peel testing, ultrasonic inspections, digital shearography, and infrared thermography. However, such methods cannot show spot weld nugget visually and the results are very operator’s skill dependent. The present work proposes a method to visualize the nugget size of spot welds using neutron radiography. Water, oil and various concentrations of gadolinium oxide-alcohol mixture were evaluated as a contrast media to obtain the best quality of radiography. Results show that mixture of 5 g gadolinium oxide (Gd2O3 in 25 ml alcohol produces the best contrast. It provides the possibility to visualize the shape and size of the nugget spot weld. Furthermore, it can discriminate between nugget and corona bond. The result of neutron radiography evaluation shows reasonable agreement with that of destructive test.

  16. Digital radiography and advanced imaging techniques in dentistry

    Directory of Open Access Journals (Sweden)

    Burcu Keles Evlice

    2013-04-01

    Full Text Available Since the discovery of x-rays in 1895, film has been the primary medium for capturing, displaying and storing radiographic images. Digital or filmless radiography is slowly being adopted by the dental profession. Digital radiography offers a number of capabilities compared with conventional radiography, such as postprocessing, electronic archiving, concurrent access to images, and improved data distribution. Computer based applications which are used for quantitative measurements and evaluations on digital images for better user interpretation. New diagnostic imaging processes are improved connected with the technological progress of computer systems. Since the first clinical use of computed tomography (CT scans in 1972, technological development has been rapid. Dental volumetric tomography (DVT, uniquely used for dentomaxillofacial imaging came to the market owing to recent rapid developments in digital radiology technology and is becoming more popular in dental applications. Low radiation dose cone beam computed tomography (CBCT units that are commercially available at a lower cost than CT units, has performed valuable diagnostic information for dentists. [Archives Medical Review Journal 2013; 22(2.000: 230-238

  17. Visualization of moisture in concrete based on neutron radiography

    International Nuclear Information System (INIS)

    As for the quantitative evaluation of moisture in cured concrete, there are several methods such as weighing method, sensor-using technique, and methods using various kinds of radiations. Although each method can attain general purposes, it is often impossible to express microscopic phenomena. The neutron radiography explained in this paper is a nondestructive measurement method for obtaining the transmission image of an object, by utilizing a difference in the attenuation characteristic caused by the interaction of neutrons with nuclei, and thus it can visualize the moisture behavior in concrete. The portion that contains a large amount of bound water in cured concrete is dark with low transmittance, and the portion with relatively high aggregates is bright. As for the effects of cracking of concrete on degradation phenomena, the analyzed image based on neutron radiography can be utilized because the image shows how moisture can be supplied under the change of moisture conditions. The neutron radiography that can be utilized in Japan's territory is nuclear reactors, but the reactors are currently not running. As alternative means, there are the use of radioisotopes, J-PARC as an accelerator, and RANS as a small neutron radiation source under development by RIKEN. (A.O.)

  18. Calculation and analysis of the neutron radiography spatial resolution

    International Nuclear Information System (INIS)

    Background: Spatial resolution is the key parameter for neutron radiography facility. A model of the integrated system resolution is important when designing or using a system to ensure that the realistic resolution goals can be established and achieved. Purpose: For this resolution modeling analysis we focused on the effects of the geometry effects of L/D, the optical diffusion response of the scintillator and the sampling at the sensor (CCD or CMOS camera) and a formula was derived indicating their functional relationship. Methods: This resolution modeling analysis has been down by theoretic calculations. Then this integrated system resolution model was used as an empirical methodology to verify and optimize the performance of the detection system for real-time neutron radiography at China Advance Research Reactor. Results: The special resolutions at very collimation conditions have been calculation by using this method. And three of important parameters of this resolution model have been discussed to optimize the system performance. Conclusion: These resolution analysis concepts and methods will benefit both the design and the characterization of radiography systems. (authors)

  19. Z-petawatt driven ion beam radiography development.

    Energy Technology Data Exchange (ETDEWEB)

    Schollmeier, Marius; Geissel, Matthias; Rambo, Patrick K.; Schwarz, Jens; Sefkow, Adam B.

    2013-09-01

    Laser-driven proton radiography provides electromagnetic field mapping with high spatiotemporal resolution, and has been applied to many laser-driven High Energy Density Physics (HEDP) experiments. Our report addresses key questions about the feasibility of ion radiography at the Z-Accelerator (%E2%80%9CZ%E2%80%9D), concerning laser configuration, hardware, and radiation background. Charged particle tracking revealed that radiography at Z requires GeV scale protons, which is out of reach for existing and near-future laser systems. However, it might be possible to perform proton deflectometry to detect magnetic flux compression in the fringe field region of a magnetized liner inertial fusion experiment. Experiments with the Z-Petawatt laser to enhance proton yield and energy showed an unexpected scaling with target thickness. Full-scale, 3D radiation-hydrodynamics simulations, coupled to fully explicit and kinetic 2D particle-in-cell simulations running for over 10 ps, explain the scaling by a complex interplay of laser prepulse, preplasma, and ps-scale temporal rising edge of the laser.

  20. A New Neutron Radiography / Tomography / Imaging Station DINGO at OPAL

    Science.gov (United States)

    Garbe, U.; Randall, T.; Hughes, C.; Davidson, G.; Pangelis, S.; Kennedy, S. J.

    A new neutron radiography / tomography / imaging instrument DINGO was built to support the area of neutron imaging research (neutron radiography/tomography) at ANSTO. The instrument is designed for an international user community and for routine quality control for defense, industrial, cultural heritage and archaeology applications. In the industrial field it provides a useful tool for studying cracking and defects in steel or other metals. The instrument construction was completed at the end of June 2013 and it is currently in the hot commissioning stage. The usable neutron flux is mainly determined by the neutron source, but it depends on the instrument position and the resolution. The instrument position for DINGO is the thermal neutron beam port HB-2 in the reactor hall. The measured flux (using gold foil) for an L/D of approximately 500 at HB-2 is 5.3*107 [n/cm2s], which is in a similar range to other facilities. A special feature of DINGO is the in-pile collimator position in front of the main shutter at HB-2. The collimator offers two pinholes with a possible L/D of 500 and 1000. A secondary collimator separates the two beams by blocking one and positions another aperture for the other beam. The whole instrument operates in two different positions, one for high resolution and one for high speed. In the current configuration DINGO measured first radiography and tomography data sets on friendly user test samples.

  1. Management of pediatric radiation dose using Agfa computed radiography

    Energy Technology Data Exchange (ETDEWEB)

    Schaetzing, R. [Agfa Corp., Greenville, SC (United States)

    2004-10-01

    Radiation dose to patients and its management have become important considerations in modern radiographic imaging procedures, but they acquire particular significance in the imaging of children. Because of their longer life expectancy, children exposed to radiation are thought to have a significantly increased risk of radiation-related late sequelae compared to adults first exposed to radiation later in life. Therefore, current clinical thinking dictates that dose in pediatric radiography be minimized, while simultaneously ensuring sufficient diagnostic information in the image, and reducing the need for repeat exposures. Dose management obviously starts with characterization and control of the exposure technique. However, it extends farther through the imaging chain to the acquisition system, and even to the image processing techniques used to optimize acquired images for display. Further, other factors, such as quality control procedures and the ability to handle special pediatric procedures, like scoliosis exams, also come into play. The need for dose management in modern radiography systems has spawned a variety of different solutions, some of which are similar across different manufacturers, and some of which are unique. This paper covers the techniques used in Agfa Computed Radiography (CR) systems to manage dose in a pediatric environment. (orig.)

  2. Social media: The next frontier for professional development in radiography

    International Nuclear Information System (INIS)

    Background: Radiographers are required to undertake professional development in order to maintain registration. Professional development activities can be passive and isolate the practitioner. Social media is an interactive, collaborative, instant form of communication, which potentially addresses these concerns. Objectives: To establish whether the inherent challenges of social media use reduce its feasibility as a platform for professional development in radiography. Methods: A systematic review was undertaken using the PRISMA Guidelines. Academic databases were searched using pre-defined search terms, limits and inclusion criteria. Results: Zero reviewable papers were identified in the field of radiography globally. The search was expanded to “healthcare” and 810 papers were identified. After inclusion criteria and limits were applied, 12 papers were reviewed. Conclusions: Professional development using social media includes higher education, collaboration and networking. Managed with consideration to the inherent risks, social media provides a new means of inclusive professional development. - Highlights: • Professional development in radiography can draw on the benefits of social media. • Benefits of the social media platform are education, collaboration and networking. • Social media can reduce geographic and professional isolation. • Practitioners can share case studies and contribute professional opinions

  3. Thoracic radiography and oxidative stress indices in heartworm affected dogs

    Directory of Open Access Journals (Sweden)

    P. K. Rath

    2014-09-01

    Full Text Available Aim: The aim was to study the pathomorphological changes through thoracic radiography and status of oxidative stress parameters in heartworm affected dogs in Odisha. Materials and Methods: A total of 16 dogs with clinically established diagnosis of dirofilariasis by wet blood smear and modified Knott’s test and equal numbers of dogs as control were included in this study. The present study was conducted in heartworm affected dogs to see the pathomorphological changes through thoracic radiography. Similarly, the evaluation was undertaken for observing any alterations in oxidative stress status in affected as well as non-affected, but healthy control dogs by adopting standard procedure. Results: Thoracic radiography revealed cardiac enlargement, round heart appearance suggestive of right ventricular hypertrophy, tortuous pulmonary artery and darkening of lungs. Alterations in oxidative stress indices showed a significant rise of lipid peroxidase activity, non-significant rise of superoxide dismutase and a significant although reverse trend for catalase levels in affected dogs in comparison to Dirofilaria negative control but apparently healthy dogs. Conclusions: Radiographic changes, as well as alterations in oxidative stress parameters, may not be diagnostic for heartworm infection, but useful for detecting heartworm disease, assessing severity and evaluating cardiopulmonary parenchyma changes and gives a fair idea about the degree of severity of the disease. It aids as contributing factors in disease pathogenesis.

  4. Marginal Assessment of Crowns by the Aid of Parallel Radiography

    Directory of Open Access Journals (Sweden)

    Farnaz Fattahi

    2015-03-01

    Full Text Available Introduction: Marginal adaptation is the most critical item in long-term prognosis of single crowns. This study aimed to assess the marginal quality as well asthe discrepancies in marginal integrity of some PFM single crowns of posterior teeth by employing parallel radiography in Shiraz Dental School, Shiraz, Iran. Methods: In this descriptive study, parallel radiographies were taken from 200 fabricated PFM single crowns of posterior teeth after cementation and before discharging the patient. To calculate the magnification of the images, a metallic sphere with the thickness of 4 mm was placed in the direction of the crown margin on the occlusal surface. Thereafter, the horizontal and vertical space between the crown margins, the margin of preparations and also the vertical space between the crown margin and the bone crest were measured by using digital radiological software. Results: Analysis of data by descriptive statistics revealed that 75.5% and 60% of the cases had more than the acceptable space (50µm in the vertical (130±20µm and horizontal (90±15µm dimensions, respectively. Moreover, 85% of patients were found to have either horizontal or vertical gap. In 77% of cases, the margins of crowns invaded the biologic width in the mesial and 70% in distal surfaces. Conclusion: Parallel radiography can be expedient in the stage of framework try-in to yield some important information that cannot be obtained by routine clinical evaluations and may improve the treatment prognosis

  5. Demonstration of neutron radiography and computed tomography at the University of Texas thermal neutron imaging facility

    International Nuclear Information System (INIS)

    A thermal neutron imaging facility for real-time neutron radiography and computed tomography has recently been developed and built at the University of Texas TRIGA reactor. Herein the authors present preliminary results of radiography and tomography test experiments. These preliminary results showed that the beam is of high quality and is suitable for radiography and tomography applications. A more detailed description of the facility is given elsewhere

  6. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    OpenAIRE

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-01-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like medical X-ray scan and integrates density information along elongated narrow conical vol...

  7. Improvement of density models of geological structures by fusion of gravity data and cosmic muon radiographies

    OpenAIRE

    Jourde, K.; Gibert, D.; Marteau, J.

    2015-01-01

    This paper examines how the resolution of small-scale geological density models is improved through the fusion of information provided by gravity measurements and density muon radiographies. Muon radiography aims at determining the density of geological bodies by measuring their screening effect on the natural flux of cosmic muons. Muon radiography essentially works like a medical X-ray scan and integrates density information along elongated narrow conical volumes. Gravity m...

  8. Analyzing the effect of geometric factors on designing neutron radiography system.

    Science.gov (United States)

    Amini, Moharam; Fadaei, Amir Hosein; Gharib, Morteza

    2015-11-01

    Neutron radiography is one of the main applications of research reactors. It is a powerful tool to conduct nondestructive testing of materials. The parameters that affect the quality of a radiographic image must be considered during the design of a neutron radiography system. Hence, this study aims to investigate the effect of geometric factors on the quality of the neutron radiography system. The results show that the performance of the mentioned system can be increased by regulating the geometric factors. PMID:26343340

  9. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    -looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  10. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes

    OpenAIRE

    Michel Thellier; Camille Ripoll

    2006-01-01

    NCR (neutron capture radiography) may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others) and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  11. Neutron Capture Radiography: Neutron Capture Radiography:a technique for isotopic labelling and analytical imaging with a few stable isotopes

    Directory of Open Access Journals (Sweden)

    Michel Thellier

    2006-01-01

    Full Text Available NCR (neutron capture radiography may be used successfully for the imaging of one of the stable isotopes of a few chemical elements (especially 6Li and 10B, possibly also 14N, 17O, and others and for labelling experiments using these stable isotopes. Other physical techniques compete with NCR. However, NCR can remain extremely useful in a certain number of cases, because it is usually more easily done and is less expensive than the other techniques.

  12. Digital radiography in the evaluation of oesophageal motility disorders

    Energy Technology Data Exchange (ETDEWEB)

    Aly, Yehia A

    2000-07-01

    AIMS: To develop a simple technique for examination of the oesophagus by digital radiography and to assess its role in the evaluation of motility disorders of the oesophagus. MATERIALS AND METHODS: Forty-nine patients and 44 control subjects underwent manometry and digital examination of the oesophagus. The digital study consisted of two parts: firstly examination of the pharynx and cervical oesophagus using 15 ml of fluid barium in anterio-posterior (AP) and lateral views, with image acquisition of four frames/s for 2 s. Secondly, examination of the thoracic oesophagus and oesophagogastric junction using 25 ml of barium in two prone oblique and one supine AP series, with image acquisition of one frame/s for 20 s. Oesophageal transit time (OTT) was measured in each case. Abnormal or non-peristaltic contractions were described regarding their morphology, time of visualization and length. The presence or absence of hiatal hernia, reflux or any associated organic lesions was noted. RESULTS: Digital radiography diagnosed 14 cases of achalasia and 28 cases of non-specific oesophageal motility disorder (NOMD). Normal OTT was 11.95 {+-} 1.304 s. The OTT was prolonged (16 s or more) in all patients except five; four of these were cases of NOMD. Abnormal contractions were classified into circular and longitudinal types. The circular non-obliterating type was commoner. Achalasia was diagnosed in all cases, as failure of relaxation of the inferior oesophageal sphincter was always present and easily depicted by digital radiography. Abnormal contractions in the body of the oesophagus were elicited in 57% of cases of achalasia. The sensitivity of digital radiography in detecting oesophageal motility disorders was 85.7% based on the presence of abnormal contractions and 91.6% by eliciting a prolonged OTT. CONCLUSIONS: Examination of the oesophagus by digital radiography is simple, non-invasive, reproducible, rapid and without discomfort to patients. It allows the diagnosis of

  13. Comparison of storage phosphor computed radiography with conventional film-screen radiography in the recognition of pneumoconiosis

    Energy Technology Data Exchange (ETDEWEB)

    Laney, A.S.; Petsonk, E.L.; Wolfe, A.L.; Attfield, M.D. [National Institute of Occupational Safety & Health, Morgantown, WV (USA)

    2010-07-15

    Traditional film-screen radiography (FSR) has been useful in the recognition and evaluation of interstitial lung diseases, but is becoming increasingly obsolete. To evaluate the applicability of storage phosphor digital computed radiography (CR) images in the recognition of small lung opacities, we compared image quality and the profusion of small opacities between FSR and CR radiographs. We screened 1,388 working coal miners during the course of the study with FSR and CR images obtained on the same day from all participants. Each traditional chest film was independently interpreted by two of eight experienced readers using the International Labour Office (ILO) classification of radiographs of pneumoconiosis, as were CR images displayed on medical-grade computer monitors. The prevalence of small opacities (ILO category 1/0 or greater) did not differ between the two imaging modalities (5.2% for FSR and 4.8% for soft copy CR; p. 0.50). Inter-reader agreement was also similar between FSR and CR. Significant differences between image modalities were observed in the shape of small opacities, and in the proportion of miners demonstrating high opacity profusion (category 2/1 and above). Our results indicate that, with appropriate attention to image acquisition and soft copy display, CR digital radiography can be equivalent to FSR in the identification of small interstitial lung opacities.

  14. Diagnostic value of pelvic radiography in the initial trauma series in blunt trauma

    Energy Technology Data Exchange (ETDEWEB)

    Their, Micael E.A.; Bensch, Frank V.; Koskinen, Seppo K. [Toeoeloe Trauma Center, Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Handolin, Lauri [Toeoeloe Trauma Center, Department of Orthopaedics and Traumatology, Helsinki (Finland); Kiuru, Martti J. [Toeoeloe Trauma Center, Department of Radiology, Helsinki University Central Hospital, Helsinki (Finland); Research Institut of Military Medicine, Helsinki (Finland)

    2005-08-01

    The purpose of the study was to evaluate the diagnostic value of pelvic radiography in the initial trauma series when compared to multidetector CT (MDCT) findings in serious blunt trauma. Inclusion criteria were blunt trauma and pelvic radiography in the initial trauma series, followed by a whole-body MDCT. A total of 1386 patients (874 male, 512 female, age 16-91 years, mean 41 years) met the inclusion criteria. Imaging studies were evaluated retrospectively by anatomical region and classified, when possible, using the Tile classification. Based on MDCT, a total of 629 injuries occurred in 226 (16%) of these 1386 patients. Radiography depicted 405 fractures in these 226 patients, giving an overall sensitivity of 55%. In 24 patients (11%) radiography was false-negatively normal. The sensitivity of radiography was mainly good in the anteroinferior parts of the pelvis, fair in the acetabulum and ileum, and poor in the posterior ring. By MDCT 141 (62%) patients were classified using the Tile classification and by radiography 133 patients (59%) were classified. MDCT and radiography showed the same type of pelvic injury in 72 patients (59%) and the subtype in 17 patients (14%). In 48 patients (40%) the pelvis was shown to be stable by radiography but unstable by MDCT. In conclusion, the sensitivity of pelvic radiography is low, and it is not reliable for determining if the pelvic injury is stable or not. (orig.)

  15. Evaluation of diagnostic ability of CCD digital radiography in the detection of incipient dental caries

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Wan; Lee, Byung Do [Wonkwang University College of Medicine, Iksan (Korea, Republic of)

    2003-03-15

    The purpose of this experiment was to evaluate the diagnostic ability of a CCD-based digital system (CDX-2000HQ) in the detection of incipient dental caries. 93 extracted human teeth with sound proximal surfaces and interproximal artificial cavities were radiographed using 4 imaging methods. Automatically processed No.2 Insight film (Eastman Kodak Co., U.S.A.) was used for conventional radiography, scanned images of conventional radiograms for indirect digital radiography were used. For the direct digital radiography, the CDX-2000HQ CCD system (Biomedisys Co. Korea) was used. The subtraction images were made from two direct digital images by Sunny program in the CDX-2000HQ system. Two radiologists and three endodontists examined the presence of lesions using a five-point confidence scale and compared the diagnostic ability by ROC (Receiver Operating Characteristic) analysis and one way ANOVA test. The mean ROC areas of conventional radiography, indirect digital radiography, direct digital radiography, and digital subtraction radiography were 0.9093, 0.9102, 0.9184, and 0.9056, respectively. The diagnostic ability of direct digital radiography was better than the other imaging modalities, but there were no statistical differences among these imaging modalities (p>0.05). These results indicate that new CCD-based digital systems (CDX-2000HQ) have the potential to serve as an alternative to conventional radiography in the detection of incipient dental caries.

  16. Methodology for digital radiography simulation using the Monte Carlo code MCNPX for industrial applications

    Energy Technology Data Exchange (ETDEWEB)

    Souza, E.M. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil)], E-mail: emonteiro@con.ufrj.br; Correa, S.C.A. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Silva, A.X. [PEN/COPPE-DNC/PoliCT, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Lopes, R.T. [Laboratorio de Instrumentacao Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil); Oliveira, D.F. [Programa de Engenharia Nuclear/COPPE, Universidade Federal do Rio de Janeiro, Centro de Tecnologia Ilha do Fundao, Caixa Postal 68509, 21945-970 Rio de Janeiro, RJ (Brazil)

    2008-05-15

    This work presents a methodology for digital radiography simulation for industrial applications using the MCNPX radiography tally. In order to perform the simulation, the energy-dependent response of a BaFBr imaging plate detector was modeled and introduced in the MCNPX radiography tally input. In addition, a post-processing program was used to convert the MCNPX radiography tally output into 16-bit digital images. Simulated and experimental images of a steel pipe containing corrosion alveoli and stress corrosion cracking were compared, and the results showed good agreement between both images.

  17. Value of postmortem thoracic CT over radiography in imaging of pediatric rib fractures

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Terence S.; Babyn, Paul S. [The Hospital for Sick Children, Department of Diagnostic Imaging, Toronto (Canada); Reyes, Jeanette A.; Chiasson, David A. [The Hospital for Sick Children, Department of Paediatric Laboratory Medicine, Toronto (Canada); Moineddin, Rahim [University of Toronto, Department of Family and Community Medicine, Toronto (Canada); Berdon, Walter E. [Columbia Presbyterian Medical Center, Babies Hospital, Department of Radiology, New York, NY (United States)

    2011-06-15

    Studies have reported that thoracic CT may provide greater sensitivity compared with radiography in detection of pediatric rib fractures and fracture healing. The additional sensitivity afforded by thoracic CT may have medicolegal implications where abuse is suspected. To determine the additional value of postmortem thoracic CT compared with radiography in detecting pediatric rib fractures, and fracture healing, using autopsy findings as a gold standard. We retrospectively reviewed 56 coroner's cases with postmortem radiography and CT thoracic survey. All studies underwent primary interpretation by one or two radiologists. The study radiologist independently reviewed all images from 13 patients with positive findings on radiography, CT or autopsy. Sensitivity and specificity between observers and imaging modalities were compared. Primary interpretation: Fractures were recognized on radiography in 5/12 patients who had fractures found at autopsy, and on CT in 8/12 patients. In total, 29% (24/83) of fractures were reported on radiography, and 51% (52/101) of fractures were reported on CT. Study radiologist: Fractures were recognized on radiography in 7/12 patients who had fractures found at autopsy, and on CT in 11/12 patients. In total, 46% (38/83) of fractures were reported on radiography, and 85% (86/101) of fractures were reported on CT. Postmortem thoracic CT provides greater sensitivity than radiography in detecting pediatric rib fractures, most notably in anterior and posterior fractures. However, the degree of improvement in sensitivity provided by CT might depend on observer experience. (orig.)

  18. Neutron radiography applications in I.T.U. TRIGA Mark-II reactor

    International Nuclear Information System (INIS)

    Neutron radiography is an important radiographic technique which is supplied different and advanced information according to the X or gamma ray radiography. However, it has a trouble for supplying the convenient neutron sources. Tangential beam tube of Istanbul Technical University (ITU) TRIGA Mark-II Training and Research Reactor has been arranged for using neutron radiography. The neutron radiography set defined as detailed for the application of the technique. Two different techniques for neutron radiography are defined as namely, transfer method and direct method. For the transfer method dysprosium and indium screens are used in the study. But, dysprosium generally was preferred in many studies in the point of view nuclear safety. Gadolinium was used for direct method. Two techniques are compared and explained the preferring of the transfer technique. Firstly, reference composition is prepared for seeing the differences between neutron and X-ray or gamma radiography. In addition of it, some radiograph samples are given neutron and X-ray radiography which shows the different image characters. Lastly, some examples are given from archaeometric studies. One of them the brass plates of Great Mosque door in Cizre. After the neutron radiography application, organic dye traces are noticed. Other study is on a sword that belong to Urartu period at the first millennium B.C. It is seen that some wooden part on it. Some different artefacts are examined with neutron radiography from the Ikiztepe excavation site, then some animal post parts are recognized on them. One of them is sword and sheath which are corroded together. After the neutron radiography application, it can be noticed that there are a cloth between the sword and its sheath. By using neutron radiography, many interesting and detailed results are observed in ITU TRIGA Mark-II Training and Research Reactor. Some of them shouldn't be recognised by using any other technique

  19. Spectroscopic neutron radiography for a cargo scanning system

    Science.gov (United States)

    Rahon, Jill; Danagoulian, Areg; MacDonald, Thomas D.; Hartwig, Zachary S.; Lanza, Richard C.

    2016-06-01

    Detection of cross-border smuggling of illicit materials and contraband is a challenge that requires rapid, low-dose, and efficient radiographic technology. The work we describe here is derived from a technique which uses monoenergetic gamma rays from low energy nuclear reactions, such as 11B(d,nγ)12C, to perform radiographic analysis of shipping containers. Transmission ratios of multiple monoenergetic gamma lines resulting from several gamma producing nuclear reactions can be employed to detect materials of high atomic number (Z), the details of which will be described in a separate paper. Inherent in this particular nuclear reaction is the production of fast neutrons which could enable neutron radiography and further characterization of the effective-Z of the cargo, especially within the range of lower Z. Previous research efforts focused on the use of total neutron counts in combination with X-ray radiography to characterize the hydrogenous content of the cargo. We present a technique of performing transmitted neutron spectral analysis to reconstruct the effective Z and potentially the density of the cargo. This is made possible by the large differences in the energy dependence of neutron scattering cross-sections between hydrogenous materials and those of higher Z. These dependencies result in harder transmission spectra for hydrogenous cargoes than those of non-hydrogenous cargoes. Such observed differences can then be used to classify the cargo based on its hydrogenous content. The studies presented in this paper demonstrate that such techniques are feasible and can provide a contribution to cargo security, especially when used in concert with gamma radiography.

  20. Characterization of non-tuberculosis mycobacteria by neutron radiography.

    Science.gov (United States)

    da Silva, Jaqueline M; Crispim, Verginia Reis; da Silva, Marlei Gomes; Furtado, Vanessa Rodrigues; Duarte, Rafael Da Silva

    2013-07-01

    The genus Mycobacterium shares many characteristics with Corynebacterium and Actinomyces genera, among which the genomic guanine plus cytosine content and the production of long branched-chain fatty acids, known as mycolic acids are enhanced. Growth rate and optimal temperature of mycobacteria are variable. The genus comprises more than 140 known species; however Mycobacterium fortuitum, a fast growing nontuberculous mycobacterium, is clinically significant, because it has been associated to several lesions following surgery procedures such as liposuction, silicone breast and pacemaker implants, exposure to prosthetic materials besides sporadic lesions in the skin, soft tissues and rarely lungs. The objective of the present study is to reduce the time necessary for M. fortuitum characterization based on its morphology and the use of the neutron radiography technique substituting the classical biochemical assays. We also aim to confirm the utility of dendrimers as boron carriers. The samples were sterilized through conventional protocols using 10% formaldehyde. In the incubation process, two solutions with different molar ratios (10:1 and 20:1) of sodium borate and PAMAM G4 dendrimer and also pure sodium borate were used. After doping and sterilization procedures, the samples were deposited on CR-39 sheets, irradiated with a 4.6×10(5) n/cm(2)s thermal neutron flux for 30 min, from the J-9 irradiation channel of the Argonauta IEN/CNEN reactor. The images registered in the CR-39 were visualized in a Nikon E400 optical transmission microscope and captured by a Nikon Coolpix 995 digital camera. Developing the nuclear tracks registered in the CR-39 allowed a 1000× enlargement of mycobacterium images, facilitating their characterization, the use of more sophisticated equipment not being necessary. The use of neutron radiography technique reduced the time necessary for characterization. Doping with PAMAM dendrimer improved the visualization of NTM in neutron radiography

  1. Diagnostic value of full-mouth radiography in dogs

    International Nuclear Information System (INIS)

    Objective-To determine the diagnostic value of full-mouth radiography in dogs.Sample Population-Prospective series of 226 dogs referred for dental treatment without previous full-mouth radiographic views being available. Procedure-In a prospective nested case-control analysis of multiple outcomes in a hospital cohort of dogs presented for dental treatment, full-mouth radiographic views were obtained prior to oral examination and charting. After treatment, clinical and radiographic findings were compared, with reference to presenting problems, main clinical findings, additional information obtained from the radiographs, and unexpected radiographic findings. The importance of the radiographic findings in therapeutic decision-making was assessed. Results-The main clinical findings were radiographically confirmed in all dogs. Selected presenting problems and main clinical findings yielded significantly increased odds ratios for a variety of other conditions, either expected or unexpected. Radiographs of teeth without clinical lesions yielded incidental or clinically important findings in 41.7 and 27.8% of dogs, respectively, and were considered of no clinical value in 30.5%. Radiographs of teeth with clinical lesions merely confirmed the findings in 24.3% of dogs, yielded additional or clinically essential information in 50.0 and 22.6%, respectively, and were considered of no value in 3.1%. Older dogs derived more benefit from full-mouth radiography than did younger dogs. Incidental findings were more common in larger dogs. Clinical Relevance-Diagnostic yield of full-mouth radiography in new canine patients referred for dental treatment is high, and the routine use of such radiographs is justifiable

  2. Acute paediatric ankle trauma: MRI versus plain radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lohman, M. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Radiological Dept., Helsinki University Central Hospital (Finland); Kivisaari, A.; Kivisaari, L. [Helsinki Univ. Central Hospital (Finland). Dept. of Radiology; Kallio, P.; Puntila, J. [Dept. of Paediatric Surgery, Hospital for Children and Adolescents, Helsinki Univ. Central Hospital, Helsinki (Finland); Vehmas, T. [Finnish Institute of Occupational Health, Helsinki (Finland)

    2001-09-01

    Objective: To evaluate the diagnosis of acute physeal ankle fractures on plain radiographs using MRI as the gold standard. Methods: Sixty consecutive children, 29 with a clinical diagnosis of lateral ligament injury and 31 with physeal ankle fractures, were examined using both radiographs and MRI in the acute period. The imaging data were reviewed by three ''masked'' radiologists. The fracture diagnosis and Slater-Harris classification of radiographs were compared with findings on MRI. Results: Plain radiography produced five of 28 (18%) false negative and 12 of 92 (13%) false positive fracture diagnoses compared with MRI. Six of the 12 false positive fractures were due to a misclassification of lateral ligament disruption as SH1 fractures. Altogether a difference was found in 21% of cases in either the diagnosis or the classification of the fractures according to Salter- Harris. All bone bruises in the distal tibia and fibula and 64% of bone bruises in the talus were seen in association with lateral ligament injuries. Talar bone bruises in association with fractures occurred on the same side as the malleolar fracture; talar bone bruises in association with lateral ligament disruption were seen in different locations. The errors identified on radiographs by MRI did not affect the management of the injury. Conclusions: The incidence of false negative ankle fractures in plain radiographs was small and no complex ankle fractures were missed on radiographs. The total extent of complex fractures was, however, not always obvious on radiographs. In an unselected series of relatively mild ankle injuries, we were unable to show a single case where the treatment or prognosis based on plain radiography should have been significantly altered after having done a routine MRI examination. Plain radiography is still the diagnostic cornerstone of paediatric ankle injuries. (orig.)

  3. Acute paediatric ankle trauma: MRI versus plain radiography

    International Nuclear Information System (INIS)

    Objective: To evaluate the diagnosis of acute physeal ankle fractures on plain radiographs using MRI as the gold standard. Methods: Sixty consecutive children, 29 with a clinical diagnosis of lateral ligament injury and 31 with physeal ankle fractures, were examined using both radiographs and MRI in the acute period. The imaging data were reviewed by three ''masked'' radiologists. The fracture diagnosis and Slater-Harris classification of radiographs were compared with findings on MRI. Results: Plain radiography produced five of 28 (18%) false negative and 12 of 92 (13%) false positive fracture diagnoses compared with MRI. Six of the 12 false positive fractures were due to a misclassification of lateral ligament disruption as SH1 fractures. Altogether a difference was found in 21% of cases in either the diagnosis or the classification of the fractures according to Salter- Harris. All bone bruises in the distal tibia and fibula and 64% of bone bruises in the talus were seen in association with lateral ligament injuries. Talar bone bruises in association with fractures occurred on the same side as the malleolar fracture; talar bone bruises in association with lateral ligament disruption were seen in different locations. The errors identified on radiographs by MRI did not affect the management of the injury. Conclusions: The incidence of false negative ankle fractures in plain radiographs was small and no complex ankle fractures were missed on radiographs. The total extent of complex fractures was, however, not always obvious on radiographs. In an unselected series of relatively mild ankle injuries, we were unable to show a single case where the treatment or prognosis based on plain radiography should have been significantly altered after having done a routine MRI examination. Plain radiography is still the diagnostic cornerstone of paediatric ankle injuries. (orig.)

  4. Average Soil Water Retention Curves Measured by Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chu-Lin [ORNL; Perfect, Edmund [University of Tennessee, Knoxville (UTK); Kang, Misun [ORNL; Voisin, Sophie [ORNL; Bilheux, Hassina Z [ORNL; Horita, Juske [Texas Tech University (TTU); Hussey, Dan [NIST Center for Neutron Research (NCRN), Gaithersburg, MD

    2011-01-01

    Water retention curves are essential for understanding the hydrologic behavior of partially-saturated porous media and modeling flow transport processes within the vadose zone. In this paper we report direct measurements of the main drying and wetting branches of the average water retention function obtained using 2-dimensional neutron radiography. Flint sand columns were saturated with water and then drained under quasi-equilibrium conditions using a hanging water column setup. Digital images (2048 x 2048 pixels) of the transmitted flux of neutrons were acquired at each imposed matric potential (~10-15 matric potential values per experiment) at the NCNR BT-2 neutron imaging beam line. Volumetric water contents were calculated on a pixel by pixel basis using Beer-Lambert s law after taking into account beam hardening and geometric corrections. To remove scattering effects at high water contents the volumetric water contents were normalized (to give relative saturations) by dividing the drying and wetting sequences of images by the images obtained at saturation and satiation, respectively. The resulting pixel values were then averaged and combined with information on the imposed basal matric potentials to give average water retention curves. The average relative saturations obtained by neutron radiography showed an approximate one-to-one relationship with the average values measured volumetrically using the hanging water column setup. There were no significant differences (at p < 0.05) between the parameters of the van Genuchten equation fitted to the average neutron radiography data and those estimated from replicated hanging water column data. Our results indicate that neutron imaging is a very effective tool for quantifying the average water retention curve.

  5. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  6. Beta-carotene

    Science.gov (United States)

    ... chemotherapy for a blood cancer called lymphoblastic leukemia. Mental performance. Some evidence suggests that taking beta-carotene ... One is water-based, and the other is oil-based. Studies show that the water-based version ...

  7. Upgrading of neutron radiography/tomography facility at research reactor

    International Nuclear Information System (INIS)

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  8. High efficiency gaseous tracking detector for cosmic muon radiography

    CERN Document Server

    Varga, Dezső; Hamar, Gergő; Oláh, László

    2016-01-01

    A tracking detector system has been constructed with an innovative approach to the classical multi-wire proportional chamber concept, using contemporary technologies. The detectors, covering an area of 0.58 square meters each, are optimized for the application of muon radiography. The main features are high (>99.5%) and uniform detection efficiency, 9 mm FWHM position resolution, filling gas consumption below 2 liters per hour for the non toxic, non flammable argon and carbon dioxide mixture. These parameters, along with the simplicity of the construction and the tolerance for mechanical effects, make the detectors to be a viable option for a large area muography observation system.

  9. A novel type epithermal neutron radiography detecting and imaging system

    CERN Document Server

    Balasko, M; Svab, E; Eoerdoegh, I

    1999-01-01

    The transfer technique is widely used for epithermal neutron radiography (ENR) for making images upon the object to be investigated. We propose to use instead of the photosensitive film a gamma sensitive scintillation screen (NaCe single crystal), that is monitored by a computer controlled low light level TV camera. The exposure time has been reduced to a duration of only a short fraction of that needed for the conventional transfer process. The presented ENR images consist of electronic signals that are handled by an advanced image processing and analyzing program, the Iman 1.4 version, using a task oriented video grabber.

  10. Combined photon-neutron radiography for nondestructive analysis of materials

    International Nuclear Information System (INIS)

    Combined photon-neutron radiography was investigated as a nondestructive method to determine the shape and material composition of complex objects. A system consisting of photon and neutron sources in a cone beam configuration and a 2D detector array was modeled using the MCNP5 code. Photon-to-neutron transmission ratios were determined for a car engine using 0.1, 0.5, 2.5 MeV neutrons and 0.2, 0.5, 1 MeV photons. Focusing on inherent difference between neutron and photon interactions with matter, it was possible to classify materials within the scanned object. (author)

  11. Fast Neutron Resonance Radiography in a Pulsed Neutron Beam

    CERN Document Server

    Dangendorf, V; Kersten, C; Jagutzki, O; Spillmann, U

    2003-01-01

    The feasibility of performing fast neutron resonance radiography at the PTB accelerator facility is studied. A neutron beam of a broad spectral distribution is produced by a pulsed 13 MeV deuterium beam hitting a thick Be target. The potential of 3 different neutron imaging detectors with time-of flight capability are investigated. The applied methods comprise wire chambers with hydrogenous converter layers and a fast plastic scintillator with different optical readout schemes. We present the neutron facility, the imaging methods employed and results obtained. in beam experiments where samples of carbon rods with various length and diameter were imaged to study resolution and sensitivity of the method.

  12. Characterization of non-tuberculosis mycobacteria by neutron radiography

    International Nuclear Information System (INIS)

    The genus Mycobacterium shares many characteristics with Corynebacterium and Actinomyces genera, among which the genomic guanine plus cytosine content and the production of long branched-chain fatty acids, known as mycolic acids are enhanced. Growth rate and optimal temperature of mycobacteria are variable. The genus comprises more than 140 known species; however Mycobacterium fortuitum, a fast growing nontuberculous mycobacterium, is clinically significant, because it has been associated to several lesions following surgery procedures such as liposuction, silicone breast and pacemaker implants, exposure to prosthetic materials besides sporadic lesions in the skin, soft tissues and rarely lungs. The objective of the present study is to reduce the time necessary for M. fortuitum characterization based on its morphology and the use of the neutron radiography technique substituting the classical biochemical assays. We also aim to confirm the utility of dendrimers as boron carriers. The samples were sterilized through conventional protocols using 10% formaldehyde. In the incubation process, two solutions with different molar ratios (10:1 and 20:1) of sodium borate and PAMAM G4 dendrimer and also pure sodium borate were used. After doping and sterilization procedures, the samples were deposited on CR-39 sheets, irradiated with a 4.6×105 n/cm2 s thermal neutron flux for 30 min, from the J-9 irradiation channel of the Argonauta IEN/CNEN reactor. The images registered in the CR-39 were visualized in a Nikon E400 optical transmission microscope and captured by a Nikon Coolpix 995 digital camera. Developing the nuclear tracks registered in the CR-39 allowed a 1000× enlargement of mycobacterium images, facilitating their characterization, the use of more sophisticated equipment not being necessary. The use of neutron radiography technique reduced the time necessary for characterization. Doping with PAMAM dendrimer improved the visualization of NTM in neutron radiography

  13. Novel detectors for fast-neutron resonance radiography

    Science.gov (United States)

    Vartsky, D.; Mor, I.; Goldberg, M. B.; Bar, D.; Feldman, G.; Dangendorf, V.; Tittelmeier, K.; Weierganz, M.; Bromberger, B.; Breskin, A.

    2010-11-01

    We describe the concept and properties of a time-resolved integrative optical neutron (TRION) detector, a novel high spatial resolution neutron imaging system in the energy range of 1-10 MeV, for fast-neutron resonance radiography (FNRR), with multiple-energy TOF-spectrometry capability. Two generations of TRION detectors have already demonstrated their suitability for detecting small quantities of thin-sheet explosives. TRION holds promise for fully automatic detection and identification of standard and improvised explosives concealed in luggage and cargo, by determining the density distribution of light elements such as C, N and O.

  14. Upgrading of neutron radiography/tomography facility at research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Bar, Waleed; Mongy, Tarek [Atomic Energy Authority, Cairo (Egypt). ETRR-2; Kardjilov, Nikolay [Helmholtz Zentrum Berlin (HZB) for Materials and Energy, Berlin (Germany)

    2014-03-15

    A state-of-the-art neutron tomography imaging system was set up at the neutron radiography beam tube at the Egypt Second Research Reactor (ETRR-2) and was successfully commissioned in 2013. This study presents a set of tomographic experiments that demonstrate a high quality tomographic image formation. A computer technique for data processing and 3D image reconstruction was used to see inside a copy module of an ancient clay article provided by the International Atomic Energy Agency (IAEA). The technique was also able to uncover tomographic imaging details of a mummified fish and provided a high resolution tomographic image of a defective fire valve. (orig.)

  15. [High beta tokamak research

    International Nuclear Information System (INIS)

    Our activities on High Beta Tokamak Research during the past 20 months of the present grant period can be divided into six areas: reconstruction and modeling of high beta equilibria in HBT; measurement and analysis of MHD instabilities observed in HBT; measurements of impurity transport; diagnostic development on HBT; numerical parameterization of the second stability regime; and conceptual design and assembly of HBT-EP. Each of these is described in some detail in the sections of this progress report

  16. Implementation of a PACS for radiography training and clinical service in a university setting through a multinational effort

    Science.gov (United States)

    Tang, Fuk-hay; Law, Yuen Y.; Zhang, Jianguo; Liu, Hai L.; Chang, Tony; Matsuda, Koyo; Cao, Fei

    2001-08-01

    The Hong Kong Polytechnic University has a Radiography Division under the Development of Optometry and Radiography. The Division trains both diagnostic and therapeutic radiographers with 60 students/year and offers a B.Sc. degree. In addition the Division together with the University Health Service operates a radiography clinic with radiology consultation from radiologists from other hospitals and clinics. This paper describers the implementation of a PACS in the Division for radiography training, and for clinical service.

  17. Safety aspects in the use of 9 MV industrial linac for open field radiography

    International Nuclear Information System (INIS)

    Electron Accelerators are used for industrial radiography in various industries. Usually fixed accelerators in a well-shielded enclosure are used for radiography. However, in some special cases it is desired to have portable accelerators to carry out the radiography work at site. In many military applications the heavy objects are checked at the site, for which portable accelerators are preferred. X-ray intensity emanating from an industrial accelerator is very high. Proper safety precaution needs to be adopted by the radiation workers as well as other non-radiation workers involved in the open field radiography work and other supporting activities. A case of 9 MV linear accelerators to be used for open field radiography is being discussed here. Portable shielding thickness, which is to be given in the primary and secondary direction is evaluated numerically and suggested in the paper. As the portable radiography enclosure is open top and has limited wall height, more air volume above the enclosure is likely to get irradiated. Although the wall shielding is adequate, there is possibility of high radiation level around the radiography enclosure due to sky-shine radiation. Sky-shine radiation level is evaluated numerically and is presented in this paper. For the protection of the radiation and non-radiation workers about 100 m cordoning off is recommended. Operators sit inside a cabin of the transport car located outside the cordoning area. Various safety precautions and interlock facility to be adopted for safe radiography work practices are described in this paper. (author)

  18. Radiography and bone scintigraphy in bone marrow transplant multiple myeloma patients

    International Nuclear Information System (INIS)

    Purpose: To compare conventional radiography and bone scintigraphy in relation to clinical outcome in bone marrow transplant multiple myeloma patients. Material and Methods: A total of 70 radiographies and 70 bone scintigraphies were compared in 35 patients. Results: The skull, the extremities, the iliac and public bones were better assessed with radiography. For new vertebral lesions and for lesions in the ribs and sternum, bone scintigraphy proved superior. For the sacrum, the methods were equal. When bone scintigraphy was used as a complement to radiography, 4% more pathological sites were found. No patient had both a normal radiography and a pathological bone scintigraphy, but 5 patients had both a normal bone scintigraphy and a pathological radiography. The results of the radiological examinations did not always correlate with the clinician's grading of the patient's disease. The radiological examinations had no prognostic value for the 7 patients examined on several occasions. Conclusion: The ability of conventional radiography and bone scintigraphy to disclose myeloma lesions varies, depending on location and size of the lesions. Radiography should remain the primary examination modality also for bone marrow transplant multiple myeloma patients. Bone scintigraphy can severe as a complement for investigating unexplained pain, e.g. caused by lesions in vertebrae or ribs. (orig.)

  19. Radiation dose distribution monitoring at neutron radiography facility area, Nuclear Energy Unit, Malaysia

    International Nuclear Information System (INIS)

    One experiment was carried out to get the distribution of radiation doses at the neutron radiography facilities, Nuclear Energy Unit, Malaysia. The analysis was done to evaluate the safety level of the area. The analysis was used in neutron radiography work

  20. Dental radiography ten years ago and now: overview of results of postal TLD audit

    International Nuclear Information System (INIS)

    Since 2002, regular postal audit in dental radiography organized by NRPI Prague belongs to basic radiography QA/QC tools in the Czech Republic. The measured parameters are incident air kerma, field size, and exposure reproducibility. The overall quality of the dental radiograph is also assessed. Ten-year summary of the audit results is presented here. (authors)

  1. 75 FR 57080 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-09-17

    ... which authorizes the possession, use, and operation of the Aerotest Radiography and Research Reactor... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order... Regulations (10 CFR) Section 50.21(c) for research and development purposes. Aerotest is a wholly...

  2. 75 FR 39985 - In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor); Order...

    Science.gov (United States)

    2010-07-13

    ..., use and operation of the Aerotest Radiography and Research Reactor (ARRR) located in San Ramon... the Federal Register on May 14, 2010; 75 FR 27368. No hearing requests or written comments were... COMMISSION In the Matter of Aerotest Operations, Inc. (Aerotest Radiography and Research Reactor);...

  3. The review of the application of neutron radiography to thermal hydraulic research

    CERN Document Server

    Mishima, K; Saitô, Y; Nakamura, H; Matsubayashi, M

    1999-01-01

    This paper is concerned with the establishment of thermal neutron radiography as a high accuracy measurement method. This paper reviews the present status on the development of high-frame-rate neutron radiography with a steady thermal neutron beam and its application to multiphase flow research performed at the Research Reactor Institute of Kyoto University in collaboration with the Japan Atomic Energy Research Institute.

  4. Dual Use Corrosion Inhibitor and Penetrant for Anomaly Detection in Neutron/X Radiography

    Science.gov (United States)

    Hall, Phillip B. (Inventor); Novak, Howard L. (Inventor)

    2004-01-01

    A dual purpose corrosion inhibitor and penetrant composition sensitive to radiography interrogation is provided. The corrosion inhibitor mitigates or eliminates corrosion on the surface of a substrate upon which the corrosion inhibitor is applied. In addition, the corrosion inhibitor provides for the attenuation of a signal used during radiography interrogation thereby providing for detection of anomalies on the surface of the substrate.

  5. Impact of chest radiography for children with lower respiratory tract infection: a propensity score approach.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Ecochard-Dugelay

    Full Text Available BACKGROUND: Management of acute respiratory tract infection varies substantially despite this being a condition frequently encountered in pediatric emergency departments. Previous studies have suggested that the use of antibiotics was higher when chest radiography was performed. However none of these analyses had considered the inherent indication bias of observational studies. OBJECTIVE: The aim of this work was to assess the relationship between performing chest radiography and prescribing antibiotics using a propensity score analysis to address the indication bias due to non-random radiography assignment. METHODS: We conducted a prospective study of 697 children younger than 2 years of age who presented during the winter months of 2006-2007 for suspicion of respiratory tract infection at the Pediatric Emergency Department of an urban general hospital in France (Paris suburb. We first determined the individual propensity score (probability of having a chest radiography according to baseline characteristics. Then we assessed the relation between radiography and antibiotic prescription using two methods: adjustment and matching on the propensity score. RESULTS: We found that performing a chest radiography lead to more frequent antibiotic prescription that may be expressed as OR = 2.3, CI [1.3-4.1], or as an increased use of antibiotics of 18.6% [0.08-0.29] in the group undergoing chest radiography. CONCLUSION: Chest radiography has a significant impact on the management of infants admitted for suspicion of respiratory tract infection in a pediatric emergency department and may lead to unnecessary administration of antibiotics.

  6. The IS Services Agency of Wittenheim sets the pace in numerical radiography; L'agence IS Services de Wittenheim a la pointe de la radiographie numerique

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2006-03-15

    Small by its size with only 5 workers, the IS Services Agency of Wittenheim (Alsace) is however ultra specialized in nondestructive testing, and particularly with the new technology of the numerical radiography. (O.M.)

  7. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  8. Revisited the mathematical derivation wall thickness measurement of pipe for radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, A.R.; Amir, S.M.M. [Non Destructive Testing(NDT) Group, Industrial Technology Div., Malaysian Nuclear Agency, Selangor (Malaysia)

    2007-07-01

    Wall thickness measurement of pipe is very important of the structural integrity of the industrial plant. However, the radiography method has an advantage because the ability of penetrating the insulated pipe. This will have economic benefit for industry. Moreover, the era of digital radiography has more advantages because the speed of radiographic work, less exposure time and no chemical used for film development. Either the conventional radiography or digital radiology, the wall thickness measurement is using the tangential radiography technique (TRT). In case, of a large diameter, pipe (more than inches) the determination maximum penetration wall thickness must be taken into the consideration. This paper is revisited the mathematical derivation of the determination of wall thickness measurement based on tangential radiography technique (TRT). The mathematical approach used in this derivation is the Pythagoras theorem and geometrical principles. In order to derive the maximum penetration wall thickness a similar approach is used. (authors)

  9. Resolution 12/2004 Guideline for implementation of safety regulations in the practice of industrial radiography

    International Nuclear Information System (INIS)

    1. This guide is intended to clarify, in relation to its application in practice Industrial Radiography, the provisions of: a) Joint Resolution CITMA-MINSAP, of December 15, 2002, Regulation: Basic Radiation Safety Standards, hereinafter Regulation NBS; b) Resolution No. 25/98 of CITMA Regulation. Authorization Practices Associated with the use of ionizing radiation , hereinafter Resolution 25/98; c) Resolution 121/2000 CITMA Regulation: For the Safe Transport of Radioactive materials , hereinafter Resolution 121/2000; and in d) Joint Resolution CITMA-MINSAP, Regulation: Selection, Training and Authorization of personnel performing Employment Practices Associated Radiation Ionizing . 2. For the purposes of applying this Guide considers the practice of Industrial Radiography includes the following techniques: a) Industrial Radiography with use of gamma radiation sources; b) crawler radiography equipment; and c) Industrial Radiography with X-rays

  10. In situ studies of mass transport in liquid alloys by means of neutron radiography.

    Science.gov (United States)

    Kargl, F; Engelhardt, M; Yang, F; Weis, H; Schmakat, P; Schillinger, B; Griesche, A; Meyer, A

    2011-06-29

    When in situ techniques became available in recent years this led to a breakthrough in accurately determining diffusion coefficients for liquid alloys. Here we discuss how neutron radiography can be used to measure chemical diffusion in a ternary AlCuAg alloy. Neutron radiography hereby gives complementary information to x-ray radiography used for measuring chemical diffusion and to quasielastic neutron scattering used mainly for determining self-diffusion. A novel Al(2)O(3) based furnace that enables one to study diffusion processes by means of neutron radiography is discussed. A chemical diffusion coefficient of Ag against Al around the eutectic composition Al(68.6)Cu(13.8)Ag(17.6) at.% was obtained. It is demonstrated that the in situ technique of neutron radiography is a powerful means to study mass transport properties in situ in binary and ternary alloys that show poor x-ray contrast. PMID:21654050

  11. Manufacturing details by Neutron Radiography of Archaeological Pottery

    Energy Technology Data Exchange (ETDEWEB)

    Bernedo, Alfredo Victor Bellido; Latini, Rose Mary [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil); Souza, Maria Ines Silvani; Vinagre Filho, Ubirajara Maribondo [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The aim of the present work was to investigate manufacturing details of archaeological pot-sherds ceramics by Neutron Radiography. Pottery is perhaps the most important artefact found in excavation. Its archaeological importance relies on the fact that it can reveal cultural traditions and commercial influences in ancient communities. These pottery was recently discovered in archaeological earth circular structures sites in Acre state Brazil and the characteristics of clay used in their manufacture have been studied by modern scientific techniques such as Instrumental Neutron Activation Analysis (INAA), Thermoluminescence Dating and Moessbauer Spectroscopy. Different fragments of pottery were submitted to a neutron flux of the order of 10{sup 5}n.cm{sup -2}2:s{sup -1} for 3 minutes in the research reactor Argonauta at the Instituto de Engenharia Nuclear/CNEN. Digital processing techniques using imaging plate were applied to the image of the selected sample. The Neutrongraphy shows two different manufacturing details: palette and rollers. The fragment made by the technique of palette show a homogeneous mass and the neutrongraphy of ceramic fragments made by the technique of the rollers, pottery funeral, can be seen horizontal traces of the junction of rollers, overlapping, forming layers supported on each other. This technique allows you to create more stable structures. Thus, both the technique of the pallet as the roller can be characterized by Neutron Radiography. (author)

  12. Restraint methods for radiography in dogs and cats

    International Nuclear Information System (INIS)

    Excellent patient restraint techniques are necessary to produce high-quality diagnostic images during survey and contrast radiography and ultrasonography. Use of non manual physical restraint (i.e., devices to hold the patient in position) helps reduce the exposure of veterinary personnel to radiation. Exposure of personnel to radiation should be kept as low as reasonably achievable. Usually, this involves taking the radiograph when no personnel are present in the room. Some procedures, however, require the presence of the veterinarian. No personnel should ever put any part of their bodies in the path of the x-ray beam. Protective gear must be worn. Physical restraint can be facilitated by chemical restraint, which varies from minimal sedation to general anesthesia. Appropriate chemical restraint for radiography is the minimum amount of sedation required for the efficient and safe completion of the radiographic examination. Chemical restraint techniques vary according to the patient's physical status, the type of examination, and the skill of the examiner in non manual restraint techniques. This article describes techniques for non manual restraint and protocols for chemical restraint for dogs and cats

  13. The reliability of radiography of thick section welds

    Science.gov (United States)

    Munns, I. J.; Schneider, C. R. A.

    2000-05-01

    This paper describes the experimental validation of a simple model of radiography, first published by Pollitt in 1962, which treats flaws as smooth, parallel-sided slots. Six thick-section specimens were manufactured to represent welds in Magnox pressure vessels (now operated by BNFL Magnox Generation). The welds contain 16 large, realistic, planar defects. They were radiographed under various exposure conditions and evaluated by two interpreters. The specimens were then sectioned to determine defect size, orientation, gape and roughness. The experimental data show variations in detectability that are strongly correlated with theoretical predictions. In almost all cases, Pollitt theory is either accurate or pessimistic. We have used the experimental data to derive statistical models for the reliability of radiography. Such models can be used to estimate the probability of detecting a defect (with associated confidence limits), from knowledge of its size, orientation and other relevant parameters. In addition, work has been carried out to assess the human aspects of radiographic inspection. Encouragingly, this work showed little variation in the ability of different interpreters to discern large planar flaws.

  14. Building a cost efficient digital radiography system for educational purposes

    Science.gov (United States)

    Brown, Chris

    Due to the growing need for Medical Physicists, many universities are implementing a Medical Physics program into their academic catalog. To help establish a new program, feasible equipment may be needed to help academic departments provide a hands-on experience for students and help teach the basic concepts of Medical Physics. For example, clinical Digital Radiography Systems (DRS) are used to help teach the basic concepts of digital imaging. However, such systems can cost in excess of 100,000, creating a financial obstacle that will be difficult to overcome. Hence, the development of a cost efficient digital radiography system may be desired in order to eliminate the financial obstacle and give students a hands-on learning experience. This DRS uses three main components to develop an image, an x-ray source, an intensifying plate, and a charge-coupled device (CCD) camera. All three components are housed in a lead-lined box. The purpose of this project is to find the limitations of our DRS and compare the price between our DRS and commercially available DRSs. At optimal settings, a SNR of 25 is shown across the intensifying screen that can identify objects as small as 0.42mm. A Contrast-detail phantom shows the ability to decipher the varying thickness of foam rubber squares. The total cost of our DRS comes to 17,000.00, a fractional price tag compared to a commercially available DRS.

  15. Assessing the impact of computed radiography and PACS

    International Nuclear Information System (INIS)

    The authors' institution is a VA pilot center for total digital imaging and PACS. They are gathering quantitative service delivery and cost data before, during, and after stepwise implementation of computed radiography and PACS at our institution to define the impact on imaging service delivery. They designed a simple audit method using the X-ray request and time clocks to determine patient waiting time, imaging time, film use, image availability to the radiologist, matching of current with previous images, image availability to clinicians, and time to final interpretation. Their department model is a multichannel, multiserver patient queue. Their current radiograph file is space limited. Their preimplementation audit showed some long waiting times (40 minutes, average 20) and immediate retrieval of prior films in only 42% of cases, with an average retrieval time of 22 hours. Computed radiography and the optical archive have the potential to improve these figures. The audit will be ongoing and automated as implementation of PACS progresses, to measure service improvement and learning curve with the new equipment. This paper presents the audit format and baseline preimplementation figures

  16. Assessing The Impact Of Computed Radiography And PACS

    Science.gov (United States)

    Hedgcock, Marcus W.; Kehr, Katherine

    1989-05-01

    Our institution (San Francisco VA Medical Center) is a VA pilot center for total digital imaging and PACS. Quantitative information about PACS impact on health care is limited, because no centers have done rigorous preimplementation studies. We are gathering quantitative service delivery and cost data before, during, and after stepwise implementation of computed radiography and PACS at our institution to define the impact on imaging service delivery. We designed a simple audit method using the x-ray request and time clocks to determine patient waiting time, imaging time, film use, image availability to the radiologist, matching of current with previous images, image availability to clinicians, and time to final interpretation. Our department model is a multichannel, mulitserver patient queue. Our current radiograph file is space limited, containing only one year of images; older images are kept in a remote file area in another building. In addition, there are 16 subfile areas within the Radiology Service and the medical center. Our preimplementation audit showed some long waiting times (40 minutes, average 20) and immediate retrieval of prior films in only 42% of cases, with an average retrieval time of 22 hours. Computed radiography and the optical archive have the potential to improve these figures. The audit will be ongoing and automated as implementation of PACS progresses, to measure service improvement and learning curve with the new equipment. We present the audit format and baseline preimplementation figures.

  17. Toward practical 3D radiography of pipeline girth welds

    International Nuclear Information System (INIS)

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits

  18. Remote panoramic radiography of small diameter tubular butt welds

    International Nuclear Information System (INIS)

    The application of low energy isotopes has been considered for the radiographic inspection of tubular butt welds in small diameter thin walled heat exchanger tubing. Four isotopes were selected from an initial list, after consideration of gamma ray energy spectrum, half life, specific activity, availability and cost. The experimental work undertaken to assess image contrast, inherent unsharpness and weld image sensitivity is briefly discussed and the relative insensitivity of conventional British Standard wire type image quality indicators to changes in radiographic definition is demonstrated. A design study undertaken to identify a suitable remote delivery/positioning system for panoramic radiography is also reported. This system is based upon conventional projection equipment with a flexible guide tube and inflatable source positioning device, which can incorporate a suitable image quality indicator. The equipment should prove capable of greatly extending the application of panoramic radiography during heat exchanger manufacture, particularly in situations where geometric restrictions limit the application of ultrasonic techniques, or where clarification of ultrasonic defect indication is required. Thus the system will provide a useful addition to the NDE techniques currently available for the implementation of the stringent quality assurance requirements of the nuclear industry. (author)

  19. Pulsed Power Drivers and Diodes for X-Ray Radiography

    CERN Document Server

    Thomas, Kenneth J

    2005-01-01

    Flash radiography has been used as a diagnostic for explosively driven hydrodynamics experiments for several decades following the pioneering work of J C Martin and his group at AWE. Relatively simple pulsed power drivers operating between 1 and 10 MV coupled to experimentally optimised electron beam diodes have achieved great success in a number of different classes of these experiments. The next generation of radiographic facilities will aim to improve even further the radiographic performance achievable by developing both the electron beam diodes used and the accelerators that drive them. The application of the rod-pinch diode to an Inductive Voltage Adder at 2 MV in the US has already advanced the quality of radiography available for relatively thin objects. For the thickest objects accelerators operating at up to 15 MV and diodes capable of focusing electron beams to intensities of ~ 1 MA/cm2 for tens of nanoseconds will be required in the future. Since the various candidate diode configurations operate ...

  20. Neutron and x-ray radiography; a natural synergy

    International Nuclear Information System (INIS)

    It is understood in the radiography community that images of objects made using penetrating electromagnetic waves (x-rays) and particles (neutrons) provide complementary information on the composition of the object. This fact has been exploited to great effect in many radiographic studies in the past. The opportunity to use both of these imaging techniques within Australia is now available. The Australian Synchrotron x-ray source is running an imaging beam line and the Opal reactor neutron source has recently opened a radiography facility too. Both facilities allow computed tomographic imaging to provide 3-D information on the object. IMBL images with a beam that can be up to 400 mm wide and 40 mm high. Monochromatic x-rays are available in beams from 20 KeV up to 200 KeV. Dingo provides a 200 mm by 200 mm thermal neutron beam and optional energy selection using a velocity selector. This presentation will discuss the technical aspects of the two facilities and how these tools may be used in, particular for archeological and paleontological science.

  1. Time-gated energy-selected cold neutron radiography

    CERN Document Server

    McDonald, T E; Claytor, T N; Farnum, E H; Greene, G L; Morris, C

    1999-01-01

    A technique is under development at the Los Alamos Neutron Science Center (LANSCE), Manuel Lujan Jr. Neutron Scattering Center (Lujan Center) for producing neutron radiography using only a narrow energy range of cold neutrons. The technique, referred to as time-gated energy-selected (TGES) neutron radiography, employs the pulsed neutron source at the Lujan Center with time of flight to obtain a neutron pulse having an energy distribution that is a function of the arrival time at the imager. The radiograph is formed on a short persistence scintillator and a gated, intensified, cooled CCD camera is employed to record the images, which are produced at the specific neutron energy range determined by the camera gate. The technique has been used to achieve a degree of material discrimination in radiographic images. For some materials, such as beryllium and carbon, at energies above the Bragg cutoff the neutron scattering cross section is relatively high while at energies below the Bragg cutoff the scattering cross ...

  2. Toward practical 3D radiography of pipeline girth welds

    Science.gov (United States)

    Wassink, Casper; Hol, Martijn; Flikweert, Arjan; van Meer, Philip

    2015-03-01

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits.

  3. Dose measurements in intraoral radiography using thermoluminescent dosimeters

    Science.gov (United States)

    Azorín, C.; Azorín, J.; Aguirre, F.; Rivera, T.

    2015-01-01

    The use of X-ray in medicine demands to expose the patient and the professional to the lowest radiation doses available in agreement with ALARA philosophy. The reference level for intraoral dental radiography is 7 mGy and, in Mexico, a number of examinations of this type are performed annually. It is considered that approximately 25% of all the X-rays examinations carried out in our country correspond to intraoral radiographies. In other hand, most of the intraoral X-ray equipment correspond to conventional radiological systems using film, which are developed as much manual as automatically. In this work the results of determining the doses received by the patients in intraoral radiological examinations made with different radiological systems using LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters are presented. In some conventional radiological systems using film, when films are developed manual or automatically, incident kerma up to 10.61 ± 0.74 mGv were determined. These values exceed that reference level suggested by the IAEA and in the Mexican standards for intraoral examinations.

  4. Toward practical 3D radiography of pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Wassink, Casper, E-mail: casper.wassink@applusrtd.com [Applus RTD Chief Scientist, Rivium 1e straat 80, 2909 LE Capelle a/d IJssel (Netherlands); Hol, Martijn, E-mail: martijn.hol@applusrtd.com; Flikweert, Arjan, E-mail: martijn.hol@applusrtd.com; Meer, Philip van, E-mail: martijn.hol@applusrtd.com [Applus RTD Technological Center, Delftweg 144, 3046 NC Rotterdam (Netherlands)

    2015-03-31

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits.

  5. Dental radiography exposure of the Hiroshima and Nagasaki populations

    International Nuclear Information System (INIS)

    Dental radiography doses in Hiroshima and Nagasaki were estimated using doses measured by a thermoluminescent dosimeter and a phantom, and survey data from dental hospitals and clinics in Hiroshima and Nagasaki. Doses to organs, including the lens, pituitary fossa, thyroid gland, and skin were calculated. Average doses per examination to these body sites were calculated using data obtained during a two-week survey in both cities. The mean caput doses were calculated from the data indicating frequency per year, and were tabulated by organ, age, teeth examined, type of examination, population, sex, and city. No significant difference was observed by age, population, sex, or city. Currently, the doses incurred during dental radiography may not be sufficiently high to cause bias in the assessments for late radiation effects among atomic bomb survivors. However, the mean caput thyroid doses of 62 mrad and 67 mrad in Hiroshima and Nagasaki, respectively, cannot be ignored from the standpoint of their potential in contributing to radiation-induced carcinogenesis. (author)

  6. Radiography and tomography using fission neutrons at FRM-II

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T.; Lierse von Gostomski, Ch. [Inst. fuer Radiochemie, TU-Muenchen, Garching (Germany)

    2004-07-01

    Fission neutrons offer complementary information in radiography and tomography compared to the well established techniques using X-rays, gamma-rays, thermal or cold neutrons. They penetrate thick layers of high density materials with only little attenuation, while for light, specially for hydrogen containing materials, their attenuation is high. In the past, fast neutrons for NDT (non-destructive testing) were only available at accelerator driven systems. These high energy neutrons have to be moderated to achieve acceptable detection efficiencies thus drastically reducing the available neutron intensities and either resulting in a high beam divergence or in additional losses in neutron intensities due to beam collimation. The recently installed neutron computerized tomography and radiography system NECTAR at the Forschungsreaktor Muenchen-II (FRM-II) overcomes these disadvantages by using fission neutrons of about 1.7 MeV mean energy created in two converter plates set-up of highly enriched uranium. The beam quality, i.e. the neutron divergence can be adapted to the object to be measured by using different collimators, resulting in L/D-values up to 300. The available neutron beam intensity at the measuring position is up to 1.7E+08 cm{sup -2} s{sup -1} for a maximum beam area of 40 cm x 40 cm. For conventional imaging a two-dimensional detector system based on a CCD-camera is used, other more specialised systems are available. (author)

  7. A note on digital dental radiography in forensic odontology

    Directory of Open Access Journals (Sweden)

    Sher-Lin Chiam

    2014-01-01

    Full Text Available Digital dental radiography, intraoral and extraoral, is becoming more popular in dental practice. It offers convenience, such as lower exposure to radiation, ease of storing of images, and elimination of chemical processing. However, it also has disadvantages and drawbacks. One of these is the potential for confusion of the orientation of the image. This paper outlines one example of this, namely, the lateral inversion of the image. This source of confusion is partly inherent in the older model of phosphor storage plates (PSPs, as they allow both sides to be exposed without clue to the fact that the image is acquired on the wrong side. The native software allows digital manipulation of the X-ray image, permitting both rotation and inversion. Attempts to orientate the X-ray according to the indicator incorporated on the plate can then sometimes lead to inadvertent lateral inversion of the image. This article discusses the implications of such mistakes in dental digital radiography to forensic odontology and general dental practice.

  8. Manufacturing details by Neutron Radiography of Archaeological Pottery

    International Nuclear Information System (INIS)

    Full text: The aim of the present work was to investigate manufacturing details of archaeological pot-sherds ceramics by Neutron Radiography. Pottery is perhaps the most important artefact found in excavation. Its archaeological importance relies on the fact that it can reveal cultural traditions and commercial influences in ancient communities. These pottery was recently discovered in archaeological earth circular structures sites in Acre state Brazil and the characteristics of clay used in their manufacture have been studied by modern scientific techniques such as Instrumental Neutron Activation Analysis (INAA), Thermoluminescence Dating and Moessbauer Spectroscopy. Different fragments of pottery were submitted to a neutron flux of the order of 105n.cm-22:s-1 for 3 minutes in the research reactor Argonauta at the Instituto de Engenharia Nuclear/CNEN. Digital processing techniques using imaging plate were applied to the image of the selected sample. The Neutrongraphy shows two different manufacturing details: palette and rollers. The fragment made by the technique of palette show a homogeneous mass and the neutrongraphy of ceramic fragments made by the technique of the rollers, pottery funeral, can be seen horizontal traces of the junction of rollers, overlapping, forming layers supported on each other. This technique allows you to create more stable structures. Thus, both the technique of the pallet as the roller can be characterized by Neutron Radiography. (author)

  9. Stenosis of calcified carotid artery detected on Panoramic Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cho, So Yang; Oh, Won Mann; Yoon, Suk Ja; Yoon, Woong; Lee, Jae Seo; Kang, Byung Cheol [School of Dentistry, Chonnam National University, Seoul (Korea, Republic of); Palomo, Juan M. [Department of Orthodontics, School of Dental Medicine, Case Western Reserve University, Cleveland (United States)

    2009-09-15

    This study aimed to investigate the luminal stenosis of the internal carotid artery with calcification detected on panoramic radiographs. This study used fifty carotid arteries of 36 dental patients whose panoramic radiograph and computed tomography angiography (CTA) revealed the presence of carotid artery calcification. A neuroradiologist interpreted CTA to determine the degree of stenosis of the internal carotid arteries. The degree of stenosis was stratified in four stages; normal (no stenosis), mild stenosis (1-49%), moderate stenosis (50-69%) and severe stenosis (70-99%). Among the fifty carotid arteries with calcification detected on both panoramic radiography and CTA, 20 carotid arteries (40%) were normal, 29 carotid arteries (18%) had mild stenosis, 1 carotid artery (2%) had moderate stenosis, and there was none with severe stenosis. Sixty percent of the carotid arteries with calcification detected on both panoramic radiography and CTA had internal luminal stenosis, and two percent had moderate stenosis. When carotid atheroma is detected on panoramic radiograph, it is possible that the dental patient has luminal stenosis of the internal carotid artery.

  10. Facial exposure dose assessment during intraoral radiography by radiological technologists

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hwan; Yang, Han Joon [Dept. of International Radiological Science, Hallym University of Graduate Studies, Chuncheon (Korea, Republic of)

    2014-09-15

    The study examined the changes in the decreased facial exposure dose for radiological technologists depending on increased distance between the workers and the X-ray tube head during intraoral radiography. First, the facial phantom similar to the human tissues was manufactured. The shooting examination was configured to the maxillary molars for adults (60 kVp, 10 mA, 50 msec) and for children (60 kVp, 10 mA, 20 msec), and the chamber was fixed where the facial part of the radiation worker would be placed using the intraoral radiography equipment. The distances between the X-ray tube head and the phantom were set to 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, and 40 cm. The phantom was radiated 20 times with each examination condition and the average scattered doses were examined. The rate at the distance of 40 cm decreased by about 92.6% to 7.43% based on the scattered rays radiated at the distance of 10 cm under the adult conditions. The rate at the distance of 40 cm decreased by about 97.6% to 2.58% based on the scattered rays radiated at the distance of 10 cm under the children conditions. Protection from the radiation exposure was required during the dental radiographic examination.

  11. Facial exposure dose assessment during intraoral radiography by radiological technologists

    International Nuclear Information System (INIS)

    The study examined the changes in the decreased facial exposure dose for radiological technologists depending on increased distance between the workers and the X-ray tube head during intraoral radiography. First, the facial phantom similar to the human tissues was manufactured. The shooting examination was configured to the maxillary molars for adults (60 kVp, 10 mA, 50 msec) and for children (60 kVp, 10 mA, 20 msec), and the chamber was fixed where the facial part of the radiation worker would be placed using the intraoral radiography equipment. The distances between the X-ray tube head and the phantom were set to 10 cm, 15 cm, 20 cm, 25 cm, 30 cm, 35 cm, and 40 cm. The phantom was radiated 20 times with each examination condition and the average scattered doses were examined. The rate at the distance of 40 cm decreased by about 92.6% to 7.43% based on the scattered rays radiated at the distance of 10 cm under the adult conditions. The rate at the distance of 40 cm decreased by about 97.6% to 2.58% based on the scattered rays radiated at the distance of 10 cm under the children conditions. Protection from the radiation exposure was required during the dental radiographic examination

  12. High Brightness Neutron Source for Radiography. Final report

    International Nuclear Information System (INIS)

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  13. Systematic review of flexion/extension radiography of the cervical spine in trauma patients

    Energy Technology Data Exchange (ETDEWEB)

    Sierink, J.C., E-mail: j.c.sierink@amc.nl [Trauma Unit, Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Lieshout, W.A.M. van, E-mail: w.a.vanlieshout@amc.nl [Trauma Unit, Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Beenen, L.F.M., E-mail: l.f.beenen@amc.nl [Department of Radiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Schep, N.W.L., E-mail: n.w.schep@amc.nl [Trauma Unit, Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Vandertop, W.P., E-mail: w.p.vandertop@amc.nl [Neurosurgical Center Amsterdam, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Goslings, J.C., E-mail: j.c.goslings@amc.nl [Trauma Unit, Department of Surgery, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)

    2013-06-15

    Introduction: The aim of this review was to investigate whether Flexion/Extension (F/E) radiography adds diagnostic value to CT or MRI in the detection of cervical spine ligamentous injury and/or clinically significant cervical spine instability of blunt trauma patients. Methods: A systematic search of literature was done in Pubmed, Embase and Cochrane Library databases. Primary outcome was sensitivity and specificity of F/E radiography. Secondary outcomes were the positive predicting value (PPV) and negative predicting value (NPV) (with CT or MRI as reference tests due to the heterogeneity of the included studies) of each modality and the quality of F/E radiography. Results: F/E radiography was overall regarded to be inferior to CT or MRI in the detection of ligamentous injury. This was reflected by the high specificity and NPV for CT with F/E as reference test (ranging from 97 to 100% and 99 to 100% respectively) and the ambiguous results for F/E radiography with MRI as its reference test (0–98% and 0–83% for specificity and NPV respectively). Image quality of F/E radiography was reported to have 31 to 70% adequacy, except in two studies which reported an adequacy of respectively 4 and 97%. Conclusion: This systematic review of the literature shows that F/E radiography adds little diagnostic value to the evaluation of blunt trauma patients compared to CT and MRI, especially in those cases where CT or MRI show no indication of ligamentous injury.

  14. SURVEY OF AWARENESS LEVELS OF DENTISTS ABOUT CORRECT USAGE OF VARIOUS RADIOGRAPHIES IN DENTISTRY

    Directory of Open Access Journals (Sweden)

    F Ezoddini Ardakani

    2007-07-01

    Full Text Available Introduction: With the increasing usage of X rays, professional responsibility entails dentists to have sufficient and correct knowledge about prescription of radiographies in order to correctly diagnose and minimally expose patients to radiation. The aim of this study was to assess the awareness levels of dentists in Yazd in term of correct prescription of radiographies. Method: In this descriptive, cross sectional study, specially formatted questionnaires were filled by 134 dentists. Their knowledge in 10 various fields for correct prescription of radiographies was evaluated and compared in each field on the basis of gender and educational status.(General, specialists Results: According to the results, knowledge levels about correct prescription of panoramic, periapical radiographies, CT and MRI was good, while that for occlussal radiographies, patients prone to caries, patients with periodontal diseases, evaluation of growth condition and dental crypts was moderate. In addition, it was weak for bitewing radiographies and in patients not prone to caries. There was no significant difference in awareness levels according to gender. The awareness level of specialists was much higher than that of general dentists except in cases of patients prone to caries where the difference was not significant. Conclusion: One of the most effective means for reducing probable risks of radiation is abstention from prescription of unnecessary radiographies.

  15. Patient doses with panoramic radiography in general dental offices

    International Nuclear Information System (INIS)

    To promote optimization of radiation protection for patients in panoramic radiography, we surveyed dose-width products (DWPs) and dose-area products (DAPs) as standard patient dose metrics for adults at general dental offices in the Tokyo Bay area and compared the doses with the diagnostic reference level (DRL) recommended in the UK. We measured the DWP in panoramic radiography with an array of thermo-luminescent dosimeter (TLD) tips set at the secondary slit. Reading values of the TLD were converted to air kermas using a pencil ionization chamber and a dosimeter, which were calibrated by the Japan Quality Assurance Organization. The height of the beam, H, at the secondary slit was also measured with an X-ray film, and then the DAP was calculated by the product of H and DWP. The DWPs differed by a factor of 15 among 23 dental offices. As a whole, the DAPs showed good correlation with the DWPs. The DWPs for offices, at which adequate tube voltage and film/screen systems with a relative sensitivity higher than 400 were used, were less than 65 mGy mm of the DRL in the UK. The DWPs for offices using digital CCD systems were not necessarily less than the DRL. Offices with DWPs more than 65 mGy mm utilized film/screen systems with a sensitivity lower than 250 and old panoramic units with full-wave rectification. Offices with DWPs more than 100 mGy mm used X-ray beams wider than 10 mm at full width half maximum in dose profile. Offices with DWPs more than 200 mGy mm should check the slit alignment of the panoramic units as well as the developing process. Of the dental offices surveyed, 57% showed DWPs less than 65 mGy mm of the DRL in panoramic radiography. Other offices with higher DWPs should confirm that the dose level is commensurate with the diagnostic purpose of the X-ray examination. (author)

  16. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  17. Double beta decay experiments

    International Nuclear Information System (INIS)

    The great sensitivity of double beta decay to neutrino mass and right handed currents has motivated many new and exciting attempts to observe this elusive nuclear phenomenon directly. Experiments in operation and other coming on line in the next one or two years are expected to result in order-of-magnitude improvements in detectable half lives for both the two-neutrino and no-neutrino modes. A brief history of double beta decay experiments is presented together with a discussion of current experimental efforts, including a gas filled time projection chamber being used to study selenium-82. (author)

  18. An inventory of biomedical imaging physics elements-of-competence for diagnostic radiography education in Europe

    International Nuclear Information System (INIS)

    Purpose: To develop an inventory of biomedical physics elements-of-competence for diagnostic radiography education in Europe. Method: Research articles in the English literature and UK documentation pertinent to radiography education, competences and role development were subjected to a rigorous analysis of content from a functional and competence analysis perspective. Translations of radiography curricula from across Europe and relevant EU legislation were likewise analysed to ensure a pan-European perspective. Broad Subject Specific Competences for diagnostic radiography that included major biomedical physics components were singled out. These competences were in turn carefully deconstructed into specific elements-of-competence and those elements falling within the biomedical physics learning domain inventorised. A pilot version of the inventory was evaluated by participants during a meeting of the Higher Education Network for Radiography in Europe (HENRE), held in Marsascala, Malta, in November 2004. The inventory was further refined taking into consideration suggestions by HENRE members and scientific, professional and educational developments. Findings: The evaluation of the pilot inventory was very positive and indicated that the overall structure of the inventory was sensible, easily understood and acceptable - hence a good foundation for further development. Conclusions: Use of the inventory by radiography programme leaders and biomedical physics educators would guarantee that all necessary physics elements-of-competence underpinning the safe, effective and economical use of imaging devices are included within radiography curricula. It will also ensure the relevancy of physics content within radiography education. The inventory is designed to be a pragmatic tool for curriculum development across the entire range of radiography education up to doctorate level and irrespective of whether curriculum delivery is discipline-based or integrated, presentation

  19. Comparison of computed tomography and radiography for detecting changes induced by malignant nasal neoplasia in dogs

    International Nuclear Information System (INIS)

    The ability of computed tomography and radiography to detect changes associated with nasal neoplasia was compared in dogs. Eighteen areas or anatomic structures were evaluated in 21 dogs for changes indicative of neoplasia. Computed tomography was superior (P < or = 0.05) to radiography for detecting changes in 14 of 18 areas. Radiography was not superior for detecting changes in any structure or area. Computed tomography reveals vital information not always detected radiographically to assist in providing a prognosis and in planning treatment for nasal neoplasms in dogs

  20. Construct a procedure to verify radiation protection for apparatus of industrial gamma radiography

    International Nuclear Information System (INIS)

    Apparatus for industrial gamma radiography include an exposure container, source guide tube, remote control hand crank assembly and other attached equipment. It is used a lot in inspection and evaluation of projects. In Vietnam, there are now more than 50 companies in radiography field and more than 100 apparatus are being used on the site. Therefore, the verification and evaluation is very necessary and important. This project constructs a procedure to verify a radiation protection for apparatus in the industrial gamma radiography for its application in Vietnam. (author)

  1. Preliminary examination of the applicability of imaging plates to fast neutron radiography

    International Nuclear Information System (INIS)

    Fast neutron radiography is an attractive non-destructive inspection technique because of the excellent penetration characteristics of fast neutrons in matter. However, the difficulty of detecting fast neutrons reduces this attractive feature. As an experiment to overcome the difficulty, imaging plates were applied to fast neutron radiography. A simple combination of two sheets of imaging plates and a sheet of polyethylene as a proton emitter was examined with the (fast neutron, thermal neutron and gamma ray) FTG discriminator proposed by Yoneda et al. . The experimental results showed that the method could be applicable to fast neutron radiography with effective discrimination of γ-rays

  2. Preliminary Study on Neutron Radiography with Several Hundred keV Fast Neutrons

    International Nuclear Information System (INIS)

    Several hundred keV fast neutron radiography (HKFNR) can be a complementary technique to common thermal neutron radiography (TNR) and several MeV fast neutron radiography (MFNR). We tested HKFNR on a 4.5 MV Van de Graaff accelerator, and the experimental results show that the spatial resolution of this technique is better than MFNR and close to TNR. Several hundred keV fast neutrons can penetrate some thermal neutron absorbers such as Cd, and it is feasible to investigate its use on some materials which are transparent to cold/thermal neutrons, such as aluminum, using this technique

  3. Imaging Algorithms for Cosmic Ray Muon Radiography Detection of Nuclear Materials

    Institute of Scientific and Technical Information of China (English)

    LIU Yuanyuan; CHEN Zhiqiang; ZHAO Ziran; ZHANG Li; WANG Zhentian

    2009-01-01

    Cosmic ray muon radiography which has good penetration ability and is sensitive to high-Z mate-rials, is an effective method to detect shielded nuclear materials. This paper summarizes methods developed to process muon radiography in Tsinghua University. The methods include detector data correction, recon-struction algorithms (maximum likelihood scattering, MLS, and the maximum likelihood scattering and dis-placement, MLSD) acceleration, and the modification of the normalized mean absolute distance measure (NMADM) into a picture comparison binarization method (PCBM) which is more suitable for cosmic ray muon radiographs. Simulations demonstrate that all these methods give excellent results, so that cosmic muon radiography can become more widely used.

  4. Dural ectasia and conventional radiography in the Marfan lumbosacral spine

    International Nuclear Information System (INIS)

    Objective. To determine how well conventional radiographic findings can predict the presence of dural ectasia in Marfan patients.Design and patients. Twelve Marfan patients without dural ectasia and 21 Marfan patients with dural ectasia were included in the study. Five radiographic measurements were made of the lumbosacral spine: interpediculate distance, scalloping value, sagittal canal diameter, vertebral body width, and transverse process width.Results. The following measurements were significantly larger in patients with dural ectasia: interpediculate distances at L3-L4 levels (P38.0 mm, sagittal diameter at S1 >18.0 mm, or scalloping value at L5 >5.5 mm.Conclusion. Dural ectasia in Marfan syndrome is commonly associated with several osseous changes that are observable on conventional radiographs of the lumbosacral spine. Conventional radiography can detect dural ectasia in patients with Marfan syndrome with a very high specificity (91.7%) but a low sensitivity (57.1%). (orig.)

  5. Ninety-nine years of radiation injuries in dental radiography

    International Nuclear Information System (INIS)

    A German dentist, F.O. Walkhoff, has started dental radiography as early as two weeks after Roentgen's discovery on November 8, 1895. The purpose of this paper is to revisit radiation injuries by dividing the era into the era of Kells (before World War II) and the era of low exposure doses (after World War II). Edmund Kells (1856-1928), a pioneer of dental radiologist in the United States, has later become a victim of radiation injuries. During the era of Kells, skin radiation injuries were frequent among the group of dental and medical personnels. In the era of low exposure doses, cancers, leukemia, and genetic effects have begun to receive attention. Radiation injuries occurring in a dental practice are discussed in the context of the two eras. (N.K.) 43 refs

  6. Comparison of bone scintigraphy and radiography in multiple myeloma

    International Nuclear Information System (INIS)

    Radionuclide images and skeletal radiographs of 51 patients with multiple myeloma were compared to assess the sensitivity of scintigraphy in detecting radiographically evident disease. Comparable studies were available for 562 sites. The radionuclide image was relatively insensitive in detecting myeloma; it failed to show radiographically evident disease or underestimated its extent at 27% of the sites. On a limited number of serial images there were 7 sites at which a scintigraphic abnormality preceded the radiographic abnormality. No definite correlation was found between scintigraphic findings and hematologic parameters of myeloma activity. Although the radionuclide image may demonstrate a few sites of myeloma before the radiograph, radiography remains the primary method of evaluating skeletal involvement by myeloma

  7. Scattering Correction For Image Reconstruction In Flash Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Liangzhi; Wang, Mengqi; Wu, Hongchun; Liu, Zhouyu; Cheng, Yuxiong; Zhang, Hongbo [Xi' an Jiaotong Univ., Xi' an (China)

    2013-08-15

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency.

  8. Dosimetry and image quality assessment in a direct radiography system

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Bruno Beraldo; Paixao, Lucas; Nogueira, Maria do Socorro, E-mail: boliveira.mg@gmail.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Oliveira, Marcio Alves de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Medicina. Dept. de Anatomia e Imagem; Teixeira, Maria Helena Araujo [Clinica Dra. Maria Helena Araujo Teixeira, Belo Horizonte, MG (Brazil)

    2014-11-15

    Objective: to evaluate the mean glandular dose with a solid state detector and the image quality in a direct radiography system, utilizing phantoms. Materials and methods: Irradiations were performed with automatic exposure control and polymethyl methacrylate slabs with different thicknesses to calculate glandular dose values. The image quality was evaluated by means of the structures visualized on the images of the phantoms. Results: considering the uncertainty of the measurements, the mean glandular dose results are in agreement with the values provided by the equipment and with internationally adopted reference levels. Results obtained from images of the phantoms were in agreement with the reference values. Conclusion: the present study contributes to verify the equipment conformity as regards dose values and image quality. (author)

  9. Radiologic analysis of femoral acetabular impingement: from radiography to MRI

    Energy Technology Data Exchange (ETDEWEB)

    Dwek, Jerry R. [University of California at San Diego, Department of Radiology, Rady Children' s Hospital and Health Center, San Diego, CA (United States); San Diego Imaging, San Diego, CA (United States); Monazzam, Shafagh [Rady Children' s Hospital and Health Center, Department of Orthopedics, San Diego, CA (United States); Chung, Christine B. [University of California at San Diego, Department of Radiology, San Diego, CA (United States)

    2013-03-15

    Femoral acetabular impingement is a set of morphologic abnormalities that are considered to be a major cause of degenerative disease in the hip joint. Early changes are already present in adolescence when it is the pediatric radiologist who must assess current damage with the aim of averting progression to more severe and debilitating osteoarthritis. A multimodality approach is used for diagnosis, that includes conventional radiography and CT to assess the osseous structures. MR arthrography is the primary advanced imaging modality for assessment of morphologic changes as well as injuries of the labrum and articular cartilage. Details of radiologic imaging are offered to guide the radiologist and provide an avenue for the accurate description of the osseous and articular alterations and injury. (orig.)

  10. Neutron imaging system for neutron tomography, radiography, and beam diagnostics

    International Nuclear Information System (INIS)

    A neutron imaging system (NIS) has been recently installed at the University of Texas TRIGA reactor facility. The imaging system establishes new capabilities for beam diagnostics at the Texas Cold Neutron Source (TCNS) for real-time neutron radiography (RTNR) and for neutron computed tomography (NCT) research. The NIS will also be used for other research projects. The system consists of two subsystems as follows: (1) Thomson 9-in. neutron image intensifier (NII) tube sensitive to cold, thermal, and epithermal neutrons, (2) image-processing unit consisting of vidicon camera, two high-resolution monitors, image enhancement and measurement processor, and video printer. The NIS is installed at the cold neutron beam of the TCNS for testing and cold neutron beam diagnostics

  11. NECTAR-A fission neutron radiography and tomography facility

    International Nuclear Information System (INIS)

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  12. Case study: limitations of panoramic radiography in the anterior mandible.

    LENUS (Irish Health Repository)

    Walker, Cameron

    2009-12-01

    Dental Panoramic Tomography (DPT) is a widely used and valuable examination in dentistry. One area prone to artefacts and therefore misinterpretation is the anterior region of the mandible. This case study discusses a periapical radiolucency related to lower anterior teeth that is discovered to be a radiographic artefact. Possible causes of the artefact include a pronounced depression in the mental region of the mandible or superimposition of intervertebral spaces. Additional limitations of the DPT image include superimposition of radio-opaque structures, reduced image detail compared to intra-oral views and uneven magnification. These problems often make the DPT inappropriate for imaging the anterior mandible. Clinical Relevance: Panoramic radiography is often unsuitable for radiographic examination of the anterior mandible.

  13. Inspection of an artificial heart by the neutron radiography technique

    CERN Document Server

    Pugliesi, R; Andrade, M L G; Menezes, M O; Pereira, M A S; Maizato, M J S

    1999-01-01

    The neutron radiography technique was employed to inspect an artificial heart prototype which is being developed to provide blood circulation for patients expecting heart transplant surgery. The radiographs have been obtained by the direct method with a gadolinium converter screen along with the double coated Kodak-AA emulsion film. The artificial heart consists of a flexible plastic membrane located inside a welded metallic cavity, which is employed for blood pumping purposes. The main objective of the present inspection was to identify possible damages in this plastic membrane, produced during the welding process of the metallic cavity. The obtained radiographs were digitized as well as analysed in a PC and the improved images clearly identify several damages in the plastic membrane, suggesting changes in the welding process.

  14. Scattering Correction For Image Reconstruction In Flash Radiography

    International Nuclear Information System (INIS)

    Scattered photons cause blurring and distortions in flash radiography, reducing the accuracy of image reconstruction significantly. The effect of the scattered photons is taken into account and an iterative deduction of the scattered photons is proposed to amend the scattering effect for image restoration. In order to deduct the scattering contribution, the flux of scattered photons is estimated as the sum of two components. The single scattered component is calculated accurately together with the uncollided flux along the characteristic ray, while the multiple scattered component is evaluated using correction coefficients pre-obtained from Monte Carlo simulations.The arbitrary geometry pretreatment and ray tracing are carried out based on the customization of AutoCAD. With the above model, an Iterative Procedure for image restORation code, IPOR, is developed. Numerical results demonstrate that the IPOR code is much more accurate than the direct reconstruction solution without scattering correction and it has a very high computational efficiency

  15. Quantitative shadowgraphy and proton radiography for large intensity modulations

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ratan, Naren; Sadler, James; Chen, Nicholas; Savert, Alexander; Trines, Raoul; Bingham, Robert; Burrows, Philip N; Kaluza, Malte C; Norreys, Peter

    2016-01-01

    Shadowgraphy is a technique widely used to diagnose objects or systems in various fields in physics and engineering. In shadowgraphy, an optical beam is deflected by the object and then the intensity modulation is captured on a screen placed some distance away. However, retrieving quantitative information from the shadowgrams themselves is a challenging task because of the non-linear nature of the process. Here, a novel method to retrieve quantitative information from shadowgrams, based on computational geometry, is presented for the first time. This process can be applied to proton radiography for electric and magnetic field diagnosis in high-energy-density plasmas and has been benchmarked using a toroidal magnetic field as the object, among others. It is shown that the method can accurately retrieve quantitative parameters with error bars less than 10%, even when caustics are present. The method is also shown to be robust enough to process real experimental results with simple pre- and post-processing techn...

  16. Development of Interpretive Simulation Tool for the Proton Radiography Technique

    CERN Document Server

    Levy, M C; Wilks, S C; Ross, J S; Huntington, C M; Fiuza, F; Baring, M G; Park, H- S

    2014-01-01

    Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from PIC or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field `primitives' is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagneti...

  17. NECTAR-A fission neutron radiography and tomography facility

    Energy Technology Data Exchange (ETDEWEB)

    Buecherl, T., E-mail: thomas.buecherl@radiochemie.de [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Lierse von Gostomski, Ch. [Technische Universitaet Muenchen, Lehrstuhl fuer Radiochemie (RCM), Walther-Meissner-Str. 3, 85748 Garching (Germany); Breitkreutz, H.; Jungwirth, M.; Wagner, F.M. [Technische Universitaet Muenchen, Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) (Germany)

    2011-09-21

    NECTAR (Neutron Computerized Tomography and Radiography) is a versatile facility for radiographic and tomographic investigations as well as for neutron activation experiments using fission neutrons. The radiation sources for this facility are two plates of highly enriched uranium situated in the moderator vessel in FRM II. Thermal neutrons originating from the main fuel element of the reactor generate in these plates fast neutrons. These can escape through a horizontal beam tube without moderation. The beam can be filtered and manipulated in order to reduce the accompanying gamma radiation and to match the specific experimental tasks. A summary of the main parameters required for experimental set-up and (quantitative) data evaluation is presented. The (measured) spectra of the neutron and gamma radiations are shown along with the effect of different filters on their behavior. The neutron and gamma fluxes, dose rates, L/D-ratios, etc. and the main parameters of the actually used detection systems for neutron imaging are given, too.

  18. Fostering appropriate reflective learning in an undergraduate radiography course

    International Nuclear Information System (INIS)

    Reflective learning is an important feature of many radiography courses. Writing tasks are used both to promote and monitor student reflective learning. However, students may not always fully understand the rationale behind this form of learning, nor have clear expectations about the writing required. This paper reports on an intervention to address issues identified in student reflective writing tasks based on clinical experiences. Lecturers noted a lack of depth in student observations and tendency to express criticism in a judgemental and self-righteous tone. In response to this, a workshop was developed to prepare students for reflective learning and to develop their awareness and skills in the reflective writing process. Potential areas of difficulty in reflective learning are considered in this article, as well as how to promote a critical perspective while also encouraging students to maintain a positive regard for the patients, practitioners and institutions that enable them to learn on clinical placement.

  19. Fostering appropriate reflective learning in an undergraduate radiography course

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, John, E-mail: john.hamilton@med.monash.edu.a [Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne (Australia); Druva, Ruth [Department of Medical Imaging and Radiation Sciences, School of Biomedical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne (Australia)

    2010-11-15

    Reflective learning is an important feature of many radiography courses. Writing tasks are used both to promote and monitor student reflective learning. However, students may not always fully understand the rationale behind this form of learning, nor have clear expectations about the writing required. This paper reports on an intervention to address issues identified in student reflective writing tasks based on clinical experiences. Lecturers noted a lack of depth in student observations and tendency to express criticism in a judgemental and self-righteous tone. In response to this, a workshop was developed to prepare students for reflective learning and to develop their awareness and skills in the reflective writing process. Potential areas of difficulty in reflective learning are considered in this article, as well as how to promote a critical perspective while also encouraging students to maintain a positive regard for the patients, practitioners and institutions that enable them to learn on clinical placement.

  20. Ninety-nine years of radiation injuries in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Kadzuo (Nippon Dental Univ., Niigata (Japan). School of Dentistry at Niigata)

    1994-06-01

    A German dentist, F.O. Walkhoff, has started dental radiography as early as two weeks after Roentgen's discovery on November 8, 1895. The purpose of this paper is to revisit radiation injuries by dividing the era into the era of Kells (before World War II) and the era of low exposure doses (after World War II). Edmund Kells (1856-1928), a pioneer of dental radiologist in the United States, has later become a victim of radiation injuries. During the era of Kells, skin radiation injuries were frequent among the group of dental and medical personnels. In the era of low exposure doses, cancers, leukemia, and genetic effects have begun to receive attention. Radiation injuries occurring in a dental practice are discussed in the context of the two eras. (N.K.) 43 refs.

  1. A third generation mobile high energy radiography system

    International Nuclear Information System (INIS)

    A third generation mobile high energy radiographic capability has been completed and put into service by the Los Alamos National Laboratory. The system includes a 6 MeV linac x-ray generator, Co-60 gamma source, all-terrain transportation, on-board power, real-time radiography (RTR), a control center, and a complete darkroom capability. The latest version includes upgraded and enhanced portability, flexibility, all-terrain operation, all-weather operation, and ease of use features learned from experience with the first and second generation systems. All systems were required to have the following characteristics; all-terrain, all-weather operation, self-powered, USAF airlift compatible, reliable, simple to setup, easy to operate, and all components two-person portable. The systems have met these characteristics to differing degrees, as is discussed in the following section, with the latest system being the most capable

  2. Evaluation of neutrino masses from $m_{\\beta\\beta}$ values

    CERN Document Server

    Khrushchov, V V

    2008-01-01

    A neutrino mass matrix is considered under conditions of the CP invariance and the negligible reactor mixing $\\theta_{13}$ angle. Absolute mass values for three neutrinos are evaluated in normal and inverted hierarchy spectra on the ground of data for oscillation mixing neutrino parameters and effective neutrino mass entering into a probability of neutrinoless two beta decay $m_{\\beta\\beta}$ values.

  3. Development of a system for neutron radiography and tomography

    Science.gov (United States)

    Mühlbauer, Martin J.; Calzada, Elbio; Schillinger, Burkhard

    2005-04-01

    Neutron radiography and tomography are getting more and more popular. Since they use the white thermal neutron spectrum, they are especially feasible even at small neutron sources, where the flux is too low for efficient scattering experiments requiring monochromatization of the beam. High-end tomography systems require the investment of several ten thousand Euros, with the costs often hindering the initiative for a new tomography setup. Based on the experiences gathered at Technische Universitaet Muenchen, we developed a cheaper system based on standard components that cannot compete with the sensitivity of a high-grade system, but is perfectly capable of doing neutron radiography and tomography. The system is meant as a startup construction kit for initiating tomography programs even at small neutron sources. The system is built from scratch, enabling the user to gain an understanding for the influence of each component on the image results. With the experience thus gained, he should be able to design his next and more advanced system by himself. To keep the whole system simple and cheap (the price should reach only a few percent of a high-end system), standard parts are used whenever possible, and all components are designed in such a way that they can be built without special equipment. Public domain and freeware software is used for data processing. Such a system is being built at FRM2 in Garching within the scope of a master thesis. After completion, a website will be installed with descriptions, diagrams and software for building and operating the system. Both hardware and software are discussed.

  4. Identifying high dose activities in industrial site radiography

    International Nuclear Information System (INIS)

    Although the radiation doses received by industrial radiographers in the UK have progressively fallen over the last few years, with most now receiving less than 1 mSv/y, a few still receive, relative to the rest, much higher doses. As a percentage of all radiographers the number stays surprisingly constant from year to year. This paper describes a survey to identify the work causing these doses and suggest possible solutions. The UK Central Index of Dose Information was interrogated to identify the industrial radiography companies having staff (not necessarily the same person) with doses of greater than 5mSv/y in the last three years for which information was available. This was 15 in total. The people on the staff receiving these doses were identified and a questionnaire sent to the companies concerned requesting information about their work. A general questionnaire about the operation of the company was also included. With the agreement of the company these questionnaires were followed up by a visit to the company to interviews a number of the management and the radiographers if available. Both groups were generally very open about their problems and every discussion had a positive outcome. Several areas of work/reasons for the doses have been identified. These are: pipeline radiography, ultra sound radiographers working on nuclear reactors, complex plant work often with several teams in the area, inability to retreat from the wind out equipment due to height or access problems, site pressure to not follow the best practices and a lack of appreciation when a dose was being received or, alternatively, carelessness. Some o these problem areas are very difficult to resolve. However ways in which the Health and Safety can help influence the doses have been identified together with practical suggestions radiographers could adopt. These will be reported. (author)

  5. An examination of practice during radiography of the clavicle

    International Nuclear Information System (INIS)

    Background: Variation in techniques is a well reported phenomenon in Radiography that can lead to dose discrepancies. Radiography of the clavicle is an examination which can result in a scattered extra-focal radiation dose to the radiosensitive organs of the thyroid, breast and eyes. Techniques for imaging the clavicle are examined and causal factors of repeats examined. Given the recent increase of the tissue weighting factor of breast tissue, an increased importance is placed upon dose reduction techniques to this area. Aims: This study aims to investigate the variation in techniques used in imaging of the clavicle and to investigate whether AP or PA position resulted in a higher level of repeat imaging. Method: To investigate current practice amongst hospitals a sample of large teaching hospitals was chosen (n = 5). An interview with radiographers was carried out along with an examination of the stated protocols in each of these hospital plus retrospective analysis of the images produced in each of these hospitals. Results: Variations in practice were established, significant differences in collimation and vertical centring were found. AP coned view of the clavicle was performed by 80% of radiographers interviewed with 20% of radiographers performing an AP shoulder. This variation being 100% correlated with country of training. 60% of radiographers were found to perform AP15o cranial angulation clavicle as a second projection with 28%, 8% and 4% of those interview performing AP25o, AP20o, and AP30o cranial angulation, respectively. The comparison of error and repeat rates study demonstrated a lack of confidence, reduced employment of collimation and reduced accuracy while centring in the PA position and it was deemed necessary to repeat in 30% of cases compared to 40% repeats were necessary. Conclusion: Wide variation exists in technique and PA imaging is not being implemented. The author recommends training and information on PA technique be disseminated and

  6. Trichoderma .beta.-glucosidase

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  7. Applied Beta Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rich, B.L.

    1986-01-01

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements.

  8. Neutrinoless Double Beta Decay

    CERN Document Server

    Päs, Heinrich

    2015-01-01

    We review the potential to probe new physics with neutrinoless double beta decay $(A,Z) \\to (A,Z+2) + 2 e^-$. Both the standard long-range light neutrino mechanism as well as short-range mechanisms mediated by heavy particles are discussed. We also stress aspects of the connection to lepton number violation at colliders and the implications for baryogenesis.

  9. Interferon Beta-1b Injection

    Science.gov (United States)

    Interferon beta-1b injection is used to reduce episodes of symptoms in patients with relapsing-remitting (course ... and problems with vision, speech, and bladder control). Interferon beta-1b is in a class of medications ...

  10. Genetics Home Reference: beta thalassemia

    Science.gov (United States)

    ... for Disease Control and Prevention Centre for Genetics Education (Australia) Cold Spring Harbor Laboratory: Your Genes Your Health Disease InfoSearch: Beta Thalassemia Genomics Education Programme (UK) MalaCards: dominant beta-thalassemia Merck Manual ...

  11. Beta emitters and radiation protection

    DEFF Research Database (Denmark)

    Jødal, Lars

    2009-01-01

    BACKGROUND. Beta emitters, such as 90Y, are increasingly being used for cancer treatment. However, beta emitters demand other precautions than gamma emitters during preparation and administration, especially concerning shielding. AIM. To discuss practical precautions for handling beta emitters...... on the outside of the primary shielding material. If suitable shielding is used and larger numbers of handlings are divided among several persons, then handling of beta emitters can be a safe procedure....

  12. Misleading Betas: An Educational Example

    Science.gov (United States)

    Chong, James; Halcoussis, Dennis; Phillips, G. Michael

    2012-01-01

    The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…

  13. TGF-beta and osteoarthritis.

    NARCIS (Netherlands)

    Blaney Davidson, E.N.; Kraan, P.M. van der; Berg, W.B. van den

    2007-01-01

    OBJECTIVE: Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-beta (TGF-beta) have great potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-beta, application of the growth facto

  14. Comparison of conventional panoramic radiography and panoramic digital subtraction radiography in detection of simulated lesions of mandibular condyle

    Directory of Open Access Journals (Sweden)

    Panjnoush M.

    2008-12-01

    Full Text Available "n  "nBackground and Aim: Digital subtraction Radiography (DSR is a method of accurate assessing condylar head changes. several studies have been carried out in applying DSR in dentistry, however there is a few number of studies in efficacy of DSR method in assesment of condylar head changes, The aim of this study was to compare panoramic radiography and DSR detecting simulated lesions of the mandibular condyl. "nMaterials and Methods: this was a process reaserch study, in which two dry human skulls with no obvious temporomandibular joint pathology were used. Osteophytic lesions were simulated using three sizes of bone chips that were placed on the medial portion of anterior and superolateral aspects of the condyle. Osteolytic lesions were simulated making 1 and 2 mm holes using round burr in the central portion of anterior aspect and Lateral pole of the condyle. Panoramic radiographs were prepared with and without the lesions in place. These paired radiographs were digitized and digital- subtraction images of the original panoramic images were obtained. Eight observers evaluated 155 images of each modality for the presence or absence and the type of simulated lesions of the mandibular condyle. Sensitivity, specificity, reliability and measure of agreement were analyzed using kappa test and crossed tables and qualitative variables were assess by chi-square and fisher's Exact test. "nResults: Specificity of panoramic and DSR methods were 15.4% and 66.7% respectively. Sensitivity of panoramic and DSR methods were 61.1% and 80.6% for osteophytic lesions and 37.5% and 83.3% for Osteolytic lesions. The percentage of correct decisions made in DSR method was significantly more than conventional panoramic method (82.6% vs 41.9% (p<0.0001. "nConclusion: Based on the results of this study digital subtraction technique was significantly more accurate than the panoramic radiographs in detection of simulated lesions of the mandibular condyle.

  15. Two-frame flash x-radiography system for target implosion studies

    International Nuclear Information System (INIS)

    A two-frame flash x-radiography system has been developed to study target implosion dynamics. It is capable of taking two time separated 3 ns exposure x-ray shadowgrams of a particle beam driven target implosion

  16. Comparison study on CNR and SNR of thoracic spine lateral radiography

    International Nuclear Information System (INIS)

    This study was proven for the T-spine breathing technique in lateral projection, using computer radiography (CR), charge coupled device (CCD), indirect digital radiography (IDR) and direct digital radiography (DDR). All images were evaluated and compared with CNR and SNR measured with the mean pixels and the standard deviation as setting ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk using Image J. In experiment results of 4 type detectors, T-spine breathing technique was indicated as excellent in ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk. As T-spine breathing technique indicated excellent images compared to the existing T-spine lateral radiography, this method would be useful for elderly patients who have difficulty in deep exhalation. This study was indicated the application possibility of T-spine breathing technique by presenting contrast to noise ratio (CNR) and signal to noise ratio (SNR) with quantitative value in 4 type detectors

  17. Design Verification Report Neutron Radiography Facility (NRF) TRIGA Fuel Storage Systems

    International Nuclear Information System (INIS)

    This report outlines the methods, procedures, and outputs developed during the Neutron Radiography Facility (NRF) Training, Research and Isotope Production, General Atomics (TRIGA) fuel storage system design and fabrication

  18. Comparison study on CNR and SNR of thoracic spine lateral radiography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Won [Dept. of Radiology, Samsung Medical Center, Seoul (Korea, Republic of); Min, Jung Whan; Lyu, Kwang Yeul [Dept. of Radiology, Shingu University, Sungnam (Korea, Republic of); Kim, Jung Min [Dept. of Radiological Science, College of Health Science, Korea University, Seoul (Korea, Republic of); Jeong, Hei Woun [Dept. of Radiological Science, Beakseok Culture University, Cheonan (Korea, Republic of); Lee, Joo Ah [Dept. of Oncology, Catholic University of Korea Incheon St.Mary,s Hospital, Incheon (Korea, Republic of); Jung, Jae Hong [Dept. of Oncology, Soonchunhyang University Bucheon Hospital, Bucheon (Korea, Republic of); Sung, Dong Chan [Dept. of Radiology, Dong Guk University Medical Center, Seoul (Korea, Republic of); Park, Soon Cheol [Dept. of Radiology, Kang Dong Kyung Hee University Medical Center, Seoul (Korea, Republic of)

    2013-12-15

    This study was proven for the T-spine breathing technique in lateral projection, using computer radiography (CR), charge coupled device (CCD), indirect digital radiography (IDR) and direct digital radiography (DDR). All images were evaluated and compared with CNR and SNR measured with the mean pixels and the standard deviation as setting ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk using Image J. In experiment results of 4 type detectors, T-spine breathing technique was indicated as excellent in ROI of spinous process, pedicle, vertebral body, intervertebral foramen and intervertebral disk. As T-spine breathing technique indicated excellent images compared to the existing T-spine lateral radiography, this method would be useful for elderly patients who have difficulty in deep exhalation. This study was indicated the application possibility of T-spine breathing technique by presenting contrast to noise ratio (CNR) and signal to noise ratio (SNR) with quantitative value in 4 type detectors.

  19. The application and development of radiography technology based on x-ray

    Science.gov (United States)

    Chen, Hao; Xu, Zhou; Li, Ming

    2009-07-01

    Modern Radiography technology was combined with radiation physics and modern imaging processing, which was an important branch of information obtainment and processing. We can get the inside information of the object, by the X ray's attenuation when the ray penetrated the object, and depending on the computer's fast processing, we can see the slice imaging of the object. Computerized Tomography, Computerized Laminography, and Digital Radiography were important parts in Radiography. The institute of applied electronics, CAEP in the research of intense radiation had developed several advanced radiation sources and some advanced radiography imaging systems, for example, S-band small spot linear accelerator, full solid state modulator, C-band linear accelerator, high energy Tera-hertz radiation source and CT technology based on cone beam, DR technology, CL Technology etc. Such imaging systems had been applied in industrial NDT/NDE, security check, medical diagnosis, petroleum and gas pipeline inspection system etc.

  20. Large-image intensifier photofluorography and conventional radiography in pulmonary emphysema

    International Nuclear Information System (INIS)

    Large-screen image intensifier (II) photofluorography was compared with full-size screen-film chest radiography in the diagnosis of pulmonary emphysema in 84 patients. Photospot films and conventional radiographs were interpreted independently by three radiologists. Computed tomography (CT) was used as an independent reference technique, and diagnostic performance of chest radiography in various CT patterns of emphysema was evaluated. The difference in diagnostic sensitivity for emphysema in favor of conventional chest radiography over photofluorography (0.65 versus 0.56) was statistically significant (p < 0.05). Specificity of the imaging modalities was equal: 0.78 in full-size films and 0.77 in photospot films. All CT patterns of emphysema had great false negative response rates in chest radiography, which is an inaccurate technique for the diagnosis of emphysema. CT is required for reliable radiologic evaluation of emphysema. (orig.)

  1. FMEA Based Risk Assessment of Component Failure Modes in Industrial Radiography

    CERN Document Server

    Pandey, Alok; Sonawane, A U; Rawat, Prashant S

    2016-01-01

    Industrial radiography has its inimitable role in non-destructive examinations. Industrial radiography devices, consisting of significantly high activity of the radioisotopes, are operated manually by remotely held control unit. Malfunctioning of these devices may cause potential exposure to the operator and nearby public, and thus should be practiced under a systematic risk control. To ensure the radiation safety, proactive risk assessment should be implemented. Risk assessment in industrial radiography using the Failure Modes & Effect Analysis (FMEA) for the design and operation of industrial radiography exposure devices has been carried out in this study. Total 56 component failure modes were identified and Risk Priority Numbers (RPNs) were assigned by the FMEA expert team, based on the field experience and reported failure data of various components. Results shows all the identified failure modes have RPN in the range of 04 to 216 and most of the higher RPN are due to low detectability and high severi...

  2. Development of the neutron radiography facility and its installation in HANARO

    CERN Document Server

    Nam, K Y; Kim, H J; Kim, Y K; Lee, C H; Lim, I C; Sim, C M

    2001-01-01

    HANARO neutron radiography facility has been developed to do industrial and scientific research and developments. Characterization and detailed evaluation of the NRF system after its development are indispensible information to research and application by using the system. This report is based on the results from the neutron radiography facility, installation works for the last several years from 1994 to 1997 and characterization work thereafter. This report describes the principle of neutron radiography, theoretical aspects in several parts, overall introduction of the HANARO neutron radiography facility, and discussions in each characteristics in detail. As key components of the NRF, in-pile collimator, Bi filter, L/D ratio, thermal neutron flux and its distribution in radiation active area were studied and described. In addition to these parts, several minor parts and auxiliary aspects were also mentioned. The imaging methods and characteristics in each one are described shortly and categorized, and a prot...

  3. Comparison of radionuclide scintigraphy and radiography for the evaluation of diabetic osteomyelitis

    International Nuclear Information System (INIS)

    Radionuclide scintigraphy using Tc-99m and radiography were compared in the evaluation of diabetic osteomyelitis in 11 patients. Of the eleven patients, nine showed findings highly suggestive of osteomyelitis by bone scan. Of these nine patients, however, six were considered negative for osteomyelitis based on radiography. Bone imaging appears to be more sensitive diagnostic procedure in determining osteomyelitis than X-rays. (Auth.). 9 refs., 5 tabs

  4. Design of a mobile neutron radiography installation based on a compact sealed tube neutron generator

    Institute of Scientific and Technical Information of China (English)

    MaWei-Chao; YaoAn-Ju; 等

    1997-01-01

    A series of optimum conditions are taken into account in the construction of neutron radiography(NR) installation based on a sealed tube neutron generator capable of gnerating 1010 n/s with 14MeV.The characteristics of NNU screens,a kind of self-made 6LiF.ZnS(Ag)scintillation intensifying screen are presented.Finally,some neutron radiographies taken by this NR installation and NNU screens are given.

  5. A survey of digital radiography practice in four South African teaching hospitals: an illuminative study

    OpenAIRE

    Nyathi, T; Chirwa, TF; van der Merwe, DG

    2010-01-01

    Purpose: The purpose of this study was to assess radiographer familiarity and preferences with digital radiography in four teaching hospitals and thereafter make recommendations in line with the migration from screen film to digital radiography. Materials and methods: A questionnaire was designed to collect data from either qualified or student radiographers from four teaching hospitals. From the four teaching hospitals, there were a total of 205 potential respondents. Among other things, res...

  6. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands.

  7. Concurrent validity of radiography and ultrasound examination for the diagnosis of aortic aneurisms in Albanian patients

    Directory of Open Access Journals (Sweden)

    Ilirian Laci

    2016-04-01

    Full Text Available Aim: The aim of our study was to assess the concurrent validity of radiography and ultrasound examination among patients diagnosed with aortic aneurisms in Albania, a transitional country in South Eastern Europe.    Methods: This study included 75 consecutive patients diagnosed with aortic aneurisms (thoracic and/or abdominal admitted at the University Hospital Centre “Mother Teresa” in Tirana during 2012-2014 (56 men and 19 women. For each patient, computerized tomography (CT scan with contrast was used to confirm the diagnosis of aortic aneurisms. In addition to the CT scan (“gold standard” for the diagnosis of aneurisms, in 37 patients, radiography and ultrasound examination were simultaneously performed in order to assess the validity of these techniques. Furthermore, demographic data and other relevant clinical information were collected for each study participant. Results: In 18 patients with thoracic aneurisms pertinent to ascendant aorta where radiography and ultrasound were simultaneously performed, ultrasound was able to diagnose 5 (27.8% cases which were not detected through radiography (P=0.038. Conversely, in 16 patients with abdominal aneurisms where radiography and ultrasound were simultaneously performed, ultrasound was able to diagnose 4 (25.0% cases which were not detected through radiography (P=0.034. The remaining three patients diagnosed with thoracic-abdominal aneurisms were not detected either by ultrasound examination or radiography.       Conclusions: In this sample of Albanian patients diagnosed with aortic aneurisms (N=75, overall, 9 (24.3% subjects were detected through ultrasound examination but not radiography (P<0.001. Findings from this study provide valuable clues about the concurrent validity and predictive value of these two key examinations for the diagnosis of aortic aneurisms.

  8. Digital Radiography Using Digital Detector Arrays Fulfills Critical Applications for Offshore Pipelines

    OpenAIRE

    Lopes RicardoTadeu; Pereira MarcelodosSantos; Barbosa Rabello JoséMaurício; Zscherpel Uwe; Moreira EdsonVasques

    2010-01-01

    Digital radiography in the inspection of welded pipes to be installed under deep water offshore gas and oil pipelines, like a presalt in Brazil, in the paper has been investigated. The aim is to use digital radiography for nondestructive testing of welds as it is already in use in the medical, aerospace, security, automotive, and petrochemical sectors. Among the current options, the DDA (Digital Detector Array) is considered as one of the best solutions to replace industrial films, as well a...

  9. Inspection of CF188 composite flight control surfaces with neutron radiography

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.J.; Bennett, L.G.I. [Royal Military Coll. of Canada, Kingston, Ontario (Canada). Dept. of Chemistry and Chemical Engineering; Mullin, S.K. [Aerospace and Telecommunications Engineering Support Squadron, Astra, Ontario (Canada). Nondestructive Testing Center Development Section

    1996-12-31

    At the Royal Military College of Canada`s SLOWPOKE-2 Facility, a neutron radiography facility has been designed and installed using a small (20kWth), pool-type research reactor called the SLOWPOKE-2 (Safe Low Power c(K)ritical Experiment) as the neutron source. Since then, the research has continued along two fronts: developing applications and improving the quality of the neutron beam. The most interesting applications investigated to date has been the inspection of various metal ceramic composites and the inspection of the composite flight control surfaces of some of the CF188 Hornet aircraft. As part of the determination of the integrity of the aircraft, it was decided to inspect an aircraft with the highest flight house using both X- and neutron radiography. The neutron radiography and, to a lesser extent, X-radiography inspections completed at McClellan AFB revealed 93 anomalies. After returning to Canada, the component with the greatest structural significance, namely the right hand rudder from the vertical stabilizer, was removed from the aircraft and put through a rigorous program of numerous NDT inspections, including X-radiography (film and real-time), eddy current, ultrasonics (through transmission and pitch-catch), infrared thermography, and neutron radiography. Therefore, of all the techniques investigated, only through transmission ultrasonics and neutron radiography were able to identify large areas of hydration. However, only neutron radiography could identify the small areas of moisture and hydration. Given the structural significance of the flight control surfaces in modern fighter aircraft, even the smallest amounts of hydration could potentially lead to catastrophic results.

  10. Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures

    Energy Technology Data Exchange (ETDEWEB)

    Collin, David; Dunker, Dennis; Goethlin, Jan H (Dept. of Radiology, Sahlgrenska Univ. Hospital, Moelndal (Sweden)), email: david.collin@vgregion.se; Geijer, Mats (Center for Medical Imaging and Physiology, Skaane Univ. Hospital, Lund Univ., Lund (Sweden))

    2011-10-15

    Background Conventional radiography is insufficient for diagnosis in a small but not unimportant number of hip fractures, and secondary imaging with computed tomography (CT) or magnetic resonance imaging (MRI) is warranted. There are no convincing observer variation studies performed for conventional radiography or CT in occult fractures, and no large materials for MRI. Purpose To assess observer variation in radiography, CT and MRI of suspected occult, non-displaced hip fractures, and to evaluate to what extent observer experience or patient age may influence observer performance. Material and Methods A total of 375 patients after hip trauma where radiography was followed by CT or MRI to evaluate a suspected occult hip fracture were collected retrospectively from two imaging centers. After scoring by three observers with varying degrees of radiologic experience, observer variation was assessed by using linear weighted kappa statistics. Results For radiography, agreements between the three observers were moderate to substantial for intra capsular fractures, with kappa values in the ranges of 0.56-0.66. Kappa values were substantial for extracapsular fractures, in the ranges of 0.69-0.72. With increasing professional experience, fewer fractures were classified as equivocal at radiography. For CT and MRI, observer agreements were similar and almost perfect, with kappa values in the ranges of 0.85-0.97 and 0.93-0.97. Conclusion There were almost perfect observer agreements for CT and MRI in diagnosing non-displaced, occult hip fractures. Observer agreements for radiography were moderate to substantial, and observer experience influenced agreement only at radiography

  11. Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography.

    Science.gov (United States)

    Poulikakos, L D; Sedighi Gilani, M; Derome, D; Jerjen, I; Vontobel, P

    2013-07-01

    Porous asphalt as a road surface layer controls aquaplaning as rain water can drain through its highly porous structure. The process of water drainage through this permeable layer is studied using neutron radiography. Time-resolved water configuration and distribution within the porous structure are reported. It is shown that radiography depicts the process of liquid water transport within the complex geometry of porous asphalt, capturing water films, filled dead end pores and water islands. PMID:23500651

  12. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    OpenAIRE

    Shu-Quan, Liu; Thomas, Bücherl; Hang, Li; Yu-Bin, Zou; Yuan-Rong, Lu; Zhi-Yu, Guo

    2013-01-01

    Neutron spectrum and scattered neutrons caused distortions are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM-II in Technische Universit\\"at M\\"unchen (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by neutron spectru...

  13. X-ray multi-energy radiography with scintillator-photodiode detectors

    OpenAIRE

    Naydenov, S. V.; Ryzhikov, V. D.; B.V. Grinyov; Lisetskaya, E. K.; Opolonin, A. D.; Kozin, D. N.

    2002-01-01

    For reconstruction of the spatial structure of many-component objects, it is proposed to use multi-radiography with detection of X-ray by combined detector arrays using detectors of ``scintillator-photodiode'' type. A theoretical model has been developed of multi-energy radiography for thickness measurements of multi-layered systems and systems with defects. Experimental studies of the sensitivity, output signal of various inspection systems based on scintillators $ZnSe(Te)$ and $CsI(Tl)$, an...

  14. Evaluation of exposure parameters in plain radiography: a comparative study with european guidelines

    OpenAIRE

    Lança, Luís; Silva, Augusto; Alves, Eduardo; Serranheira, Florentino; Correia, Manuel

    2008-01-01

    Typical distribution of exposure parameters in plain radiography is unknown in Portugal. This study aims to identify exposure parameters that are being used in plain radiography in the Lisbon area and to compare the collected data with European references [Commission of European Communities (CEC) guidelines]. The results show that in four examinations (skull, chest, lumbar spine and pelvis), there is a strong tendency of using exposure times above the European recommendation. The X-ray tub...

  15. Observer variation for radiography, computed tomography, and magnetic resonance imaging of occult hip fractures

    International Nuclear Information System (INIS)

    Background Conventional radiography is insufficient for diagnosis in a small but not unimportant number of hip fractures, and secondary imaging with computed tomography (CT) or magnetic resonance imaging (MRI) is warranted. There are no convincing observer variation studies performed for conventional radiography or CT in occult fractures, and no large materials for MRI. Purpose To assess observer variation in radiography, CT and MRI of suspected occult, non-displaced hip fractures, and to evaluate to what extent observer experience or patient age may influence observer performance. Material and Methods A total of 375 patients after hip trauma where radiography was followed by CT or MRI to evaluate a suspected occult hip fracture were collected retrospectively from two imaging centers. After scoring by three observers with varying degrees of radiologic experience, observer variation was assessed by using linear weighted kappa statistics. Results For radiography, agreements between the three observers were moderate to substantial for intra capsular fractures, with kappa values in the ranges of 0.56-0.66. Kappa values were substantial for extracapsular fractures, in the ranges of 0.69-0.72. With increasing professional experience, fewer fractures were classified as equivocal at radiography. For CT and MRI, observer agreements were similar and almost perfect, with kappa values in the ranges of 0.85-0.97 and 0.93-0.97. Conclusion There were almost perfect observer agreements for CT and MRI in diagnosing non-displaced, occult hip fractures. Observer agreements for radiography were moderate to substantial, and observer experience influenced agreement only at radiography

  16. Accuracy of digital radiography using stimulable phosphor for diagnosis of pneumothorax

    International Nuclear Information System (INIS)

    To evaluate the efficacy of digitized radiography in diagnosing pneumothorax 78 patients were examined with both the conventional film-screen technique and digital radiography. Of these 78 examinations 40 were normal and in 38 a pneumothorax was found. Four observers with different experience reviewed the films. In an ROC analysis no significant differences were found between the two systems. Between the observers, however, there were slight differences, one of them showing significantly lower specificity. (orig.)

  17. Inspection of CF188 composite flight control surfaces with neutron radiography

    International Nuclear Information System (INIS)

    At the Royal Military College of Canada's SLOWPOKE-2 Facility, a neutron radiography facility has been designed and installed using a small (20kWth), pool-type research reactor called the SLOWPOKE-2 (Safe Low Power c(K)ritical Experiment) as the neutron source. Since then, the research has continued along two fronts: developing applications and improving the quality of the neutron beam. The most interesting applications investigated to date has been the inspection of various metal ceramic composites and the inspection of the composite flight control surfaces of some of the CF188 Hornet aircraft. As part of the determination of the integrity of the aircraft, it was decided to inspect an aircraft with the highest flight house using both X- and neutron radiography. The neutron radiography and, to a lesser extent, X-radiography inspections completed at McClellan AFB revealed 93 anomalies. After returning to Canada, the component with the greatest structural significance, namely the right hand rudder from the vertical stabilizer, was removed from the aircraft and put through a rigorous program of numerous NDT inspections, including X-radiography (film and real-time), eddy current, ultrasonics (through transmission and pitch-catch), infrared thermography, and neutron radiography. Therefore, of all the techniques investigated, only through transmission ultrasonics and neutron radiography were able to identify large areas of hydration. However, only neutron radiography could identify the small areas of moisture and hydration. Given the structural significance of the flight control surfaces in modern fighter aircraft, even the smallest amounts of hydration could potentially lead to catastrophic results

  18. Perceptions of radiography and the National Health Service: a qualitative study

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, C.R. E-mail: c.r.coombs@lboro.ac.uk; Park, J.R.; Loan-Clarke, J.; Arnold, J.; Preston, D.; Wilkinson, A.J

    2003-05-01

    Purpose: To identify the factors that determine the attractiveness of radiography as a career choice and of the National Health Service (NHS) as an employer to potential recruits and returners. Methods: Individual and group interviews were conducted in the East Midlands region to explore participants' perceptions of the attractiveness of the NHS as an employer to potential radiography staff. Interviews were conducted with school pupils, radiography students, mature students, radiography assistants, agency radiographers and independent sector radiographers. Results: Eighty-eight individuals participated in the qualitative stage of the study. Analysis of the interview transcripts indicated that radiography as a career choice is perceived as boring and routine, involving high workloads and little recognition from the general public. Working with patients is the source of considerable job satisfaction but is offset by staff shortages, lack of flexibility over working hours and a lack of consideration of family commitments in the NHS. Financial costs are highlighted as dissuading many participants from considering a career as a radiographer in the NHS or returning to work for the NHS. Greater use of open days in conjunction with more advertising of the profession is suggested as tactics to improve recruitment. Conclusions: The provision of more flexible working hours, greater consideration of family commitments and increased financial support for training are necessary to improve the attractiveness of a radiography career. NHS Human Resource Managers should consider these findings concerning the applicant and returner pools when developing strategies to address the current shortfall of radiographers.

  19. Plain abdominal radiography: A powerful tool to prognosticate outcome in patients with zinc phosphide poisoning

    International Nuclear Information System (INIS)

    Aim: To evaluate the clinical features of zinc phosphide poisoning and to investigate whether outcome could be prognosticated based on abdominal radiography on presentation. Materials and methods: All zinc phosphide-poisoned patients who were referred to Loghman-Hakim Hospital between March 2011 and September 2013 were retrospectively reviewed. Data regarding patients' demographic characteristics, characteristics of the poisoning, abdominal radiography results, and patients' outcome were recorded. Results: In 102 patients, the most common presenting signs/symptoms were nausea and vomiting (60%). Four patients died and another seven had developed complications during their hospitalization (metabolic acidosis, liver abnormalities, or acute renal failure). Nineteen patients had radio-opaque abdominal radiographs, nine of whom had died or developed complications (p = 0.001). Plain abdominal radiography had a sensitivity and specificity of 81% and 89% in predicting the patients' death or further development of complications. The positive and negative predictive values were 47% and 97%, respectively. Conclusion: Plain abdominal radiography is a very good tool for prognostication in patients with zinc phosphide poisoning. Immediate abdominal radiography can help stratify patients into high- or low-risk groups and determine treatment strategies. - Highlights: • ZP poisoning may cause severe symptoms or death although less frequent compared to ALP. • ZP-poisoned patients may deteriorate within the first 72 hours post-ingestion. • Abdominal radiography is a good tool to predict death/complications in these patients

  20. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    Science.gov (United States)

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography. PMID:27294264

  1. Twenty-degree-tilt radiography for evaluation of lateral humeral condylar fracture in children

    Energy Technology Data Exchange (ETDEWEB)

    Imada, Hideaki; Tanaka, Ryuji; Itoh, Yohei; Kishi, Kazuhiko [National Hospital Organization, Higashi-Hiroshima Medical Center, Department of Orthopedic Surgery, Higashi Hiroshima, Hiroshima (Japan)

    2010-03-15

    To investigate the efficacy of '20 -tilt anteroposterior (A-P) radiography' in the assessment of lateral condylar fractures of the distal humerus. Eighteen children with lateral humeral condylar fractures were studied. Every child underwent conventional A-P and lateral radiography, and six children underwent multi-detector computed tomography (MDCT). For the investigation of 20 -tilt radiography, ten children with lateral humeral condylar fractures had conventional and 20 -tilt A-P and lateral radiography both preoperatively and postoperatively. Fragment dislocation was measured at the lateral and medial margins of the fracture on both the conventional A-P and 20 -tilt A-P radiographs. The lateral condylar fragment was triangular and was most prominent posteriorly. The fracture line was typically tilted approximately 20 to a reference line perpendicular to the long axis of the humerus in the lateral view. The extent of dislocation at the lateral and medial margins of the fracture site by 20 -tilt A-P radiography (9.3 {+-} 3.6 mm and 5.6 {+-} 2.5 mm) was significantly wider than that measured by the conventional method (6.8 {+-} 4.1 mm and 2.0 {+-} 1.5 mm), which may influence treatment. Twenty-degree-tilt A-P radiography may more precisely demonstrate fragment dislocation than standard radiographs and may influence patient treatment. (orig.)

  2. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Goo, Hyun Woo; Yang, Dong Hyun [Asan Medical Center, Department of Radiology, University of Ulsan College of Medicine, Seoul (Korea); Ra, Young Shin [Asan Medical Center, Department of Neurosurgery, University of Ulsan College of Medicine, Seoul (Korea); Song, Joon Sup; Im, Ho Joon; Seo, Jong Jin; Ghim, Thad; Moon, Hyung Nam [Asan Medical Center, Department of Pediatric Oncology, University of Ulsan College of Medicine, Seoul (Korea)

    2006-10-15

    In Langerhans cell histiocytosis (LCH) evaluation of the extent of disease is one of the major predictors of patient outcome. Historically this is undertaken using plain radiography and bone scintigraphy. Recently, whole-body (WB) MRI has been reported to be useful in detecting skeletal and extraskeletal metastases in both adults and children. To evaluate the usefulness of WB MRI in patients with LCH in comparison with plain radiography and bone scintigraphy. In nine children (1-7 years of age; mean 3.3 years) who had a pathological diagnosis of LCH and had either plain radiography or bone scintigraphy for comparison, 43 WB MR examinations were performed. Skeletal and extraskeletal lesions of the disease on WB MRI were compared with those on plain radiography and bone scintigraphy. LCH showed unifocal single-system involvement in one patient, multifocal single-system involvement in three, and multifocal multisystem disease in five. WB MRI identified additional skeletal lesions in three (38%) of eight patients, compared with plain radiography, and in two (25%) of eight, compared with bone scintigraphy. WB MRI detected extraskeletal lesions of the disease in five (56%) of the nine patients exclusively, except for one patient whose lung lesions were also detected on plain radiography. In two patients, treatment was changed according to WB MRI findings. (orig.)

  3. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy

    International Nuclear Information System (INIS)

    In Langerhans cell histiocytosis (LCH) evaluation of the extent of disease is one of the major predictors of patient outcome. Historically this is undertaken using plain radiography and bone scintigraphy. Recently, whole-body (WB) MRI has been reported to be useful in detecting skeletal and extraskeletal metastases in both adults and children. To evaluate the usefulness of WB MRI in patients with LCH in comparison with plain radiography and bone scintigraphy. In nine children (1-7 years of age; mean 3.3 years) who had a pathological diagnosis of LCH and had either plain radiography or bone scintigraphy for comparison, 43 WB MR examinations were performed. Skeletal and extraskeletal lesions of the disease on WB MRI were compared with those on plain radiography and bone scintigraphy. LCH showed unifocal single-system involvement in one patient, multifocal single-system involvement in three, and multifocal multisystem disease in five. WB MRI identified additional skeletal lesions in three (38%) of eight patients, compared with plain radiography, and in two (25%) of eight, compared with bone scintigraphy. WB MRI detected extraskeletal lesions of the disease in five (56%) of the nine patients exclusively, except for one patient whose lung lesions were also detected on plain radiography. In two patients, treatment was changed according to WB MRI findings. (orig.)

  4. Perceptions of radiography and the National Health Service: a qualitative study

    International Nuclear Information System (INIS)

    Purpose: To identify the factors that determine the attractiveness of radiography as a career choice and of the National Health Service (NHS) as an employer to potential recruits and returners. Methods: Individual and group interviews were conducted in the East Midlands region to explore participants' perceptions of the attractiveness of the NHS as an employer to potential radiography staff. Interviews were conducted with school pupils, radiography students, mature students, radiography assistants, agency radiographers and independent sector radiographers. Results: Eighty-eight individuals participated in the qualitative stage of the study. Analysis of the interview transcripts indicated that radiography as a career choice is perceived as boring and routine, involving high workloads and little recognition from the general public. Working with patients is the source of considerable job satisfaction but is offset by staff shortages, lack of flexibility over working hours and a lack of consideration of family commitments in the NHS. Financial costs are highlighted as dissuading many participants from considering a career as a radiographer in the NHS or returning to work for the NHS. Greater use of open days in conjunction with more advertising of the profession is suggested as tactics to improve recruitment. Conclusions: The provision of more flexible working hours, greater consideration of family commitments and increased financial support for training are necessary to improve the attractiveness of a radiography career. NHS Human Resource Managers should consider these findings concerning the applicant and returner pools when developing strategies to address the current shortfall of radiographers

  5. Non-destructive testing dummy nuclear fuel rods by neutron radiography

    International Nuclear Information System (INIS)

    Background: The nuclear fuel rod is a key component of nuclear plants and reactors. It works in the extreme conditions, so it is easy to be broken. In order to be safe in operation, lots of testings have to be carried out from fabricating to operating of the fuel rod. Purpose: As a unique non-destructive testing technique, neutron radiography can be used to measure the nuclear fuel rods with radioactivity by an indirect neutron radiography method. Study the indirect neutron radiography method is the primary step of testing. Methods: Non-destructive testing experiments were carried out at China Advanced Research Reactor (CARR) by indirect neutron radiography method with dummy nuclear fuel rods as the samples. The 0.1 mm-thick Dy foil was used as the neutron converter. Results: The neutron images of dummy nuclear fuel rods were obtained. The resolution of testing was analyzed with the images. Through imaging analysis methods, the structure defections, the hydrogen accumulation in the cladding and the U-235 enrichment of pellet were studied and analyzed. Conclusions: The indirect neutron radiography method and the neutron image analysis method were studied. The work described in this paper provides a primary guideline for investigating actual irradiated fuel rods by the neutron radiography at CARR in the future. (authors)

  6. Reliability of digital panoramic radiography in the diagnosis of carotid artery calcifications

    Directory of Open Access Journals (Sweden)

    Vilson Lacerda Brasileiro Junior

    2014-02-01

    Full Text Available Objective The present study evaluated the reliability of digital panoramic radiography in the diagnosis of carotid artery calcifications. Materials and Methods Thirty-five patients under high-risk for development of carotid artery calcifications who had digital panoramic radiography were referred to undergo ultrasonography. Thus, 70 arteries were assessed by both methods. The main parameters utilized to evaluate the panoramic radiography reliability in the diagnosis of carotid artery calcifications were accuracy, sensitivity, specificity and positive predictive value of this method as compared with ultrasonography. Additionally, the McNemar's test was utilized to verify whether there was a statistically significant difference between digital panoramic radiography and ultrasonography. Results Ultrasonography demonstrated carotid artery calcifications in 17 (48.57% patients. Such individuals presented with a total of 29 (41.43% carotid arteries affected by calcification. Radiography was accurate in 71.43% (n = 50 of cases evaluated. The degree of sensitivity of this method was 37.93%, specificity of 95.12% and positive predictive value of 84.61%. A statistically significant difference (p < 0.001 was observed between the methods evaluated in their capacity to diagnose carotid artery calcifications. Conclusion Digital panoramic radiography should not be indicated as a method of choice in the investigation of carotid artery calcifications.

  7. Neutron and gamma radiography of UO2 and TRIGA fuel elements

    International Nuclear Information System (INIS)

    The Oregon State TRIGA Reactor neutron radiography facility has been used to produce both neutron and gamma radiographs of reactor fuel. In this paper a comparison of the applicability of neutron and gamma radiography to both UO2 fuel pins and TRIGA fuel elements is made. In the case of UO2 fuel, conventional thermal neutron radiography produces excellent quality radiographs. These radiographs may be used to detect various defects in the fuel such as enrichment differences, cracks, end-capping, inclusions, etc. For TRIGA fuel elements, conventional thermal neutron radiography will not show the internal structure. This is due to the high hydrogen content of the fuel. These elements are typically 8.5 w/o uranium in Zr-H1.7; the density of hydrogen in the fuel being about 80 percent that of water. Further, while epithermal radiography significantly improves the radiographs, defects may go undetected. As an alternative to neutron radiography, high energy gamma radiographs of TRIGA fuel elements have been taken using the same facility. The gamma spectrum emitted by the reactor core is sufficiently high in energy that very good radiographs may be obtained with this technique. These radiographs show excellent detail for the internal structure of the TRIGA fuel. (author)

  8. Neutron and gamma radiography of UO2 and TRIGA fuel elements

    International Nuclear Information System (INIS)

    The Oregon State TRIGA Reactor neutron radiography facility has been used to produce both neutron and gamma radiographs of reactor fuel. In this paper a comparison of the applicability of neutron and gamma radiography to both UO2 fuel pins and TRIGA fuel elements is made. In the case of UO2 fuel, conventional thermal neutron radiography produces excellent quality radiographs. These radiographs may be used to detect various defects in the fuel such as enrichment differences, cracks, end-capping, inclusions, etc. For TRIGA fuel elements, conventional thermal neutron radiography will not show the internal structure. This is due to the high hydrogen content of the fuel. These elements are typically 8.5 w/o uranium in Zr-Hsub(1.7); the density of hydrogen in the fuel being about 80 percent that of water. Further, while epithermal radiography significantly improves the radiographs, defects may go undetected. As an alternative to neutron radiography, high energy gamma radiographs of TRIGA fuel elements have been taken using the same facility. The gamma spectrum emitted by the reactor core is sufficiently high in energy that very good radiographs may be obtained with this technique. These radiographs show excellent detail for the internal structure of the TRIGA fuel. (Auth.)

  9. Beta-thalassemia.

    Science.gov (United States)

    Galanello, Renzo; Origa, Raffaella

    2010-05-21

    Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta

  10. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella

    2010-05-01

    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  11. Coroutine Sequencing in BETA

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger;

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many ap...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  12. Beta decay for pedestrians

    CERN Document Server

    Lipkin, Harry Jeannot

    1962-01-01

    The ""pedestrian approach"" was developed to describe some essentially simple experimental results and their theoretical implications in plain language. In this graduate-level text, Harry J. Lipkin presents simply, but without oversimplification, the aspects of beta decay that can be understood without reference to the formal theory; that is, the reactions that follow directly from conservation laws and elementary quantum mechanics.The pedestrian treatment is neither a substitute for a complete treatment nor a watered-down version.

  13. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some form...... of language interoperability between Java and BETA is required. The first approach is to use the Java Native Interface and use C to bridge between Java and BETA. This results in a workable, but complicated solution. The second approach is to let the BETA compiler generate Java class files. With this approach...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files. http://www.sciencedirect.com/science/journal/15710661...

  14. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  15. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  16. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  17. Neutron Computed Tomography Using Real-Time Neutron Radiography.

    Science.gov (United States)

    Sulcoski, Mark Francis

    Conventional neutron radiography of an object records a two-dimensional distribution of the neutron beam intensity after it has passed through an object. The neutron radiograph, whether static film or real-time, may be considered a "shadow graph" of the object. In a shadow graph, internal structures in an object may mask one another making it difficult or impossible to precisely define the internals of the object. This problem can be solved by tomographic imaging. A real-time neutron radiography facility was constructed including the capability of neutron tomography. The neutron beam was measured for total neutron flux ((1.0 (+OR-) 0.2) x 10('11) n/(m('2)-sec)), gold cadmium ratio (52 (+OR-) 3) and effective neutron temperature (83(DEGREES)C (+OR -) 8(DEGREES)C). The angular divergence or nonparallelism of the neutron beam was measured to be \\2.3(DEGREES) (+OR -) 0.1(DEGREES) thereby providing a means of quantifying the collimator effectiveness. The resolution capabilities of both static film and real-time neutron radiographs were quantified using a Fourier transform algorithm to calculate the modulation transfer function of both types of radiographs. The contrast sensitivity of both types of radiographs was measured as 3.1% for film and 4.0% for real-time radiographs. Two tomography algorithms, the simultaneous iterative reconstruction technique (SIRT) and the convolution method, were programmed on an Intellect 100 Image Processing System. The SIRT algorithm was found to be too large and slow on the Intellect 100 to produce useful tomographs. The convolution method produced results near the theoretical resolution limits for a given number of projections. A tomographic resolution of at least 1.3 mm was demonstrated using 200 projections. Computer running time for the convolution method was found to be (TURN)30 seconds for each projection used. A series of experiments were conducted using the convolution method investigating the effect of high and low pass

  18. Digital reconstructed radiography quality control with software methods

    Science.gov (United States)

    Denis, Eloise; Beaumont, Stephane; Guedon, JeanPierre

    2005-04-01

    Nowadays, most of treatments for external radiotherapy are prepared with Treatment Planning Systems (TPS) which uses a virtual patient generated by a set of transverse slices acquired with a CT scanner of the patient in treatment position 1 2 3. In the first step of virtual simulation, the TPS is used to define a ballistic allowing a good target covering and the lowest irradiation for normal tissues. This parameters optimisation of the treatment with the TPS is realised with particular graphic tools allowing to: ×Contour the target, ×Expand the limit of the target in order to take into account contouring uncertainties, patient set up errors, movements of the target during the treatment (internal movement of the target and external movement of the patient), and beam's penumbra, ×Determine beams orientation and define dimensions and forms of the beams, ×Visualize beams on the patient's skin and calculate some characteristic points which will be tattooed on the patient to assist the patient set up before treating, ×Calculate for each beam a Digital Reconstructed Radiography (DRR) consisting in projecting the 3D CT virtual patient and beam limits with a cone beam geometry onto a plane. These DRR allow one for insuring the patient positioning during the treatment, essentially bone structures alignment by comparison with real radiography realized with the treatment X-ray source in the same geometric conditions (portal imaging). Then DRR are preponderant to insure the geometric accuracy of the treatment. For this reason quality control of its computation is mandatory4 . Until now, this control is realised with real test objects including some special inclusions4 5 . This paper proposes to use some numerical test objects to control the quality DRR calculation in terms of computation time, beam angle, divergence and magnification precision, spatial and contrast resolutions. The main advantage of this proposed method is to avoid a real test object CT acquisition

  19. Diagnosis of Nasopharyngeal Obstruction by Lateral Cephalometric Radiography

    Directory of Open Access Journals (Sweden)

    H. Ravanmehr

    2005-06-01

    Full Text Available Statement of Problem: Nasopharyngeal obstruction by adenoid enlargement is one of the main causes of mouth breathing. Diagnostic indices of nasopharyngeal obstruction by lateral cephalometric radiography are controversial.Purpose: The purpose of this study was to diagnose the nasopharyngeal obstruction by means of lateral cephalometric radiography.Materials and Methods: In this research two groups, (study and control, of 6 to 15 years old were studied. In the study group, 46 mouth breathers were clinically examined by an orthodontist and an Otolaryngologist to confirm the nasopharyngeal obstruction.Control group was also comprised of 46 nasal breathers within the same age groups. A lateral cephalogram in centric occlusion was obtained for each patient. After tracing,following 7 nasopharyngeal variables were measured: 1- pp (palatopharyngeal depth.2- Ad.Pmp (nasopharyngeal airway depth. 3- Air area (nasopharyngeal airway area. 4-NP area (bony area of nasopharynx. 5- Ba.Pmp (bony depth of nasopharynx. 6- d(bony depth of nasopharynx. 7- h (bony height of nasopharynx.Statistical t-test was conducted following calculating the mean, standard deviation and p-value of parameters. Discriminant function analysis was employed subsequent to thet-test for the significant variables, in order to find a method by which the values for several variables could be used simultaneously to determine whether obstruction exists.Qualitative variables of sex and age groups (6-10, 11-12, and 13-15 years old were alsoused in discriminant analysis.Results: In the study group, mean value of pp, Ad.pmp, air area, Np area and Ba.pmp were significantly decreased, whereas mean of d and h variables were not considerably lessened. After performing analysis stage, the following discriminant function equationwith critical point of 3.88 and correct classification of 94.57% was determined:D=0.345 (pp +0.064 (Ad.pmp-0.001(NP area + 0.03(Air area +0.505(Age1.If a person’s age is

  20. Patient doses during intra-oral radiography in dental offices

    International Nuclear Information System (INIS)

    Measurement of patient entrance dose (PED) and dose area product (DAP) at various dental offices in the Tokyo bay area and comparison of PEDs with the existing diagnostic reference levels recommended in the United Kingdom (UK). The survey included 28 dental clinics categorized by the type of intra-oral radiography used. PED was measured by placing an optically stimulated luminescence dosimeter (OSLD) at the tip of the cone. Exposure parameters were those used for the adult mandibular molar region in the respective clinics. The OSLD readings were calibrated using an ionizing chamber manufactured according to standards of the Japan Quality Assurance Organization. The area (A), of the X-ray beam, was calculated by exposing an X-ray film placed at the tip of the cone and measuring the exposed area. Then the DAP was calculated as the product of PED times A. The PED estimated at various dental clinics differed by a factor of 120. The mean, minimum, maximum, median and third quartile values of PEDs were 4.99, 0.18, 21.7, 3.60 and 5.76 mGy, respectively. At 60-70 kV, PEDs observed in clinics using digital imaging systems were below 2.1 mGy which was lower than that of clinics using films that were E-speed or faster. It was also observed that PEDs were directly proportional to the tube current and exposure time. The mean, minimum, maximum, median and third quartile of DAPs were 13.0, 0.45, 61.4, 9.34 and 13.4 cGy cm2, respectively. The DAP values showed a linear correlation coefficient of 0.99 with PED values. Measurement of PED and DAP using OSLD and X-ray film can play a useful role in optimization of radiation protection for patients during intra-oral radiography. This method can be conveniently applied to set up diagnostic reference levels by carrying out mass surveys in Japan. (author)

  1. Radiological protection procedures for industrial applications of computed radiography; Procedimentos de protecao radiologica em aplicacoes industriais da radiografia computadorizada

    Energy Technology Data Exchange (ETDEWEB)

    Aquino, Josilto Oliveira de

    2009-03-15

    Due to its very particular characteristics, industrial radiography is responsible for roughly half of the relevant accidents in nuclear industry, in developed as well as in developing countries, according to the International Atomic Energy Agency (IAEA). Thus, safety and radiological protection in industrial gamma radiography have been receiving especial treatment by regulatory authorities of most Member States. The main objective of the present work was to evaluate, from the radioprotection point of view, the main advantages of computed radiography (CR) for filmless industrial radiography. In order to accomplish this, both techniques, i.e. conventional and filmless computed radiography were evaluated and compared through practical studies. After the studies performed at the present work it was concluded that computed radiography significantly reduces the inherent doses, reflecting in smaller restricted areas and costs, with consequent improvement in radiological protection and safety. (author)

  2. Dural ectasia and conventional radiography in the Marfan lumbosacral spine

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, N.U. [Dept. of Orthopaedic Surgery, Johns Hopkins Univ. School of Medicine, Baltimore (United States); Johns Hopkins Outpatient Center, Dept. of Orthopaedic Surgery, Baltimore, MD (United States); Nallamshetty, L.; Ahn, U.M.; Buchowski, J.M.; Kebaish, K.M.; Sponseller, P.D. [Dept. of Orthopaedic Surgery, Johns Hopkins Univ. School of Medicine, Baltimore (United States); Rose, P.S. [Dept. of Orthopaedic Surgery, Johns Hopkins Univ. School of Medicine, Baltimore (United States); National Human Genome Research Institute, National Institutes of Health, Bethesda, MD (United States); Garrett, E.S. [Dept. of Oncology, Division of Biostatistics, Johns Hopkins University School of Medicine, Baltimore (United States)

    2001-06-01

    Objective. To determine how well conventional radiographic findings can predict the presence of dural ectasia in Marfan patients.Design and patients. Twelve Marfan patients without dural ectasia and 21 Marfan patients with dural ectasia were included in the study. Five radiographic measurements were made of the lumbosacral spine: interpediculate distance, scalloping value, sagittal canal diameter, vertebral body width, and transverse process width.Results. The following measurements were significantly larger in patients with dural ectasia: interpediculate distances at L3-L4 levels (P<0.03); scalloping values at the L1 and L5 levels (P<0.05); sagittal diameters of the vertebral canal at L5-S1 (P<0.03); transverse process to width ratios at L2 (P<0.03). Criteria were developed for diagnosis of dural ectasia in Marfan patients. These included presence of one of the following: interpediculate distance at L4 >38.0 mm, sagittal diameter at S1 >18.0 mm, or scalloping value at L5 >5.5 mm.Conclusion. Dural ectasia in Marfan syndrome is commonly associated with several osseous changes that are observable on conventional radiographs of the lumbosacral spine. Conventional radiography can detect dural ectasia in patients with Marfan syndrome with a very high specificity (91.7%) but a low sensitivity (57.1%). (orig.)

  3. Proton Radiography of Shape Charge Jets Penetrating Teflon and Explosive

    Science.gov (United States)

    Ferm, Eric N.; Burkett, Michael W.; Hull, Larry M.; Marr-Lyon, Mark; McNeil, Wendy V.; Morris, Chris L.; Rightley, Paul M.; Lansce Proton Radiography Team

    2011-06-01

    We have used proton radiography at the Los Alamos Neutron Science Center to observe viper shaped charge jets penetrating inert and explosive materials. A viper jet was observed penetrating both Teflon and PBX 9501. Radiographs captured the penetration events at several times and are analyzed to determine the density of the materials imaged at each time. The interfaces and shock waves in the flow are clearly evident in the images. Multiple time images allow the determination of the velocities of the interfaces and shock waves. Comparisons are made in the Teflon case with estimates of penetration rates and densities using the quasi-steady approximation analysis used in many terminal ballistics models. The PBX 9501 clearly detonated from the impact of the shape charge jet tip traveling at 9.1 mm/s. The detonation wave is examined to see what support it obtains from the pursing jet and the jet is examined to find the influence of the explosive products on penetration velocity. This experiment gives us experimental results of in-situ penetration process that can be used to verify common modeling techniques and fluid mechanic calculations of the penetration process.

  4. Measuring and correcting wobble in large-scale transmission radiography

    CERN Document Server

    Rogers, Thomas W; Morton, Edward J; Griffin, Lewis D

    2016-01-01

    Large-scale transmission radiography scanners are used to image vehicles and cargo containers. Acquired images are inspected for threats by a human operator or a computer algorithm. To make accurate detections, it is important that image values are precise. However, due to the scale of such systems, they can be mechanically unstable, causing the imaging array to wobble during a scan. This leads to an effective loss of precision in the captured image. We consider the measurement of wobble and amelioration of the consequent loss of image precision. Following our previous work, we use Beam Position Detectors (BPDs) to measure the cross-sectional profile of the X-ray beam, allowing for estimation, and thus correction of wobble. We propose: (i) a model of image formation with a wobbling detector array; (ii) a method of wobble correction derived from this model; (iii) methods for calibrating sensor sensitivities and relative offsets; (iv) a Random Regression Forest based method for instantaneous estimation of detec...

  5. Comparison Of Modified Bootstrap And Conventional Sensitometry In Medical Radiography

    Science.gov (United States)

    Bednarek, Daniel R.; Rudin, Stephen

    1980-08-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and step-ped wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped-wedge of the Wisconsin X-Ray Test Cassette was used in the boot-strap approach since it provides sufficient exposure latitude to encompass the useful den-sity range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic equipment.

  6. Detection of plastic explosives using thermal neutron radiography

    International Nuclear Information System (INIS)

    The work aims to demonstrate the potentiality of the neutron radiography technique, allied to the computerized tomography by transmission, to both detect and visualize plastic explosive samples in several hidden conditions, using a simple scanner as a digitalisation instrument. Each tomographic essay was obtained in the J-9 channel of the Argonauta Research Reactor of IEN/CNEN, in groups of six neutron radiographic projections, performed with an angular increment of 30 deg C, in a period of time of 30 minutes for each projection. Two groups of tomographic reconstructions were generated, distinguished by the digitalisation process of the interested lines in the reconstruction plane coming from the projection groups, utilization a scanner and a microdensitometer, respectively. The reconstruction of the bi-dimensional image of the transverse section, in relation to this plane, was processed making use of the Image Reconstruction Algorithmic of an Image based on the Maximum Entropy principle (ARIEM). From the qualitative analysis of the images, we conclude that the neutron radiographic system was able to detect the explosive sample in a satisfactory way while the quantitative analysis confirmed the application effectiveness of a scanner to acquire the projection dates whose objective is only a reconnaissance. (author)

  7. Digital teaching library (DTL) development for radiography education

    International Nuclear Information System (INIS)

    Purpose: Having access to a library of radiological images in the university setting is important for teaching and learning in diagnostic radiography. Modern modalities such as PETCT create data volumes rather than single static 2D images. A PACS repository of images alone does not constitute a teaching library without some text based searchable index. A review of several options for acquiring a digital teaching library (DTL) of such indexed DICOM data is presented. Discussion: The data protection principles, current guidance and potential methods for migrating and cleansing large quantities of DICOM data from a clinical PACS prior to transfer to a university setting is discussed. The chosen method is described and the important enabling technology identified. Various methods of index construction are outlined and a method of migrating and cleansing HL7 data from a clinical RIS described. Results: Three terabytes of de-normalised DICOM image files were cleansed of patient, staff and geographic identifiers, within the header tags and pixel data. These files were then migrated to an educational PACS hosted at a university. A searchable index database was created based on 90,200 reports and associated data, and 886,263 DICOM headers to enable meaningful results to be found from the 51,304 unique patient specific cases. Conclusion: A large DTL in the university setting using PACS technology is becoming a valuable resource for teaching, learning and assessment.

  8. Embossed radiography utilizing an image-shifting subtraction program

    Science.gov (United States)

    Sato, Eiichi; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    We developed an image-shifting subtraction program and carried out embossed radiography (ER) utilizing single- and dual-energy subtractions. In particular, dual-energy subtraction was carried out to decrease the absorption contrast of unnecessary regions. The contrast resolution of a target region was increased using the subtraction program and a linear-contrast system in a flat panel detector (FPD). The X-ray generator had a 100 μm-focus tube, and the subtractions were performed at tube voltages of 40 and 70 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. ER was achieved with cohesion imaging using the FPD with pixel sizes of 48×48 μm 2, and the shifting dimension of an object in the horizontal and vertical directions ranged from 48 to 96 μm. At a shifting distance of 96 μm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 83 μm. In ER of animal phantoms, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in blood vessels, iodine-based microspheres in coronary arteries approximately 100 μm in diameter.

  9. Magnification Embossed Radiography Utilizing Image-Shifting Subtraction Program

    Science.gov (United States)

    Osawa, Akihiro; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ogawa, Akira; Takahashi, Kiyomi; Sato, Shigehiro; Onagawa, Jun

    2010-03-01

    We developed an image-shifting subtraction program and carried out magnification embossed radiography (MER) utilizing single- and dual-energy subtractions. In particular, dual-energy subtraction was carried out to decrease the absorption contrast of unnecessary regions. The contrast resolution of the target region was increased by the use of subtraction software and a linear-contrast system in a flat-panel detector (FPD). The X-ray generator had a 100-µm-focus tube, and the subtractions were performed at tube voltages of 40 and 70 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. MER images with threefold magnification were obtained using the FPD with a pixel size of 48×48 µm2, and the shifting dimensions of the imaged object in the horizontal and vertical directions ranged from 48 to 192 µm. At a shifting distance ranging from 48 to 144 µm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 50 µm. In the MER of nonliving animals, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in blood vessels, and iodine-based microspheres in coronary arteries of approximately 100 µm diameter.

  10. Magnification embossed radiography utilizing image-shifting subtraction program

    International Nuclear Information System (INIS)

    We developed an image-shifting subtraction program and carried out magnification embossed radiography (MER) utilizing single-and dual-energy subtractions. In particular, dual-energy subtraction was carried out to decrease the absorption contrast of unnecessary regions. The contrast resolution of the target region was increased by the use of subtraction software and a linear-contrast system in a flat-panel detector (FPD). The X-ray generator had a 100-μm-focus tube, and the subtractions were performed at tube voltages of 40 and 70 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. MER images with threefold magnification were obtained using the FPD with a pixel size of 48 x 48 μm2, and the shifting dimensions of the imaged object in the horizontal and vertical directions ranged from 48 to 192 μm. At a shifting distance ranging from 48 to 144 μm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 50 μm. In the MER of nonliving animals, we obtained high-contrast embossed Images of fine bones, gadolinium oxide particles in blood vessels, and iodine-based microspheres in coronary arteries of approximately 100 μm diameter. (author)

  11. Using polychromatic X-radiography to examine realistic imitation firearms.

    Science.gov (United States)

    Austin, J C; Day, C R; Kearon, A T; Valussi, S; Haycock, P W

    2008-10-25

    Sections 36-41 of the Violent Crimes Reduction Act (2006), which came into force in England and Wales on 1st October 2007, have placed significant restrictions on the sale and possession of 'realistic imitation firearms'. This legislation attempts to produce a definition of a 'realistic imitation' which clearly differentiates these items from other imitation firearms (which are not covered by the legislation). This paper will go a stage further by demonstrating techniques by which blank firing realistic imitation firearms which may be suitable for illegal conversion to fire live rounds may be differentiated from other less 'suitable' (but visually identical) realistic imitations. The article reports on the use of X-radiography, utilizing the bremsstrahlung of a commercial broad spectrum X-ray source, to identify the differences between alloys constituting the barrels of distinct replica and/or blank firing handguns. The resulting pseudo-signatures are transmission spectra over a range from 20 to 75 kV, taken at 1 kV intervals, which are extracted from stacks of registered, field flattened images. It is shown that it is possible to quantify differences between transmission spectra for components of different realistic imitation fire arms, and apply the results to determine the suitability of particular gun barrels from blank firing imitation firearms for illegal conversion to fire live rounds, or related illegal modifications. PMID:18842365

  12. Micro-radiography of biological samples with medical contrast agents

    Energy Technology Data Exchange (ETDEWEB)

    Dammer, J., E-mail: jiri.dammer@lf1.cuni.cz [Charles University in Prague, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2 (Czech Republic); Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, 180 81 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Weyda, F. [Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice (Czech Republic); Benes, J. [Charles University in Prague, First Faculty of Medicine, Salmovská 1, 120 00 Prague 2 (Czech Republic); Sopko, V. [Hospital Na Bulovce, Department of Radiological Physics, Budinova 2, 180 81 Prague 8 (Czech Republic); Institute of Experimental and Applied Physics, Czech Technical University in Prague, Horska 3a/22, 128 00 Prague 2 (Czech Republic); Gelbic, I. [Biology Centre, AS CR, Institute of Entomology, Department of Biochemistry and Physiology, Branisovska 31, CZ-37005 Ceske Budejovice (Czech Republic)

    2013-12-01

    Micro-radiography is an imaging technique that uses X-rays to study the internal structures of objects. This fast and easy imaging tool is based on differential X-ray attenuation by various tissues and structures within biological samples. The experimental setup described is based on the semiconductor pixel X-ray detector Medipix2 and X-ray micro-focus tube. Our micro-radiographic system has been recently used not only for the examination of internal structures of various arthropods and other biological objects but also for tracing some processes in selected model species (we used living larvae of mosquito Culex quinquefasciatus). Low concentrations of iodine, lanthanum or gold particles were used as a tracer (contrast agent). Such contrast agents increase the absorption of X-rays and allow a better visibility of internal structures of model organisms (especially the various cavities, pores, etc.). In addition, the movement of tracers in selected timing experiments demonstrates some physiological functions of digestive and excretory system.

  13. Proton radiography, nuclear cross sections and multiple scattering

    Science.gov (United States)

    Sjue, Sky; Lansce Proton Radiography Team

    2015-10-01

    Proton radiography is a valuable tool for assessing dynamic experiments over times as short as 100 nanoseconds. Facilities now exist or are in development in the China, Germany, Russia and the United States with proton energies ranging from 800 MeV to 50 GeV. The multiple Coulomb scattering distribution of protons and the cross sections for proton interactions with the nucleus both depend on the proton energy. A detailed understanding of these effects is necessary to gain the best possible quantitative information from proton generated radiographs. We will present an analysis of the integrated nuclear cross sections for various metals at 800 MeV kinetic energy using step wedges at Los Alamos Neutron Science Center at 800 MeV, along with results at 24 GeV from Alternating Gradient Synchrotron at 24 GeV. The results will be compared with models of multiple scattering and several models of the nuclear interactions. Finally, we will discuss trends in the interplay between nuclear attenuation and multiple scattering as a function of proton energy.

  14. Femoral neck radiography: effect of flexion on visualization

    International Nuclear Information System (INIS)

    To determine whether flexion improves radiographic visualization of the femoral neck when the femur is externally rotated. Five human femora, with varying neck-shaft and anteversion angles, were measured and immobilized. Degree of flexion required to bring the femoral neck horizontal was measured, varying the rotation. Next, one bone was radiographed in 16 positions, varying rotation in 15o and flexion in 10o increments. Radiographs were presented in randomized blinded fashion to 15 staff radiologists for scoring of femoral neck visualization. Following this, all 5 bones were radiographed in 4 positions of rotation and at 0o and 20o flexion, and blinded randomized review of radiographs was repeated. Comparisons between angles and rotations were made using the Mann-Whitney test. The flexion angle required to bring the long axis of the femoral neck horizontal correlated directly with the degree of external rotation (ρ o internal rotation to 30o external rotation (ρ o flexion was applied to bones in external rotation, visualization significantly improved at 15o (ρ o (ρ o) of flexion can significantly improve radiographic visualization. This manoeuvre could be useful for radiography of the femoral neck when initial radiographs are inadequate because of external rotation of the leg. (author)

  15. Accuracy of real time radiography burning rate measurement

    Science.gov (United States)

    Olaniyi, Bisola

    The design of a solid propellant rocket motor requires the determination of a propellant's burning-rate and its dependency upon environmental parameters. The requirement that the burning-rate be physically measured, establishes the need for methods and equipment to obtain such data. A literature review reveals that no measurement has provided the desired burning rate accuracy. In the current study, flash x-ray modeling and digitized film-density data were employed to predict motor-port area to length ratio. The pre-fired port-areas and base burning rate were within 2.5% and 1.2% of their known values, respectively. To verify the accuracy of the method, a continuous x-ray and a solid propellant rocket motor model (Plexiglas cylinder) were used. The solid propellant motor model was translated laterally through a real-time radiography system at different speeds simulating different burning rates. X-ray images were captured and the burning-rate was then determined. The measured burning rate was within 1.65% of the known values.

  16. The reliability of plain radiography in experimental fracture healing

    International Nuclear Information System (INIS)

    Objective. To investigate the reliability of radiographs in the evaluation of healing of closed fractures. Design. A closed midshaft tibial fracture was created in 40 goats and stabilized with an external fixator. The animals were assigned to four groups: No injection, injection of 1 mg osteogenic protein-1 (OP-1), 1 mg OP-1 with collagenous carrier, or carrier alone. Radiographs were performed weekly until the animals were killed after 2 and 4 weeks. Healing was evaluated using radiographs, biomechanical testing, and histological examination. All radiographs were examined by two independent observers. Interobserver agreement was calculated and radiographic scores were compared with mechanical and histological scores using regression analysis. Results. Regression analysis showed poor correlation between radiographic scores and biomechanical and histological data. Correlation coefficients varied between 0.39 and 0.63. Good agreement between the observers was seen in only three parameters: Visibility of the fracture line, weightbearing ability, and a combined healing parameter. Conclusion. Plain radiography provides poor parameters for monitoring the fracture healing process. (orig.)

  17. Combining technologies - radiography and neutron based - for cargo security applications

    International Nuclear Information System (INIS)

    Inspection of air and sea cargo has traditionally been done by X-ray systems of various energies relying on operators to analyze images looking for anomalies in the image of cargo that may signify a threat. This has shown only limited success in detecting explosives and other threats, which do not have any distinctive shapes. OSI Systems, through its subsidiaries Rapiscan and Ancore, has combined high-energy x-ray radiography with thermal neutron analysis (TNA) to create the combined system-''TNX''. The system provides automatic material specific detection of bulk threat items, like explosives, while furnishing the operator with a high-resolution image for weapons detection and also to identify anomalies for the TNA to inspect. Similarly the Pulsed Fast Neutron Analysis (PFNA) can be combined with high-energy x-ray to create a ''FNX'' system for both air and sea cargo applications. This enables the operator obtain a three dimensional image of the material composition of the cargo under inspection and remove the clutter from the image leaving only the potentially hazardous material(s) automatically while viewing a high resolution image for manifest verification and weapons. The current status of the technology will be discussed and data be presented

  18. Licensing and inspection of industrial radiography in Sudan

    International Nuclear Information System (INIS)

    The use of radioisotopes in Sudan started in 1965 in the medical field, and gradually expanded in agriculture, animal research, hydrology and recently industry. During the last 4 years oil industry in Sudan became one of the biggest activity. Almost 11 foreign companies are involved in oil industry including exploration, establishment of refineries and construction of pipelines. Sudan's pipeline is the longest in Africa, about 1600 Km. The estimated number of radiation workers in these Companies are 100, some of them are locals. The country Regulatory Authority is Sudan Atomic Energy Commission (SAEC). The Commission provides personal monitoring services to all radiation workers in the country. Only about 20% of the radiation workers in these companies are under monitoring services. The total number of registered sources about 500. Number of sources used in the industrial applications of about 40% of the inventory. SAEC has difficulties in controlling the industrial radiography in the country. These difficulties can be summarized as follows: a. Difficulties in pertaining information provided by the Companies, which include: not all sources used by companies are licensed and registered; not all workers are under personal monitoring services; no notification system available by the companies to the regulatory authority in case of accidents; not enough information available by the companies to SAEC regarding the radiation work done by them (transparency). b. Poor communications with the companies. c. Resources constrains: Not enough resources for inspection missions (means of transportation). (author)

  19. Digital Radiography and Computed Tomography (DRCT) Product Improvement Plan (PIP)

    Energy Technology Data Exchange (ETDEWEB)

    Tim Roney; Bob Pink; Karen Wendt; Robert Seifert; Mike Smith

    2010-12-01

    The Idaho National Laboratory (INL) has been developing and deploying x-ray inspection systems for chemical weapons containers for the past 12 years under the direction of the Project Manager for Non-Stockpile Chemical Materiel (PMNSCM). In FY-10 funding was provided to advance the capabilities of these systems through the DRCT (Digital Radiography and Computed Tomography) Product Improvement Plan (PIP), funded by the PMNSCM. The DRCT PIP identified three research tasks; end user study, detector evaluation and DRCT/PINS integration. Work commenced in February, 2010. Due to the late start and the schedule for field inspection of munitions at various sites, it was not possible to spend sufficient field time with operators to develop a complete end user study. We were able to interact with several operators, principally Mr. Mike Rowan who provided substantial useful input through several discussions and development of a set of field notes from the Pueblo, CO field mission. We will be pursuing ongoing interactions with field personnel as opportunities arise in FY-11.

  20. The application of radiography to the study of fish nutrition

    International Nuclear Information System (INIS)

    The measurement of individual food consumption rates of fish held in groups using radiography has enabled the development of a new approach to fish nutrition trials. In order to compare diets, groups of individually numbered fish are fed different experimental diets over extended periods of time (similar to standard nutrition trials) and food consumption rates are measured regularly over the course of the experiment. Analysis of covariance is then used to compare regression coefficients, obtained from mean consumption-growth relationships, from each diet. The advantages of the approach are several: (1) differences in appetite between fish fed different diets are monitored; (2) fewer fish are needed to establish consumption-growth curves over a large range of consumption rates; (3) measured food consumption rates, not ration levels, are used to calculate ‘true’ growth efficiencies; and (4) other factors, such as absorption efficiency, trypsin activity, the concentration of free amino acids in tissues and protein turnover can be measured for individual fish and related to differences in food consumption between fish in the same group. The approach has been used successfully with a variety of species to compare the growth response of groups fed two or more diets

  1. Location of mental foramen using digital panoramic Radiography

    Science.gov (United States)

    Mohamed, Ajmal; Nataraj, Kannan; Mathew, Vinod B.; Varma, Beena; Mohamed, Shamil; Valappila, Nidhin J.; Meena, Aravind S.

    2016-01-01

    Objective: Comparative evaluation of the location of mental foramen in different age groups. Determine the variation in position of mental foramen with gender using digital panoramic radiography. Materials and Methods: Digital panoramic radiographs of 250 patients were reviewed. The study population was divided into five age groups with 50 patients each. Radiographic position of mental foramen was evaluated in each radiograph based on three parameters. Measurements were taken in each radiograph using Planmeca Dimaxis pro version 4.4.0 (Helsinki, Finland). The collected data were subjected to statistical analysis using paired Student's t-test. Results: The mean distance of position of mental foramen showed a significant variation within the five age groups. In the first group, female patients showed an increase in mean distance of mental foramen position in relation to three parameters. From the second to fifth groups, male patient showed an increase in the mean distance of mental foramen position. The first and fifth group showed a reduced mean distance of mental foramen position when compared to other age groups. Conclusion: This study concluded that the position of mental foramen varies with age. There was a gender-related variation in position of mental foramen within the population too.

  2. Thermal Neutron Radiography of Deuteriated Water in Soils

    Science.gov (United States)

    Tumlinson, L. G.; Hopmans, J. W.; Wilding, M. C.; Silk, W. K.; Huerta, N. J.; Tabor, M. M.

    2004-12-01

    As for x-rays, neutron radiography is a noninvasive imaging technique based on the attenuation of thermal neutrons by the object in question, described by BeerAƒAøAøâ_sA¬Aøâ_zAøs law. However, neutron imaging is complementary to x-rays, as it is especially well suited for materials containing hydrogen atoms and mostly other low atomic weight attenuating materials. Although neutron attenuation techniques are routinely used in engineering, relatively little is known about its application to soils. We will present results demonstrating the tremendous potential of using neutron attenuation techniques to measure spatial and temporal distribution of water in soils at the 50 micrometer spatial resolution. The neutron source is a Mark II Triga Reactor at McClellan Nuclear Radiation Center (MNRC) in Sacramento, CA. The reactor runs at 1.8 MW and emits a poly-energetic neutron beam, including the thermal range. Unfortunately beam hardening and backscattering are a major source of uncertainty. Recent laboratory experiments conducted at MNRC suggest that beam hardening is considerably reduced when using deuteriated water, because its cross-section for attenuation of thermal neutrons is much lower than for regular water.

  3. Motion subtraction of the larynx using digital radiography

    International Nuclear Information System (INIS)

    The development of digital radiography (DR) has made it possible to analyze the contour of the laryngeal soft tissue structures in more detail than the conventional screen-film method. The authors first used the DR system for time subtraction of the larynx during inspiration and phonation. The images are acquired by means of frontal tomography of the larynx using the imaging plate during inspiration and phonation separately, and stored into the memory of the DR system. The thickness of the slices is 5.0 mm. Time subtraction between the mask image during inspiration and the live image during phonation is performed using digital processing on CRT. Superimposing the two images at the upper trachea and the thyroid cartilage of the same depth, makes it possible to measure movement of the vocal cord and false vocal cord quantitatively in three dimensions. The authors named this time subtraction as motion subtraction of the larynx. This motion subtraction image can be obtained by on-line digital processing without complicated development technique, but has so high spatial resolution. This image processing seems to be useful in functional radiographic analysis of laryngeal diseases. (author)

  4. Micro-radiography of biological samples with medical contrast agents

    International Nuclear Information System (INIS)

    Micro-radiography is an imaging technique that uses X-rays to study the internal structures of objects. This fast and easy imaging tool is based on differential X-ray attenuation by various tissues and structures within biological samples. The experimental setup described is based on the semiconductor pixel X-ray detector Medipix2 and X-ray micro-focus tube. Our micro-radiographic system has been recently used not only for the examination of internal structures of various arthropods and other biological objects but also for tracing some processes in selected model species (we used living larvae of mosquito Culex quinquefasciatus). Low concentrations of iodine, lanthanum or gold particles were used as a tracer (contrast agent). Such contrast agents increase the absorption of X-rays and allow a better visibility of internal structures of model organisms (especially the various cavities, pores, etc.). In addition, the movement of tracers in selected timing experiments demonstrates some physiological functions of digestive and excretory system

  5. Value of digital radiography in expiration in detection of pneumothorax

    International Nuclear Information System (INIS)

    Purpose: The purpose of this study was to find out whether pneumothorax detection and exclusion is superior in expiratory digital chest radiography. Materials and Methods: 131 patients with pneumothorax with paired inspiratory and expiratory chest radiographs were analyzed regarding localization and size of pneumothorax. Sensitivity, specificity, negative (npv) and positive predictive value (ppv) as well as the positive (LR+) and negative likelihood ratio (LR-) were determined in a blinded randomized interobserver study with 116 patients. The evaluation was performed by three board-certified radiologists. Results: In 131 patients, there were 139 pneumothoraces, 135 (97.1 %) were located apical, 88 (63.3 %) lateral and 33 (23.7 %) basal. Sensitivity was 99 % for inspiratory and 97 % for expiratory radiographs. The interobserver study yielded a mean sensitivity of 86.1 %/86.1 %, specificity of 97.3 %/93.4 %, npv of 88.7 %/88.5 % and ppv of 96.7 %/92.1 % for inspiration/expiration. For inspiratory radiographs the LR+/LR- were 40.2/0.14 and for expiration 13.9 and 0.15. McNemar-Test showed no significant difference for the detection of pneumothoraces in in-/exspiration. Conclusion: Inspiratory and expiratory digital radiographs are equally suitable for pneumothorax detection. Inspiratory radiographs are recommended as the initial examination of choice for pneumothorax detection, an additional expiratory radiograph is only recommended in doubtful cases. (orig.)

  6. Location of mental foramen using digital panoramic radiography

    Directory of Open Access Journals (Sweden)

    Ajmal Mohamed

    2016-01-01

    Full Text Available Objective: Comparative evaluation of the location of mental foramen in different age groups. Determine the variation in position of mental foramen with gender using digital panoramic radiography. Materials and Methods: Digital panoramic radiographs of 250 patients were reviewed. The study population was divided into five age groups with 50 patients each. Radiographic position of mental foramen was evaluated in each radiograph based on three parameters. Measurements were taken in each radiograph using Planmeca Dimaxis pro version 4.4.0 (Helsinki, Finland. The collected data were subjected to statistical analysis using paired Student's t-test. Results: The mean distance of position of mental foramen showed a significant variation within the five age groups. In the first group, female patients showed an increase in mean distance of mental foramen position in relation to three parameters. From the second to fifth groups, male patient showed an increase in the mean distance of mental foramen position. The first and fifth group showed a reduced mean distance of mental foramen position when compared to other age groups. Conclusion: This study concluded that the position of mental foramen varies with age. There was a gender-related variation in position of mental foramen within the population too.

  7. In pool neutron radiography of damaged flip fuel

    International Nuclear Information System (INIS)

    The Nuclear Science Centre at Texas A and M University participated in a pulsing program at which time a routine visual inspection during a loading operation indicated that fuel damage had occurred. Four 'lead' elements, each in a different cluster of FLIP elements and located adjacent to the transient rod, were found to be somewhat deformed. The visual inspection of the most damaged element revealed bulging in the cladding and a bow in the element around the fuel centre line. To assess the internal damage it was decided by the Nuclear Science Centre to develop an in-pool neutron radiography facility. From the prints of the neutron radiograph internal details of the fuel element were discernible, and the observation indicated that the element had been internally damaged. Swellings in the fuel element and density variations were also observable. It was concluded that further examinations of the element were required which resulted in the most damaged element being sent to Argonne National Laboratory. The various neutron radiographs clearly showed that this was a valuable tool in the non-destructive testing of materials. The apparatus has been modified slightly and has been recently used to further survey fuel rods present when the fuel damage was discovered

  8. Current radiography and tomography applications at Necsa and an envisaged upgrade towards a proposed South African national centre for radiography and tomography (SANCRAT)

    Energy Technology Data Exchange (ETDEWEB)

    Radebe, M.J.; De Beer, F.C. [Necsa - South African Nuclear Energy Corporation Limited, P. O.Box 582, Pretoria, 0001 (South Africa)

    2008-07-01

    An upgrade of the current Radiography and Tomography Research facilities is envisaged to enhance the group's support for Necsa's mission to undertake and support nuclear research and utilize penetrating radiation for the benefit of mankind. It is envisage that the SANCRAT will host neutron-, X-ray- and gamma ray penetrating radiation imaging infrastructures that can be utilized by researchers from industry as well as post graduate students from higher educational institutions. Modelling for the upgrade to a multifunctional neutron radiography and tomography facility has been underway. Upgrade plans and implementation has also begun for a 250 kV X-ray radiography set-up, that will exist independent from the neutron facility. Future expansion entails catering for a micro-focus X-ray -, and gamma ray radiography and tomography facilities. The current facilities available consist of one infrastructure facility based on two sources of penetrating radiation, i.e. SAFARI-1 research nuclear reactor as thermal neutron source and a 100 kV X-ray generator. This facility, which hosts the only operational neutron tomography R and D facility in the Southern Hemisphere and in Africa, are being extensively utilized by post graduate students and industry. The facility sees application in a wide range of scientific and engineering disciplines, amongst which is nuclear, geosciences, palaeontology, civil, mechanical, chemical, etc. This paper focus on case studies engaged at the current radiography and tomography facilities over the past 2 years as well as describing the envisaged upgrade initiatives to a fully equipped national centre. (authors)

  9. Accuracy of Digital Bitewing Radiography versus Different Views of Digital Panoramic Radiography for Detection of Proximal Caries

    Science.gov (United States)

    Abdinian, Mehrdad; Razavi, Sayed Mohammad; Samety, Amir Abbas; Faghihian, Elham

    2015-01-01

    Objectives: Dental caries are common and have a high incidence among populations. Radiographs are essential for detecting proximal caries. The best technique should be recognized for accurate detection of caries. The aim of this study was to compare the accuracy of detection of proximal caries using intraoral bitewing, extraoral bitewing, improved interproximal panoramic, improved orthogonality panoramic and conventional panoramic radiographs. Materials and Methods: In this descriptive cross sectional study, 100 extracted human teeth with and without proximal caries were used. Intra and extraoral radiographs were taken. Images were evaluated and scored by two observers. Scores were compared with the histological gold standard. The diagnostic accuracy of radiographs was assessed by means of receiver operating characteristic (ROC) curve analysis (P<0.05). Results: Microscopic evaluation of proximal surfaces revealed that 54.8% of the surfaces were sound and 45.2% were carious (with different depths). The differences in the area under the ROC curve (Az value) among the five techniques were not statistically significant. Conclusion: Improved interproximal panoramic and extraoral bitewing radiographs were superior to conventional panoramic radiography for detection of proximal caries ex vivo and should be considered for patients with contraindications for intraoral radiographs. PMID:26622284

  10. Accuracy of Digital Bitewing Radiography versus Different Views of Digital Panoramic Radiography for Detection of Proximal Caries

    Directory of Open Access Journals (Sweden)

    Mehrdad Abdinian

    2015-10-01

    Full Text Available Objectives: Dental caries are common and have a high incidence among populations. Radiographs are essential for detecting proximal caries. The best technique should be recognized for accurate detection of caries. The aim of this study was to compare the accuracy of detection of proximal caries using intra oral bitewing, extra oral bitewing, improved interproximal panoramic, improved orthogonality panoramic and digital con- ventional panoramic radiographs.Materials and Methods: In this descriptive cross sectional study, 100 extracted human teeth with and without proximal caries were used. Intra and extra oral radiographs were taken. Images were evaluated and scored by two observers. Scores were compared with the histological gold standard. The diagnostic accuracy of radiographs was assessed by means of receiver operating characteristic (ROC curve analysis (P<0.05.Results: Microscopic evaluation of proximal surfaces revealed that 54.8% of the sur- faces were sound and 45.2% were carious (with different depths. The differences in the area under the ROC curve (Az value among the five techniques were not statisti- cally significant.Conclusion: Improved interproximal panoramic and extra oral bitewing radiographs were superior to conventional panoramic radiography for detection of proximal caries ex vivo and should be considered for patients with contraindications for intra oral radi- ographs.

  11. Double beta decay: present status

    OpenAIRE

    Barabash, A. S.

    2008-01-01

    The present status of double beta decay experiments (including the search for $2\\beta^{+}$, EC$\\beta^{+}$ and ECEC processes) are reviewed. The results of the most sensitive experiments are discussed. Average and recommended half-life values for two-neutrino double beta decay are presented. Conservative upper limits on effective Majorana neutrino mass and the coupling constant of the Majoron to the neutrino are established as $ < 0.75$ eV and $ < 1.9 \\cdot 10^{-4}$, respectively. Proposals fo...

  12. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  13. Scintillator based beta batteries

    Science.gov (United States)

    Rensing, Noa M.; Tiernan, Timothy C.; Shirwadkar, Urmila; O'Dougherty, Patrick; Freed, Sara; Hawrami, Rastgo; Squillante, Michael R.

    2013-05-01

    Some long-term, remote applications do not have access to conventional harvestable energy in the form of solar radiation (or other ambient light), wind, environmental vibration, or wave motion. Radiation Monitoring Devices, Inc. (RMD) is carrying out research to address the most challenging applications that need power for many months or years and which have undependable or no access to environmental energy. Radioisotopes are an attractive candidate for this energy source, as they can offer a very high energy density combined with a long lifetime. Both large scale nuclear power plants and radiothermal generators are based on converting nuclear energy to heat, but do not scale well to small sizes. Furthermore, thermo-mechanical power plants depend on moving parts, and RTG's suffer from low efficiency. To address the need for compact nuclear power devices, RMD is developing a novel beta battery, in which the beta emissions from a radioisotope are converted to visible light in a scintillator and then the visible light is converted to electrical power in a photodiode. By incorporating 90Sr into the scintillator SrI2 and coupling the material to a wavelength-matched solar cell, we will create a scalable, compact power source capable of supplying milliwatts to several watts of power over a period of up to 30 years. We will present the latest results of radiation damage studies and materials processing development efforts, and discuss how these factors interact to set the operating life and energy density of the device.

  14. An advanced image processing method to improve the spatial resolution of ion radiographies.

    Science.gov (United States)

    Krah, N; Testa, M; Brons, S; Jäkel, O; Parodi, K; Voss, B; Rinaldi, I

    2015-11-01

    We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope. The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom. The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5 mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTA  =  1.3 mm and RWET

  15. An advanced image processing method to improve the spatial resolution of ion radiographies

    International Nuclear Information System (INIS)

    We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope.The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom.The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5 mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTA  =  1.3 mm and RWET

  16. A qualitative comparative survey of First Cycle radiography programmes in Europe and Japan

    Energy Technology Data Exchange (ETDEWEB)

    Akimoto, Tatsuhito [Radiography, Institute of Health Care, University of Malta (Malta); Caruana, Carmel J. [Biomedical Physics, Institute of Health Care, University of Malta (Malta)], E-mail: carmel.j.caruana@um.edu.mt; Shimosegawa, Masayuki [Japanese Society of Education for Radiological Technology, School of Radiological Technology, Gunma Prefectural College of Health Sciences (Japan)

    2009-11-15

    Purpose: To qualitatively compare First Cycle Radiography programmes in Europe and Japan. Methods: This qualitative survey was conducted via a series of case-studies of university-based radiography curricula in Europe and Japan. Findings and conclusions: The main themes arising from the survey were that: (a) in Europe the freedom that most universities have in setting their own curricula and examinations means that in practice there is still a wide variability in curricula between and within states. On the other hand in Japan curricula are more uniform owing to central government guidelines regarding radiography education and a centrally administered national radiography examination. This means that student and worker mobility is much easier for Japanese radiographers. (b) in some countries in Europe principles of reporting and healthcare management are being expanded at the expense of the more technological aspects of radiography. Physical science competences on the other hand are considered highly in Japanese culture and form a major part of the curriculum. This may indicate that Japanese students would be in a much better position to cope with role developments linked to changes in imaging technology. Pragmatically oriented studies need to be carried out to determine ways in which radiographers can enhance their role without sacrificing their technological competences. The profession cannot afford to lose its technological expertise - it is neither in the interest of the profession itself and even less of the patient.

  17. Imaging suspected cervical spine injury: Plain radiography or computed tomography? Systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Cain, Gavin [Diagnostic Radiographer, Colchester Hospital University NHS Foundation Trust, Colchester General Hospital, Turner Road, Colchester, CO4 5JL Essex (United Kingdom)], E-mail: gavincain8@hotmail.com; Shepherdson, Jane; Elliott, Vicki; Svensson, Jon [Faculty of Health and Social Care, Anglia Ruskin University, East Road, Cambridge, CB1 9PT Cambridgeshire (United Kingdom); Brennan, Patrick [UCD School of Medicine and Medical Sciences, Health Science Building, Belfield, Dublin 4 (Ireland)

    2010-02-15

    Aim: (1) to establish which modality offers the greatest accuracy in the detection of cervical spine injury (CSI) Following trauma: plain radiography or computed tomography (CT), and (2) make an evidence-based recommendation for the initial imaging modality of choice. Method: A systematic literature review was performed to identify primary research studies which compare the diagnostic accuracy of plain radiography and CT with the results of a reference standard in the detection of CSI. A search of MEDLINE, EMBASE, CINAHL, Science Direct and Pubmed Central databases was conducted. Results: Ten studies were identified. Critical appraisal identified limitations among all studies. There was heterogeneity in the sensitivity estimates for plain radiography, whereas estimates for CT were consistently high. Examination of the reported sensitivities shows that CT outperforms plain radiography in the detection of CSI. Conclusion: CT is superior to plain radiography in the detection of CSI. However, the optimal imaging strategy depends on the patients' relative risk of injury. If at high-risk cervical CT is indicated. If at low-risk the increased cost and radiation exposure mean that screening CT may not be warranted, good-quality plain radiographs are sufficient.

  18. Dose reduction and adequate image quality in digital radiography: a contradiction?

    International Nuclear Information System (INIS)

    Dose reduction and adequate image quality in digital radiography - a contradiction ?Digital radiography has already replaced traditional screen-film systems. Substantial improvements in both dose efficiency and spatial resolution demonstrate the rapid developments in digital radiography. Needle-detector systems have shown up to a 50% dose reduction compared to traditional screen-film systems. There is also a dose reduction capability of up to 50% comparing direct radiography (DR) systems to computed radiography (CR) systems for chest X-rays. However, despite the most recent achievements of CR technology, the dose efficiency of DR systems (caesium iodide flat-panel detector) is unparalleled. The progress in detector technology has contributed to dose reduction and improved image quality, while saving time and providing a higher examination rate. The use of dose indicators and longitudinal dose control are important to avoid substantial accidental dose increase. The dose applied to patients should fall markedly below the defined diagnostic reference levels within the European Union. Regular quality control, as well as continuous education and training of medical and technical personnel, contribute to ensure that the ALARA (as low as reasonably achievable) principle is consistently followed. (orig.)

  19. The relationship between contrast, resolution and detectability in accelerator-based fast neutron radiography

    International Nuclear Information System (INIS)

    Fast neutron radiography as a method for non destructive testing is a fast growing field of research. At the Schonland Research Center for Nuclear Sciences we have been engaged in the formulation of a model for the physics of image formation in fast neutron radiography (FNR). This involves examining all the various factors that affect image formation in FNR by experimental and Monte Carlo methods. One of the major problems in the development of a model for fast neutron radiography is the determination of the factors that affect image contrast and resolution. Monte Carlo methods offer an ideal tool for the determination of the origin of many of these factors. In previous work the focus of these methods has been the determination of the scattered neutron field in both a scintillator and a fast neutron radiography facility. As an extension of this work MCNP has been used to evaluate the role neutron scattering in a specimen plays in image detectability. Image processing of fast neutron radiographs is a necessary method of enhancing the detectability of features in an image. MCNP has been used to determine the part it can play in indirectly improving image resolution and aiding in image processing. The role noise plays in fast neutron radiography and its impact on image reconstruction has been evaluated. All these factors aid in the development of a model describing the relationship between contrast, resolution and detectability

  20. Neutron resonance radiography: Report of a workshop, Los Alamos, NM: July 27-29, 1987

    International Nuclear Information System (INIS)

    Neutron resonance radiography is a new technique with great potential for non-destructive analysis and testing. This technique has been under research and development in a number of major research laboratories for some time. Unlike thermal neutron radiography, which is primarily oriented towards imaging hydrogen and a number of other highly neutron-absorptive materials without necessarily distinguishing between them, neutron resonance radiography has the capability of uniquely identifying many kinds of chemical elements and their individual isotopes. It also has the potential for temperature imaging in materials containing heavy elements and for certain dynamic features such as stroboscopic imaging. Although neutron resonance radiography has not yet been taken up in a systematic way for technological applications, significant development of ideas and instrumentation at the research level has blossomed. There have also been major developments in the availability of powerful pulsed-neutron sources. In light of these developments, the Los Alamos Neutron Scattering Center sponsored a workshop with the general aims of reviewing scientific and technical progress, discussing and highlighting future developments, and stimulating interest in technological exploitation of the methods. In addition to the techniques and instrumentation required for the field, the applications of neutron resonance radiography in some of the following industrial and manufacturing areas were discussed: nuclear fuel assay; nuclear safeguards in general; aerospace development (aeroengine blade temperature, stroboscopic techniques); diagnostics; non-nuclear industry (especially metallurgy); temperature imaging; use of mobile pulsed-neutron sources; and practical use of major pulsed-neutron facilities