Sample records for beta propeller wdr72

  1. Identification of the first multi-exonic WDR72 deletion in isolated amelogenesis imperfecta, and generation of a WDR72-specific copy number screening tool. (United States)

    Hentschel, Julia; Tatun, Dana; Parkhomchuk, Dmitri; Kurth, Ingo; Schimmel, Bettina; Heinrich-Weltzien, Roswitha; Bertzbach, Sabine; Peters, Hartmut; Beetz, Christian


    Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous disorder of tooth development which is due to aberrant deposition or composition of enamel. Both syndromic and isolated forms exist; they may be inherited in an X-linked, autosomal recessive, or autosomal dominant manner. WDR72 is one of ten currently known genes for recessive isolated AI; nine WDR72 mutations affecting single nucleotides have been described to date. Based on whole exome sequencing in a large consanguineous AI pedigree, we obtained evidence for presence of a multi-exonic WDR72 deletion. A home-made multiplex ligation-dependent probe amplification assay was used to confirm the aberration, to narrow its extent, and to identify heterozygous carriers. Our study extends the mutational spectrum for WDR72 to include large deletions, and supports a relevance of the previously proposed loss-of-function mechanism. It also introduces an easy-to-use and highly sensitive tool for detecting WDR72 copy number alterations. Copyright © 2016. Published by Elsevier B.V.

  2. A Patient with Beta-Propeller Protein-Associated Neurodegeneration: Treatment with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Shen-Yang Lim


    Full Text Available We present a case of beta-propeller protein-associated neurodegeneration, a form of neurodegeneration with brain iron accumulation. The patient harbored a novel mutation in the WDR45 gene. A detailed video and description of her clinical condition are provided. Her movement disorder phenomenology was characterized primarily by limb stereotypies and gait dyspraxia. The patient’s disability was advanced by the time iron-chelating therapy with deferiprone was initiated, and no clinical response in terms of cognitive function, behavior, speech, or movements were observed after one year of treatment.

  3. The diversity and abundance of phytase genes (beta-propeller phytases) in bacterial communities of the maize rhizosphere

    NARCIS (Netherlands)

    Cotta, S.R.; Cavalcante Franco Dias, A.; Seldin, L.; Andreote, F. D.; van Elsas, J. D.

    The ecology of microbial communities associated with organic phosphorus (P) mineralization in soils is still understudied. Here, we assessed the abundance and diversity of bacteria harbouring genes encoding beta-propeller phytases (BPP) in the rhizosphere of traditional and transgenic maize

  4. Cartilage acidic protein 1, a new member of the beta-propeller protein family with amyloid propensity. (United States)

    Anjos, Liliana; Morgado, Isabel; Guerreiro, Marta; Cardoso, João C R; Melo, Eduardo P; Power, Deborah M


    Cartilage acidic protein1 (CRTAC1) is an extracellular matrix protein of chondrogenic tissue in humans and its presence in bacteria indicate it is of ancient origin. Structural modeling of piscine CRTAC1 reveals it belongs to the large family of beta-propeller proteins that in mammals have been associated with diseases, including amyloid diseases such as Alzheimer's. In order to characterize the structure/function evolution of this new member of the beta-propeller family we exploited the unique characteristics of piscine duplicate genes Crtac1a and Crtac1b and compared their structural and biochemical modifications with human recombinant CRTAC1. We demonstrate that CRTAC1 has a beta-propeller structure that has been conserved during evolution and easily forms high molecular weight thermo-stable aggregates. We reveal for the first time the propensity of CRTAC1 to form amyloid-like structures, and hypothesize that the aggregating property of CRTAC1 may be related to its disease-association. We further contribute to the general understating of CRTAC1's and beta-propeller family evolution and function. Proteins 2017; 85:242-255. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. C-Terminus of Progranulin Interacts with the Beta-Propeller Region of Sortilin to Regulate Progranulin Trafficking


    Zheng, Yanqiu; Brady, Owen A.; Meng, Peter S.; Mao, Yuxin; Hu, Fenghua


    Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD) with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and...

  6. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN).


    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara


    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been cla...

  7. The structure of Rauvolfia serpentina strictosidine synthase is a novel six-bladed beta-propeller fold in plant proteins. (United States)

    Ma, Xueyan; Panjikar, Santosh; Koepke, Juergen; Loris, Elke; Stöckigt, Joachim


    The enzyme strictosidine synthase (STR1) from the Indian medicinal plant Rauvolfia serpentina is of primary importance for the biosynthetic pathway of the indole alkaloid ajmaline. Moreover, STR1 initiates all biosynthetic pathways leading to the entire monoterpenoid indole alkaloid family representing an enormous structural variety of approximately 2000 compounds in higher plants. The crystal structures of STR1 in complex with its natural substrates tryptamine and secologanin provide structural understanding of the observed substrate preference and identify residues lining the active site surface that contact the substrates. STR1 catalyzes a Pictet-Spengler-type reaction and represents a novel six-bladed beta-propeller fold in plant proteins. Structure-based sequence alignment revealed a common repetitive sequence motif (three hydrophobic residues are followed by a small residue and a hydrophilic residue), indicating a possible evolutionary relationship between STR1 and several sequence-unrelated six-bladed beta-propeller structures. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-309 in catalysis. The data will aid in deciphering the details of the reaction mechanism of STR1 as well as other members of this enzyme family.

  8. Conservation of the human integrin-type beta-propeller domain in bacteria.

    Directory of Open Access Journals (Sweden)

    Bhanupratap Chouhan

    Full Text Available Integrins are heterodimeric cell-surface receptors with key functions in cell-cell and cell-matrix adhesion. Integrin α and β subunits are present throughout the metazoans, but it is unclear whether the subunits predate the origin of multicellular organisms. Several component domains have been detected in bacteria, one of which, a specific 7-bladed β-propeller domain, is a unique feature of the integrin α subunits. Here, we describe a structure-derived motif, which incorporates key features of each blade from the X-ray structures of human αIIbβ3 and αVβ3, includes elements of the FG-GAP/Cage and Ca(2+-binding motifs, and is specific only for the metazoan integrin domains. Separately, we searched for the metazoan integrin type β-propeller domains among all available sequences from bacteria and unicellular eukaryotic organisms, which must incorporate seven repeats, corresponding to the seven blades of the β-propeller domain, and so that the newly found structure-derived motif would exist in every repeat. As the result, among 47 available genomes of unicellular eukaryotes we could not find a single instance of seven repeats with the motif. Several sequences contained three repeats, a predicted transmembrane segment, and a short cytoplasmic motif associated with some integrins, but otherwise differ from the metazoan integrin α subunits. Among the available bacterial sequences, we found five examples containing seven sequential metazoan integrin-specific motifs within the seven repeats. The motifs differ in having one Ca(2+-binding site per repeat, whereas metazoan integrins have three or four sites. The bacterial sequences are more conserved in terms of motif conservation and loop length, suggesting that the structure is more regular and compact than those example structures from human integrins. Although the bacterial examples are not full-length integrins, the full-length metazoan-type 7-bladed β-propeller domains are present, and

  9. C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking.

    Directory of Open Access Journals (Sweden)

    Yanqiu Zheng

    Full Text Available Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and progranulin C-terminal peptide displaces progranulin binding to sortilin. Deletion of the last 3 residues of progranulin (QLL abolishes its binding to sortilin and also sortilin dependent regulation of progranulin trafficking. Since progranulin haplo-insufficiency results in FTLD, these results may provide important insights into future studies of progranulin trafficking and signaling and progranulin based therapy for FTLD.

  10. C-Terminus of Progranulin Interacts with the Beta-Propeller Region of Sortilin to Regulate Progranulin Trafficking (United States)

    Meng, Peter S.; Mao, Yuxin; Hu, Fenghua


    Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD) with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and progranulin C-terminal peptide displaces progranulin binding to sortilin. Deletion of the last 3 residues of progranulin (QLL) abolishes its binding to sortilin and also sortilin dependent regulation of progranulin trafficking. Since progranulin haplo-insufficiency results in FTLD, these results may provide important insights into future studies of progranulin trafficking and signaling and progranulin based therapy for FTLD. PMID:21698296

  11. Patient Affected by Beta-Propeller Protein-Associated Neurodegeneration: A Therapeutic Attempt with Iron Chelation Therapy

    Directory of Open Access Journals (Sweden)

    Mattia Fonderico


    Full Text Available Here, we report the case of a 36-year-old patient with a diagnosis of de novo mutation of the WDR45 gene, responsible for beta-propeller protein-associated neurodegeneration, a phenotypically distinct, X-linked dominant form of Neurodegeneration with Brain Iron Accumulation. The clinical history is characterized by a relatively stable intellectual disability and a hypo-bradykinetic and hypertonic syndrome with juvenile onset. Genetic investigations and T1 and T2-weighted MR images align with what is described in literature. The patient was also subjected to PET with 18-FDG investigation and DaT-Scan study. In reporting relevant clinical data, we want to emphasize the fact that the patient received a chelation therapy with deferiprone (treatment already used in other forms of NBIA with encouraging results, which, however, had to be interrupted because the parkinsonian symptoms worsened. Conversely, the patient has benefited from non-drug therapies and, in particular, from an adapted motor activity with assisted pedaling (method in the process of validation in treatments of parkinsonian syndromes, which started before the treatment with deferiprone and still continues.

  12. Ferrous Iron Up-regulation in Fibroblasts of Patients with Beta Propeller Protein-Associated Neurodegeneration (BPAN). (United States)

    Ingrassia, Rosaria; Memo, Maurizio; Garavaglia, Barbara


    Mutations in WDR45 gene, coding for a beta-propeller protein, have been found in patients affected by Neurodegeneration with Brain Iron Accumulation, NBIA5 (also known as BPAN). BPAN is a movement disorder with Non Transferrin Bound Iron (NTBI) accumulation in the basal ganglia as common hallmark between NBIA classes (Hayflick et al., 2013). WDR45 has been predicted to have a role in autophagy, while the impairment of iron metabolism in the different NBIA subclasses has not currently been clarified. We found the up-regulation of the ferrous iron transporter (-)IRE/Divalent Metal Transporter1 and down-regulation of Transferrin receptor in the fibroblasts of two BPAN affected patients with splicing mutations 235+1G>A (BPAN1) and 517_519ΔVal 173 (BPAN2). The BPAN patients showed a concomitant increase of intracellular ferrous iron after starvation. An altered pattern of iron transporters with iron overload is highlighted in BPAN human fibroblasts, supporting for a role of DMT1 in NBIA. We here present a novel element, about iron accumulation, to the existing knowledge in field of NBIA. Attention is focused to a starvation-dependent iron overload, possibly accounting for iron accumulation in the basal ganglia. Further investigation could clarify iron regulation in BPAN.

  13. Localization of the Bacillus subtilis beta-propeller phytase transcripts in nodulated roots of Phaseolus vulgaris supplied with phytate. (United States)

    Maougal, Rim Tinhinen; Bargaz, Adnane; Sahel, Charaf; Amenc, Laurie; Djekoun, Abdelhamid; Plassard, Claude; Drevon, Jean-Jacques


    Soil organic phosphorus (Po) such as phytate, which comprises up to 80 % of total Po, must be hydrolyzed by specific enzymes called phytases to be used by plants. In contrast to plants, bacteria, such as Bacillus subtilis, have the ability to use phytate as the sole source of P due to the excretion of a beta-propeller phytase (BPP). In order to assess whether the B. subtilis BPP could make P available from phytate for the benefit of a nodulated legume, the P-sensitive recombinant inbred line RIL147 of Phaseolus vulgaris was grown under hydroaeroponic conditions with either 12.5 μM phytate (C₆H₁₈O₂₄P₆) or 75 μmol Pi (K₂HPO₄), and inoculated with Rhizobium tropici CIAT899 alone, or co-inoculated with both B. subtilis DSM 10 and CIAT899. The in situ RT-PCR of BPP genes displayed the most intense fluorescent BPP signal on root tips. Some BPP signal was found inside the root cortex and the endorhizosphere of the root tip, suggesting endophytic bacteria expressing BPP. However, the co-inoculation with B. subtilis was associated with a decrease in plant P content, nodulation and the subsequent plant growth. Such a competitive effect of B. subtilis on P acquisition from phytate in symbiotic nitrogen fixation might be circumvented if the rate of inoculation were reasoned in order to avoid the inhibition of nodulation by excess B. subtilis proliferation. It is concluded that B. subtilis BPP gene is expressed in P. vulgaris rhizosphere.

  14. Clinical and Imaging Presentation of a Patient with Beta-Propeller Protein-Associated Neurodegeneration, a Rare and Sporadic form of Neurodegeneration with Brain Iron Accumulation (NBIA). (United States)

    Hattingen, Elke; Handke, Nikolaus; Cremer, Kirsten; Hoffjan, Sabine; Kukuk, Guido Matthias


    Neurodegeneration with brain iron accumulation (NBIA) is a heterogeneous group of inherited neurologic disorders with iron accumulation in the basal ganglia, which share magnetic resonance (MR) imaging characteristics, histopathologic and clinical features. According to the affected basal nuclei, clinical features include extrapyramidal movement disorders and varying degrees of intellectual disability status. The most common NBIA subtype is caused by pathogenic variants in PANK2. The hallmark of MR imaging in patients with PANK2 mutations is an eye-of-the-tiger sign in the globus pallidus. We report a 33-year-old female with a rare subtype of NBIA, called beta-propeller protein-associated neurodegeneration (BPAN) with a hitherto unknown missense variant in WDR45. She presented with BPAN's particular biphasic course of neurological symptoms and with a dominant iron accumulation in the midbrain that enclosed a spotty T2-hyperintensity.

  15. Perancangan Propeler Self-Propelled Barge

    Directory of Open Access Journals (Sweden)

    Billy Teguh kurniawan


    Full Text Available Makalah ini menyampaikan suatu penelitian tentang perancangan propeler yang optimal beserta pemilihan daya mesin yang efisien pada self-propelled barge dengan memperhitungkan besarnya nilai tahanan dari barge tersebut. Dengan penambahan sistem propulsi, diharapkan barge dapat beroperasi dengan lebih efisien dibandingkan saat barge beroperasi menggunakan sistem towing atau ditarik tug boat. Perhitungan tahanan barge dilakukan menggunakan metode Holtrop dan Guldhammer-Harvald sehingga dapat diperhi-tungkan geometri dan jenis propeler yang optimal beserta daya mesin yang efisien untuk barge. Propeler yang dianalisis adalah propeler tipe B-Troost Series, sedangkan variasi yang dilakukan untuk perencanaan propeler pada kajian ini adalah variasi putaran propeler pada rentang antara 310-800 rpm, serta variasi jumlah daun pada rentang tiga, empat, lima, dan enam. Besarnya nilai tahanan self-propelled barge untuk metode Holtrop adalah 105.91 kilonewton, sedangkan hasil per-hitungan dari metode Guldhammer-Harvald didapatkan nilai sebesar 109.14 kilonewton. Tipe propeler yang dipilih setelah dilakukan uji kavitasi adalah tipe Troost Series B4-40, dengan diameter sebesar 2.1 m, efisiensi sebesar 0.421, pitch ratio se-besar 0.591, dengan putaran propeler 400 rpm. Daya mesin yg dibutuhkan barge pada kondisi maksimum (BHPMCR sebesar 1669.5 HP. Dengan mempertimbangkan daya tersebut, maka dipilih mesin jenis Caterpillar tipe Marine 3516B yang mem-punyai daya maksimum sebesar 1285 kilowatt atau 1722.5 horsepower dengan putaran mesin sebesar 1200 rpm

  16. Tip-modified Propellers

    DEFF Research Database (Denmark)

    Andersen, Poul


    The paper deals with tip-modified propellers and the methods which, over a period of two decades, have been applied to develop such propellers. The development is driven by the urge to increase the efficiency of propellers and can be seen as analogous to fitting end plates and winglets to aircraft...... propeller, have efficiency increases of a reasonable magnitude in both open-water and behind-ship conditions....

  17. Hydrodynamics of Ship Propellers

    DEFF Research Database (Denmark)

    Breslin, John P.; Andersen, Poul

    This book deals with flows over propellers operating behind ships, and the hydrodynamic forces and moments which the propeller generates on the shaft and on the ship hull.The first part of the text is devoted to fundamentals of the flow about hydrofoil sections (with and without cavitation...... of an intermittently cavitating propeller in a wake and the pressures and forces it exerts on the shaft and on the ship hull is examined. A final chapter discusses the optimization of efficiency of compound propulsors. The authors have taken care to clearly describe physical concepts and mathematical steps. Appendices...

  18. Autonomous Propellant Loading Project (United States)

    National Aeronautics and Space Administration — The AES Autonomous Propellant Loading (APL) project consists of three activities. The first is to develop software that will automatically control loading of...

  19. Solid propellant impact tests

    International Nuclear Information System (INIS)

    Snow, E.C.


    Future space missions, as in the past, call for the continued use of radioisotopes as heat sources for thermoelectric power generators. In an effort to minimize the risk of radioactive contamination of the environment, a complete safety analysis of each such system is necessary. As a part of these analyses, the effects on such a system of a solid propellant fire environment resulting from a catastrophic launch pad abort must be considered. Several impact tests were conducted in which either a simulant MHW-FSA or a steel ball was dropped on the cold, unignited or the hot, burning surface of a block of UTP-3001 solid propellant. The rebound velocities were measured for both surface conditions of the propellant. The resulting coefficient of restitution, determined as the ratio of the components of the impact and rebound velocities perpendicular to the impact surface of the propellant, were not very dependent on whether the surface was cold or hot at the time of impact

  20. Modeling Propellant Tank Dynamics (United States)

    National Aeronautics and Space Administration — The main objective of my work will be to develop accurate models of self-pressurizing propellant tanks for use in designing hybrid rockets. The first key goal is to...

  1. Disposal of Liquid Propellants (United States)


    propellant includes an oxi- dizer (hydroxylammoniuin nitrate), a fuel (triethanolammonium nitrate), and water . In an- ticipation of widespread (both...are also included. 20. DISTRIBUTION/ AVAILABILIT ’." OF ABMTRACT 21 ABSTRACT SECURITY CLASSIF.CATICIN IUNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 OTIC...trieth- anolammoiur nitrate), anG water . In anticipation of widespread (both conti- nental U.S. and abroac) use of the propellant, USATHAMA began a

  2. Propellers in Saturn's rings (United States)

    Sremcevic, M.; Stewart, G. R.; Albers, N.; Esposito, L. W.


    Theoretical studies and simulations have demonstrated the effects caused by objects embedded in planetary rings. Even if the objects are too small to be directly observed, each creates a much larger gravitational imprint on the surrounding ring material. These strongly depend on the mass of the object and range from "S" like propeller-shaped structures for about 100m-sized icy bodies to the opening of circumferential gaps as in the case of the embedded moons Pan and Daphnis and their corresponding Encke and Keeler Gaps. Since the beginning of the Cassini mission many of these smaller objects (~data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We show evidence that B ring seems to harbor two distinct populations of propellers: "big" propellers covering tens of degrees in azimuth situated in the densest part of B ring, and "small" propellers in less dense inner B ring that are similar in size and shape to known A ring propellers. The population of "big" propellers is exemplified with a single object which is observed for 5 years of Cassini data. The object is seen as a very elongated bright stripe (40 degrees wide) in unlit Cassini images, and dark stripe in lit geometries. In total we report observing the feature in images at 18 different epochs between 2005 and 2010. In UVIS occultations we observe this feature as an optical depth depletion in 14 out of 93 occultation cuts at corrotating longitudes compatible with imaging data. Combining the available Cassini data we infer that the object is a partial gap located at r=112,921km embedded in the high optical depth region of the B ring. The gap moves at Kepler speed appropriate for its radial location. Radial offsets of the gap locations in UVIS occultations are consistent with an asymmetric propeller shape. The asymmetry of the observed shape is most likely a consequence of the strong surface mass density gradient, as the feature is located at an edge between

  3. Technology of foamed propellants

    Energy Technology Data Exchange (ETDEWEB)

    Boehnlein-Mauss, Jutta; Kroeber, Hartmut [Fraunhofer Institut fuer Chemische Technologie ICT, Pfinztal (Germany)


    Foamed propellants are based on crystalline explosives bonded in energetic reaction polymers. Due to their porous structures they are distinguished by high burning rates. Energy content and material characteristics can be varied by using different energetic fillers, energetic polymers and porous structures. Foamed charges can be produced easily by the reaction injection moulding process. For the manufacturing of foamed propellants a semi-continuous remote controlled production plant in pilot scale was set up and a modified reaction injection moulding process was applied. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  4. Propeller TAP flap

    DEFF Research Database (Denmark)

    Thomsen, Jørn Bo; Bille, Camilla; Wamberg, Peter


    major complications needing additional surgery. One flap was lost due to a vascular problem. Breast reconstruction can be performed by a propeller TAP flap without cutting the descending branch of the thoracodorsal vessels. However, the authors would recommend that a small cuff of muscle is left around...

  5. New Propellants and Cryofuels (United States)

    Palasezski, Bryan; Sullivan, Neil S.; Hamida, Jaha; Kokshenev, V.


    The proposed research will investigate the stability and cryogenic properties of solid propellants that are critical to NASA s goal of realizing practical propellant designs for future spacecraft. We will determine the stability and thermal properties of a solid hydrogen-liquid helium stabilizer in a laboratory environment in order to design a practical propellant. In particular, we will explore methods of embedding atomic species and metallic nano-particulates in hydrogen matrices suspended in liquid helium. We will also measure the characteristic lifetimes and diffusion of atomic species in these candidate cryofuels. The most promising large-scale advance in rocket propulsion is the use of atomic propellants; most notably atomic hydrogen stabilized in cryogenic environments, and metallized-gelled liquid hydrogen (MGH) or densified gelled hydrogen (DGH). The new propellants offer very significant improvements over classic liquid oxygen/hydrogen fuels because of two factors: (1) the high energy-release, and (ii) the density increase per unit energy release. These two changes can lead to significant reduced mission costs and increased payload to orbit weight ratios. An achievable 5 to 10 percent improvement in specific impulse for the atomic propellants or MGH fuels can result in a doubling or tripling of system payloads. The high-energy atomic propellants must be stored in a stabilizing medium such as solid hydrogen to inhibit or delay their recombination into molecules. The goal of the proposed research is to determine the stability and thermal properties of the solid hydrogen-liquid helium stabilizer. Magnetic resonance techniques will be used to measure the thermal lifetimes and the diffusive motions of atomic species stored in solid hydrogen grains. The properties of metallic nano-particulates embedded in hydrogen matrices will also be studied and analyzed. Dynamic polarization techniques will be developed to enhance signal/noise ratios in order to be able to

  6. The screw propeller (United States)

    Larrabee, E. E.


    Marine and air screw propellers are considered in terms of theoretical hydrodynamics as developed by Joukowsky, Prandtl, and Betz. Attention is given to the flow around wings of finite span where spanwise flow exists and where lift and the bound vorticity must all go smoothly to zero at the wing tips. The concept of a trailing vortex sheet made up of infinitesimal line vortexes roughly aligned with the direction of flight is discussed in this regard. Also considered is induced velocity, which tends to convect the sheet downward at every stage in the roll-up process, the vortex theory of propellers and the Betz-Prandtl circulation distribution. The performance of the Gossamer Albatross and of a pedal-driven biplane called the Chrysalis are also discussed.

  7. BETA digital beta radiometer

    International Nuclear Information System (INIS)

    Borovikov, N.V.; Kosinov, G.A.; Fedorov, Yu.N.


    Portable transportable digital beta radiometer providing for measuring beta-decay radionuclide specific activity in the range from 5x10 -9 up to 10 -6 Cu/kg (Cu/l) with error of ±25% is designed and introduced into commercial production for determination of volume and specific water and food radioactivity. The device specifications are given. Experience in the BETA radiometer application under conditions of the Chernobyl' NPP 30-km zone has shown that it is convenient for measuring specific activity of the order of 10 -8 Cu/kg, and application of a set of different beta detectors gives an opportunity to use it for surface contamination measurement in wide range of the measured value

  8. Strength of Screw Propellers (United States)


    ship because of increese of propeller efficiency and saving on the high cost of difficult to obtain materials (bronze, brass, stainless steel). The...indAjate that. x :axmuin stresses in the blade cross section are the cor-,prc-.,; ivFe norm-al strcs3es at point G. The maximom tensile stres-ses cis a...and stern part of the ship. Because of purely technical difficulties and also because of the relatively high cost of preparations for such tests, only

  9. Hull-Propeller Interaction and Its Effect on Propeller Cavitation

    DEFF Research Database (Denmark)

    Regener, Pelle Bo

    In order to predict the required propulsion power for a ship reliably and accurately, it is not sufficient to only evaluate the resistance of the hull and the propeller performance in open water alone. Interaction effects between hull and propeller can even be a decisive factor in ship powering...... prediction and design optimization. The hull-propeller interaction coefficients of effective wake fraction, thrust deduction factor, and relative rotative efficiency are traditionally determined by model tests. Self-propulsion model tests consistently show an increase in effective wake fractions when using...... velocities. This offers an opportunity for additional insight into hull-propeller interaction and the propeller’s actual operating condition behind the ship, as the actual (effective) inflow is computed. Self-propulsion simulations at model and full scale were carried out for a bulk carrier, once...

  10. Diagnostics of Gun Barrel Propellants

    National Research Council Canada - National Science Library

    Lederman, S


    A preliminary investigation of the applicability of the spontaneous Raman diagnostic technique to the determination of the temperature of the propellant gases in the vicinity of the muzzle of a 2Omm...

  11. Cryogenic Propellant Storage and Transfer (United States)

    National Aeronautics and Space Administration — Space Flight Demonstration development has been canceled in favor of a ground test bed development for of passive/active cryogenic propellant storage, transfer, and...

  12. Cavitation simulation on marine propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo

    Cavitation on marine propellers causes thrust breakdown, noise, vibration and erosion. The increasing demand for high-efficiency propellers makes it difficult to avoid the occurrence of cavitation. Currently, practical analysis of propeller cavitation depends on cavitation tunnel test, empirical...... criteria and inviscid flow method, but a series of model test is costly and the other two methods have low accuracy. Nowadays, computational fluid dynamics by using a viscous flow solver is common for practical industrial applications in many disciplines. Cavitation models in viscous flow solvers have been...... hydrofoils and conventional/highly-skewed propellers are performed with one of three cavitation models proven in 2D analysis. 3D cases also show accuracy and robustness of numerical method in simulating steady and unsteady sheet cavitation on complicated geometries. Hydrodynamic characteristics of cavitation...

  13. Aircraft Propeller Hub Repair

    Energy Technology Data Exchange (ETDEWEB)

    Muth, Thomas R [ORNL; Peter, William H [ORNL


    The team performed a literature review, conducted residual stress measurements, performed failure analysis, and demonstrated a solid state additive manufacturing repair technique on samples removed from a scrapped propeller hub. The team evaluated multiple options for hub repair that included existing metal buildup technologies that the Federal Aviation Administration (FAA) has already embraced, such as cold spray, high velocity oxy-fuel deposition (HVOF), and plasma spray. In addition the team helped Piedmont Propulsion Systems, LLC (PPS) evaluate three potential solutions that could be deployed at different stages in the life cycle of aluminum alloy hubs, in addition to the conventional spray coating method for repair. For new hubs, a machining practice to prevent fretting with the steel drive shaft was recommended. For hubs that were refurbished with some material remaining above the minimal material condition (MMC), a silver interface applied by an electromagnetic pulse additive manufacturing method was recommended. For hubs that were at or below the MMC, a solid state additive manufacturing technique using ultrasonic welding (UW) of thin layers of 7075 aluminum to the hub interface was recommended. A cladding demonstration using the UW technique achieved mechanical bonding of the layers showing promise as a viable repair method.

  14. Speculative Betas


    Harrison Hong; David Sraer


    We provide a model for why high beta assets are more prone to speculative overpricing than low beta ones. When investors disagree about the common factor of cash-flows, high beta assets are more sensitive to this macro-disagreement and experience a greater divergence-of-opinion about their payoffs. Short-sales constraints for some investors such as retail mutual funds result in high beta assets being over-priced. When aggregate disagreement is low, expected return increases with beta due to r...

  15. Genetics Home Reference: beta-propeller protein-associated neurodegeneration (United States)

    ... signs and symptoms, affected individuals can live into middle age. Death may result from complications of dementia or ... What is precision medicine? What is newborn screening? New Pages RAB18 deficiency Depression Pelizaeus-Merzbacher-like disease ...

  16. Propeller Flaps: A Literature Review. (United States)

    Sisti, Andrea; D'Aniello, Carlo; Fortezza, Leonardo; Tassinari, Juri; Cuomo, Roberto; Grimaldi, Luca; Nisi, Giuseppe


    Since their introduction in 1991, propeller flaps are increasingly used as a surgical approach to loss of substance. The aim of this study was to evaluate the indications and to verify the outcomes and the complication rates using this reconstructing technique through a literature review. A search on PubMed was performed using "propeller flap", "fasciocutaneous flap", "local flap" or "pedicled flap" as key words. We selected clinical studies using propeller flaps as a reconstructing technique. We found 119 studies from 1991 to 2015. Overall, 1,315 propeller flaps were reported in 1,242 patients. Most frequent indications included loss of substance following tumor excision, repair of trauma-induced injuries, burn scar contractures, pressure sores and chronic infections. Complications were observed in 281/1242 patients (22.6%) occurring more frequently in the lower limbs (31.8%). Partial flap necrosis and venous congestion were the most frequent complications. The complications' rate was significantly higher in infants (70 years old) but there was not a significant difference between the sexes. Trend of complication rate has not improved during the last years. Propeller flaps showed a great success rate with low morbidity, quick recovery, good aesthetic outcomes and reduced cost. The quality and volume of the transferred soft tissue, the scar orientation and the possibility of direct donor site closure should be considered in order to avoid complications. Indications for propeller flaps are small- or medium-sized defects located in a well-vascularized area with healthy surrounding tissues. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  17. Laser-propelled ram accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Sasoh, A. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science


    The concept of 'laser-propelled ram accelerator (L-RAMAC)' is proposed. Theoretically it is capable of achieving a higher launch speed than that by a chemical ram accelerator because a higher specific energy can be input to the propellant gas. The laser beam is supplied through the muzzle, focused as an annulus behind the base of the projectile. The performance of L-RAMAC is analized based on generalized Rankine-Hugoniot relations, suggesting that a superorbital muzzle speed is achievable out of this device. (orig.)

  18. Large Propellant Tank Cryo-Cooler (LPTC) (United States)

    National Aeronautics and Space Administration — In rocket test and launch facilities, cryogenic propellants stored in tanks boils off due to heat leakage, with the following impacts:Ø   Waste, propellants boil off...

  19. Quadcopter thrust optimization with ducted-propeller

    Directory of Open Access Journals (Sweden)

    Kuantama Endrowednes


    Full Text Available In relation to quadcopter body frame model, propeller can be categorized into propeller with ducted and without ducted. This study present differences between those two using CFD (Computational Fluid Dynamics method. Both categories utilize two blade-propeller with diameter of 406 (mm. Propeller rotation generates acceleration per time unit on the volume of air. Based on the behavior of generated air velocity, ducted propeller can be modeled into three versions. The generated thrust and performance on each model were calculated to determine the best model. The use of ducted propeller increases the total weight of quadcopter and also total thrust. The influence of this modeling were analyzed in detail with variation of angular velocity propeller from 1000 (rpm to 9000 (rpm. Besides the distance between propeller tip and ducted barrier, the size of ducted is also an important part in thrust optimization and total weight minimization of quadcopter.

  20. Seawater Immersion of GEM II Propellant

    National Research Council Canada - National Science Library

    Merrill, Calude


    ... (% AP lost/week aged in seawater) and intercepts that depend on sample size. Friction and impact data on dried aged propellant samples showed no increased burning hazard compared with propellant not exposed to water...

  1. Non-linear analysis of solid propellant burning rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Junye Wang [Zhejiang Univ. of Technology, College of Mechanical and Electrical Engineering, Hanzhou (China)


    The parametric analysis of the thermal wave model of the non-steady combustion of solid propellants is carried out under a sudden compression. First, to observe non-linear effects, solutions are obtained using a computer under prescribed pressure variations. Then, the effects of rearranging the spatial mesh, additional points, and the time step on numerical solutions are evaluated. Finally, the behaviour of the thermal wave combustion model is examined under large heat releases (H) and a dynamic factor ({beta}). The numerical predictions show that (1) the effect of a dynamic factor ({beta}), related to the magnitude of dp/dt, on the peak burning rate increases as the value of beta increases. However, unsteady burning rate 'runaway' does not appear and will return asymptotically to ap{sup n}, when {beta}{>=}10.0. The burning rate 'runaway' is a numerical difficulty, not a solution to the models. (2) At constant beta and m, the amplitude of the burning rate increases with increasing H. However, the increase in the burning rate amplitude is stepwise, and there is no apparent intrinsic instability limit. A damped oscillation of burning rate occurs when the value of H is less. However, when H>1.0, the state of an intrinsically unstable model is composed of repeated, amplitude spikes, i.e. an undamped oscillation occurs. (3) The effect of the time step on the peak burning rate increases as H increases. (Author)

  2. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning


    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  3. Propelling arboriculture into the future (United States)

    E. Gregory McPherson


    Research is the engine that propels arboriculture and urban forestry into the future. New knowledge, technologies, and tools provide arborists with improved tree care practices that result in healthier urban forests. The ISA Science and Research Committee (SRC) is composed of 13 professionals and researchers who are dedicated to elevating the importance of research...

  4. Plasma ignition of LOVA propellants

    NARCIS (Netherlands)

    Driel, C.A. van; Boluijt, A.G.; Schilt, A.


    Ignition experiments were performed using a gun simulator which is equipped with a burst disk. This equipment facilitates the application of propellant loading densities which are comparable to those applied in regular ammunitions. For this study the gun simulator was equipped with a plasma jet


    International Nuclear Information System (INIS)

    Pan, Margaret; Chiang, Eugene


    'Propellers' in planetary rings are disturbances in ring material excited by moonlets that open only partial gaps. We describe a new type of co-orbital resonance that can explain the observed non-Keplerian motions of propellers. The resonance is between the moonlet underlying the propeller and co-orbiting ring particles downstream of the moonlet where the gap closes. The moonlet librates within the gap about an equilibrium point established by co-orbiting material and stabilized by the Coriolis force. In the limit of small libration amplitude, the libration period scales linearly with the gap azimuthal width and inversely as the square root of the co-orbital mass. The new resonance recalls but is distinct from conventional horseshoe and tadpole orbits; we call it the 'frog' resonance, after the relevant term in equine hoof anatomy. For a ring surface density and gap geometry appropriate for the propeller Bleriot in Saturn's A ring, our theory predicts a libration period of ∼4 years, similar to the ∼3.7 year period over which Bleriot's orbital longitude is observed to vary. These librations should be subtracted from the longitude data before any inferences about moonlet migration are made.

  6. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek


    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  7. Beta spectrometry

    International Nuclear Information System (INIS)

    Dryak, P.; Zderadicka, J.; Plch, J.; Kokta, L.; Novotna, P.


    For the purpose of beta spectrometry, a semiconductor spectrometer with one Si(Li) detector cooled with liquid nitrogen was designed. Geometrical detection efficiency is about 10% 4 sr. The achieved resolution for 624 keV conversion electrons of sup(137m)Ba is 2.6 keV (FWHM). A program was written in the FORTRAN language for the correction of the deformation of the measured spectra by backscattering in the analysis of continuous beta spectra. The method permits the determination of the maximum energy of the beta spectrum with an accuracy of +-5 keV. (author)

  8. Experimental research on air propellers (United States)

    Durand, William F


    The purposes of the experimental investigation on the performance of air propellers described in this report are as follows: (1) the development of a series of design factors and coefficients drawn from model forms distributed with some regularity over the field of air-propeller design and intended to furnish a basis of check with similar work done in other aerodynamic laboratories, and as a point of departure for the further study of special or individual types and forms; (2) the establishment of a series of experimental values derived from models and intended for later use as a basis for comparison with similar results drawn from certain selected full-sized forms and tested in free flight.

  9. Beta Blockers (United States)

    ... may not work as effectively for people of African heritage and older people, especially when taken without ... conditions/high-blood-pressure/in-depth/beta-blockers/ART-20044522 . Mayo Clinic Footer Legal Conditions and Terms ...

  10. A theoretical and experimental investigation of propeller performance methodologies (United States)

    Korkan, K. D.; Gregorek, G. M.; Mikkelson, D. C.


    This paper briefly covers aspects related to propeller performance by means of a review of propeller methodologies; presentation of wind tunnel propeller performance data taken in the NASA Lewis Research Center 10 x 10 wind tunnel; discussion of the predominent limitations of existing propeller performance methodologies; and a brief review of airfoil developments appropriate for propeller applications.

  11. The influence of the choice of propeller design tool on propeller performance


    Skåland, Edvard Knutsen


    In this master thesis different propeller design and analysis methods are presented and compared in terms of the accuracy and computational efficiency of their theory. These methods include lifting line, vortex lattice lifting surface and panel methods. A propeller design program based on lifting line theory was developed by the author. This program has been used together with the propeller design programs OpenProp and AKPD to make six propeller designs. The designs are based o...

  12. Propeller Test Facilities Â (United States)

    Federal Laboratory Consortium — Description: Three electrically driven whirl test stands are used to determine propeller (or other rotating device) performance at various rotational speeds. These...

  13. Nonsteady Combustion Mechanisms of Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn


    .... The individual tasks which we are studying will pursue solid propellant decomposition under unsteady conditions, nonsteady aspects of gas phase flame structure measurements, numerical modeling...

  14. Injection dynamics of gelled propellants (United States)

    Yoon, Changjin

    Gel propellants have been recognized as attractive candidates for future propulsion systems due to the reduced tendency to spill and the energy advantages over solid propellants. One of strong benefits emphasized in gel propellant applications is a throttling capability, but the accurate flow control is more complicated and difficult than with conventional Newtonian propellants because of the unique rheological behaviors of gels. This study is a computational effort directed to enhance understanding of the injector internal flow characteristics for gel propellants under rocket injection conditions. In simulations, the emphasized rheology is a shear-thinning which represents a viscosity decrease with increasing a shear rate. It is described by a generalized Newtonian fluid constitutive equation and Carreau-Yasuda model. Using this rheological model, two injection schemes are considered in the present study: axially-fed and cross-fed injection for single-element and multi-element impinging injectors, respectively. An axisymmetric model is developed to describe the axially-fed injector flows and fully three-dimensional model is utilized to simulate cross-fed injector flows. Under axially-fed injection conditions investigated, three distinct modes, an unsteady, steady, and hydraulic flip mode, are observed and mapped in terms of Reynolds number and orifice design. In an unsteady mode, quasi-periodic oscillations occur near the inlet lip leading mass pulsations and viscosity fluctuations at the orifice exit. This dynamic behavior is characterized using a time-averaged discharge coefficient, oscillation magnitude and frequency by a parametric study with respect to an orifice design, Reynolds number and rheology. As a result, orifice exit flows for gel propellants appear to be significantly influenced by a viscous damping and flow resistance due to a shear thinning behavior and these are observed in each factors considered. Under conditions driven by a manifold crossflow

  15. High burn rate solid composite propellants (United States)

    Manship, Timothy D.

    High burn rate propellants help maintain high levels of thrust without requiring complex, high surface area grain geometries. Utilizing high burn rate propellants allows for simplified grain geometries that not only make production of the grains easier, but the simplified grains tend to have better mechanical strength, which is important in missiles undergoing high-g accelerations. Additionally, high burn rate propellants allow for a higher volumetric loading which reduces the overall missile's size and weight. The purpose of this study is to present methods of achieving a high burn rate propellant and to develop a composite propellant formulation that burns at 1.5 inches per second at 1000 psia. In this study, several means of achieving a high burn rate propellant were presented. In addition, several candidate approaches were evaluated using the Kepner-Tregoe method with hydroxyl terminated polybutadiene (HTPB)-based propellants using burn rate modifiers and dicyclopentadiene (DCPD)-based propellants being selected for further evaluation. Propellants with varying levels of nano-aluminum, nano-iron oxide, FeBTA, and overall solids loading were produced using the HTPB binder and evaluated in order to determine the effect the various ingredients have on the burn rate and to find a formulation that provides the burn rate desired. Experiments were conducted to compare the burn rates of propellants using the binders HTPB and DCPD. The DCPD formulation matched that of the baseline HTPB mix. Finally, GAP-plasticized DCPD gumstock dogbones were attempted to be made for mechanical evaluation. Results from the study show that nano-additives have a substantial effect on propellant burn rate with nano-iron oxide having the largest influence. Of the formulations tested, the highest burn rate was a 84% solids loading mix using nano-aluminum nano-iron oxide, and ammonium perchlorate in a 3:1(20 micron: 200 micron) ratio which achieved a burn rate of 1.2 inches per second at 1000

  16. 78 FR 4038 - Critical Parts for Airplane Propellers (United States)


    ... manufacturers are not required to provide information concerning propeller critical part design, manufacture, or... engineering, manufacturing, and service management processes should provide clear information for propeller... manufacture critical parts for airplane propellers update their manuals to record engineering, manufacture...

  17. KAPPEL Propeller. Development of a Marine Propeller with Non-planar Lifting Surfaces

    DEFF Research Database (Denmark)

    Kappel, J.; Andersen, Poul


    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or "winglet" at the wingtip has been developed for aircraft, the application of the non-planar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved towards the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental and practical approach to develop and design marine propellers with non-planar lifting surfaces has resulted in propellers...

  18. Supercritical Fluid Processing of Propellant Polymers (United States)


    of insoluble material present in the polymeric neopentyl glycol azelate (NPGA) binder. Laub (2) summarizes (from Refs 3 & 4) the various polymeric...binders used in composite propellant formulations for DOD missile systems. e.g., these include: polyneopentyl glycol azelate (NPGA) in HAWK. Composite smokeless propellants containing polyethylene glycol (PEG), polyethylene glycol adepate (PEGA) and polycaprolactone are currently under

  19. Development of hydrazinium nitroformate based solid propellants

    NARCIS (Netherlands)

    Schöyer, H.F.R.; Schnorhk, A.J.; Korting, P.A.O.G.; Lit, P.J. van; Mul, J.M.; Gadiot, G.; Meulenbrugge, J.J.


    The development of new high-performance propellant combinations requires the establishment of safety and handling characteristics and thermodynamic decomposition and explosive properties. This paper addresses the early development phases of a new composite solid propellant based on HNF as oxidizer

  20. Green plasticizers for multibase gun propellants (Lecture)

    NARCIS (Netherlands)

    Schoolderman, C.; Driel, C.A. van; Zebregs, M.


    TNO Defence, Security and Safety has a long history of research on gun propellants. Areas investigated are formulating (new ingredients, optimization), manufacturing, charge design and lifetime assessment [1,2,3,4,5]. In conventional propellants inert plasticizers are used to alter performance,

  1. Toxicity of aerosol propellants in the respiratory and circulatory systems. VI. Influence of cardiac and pulmonary vascular lesions in the rat. (United States)

    Doherty, R E; Aviado, D M


    Three propellants were selected for investigation in rats because of their non-uniform effect in mice and monkeys. Trichlorofluoromethane (FC 11) provoked arrhythmia in all three animal species, dichlorodifluoromethane (FC 12) in monkeys and rats but not in mice, and difluoroethane (FC 152a) only in rats. In rats the alterations in heart rate and electrocardiographic pattern during inhalation of these propellants are largely brought about by release of catecholamines from the adrenal gland, because adrenalectomy or prior injection of beta-adrenergic blocking drugs decreased the incidence of cardiac effects. Rats that have pulmonary vascular thrombosis or cardiac necrosis become more sensitive to proarrhythmic activity of these propellants.

  2. Tests on thirteen navy type model propellers (United States)

    Durand, W F


    The tests on these model propellers were undertaken for the purpose of determining the performance coefficients and characteristics for certain selected series of propellers of form and type as commonly used in recent navy designs. The first series includes seven propellers of pitch ratio varying by 0.10 to 1.10, the area, form of blade, thickness, etc., representing an arbitrary standard propeller which had shown good results. The second series covers changes in thickness of blade section, other things equal, and the third series, changes in blade area, other things equal. These models are all of 36-inch diameter. Propellers A to G form the series on pitch ratio, C, N. I. J the series on thickness of section, and K, M, C, L the series on area. (author)

  3. Small-Scale Shock Testing of Propellants and Ingredients

    National Research Council Canada - National Science Library

    Dawley, S


    .... The use of small-scale gap testing to evaluate the shock sensitivity of individual propellant ingredients and propellant formulations is a valuable method for experimentally establishing shock...

  4. Structure of Partially Premixed Flames and Advanced Solid Propellants

    National Research Council Canada - National Science Library

    Branch, Melvyn


    The combustion of solid rocket propellants of advanced energetic materials involves a complex process of decomposition and condensed phase reactions in the solid propellant, gaseous flame reactions...

  5. A Study of Flame Physics and Solid Propellant Rocket Physics

    National Research Council Canada - National Science Library

    Buckmaster, John


    ..., the combustion of heterogeneous propellants containing aluminum, the use of a genetic algorithm to optimally define false-kinetics parameters in propellant combustion modeling, the calculation of fluctuations...

  6. Mars Ascent Vehicle-Propellant Aging (United States)

    Dankanich, John; Rousseau, Jeremy; Williams, Jacob


    This project is to develop and test a new propellant formulation specifically for the Mars Ascent Vehicle (MAV) for the robotic Mars Sample Return mission. The project was initiated under the Planetary Sciences Division In-Space Propulsion Technology (ISPT) program and is continuing under the Mars Exploration Program. The two-stage, solid motor-based MAV has been the leading MAV solution for more than a decade. Additional studies show promise for alternative technologies including hybrid and bipropellant options, but the solid motor design has significant propellant density advantages well suited for physical constraints imposed while using the SkyCrane descent stage. The solid motor concept has lower specific impulse (Isp) than alternatives, but if the first stage and payload remain sufficiently small, the two-stage solid MAV represents a potential low risk approach to meet the mission needs. As the need date for the MAV slips, opportunities exist to advance technology with high on-ramp potential. The baseline propellant for the MAV is currently the carboxyl terminated polybutadiene (CTPB) based formulation TP-H-3062 due to its advantageous low temperature mechanical properties and flight heritage. However, the flight heritage is limited and outside the environments, the MAV must endure. The ISPT program competed a propellant formulation project with industry and selected ATK to develop a new propellant formulation specifically for the MAV application. Working with ATK, a large number of propellant formulations were assessed to either increase performance of a CTPB propellant or improve the low temperature mechanical properties of a hydroxyl terminated polybutadiene (HTPB) propellant. Both propellants demonstrated potential to increase performance over heritage options, but an HTPB propellant formulation, TP-H-3544, was selected for production and testing. The test plan includes propellant aging first at high vacuum conditions, representative of the Mars transit

  7. New Delivery Systems and Propellants

    Directory of Open Access Journals (Sweden)

    Myrna Dolovich


    Full Text Available The removal of chlorofluorocarbon (CFC propellants from industrial and household products has been agreed to by over 165 countires of which more than 135 are developing countries. The timetable for this process is outlined in the Montreal Protocol on Substances that Deplete the Ozone Layer document and in several subsequent amendments. Pressured metered dose inhalers (pMDIs for medical use have been granted temporary exemptions until replacement formulations, providing the same medication via the same route, and with the same efficacy and safety profiles, are approved for human use. Hydrofluoroalkanes (HFAs are the alternative propellants for CFCs-12 and -114. Their potential for damage to the ozone layer is nonexistent, and while they are greenhouse gases, their global warming potential is a fraction (one-tenth of that of CFCs. Replacement formulations for almost all inhalant respiratory medications have been or are being produced and tested; in Canada, it is anticipated that the transition to these HFA or CFC-free pMDIs will be complete by the year 2005. Initially, an HFA pMDI was to be equivalent to the CFC pMDI being replaced, in terms of aerosol properties and effective clinical dose. However, this will not necessarily be the situation, particularly for some corticosteroid products. Currently, only one CFC-free formulation is available in Canada – Airomir, a HFA salbutamol pMDI. This paper discusses the in vitro aerosol characteristics, in vivo deposition and clinical data for several HFA pMDIs for which there are data available in the literature. Alternative delivery systems to the pMDI, namely, dry powder inhalers and nebulizers, are briefly reviewed.

  8. Energy coefficients for a propeller series

    DEFF Research Database (Denmark)

    Olsen, Anders Smærup


    The efficiency for a propeller is calculated by energy coefficients. These coefficients are related to four types of losses, i.e. the axial, the rotational, the frictional, and the finite blade number loss, and one gain, i.e. the axial gain. The energy coefficients are derived by use...... of the potential theory with the propeller modelled as an actuator disk. The efficiency based on the energy coefficients is calculated for a propeller series. The results show a good agreement between the efficiency based on the energy coefficients and the efficiency obtained by a vortex-lattice method....

  9. Noise from Two-Blade Propellers (United States)

    Stowell, E Z; Deming, A F


    The two-blade propeller, one of the most powerful sources of sound known, has been studied with the view of obtaining fundamental information concerning the noise emission. In order to eliminate engine noise, the propeller was mounted on an electric motor. A microphone was used to pick up the sound whose characteristics were studied electrically. The distribution of noise throughout the frequency range, as well as the spatial distribution about the propeller, was studied. The results are given in the form of polar diagrams. An appendix of common acoustical terms is included.

  10. Experimental Research on Air Propellers III (United States)

    Durand, W F; Lesley, E P


    Report presents the results of wind tunnel tests of propellers that examined the influence of the following characteristics: (1) nominal pitch ratio 1.3 combined with a certain number of the more common or standard forms and proportions; (2) driving face slightly rounded or convex; (3) change in the location of the maximum thickness ordinate of the blade section; (4) pushing forward the leading edge of the blade, thus giving a rounded convex surface on the leading side of the driving face. (5) a series of values for the constant "angle of attack" in forming propellers with radially increasing pitch. In accordance with these purposes tests were carried out on 28 propellers.

  11. Shuttle APS propellant thermal conditioner study (United States)

    Pearson, W. E.


    A study program was performed to allow selection of thermal conditioner assemblies for superheating O2 and H2 at supercritical pressures. The application was the auxiliary propulsion system (APS) for the space shuttle vehicle. The O2/H2 APS propellant feed system included propellant conditioners, of which the thermal conditioner assemblies were a part. Cryogens, pumped to pressures above critical, were directed to the thermal conditioner assembly included: (1) a gas generator assembly with ignition system and bipropellant valves, which burned superheated O2 and H2 at rich conditions; (2) a heat exchanger assembly for thermal conditioning of the cryogenic propellant; and (3) a dump nozzle for heat exchanger exhaust.

  12. 14 CFR 35.23 - Propeller control system. (United States)


    ... propeller effect under the intended operating conditions. (4) The failure or corruption of data or signals... corruption of airplane-supplied data does not result in hazardous propeller effects. (e) The propeller... effect. (2) Failures or malfunctions directly affecting the propeller control system in a typical...

  13. Development and implementation of a propeller test capability for GL-10 "Greased Lightning" propeller design (United States)

    Duvall, Brian Edward

    Interest in small unmanned aerial vehicles has increased dramatically in recent years. Hybrid vehicles which allow forward flight as a fixed wing aircraft and a true vertical landing capability have always had applications. Management of the available energy and noise associated with electric propeller propulsion systems presents many challenges. NASA Langley has developed the Greased Lightning 10 (GL-10) vertical takeoff, unmanned aerial vehicle with ten individual motors and propellers. All are used for propulsion during takeoff and contribute to acoustic noise pollution which is an identified nuisance to the surrounding users. A propeller test capability was developed to gain an understanding of how the noise can be reduced while meeting minimum thrust requirements. The designed propeller test stand allowed for various commercially available propellers to be tested for potential direct replacement of the current GL-10 propellers and also supported testing of a newly designed propeller provided by the Georgia Institute of Technology. Results from the test program provided insight as to which factors affect the noise as well as performance characteristics. The outcome of the research effort showed that the current GL-10 propeller still represents the best choice of all the candidate propellers tested.

  14. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    International Nuclear Information System (INIS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Wan Ali, Wan Khairuddin


    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  15. Alternate Propellant Thermal Rocket, Phase I (United States)

    National Aeronautics and Space Administration — The Alternate Propellant Thermal Rocket (APTR) is a novel concept for propulsion of space exploration or orbit transfer vehicles. APTR propulsion is provided by...

  16. The PROPEL Electrodynamic Tether Demonstration Mission (United States)

    Bilen, Sven G.; Johnson, C. Les; Wiegmann, Bruce M.; Alexander, Leslie; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael


    The PROPEL ("Propulsion using Electrodynamics") mission will demonstrate the operation of an electrodynamic tether propulsion system in low Earth orbit and advance its technology readiness level for multiple applications. The PROPEL mission has two primary objectives: first, to demonstrate the capability of electrodynamic tether technology to provide robust and safe, near-propellantless propulsion for orbit-raising, de-orbit, plane change, and station keeping, as well as to perform orbital power harvesting and formation flight; and, second, to fully characterize and validate the performance of an integrated electrodynamic tether propulsion system, qualifying it for infusion into future multiple satellite platforms and missions with minimal modification. This paper provides an overview of the PROPEL system and design reference missions; mission goals and required measurements; and ongoing PROPEL mission design efforts.

  17. In-Space Manufacture of Storable Propellants (United States)

    National Aeronautics and Space Administration — Many deep-space, missions, especially those that return material or crews to near-Earth space, are severely limited by the need to carry propellants and heat shields...

  18. Nuclear thermal rockets using indigenous Martian propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.


    This paper considers a novel concept for a Martian descent and ascent vehicle, called NIMF (for nuclear rocket using indigenous Martian fuel), the propulsion for which will be provided by a nuclear thermal reactor which will heat an indigenous Martian propellant gas to form a high-thrust rocket exhaust. The performance of each of the candidate Martian propellants, which include CO2, H2O, CH4, N2, CO, and Ar, is assessed, and the methods of propellant acquisition are examined. Attention is also given to the issues of chemical compatibility between candidate propellants and reactor fuel and cladding materials, and the potential of winged Mars supersonic aircraft driven by this type of engine. It is shown that, by utilizing the nuclear landing craft in combination with a hydrogen-fueled nuclear thermal interplanetary vehicle and a heavy lift booster, it is possible to achieve a manned Mars mission in one launch. 6 refs

  19. Propeller performance analysis using lifting line theory


    Flood, Kevin M.


    CIVINS (Civilian Institutions) Thesis document Approved for public release ; distribution is unlimited Propellers are typically optimized to provide the maximum thrust for the minimum torque at a specific number of revolutions per minute (RPM) at a particular ship speed. This process allows ships to efficiently travel at their design speed. However, it is useful to know how the propeller performs during off-design conditions. This is especially true for naval warships whose missions req...

  20. Propellant selection for ramjets with solid fuel

    Energy Technology Data Exchange (ETDEWEB)

    Schmucker, R H; Lips, H


    Ramjet propulsion using solid propellant for post-boost acceleration of missiles exhibits several favorable properties, brought about by heterogeneous combustion. A simplified theory for calculating the performance of possible propellants is presented, and they are classified with respect to maximum fuel-specific impulse. The optimal choice of fuel, from a system standpoint, must consider volume constraints, and defines the requirements for motor geometry.

  1. HMX based enhanced energy LOVA gun propellant

    Energy Technology Data Exchange (ETDEWEB)

    Sanghavi, R.R. [High Energy Materials Research Laboratory, Pune 411021 (India)]. E-mail:; Kamale, P.J. [High Energy Materials Research Laboratory, Pune 411021 (India); Shaikh, M.A.R. [High Energy Materials Research Laboratory, Pune 411021 (India); Shelar, S.D. [High Energy Materials Research Laboratory, Pune 411021 (India); Kumar, K. Sunil [High Energy Materials Research Laboratory, Pune 411021 (India); Singh, Amarjit [High Energy Materials Research Laboratory, Pune 411021 (India)


    Efforts to develop gun propellants with low vulnerability have recently been focused on enhancing the energy with a further improvement in its sensitivity characteristics. These propellants not only prevent catastrophic disasters due to unplanned initiation of currently used gun propellants (based on nitrate esters) but also realize enhanced energy levels to increase the muzzle velocity of the projectiles. Now, in order to replace nitroglycerine, which is highly sensitive to friction and impact, nitramines meet the requirements as they offer superior energy due to positive heat of formation, typical stoichiometry with higher decomposition temperatures and also owing to negative oxygen balance are less sensitive than stoichiometrically balanced NG. RDX has been widely reported for use in LOVA propellant. In this paper we have made an effort to present the work on scantily reported nitramine HMX based LOVA gun propellant while incorporating energetic plasticizer glycidyl azide polymer to enhance the energy level. HMX is known to be thermally stable at higher temperature than RDX and also proved to be less vulnerable to small scale shaped charge jet attack as its decomposition temperature is 270 deg. C. HMX also offers improved impulse due to its superior heat of formation (+17 kcal/mol) as compared to RDX (+14 kcal/mol). It has also been reported that a break point will not appear until 35,000 psi for propellant comprising of 5 {mu}m HMX. Since no work has been reported in open literature regarding replacement of RDX by HMX, the present studies were carried out.

  2. Propeller installation effects on turboprop aircraft acoustics (United States)

    Chirico, Giulia; Barakos, George N.; Bown, Nicholas


    Propeller installation options for a twin-engined turboprop aircraft are evaluated at cruise conditions, aiming to identify the quieter configuration. Computational fluid dynamics is used to investigate the near-field acoustics and transfer functions are employed to estimate the interior cabin noise. Co-rotating and counter-rotating installation options are compared. The effect of propeller synchrophasing is also considered. The employed method captures the complexity of the acoustic field generated by the interactions of the propeller sound fields among each other and with the airframe, showing also the importance of simulating the whole problem to predict the actual noise on a flying aircraft. Marked differences among the various layouts are observed. The counter-rotating top-in option appears the best in terms of acoustics, the top-out propeller rotation leading to louder noise because of inflow conditions and the occurrence of constructive acoustic interferences. Synchrophasing is shown to be beneficial for co-rotating propellers, specially regarding the interior noise, because of favorable effects in the interaction between the propeller direct sound field and the noise due to the airframe. An angle closer to the maximum relative blade shift was found to be the best choice, yielding, however, higher sound levels than those provided by the counter-rotating top-in layout.

  3. Cavitation noise studies on marine propellers (United States)

    Sharma, S. D.; Mani, K.; Arakeri, V. H.


    Experimental observations are described of cavitation inception and noise from five model propellers, three basic and two modified, tested in the open jet section of the Indian Institute of Science high-speed water tunnel facility. Extensive experiments on the three basic propellers of different design, which included visualization of cavitation and measurements of noise, showed that the dominant type of cavitation was in the form of tip vortex cavitation, accompanied by leading edge suction side sheet cavitation in its close vicinity, and the resultant noise depended on parameters such as the advance coefficient, the cavitation number, and the propeller geometry. Of these, advance coefficient was found to have the maximum influence not only on cavitation noise but also on the inception of cavitation. Noise levels and frequencies of spectra obtained from all the three basic propellers at conditions near inception and different advance coefficient values, when plotted in the normalized form as suggested by Blake, resulted in a universal spectrum which would be useful for predicting cavitation noise at prototype scales when a limited extent of cavitation is expected in the same form as observed on the present models. In an attempt to delay the onset of tip vortex cavitation, the blades of two of the three basic propellers were modified by drilling small holes in the tip and leading edge areas. Studies on the modified propellers showed that the effectiveness of the blade modification was apparently stronger at low advance coefficient values and depended on the blade sectional profile. Measurements of cavitation noise indicated that the modification also improved the acoustic performance of the propellers as it resulted in a complete attenuation of the low-frequency spectral peaks, which were prominent with the basic propellers. In addition to the above studies, which were conducted under uniform flow conditions, one of the basic propellers was tested in the simulated

  4. Propeller and inflow vortex interaction : vortex response and impact on the propeller performance

    NARCIS (Netherlands)

    Yang, Y.; Zhou, T; Sciacchitano, A.; Veldhuis, L.L.M.; Eitelberg, G.


    The aerodynamic operating conditions of a propeller can include complex situations where vorticity from sources upstream can enter the propeller plane. In general, when the vorticity enters in a concentrated form of a vortex, the interaction between the vortex and blade is referred to as

  5. Thermal Vacuum Test Correlation of a Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytical Model (United States)

    Mckim, Stephen A.


    This thesis describes the development and correlation of a thermal model that forms the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented are presented. The thermal model was correlated to within plus or minus 3 degrees Celsius of the thermal vacuum test data, and was determined sufficient to make future propellant predictions on MMS. The model was also found to be relatively sensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed to improve temperature predictions in the upper hemisphere of the propellant tank where predictions were found to be 2 to 2.5 C lower than the test data. A road map for applying the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  6. Advances in LO2 Propellant Conditioning (United States)

    Mehta, Gopal; Orth, Michael; Stone, William; Perry, Gretchen; Holt, Kimberly; Suter, John


    This paper describes the cryogenic testing and analysis that has recently been completed as part of a multi-year effort to develop a new, more robust and operable LO2 propellant conditioning system. Phase 1 of the program consisted of feasibility demonstrations ot four novel propellant conditioning concepts. A no-bleed, passive propellant conditioning option was shown for the first time to successfully provide desired propellant inlet conditions. The benefits of passive conditioning are reduced operations costs, decreased hardware costs, enhanced operability and increased reliability on future expendable launch vehicles In Phase 2 of the test program, effects of major design parameters were studied and design correlation for future vehicle design were developed. Simultaneously, analytical models were developed and validated. Over 100 tests were conducted with a full-scale feedline using LN2 as the test fluid. A circulation pump provided a range of pressure and flow conditions. The test results showed that the passive propellant conditioning system is insensitive to variations in many of the parameters. The test program provides the validation necessary to incorporate the passive conditioning system into the baseline of future vehicles. Modeling of these systems using computational fluid dynamics seems highly promising.

  7. Heat transfer in heterogeneous propellant combustion systems

    International Nuclear Information System (INIS)

    Brewster, M.Q.


    This paper reports that heat transfer plays an important role in several critical areas of heterogeneous, solid-propellant combustion systems. These areas include heat feedback to the propellant surface, heat transfer between burning aluminum droplets and their surroundings, heat transfer to internal insulation systems, and heat transfer to aft-end equipment. Gas conduction dominates heat feedback to the propellant surface in conventional ammonium perchlorate (AP) composite propellants, although particle radiative feedback also plays a significant role in combustion of metalized propellants. Particle radiation plays a dominant role in heat transfer to internal insulation, compared with that of convection. However, conduction by impingement of burning aluminum particles, which has not been extensively studied, may also be significant. Radiative heat loss plays an important role in determining the burning rate of molten aluminum particles due to a highly luminous, oxide particle-laden, detached flame envelope. Radiation by aluminum oxide smoke particles also plays a dominant role in heat transfer from the exhaust plume to aft-end equipment. Uncertainties in aluminum oxide particle-size distribution and optical properties still make it difficult to predict radiative plume heat transfer accurately from first principles

  8. In-Space Propellant Production Using Water (United States)

    Notardonato, William; Johnson, Wesley; Swanger, Adam; McQuade, William


    A new era of space exploration is being planned. Manned exploration architectures under consideration require the long term storage of cryogenic propellants in space, and larger science mission directorate payloads can be delivered using cryogenic propulsion stages. Several architecture studies have shown that in-space cryogenic propulsion depots offer benefits including lower launch costs, smaller launch vehicles, and enhanced mission flexibility. NASA is currently planning a Cryogenic Propellant Storage and Transfer (CPST) technology demonstration mission that will use existing technology to demonstrate long duration storage, acquisition, mass gauging, and transfer of liquid hydrogen in low Earth orbit. This mission will demonstrate key technologies, but the CPST architecture is not designed for optimal mission operations for a true propellant depot. This paper will consider cryogenic propellant depots that are designed for operability. The operability principles considered are reusability, commonality, designing for the unique environment of space, and use of active control systems, both thermal and fluid. After considering these operability principles, a proposed depot architecture will be presented that uses water launch and on orbit electrolysis and liquefaction. This could serve as the first true space factory. Critical technologies needed for this depot architecture, including on orbit electrolysis, zero-g liquefaction and storage, rendezvous and docking, and propellant transfer, will be discussed and a developmental path forward will be presented. Finally, use of the depot to support the NASA Science Mission Directorate exploration goals will be presented.

  9. Heterogeneous propellant internal ballistics: criticism and regeneration (United States)

    Glick, R. L.


    Although heterogeneous propellant and its innately nondeterministic, chemically discrete morphology dominates applications, ballisticcharacterization deterministic time-mean burning rate and acoustic admittance measures' absence of explicit, nondeterministic information requires homogeneous propellant with a smooth, uniformly regressing burning surface: inadequate boundary conditions for heterogeneous propellant grained applications. The past age overcame this dichotomy with one-dimensional (1D) models and empirical knowledge from numerous, adequately supported motor developments and supplementary experiments. However, current cost and risk constraints inhibit this approach. Moreover, its fundamental science approach is more sensitive to incomplete boundary condition information (garbage-in still equals garbage-out) and more is expected. This work critiques this situation and sketches a path forward based on enhanced ballistic and motor characterizations in the workplace and approximate model and apparatus developments mentored by CSAR DNS capabilities (or equivalent).

  10. Design and simulation on the morphing composite propeller (Conference Presentation) (United States)

    Chen, Fanlong; Li, Qinyu; Liu, Liwu; Lan, Xin; Liu, Yanju; Leng, Jinsong


    As one of the most crucial part of the unmanned underwater vehicle (UUV), the composite propeller plays an important role on the UUV's performance. As the composite propeller behaves excellent properties in hydroelastic facet and acoustic suppression, it attracts increasing attentions all over the globe. This paper goes a step further based on this idea, and comes up with a novel concept of "morphing composite propeller" (MCP) to improve the performance of the conventional composite propeller (CCP) to anticipate the improved propeller can perform better to propel the UUV. Based on the new concept, a novel MCP is designed. Each blade of the propeller is assembled with an active rotatable flap (ARF) to change the blade's local camber with flap rotation. Then the transmission mechanism (TM) has been designed and housed in the propeller blade to push the ARF. With the ARF rotating, the UUV can be propelled by different thrusts under certain rotation velocities of the propeller. Based on the design, the Fluent is exploited to analyze the fluid dynamics around the propeller. Finally, based on the design and hydrodynamic analysis, the structural response for the novel morphing composite propeller is calculated. The propeller blade is simplified and layered with composite materials. And the structure response of an MCP is obtained with various rotation angle under the hydrodynamic pressure. This simulation can instruct the design and fabrication techniques of the MCP.

  11. Beta Emission and Bremsstrahlung

    Energy Technology Data Exchange (ETDEWEB)

    Karpius, Peter Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Bremsstrahlung is continuous radiation produced by beta particles decelerating in matter; different beta emitters have different endpoint energies; high-energy betas interacting with high-Z materials will more likely produce bremsstrahlung; depending on the data, sometimes all you can say is that a beta emitter is present.

  12. CFD simulation on Kappel propeller with a hull wake field

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul; Møller Bering, Rasmus


    Marine propellers are designed not for the open-water operation, but for the operation behind a hull due to the inhomogeneous hull wake and thrust deduction. The adaptation for the hull wake is important for the propulsive efficiency and cavitation risk especially on single-screw ships. CFD...... simulations for a propeller with a hull model have showed acceptable agreement with a model test result in the thrust and torque (Larsson et al. 2010). In the current work, a measured hull wake is applied to the simulation instead of modelling a hull, because the hull geometry is mostly not available...... for propeller designers and the computational effort can be reduced by excluding the hull. The CFD simulation of a propeller flow with a hull wake is verified in order to use CFD as a propeller design tool. A Kappel propeller, which is an innovative tip-modified propeller, is handled. Kappel propellers...

  13. Process for the leaching of AP from propellant (United States)

    Shaw, G. C.; Mcintosh, M. J. (Inventor)


    A method for the recovery of ammonium perchlorate from waste solid rocket propellant is described wherein shredded particles of the propellant are leached with an aqueous leach solution containing a low concentration of surface active agent while stirring the suspension.

  14. Neural Network Predictions of the 4-Quadrant Wageningen Propeller Series

    National Research Council Canada - National Science Library

    Roddy, Robert F; Hess, David E; Faller, Will


    .... This report describes the development of feedforward neural network (FFNN) predictions of four-quadrant thrust and torque behavior for the Wageningen B-Screw Series of propellers and for two Wageningen ducted propeller series...

  15. Innovative Swirl Injector for LOX and Hydrocarbon Propellants, Phase I (United States)

    National Aeronautics and Space Administration — Gases trapped in the propellant feed lines of space-based rocket engines due to cryogenic propellant boil-off or pressurant ingestion can result in poor combustion...

  16. Propellant Gelation for Green In-Space Propulsion, Phase I (United States)

    National Aeronautics and Space Administration — Concerns in recent years about the toxicity and safe handling of the storable class of propellants have led to efforts in greener monopropellants and bi-propellants....

  17. Ionic liquid propellants: future fuels for space propulsion. (United States)

    Zhang, Qinghua; Shreeve, Jean'ne M


    Use of green propellants is a trend for future space propulsion. Hypergolic ionic liquid propellants, which are environmentally-benign while exhibiting energetic performances comparable to hydrazine, have shown great potential to meet the requirements of developing nontoxic high-performance propellant formulations for space propulsion applications. This Concept article presents a review of recent advances in the field of ionic liquid propellants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Changing of ballistic parameters from aged gun propellants

    NARCIS (Netherlands)

    Klerk, W.P.C. de; Driel, C.A. van


    The various properties of an SB and a DB gun propellant were investigated before and after artificial ageing. It was found that the decrease of nitrocellulose (NC) molecular weight, due to ageing of gun propellants, leads to a decrease of the mechanical integrity of the propellant grains. The effect

  19. Burning properties and mechanical integrity of aged gun propellants

    NARCIS (Netherlands)

    Driel, C.A. van; Klerk, W.P.C. de


    Conventional gun propellants exhibit the phenomenon of nitrocellulose (NC) decomposition. Besides an effect on thermal stability of propellants, decomposition of NC has an effect on the mechanical integrity of the propellant grains. Enhanced grain fracture may lead to unacceptable changes of the

  20. 14 CFR 25.907 - Propeller vibration and fatigue. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller vibration and fatigue. 25.907... vibration and fatigue. This section does not apply to fixed-pitch wood propellers of conventional design. (a... propeller to show that failure due to fatigue will be avoided throughout the operational life of the...

  1. 14 CFR 23.907 - Propeller vibration and fatigue. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Propeller vibration and fatigue. 23.907... General § 23.907 Propeller vibration and fatigue. This section does not apply to fixed-pitch wood... evaluation of the propeller to show that failure due to fatigue will be avoided throughout the operational...

  2. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)



    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  3. Spray and Combustion of Gelled Hypergolic Propellants (United States)


    moisture absorption on the fumed silica surface correlates directly to the ambient humidity , and can reach 12% by weight at an atmospheric humidity of...propellant interface, the liquid at the interface can be heated to the homogeneous vapor nucleation temperature rather than the boiling point. At this

  4. Atmospheric surveillance self-propelling device

    International Nuclear Information System (INIS)

    Cartoux, Gerard.


    The atmospheric surveillance self-propelling device of the Saclay Nuclear Research Center can, by its conception (autonomy, rapid put into service, multiplicity of sampling and measurements), be used for all kind of measuring campains: pollution radioactive or not, routine or accidental situation, technical and logistic support and as a coordination or investigation vehicle [fr

  5. 75 FR 12148 - Airworthiness Directives; Ontic Engineering and Manufacturing, Inc. Propeller Governors, Part... (United States)


    ... propeller pitch by regulating oil pressure to the propeller pitch change mechanism. Changes in governor oil..., the propeller governor cannot control oil pressure to the propeller pitch control mechanism. This... proposing this AD to prevent loss of propeller pitch control, damage to the propeller governor, and internal...

  6. Space Transportation Infrastructure Supported By Propellant Depots (United States)

    Smitherman, David; Woodcock, Gordon


    A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.

  7. Propellant Slosh Force and Mass Measurement

    Directory of Open Access Journals (Sweden)

    Andrew Hunt


    Full Text Available We have used electrical capacitance tomography (ECT to instrument a demonstration tank containing kerosene and have successfully demonstrated that ECT can, in real time, (i measure propellant mass to better than 1% of total in a range of gravity fields, (ii image propellant distribution, and (iii accurately track propellant centre of mass (CoM. We have shown that the ability to track CoM enables the determination of slosh forces, and we argue that this will result in disruptive changes in a propellant tank design and use in a spacecraft. Ground testing together with real-time slosh force data will allow an improved tank design to minimize and mitigate slosh forces, while at the same time keeping the tank mass to a minimum. Fully instrumented Smart Tanks will be able to provide force vector inputs to a spacecraft inertial navigation system; this in turn will (i eliminate or reduce navigational errors, (ii reduce wait time for uncertain slosh settling, since actual slosh forces will be known, and (iii simplify slosh control hardware, hence reducing overall mass. ECT may be well suited to space borne liquid measurement applications. Measurements are independent of and unaffected by orientation or levels of g. The electronics and sensor arrays can be low in mass, and critically, the technique does not dissipate heat into the propellant, which makes it intrinsically safe and suitable for cryogenic liquids. Because of the limitations of operating in earth-bound gravity, it has not been possible to check the exact numerical accuracy of the slosh force acting on the vessel. We are therefore in the process of undertaking a further project to (i build a prototype integrated “Smart Tank for Space”, (ii undertake slosh tests in zero or microgravity, (iii develop the system for commercial ground testing, and (iv qualify ECT for use in space.

  8. Development of a Marine Propeller With Nonplanar Lifting Surfaces

    DEFF Research Database (Denmark)

    Andersen, Poul; Friesch, Jürgen; Kappel, Jens J.


    The principle of non-planar lifting surfaces is applied to the design of modern aircraft wings to obtain better lift to drag ratios. Whereas a pronounced fin or winglet at the wingtip has been developed for aircraft, the application of the nonplanar principle to marine propellers, dealt...... with in this paper, has led to the KAPPEL propeller with blades curved toward the suction side integrating the fin or winglet into the propeller blade. The combined theoretical, experimental, and practical approach to develop and design marine propellers with nonplanar lifting surfaces has resulted in propellers...

  9. Investigation on utilization of liquid propellant in ballistic range experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saso, Akihiro; Oba, Shinji; Takayama, Kazuyoshi [Tohoku University, Sendai (Japan)


    Experiments were conducted in a ballistic range using a HAN (hydroxylammonium nitrate)-based liquid monopropellant, LP1846. In a 25-mm-bore single-stage gun, using bulk-loaded propellant of 10 to 35 g, a muzzle speed up to 1.0 km/s was obtained. Time variations of propellant chamber pressures and in-tube projectile velocity profiles were measured. The liquid propellant combustion was initiated accompanying a delay time which was created due to the pyrolysis of the propellant. In order to obtain reliable ballistic range performance, the method of propellant loading was revealed to be critical. Since the burning rate of the liquid propellant is relatively low, the peak acceleration and the muzzle speed strongly depend on the rupture pressure of a diaphragm that was inserted between the launch tube and the propellant chamber. (author)

  10. Levered and unlevered Beta


    Fernandez, Pablo


    We prove that in a world without leverage cost the relationship between the levered beta ( L) and the unlevered beta ( u) is the No-costs-of-leverage formula: L = u + ( u - d) D (1 - T) / E. We also analyze 6 alternative valuation theories proposed in the literature to estimate the relationship between the levered beta and the unlevered beta (Harris and Pringle (1985), Modigliani and Miller (1963), Damodaran (1994), Myers (1974), Miles and Ezzell (1980), and practitioners) and prove that all ...

  11. On shear rheology of gel propellants

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, Shai; Peretz, Arie [RAFAEL, MANOR Propulsion and Explosive Systems Division, Haifa (Israel); Natan, Benveniste [Faculty of Aerospace Engineering, Technion - Israel Institute of Technology, Haifa (Israel)


    Selected fuel, oxidizer and simulant gels were prepared and rheologically characterized using a rotational rheometer. For fuel gelation both organic and inorganic gellants were utilized, whereas oxidizers and simulants were gelled with addition of silica and polysaccharides, respectively. The generalized Herschel-Bulkley constitutive model was found to most adequately represent the gels studied. Hydrazine-based fuels, gelled with polysaccharides, were characterized as shear-thinning pseudoplastic fluids with low shear yield stress, whereas inhibited red-fuming nitric acid (IRFNA) and hydrogen peroxide oxidizers, gelled with silica, were characterized as yield thixotropic fluids with significant shear yield stress. Creep tests were conducted on two rheological types of gels with different gellant content and the results were fitted by Burgers-Kelvin viscoelastic constitutive model. The effect of temperature on the rheological properties of gel propellant simulants was also investigated. A general rheological classification of gel propellants and simulants is proposed. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  12. Beta Thalassemia (For Parents) (United States)

    ... Safe Videos for Educators Search English Español Beta Thalassemia KidsHealth / For Parents / Beta Thalassemia What's in this ... Symptoms Diagnosis Treatment Print en español Beta talasemia Thalassemias Thalassemias are a group of blood disorders that ...

  13. Laser Initiated Ignition of Liquid Propellant (United States)


    containers held in a water bath of constant temperature 70*C. A larger vessel containing approximately 2ml of propellant was also heated in each experiment and...controller. A stirrer and forced water circulation ensured that all samples were kept at the same temperature. The water wai first heated to the final 5... electrolysed samples. 3 .. .. ....... ......................... volume of 10 ....... . 5 ....... I • . ... .. . .... .. ...... .. . . .. . . ... . .61.8 2 22i

  14. Cryogenic Propellant Feed System Analytical Tool Development (United States)

    Lusby, Brian S.; Miranda, Bruno M.; Collins, Jacob A.


    The Propulsion Systems Branch at NASA s Lyndon B. Johnson Space Center (JSC) has developed a parametric analytical tool to address the need to rapidly predict heat leak into propellant distribution lines based on insulation type, installation technique, line supports, penetrations, and instrumentation. The Propellant Feed System Analytical Tool (PFSAT) will also determine the optimum orifice diameter for an optional thermodynamic vent system (TVS) to counteract heat leak into the feed line and ensure temperature constraints at the end of the feed line are met. PFSAT was developed primarily using Fortran 90 code because of its number crunching power and the capability to directly access real fluid property subroutines in the Reference Fluid Thermodynamic and Transport Properties (REFPROP) Database developed by NIST. A Microsoft Excel front end user interface was implemented to provide convenient portability of PFSAT among a wide variety of potential users and its ability to utilize a user-friendly graphical user interface (GUI) developed in Visual Basic for Applications (VBA). The focus of PFSAT is on-orbit reaction control systems and orbital maneuvering systems, but it may be used to predict heat leak into ground-based transfer lines as well. PFSAT is expected to be used for rapid initial design of cryogenic propellant distribution lines and thermodynamic vent systems. Once validated, PFSAT will support concept trades for a variety of cryogenic fluid transfer systems on spacecraft, including planetary landers, transfer vehicles, and propellant depots, as well as surface-based transfer systems. The details of the development of PFSAT, its user interface, and the program structure will be presented.

  15. Bistable (latching) solenoid actuated propellant isolation valve (United States)

    Wichmann, H.; Deboi, H. H.


    The design, fabrication, assembly and test of a development configuration bistable (latching) solenoid actuated propellant isolation valve suitable for the control hydrazine and liquid fluorine to an 800 pound thrust rocket engine is described. The valve features a balanced poppet, utilizing metal bellows, a hard poppet/seat interface and a flexure support system for the internal moving components. This support system eliminates sliding surfaces, thereby rendering the valve free of self generated particles.

  16. Small transport aircraft technology propeller study (United States)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.


    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  17. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  18. Development of HAN-based Liquid Propellant Thruster (United States)

    Hisatsune, K.; Izumi, J.; Tsutaya, H.; Furukawa, K.


    Many of propellants that are applied to the conventional spacecraft propulsion system are toxic propellants. Because of its toxicity, considering the environmental pollution or safety on handling, it will be necessary to apply the "green" propellant to the spacecraft propulsion system. The purpose of this study is to apply HAN based liquid propellant (LP1846) to mono propellant thruster. Compared to the hydrazine that is used in conventional mono propellant thruster, HAN based propellant is not only lower toxic but also can obtain higher specific impulse. Moreover, HAN based propellant can be decomposed by the catalyst. It means there are the possibility of applying to the mono propellant thruster that can leads to the high reliability of the propulsion system.[1],[2] However, there are two technical subjects, to apply HAN based propellant to the mono propellant thruster. One is the high combustion temperature. The catalyst will be damaged under high temperature condition. The other is the low catalytic activity. It is the serious problem on application of HAN based propellant to the mono propellant thruster that is used for attitude control of spacecraft. To improve the catalytic activity of HAN based propellant, it is necessary to screen the best catalyst for HAN based propellant. The adsorption analysis is conducted by Monte Carlo Simulation to screen the catalyst metal for HAN and TEAN. The result of analysis shows the Iridium is the best catalyst metal for HAN and TEAN. Iridium is the catalyst metal that is used at conventional mono propellant thruster catalyst Shell405. Then, to confirm the result of analysis, the reaction test about catalyst is conducted. The result of this test is the same as the result of adsorption analysis. That means the adsorption analysis is effective in screening the catalyst metal. At the evaluating test, the various types of carrier of catalyst are also compared to Shell 405 to improve catalytic activity. The test result shows the

  19. Numerical Analysis of Ice Impacts on Azimuth Propeller (United States)


    uniformity as one solid object, though the built-on process is recognized as well. The number of blades for this propeller varies to control cavitation ...Figure 7). The CRP allows the hydrodynamic advantage of regaining lost rotational energy from the first propeller, which is the speeds flow through and accelerates it past the propellers. Decelerating duct slows the flow and allows for greatly reduced cavitation and

  20. A Portable Burn Pan for the Disposal of Excess Propellants (United States)


    2013 - 06/01/2016 A Portable Burn Pan for the Disposal of Excess Propellants Michael Walsh USA CRREL USA CRREL 72 Lyme Road Hanover, NH 03755...Army Alaska XRF X-Ray Florescence vii ACKNOWLEDGEMENTS Project ER-201323, A Portable Burn Pan for the Disposal of Gun Propellants, was a very...contamination problem while allowing troops to train as they fight, we have developed a portable training device for burning excess gun propellants. 1.1

  1. Computer aided design and development of mixed-propeller pumps

    International Nuclear Information System (INIS)

    Bhaoyal, B.C.


    This paper deals with the design principle of mixed propeller hydraulic aided by CADD software developed by author for generation of the hydraulic profile of the mixed propeller and diffuser geometry. The design methodology for plotting the vane profile of mixed propeller pump has been discussed in detail with special reference to conformal transformation in cylindrical as well as conical plane. (author). 10 refs., 11 figs

  2. Electric Propellant Solid Rocket Motor Thruster Results Enabling Small Satellites


    Koehler, Frederick; Langhenry, Mark; Summers, Matt; Villarreal, James; Villarreal, Thomas


    Raytheon Missile Systems has developed and tested true on/off/restart solid propellant thrusters which are controlled only by electrical current. This new patented class of energetic rocket propellant is safe, controllable and simple. The range of applications for this game changing technology includes attitude control systems and a safe alternative to higher impulse space satellite thrusters. Described herein are descriptions and performance data for several small electric propellant solid r...

  3. Solid propellant processing factor in rocket motor design (United States)


    The ways are described by which propellant processing is affected by choices made in designing rocket engines. Tradeoff studies, design proof or scaleup studies, and special design features are presented that are required to obtain high product quality, and optimum processing costs. Processing is considered to include the operational steps involved with the lining and preparation of the motor case for the grain; the procurement of propellant raw materials; and propellant mixing, casting or extrusion, curing, machining, and finishing. The design criteria, recommended practices, and propellant formulations are included.

  4. High Impulse Nanoparticulate-Based Gel Propellants, Phase I (United States)

    National Aeronautics and Space Administration — This proposed Small Business Innovative Research (SBIR) Phase I addresses the development of advanced gel propellants and determination of their suitability for...

  5. A novel kind of solid rocket propellant

    Energy Technology Data Exchange (ETDEWEB)

    Lo, R.E. [Berlin University of Technology (Germany). Rocket Technology at the Aerospace Institute (ILR)


    Cryogenic Solid Propellants (CSPs) combine the simplicity of conventional solid propulsion with the high performance of liquid propulsion. By introducing materials that require cooling for remaining solid, CSPs offer an almost unlimited choice of propellant constituents that mights be selected with respect to specific impulse, density or environmental protection. The prize to be paid for these advantages is the necessity of constant cooling and the requirement of special design features that provide combustion control by moving from deflagration to hybrid like boundary layer combustion. This is achieved by building the solid propellant grains out of macroscopic elements rather than using the quasi homogeneous mixture of conventional composites. The elements may be coated, providing protection and support. Different elements may be designed for individual tasks and serve as modules for ignition, sustained combustion, gas generation, combustion efficiency enhancement, etc. Modular dissected grains offer many new ways of interaction inside the combustion chamber and new degrees of freedom for the designer of such `multiple internal hybrid grains`. At a preliminary level, a study finished in Germany 1997 demonstrated large payload gains when the US space Shuttle and the ARIANE 5 boosters were replaced by CSP-boosters. A very preliminary cost analysis resulted in development costs in the usual magnitude (but not in higher ones). Costs of operation were identified as crucial, but not established. Some experimental work in Germany is scheduled to begin in 1998, almost all details in this article (and many more that were not mentioned - most prominent cost analyses of CSP development and operations) wait for deeper analysis and verification. Actually, a whole new world new of world of chemical propulsion awaits exploration. The topic can be looked up and discussed at the web site of the Advanced Propulsion Workshop of the International Academy of Astronautics. The author

  6. 75 FR 62333 - Airworthiness Directives; Hamilton Sundstrand Propellers Model 247F Propellers (United States)


    ...., Monday through Friday, except Federal holidays. The AD docket contains this proposed AD, the regulatory... that the 247F propeller blades, P/N 817370-1, S/Ns FR2449 to FR2958 inclusive, FR20010710 to FR20010722 inclusive, and FR20010723RT to FR20020127RT inclusive, manufactured since January 1999, might also have...

  7. 76 FR 25534 - Airworthiness Directives; Hamilton Sundstrand Propellers Model 247F Propellers (United States)


    ... 5 p.m., Monday through Friday, except Federal holidays. The AD docket contains this AD, the... through FR2279 inclusive, FR 2398, FR2449 to FR2958 inclusive, FR20010710 to FR20010722 inclusive, and FR20010723RT to FR20020127RT inclusive, installed. Propeller blades reworked to Hamilton Sundstrand Service...

  8. Thermal Vacuum Test Correlation of A Zero Propellant Load Case Thermal Capacitance Propellant Gauging Analytics Model (United States)

    McKim, Stephen A.


    This thesis describes the development and test data validation of the thermal model that is the foundation of a thermal capacitance spacecraft propellant load estimator. Specific details of creating the thermal model for the diaphragm propellant tank used on NASA's Magnetospheric Multiscale spacecraft using ANSYS and the correlation process implemented to validate the model are presented. The thermal model was correlated to within plus or minus 3 degrees Centigrade of the thermal vacuum test data, and was found to be relatively insensitive to uncertainties in applied heat flux and mass knowledge of the tank. More work is needed, however, to refine the thermal model to further improve temperature predictions in the upper hemisphere of the propellant tank. Temperatures predictions in this portion were found to be 2-2.5 degrees Centigrade lower than the test data. A road map to apply the model to predict propellant loads on the actual MMS spacecraft toward its end of life in 2017-2018 is also presented.

  9. WOW: light print, light propel, light point

    DEFF Research Database (Denmark)

    Glückstad, Jesper; Bañas, Andrew Rafael; Aabo, Thomas


    anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light...... propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation...

  10. PHM Enabled Autonomous Propellant Loading Operations (United States)

    Walker, Mark; Figueroa, Fernando


    The utility of Prognostics and Health Management (PHM) software capability applied to Autonomous Operations (AO) remains an active research area within aerospace applications. The ability to gain insight into which assets and subsystems are functioning properly, along with the derivation of confident predictions concerning future ability, reliability, and availability, are important enablers for making sound mission planning decisions. When coupled with software that fully supports mission planning and execution, an integrated solution can be developed that leverages state assessment and estimation for the purposes of delivering autonomous operations. The authors have been applying this integrated, model-based approach to the autonomous loading of cryogenic spacecraft propellants at Kennedy Space Center.

  11. High Power Flex-Propellant Arcjet Performance (United States)

    Litchford, Ron J.


    A MW-class electrothermal arcjet based on a water-cooled, wall-stabilized, constricted arc discharge configuration was subjected to extensive performance testing using hydrogen and simulated ammonia propellants with the deliberate aim of advancing technology readiness level for potential space propulsion applications. The breadboard design incorporates alternating conductor/insulator wafers to form a discharge barrel enclosure with a 2.5-cm internal bore diameter and an overall length of approximately 1 meter. Swirling propellant flow is introduced into the barrel, and a DC arc discharge mode is established between a backplate tungsten cathode button and a downstream ringanode/ spin-coil assembly. The arc-heated propellant then enters a short mixing plenum and is accelerated through a converging-diverging graphite nozzle. This innovative design configuration differs substantially from conventional arcjet thrusters, in which the throat functions as constrictor and the expansion nozzle serves as the anode, and permits the attainment of an equilibrium sonic throat (EST) condition. During the test program, applied electrical input power was varied between 0.5-1 MW with hydrogen and simulated ammonia flow rates in the range of 4-12 g/s and 15-35 g/s, respectively. The ranges of investigated specific input energy therefore fell between 50-250 MJ/kg for hydrogen and 10-60 MJ/kg for ammonia. In both cases, observed arc efficiencies were between 40-60 percent as determined via a simple heat balance method based on electrical input power and coolant water calorimeter measurements. These experimental results were found to be in excellent agreement with theoretical chemical equilibrium predictions, thereby validating the EST assumption and enabling the utilization of standard TDK nozzle expansion analyses to reliably infer baseline thruster performance characteristics. Inferred specific impulse performance accounting for recombination kinetics during the expansion process

  12. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  13. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    -section. An investment strategy that goes long stocks with high jump betas and short stocks with low jump betas produces significant average excess returns. These higher risk premiums for the discontinuous and overnight market betas remain significant after controlling for a long list of other firm characteristics......Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross......-section of expected returns. Based on a novel highfrequency dataset of almost one-thousand individual stocks over two decades, we find that the two rough betas associated with intraday discontinuous and overnight returns entail significant risk premiums, while the intraday continuous beta is not priced in the cross...

  14. Beta limits for ETF

    International Nuclear Information System (INIS)

    Helton, F.J.; Miller, R.L.


    ETF (Engineering Test Facility) one-dimensional transport simulations indicate that a volume-average beta of 4% is required for ignition. It is therefore important that theoretical beta limits, determined by requiring equilibria to be stable to all ideal modes, exceed 4%. This paper documents an ideal MHD analysis wherein it is shown that, with appropriate plasma cross-sectional shape and current profile optimization, operation near 5% is possible. The critical beta value, however, depends on the functional form used for ff', which suggests that higher critical betas could be achieved by directly optimizing the safety factor profile. (author)

  15. Beta-energy averaging and beta spectra

    International Nuclear Information System (INIS)

    Stamatelatos, M.G.; England, T.R.


    A simple yet highly accurate method for approximately calculating spectrum-averaged beta energies and beta spectra for radioactive nuclei is presented. This method should prove useful for users who wish to obtain accurate answers without complicated calculations of Fermi functions, complex gamma functions, and time-consuming numerical integrations as required by the more exact theoretical expressions. Therefore, this method should be a good time-saving alternative for investigators who need to make calculations involving large numbers of nuclei (e.g., fission products) as well as for occasional users interested in restricted number of nuclides. The average beta-energy values calculated by this method differ from those calculated by ''exact'' methods by no more than 1 percent for nuclides with atomic numbers in the 20 to 100 range and which emit betas of energies up to approximately 8 MeV. These include all fission products and the actinides. The beta-energy spectra calculated by the present method are also of the same quality

  16. Blade Section Lift Coefficients for Propellers at Extreme Off-Design Conditions

    National Research Council Canada - National Science Library

    Shen, Young


    The Propeller Force Module (PFM) code developed by Analytical Methods Inc. (AMI) for calculating propeller side forces during maneuvering simulation studies requires inputs of propeller blade sectional lift, drag, and moment data...

  17. Mars Propellant Liquefaction Modeling in Thermal Desktop (United States)

    Desai, Pooja; Hauser, Dan; Sutherlin, Steven


    NASAs current Mars architectures are assuming the production and storage of 23 tons of liquid oxygen on the surface of Mars over a duration of 500+ days. In order to do this in a mass efficient manner, an energy efficient refrigeration system will be required. Based on previous analysis NASA has decided to do all liquefaction in the propulsion vehicle storage tanks. In order to allow for transient Martian environmental effects, a propellant liquefaction and storage system for a Mars Ascent Vehicle (MAV) was modeled using Thermal Desktop. The model consisted of a propellant tank containing a broad area cooling loop heat exchanger integrated with a reverse turbo Brayton cryocooler. Cryocooler sizing and performance modeling was conducted using MAV diurnal heat loads and radiator rejection temperatures predicted from a previous thermal model of the MAV. A system was also sized and modeled using an alternative heat rejection system that relies on a forced convection heat exchanger. Cryocooler mass, input power, and heat rejection for both systems were estimated and compared against sizing based on non-transient sizing estimates.

  18. Nuclear thermal rockets using indigenous extraterrestrial propellants

    International Nuclear Information System (INIS)

    Zubrin, R.M.


    A preliminary examination of a concept for a Mars and outer solar system exploratory vehicle is presented. Propulsion is provided by utilizing a nuclear thermal reactor to heat a propellant volatile indigenous to the destination world to form a high thrust rocket exhaust. Candidate propellants, whose performance, materials compatibility, and ease of acquisition are examined and include carbon dioxide, water, methane, nitrogen, carbon monoxide, and argon. Ballistics and winged supersonic configurations are discussed. It is shown that the use of this method of propulsion potentially offers high payoff to a manned Mars mission. This is accomplished by sharply reducing the initial mission mass required in low earth orbit, and by providing Mars explorers with greatly enhanced mobility in traveling about the planet through the use of a vehicle that can refuel itself each time it lands. Thus, the nuclear landing craft is utilized in combination with a hydrogen-fueled nuclear-thermal interplanetary launch. By utilizing such a system in the outer solar system, a low level aerial reconnaissance of Titan combined with a multiple sample return from nearly every satellite of Saturn can be accomplished in a single launch of a Titan 4 or the Space Transportation System (STS). Similarly a multiple sample return from Callisto, Ganymede, and Europa can also be accomplished in one launch of a Titan 4 or the STS

  19. 14 CFR 35.21 - Variable and reversible pitch propellers. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Variable and reversible pitch propellers. 35.21 Section 35.21 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: PROPELLERS Design and Construction § 35.21 Variable and...

  20. Prediction of propeller-induced hull-pressure fluctuations

    NARCIS (Netherlands)

    Van Wijngaarden, H.C.J.


    The cavitating propeller often forms the primary source of noise and vibration on board ships. The propeller induces hydroacoustic pressure fluctuations due to the passing blades and, more importantly, the dynamic activity of cavities in the propeller’s immediate vicinity. The accurate prediction of

  1. Self-propelled oil droplets consuming "fuel" surfactant

    DEFF Research Database (Denmark)

    Toyota, Taro; Maru, Naoto; Hanczyc, Martin M


    A micrometer-sized oil droplet of 4-octylaniline containing 5 mol % of an amphiphilic catalyst exhibited a self-propelled motion, producing tiny oil droplets, in an aqueous dispersion of an amphiphilic precursor of 4-octylaniline. The tiny droplets on the surface of the self-propelled droplet wer...

  2. Propellant and Purge System Contamination "2007: A Summer of Fun" (United States)

    Galloway, Randy


    This slide presentation reviews the propellant and purge system contamination that occurred during the summer of 2007 at Stennis Space Center. During this period Multiple propellant/pressurant system contamination events prompted a thorough investigation, the results of which are reviewed.

  3. Propeller flaps for lower-limb trauma | Rogers | South African ...

    African Journals Online (AJOL)

    The propeller flap has become a versatile and important component in our reconstructive algorithm following complex lower limb trauma. First described by Hyakusoku in 1991, it has since been adapted and modified by Hallock and Teo. This article outlines our experience specifically with perforator pedicled propeller flaps ...

  4. Current state of the art of HNF based composite propellants

    NARCIS (Netherlands)

    Ciucci, A.; Frota, O.; Welland, W.H.M.; Heijden, A.E.D.M. van der; Leeming, B.; Bellerby, J.M.; Brotzu, A.


    The main activities currently performed for the development of HNF-based propellants are presented. The objectives and approach adopted are described. The results obtained on the HNF decomposition mechanism and on the re- and co-crystallisation of HNF with potential propellant ingredients are

  5. Development of strand burner for solid propellant burning rate studies

    International Nuclear Information System (INIS)

    Aziz, A; Mamat, R; Ali, W K Wan


    It is well-known that a strand burner is an apparatus that provides burning rate measurements of a solid propellant at an elevated pressure in order to obtain the burning characteristics of a propellant. This paper describes the facilities developed by author that was used in his studies. The burning rate characteristics of solid propellant have be evaluated over five different chamber pressures ranging from 1 atm to 31 atm using a strand burner. The strand burner has a mounting stand that allows the propellant strand to be mounted vertically. The strand was ignited electrically using hot wire, and the burning time was recorded by electronic timer. Wire technique was used to measure the burning rate. Preliminary results from these techniques are presented. This study shows that the strand burner can be used on propellant strands to obtain accurate low pressure burning rate data

  6. EFD and CFD Characterization of a CLT Propeller

    Directory of Open Access Journals (Sweden)

    Daniele Bertetta


    Full Text Available In the present paper an experimental and numerical analysis of an unconventional CLT propeller is carried out. Two different numerical approaches, a potential panel method and an RANSE solver, are employed. Cavitation tunnel experiments are carried out in order to measure, as usual, thrust, torque, and cavity extension for different propeller working points. Moreover, LDV measurements are performed to have a deep insight into the complex wake behind the propeller and to analyze the dynamics of generated tip vortexes. The numerical/experimental analysis and comparison of results highlight the peculiarities of this kind of propellers, the possibility to increase efficiency and reduce cavitation risk, in order to exploit the design approaches already well proven for conventional propellers also in the case of these unconventional geometries.

  7. High beta tokamaks

    International Nuclear Information System (INIS)

    Dory, R.A.; Berger, D.P.; Charlton, L.A.; Hogan, J.T.; Munro, J.K.; Nelson, D.B.; Peng, Y.K.M.; Sigmar, D.J.; Strickler, D.J.


    MHD equilibrium, stability, and transport calculations are made to study the accessibility and behavior of ''high beta'' tokamak plasmas in the range β approximately 5 to 15 percent. For next generation devices, beta values of at least 8 percent appear to be accessible and stable if there is a conducting surface nearby

  8. Sorting out Downside Beta

    NARCIS (Netherlands)

    G.T. Post (Thierry); P. van Vliet (Pim); S.D. Lansdorp (Simon)


    textabstractDownside risk, when properly defined and estimated, helps to explain the cross-section of US stock returns. Sorting stocks by a proper estimate of downside market beta leads to a substantially larger cross-sectional spread in average returns than sorting on regular market beta. This

  9. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse


    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically...

  10. Solid State MEMS Thrusters Using Electrically Controlled Extinguishable Solid Propellant, Phase I (United States)

    National Aeronautics and Space Administration — ET Materials, LLC developed the first ever electrically controlled extinguishable solid propellant (ECESP). The original propellant developed under Air Force SBIR...

  11. Genetics Home Reference: beta thalassemia (United States)

    ... Facebook Twitter Home Health Conditions Beta thalassemia Beta thalassemia Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Beta thalassemia is a blood disorder that reduces the production ...

  12. Image based measurement techniques for aircraft propeller flow diagnostics : Propeller slipstream investigations at high-lift conditions and thrust reverse

    NARCIS (Netherlands)

    Roosenboom, E.W.M.


    The aim of the thesis is to measure the propeller slipstream properties (velocity and vorticity) and to assess the unsteady and instantaneous behavior of the propeller flow field at high disk loadings, zero thrust and thrust reverse using the image based measurement techniques. Along with its

  13. Rapid synthesis of beta zeolites (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng


    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  14. Relativistic Spacecraft Propelled by Directed Energy (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng


    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  15. Experimental research on air propellers V (United States)

    Durand, W F; Lesley, E P


    In previous reports on experimental research on air propellers, by W. F. Durand and E. P. Lesley, as contained in the National Advisory Committee for Aeronautics reports nos. 14, 30, and 64, the investigations were made progressively and each without reference to results given in preceding reports and covering only information relating to forms perhaps adjacent in geometrical form and proportion. This report is a review of the entire series of results of the preceding reports with a view of examining through graphical and other appropriate means the nature of the history of the characteristics of operation as related to the systematic variations in characteristics of forms, etc., through the series of such characteristics.

  16. Space shuttle aps propellant thermal conditioner study (United States)

    Fulton, D. L.


    An analytical and experimental effort was completed to evaluate a baffle type thermal conditioner for superheating O2 and H2 at supercritical pressures. The thermal conditioner consisted of a heat exchanger and an integral reactor (gas generator) operating on O2/H2 propellants. Primary emphasis was placed on the hydrogen conditioner with some effort on the oxygen conditioner and a study completed of alternate concepts for use in conditioning oxygen. A hydrogen conditioner was hot fire tested under a range of conditions to establish ignition, heat exchange and response parameters. A parallel technology task was completed to further evaluate the integral reactor and heat exchanger with the side mounted electrical spark igniter.

  17. Crusader solid propellant best technical approach

    Energy Technology Data Exchange (ETDEWEB)

    Graves, V. [Oak Ridge National Lab., TN (United States); Bader, G. [Fire Support Armament Center, Picatinny Arsenal, NJ (United States); Dolecki, M. [Tank-Automotive Research, Development, and Engineering Center, Picatinny, NJ (United States); Krupski, S. [Benet Weapons Lab., Watervliet Arsenal, NY (United States); Zangrando, R. [Close Combat Armament Center, Picatinny Arsenal, NJ (United States)


    The goal of the Solid Propellant Resupply Team is to develop Crusader system concepts capable of automatically handling 155mm projectiles and Modular Artillery Charges (MACs) based on system requirements. The system encompasses all aspects of handling from initial input into a resupply vehicle (RSV) to the final loading into the breech of the self-propelled howitzer (SPH). The team, comprised of persons from military and other government organizations, developed concepts for the overall vehicles as well as their interior handling components. An intermediate review was conducted on those components, and revised concepts were completed in May 1995. A concept evaluation was conducted on the finalized concepts, from both a systems level and a component level. The team`s Best Technical Approach (BTA) concept was selected from that evaluation. Both vehicles in the BTA have a front-engine configuration with the crew situated behind the engine-low in the vehicles. The SPH concept utilizes an automated reload port at the rear of the vehicle, centered high. The RSV transfer boom will dock with this port to allow automated ammunition transfer. The SPH rearm system utilizes fully redundant dual loaders. Active magazines are used for both projectiles and MACs. The SPH also uses a nonconventional tilted ring turret configuration to maximize the available interior volume in the vehicle. This configuration can be rearmed at any elevation angle but only at 0{degree} azimuth. The RSV configuration is similar to that of the SPH. The RSV utilizes passive storage racks with a pick-and-place manipulator for handling the projectiles and active magazines for the MACs. A telescoping transfer boom extends out the front of the vehicle over the crew and engine.

  18. A review of research in low earth orbit propellant collection (United States)

    Singh, Lake A.; Walker, Mitchell L. R.


    This comprehensive review examines the efforts of previous researchers to develop concepts for propellant-collecting spacecraft, estimate the performance of these systems, and understand the physics involved. Rocket propulsion requires the spacecraft to expend two fundamental quantities: energy and propellant mass. A growing number of spacecraft collect the energy they need to execute propulsive maneuvers in-situ with solar panels. In contrast, every spacecraft using rocket propulsion has carried all of the propellant mass needed for the mission from the ground, which limits the range and mission capabilities. Numerous researchers have explored the concept of collecting propellant mass while in space. These concepts have varied in scale and complexity from chemical ramjets to fusion-driven interstellar vessels. Research into propellant-collecting concepts occurred in distinct eras. During the Cold War, concepts tended to be large, complex, and nuclear powered. After the Cold War, concepts transitioned to solar power sources and more effort has been devoted to detailed analysis of specific components of the propellant-collecting architecture. By detailing the major contributions and limitations of previous work, this review concisely presents the state-of-the-art and outlines five areas for continued research. These areas include air-compatible cathode technology, techniques to improve propellant utilization on atmospheric species, in-space compressor and liquefaction technology, improved hypersonic and hyperthermal free molecular flow inlet designs, and improved understanding of how design parameters affect system performance.

  19. Beta particle measurement fundamentals

    International Nuclear Information System (INIS)

    Alvarez, J.L.


    The necessary concepts for understanding beta particle behavior are stopping power, range, and scattering. Dose as a consequence of beta particle interaction with tissue can be derived and explained by these concepts. Any calculations of dose, however, assume or require detailed knowledge of the beta spectrum at the tissue depth of calculation. A rudimentary knowledge of the incident spectrum can be of use in estimating dose, interpretating dose measuring devices and designing protection. The stopping power and range based on the csda will give a conservative estimate in cases of protection design, as scattering will reduce the range. Estimates of dose may be low because scattering effects were neglected

  20. Enhanced propellant performance via environmentally friendly curable surface coating

    Directory of Open Access Journals (Sweden)

    Thelma Manning


    Full Text Available Surface coating of granular propellants is widely used in a multiplicity of propellants for small, medium and large caliber ammunition. All small caliber ball propellants exhibit burning progressivity due to application of effective deterrent coatings. Large perforated propellant grains have also begun utilizing plasticizing and impregnated deterrent coatings with the purpose of increasing charge weights for greater energy and velocity for the projectile. The deterrent coating and impregnation process utilizes volatile organic compounds (VOCs and hazardous air pollutants (HAPs which results in propellants that need to be forced air dried which impacts air quality. Propellants undergo temperature fluctuations during their life. Diffusion coefficients vary exponentially with variations in temperature. A small temperature increase can induce a faster migration, even over a short period of time, which can lead to large deviations in the concentration. This large concentration change in the ammunition becomes a safety or performance liability. The presence of both polymeric deterrents and nitroglycerin(NG in the nitrocellulose matrix and organic solvents leads to higher diffusion rates. This results in continued emissions of VOCs and HAPs. Conventional polymers tend to partition within the propellant matrix. In other words, localized mixing can occur between the polymer and underlying propellant. This is due to solvent induced softening of the polymer vehicle over the propellant grain. In effect this creates a path where migration can occur. Since nitrate esters, like NG, are relatively small, it can exude to the surface and create a highly unstable and dangerous situation for the warfighter. Curable polymers do not suffer from this partitioning due to “melting” because no VOC solvents are present. They remain surface coated. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and

  1. Discovery Of B Ring Propellers In Cassini UVIS, And ISS (United States)

    Sremcevic, Miodrag; Stewart, G. R.; Albers, N.; Esposito, L. W.


    We present evidence for the existence of propellers in Saturn's B ring by combining data from Cassini Ultraviolet Imaging Spectrograph (UVIS) and Imaging Science Subsystem (ISS) experiments. We identify two propeller populations: (1) tens of degrees wide propellers in the dense B ring core, and (2) smaller, more A ring like, propellers populating the inner B ring. The prototype of the first population is an object observed at 18 different epochs between 2005 and 2010. The ubiquitous propeller "S" shape is seen both in UVIS occultations as an optical depth depletion and in ISS as a 40 degrees wide bright stripe in unlit geometries and dark in lit geometries. Combining the available Cassini data we infer that the object is a partial gap embedded in the high optical depth region of the B ring. The gap moves at orbital speed consistent with its radial location. From the radial separation of the propeller wings we estimate that the embedded body, which causes the propeller structure, is about 1.5km in size located at a=112,921km. The UVIS occultations indicate an asymmetric propeller "S" shape. Since the object is located at an edge between high and relatively low optical depth, this asymmetry is most likely a consequence of the strong surface mass density gradient. We estimate that there are possibly dozen up to 100 other propeller objects in Saturn's B ring. The location of the discovered body, at an edge of a dense ringlet within the B ring, suggests a novel mechanism for the up to now illusive B ring irregular large-scale structure of alternating high and low optical depth ringlets. We propose that this B ring irregular structure may have its cause in the presence of many embedded bodies that shepherd the individual B ring ringlets.

  2. Prevention of Dealloying in Manganese Aluminium Bronze Propeller: Part II

    Directory of Open Access Journals (Sweden)

    Napachat Tareelap


    Full Text Available Due to the failure of manganese aluminium bronze (MAB propeller caused by dealloying corrosion as described in Part I [1], this work aims to study the prevention of dealloying corrosion using aluminium and zinc sacrificial anodes. The results indicated that both of the sacrificial anodes could prevent the propeller from dealloying. Moreover, the dealloying in seawater was less than that found in brackish water. It was possible that hydroxide ions, from cathodic reaction, reacted with calcium in seawater to form calcium carbonate film protecting the propeller from corrosion.

  3. Air propellers and their environmental problems on ACV's (United States)

    Soley, D. H.

    The development of ACV blade protection against erosion, both on the propeller blade faces and leading edge, is considered. Polyurethane spray coating is now the standard protection applied to all Dowty Rotol propellers, with thicknesses from 0.015-0.020 on aircraft, and up to 0.080 on the ACV. The bolt-on guard reduced leading edge replacement time by 50 percent, and makes possible replacement in all weather conditions. Typical damage and repairs to ACV blades are discussed, and the propeller installation on the LCAC craft being built for the U.S. Navy is addressed.

  4. Neutrinoless double beta decay

    Indian Academy of Sciences (India)


    Oct 6, 2012 ... Anyhow, the 'multi-isotope' ansatz is needed to compensate for matrix element ... The neccessary half-life requirement to touch this ... site energy depositions (like double beta decay) and multiple site interactions (most of.

  5. Beta-Carotene (United States)

    ... disease (COPD). It is also used to improve memory and muscle strength. Some people use beta-carotene ... to reduce the chance of death and night blindness during pregnancy, as well as diarrhea and fever ...

  6. Double beta decay: experiments

    International Nuclear Information System (INIS)

    Fiorini, Ettore


    The results obtained so far and those of the running experiments on neutrinoless double beta decay are reviewed. The plans for second generation experiments, the techniques to be adopted and the expected sensitivities are compared and discussed

  7. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)


    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  8. Ignition and combustion characteristics of metallized propellants (United States)

    Turns, Stephen R.; Mueller, D. C.


    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts

  9. Advanced Insulation Materials for Cryogenic Propellant Storage Applications, Phase II (United States)

    National Aeronautics and Space Administration — Advanced Materials Technology, Inc responds to the NASA solicitation Topic X9 entitled "Propulsion and Propellant Storage" under subtopic X9-01, "Long Term Cryogenic...

  10. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase I (United States)

    National Aeronautics and Space Administration — Spark ignition of a bi-propellant rocket engine is a classic, proven, and generally reliable process. However, timing can be critical, and the control logic,...

  11. Propellant Flow Actuated Piezoelectric Rocket Engine Igniter, Phase II (United States)

    National Aeronautics and Space Administration — Under a Phase 1 effort, IES successfully developed and demonstrated a spark ignition concept where propellant flow drives a very simple fluid mechanical oscillator...

  12. Dynamical Model of Rocket Propellant Loading with Liquid Hydrogen (United States)

    National Aeronautics and Space Administration — A dynamical model describing the multi-stage process of rocket propellant loading has been developed. It accounts for both the nominal and faulty regimes of...

  13. Gun barrel erosion - Comparison of conventional and LOVA gun propellants

    NARCIS (Netherlands)

    Hordijk, A.C.; Leurs, O.


    The research department Energetic Materials within TNO Defence, Security and Safety is involved in the development and (safety and insensitive munitions) testing of conventional (nitro cellulose based) and thermoplastic elastomer (TPE) based gun propellants. Recently our testing capabilities have

  14. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet (United States)

    Jiang, Dayong; Bai, Yun


    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  15. Propellant Preparation Laboratory Complex (Area1-21) (United States)

    Federal Laboratory Consortium — Description: Area 1-21 is an explosion resistant complex of nine cells built into the side of a granite ridge. Three solid propellant cutting cells are housed in the...

  16. Particle swarm optimization: an alternative in marine propeller optimization? (United States)

    Vesting, F.; Bensow, R. E.


    This article deals with improving and evaluating the performance of two evolutionary algorithm approaches for automated engineering design optimization. Here a marine propeller design with constraints on cavitation nuisance is the intended application. For this purpose, the particle swarm optimization (PSO) algorithm is adapted for multi-objective optimization and constraint handling for use in propeller design. Three PSO algorithms are developed and tested for the optimization of four commercial propeller designs for different ship types. The results are evaluated by interrogating the generation medians and the Pareto front development. The same propellers are also optimized utilizing the well established NSGA-II genetic algorithm to provide benchmark results. The authors' PSO algorithms deliver comparable results to NSGA-II, but converge earlier and enhance the solution in terms of constraints violation.

  17. Model-based Diagnostics for Propellant Loading Systems (United States)

    National Aeronautics and Space Administration — The loading of spacecraft propellants is a complex, risky operation. Therefore, diagnostic solutions are neces- sary to quickly identify when a fault occurs, so that...


    Directory of Open Access Journals (Sweden)

    Jan Červinka


    Full Text Available The significance of the influence of operating propellers on the aircraft aerodynamic characteristics is well-known. Wind tunnel testing of an airplane model with operating propellers is a complex task regarding the required similarity of the full-scale and the model case. Matching sufficient similarity in axial and rotational velocities in the propeller slipstream is the primordial condition for the global aerodynamic similarity of the windtunnel testing. An example of the model power units with related devices is presented. Examples of the wind tunnel testing results illustrate the extent of the propeller influence on aerodynamic characteristics of an aircraft of unconventional configuration with power units positioned at the fuselage afterbody.

  19. Numerical Prediction of Hydromechanical Behaviour of Controllable Pitch Propeller

    Directory of Open Access Journals (Sweden)

    Saman Tarbiat


    Full Text Available The research described in this paper was carried out to predict hydrodynamic and frictional forces of controllable pitch propeller (CPP that bring about fretting problems in a blade bearing. The governing equations are Reynolds-averaged Navier-Stokes (RANS and are solved by OpenFOAM solver for hydrodynamic forces behind the ship’s wake. Frictional forces are calculated by practical mechanical formulae. Different advance velocities with constant rotational speed for blades are used to achieve hydrodynamic coefficients in open water and the wake behind the propeller. Results are compared at four different pitches. Detailed numerical results of 3D modelling of the propeller, hydrodynamic characteristics, and probability of the fretting motion in the propeller are presented. Results show that the probability of the fretting movement is related to the pitch.

  20. An Additively Manufactured Torch Igniter for Liquid Propellants (United States)

    National Aeronautics and Space Administration — Consistent and reliable rocket engine ignition has yet to be proven through an additively manufactured torch igniter for liquid propellants. The coupling of additive...

  1. Designing Small Propellers for Optimum Efficiency and Low Noise Footprint (United States)


    each one. The GUI contains input boxes for all of the necessary data in order to run QMIL, QPROP, NAFNoise, and to produce Visual Basic ( VBA ) code... VBA macros that will automatically place reference planes for each airfoil section and insert the splined airfoils to their respective reference...Figure 24. Solid propeller exa mple. Figure 25. Hub and spoke propeller design. Figure 26. Alumninum hub design. accessed on May 12, 2015. DC, August

  2. A fractional calculus perspective of distributed propeller design (United States)

    Tenreiro Machado, J.; Galhano, Alexandra M.


    A new generation of aircraft with distributed propellers leads to operational performances superior to those exhibited by standard designs. Computational simulations and experimental tests show a reduction of fuel consumption and noise. This paper proposes an analogy between aerodynamics and electrical circuits. The model reveals properties similar to those of fractional-order systems and gives a deeper insight into the dynamics of multi-propeller coupling.

  3. Cryogenic Propellant Storage and Transfer Engineering Development Unit Hydrogen Tank (United States)

    Werkheiser, Arthur


    The Cryogenic Propellant Storage and Transfer (CPST) project has been a long-running program in the Space Technology Mission Directorate to enhance the knowledge and technology related to handling cryogenic propellants, specifically liquid hydrogen. This particular effort, the CPST engineering development unit (EDU), was a proof of manufacturability effort in support of a flight article. The EDU was built to find and overcome issues related to manufacturability and collect data to anchor the thermal models for use on the flight design.

  4. Integral performance optimum design for multistage solid propellant rocket motors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hongtao (Shaanxi Power Machinery Institute (China))


    A mathematical model for integral performance optimization of multistage solid propellant rocket motors is presented. A calculation on a three-stage, volume-fixed, solid propellant rocket motor is used as an example. It is shown that the velocity at burnout of intermediate-range or long-range ballistic missile calculated using this model is four percent greater than that using the usual empirical method.

  5. PIV-based load determination in aircraft propellers


    Ragni, D.


    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by PIV velocimetry. The technique offers important advantages in aircraft propellers, since the loads can be locally inspected without the need to install pressure sensors and momentum balances in rot...

  6. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant (United States)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan


    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  7. Low-Cost Propellant Launch to LEO from a Tethered Balloon - 'Propulsion Depots' Not 'Propellant Depots' (United States)

    Wilcox, Brian H.; Schneider, Evan G.; Vaughan, David A.; Hall, Jeffrey L.; Yu, Chi Yau


    As we have previously reported, it may be possible to launch payloads into low-Earth orbit (LEO) at a per-kilogram cost that is one to two orders of magnitude lower than current launch systems, using only a relatively small capital investment (comparable to a single large present-day launch). An attractive payload would be large quantities of high-performance chemical rocket propellant (e.g. Liquid Oxygen/Liquid Hydrogen (LO2/LH2)) that would greatly facilitate, if not enable, extensive exploration of the moon, Mars, and beyond.

  8. LNG systems for natural gas propelled ships (United States)

    Chorowski, M.; Duda, P.; Polinski, J.; Skrzypacz, J.


    In order to reduce the atmospheric pollution generated by ships, the International Marine Organization has established Emission Controlled Areas. In these areas, nitrogen oxides, sulphur oxides and particulates emission is strongly controlled. From the beginning of 2015, the ECA covers waters 200 nautical miles from the coast of the US and Canada, the US Caribbean Sea area, the Baltic Sea, the North Sea and the English Channel. From the beginning of 2020, strong emission restrictions will also be in force outside the ECA. This requires newly constructed ships to be either equipped with exhaust gas cleaning devices or propelled with emission free fuels. In comparison to low sulphur Marine Diesel and Marine Gas Oil, LNG is a competitive fuel, both from a technical and economical point of view. LNG can be stored in vacuum insulated tanks fulfilling the difficult requirements of marine regulations. LNG must be vaporized and pressurized to the pressure which is compatible with the engine requirements (usually a few bar). The boil-off must be controlled to avoid the occasional gas release to the atmosphere. This paper presents an LNG system designed and commissioned for a Baltic Sea ferry. The specific technical features and exploitation parameters of the system will be presented. The impact of strict marine regulations on the system's thermo-mechanical construction and its performance will be discussed. The review of possible flow-schemes of LNG marine systems will be presented with respect to the system's cost, maintenance, and reliability.

  9. WOW: light print, light propel, light point (United States)

    Glückstad, Jesper; Bañas, Andrew; Aabo, Thomas; Palima, Darwin


    We are presenting so-called Wave-guided Optical Waveguides (WOWs) fabricated by two-photon polymerization and capable of being optically manipulated into any arbitrary orientation. By integrating optical waveguides into the structures we have created freestanding waveguides which can be positioned anywhere in a sample at any orientation using real-time 3D optical micromanipulation with six degrees of freedom. One of the key aspects of our demonstrated WOWs is the change in direction of in-coupled light and the marked increase in numerical aperture of the out-coupled light. Hence, each light propelled WOW can tap from a relatively broad incident beam and generate a much more tightly confined light at its tip. The presentation contains both numerical simulations related to the propagation of light through a WOW and preliminary experimental demonstrations on our BioPhotonics Workstation. In a broader context, this research shows that optically trapped micro-fabricated structures can potentially help bridge the diffraction barrier. This structure-mediated paradigm may be carried forward to open new possibilities for exploiting beams from far-field optics down to the sub-wavelength domain.

  10. Stereospecific Winding of Polycyclic Aromatic Hydrocarbons into Trinacria Propellers. (United States)

    Mosca, Dario; Stopin, Antoine; Wouters, Johan; Demitri, Nicola; Bonifazi, Davide


    The stereospecific trimerization of enantiomerically pure binaphthols with hexakis(bromomethyl)benzene gives access in one step to enantiomerically pure molecular propellers, in which three binaphthyl rings are held together with dioxecine rings. X-ray diffraction analysis revealed that three out the six naphthyl moieties are folded in a (EF) 3 -type arrangement held by three intramolecular C-H⋅⋅⋅π interactions. This slips outward the three remaining naphthyl rings in a blade-like fashion, just like in three-folded propeller components. This peculiar conformation shows striking similarity to the mythological Sicilian symbol of Trinacria, from which the name "trinacria propeller" derives. The propeller conformation is also preserved in chlorinated solutions, as displayed by the presence of a peak at 4.7 ppm typical of an aromatic proton resonance engaged in a C-H⋅⋅⋅π interaction. The denaturation of the propeller-like conformation is obtained at high temperature, corresponding to activation energy for the ring inversion of ca. 18.2 kcal mol -1 . Notably, halide-functionalized molecular propellers exposing I-atoms at the leading and trailing edges could be prepared stereo- and regiospecifically by choosing the relevant iodo-bearing BINOL derivative. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Numerical study of hub taper angle on podded propeller performance

    International Nuclear Information System (INIS)

    Islam, M.F.; Veitch, B.; Bose, N.; Liu, P.


    Presently, the majority of podded propulsion systems are of the pulling type, because this type provides better hydrodynamic efficiency than the pushing type. There are several possible explanations for the better overall performance of a puller type podded propulsor. One is related to the difference in hub shape. Puller and pusher propellers have opposite hub taper angles, hence different hub and blade root shape. These differences cause changes in the flow condition and possibly influence the overall performance. The current study focuses on the variation in performance of pusher and puller propellers with the same blade sections, but different hub taper angles. A hyperboloidal low order source doublet steady/unsteady time domain panel method code was modified and used to evaluate effects of hub taper angle on the open water propulsive performance of some fixed pitch screw propellers used in podded propulsion systems. The modified code was first validated against measurements of two model propellers in terms of average propulsive performance and good agreement was found. Major findings include significant effects of hub taper angle on propulsive performance of tapered hub propellers and noticeable effects of hub taper angle on sectional pressure distributions of tapered hub propeller blades. (author)

  12. Effects of superhydrophobic surface on the propeller wake (United States)

    Choi, Hongseok; Lee, Jungjin; Park, Hyungmin


    This study investigates the change in propeller wake when the superhydrophobic surface is applied on the propeller blade. The propeller rotates in a quiescent water tank, facing its bottom, with a rotational Reynolds number of 96000. To measure the three-dimensional flow fields, we use stereo PIV and a water prism is installed at the camera-side tank wall. Two cameras are tilted 30 degrees from the normal axis of the tank wall, satisfying schiempflug condition. Superhydrophobic surface is made by coating hydrophobic nanoparticles on the propeller blade. Measurements are done on two vertical planes (at the center of propeller hub and the blade tip), and are ensemble averaged being classified by blade phase of 0 and 90 degrees. Velocity fluctuation, turbulent kinetic energy, and vorticity are evaluated. With superhydrophobic surface, it is found that the turbulence level is significantly (20 - 30 %) reduced with a small penalty (less than 5%) in the streamwise momentum (i.e., thrust) generation. This is because the cone shaped propeller wake gets narrower and organized vortex structures are broken with the superhydrophobic surfaces. More detailed flow analysis will be given. Supported by NRF (NRF-2016R1C1B2012775, NRF-2016M2B2A9A02945068) programs of Korea government.

  13. Studies of pellet acceleration with arc discharge heated propellants

    International Nuclear Information System (INIS)

    Schuresko, D.D.


    An arc discharge has been utilized to heat gaseous propellants in a pneumatic pellet gun. A cylindrical arc chamber is interposed between the propellant inlet valve and the gun breech and fitted with a ceramic insert for generating swirl in the incoming gas stream. The arc is initiated after the propellant valve opens and the breech pressure starts to rise; a typical discharge lasts 300 microseconds with peak currents up to 2 kA at arc voltages ranging from 100-400 V. The system is instrumented with piezoelectric pressure transducers at the propellant valve outlet, gun breech, and gun muzzle. The gun has been operated with 4 mm diameter polyurethane foam pellets (density = 0.14 g/cm 3 ), a 40 cm-long barrel, and various gas propellants at pressures exceeding 70 bar. At I/sub arc/ = 1 kA, V/sub arc/ = 200 V, with helium propellant, the arc produces a 2-3 fold prompt increase in P/sub breech/ and a delayed increase in P/sub muzzle/; the pellets exit the gun from 0.5-1.0 ms earlier than with the gas alone at 40% higher speeds. Comparisons with the so-called ideal gun theory and with full one-dimensional hydrodynamic calculations of the pellet acceleration will be presented

  14. Studies of pellet acceleration with arc discharge heated propellants

    International Nuclear Information System (INIS)

    Schuresko, D.D.


    An arc discharge has been utilized to heat gaseous propellants in a pneumatic pellet gun. A cylindrical arc chamber is interposed between the propellant inlet valve and the gun breech and fitted with a ceramic insert for generating swirl in the incoming gas stream. The arc is initiated after the propellant valve opens and the breech pressure starts to rise; a typical discharge lasts 300 microseconds with peak currents u to 2 kA at arc voltages ranging from 100 to 400 V. The system is instrumented with piezoelectric pressure transducers at the propellant valve outlet, gun breech, and gun muzzle. The gun has been operated with 4 mm diameter polyurethane foam pellets (density = 0.14 g/cm 3 ), a 40 cm-long barrel, and various gas propellants at pressures exceeding 70 bar. At I/sub arc/ = 1 kA, V/sub arc/ = 200 V, with helium propellant, the arc produces a 2 to 3 fold prompt increase in P/sub breech/ and a delayed increase in P/sub muzzle/; the pellets exit the gun from 0.5 to 1.0 ms earlier than with the gas alone at 40% higher speeds. Comparisons with the so-called ideal gun theory and with full one-dimensional hydrodynamic calculations of the pellet acceleration will be presented

  15. A Simple Method for High-Lift Propeller Conceptual Design (United States)

    Patterson, Michael; Borer, Nick; German, Brian


    In this paper, we present a simple method for designing propellers that are placed upstream of the leading edge of a wing in order to augment lift. Because the primary purpose of these "high-lift propellers" is to increase lift rather than produce thrust, these props are best viewed as a form of high-lift device; consequently, they should be designed differently than traditional propellers. We present a theory that describes how these props can be designed to provide a relatively uniform axial velocity increase, which is hypothesized to be advantageous for lift augmentation based on a literature survey. Computational modeling indicates that such propellers can generate the same average induced axial velocity while consuming less power and producing less thrust than conventional propeller designs. For an example problem based on specifications for NASA's Scalable Convergent Electric Propulsion Technology and Operations Research (SCEPTOR) flight demonstrator, a propeller designed with the new method requires approximately 15% less power and produces approximately 11% less thrust than one designed for minimum induced loss. Higher-order modeling and/or wind tunnel testing are needed to verify the predicted performance.

  16. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  17. Labelling of. beta. -endorphin (. beta. -END) and. beta. -lipotropin (. beta. -LPH) by /sup 125/I

    Energy Technology Data Exchange (ETDEWEB)

    Deby-Dupont, G.; Joris, J.; Franchimont, P. (Universite de Liege (Belgique)); Reuter, A.M.; Vrindts-Gevaert, Y. (Institut des Radioelements, Fleurus (Belgique))


    5 of human ..beta..-endorphin were labelled with 2 mCi /sup 125/I by the chloramine T technique. After two gel filtrations on Sephadex G-15 and on Sephadex G-50 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer was obtained with a specific activity about 150 at + 4/sup 0/C, the tracer remained utilizable for 30 days without loss of immunoreactivity. The labelling with lactoperoxydase and the use of another gel filtration method (filtration on Aca 202) gave a /sup 125/I ..beta..-END tracer with the same immunoreactivity. The binding of this tracer to the antibody of an anti-..beta..-END antiserum diluted at 1/8000 was 32% with a non specific binding of 2%. 5 of human ..beta..-lipotropin were labelled with 0.5 mCi /sup 125/I by the lactoperoxydase method. After two gel filtrations on Sephadex G-25 and on Sephadex G-75 in phosphate buffer with EDTA, Trasylol and mercapto-ethanol, a pure tracer with a specific activity of 140 was obtained. It remained utilizable for 30 days when kept at + 4/sup 0/C. Gel filtration on Aca 202 did not give good purification, while gel filtration on Aca 54 was good but slower than on Sephadex G-75. The binding to antibody in absence of unlabelled ..beta..-LPH was 32% for an anti-..beta..-LPH antiserum diluted at 1/4000. The non specific binding was 2.5%.

  18. Plasma beta HCG determination

    International Nuclear Information System (INIS)

    Amaral, L.B.D.; Pinto, J.C.M.; Linhares, E.; Linhares, Estevao


    There are three important indications for the early diagnosis of pregnancy through the determination of the beta sub-unit of chorionic gonadotrophin using radioimmunoassay: 1) some patient's or doctor's anxiety to discover the problem; 2) when it will be necessary to employ diagnostic or treatment procedures susceptible to affect the ovum; and 3) in the differential diagnosis of amenorrhoea, uterine hemorrhage and abdominal tumors. Other user's are the diagnosis of missed absortion, and the diagnosis and follow-up of chrorioncarcinoma. The AA. studied 200 determinations of plasma beta-HCG, considering the main difficulties occuring in the clinical use of this relevant laboratory tool in actual Obstetrics. (author) [pt

  19. Relation between the 2{nu}{beta}{beta} and 0{nu}{beta}{beta} nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Petr [Kellogg Radiation Laboratory, Caltech, Pasadena, CA 91125 (United States); Simkovic, Fedor [Department of Nuclear Physics and Biophysics, Comenius University, Mlynska dolina F1, SK-84248 Bratislava (Slovakia)


    A formal relation between the GT part of the nuclear matrix elements M{sub GT}{sup 0{nu}} of 0{nu}{beta}{beta} decay and the closure matrix elements M{sub cl}{sup 2{nu}} of 2{nu}{beta}{beta} decay is established. This relation is based on the integral representation of these quantities in terms of their dependence on the distance r between the two nucleons undergoing transformation. We also discuss the difficulties in determining the correct values of the closure 2{nu}{beta}{beta} decay matrix elements.

  20. Characterization of Hall effect thruster propellant distributors with flame visualization (United States)

    Langendorf, S.; Walker, M. L. R.


    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.

  1. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    Directory of Open Access Journals (Sweden)

    G. Q. Zhang


    Full Text Available The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressively closer to the propeller until 0.056D away from the propeller, where a nearly 20% increase occurred sharply. The propeller position has a negligible effect on the overall thrust and torque of the propeller. The efficiency affected by the installation angle of the propeller blade has also been analyzed. Based on the pressure cloud and streamlines, the vortices generated by propeller, propeller-wing interaction, and wing tip have also been captured and analyzed.

  2. Producing propellants from water in lunar soil using solar lasers (United States)

    de Morais Mendonca Teles, Antonio

    The exploration of the Solar System is directly related to the efficiency of engines designed to explore it, and consequently, to the propulsion techniques, materials and propellants for those engines. With the present day propulsion techniques it is necessary great quantities of propellants to impulse a manned spacecraft to Mars and beyond in the Solar System, which makes these operations financially very expensive because of the costs involved in launching it from planet Earth, due to its high gravity field strength. To solve this problem, it is needed a planetary place with smaller gravity field strength, near to the Earth and with great quantities of substances at the surface necessary for the in-situ production of propellants for spacecrafts. The only place available is Earth's natural satellite the Moon. So, here in this paper, I propose the creation of a Lunar Propellant Manufacturer. It is a robot-spacecraft which can be launched from Earth using an Energia Rocket, and to land on the Moon in an area (principally near to the north pole where it was discovered water molecules ice recently) with great quantities of oxygen and hydrogen (propellants) in the silicate soil, previously observed and mapped by spacecrafts in lunar orbit, for the extraction of those molecules from the soil and the in-situ production of the necessary propellants. The Lunar Propellant Manufacturer (LPM) spacecraft consists of: 1) a landing system with four legs (extendable) and rovers -when the spacecraft touches down, the legs retract in order that two apparatuses, analogue to tractor's wheeled belts parallel sided and below the spacecraft, can touch firmly the ground -it will be necessary for the displacement of the spacecraft to new areas with richer propellants content, when the early place has already exhausted in propellants; 2) a digging machine -a long, resistant extendable arm with an excavator hand, in the outer part of the spacecraft -it will extend itself to the ground

  3. Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced Gravity (United States)

    Marchetta, J. G.; Hochstein, J. I.


    Numerical Prediction of Magnetic Cryogenic Propellant Storage in Reduced strong evidence that a magnetic positioning system may be a feasible alternative technology for use in the management of cryogenic propellants onboard spacecraft. The results of these preliminary studies have indicated that further investigation of the physical processes and potential reliability of such a system is required. The utility of magnetic fields as an alternative method in cryogenic propellant management is dependent on its reliability and flexibility. Simulations and experiments have previously yielded evidence in support of the magnetic positive positioning (MPP) process to predictably reorient LOX for a variety of initial conditions. Presently, though, insufficient evidence has been established to support the use of magnetic fields with respect to the long-term storage of cryogenic propellants. Current modes of propellant storage have met with a moderate level of success and are well suited for short duration missions using monopropellants. However, the storage of cryogenic propellants warrants additional consideration for long-term missions. For example, propellant loss during storage is due to vaporization by incident solar radiation and the vaporized ullage must be vented to prevent excessive pressurization of the tank. Ideally, positioning the fluid in the center of the tank away from the tank wall will reduce vaporization by minimizing heat transfer through the tank wall to the liquid. A second issue involves the capability of sustaining a stable fluid configuration at tank center under varying g-levels or perturbations propellant storage. Results presented herein include comparisons illustrating the influence of gravity, fluid volume, and the magnetic field on a paramagnetic fluid, LOX. The magnetic Bond number is utilized as predictive correlating parameter for investigating these processes. A dimensionless relationship between the Bom and Bo was sought with the goal of

  4. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.


    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  5. Trichoderma .beta.-glucosidase (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian


    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  6. Applied Beta Dosimetry

    International Nuclear Information System (INIS)

    Rich, B.L.


    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements

  7. Beta thalassemia - a review

    Directory of Open Access Journals (Sweden)

    R Jha


    Full Text Available Thalassemia is a globin gene disorder that results in a diminished rate of synthesis of one or more of the globin chains. About 1.5% of the global population (80 to 90 million people are carriers of beta Thalassemia. More than 200 mutations are described in beta thalassemia. However not all mutations are common in different ethnic groups. The only effective way to reduce burden of thalassemia is to prevent birth of homozygotes. Diagnosis of beta thalassemia can be done by fetal DNA analysis for molecular defects of beta thalassemia or by fetal blood analysis. Hematopoietic stem cell transplantation is the only available curative approach for Thalassemia. Many patients with thalassemia in underdeveloped nations die in childhood or adolescence. Programs that provide acceptable care, including transfusion of safe blood and supportive therapy including chelation must be established.DOI: Journal of Pathology of Nepal; Vol.4,No. 8 (2014 663-671

  8. Double Beta Decay Experiments

    International Nuclear Information System (INIS)

    Piepke, A.


    The experimental observation of neutrino oscillations and thus neutrino mass and mixing gives a first hint at new particle physics. The absolute values of the neutrino mass and the properties of neutrinos under CP-conjugation remain unknown. The experimental investigation of the nuclear double beta decay is one of the key techniques for solving these open problems

  9. Plane boundary effects on characteristics of propeller jets (United States)

    Wei, Maoxing; Chiew, Yee-Meng; Hsieh, Shih-Chun


    The flow properties of a propeller jet in the presence of a plane bed boundary were investigated using the particle image velocimetry technique. Three clearance heights, Z b = 2 D p, D p, and 0.5 D p, where D p = propeller diameter, were used to examine boundary effects on the development of the jet. In each case, the mean flow properties and turbulence characteristics were measured in a larger field of view than those used in past studies. Both the streamwise and transverse flow fields were measured to obtain the three-dimensional characteristics of the propeller jet. Similar to a confined offset jet, the propeller jet also exhibits a wall attachment behavior when it is placed near a plane boundary. As a result, in contrast to its unconfined counterpart, the confined propeller jet features three regions, namely the free jet, impingement and wall jet regions. The study shows that the extent of each region varies under different clearance heights. The development of the mean flow and turbulence characteristics associated with varying clearance heights are compared to illustrate boundary effects in these regions. In the impingement region, the measured transverse flow fields provide new insights on the lateral motions induced by the impingement of the swirling jet. In the wall jet region, observations reveal that the jet behaves like a typical three-dimensional wall jet and its axial velocity profiles show good agreement with the classical wall jet similarity function.

  10. Reconstruction of pressure sores with perforator-based propeller flaps. (United States)

    Jakubietz, Rafael G; Jakubietz, Danni F; Zahn, Robert; Schmidt, Karsten; Meffert, Rainer H; Jakubietz, Michael G


    Perforator flaps have been successfully used for reconstruction of pressure sores. Although V-Y advancement flaps approximate debrided wound edges, perforator-based propeller flaps allow rotation of healthy tissue into the defect. Perforator-based propeller flaps were planned in 13 patients. Seven pressure sores were over the sacrum, five over the ischial tuberosity, and one on the tip of the scapula. Three patients were paraplegic, six were bedridden, and five were ambulatory. In three patients, no perforators were found. In 10 patients, propeller flaps were transferred. In two patients, total flap necrosis occurred, which was reconstructed with local advancement flaps. In two cases, a wound dehiscence occurred and had to be revised. One hematoma required evacuation. No further complications were noted. No recurrence at the flap site occurred. Local perforator flaps allow closure of pressure sores without harvesting muscle. The propeller version has the added benefit of transferring tissue from a distant site, avoiding reapproximation of original wound edges. Twisting of the pedicle may cause torsion and venous obstruction. This can be avoided by dissecting a pedicle of at least 3 cm. Propeller flaps are a safe option for soft tissue reconstruction of pressure sores. © Thieme Medical Publishers.

  11. Rheokinetic Analysis of Hydroxy Terminated Polybutadiene Based Solid Propellant Slurry

    Directory of Open Access Journals (Sweden)

    Abhay K Mahanta


    Full Text Available The cure kinetics of propellant slurry based on hydroxy-terminated polybutadiene (HTPB and toluene diisocyanate (TDI polyurethane reaction has been studied by viscosity build up method. The viscosity (ɳ–time (t plots conform to the exponential function ɳ = aebt, where a & b are empirical constants. The rate constants (k for viscosity build up at various shear rate (rpm, evaluated from the slope of dɳ/dt versus ɳ plots at different temperatures, were found to vary from 0.0032 to 0.0052 min-1. It was observed that the increasing shear rate did not have significant effect on the reaction rate constants for viscosity build up of the propellant slurry. The activation energy (Eɳ, calculated from the Arrhenius plots, was found to be 13.17±1.78 kJ mole-1, whereas the activation enthalpy (∆Hɳ* and entropy (∆Sɳ* of the propellant slurry, calculated from Eyring relationship, were found to be 10.48±1.78 kJ mole-1 and –258.51± 5.38 J mole-1K-1, respectively. The reaction quenching temperature of the propellant slurry was found to be -9 ° C, based upon the experimental data. This opens up an avenue for a “freeze-and-store”, then “warm-up and cast”, mode of manufacturing of very large solid rocket propellant grains.

  12. Advanced technologies available for future solid propellant grains

    Energy Technology Data Exchange (ETDEWEB)

    Thepenier, J. [SNPE Propulsion, St Medard en Jalles (France); Fonblanc, G. [SNPE Propulsion, Vert le Petit (France). Centre de Recherche de Bouchet


    Significant advances have been made during the last decade in several fields of solid propulsion: the advances have enabled new savings in the motor development phase and in recurring costs, because they help limit the number of prototypes and tests. The purpose of the paper is to describe the improvements achieved by SNPE in solid grain technologies, making these technologies available for new developments in more efficient and reliable future SRMs: new energetic molecules, new solid propellants, new processes for grain manufacturing, quick response grain design tools associated with advanced models for grain performance predictions. Using its expertise in chemical synthesis, SNPE develops new molecules to fit new energetic material requirements. Tests based on new propellant formulations have produced good results in the propellant performance/safety behavior ratio. New processes have been developed simultaneously to reduce the manufacturing costs of the new propellants. In addition, the grain design has been optimized by using the latest generation of predictive theoretical tools supported by a large data bank of experimental parameters resulting from over 30 years' experience in solid propulsion: computer-aided method for the preliminary grain design; advanced models for SRM operating and performance predictions. All these technologies are available for industrial applications in future developments of solid propellant grains. (author)

  13. Recent Advances and Applications in Cryogenic Propellant Densification Technology (United States)

    Tomsik, Thomas M.


    This purpose of this paper is to review several historical cryogenic test programs that were conducted at the NASA Glenn Research Center (GRC), Cleveland, Ohio over the past fifty years. More recently these technology programs were intended to study new and improved denser forms of liquid hydrogen (LH2) and liquid oxygen (LO2) cryogenic rocket fuels. Of particular interest are subcooled cryogenic propellants. This is due to the fact that they have a significantly higher density (eg. triple-point hydrogen, slush etc.), a lower vapor pressure and improved cooling capacity over the normal boiling point cryogen. This paper, which is intended to be a historical technology overview, will trace the past and recent development and testing of small and large-scale propellant densification production systems. Densifier units in the current GRC fuels program, were designed and are capable of processing subcooled LH2 and L02 propellant at the X33 Reusable Launch Vehicle (RLV) scale. One final objective of this technical briefing is to discuss some of the potential benefits and application which propellant densification technology may offer the industrial cryogenics production and end-user community. Density enhancements to cryogenic propellants (LH2, LO2, CH4) in rocket propulsion and aerospace application have provided the opportunity to either increase performance of existing launch vehicles or to reduce the overall size, mass and cost of a new vehicle system.

  14. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis


    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades...... in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients....

  15. Performance Analysis Rim Driven Propeller as a Propulsor using Open Water Test


    Agoes Santoso; Irfan Syarif Arief; Anggara Tio Kurniawan


    The use of duct in propeller is one of the breakthrough in the development of the propeller. Ducting not only claimed to be increasing efficiency of the propeller, but also capable to protect the propeller from impact therefore propeller lifespan is longer. From that idea then RDP is created. RDP propeller blade are designed to be fix at their housing called Rim, in the other word, the driving force came from it’s rim. On current RDP blade used is non-conventional blade. This thesis will disc...

  16. Joint High Speed Sealift (JHSS) Baseline Shaft & Strut (BSS) Model 5653-3: Series 2, Propeller Disk LDV Wake Survey; and Series 3, Stock Propeller Powering and Stern Flap Evaluation Experiments

    National Research Council Canada - National Science Library

    Cusanelli, Dominic S; Chesnakas, Christopher J


    ...) and Stock Propeller Powering and Stern Flap Evaluation tests (Series 3. In order to assist in the design of a propeller for the BSS hull, the nominal wakes in the inboard and outboard starboard propeller planes were measured using LDV...

  17. Misleading Betas: An Educational Example (United States)

    Chong, James; Halcoussis, Dennis; Phillips, G. Michael


    The dual-beta model is a generalization of the CAPM model. In the dual-beta model, separate beta estimates are provided for up-market and down-market days. This paper uses the historical "Anscombe quartet" results which illustrated how very different datasets can produce the same regression coefficients to motivate a discussion of the…

  18. Combustion characteristics of SMX and SMX based propellants (United States)

    Reese, David A.

    This work investigates the combustion of the new solid nitrate ester 2,3-hydroxymethyl-2,3-dinitro-1,4-butanediol tetranitrate (SMX, C6H 8N6O16). SMX was synthesized for the first time in 2008. It has a melting point of 85 °C and oxygen balance of 0% to CO 2, allowing it to be used as an energetic additive or oxidizer in solid propellants. In addition to its neat combustion characteristics, this work also explores the use of SMX as a potential replacement for nitroglycerin (NG) in double base gun propellants and as a replacement for ammonium perchlorate in composite rocket propellants. The physical properties, sensitivity characteristics, and combustion behaviors of neat SMX were investigated. Its combustion is stable at pressures of up to at least 27.5 MPa (n = 0.81). The observed flame structure is nearly identical to that of other double base propellant ingredients, with a primary flame attached at the surface, a thick isothermal dark zone, and a luminous secondary flame wherein final recombination reactions occur. As a result, the burning rate and primary flame structure can be modeled using existing one-dimensional steady state techniques. A zero gas-phase activation energy approximation results in a good fit between modeled and observed behavior. Additionally, SMX was considered as a replacement for nitroglycerin in a double base propellant. Thermochemical calculations indicate improved performance when compared with the common double base propellant JA2 at SMX loadings above 40 wt-%. Also, since SMX is a room temperature solid, migration may be avoided. Like other nitrate esters, SMX is susceptible to decomposition over long-term storage due to the presence of excess acid in the crystals; the addition of stabilizers (e.g., derivatives of urea) during synthesis should be sufficient to prevent this. the addition of Both unplasticized and plasticized propellants were formulated. Thermal analysis of unplasticized propellant showed a distinct melt

  19. Flow measurement around a model ship with propeller and rudder

    Energy Technology Data Exchange (ETDEWEB)

    Van, S H; Yoon, H S; Lee, Y Y; Park, I R [Korea Research Institute of Ships and Ocean Engineering, KORDI, Marine Transportation Systems Laboratory, Daejeon (Korea); Kim, W J [Mokpo National University, Department of Naval Architecture and Marine Engineering, Jeonnam (Korea)


    For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m{sup 3} LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases. (orig.)

  20. Flow measurement around a model ship with propeller and rudder (United States)

    van, S. H.; Kim, W. J.; Yoon, H. S.; Lee, Y. Y.; Park, I. R.


    For the design of hull forms with better resistance and propulsive performance, it is essential to understand flow characteristics, such as wave and wake development, around a ship. Experimental data detailing the local flow characteristics are invaluable for the validation of the physical and numerical modeling of computational fluid dynamics (CFD) codes, which are recently gaining attention as efficient tools for hull form evaluation. This paper describes velocity and wave profiles measured in the towing tank for the KRISO 138,000 m3 LNG carrier model with propeller and rudder. The effects of propeller and rudder on the wake and wave profiles in the stern region are clearly identified. The results contained in this paper can provide an opportunity to explore integrated flow phenomena around a model ship in the self-propelled condition, and can be added to the International Towing Tank Conference benchmark data for CFD validation as the previous KCS and KVLCC cases.

  1. A stochastic pocket model for aluminum agglomeration in solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Gallier, Stany [SNPE Materiaux Energetiques, Vert le Petit (France)


    A new model is derived to estimate the size and fraction of aluminum agglomerates at the surface of a burning propellant. The basic idea relies on well-known pocket models in which aluminum is supposed to aggregate and melt within pocket volumes imposed by largest oxidizer particles. The proposed model essentially relaxes simple assumptions of previous pocket models on propellant structure by accounting for an actual microstructure obtained by packing. The use of statistical tools from stochastic geometry enables to determine a statistical pocket size volume and hence agglomerate diameter and agglomeration fraction. Application to several AP/Al propellants gives encouraging results that are shown to be superior to former pocket models. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Wind tunnel tests of stratospheric airship counter rotating propellers

    Directory of Open Access Journals (Sweden)

    Yaxi Chen


    Full Text Available Aerodynamic performance of the high-altitude propeller, especially the counter rotation effects, is experimentally studied. Influences of different configurations on a stratospheric airship, included 2-blade counter-rotating propeller (CRP, dual 2-blade single rotation propellers (SRPs and 4-blade SRP, are also indicated. This research indicates that the effect of counter rotation can greatly improve the efficiency. It shows that the CRP configuration results in a higher efficiency than the dual 2-blade SRPs configuration or 4-blade SRP configuration under the same advance ratio, and the CRP configuration also gains the highest efficiency whether under the situation of providing the same trust or absorbing the same power. It concludes that, for a stratospheric airship, the CRP configuration is better than the multiple SRPs configuration or a multi-blade SRP one.

  3. Bifurcations of propellant burning rate at oscillatory pressure

    Energy Technology Data Exchange (ETDEWEB)

    Novozhilov, Boris V. [N. N. Semenov Institute of Chemical Physics, Russian Academy of Science, 4 Kosygina St., Moscow 119991 (Russian Federation)


    A new phenomenon, the disparity between pressure and propellant burning rate frequencies, has revealed in numerical studies of propellant burning rate response to oscillatory pressure. As is clear from the linear approximation, under small pressure amplitudes, h, pressure and propellant burning rate oscillations occur with equal period T (T-solution). In the paper, however, it is shown that at a certain critical value of the parameter h the system in hand undergoes a bifurcation so that the T-solution converts to oscillations with period 2T (2T-solution). When the bifurcation parameter h increases, the subsequent behavior of the system becomes complicated. It is obtained a sequence of period doubling to 4T-solution and 8T-solution. Beyond a certain value of the bifurcation parameter h an apparently fully chaotic solution is found. These effects undoubtedly should be taken into account in studies of oscillatory processes in combustion chambers. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  4. Rocket Solid Propellant Alternative Based on Ammonium Dinitramide

    Directory of Open Access Journals (Sweden)

    Grigore CICAN


    Full Text Available Due to the continuous run for a green environment the current article proposes a new type of solid propellant based on the fairly new synthesized oxidizer, ammonium dinitramide (ADN. Apart of having a higher specific impulse than the worldwide renowned oxidizer, ammonium perchlorate, ADN has the advantage, of leaving behind only nitrogen, oxygen and water after decomposing at high temperatures and therefore totally avoiding the formation of hydrogen chloride fumes. Based on the oxidizer to fuel ratios of the current formulations of the major rocket solid booster (e.g. Space Shuttle’s SRB, Ariane 5’s SRB which comprises mass variations of ammonium perchlorate oxidizer (70-75%, atomized aluminum powder (10-18% and polybutadiene binder (12-20% a new solid propellant was formulated. As previously stated, the new propellant formula and its variations use ADN as oxidizer and erythritol tetranitrate as fuel, keeping the same polybutadiene as binder.

  5. The Effect of Slipstream Obstructions on Air Propellers (United States)

    Lesley, E P; Woods, B M


    The screw propeller on airplanes is usually placed near other objects, and hence its performance may be modified by them. Results of tests on propellers free from slip stream obstructions, both fore and aft, are therefore subject to correction, for the effect of such obstructions and the purpose of the investigation was to determine the effect upon the thrust and torque coefficients and efficiency, for previously tested air propellers, of obstructions placed in the slip stream, it being realized that such previous tests had been conducted under somewhat ideal conditions that are impracticable of realization in flight. Simple geometrical forms were used for the initial investigation. Such forms offered the advantage of easy, exact reproduction at another time or in other laboratories, and it was believed that the effects of obstructions usually encountered might be deduced or surmise from those chosen.

  6. Towards a renewal of the propeller in aeronautics (United States)

    Berger, D.; Jacquet, P.


    The reasons for reconsidering the propeller for aircraft propulsion, the areas of application, and necessary developments are considered. Rising fuel costs and an increasing theoretical and experimental data base for turboprop engines have demonstrated that significant cost savings can be realized by the use of propellers. Propellers are well-suited to powering aircraft traveling at speeds up to Mach 0.65. Work is progressing on the development of a 150 seat aircraft which has a cruise speed of Mach 0.8, powered by a turboprop attached to an engine of 15,000 shp. Aeroelasticity analyses ae necessary in order to characterize the behavior of thin profile propfan blades, particularly to predict the oscillations through the entire functional range. High-power reducers must be developed, and the level of cabin noise must be controlled to less than 90 dB. Commercial applications are predicted for turboprops in specific instances.

  7. Interaction with beta-arrestin determines the difference in internalization behavor between beta1- and beta2-adrenergic receptors. (United States)

    Shiina, T; Kawasaki, A; Nagao, T; Kurose, H


    The beta(1)-adrenergic receptor (beta(1)AR) shows the resistance to agonist-induced internalization. As beta-arrestin is important for internalization, we examine the interaction of beta-arrestin with beta(1)AR with three different methods: intracellular trafficking of beta-arrestin, binding of in vitro translated beta-arrestin to intracellular domains of beta(1)- and beta(2)ARs, and inhibition of betaAR-stimulated adenylyl cyclase activities by beta-arrestin. The green fluorescent protein-tagged beta-arrestin 2 translocates to and stays at the plasma membrane by beta(2)AR stimulation. Although green fluorescent protein-tagged beta-arrestin 2 also translocates to the plasma membrane, it returns to the cytoplasm 10-30 min after beta(1)AR stimulation. The binding of in vitro translated beta-arrestin 1 and beta-arrestin 2 to the third intracellular loop and the carboxyl tail of beta(1)AR is lower than that of beta(2)AR. The fusion protein of beta-arrestin 1 with glutathione S-transferase inhibits the beta(1)- and beta(2)AR-stimulated adenylyl cyclase activities, although inhibition of the beta(1)AR-stimulated activity requires a higher concentration of the fusion protein than that of the beta(2)AR-stimulated activity. These results suggest that weak interaction of beta(1)AR with beta-arrestins explains the resistance to agonist-induced internalization. This is further supported by the finding that beta-arrestin can induce internalization of beta(1)AR when beta-arrestin 1 does not dissociate from beta(1)AR by fusing to the carboxyl tail of beta(1)AR.

  8. Concept and performance study of turbocharged solid propellant ramjet (United States)

    Li, Jiang; Liu, Kai; Liu, Yang; Liu, Shichang


    This study proposes a turbocharged solid propellant ramjet (TSPR) propulsion system that integrates a turbocharged system consisting of a solid propellant (SP) air turbo rocket (ATR) and the fuel-rich gas generator of a solid propellant ramjet (SPR). First, a suitable propellant scheme was determined for the TSPR. A solid hydrocarbon propellant is used to generate gas for driving the turbine, and a boron-based fuel-rich propellant is used to provide fuel-rich gas to the afterburner. An appropriate TSPR structure was also determined. The TSPR's thermodynamic cycle was analysed to prove its theoretical feasibility. The results showed that the TSPR's specific cycle power was larger than those of SP-ATR and SPR and thermal efficiency was slightly less than that of SP-ATR. Overall, TSPR showed optimal performance in a wide flight envelope. The specific impulses and specific thrusts of TSPR, SP-ATR, and SPR in the flight envelope were calculated and compared. TSPR's flight envelope roughly overlapped that of SP-ATR, its specific impulse was larger than that of SP-ATR, and its specific thrust was larger than those of SP-ATR and SPR. Attempts to improve the TSPR off-design performance prompted our proposal of a control plan for off-design codes in which both the turbocharger corrected speed and combustor excess gas coefficient are kept constant. An off-design performance model was established by analysing the TSPR working process. We concluded that TSPR with a constant corrected speed had wider flight envelope, higher thrust, and higher specific impulse than TSPR with a constant physical speed determined by calculating the performance of off-design TSPR codes under different control plans. The results of this study can provide a reference for further studies on TSPRs.

  9. An investigation on thermal decomposition of DNTF-CMDB propellants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Wei; Wang, Jiangning; Ren, Xiaoning; Zhang, Laying; Zhou, Yanshui [Xi' an Modern Chemistry Research Institute, Xi' an 710065 (China)


    The thermal decomposition of DNTF-CMDB propellants was investigated by pressure differential scanning calorimetry (PDSC) and thermogravimetry (TG). The results show that there is only one decomposition peak on DSC curves, because the decomposition peak of DNTF cannot be separated from that of the NC/NG binder. The decomposition of DNTF can be obviously accelerated by the decomposition products of the NC/NG binder. The kinetic parameters of thermal decompositions for four DNTF-CMDB propellants at 6 MPa were obtained by the Kissinger method. It is found that the reaction rate decreases with increasing content of DNTF. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  10. Utilizing Solar Power Technologies for On-Orbit Propellant Production (United States)

    Fikes, John C.; Howell, Joe T.; Henley, Mark W.


    The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight

  11. Low cost manned Mars mission based on indigenous propellant production (United States)

    Bruckner, A. P.; Cinnamon, M.; Hamling, S.; Mahn, K.; Phillips, J.; Westmark, V.


    The paper describes a low-cost approach to the manned exploration of Mars (which involves an unmanned mission followed two years later by a manned mission) based on near-term technologies and in situ propellant production. Particular attention is given to the basic mission architecture and its major components, including the orbital analysis, the unmanned segment, the Earth Return Vehicle, the aerobrake design, life sciences, guidance, communications, power, propellant production, the surface rovers, and Mars science. Also discussed are the cost per mission over an assumed 8-yr initiative.

  12. Proof-of-concept automation of propellant processing (United States)

    Ramohalli, Kumar; Schallhorn, P. A.


    For space-based propellant production, automation of the process is needed. Currently, all phases of terrestrial production have some form of human interaction. A mixer was acquired to help perform the tasks of automation. A heating system to be used with the mixer was designed, built, and installed. Tests performed on the heating system verify design criteria. An IBM PS/2 personal computer was acquired for the future automation work. It is hoped that some the mixing process itself will be automated. This is a concept demonstration task; proving that propellant production can be automated reliably.

  13. Linear stability analysis in a solid-propellant rocket motor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.M.; Kang, K.T.; Yoon, J.K. [Agency for Defense Development, Taejon (Korea, Republic of)


    Combustion instability in solid-propellant rocket motors depends on the balance between acoustic energy gains and losses of the system. The objective of this paper is to demonstrate the capability of the program which predicts the standard longitudinal stability using acoustic modes based on linear stability analysis and T-burner test results of propellants. Commercial ANSYS 5.0A program can be used to calculate the acoustic characteristic of a rocket motor. The linear stability prediction was compared with the static firing test results of rocket motors. (author). 11 refs., 17 figs.

  14. Cryogenic propellant management: Integration of design, performance and operational requirements (United States)

    Worlund, A. L.; Jamieson, J. R., Jr.; Cole, T. W.; Lak, T. I.


    The integration of the design features of the Shuttle elements into a cryogenic propellant management system is described. The implementation and verification of the design/operational changes resulting from design deficiencies and/or element incompatibilities encountered subsequent to the critical design reviews are emphasized. Major topics include: subsystem designs to provide liquid oxygen (LO2) tank pressure stabilization, LO2 facility vent for ice prevention, liquid hydrogen (LH2) feedline high point bleed, pogo suppression on the Space Shuttle Main Engine (SSME), LO2 low level cutoff, Orbiter/engine propellant dump, and LO2 main feedline helium injection for geyser prevention.

  15. Low-beta investment strategies


    Korn, Olaf; Kuntz, Laura-Chloé


    This paper investigates investment strategies that exploit the low-beta anomaly. Although the notion of buying low-beta stocks and selling high-beta stocks is natural, a choice is necessary with respect to the relative weighting of high-beta stocks and low-beta stocks in the investment portfolio. Our empirical results for US large-cap stocks show that this choice is very important for the risk-return characteristics of the resulting portfolios and their sensitivities to common risk factors. W...

  16. Neutrophil beta-2 microglobulin: an inflammatory mediator

    DEFF Research Database (Denmark)

    Bjerrum, O W; Nissen, Mogens Holst; Borregaard, N


    Beta-2 microglobulin (beta 2m) constitutes the light invariant chain of HLA class I antigen, and is a constituent of mobilizable compartments of neutrophils. Two forms of beta 2m exist: native beta 2m and proteolytically modified beta 2m (Des-Lys58-beta 2m), which shows alpha mobility in crossed ...

  17. Beta and muon decays

    International Nuclear Information System (INIS)

    Galindo, A.; Pascual, P.


    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  18. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella


    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  19. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.


    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...... that the present practice of avoiding samples above a depth of 0.3 m may be over-cautious...

  20. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A; Pascual, P


    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  1. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis


    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  2. High beta experiments in CHS

    International Nuclear Information System (INIS)

    Okamura, S.; Matsuoka, K.; Nishimura, K.


    High beta experiments were performed in the low-aspect-ratio helical device CHS with the volume-averaged equilibrium beta up to 2.1 %. These values (highest for helical systems) are obtained for high density plasmas in low magnetic field heated with two tangential neutral beams. Confinement improvement given by means of turning off gas puffing helped significantly to make high betas. Magnetic fluctuations increased with increasing beta, but finally stopped to increase in the beta range > 1 %. The coherent modes appearing in the magnetic hill region showed strong dependence on the beta values. The dynamic poloidal field control was applied to suppress the outward plasma movement with the plasma pressure. Such an operation gave fixed boundary operations of high beta plasmas in helical systems. (author)

  3. Beta rays and neutrinos

    International Nuclear Information System (INIS)

    Adams, S.F.


    It was over 30 years between the first observation of the enigmatic process of beta decay and the first postulation of the neutrino. It took a further 26 years until the first neutrino was detected and yet another 27 until the electroweak theory was confirmed by the discovery of W and Z particles. This article traces some of the puzzles and paradoxes associated with the history of the neutrino. (author)

  4. Coroutine Sequencing in BETA

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  5. COM Support in BETA

    DEFF Research Database (Denmark)

    Madsen, Ole Lehrmann


    Component technologies based on binary units of independent production are some of the most important contributions to software architecture and reuse during recent years. Especially the COM technologies and the CORBA standard from the Object Management Group have contributed new and interesting...... principles for software architecture, and proven to be useful in parctice. In this paper ongoing work with component support in the BETA language is described....

  6. Altitude Testing of Large Liquid Propellant Engines (United States)

    Maynard, Bryon T.; Raines, Nickey G.


    The National Aeronautics and Space Administration entered a new age on January 14, 2004 with President Bush s announcement of the creation the Vision for Space Exploration that will take mankind back to the Moon and on beyond to Mars. In January, 2006, after two years of hard, dedicated labor, engineers within NASA and its contractor workforce decided that the J2X rocket, based on the heritage of the Apollo J2 engine, would be the new engine for the NASA Constellation Ares upper stage vehicle. This engine and vehicle combination would provide assured access to the International Space Station to replace that role played by the Space Shuttle and additionally, would serve as the Earth Departure Stage, to push the Crew Excursion Vehicle out of Earth Orbit and head it on a path for rendezvous with the Moon. Test as you fly, fly as you test was chosen to be the guiding philosophy and a pre-requisite for the engine design, development, test and evaluation program. An exhaustive survey of national test facility assets proved the required capability to test the J2X engine at high altitude for long durations did not exist so therefore, a high altitude/near space environment testing capability would have to be developed. After several agency concepts the A3 High Altitude Testing Facility proposal was selected by the J2X engine program on March 2, 2007 and later confirmed by a broad panel of NASA senior leadership in May 2007. This facility is to be built at NASA s John C. Stennis Space Center located near Gulfport, Mississippi. 30 plus years of Space Shuttle Main Engine development and flight certification testing makes Stennis uniquely suited to support the Vision For Space Exploration Return to the Moon. Propellant handling infrastructure, engine assembly facilities, a trained and dedicated workforce and a broad and varied technical support base will all ensure that the A3 facility will be built on time to support the schedule needs of the J2X engine and the ultimate flight

  7. Four-quadrant propeller modeling: A low-order harmonic approximation

    Digital Repository Service at National Institute of Oceanography (India)

    Haeusler, A.J; Saccon, A.; Hauser, J; Pascoal, A.M.; Aguiar, A.P.

    . We explore the connection between the propeller thrust, torque, and efficiency curves and the lift and drag curves of the propeller blades. The model originates from a well-known four-quadrant model, based on a sinusoidal approximation...

  8. Neural Network Predictions of the 4-Quadrant Wageningen Propeller Series (CD-ROM)

    National Research Council Canada - National Science Library

    Roddy, Robert F; Hess, David E; Faller, Will


    .... This report describes the development of feedforward neural network (FFNN) predictions of four-quadrant thrust and torque behavior for the Wageningen B-Screw Series of propellers and for two Wageningen ducted propeller series...

  9. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G


    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  10. Numerically-based ducted propeller design using vortex lattice lifting line theory


    Stubblefield, John M.


    CIVINS (Civilian Institutions) Thesis document This thesis used vortex lattice lifting line theory to model an axisymmetrical-ducted propeller with no gap between the duct and the propeller. The theory required to model the duct and its interaction with the propeller were discussed and implemented in Open-source Propeller Design and Analysis Program (OpenProp). Two routines for determining the optimum circulation distribution were considered, and a method based on calculus of variation...

  11. Effect of gamma radiation on properties of a composite rocket propellant

    International Nuclear Information System (INIS)

    Dedgaonkar, V.G.; Pol, V.G.; Navle, P.B.; Ghorpade, V.G.; Wani, V.S.


    Gamma radiation was employed for modifying the properties of a composite rocket propellant prepared in a standard way. It was observed that when the same gamma dose was imparted to hydroxy terminated polybutadiene (HTPB) then converted into propellant, the enhancement in the properties was much larger than the irradiated propellant samples. (author)

  12. Propeller efficiency at full scale : measurement system and mathematical model design

    NARCIS (Netherlands)

    Muntean, T.V.


    What is propeller efficiency at full scale? This question is asked equally by ship operators and by propeller and propulsion system manufacturers. The question reflects the need to measure propeller efficiency at full physical scale and during regular operation of the vessel. The question has a

  13. Aerodynamic interaction effects of tip-mounted propellers installed on the horizontal tailplane

    NARCIS (Netherlands)

    van Arnhem, N.; Sinnige, T.; Stokkermans, T.C.A.; Eitelberg, G.; Veldhuis, L.L.M.


    This paper addresses the effects of propeller installation on the aerodynamic performance of a tailplane featuring tip-mounted propellers. A model of a low aspect ratio tailplane equipped with an elevator and a tip-mounted propeller was installed in a low-speed wind-tunnel. Measurements were

  14. Experimental set-up and results of the process of co-extruded perforated gun propellants

    NARCIS (Netherlands)

    Zebregs, M.; Driel, C.A. van


    Enhancement of gun performance can be obtained by increasing the propellant loading density or the energy content of the propellant. Serious consequences of these options are difficulties with regard to ignition and to gun barrel wear. Application of co-layered propellants is a good alternative,

  15. Green propellant propulsion concepts for space transportation and technology development needs

    NARCIS (Netherlands)

    Haeseler, D.; Bombelli, V.; Vuillermoz, P.; Lo, R.; Maree, A.G.M.; Caramelli, F.


    A study has been performed under contract from ESA/ESTEC identifying the development needs in Europe in the field of new green propellant utilization. Criteria for green propellants are defined and discussed. Promising propellants are identified together with their rating w.r.t. those criteria, in

  16. Analysis of swirl recovery vanes for increased propulsive efficiency in tractor propeller aircraft

    NARCIS (Netherlands)

    Veldhuis, L.L.M.; Stokkermans, T.C.A.; Sinnige, T.; Eitelberg, G.


    In this paper we address a preliminary assessment of the performance effects of swirl recovery vanes (SRVs) in a installed and uninstalled tractor propeller arrangement. A numerical analysis was performed on a propeller and a propeller-wing configuration after the SRVs were optimized first in a

  17. Prediction of tip vortex cavitation for ship propellers

    NARCIS (Netherlands)

    Oprea, A.I.


    An open propeller is the conventional device providing thrust for ships. Due to its working principles, regions with low pressure are formed on its blades specifically at the leading edge and in the tip region. If this pressure is becoming lower than the vapor pressure, the cavitation phenomenon is

  18. PIV-based load determination in aircraft propellers

    NARCIS (Netherlands)

    Ragni, D.


    The thesis describes the application of particle image velocimetry (PIV) to study the aerodynamic loads of airfoils and aircraft propellers. The experimental work focuses on the development of a measurement procedure to infer the pressure of the flow field from the velocity distribution obtained by

  19. MEMS-Based Solid Propellant Rocket Array Thruster (United States)

    Tanaka, Shuji; Hosokawa, Ryuichiro; Tokudome, Shin-Ichiro; Hori, Keiichi; Saito, Hirobumi; Watanabe, Masashi; Esashi, Masayoshi

    The prototype of a solid propellant rocket array thruster for simple attitude control of a 10 kg class micro-spacecraft was completed and tested. The prototype has 10×10 φ0.8 mm solid propellant micro-rockets arrayed at a pitch of 1.2 mm on a 20×22 mm substrate. To realize such a dense array of micro-rockets, each ignition heater is powered from the backside of the thruster through an electrical feedthrough which passes along a propellant cylinder wall. Boron/potassium nitrate propellant (NAB) is used with/without lead rhodanide/potassium chlorate/nitrocellulose ignition aid (RK). Impulse thrust was measured by a pendulum method in air. Ignition required electric power of at least 3 4 W with RK and 4 6 W without RK. Measured impulse thrusts were from 2×10-5 Ns to 3×10-4 Ns after the calculation of compensation for air dumping.

  20. Weight savings in aerospace vehicles through propellant scavenging (United States)

    Schneider, Steven J.; Reed, Brian D.


    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  1. Modeling and Fault Simulation of Propellant Filling System

    International Nuclear Information System (INIS)

    Jiang Yunchun; Liu Weidong; Hou Xiaobo


    Propellant filling system is one of the key ground plants in launching site of rocket that use liquid propellant. There is an urgent demand for ensuring and improving its reliability and safety, and there is no doubt that Failure Mode Effect Analysis (FMEA) is a good approach to meet it. Driven by the request to get more fault information for FMEA, and because of the high expense of propellant filling, in this paper, the working process of the propellant filling system in fault condition was studied by simulating based on AMESim. Firstly, based on analyzing its structure and function, the filling system was modular decomposed, and the mathematic models of every module were given, based on which the whole filling system was modeled in AMESim. Secondly, a general method of fault injecting into dynamic system was proposed, and as an example, two typical faults - leakage and blockage - were injected into the model of filling system, based on which one can get two fault models in AMESim. After that, fault simulation was processed and the dynamic characteristics of several key parameters were analyzed under fault conditions. The results show that the model can simulate effectively the two faults, and can be used to provide guidance for the filling system maintain and amelioration.

  2. Guidelines Manual: Post Accident Procedures for Chemicals and Propellants. (United States)


    verification cloud. On the other hand, the risks of materials on-scene. Also, a diaper - associated with evacuation of the sive IR instrument and portable...of direction, cloud cover and solar the 28 chemicals and propellants in this radiation level; study. The Chemical Hazard Slide Rule Is relatively easy

  3. Dynamic Model for Thrust Generation of Marine Propellers

    DEFF Research Database (Denmark)

    Blanke, Mogens; Lindegaard, Karl-Petter; Fossen, Thor I.


    Mathematical models of propeller thrust and torque are traditionally based on steady state thrust and torque characteristics obtained in model basin or cavitation tunnel tests. Experimental results showed that these quasi steady state models do not accurately describe the transient phenomena in a...

  4. Developments on HNF based high performance and green solid propellants

    NARCIS (Netherlands)

    Keizers, H.L.J.; Heijden, A.E.D.M. van der; Vliet, L.D. van; Welland-Veltmans, W.H.M.; Ciucci, A.


    Worldwide developments are ongoing to develop new and more energetic composite solid propellant formulations for space transportation and military applications. Since the 90's, the use of HNF as a new high performance oxidiser is being reinvestigated. Within European development programmes,

  5. 30 CFR 56.4230 - Self-propelled equipment. (United States)


    ....4230 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control Firefighting Equipment § 56.4230 Self-propelled equipment. (a)(1) Whenever a fire or its effects...

  6. 30 CFR 57.4230 - Surface self-propelled equipment. (United States)


    ... Section 57.4230 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire... fire or its effects could impede escape from self-propelled equipment, a fire extinguisher shall be on...

  7. Intuitive control of self-propelled microjets with haptic feedback

    NARCIS (Netherlands)

    Pacchierotti, Claudio; Magdanz, V.; Medina-Sanchez, M.; Schmidt, O.G.; Prattichizzo, D.; Misra, Sarthak


    Self-propelled microrobots have recently shown promising results in several scenarios at the microscale, such as targeted drug delivery and micromanipulation of cells. However, none of the steering systems available in the literature enable humans to intuitively and effectively control these

  8. Weight savings in aerospace vehicles through propellant scavenging (United States)

    Schneider, Steven J.; Reed, Brian D.


    Vehicle payload benefits of scavenging hydrogen and oxygen propellants are addressed. The approach used is to select a vehicle and a mission and then select a scavenging system for detailed weight analysis. The Shuttle 2 vehicle on a Space Station rendezvous mission was chosen for study. The propellant scavenging system scavenges liquid hydrogen and liquid oxygen from the launch propulsion tankage during orbital maneuvers and stores them in well insulated liquid accumulators for use in a cryogenic auxiliary propulsion system. The fraction of auxiliary propulsion propellant which may be scavenged for propulsive purposes is estimated to be 45.1 percent. The auxiliary propulsion subsystem dry mass, including the proposed scavenging system, an additional 20 percent for secondary structure, an additional 5 percent for electrical service, a 10 percent weight growth margin, and 15.4 percent propellant reserves and residuals is estimated to be 6331 kg. This study shows that the fraction of the on-orbit vehicle mass required by the auxiliary propulsion system of this Shuttle 2 vehicle using this technology is estimated to be 12.0 percent compared to 19.9 percent for a vehicle with an earth-storable bipropellant system. This results in a vehicle with the capability of delivering an additional 7820 kg to the Space Station.

  9. Self-propelled pulse X-ray apparatus Sirena-1

    International Nuclear Information System (INIS)

    Danil'chenko, N.T.; Ershov, L.S.; Il'chenko, A.V.; Krasil'nikov, S.B.; Kristalinskij, A.L.; Lozovoj, L.N.; Markov, S.N.; Morgovskij, L.Ya.


    The structure and specifications of a self-propelled pulse X-ray apparatus ''Sirena-1'' for testing oilt and gas pipelines welded joints are described. The apparatus is designed on the base of pulse X-ray apparatus MIRA. Apparatus control is realized by means of the 137 Cs source or manual control desk. The apparatus ensures perfect control sensitivity

  10. Enantioselective synthesis of alpha,beta-disubstituted-beta-amino acids. (United States)

    Sibi, Mukund P; Prabagaran, Narayanasamy; Ghorpade, Sandeep G; Jasperse, Craig P


    Highly diastereoselective and enantioselective addition of N-benzylhydroxylamine to imides 17 and 20-30 produces alpha,beta-trans-disubstituted N-benzylisoxazolidinones 19 and 31-41. These reactions proceed in 60-96% ee with 93-99% de's using 5 mol % of Mg(NTf2)2 and ligand 18. The product isoxazolidinones can be hydrogenolyzed directly to provide alpha,beta-disubstituted-beta-amino acids.

  11. Toxicity of aerosol propellants in the respiratory and circulatory systems. VII. Influence of pulmonary emphysema and anesthesia in the rat. (United States)

    Watanabe, T; Aviado, D M


    Experimental induction of pulmonary emphysema caused an increase in sensitivity of the rat to toxicity from inhalation of propellants. The emphysematous rat showed an exaggerated reduction in pulmonary compliance in response to inhalation of trichlorofluoromethane (FC 11). In emphysematous and non emphysematous rats without anesthesia the inhalation of FC 11 caused tachycardia, arrhythmias and other abnormalities in the electrocardiogram. The tachycardiac response was eliminated by induction of barbiturate anesthesia, which increased the sensitivity of the heart to occurrence of abnormalities in the electrocardiogram in response to inhalation of FC 11 as well as of dichlorodifluoromethane (FC 12) and difluoroethane (FC 152a). The acceleration in heart rate in response to inhalation of FC 11, hypoxia or hypercapnea was prevented by prior treatment with a beta-blocking drug.

  12. Beta measurement evaluation and upgrade

    International Nuclear Information System (INIS)

    Swinth, K.L.; Rathbun, L.A.; Roberson, P.L.; Endres, G.W.R.


    This program focuses on the resolution of problems associated with the field measurement of the beta dose component at Department of Energy (DOE) facilities. The change in DOE programs, including increased efforts in improved waste management and decontamination and decommissioning (D and D) of facilities, coupled with beta measurement problems identified at Three Mile Island has increased the need to improve beta measurements. In FY 1982, work was initiated to provide a continuing effort to identify problems associated with beta dose assessment at DOE facilities. The problems identified resulted in the development of this program. The investigation includes (1) an assessment of measurement systems now in use, (2) development of improved calibration systems and procedures, (3) application of innovative beta dosimetry concepts, (4) investigation of new instruments or concepts for monitoring and spectroscopy, and (5) development of recommendations to assure an adequate beta measurement program within DOE facilities

  13. Conditional Betas and Investor Uncertainty


    Fernando D. Chague


    We derive theoretical expressions for market betas from a rational expectation equilibrium model where the representative investor does not observe if the economy is in a recession or an expansion. Market betas in this economy are time-varying and related to investor uncertainty about the state of the economy. The dynamics of betas will also vary across assets according to the assets' cash-flow structure. In a calibration exercise, we show that value and growth firms have cash-flow structures...

  14. Dynamic returns of beta arbitrage


    Nascimento, Mafalda


    This thesis studies the patterns of the abnormal returns of the beta strategy. The topic can be helpful for professional investors, who intend to achieve a better performance in their portfolios. Following the methodology of Lou, Polk, & Huang (2016), the COBAR measure is computed in order to determine the levels of beta arbitrage in the market in each point in time. It is argued that beta arbitrage activity can have impact on the returns of the beta strategy. In fact, it is demonstrated that...

  15. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger


    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some fo...... it is possible to implement plug-ins in BETA and even inherit from Java classes. In the paper the two approaches are described together with part of the mapping from BETA to Java class files.

  16. Simultaneous beta and gamma spectroscopy (United States)

    Farsoni, Abdollah T.; Hamby, David M.


    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  17. Rocket propellants with reduced smoke and high burning rates

    Energy Technology Data Exchange (ETDEWEB)

    Menke, K.; Eisele, S. [Fraunhofer-Institut fuer Chemische Technologie (ICT), Pfinztal-Berghausen (Germany)


    Rocket propellants with reduced smoke and high burning rates recommend themselves for use in a rocket motor for high accelerating tactical missiles. They serve for an improved camouflage on the battle field and may enable guidance control due to the higher transmission of their rocket plume compared to traditional aluminized composite propellants. In this contribution the material based ranges of performance and properties of three non aluminized rocket propellants will be introduced and compared to each other. The selected formulations based on AP/HTPB; AP/PU/TMETN and AP/HMX/GAP/TMETN have roughly the same specific impulse of I{sub SP}=2430 Ns/kg at 70:1 expansion ratio. The burning rates in the pressure range from 10-18 MPa vary from to 26-33 mm/s for the AP/HTPB propellant, 52-68 mm/s for the formulation based on AP/PU/TMETN and 28-39 mm/s for the propellant based on AP/HMX/GAP. With 58% and 20% AP-contents the propellants with nitrate ester plasticizers create a much smaller secondary signature than the AP/HTPB representative containing 85% AP. Their disadvantage, however, is the connection of high performance to a high level of energetic plasticizer. For this reason, the very fast burning propellant based on AP/PU/TMETN is endowed with a low elastic modulus and is limited to a grain configuration which isn`t exposed too much to the fast and turbulent airstream. The mechanical properties of the AP/HMX/GAP-propellant are as good or better as those of the AP/HTPB propellant. The first one exhibits the same performance and burn rates as the composite representative but produces only one fifth of HCl exhaust. For this reason it is recommended for missile applications, which must have high accelerating power together with a significantly reduced plume signature and smoke production. (orig.) [Deutsch] Rauchreduzierte Festtreibstoffe mit hohen Abbrandgeschwindigkeiten bieten sich fuer den Antrieb hochbeschleunigender taktischer Flugkoerper an, da sie gegenueber

  18. Nonlinear Output Feedback Control of Underwater Vehicle Propellers using Advance Speed Feedback

    DEFF Research Database (Denmark)

    Fossen, T.I.; Blanke, M.


    More accurate propeller shaft speed controllers can be designed by using nonlinear control theory. In this paper, an output feedback controller reconstructing the advance speed (speed of water going into the propeller) from vehicle speed measurements is derived. For this purpose a three-state model...... minimizes thruster losses due to variations in propeller axial inlet flow which is a major problem when applying conventional vehicle-propeller control systems. The proposed controller is simulated for an underwater vehicle equipped with a single propeller. From the simulations it can be concluded...... of propeller shaft speed, forward (surge) speed of the vehicle and axial inlet flow of the propeller is applied. A nonlinear observer in combination with an output feedback integral controller are derived by applying Lyapunov stability theory and exponential stability is proven. The output feedback controller...

  19. Performance Analysis Rim Driven Propeller as a Propulsor using Open Water Test

    Directory of Open Access Journals (Sweden)

    Agoes Santoso


    Full Text Available The use of duct in propeller is one of the breakthrough in the development of the propeller. Ducting not only claimed to be increasing efficiency of the propeller, but also capable to protect the propeller from impact therefore propeller lifespan is longer. From that idea then RDP is created. RDP propeller blade are designed to be fix at their housing called Rim, in the other word, the driving force came from it’s rim. On current RDP blade used is non-conventional blade. This thesis will discuss about design analysis of Kaplan Propeller Kaplan Ka-70 that modified on it’s thickness distribution. On this thesis data that is varied is motor load. Simulation using Open Water Test. The result, highest value of KT and KQ occur on 30% motor load and highest efficiency is 18,338% achieved on 260 Rpm.

  20. High-Lift Propeller System Configuration Selection for NASA's SCEPTOR Distributed Electric Propulsion Flight Demonstrator (United States)

    Patterson, Michael D.; Derlaga, Joseph M.; Borer, Nicholas K.


    Although the primary function of propellers is typically to produce thrust, aircraft equipped with distributed electric propulsion (DEP) may utilize propellers whose main purpose is to act as a form of high-lift device. These \\high-lift propellers" can be placed upstream of wing such that, when the higher-velocity ow in the propellers' slipstreams interacts with the wing, the lift is increased. This technique is a main design feature of a new NASA advanced design project called Scalable Convergent Electric Propulsion Technology Operations Research (SCEPTOR). The goal of the SCEPTOR project is design, build, and y a DEP aircraft to demonstrate that such an aircraft can be much more ecient than conventional designs. This paper provides details into the high-lift propeller system con guration selection for the SCEPTOR ight demonstrator. The methods used in the high-lift propeller system conceptual design and the tradeo s considered in selecting the number of propellers are discussed.

  1. Investigation on the wake evolution of contra-rotating propeller using RANS computation and SPIV measurement

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik


    Full Text Available The wake characteristics of Contra-Rotating Propeller (CRP were investigated using numerical simulation and flow measurement. The numerical simulation was carried out with a commercial CFD code based on a Reynolds Averaged Navier-Stokes (RANS equations solver, and the flow measurement was performed with Stereoscopic Particle Image Velocimetry (SPIV system. The simulation results were validated through the comparison with the experiment results measured around the leading edge of rudder to investigate the effect of propeller operation under the conditions without propeller, with forward propeller alone, and with both forward and aft propellers. The evolution of CRP wake was analyzed through velocity and vorticity contours on three transverse planes and one longitudinal plane based on CFD results. The trajectories of propeller tip vortex core in the cases with and without aft propeller were also compared, and larger wake contraction with CRP was confirmed.

  2. Study of the pitting effects during the pre-ignition plasma–propellant interaction process

    International Nuclear Information System (INIS)

    Hang, Yuhua; Li, Xingwen; Wu, Jian; Jia, Shenli; Zhao, Weiyu; Murphy, Anthony B


    The propellant ignition mechanism has become a central issue in the electrothermal chemical (ETC) launch technology, and the pre-ignition plasma–propellant interactions are critical in determining the ignition characteristics. In this work, both an open-air ablation test and an interrupted burning test are conducted for three different propellants. A fused silica window, which is transparent in all relevant wavelengths, is utilized to investigate the role of the plasma radiation. Surface pitting of the propellants after interaction with the plasma is analyzed using a scanning electron microscope (SEM). The effect of pits on the plasma ignition is then studied and a possible formation mechanism of pits is proposed. The input heat flux and the surface temperature of the propellants are obtained by solving a pre-ignition plasma–propellant interaction model. The results shed light on the pre-ignition plasma ignition mechanisms and will assist in the development of propellants for an ETC launcher. (paper)

  3. Identification of active anti-inflammatory principles of beta- beta ...

    African Journals Online (AJOL)

    chromatography. Components of the extracts were identified by thin layer chromatography (TLC) scanner and UV-visible spectroscopy, using scopoletin as standard. Results: ... basic coumarin skeleton ring structure reduce ... Figure 2: Thin-layer chromatogram: (1) Ethanol extract; (2) Dichloromethane fraction; (3) Beta-beta.

  4. Improved limits on beta(-) and beta(-) decays of Ca-48

    Czech Academy of Sciences Publication Activity Database

    Bakalyarov, A.; Balysh, A.; Barabash, AS.; Beneš, P.; Briancon, C.; Brudanin, V. B.; Čermák, P.; Egorov, V.; Hubert, F.; Hubert, P.; Korolev, NA.; Kosjakov, VN.; Kovalík, Alojz; Lebedev, NA.; Novgorodov, A. F.; Rukhadze, NI.; Štekl, NI.; Timkin, VV.; Veleshko, IE.; Vylov, T.; Umatov, VI.


    Roč. 76, č. 9 (2002), s. 545-547 ISSN 0021-3640 Institutional research plan: CEZ:AV0Z1048901 Keywords : beta decay * double beta decay * Ca-48 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.483, year: 2002

  5. Conversion of beta-methylbutyric acid to beta-hydroxy-beta-methylbutyric acid by Galactomyces reessii.


    Lee, I Y; Nissen, S L; Rosazza, J P


    beta-Hydroxy-beta-methylbutyric acid (HMB) has been shown to increase strength and lean mass gains in humans undergoing resistance-exercise training. HMB is currently marketed as a calcium salt of HMB, and thus, environmentally sound and inexpensive methods of manufacture are being sought. This study investigates the microbial conversion of beta-methylbutyric acid (MBA) to HMB by cultures of Galactomyces reessii. Optimal concentrations of MBA were in the range of 5 to 20 g/liter for HMB produ...

  6. Liquid oxygen (LO2) propellant conditioning concept testing (United States)

    Perry, Gretchen L. E.; Orth, Michael S.; Mehta, Gopal K.


    Testing of a simplified LO2 propellant conditioning concept for future expendable launch vehicles is discussed. Four different concepts are being investigated: no-bleed, low-bleed, use of a recirculation line, and He bubbling. A full-scale test article, which is a facsimile of a propellant feed duct with an attached section to simulate heat input from an LO2 turbopump, is to be tested at the Cold Flow Facility of the Marshall Space Flight Center West Test Area. Work to date includes: design and fabrication of the test article, design of the test facility and initial fabrication, development of a test matrix and test procedures, initial predictions of test output, and heat leak calibration and heat exchanger tests on the test articles.

  7. Nano and micro architectures for self-propelled motors

    International Nuclear Information System (INIS)

    Parmar, Jemish; Ma, Xing; Katuri, Jaideep; Simmchen, Juliane; Stanton, Morgan M; Trichet-Paredes, Carolina; Soler, Lluís; Sanchez, Samuel


    Self-propelled micromotors are emerging as important tools that help us understand the fundamentals of motion at the microscale and the nanoscale. Development of the motors for various biomedical and environmental applications is being pursued. Multiple fabrication methods can be used to construct the geometries of different sizes of motors. Here, we present an overview of appropriate methods of fabrication according to both size and shape requirements and the concept of guiding the catalytic motors within the confines of wall. Micromotors have also been incorporated with biological systems for a new type of fabrication method for bioinspired hybrid motors using three-dimensional (3D) printing technology. The 3D printed hybrid and bioinspired motors can be propelled by using ultrasound or live cells, offering a more biocompatible approach when compared to traditional catalytic motors. (focus issue paper)

  8. Homogenization Issues in the Combustion of Heterogeneous Solid Propellants (United States)

    Chen, M.; Buckmaster, J.; Jackson, T. L.; Massa, L.


    We examine random packs of discs or spheres, models for ammonium-perchlorate-in-binder propellants, and discuss their average properties. An analytical strategy is described for calculating the mean or effective heat conduction coefficient in terms of the heat conduction coefficients of the individual components, and the results are verified by comparison with those of direct numerical simulations (dns) for both 2-D (disc) and 3-D (sphere) packs across which a temperature difference is applied. Similarly, when the surface regression speed of each component is related to the surface temperature via a simple Arrhenius law, an analytical strategy is developed for calculating an effective Arrhenius law for the combination, and these results are verified using dns in which a uniform heat flux is applied to the pack surface, causing it to regress. These results are needed for homogenization strategies necessary for fully integrated 2-D or 3-D simulations of heterogeneous propellant combustion.

  9. Vertical-axis turbine/propeller for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Barkla, H.M.


    There are so many variables in the design and operating conditions of a vertical-axis turbine/propeller for the propulsion of a ship by wind that a preliminary study is offered, based on two simplified models. Study of a linear motion of blades in air and water shows optimum conditions for blade-speed and blade-incidence. Analysis of the second, cyclical model is simplified by the assumption of constant angles of incidence. While the logical superiority of the vertical-axis system, with its low transmission loss, may not alone give it the advantage over all other systems in upwind and downwind sailing, there are indications that in the beam wind it is in a class of its own; the Voith-Schneider-Type propeller then produces a thrust with a major component to windward, so that the combined unit leaves little or no athwartships force.

  10. Self-regulation in self-propelled nematic fluids. (United States)

    Baskaran, A; Marchetti, M C


    We consider the hydrodynamic theory of an active fluid of self-propelled particles with nematic aligning interactions. This class of materials has polar symmetry at the microscopic level, but forms macrostates of nematic symmetry. We highlight three key features of the dynamics. First, as in polar active fluids, the control parameter for the order-disorder transition, namely the density, is dynamically convected by the order parameter via active currents. The resulting dynamical self-regulation of the order parameter is a generic property of active fluids and destabilizes the uniform nematic state near the mean-field transition. Secondly, curvature-driven currents render the system unstable deep in the nematic state, as found previously. Finally, and unique to self-propelled nematics, nematic order induces local polar order that in turn leads to the growth of density fluctuations. We propose this as a possible mechanism for the smectic order of polar clusters seen in numerical simulations.

  11. Propellant Feed System for Swirl-Coaxial Injection (United States)

    Reynolds, David Christopher (Inventor)


    A propellant feed system for swirl-coaxial injection of a liquid propellant includes a reservoir having a bottom plate and at least one tube originating in the bottom plate and extending therefrom. The tube has rectangular slits defined in and distributed tangentially and evenly about a portion of the tube that is disposed in the bottom plate. Drain holes are provided in the bottom plate and tunnels are defined in the bottom plate. Each tunnel fluidly couples one of the drain holes to a corresponding one of the rectangular slits. Each tunnel includes (i) a bend of at least, and (ii) a straight portion leading to its corresponding rectangular slit wherein the straight portion is at least five times as long as a hydraulic diameter of the corresponding rectangular slit.

  12. The best-beta CAPM

    NARCIS (Netherlands)

    Zou, L.


    The issue of 'best-beta' arises as soon as potential errors in the Sharpe-Lintner-Black capital asset pricing model (CAPM) are acknowledged. By incorporating a target variable into the investor preferences, this study derives a best-beta CAPM (BCAPM) that maintains the CAPM's theoretical appeal and

  13. Beta decay of Cu-56

    NARCIS (Netherlands)

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M


    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the

  14. BETA SPECTRA. I. Negatrons spectra

    International Nuclear Information System (INIS)

    Grau Malonda, A.; Garcia-Torano, E.


    Using the Fermi theory of beta decay, the beta spectra for 62 negatrons emitters have been computed introducing a correction factor for unique forbidden transitions. These spectra are plotted vs. energy, once normal i sed, and tabulated with the related Fermi functions. The average and median energies are calculated. (Author)

  15. Review of the beta situation

    International Nuclear Information System (INIS)

    Sheffield, J.


    This note lists some of the possible causes of beta limitation in tokamak and discusses what is known and what is involved in investigating them. The motivation for preparing this note is the observed degradation of confinement with increasing beta poloidal β/sub p/ and beam power P/sub b/ in ISX-B

  16. RAVEN Beta Release

    International Nuclear Information System (INIS)

    Rabiti, Cristian; Alfonsi, Andrea; Cogliati, Joshua Joseph; Mandelli, Diego; Kinoshita, Robert Arthur; Wang, Congjian; Maljovec, Daniel Patrick; Talbot, Paul William


    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  17. RAVEN Beta Release

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)


    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  18. Self-propelled motion in a viscous compressible fluid

    Czech Academy of Sciences Publication Activity Database

    Mácha, Václav; Nečasová, Šárka


    Roč. 146, č. 2 (2016), s. 415-433 ISSN 0308-2105 R&D Projects: GA ČR(CZ) GAP201/11/1304; GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : self-propelled motion * compressible fluid * deformable structure Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016

  19. A Portable Burn Pan for the Disposal of Excess Propellants (United States)


    Measuring ener- getic contaminant deposition rates on snow. Water Air Soil Pollut (2012) 223:3689–3699. [25] Rasemann, W (2000) Industrial waste...the system off the ground, providing both clearance from most combustible materials or snow that may lie beneath it while partially containing the...ergetic compounds in the propellant charges. This mass was measured outside the pan, as the most important component of the residues is what is

  20. Propeller rotation noise due to torque and thrust (United States)

    Deming, Arthur F


    Sound pressure of the first four harmonics of rotation from a full-scale two-blade propeller were measured and are compared with values calculated from theory. The comparison is made (1) for the space distribution with constant tip speed and (2) for fixed space angles with variable tip speed. A relation for rotation noise from an element of radius developed by Gutin is given showing the effect of number of blades on the rotation noise.

  1. Driving dynamic colloidal assembly using eccentric self-propelled colloids


    Ma, Zhan; Lei, Qun-li; Ni, Ran


    Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of the promising applications in fabrication of dynamic responsive functional materials. Here using computer simulations, we found that in the mixture of passive colloids and eccentric self-propelled active particles, when the eccentricity and self-propulsion of active particles are high enough, the eccentric active particles can push passive coll...

  2. Longitudinal acoustic instabilities in slender solid propellant rockets : linear analysis


    García Schafer, Juan Esteban; Liñán Martínez, Amable


    To describe the acoustic instabilities in the combustion chambers of laterally burning solid propellant rockets the interaction of the mean flow with the acoustic waves is analysed, using multiple scale techniques, for realistic cases in which the combustion chamber is slender and the nozzle area is small compared with the cross-sectional area of the chamber. Associated with the longitudinal acoustic oscillations we find vorticity and entropy waves, with a wavelength typically small compared ...

  3. Low-Cost Propellant Launch From a Tethered Balloon (United States)

    Wilcox, Brian


    A document presents a concept for relatively inexpensive delivery of propellant to a large fuel depot in low orbit around the Earth, for use in rockets destined for higher orbits, the Moon, and for remote planets. The propellant is expected to be at least 85 percent of the mass needed in low Earth orbit to support the NASA Exploration Vision. The concept calls for the use of many small ( 10 ton) spin-stabilized, multistage, solid-fuel rockets to each deliver 250 kg of propellant. Each rocket would be winched up to a balloon tethered above most of the atmospheric mass (optimal altitude 26 2 km). There, the rocket would be aimed slightly above the horizon, spun, dropped, and fired at a time chosen so that the rocket would arrive in orbit near the depot. Small thrusters on the payload (powered, for example, by boil-off gases from cryogenic propellants that make up the payload) would precess the spinning rocket, using data from a low-cost inertial sensor to correct for small aerodynamic and solid rocket nozzle misalignment torques on the spinning rocket; would manage the angle of attack and the final orbit insertion burn; and would be fired on command from the depot in response to observations of the trajectory of the payload so as to make small corrections to bring the payload into a rendezvous orbit and despin it for capture by the depot. The system is low-cost because the small rockets can be mass-produced using the same techniques as those to produce automobiles and low-cost munitions, and one or more can be launched from a U.S. territory on the equator (Baker or Jarvis Islands in the mid-Pacific) to the fuel depot on each orbit (every 90 minutes, e.g., any multiple of 6,000 per year).

  4. An Experimental and Theoretical Study on Cavitating Propellers. (United States)


    34 And Identfyp eV &to" nMeeJ cascade flow theoretical supercavitating flow performance prediction method partially cavitating flow supercavitating ...the present work was to develop an analytical tool for predicting the off-design performance of supercavitating propellers over a wide range of...operating conditions. Due to the complex nature of the flow phenomena, a lifting line theory sirply combined with the two-dimensional supercavitating

  5. A Study of Flame Physics and Solid Propellant Rocket Physics (United States)


    and ellipsoids, and the packing of pellets relevant to igniter modeling. Other topics are the instabilities of smolder waves, premixed flame...instabilities in narrow tubes, and flames supported by a spinning porous plug burner . Much of this work has been reported in the high-quality archival...perchlorate in fuel binder, the combustion of model propellant packs of ellipses and ellipsoids, and the packing of pellets relevant to igniter modeling

  6. Interactions between two beta-sheets. Energetics of beta/beta packing in proteins. (United States)

    Chou, K C; Némethy, G; Rumsey, S; Tuttle, R W; Scheraga, H A


    The analysis of the interactions between regularly folded segments of the polypeptide chain contributes to an understanding of the energetics of protein folding. Conformational energy-minimization calculations have been carried out to determine the favorable ways of packing two right-twisted beta-sheets. The packing of two five-stranded beta-sheets was investigated, with the strands having the composition CH3CO-(L-Ile)6-NHCH3 in one beta-sheet and CH3CO-(L-Val)6-NHCH3 in the other. Two distinct classes of low-energy packing arrangements were found. In the class with lowest energies, the strands of the two beta-sheets are aligned nearly parallel (or antiparallel) with each other, with a preference for a negative orientation angle, because this arrangement corresponds to the best complementary packing of the two twisted saddle-shaped beta-sheets. In the second class, with higher interaction energies, the strands of the two beta-sheets are oriented nearly perpendicular to each other. While the surfaces of the two beta-sheets are not complementary in this arrangement, there is good packing between the corner of one beta-sheet and the interior part of the surface of the other, resulting in a favorable energy of packing. Both classes correspond to frequently observed orientations of beta-sheets in proteins. In proteins, the second class of packing is usually observed when the two beta-sheets are covalently linked, i.e. when a polypeptide strand passes from one beta-sheet to the other, but we have shown here that a large contribution to the stabilization of this packing arrangement arises from noncovalent interactions.

  7. Using PDV to Understand Damage in Rocket Motor Propellants (United States)

    Tear, Gareth; Chapman, David; Ottley, Phillip; Proud, William; Gould, Peter; Cullis, Ian


    There is a continuing requirement to design and manufacture insensitive munition (IM) rocket motors for in-service use under a wide range of conditions, particularly due to shock initiation and detonation of damaged propellant spalled across the central bore of the rocket motor (XDT). High speed photography has been crucial in determining this behaviour, however attempts to model the dynamic behaviour are limited by the lack of precision particle and wave velocity data with which to validate against. In this work Photonic Doppler Velocimetery (PDV) has been combined with high speed video to give accurate point velocity and timing measurements of the rear surface of a propellant block impacted by a fragment travelling upto 1.4 km s-1. By combining traditional high speed video with PDV through a dichroic mirror, the point of velocity measurement within the debris cloud has been determined. This demonstrates a new capability to characterise the damage behaviour of a double base rocket motor propellant and hence validate the damage and fragmentation algorithms used in the numerical simulations.

  8. Advanced Solar-propelled Cargo Spacecraft for Mars Missions (United States)

    Auziasdeturenne, Jacqueline; Beall, Mark; Burianek, Joseph; Cinniger, Anna; Dunmire, Barbrina; Haberman, Eric; Iwamoto, James; Johnson, Stephen; Mccracken, Shawn; Miller, Melanie


    Three concepts for an unmanned, solar powered, cargo spacecraft for Mars support missions were investigated. These spacecraft are designed to carry a 50,000 kg payload from a low Earth orbit to a low Mars orbit. Each design uses a distinctly different propulsion system: A Solar Radiation Absorption (SRA) system, a Solar-Pumped Laser (SPL) system and a solar powered magnetoplasmadynamic (MPD) arc system. The SRA directly converts solar energy to thermal energy in the propellant through a novel process. In the SPL system, a pair of solar-pumped, multi-megawatt, CO2 lasers in sunsynchronous Earth orbit converts solar energy to laser energy. The MPD system used indium phosphide solar cells to convert sunlight to electricity, which powers the propulsion system. Various orbital transfer options are examined for these concepts. In the SRA system, the mother ship transfers the payload into a very high Earth orbit and a small auxiliary propulsion system boosts the payload into a Hohmann transfer to Mars. The SPL spacecraft and the SPL powered spacecraft return to Earth for subsequent missions. The MPD propelled spacecraft, however, remains at Mars as an orbiting space station. A patched conic approximation was used to determine a heliocentric interplanetary transfer orbit for the MPD propelled spacecraft. All three solar-powered spacecraft use an aerobrake procedure to place the payload into a low Mars parking orbit. The payload delivery times range from 160 days to 873 days (2.39 years).

  9. A research on polyether glycol replaced APCP rocket propellant (United States)

    Lou, Tianyou; Bao, Chun Jia; Wang, Yiyang


    Ammonium perchlorate composite propellant (APCP) is a modern solid rocket propellant used in rocket vehicles. It differs from many traditional solid rocket propellants by the nature of how it is processed. APCP is cast into shape, as opposed to powder pressing it with black powder. This provides manufacturing regularity and repeatability, which are necessary requirements for use in the aerospace industry. For traditional APCP, ingredients normally used are ammonium peroxide, aluminum, Hydroxyl-terminated polybutadiene(HTPB), curing agency and other additives, the greatest disadvantage is that the fuel is too expensive. According to the price we collected in our country, a single kilogram of this fuel will cost 200 Yuan, which is about 35 dollars, for a fan who may use tons of the fuel in a single year, it definitely is a great deal of money. For this reason, we invented a new kind of APCP fuel. Changing adhesive agency from cross-linked htpb to cross linked polyether glycol gives a similar specific thrust, density and mechanical property while costs a lower price.

  10. Formulation and properties of ADN/GAP propellants

    Energy Technology Data Exchange (ETDEWEB)

    Menke, Klaus; Heintz, Thomas; Schweikert, Wenka; Keicher, Thomas; Krause, Horst [Fraunhofer-Institut fuer Chemische Technologie ICT, Pfinztal (Germany)


    In this contribution two ways are described, how it is possible to achieve perfectly cured and processible propellants with prilled ADN, low amounts of HMX 5{mu}m mps and a binder system based on GAP diole and GAP triole oligomers with and without TMETN as a nitrate ester plasticizer. It was shown how it will be possible to suppress the strongly gas forming reaction between ADN and reactive isocyanates by a mixture of stabilizers. In this way it was possible to create minimum smoke ADN/HMX/GAP/TMETN propellants cured with the triisocyanate N100. In the second part an unconventional binder system based on the 1.3 dipolar cycloaddition reaction of azido groups with acetylene compounds forming 1,2,3-triazole heterocyclic rings has been applied for ADN/GAP and AP/GAP propellants. Together with small parts of HMX formulations with ADN/HMX/GAP and the corresponding AP/HMX/GAP exhibit high thermodynamic performance, are easily processible, and cure successfully at 60 C. Their basic properties consisting of burning behavior and mechanical properties, at ambient temperature, chemical stability, and sensitivity have been investigated and are compared to each other. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  11. Self-Propelled Micromotors for Cleaning Polluted Water (United States)


    We describe the use of catalytically self-propelled microjets (dubbed micromotors) for degrading organic pollutants in water via the Fenton oxidation process. The tubular micromotors are composed of rolled-up functional nanomembranes consisting of Fe/Pt bilayers. The micromotors contain double functionality within their architecture, i.e., the inner Pt for the self-propulsion and the outer Fe for the in situ generation of ferrous ions boosting the remediation of contaminated water.The degradation of organic pollutants takes place in the presence of hydrogen peroxide, which acts as a reagent for the Fenton reaction and as main fuel to propel the micromotors. Factors influencing the efficiency of the Fenton oxidation process, including thickness of the Fe layer, pH, and concentration of hydrogen peroxide, are investigated. The ability of these catalytically self-propelled micromotors to improve intermixing in liquids results in the removal of organic pollutants ca. 12 times faster than when the Fenton oxidation process is carried out without catalytically active micromotors. The enhanced reaction–diffusion provided by micromotors has been theoretically modeled. The synergy between the internal and external functionalities of the micromotors, without the need of further functionalization, results into an enhanced degradation of nonbiodegradable and dangerous organic pollutants at small-scale environments and holds considerable promise for the remediation of contaminated water. PMID:24180623

  12. Working-cycle processes in solid-propellant rocket engines (Handbook). Rabochie protsessy v raketnykh dvigateliakh tverdogo topliva /Spravochnik/

    Energy Technology Data Exchange (ETDEWEB)

    Shishkov, A.A.; Panin, S.D.; Rumiantsev, B.V.


    Physical and mathematical models of processes taking place in solid-propellant rocket engines and gas generators are presented in a systematic manner. The discussion covers the main types of solid propellants, the general design and principal components of solid-propellant rocket engines, the combustion of a solid-propellant charge, thermodynamic calculation of combustion and outflow processes, and analysis of gasdynamic processes in solid-propellant rocket engines. 40 refs.

  13. Experimental study of high-speed counter-rotation propeller on low speed wind range; Dojiku hantengata kosoku propeller no teisokuiki ni okeru fudo jikken

    Energy Technology Data Exchange (ETDEWEB)



    Collaborative research was conducted by National Aerospace Laboratory and Japan Aircraft Development Company in the period of fiscal 1988-1992 into methods for testing aircraft with advanced propeller in low-speed wind tunnel. The propulsion efficiency of the currently available high-bypass turbofan engine is approximately 60% in the vicinity of Mach number 0.85. Propeller-driven aircraft, whose propulsion efficiency is as high as 80% in the low Mach number domain, are scarcely in practical use in the domain of Mach number 0.75 or higher. There are studies reported abroad as well as in Japan for the propeller-driven aircraft to enjoy higher propeller propulsion efficiency even in the vicinity of Mach number 0.8 by modifying the propeller diameter, number of blades, and blade sections, etc. This paper describes the experimental research into the high-speed counter-rotation propeller. A counter-rotation propeller 0.3m in diameter and provided with coaxially arranged 8times2 SR-2 blades is evaluated for pitch angles during the takeoff and landing modes, for thrust characteristics at the pitch angle for the cruising mode, and for propeller backwash and noise. 15 refs., 72 figs., 9 tabs.

  14. Tests of Nacelle-Propeller Combinations in Various Positions with Reference to Wings V : Clark Y Biplane Cellule - NACA Cowled Nacelle - Tractor Propeller (United States)

    Valentine, E Floyd


    This report is the fifth of a series giving the results obtained from wind tunnel tests on the interference drag and propulsive efficiency of nacelle-propeller-wing combinations. This report gives results of tests of an NACA cowled air-cooled engine nacelle with tractor propeller located in 12 positions with reference to a Clark Y biplane cellule.

  15. Thermal Decomposition Behaviors and Burning Characteristics of AN/Nitramine-Based Composite Propellant (United States)

    Naya, Tomoki; Kohga, Makoto


    Ammonium nitrate (AN) has attracted much attention due to its clean burning nature as an oxidizer. However, an AN-based composite propellant has the disadvantages of low burning rate and poor ignitability. In this study, we added nitramine of cyclotrimethylene trinitramine (RDX) or cyclotetramethylene tetranitramine (HMX) as a high-energy material to AN propellants to overcome these disadvantages. The thermal decomposition and burning rate characteristics of the prepared propellants were examined as the ratio of AN and nitramine was varied. In the thermal decomposition process, AN/RDX propellants showed unique mass loss peaks in the lower temperature range that were not observed for AN or RDX propellants alone. AN and RDX decomposed continuously as an almost single oxidizer in the AN/RDX propellant. In contrast, AN/HMX propellants exhibited thermal decomposition characteristics similar to those of AN and HMX, which decomposed almost separately in the thermal decomposition of the AN/HMX propellant. The ignitability was improved and the burning rate increased by the addition of nitramine for both AN/RDX and AN/HMX propellants. The increased burning rates of AN/RDX propellants were greater than those of AN/HMX. The difference in the thermal decomposition and burning characteristics was caused by the interaction between AN and RDX.

  16. Derivatives of the Incomplete Beta Function

    Directory of Open Access Journals (Sweden)

    Robert J. Boik


    Full Text Available The incomplete beta function is defined as where Beta(p, q is the beta function. Dutka (1981 gave a history of the development and numerical evaluation of this function. In this article, an algorithm for computing first and second derivatives of Ix,p,q with respect to p and q is described. The algorithm is useful, for example, when fitting parameters to a censored beta, truncated beta, or a truncated beta-binomial model.

  17. Development of beta reference radiations

    International Nuclear Information System (INIS)

    Wan Zhaoyong; Cai Shanyu; Li Yanbo; Yin Wei; Feng Jiamin; Sun Yuhua; Li Yongqiang


    A system of beta reference radiation has been developed, that is composed of 740 MBq 147 Pm beta source, 74 MBq and 740 MBq 90 Sr + 90 Y β sources, compensation filters, a source handling tool, a source jig, spacing bars, a shutter, a control unit and a beta dose meter calibration stand. For 740 MBq 147 Pm and 74 MBq 90 Sr + 90 Y beta reference radiations with compensation filters and 740 MBq 90 Sr + 90 Y beta reference radiation without compensation filter, at 20 cm, 30 cm and 30 cm distance separately; the residual energy of maximum is 0.14 MeV, 1.98 MeV and 2.18 MeV separately; the absorbed dose to tissue D (0.07) is 1.547 mGy/h (1996-05-20), 5.037 mGy/h (1996-05-10) and 93.57 mGy/h (1996-05-15) separately; the total uncertainty is 3.0%, 1.7% and 1.7% separately. For the first and the second beta reference radiation, the dose rate variability in the area of 18 cm diameter in the plane perpendicular to the beta-ray beam axis is within +-6% and +-3% separately. (3 refs., 2 tabs., 8 figs.)

  18. A semiconductor beta ray spectrometer

    International Nuclear Information System (INIS)

    Bom, V.R.


    Measurement of energy spectra of beta particles emitted from nuclei in beta-decay processes provides information concerning the mass difference of these nuclei between initial and final state. Moreover, experimental beta spectra yield information on the feeding of the levels in the daughter nucleus. Such data are valuable in the construction and checking of the level schemes. This thesis describes the design, construction, testing and usage of a detector for the accurate measurement of the mentioned spectra. In ch. 2 the design and construction of the beta spectrometer, which uses a hyper-pure germanium crystal for energy determination, is described. A simple wire chamber is used to discriminate beta particles from gamma radiation. Disadvantages arise from the large amounts of scattered beta particles deforming the continua. A method is described to minimize the scattering. In ch. 3 some theoretical aspects of data analysis are described and the results of Monte-Carlo simulations of the summation of annihilation radiation are compared with experiments. Ch. 4 comprises the results of the measurements of the beta decay energies of 103-108 In. 87 refs.; 34 figs.; 7 tabs

  19. BETA (Bitter Electromagnet Testing Apparatus) (United States)

    Bates, Evan M.; Birmingham, William J.; Rivera, William F.; Romero-Talamas, Carlos A.


    The Bitter Electromagnet Testing Apparatus (BETA) is a 1-Tesla (T) prototype of the 10-T Adjustable Long Pulse High-Field Apparatus (ALPHA). These water-cooled resistive magnets use high DC currents to produce strong uniform magnetic fields. Presented here is the successful completion of the BETA project and experimental results validating analytical magnet designing methods developed at the Dusty Plasma Laboratory (DPL). BETA's final design specifications will be highlighted which include electromagnetic, thermal and stress analyses. The magnet core design will be explained which include: Bitter Arcs, helix starters, and clamping annuli. The final version of the magnet's vessel and cooling system are also presented, as well as the electrical system of BETA, which is composed of a unique solid-state breaker circuit. Experimental results presented will show the operation of BETA at 1 T. The results are compared to both analytical design methods and finite element analysis calculations. We also explore the steady state maximums and theoretical limits of BETA's design. The completion of BETA validates the design and manufacturing techniques that will be used in the succeeding magnet, ALPHA.

  20. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J [Neuchatel Univ. (Switzerland). Inst. de Physique


    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  1. Preventive Effects of Beta-Hydroxy-Beta-Methyl Butyrate


    N. Ravanbakhsh; N. Torabi; M. Foadoddini


    Aims: One of the major factors in sudden cardiac arrest is the initiation and continuation of deadly arrhythmias during ischemia. It is known that beta-hydroxy-beta-methylbutyrate (HMB) has useful effects such as anti-inflammatory and anti-apoptosis effects in the skeletal muscles. The aim of this study was to investigate the preventive effects of HMB on the ventricular arrhythmias due to the ischemia. Materials & Methods: In the experimental study, 30 Wistar male rats were randomly div...

  2. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)


    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  3. Sigma beta decay

    International Nuclear Information System (INIS)

    Newman, D.E.


    Describes an experiment to measure beta decays of the sigma particle. Sigmas produced by stopping a K - beam in a liquid hydrogen target decayed in the following reactions: Kp → Σπ; Σ → Neν. The electron and pion were detected by wire spark chambers in a magnetic spectrometer and by plastic scintillators, and were differentiated by a threshold gas Cherenkov counter. The neutron was detected by liquid scintillation counters. The data (n = 3) shell electrons or the highly excited electrons decay first. Instead, it is suggested that when there are two to five electrons in highly excited states immediately after a heavy ion--atom collision the first transitions to occur will be among highly excited Rydberg states in a cascade down to the 4s, 4p, and 3d-subshells. If one of the long lived states becomes occupied by electrons promoted during the collision or by electrons falling from higher levels, it will not decay until after the valence shell decays. LMM rates calculated to test the methods used are compared to previous works. The mixing coefficients are given in terms of the states 4s4p, 45sp+-, and 5s5p. The applicability of Cooper, Fano, and Prats' discussion of the energies and transition rates of doubly excited states is considered

  4. Double Beta Decay

    International Nuclear Information System (INIS)

    Fiorini, Ettore


    The importance of neutrinoless Double Beta Decay (DBD) is stressed in view of the recent results of experiments on neutrino oscillations which indicate that the difference between the squared masses of two neutrinos of different flavours is finite [For a recent review including neutrino properties and recent results see: Review of Particle Physics, J. of Phys. G: Nuclear and Particle Physics 33, 1]. As a consequence the mass of at least one neutrino has to be different from zero and it becomes imperative to determine its absolute value. The various experimental techniques to search for DBD are discussed together with the difficult problems of the evaluation of the corresponding nuclear matrix elements. The upper limits on neutrino mass coming from the results of the various experiments are reported together with the indication for a non zero value by one of them not confirmed so far. The two presently running experiments on neutrinoless DBD are briefly described together with the already approved or designed second generation searches aiming to reach the values on the absolute neutrino mass indicated by the results on neutrino oscillations

  5. Radio-Frequency Tank Eigenmode Sensor for Propellant Quantity Gauging (United States)

    Zimmerli, Gregory A.; Buchanan, David A.; Follo, Jeffrey C.; Vaden, Karl R.; Wagner, James D.; Asipauskas, Marius; Herlacher, Michael D.


    Although there are several methods for determining liquid level in a tank, there are no proven methods to quickly gauge the amount of propellant in a tank while it is in low gravity or under low-settling thrust conditions where propellant sloshing is an issue. Having the ability to quickly and accurately gauge propellant tanks in low-gravity is an enabling technology that would allow a spacecraft crew or mission control to always know the amount of propellant onboard, thus increasing the chances for a successful mission. The Radio Frequency Mass Gauge (RFMG) technique measures the electromagnetic eigenmodes, or natural resonant frequencies, of a tank containing a dielectric fluid. The essential hardware components consist of an RF network analyzer that measures the reflected power from an antenna probe mounted internal to the tank. At a resonant frequency, there is a drop in the reflected power, and these inverted peaks in the reflected power spectrum are identified as the tank eigenmode frequencies using a peak-detection software algorithm. This information is passed to a pattern-matching algorithm, which compares the measured eigenmode frequencies with a database of simulated eigenmode frequencies at various fill levels. A best match between the simulated and measured frequency values occurs at some fill level, which is then reported as the gauged fill level. The database of simulated eigenmode frequencies is created by using RF simulation software to calculate the tank eigenmodes at various fill levels. The input to the simulations consists of a fairly high-fidelity tank model with proper dimensions and including internal tank hardware, the dielectric properties of the fluid, and a defined liquid/vapor interface. Because of small discrepancies between the model and actual hardware, the measured empty tank spectra and simulations are used to create a set of correction factors for each mode (typically in the range of 0.999 1.001), which effectively accounts for

  6. An Integrated Hydrofoil and Propeller Design Tool for the Windows Environment


    Beckett, David R.


    CIVINS (Civilian Institutions) Thesis document Includes supplementary material Approved for public release ; distribution is unlimited An investigation of the feasibility and desirability of the employment of personal computers in hydrofoil and propeller design was performed. The feasibility and desirability of the employment of personal computers in hydrofoil and propeller design was demonstrated by the seamless linking of the MIT Propulsor Lifting Line Code and the MIT Propeller Bl...

  7. A numerical study of scale effects on performance of a tractor type podded propeller

    Directory of Open Access Journals (Sweden)

    Choi Jung-Kyu


    Full Text Available In this study, the scale effect on the performance of the podded propeller of tractor type is investigated. Turbulent flow computations are carried out for Reynolds numbers increasing progressively from model scale to full scale using the CFD analysis. The result of the flow calculation for model scale Reynolds numbers agrees well with that of the experiment of a large cavitation tunnel. The existing numerical analysis indicates that the performance of the podded propeller blades is mainly influenced by the advance coefficient and relatively little by the Reynolds number. However, the drag of pod housing with propeller in operation is different from that of pod housing without propeller due to the acceleration and swirl of propeller slipstream which is altered by propeller loading as well as the pressure recovery and friction according to Reynolds number, which suggests that the pod housing drag under the condition of propeller in operation is the key factor of the scale effect on the performance between model and full scale podded propellers. The so called ‘drag ratio’, which is the ratio of pod housing drag to total thrust of podded propeller, increases as the advance coefficient increases due to accelerated flow in the slipstream of the podded propeller. However, the increasing rate of the drag ratio reduces continuously as the Reynolds number increases from model to full scale progressively. The contribution of hydrodynamic forces, which acts on the parts composed of the pod housing with propeller operating in various loading conditions, to the thrust and the torque of the total propeller unit are presented for a range of Reynolds numbers from model to full scales.

  8. (beta-HC CG) in

    African Journals Online (AJOL)


    Urothelial tumour samples were obtained from all the 86 patients requiring surgical ..... and/or urine beta HCG appears to be an efficient diagnostic marker for the ..... collected all urothelial tumour specimens for storage, cutting and staining.

  9. Beta-glucans and cholesterol

    Czech Academy of Sciences Publication Activity Database

    Šíma, Petr; Vannucci, Luca; Větvička, V.


    Roč. 41, č. 4 (2017), s. 1799-1808 ISSN 1107-3756 Institutional support: RVO:61388971 Keywords : cholesterol * beta-glucans * diet Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 2.341, year: 2016

  10. Radioisotope indicator, type BETA 2

    International Nuclear Information System (INIS)

    Duszanski, M.; Pankow, A.; Skwarczynski, B.


    The authors describe a radioisotope indicator, type BETA 2, constructed in the ZKMPW Works to be employed in mines for counting, checking, signalling the presence and positioning of cars, as well as monitoring the state of some other equipment. (author)

  11. Swirl-Stabilized Injector Flow and Combustion Dynamics for Liquid Propellants at Supercritical Conditions

    National Research Council Canada - National Science Library

    Yang, Vigor


    An integrated modeling and simulation program has been conducted to substantially improve the fundamental knowledge of supercritical combustion of liquid propellants under conditions representative...

  12. An Experimental Study on the aerodynamic and aeroacoustic performances of Maple-Seed-Inspired UAV Propellers (United States)

    Hu, Hui; Ning, Zhe


    Due to the auto-rotating trait of maple seeds during falling down process, flow characteristics of rotating maple seeds have been studied by many researchers in recent years. In the present study, an experimental investigation was performed to explore maple-seed-inspired UAV propellers for improved aerodynamic and aeroacoustic performances. Inspired by the auto-rotating trait of maple seeds, the shape of a maple seed is leveraged for the planform design of UAV propellers. The aerodynamic and aeroacoustic performances of the maple-seed-inspired propellers are examined in great details, in comparison with a commercially available UAV propeller purchased on the market (i.e., a baseline propeller). During the experiments, in addition to measuring the aerodynamic forces generated by the maple-seed-inspired propellers and the baseline propeller, a high-resolution Particle Image Velocimetry (PIV) system was used to quantify the unsteady flow structures in the wakes of the propellers. The aeroacoustic characteristics of the propellers are also evaluated by leveraging an anechoic chamber available at the Aerospace Engineering Department of Iowa State University. The research work is supported by National Science Foundation under Award Numbers of OSIE-1064235.

  13. Non-destructive testing of rocket propellant quality using -X-ray radiography

    International Nuclear Information System (INIS)

    Arayaprecha, W.


    Currently, X-rays radiography has been used extensively in various industries. In this thesis, X-rays has been used in the study of compaction of rocket propellant. For a rocket, to gain an accurate guidance result, the propellant used must be mixed and compacted thoroughly. The quality control of the production of propellant sticks must be carefully done. In this study of non-destructive quality testing of rocket propellant, at first the ultrasonic rays was used to test its homogeneity. However, because the density of the propellant was too low, the test equipment could not detect any reflected signals from the propellant being tested. Then the new procedure using X-rays radiography was tried. The variables in the test procedure were voltage, amperage and the focal-film distance. Also different types of films were used. The results of this experiment were then used to construct an exposure chart for testing the homogeneity of the rocket propellant. The advantage of this chart is that a tester can use this table with propellant sticks of different sizes if they have similar density to the density specified in the chart. Also, it is not necessary that the mixture of the testing propellant be the same as the ones used to construct this chart

  14. An advanced GAP/AN/TAGN propellant : part 2 : stability and storage life

    Energy Technology Data Exchange (ETDEWEB)

    Judge, M.D. [Bristol Aerospace, Winnipeg, MB (Canada); Badeen, C.M.; Jones, D.E.G. [Natural Resources Canada, Ottawa, ON (Canada). Canadian Explosives Research Laboratory


    An advanced solid propellant was characterized. The propellant was based on a glycidyl azide polymer (GAP) energetic binder with an ammonium nitrate (AN) oxidizer, and contained a significant percentage of triaminoguanidine nitrate (TAGN). Raw ingredient accelerating rate calorimetry (ARC) was performed to determine self-heating rates. Thermal stability and heat flow calorimetry tests were also conducted. Ballistic analyses were conducted to determine the propellant's burn rate. The propellant was designed to produce non-toxic and non-acidic exhaust products. Results of the tests indicated that the propellant is safe for prolonged storage. The study demonstrated that propellant samples can be heated to temperatures up to 175 degrees C for several hours without combustion response. A mass loss of 62 per cent was observed at temperatures between 160 and 230 degrees C. The samples ignited almost immediately after being placed in a pre-heated block at temperatures higher than 175 degrees C. The propellant's burn rate was approximately twice that of standard AN propellants. The propellant will be further evaluated as a candidate for the propulsion of tactical rockets and missiles. 17 refs., 4 tabs., 6 figs.

  15. Triphenylamine - a 'new' stabilizer for nitrocellulose based propellants. Pt. 1: chemical stability studies

    Energy Technology Data Exchange (ETDEWEB)

    Wilker, Stephan; Heeb, Gerhard [WIWEB ASt Heimerzheim, Grosses Cent, 53913 Swisttal (Germany); Vogelsanger, Beat [Nitrochemie Wimmis AG, Niesenstr. 44, 3752 Wimmis (Switzerland); Petrzilek, Jan; Skladal, Jan [Explosia a.s. - Research Institute of Industrial Chemistry (VUPCH), 532 17 Pardubice (Czech Republic)


    Triphenylamine (TPA) was used for the first time in France in 1937 as a stabilizer for propellants. The stability of those samples was described as 'good'. Around 1950 an American group produced TPA stabilized propellants and investigated the decomposition mechanism. Apart from one single experiment in the 1970s no further attempts were made to take TPA as a stabilizer for propellants. With the background of an increasingly critical discussion about nitrosamines in propellants and their declaration of being carcinogenic, TPA revealed a renaissance since the year 2000. To achieve the goal of nitrosamine free propellants several TPA stabilized propellants were produced. Their processability, stability and ballistic properties were investigated. This publication summarizes the most important results of stability tests on more than 30 different TPA stabilized propellants including the decomposition mechanism, the synthesis of the consecutive products and their stabilizing properties. In addition, the internal compatibility of TPA with the most important propellant ingredients is discussed and its relative decomposition rate is compared with that of other stabilizers. In summary TPA is a suitable stabilizer for propellants. It has nevertheless two disadvantages. It is relatively rapidly consumed in double base formulations (which makes it difficult to pass the criteria of AOP-48, Ed. 2) and the stabilizing activity of the two major consecutive products 4-NO{sub 2}-TPA and especially 4,4{sup '}-di-NO{sub 2}-TPA is low. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines

    National Research Council Canada - National Science Library

    Nusca, Michael J; Chen, Chiung-Chu; McQuaid, Michael J


    .... Computational fluid dynamics is employed to model the chemically reacting flow within a system's combustion chamber, and computational chemistry is employed to characterize propellant physical and reactive properties...

  17. Application of Model Based Prognostics to Pneumatic Valves in a Cryogenic Propellant Loading Testbed (United States)

    National Aeronautics and Space Administration — Pneumatic-actuated valves are critical components in many applications, including cryogenic propellant loading for space operations. For these components, failures...


    Directory of Open Access Journals (Sweden)

    Andi Trimulyono


    Full Text Available Tingginya harga bahan bakar semakin mendorong pelaku industri khususnya pemilik kapal melakukan penghematan konsumsi bahan bakar dan cara yang cukup efektif untuk mengurangi konsumsi bahan bakar tersebut adalah dengan menambah instalasi alat yang disebut Energy Saving Device (ESD pada propeller dengan tujuan meningkatkan efisiensi propulsi.   Beberapa desain  ESD propeller yang telah dikembangkan yakni Ducted Propellers (Kort Nozzel propeller, dan Propeller Boss Cap Fins (PBCF. Perbedaan jenis Energy Saving Device (ESD mengindikasikan perubahan gaya torque dan thrust yang berbeda sehingga penulis disini ingin menganalisa pengaruh instalasi Energy Saving Device (ESD  pada propeller terhadap torque dan thrust yang dihasilkan sehingga dapat diketahui jenis ESD dengan performa paling optimal dengan bantuan paket program CAD (Computer Aided Design serta CFD (Computational Fluid Dynamics. Hasil analisa dengan menggunakan RANS software CFD menunjukkan akibat penambahan instalasi Energy Saving Device (ESD  pada propeller, terjadi perubahan bentuk aliran fluida, yang berpengaruh pula terhadap nilai thrust dan torque yang dihasilkan. Gaya thrust yang terjadi pada pada PBCF Propeller adalah sebesar 8.70E+05 N, dengan Torque 7.18E+05, sedangkan thrust pada Nozzle Propeller adalah sebesar 1.18E+06 dengan Torque 9.86E+05

  19. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications (United States)

    Thomas, Matthew E.; Bossard, John A.; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)


    The fiber optically coupled laser ignition approach summarized is under consideration for use in igniting bi-propellant rocket thrust chambers. This laser ignition approach is based on a novel dual pulse format capable of effectively increasing laser generated plasma life times up to 1000 % over conventional laser ignition methods. In the dual-pulse format tinder consideration here an initial laser pulse is used to generate a small plasma kernel. A second laser pulse that effectively irradiates the plasma kernel follows this pulse. Energy transfer into the kernel is much more efficient because of its absorption characteristics thereby allowing the kernel to develop into a much more effective ignition source for subsequent combustion processes. In this research effort both single and dual-pulse formats were evaluated in a small testbed rocket thrust chamber. The rocket chamber was designed to evaluate several bipropellant combinations. Optical access to the chamber was provided through small sapphire windows. Test results from gaseous oxygen (GOx) and RP-1 propellants are presented here. Several variables were evaluated during the test program, including spark location, pulse timing, and relative pulse energy. These variables were evaluated in an effort to identify the conditions in which laser ignition of bi-propellants is feasible. Preliminary results and analysis indicate that this laser ignition approach may provide superior ignition performance relative to squib and torch igniters, while simultaneously eliminating some of the logistical issues associated with these systems. Further research focused on enhancing the system robustness, multiplexing, and window durability/cleaning and fiber optic enhancements is in progress.

  20. Colloidal Microworms Propelling via a Cooperative Hydrodynamic Conveyor Belt. (United States)

    Martinez-Pedrero, Fernando; Ortiz-Ambriz, Antonio; Pagonabarraga, Ignacio; Tierno, Pietro


    We study propulsion arising from microscopic colloidal rotors dynamically assembled and driven in a viscous fluid upon application of an elliptically polarized rotating magnetic field. Close to a confining plate, the motion of this self-assembled microscopic worm results from the cooperative flow generated by the spinning particles which act as a hydrodynamic "conveyor belt." Chains of rotors propel faster than individual ones, until reaching a saturation speed at distances where induced-flow additivity vanishes. By combining experiments and theoretical arguments, we elucidate the mechanism of motion and fully characterize the propulsion speed in terms of the field parameters.

  1. Synthesis of unsymmetrical dimethylhydrazine oxalate from rejected liquid rocket propellant (United States)

    Mu, Xiaogang; Yang, Jingjing; Zhang, Youzhi


    The rejected liquid propellant unsymmetrical dimethylhydrazine (UDMH) was converted to UDMH oxalate, which has commercial value. The UDMH oxalate structure and stability were investigated by the Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, differential scanning calorimetry, and ultraviolet-visible spectrophotometric analysis. The results indicate that UDMH oxalate has good thermal and aqueous solution stability, a melting point of 144 °C, an initial decomposition temperature of 180 °C, and a peak wavelength of UV in aqueous solution at λ = 204 nm. This disposal method of rejected UDMH is highly efficient and environmentally safe.

  2. An evaluation of krypton propellant in Hall thrusters (United States)

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  3. Noise from Propellers with Symmetrical Sections at Zero Blade Angle (United States)

    Deming, A F


    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.

  4. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission (United States)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie


    The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above

  5. Experimental study on a magnetofluid sealing liquid for propeller shaft (United States)

    Zhao, Chang-Fa; Sun, Rong-Hua; Zheng, Jin-Xing


    The selecting and preparing method of the basic material of magnetic fluid was introduced. By using a chemical method, the magnetic micropowder Fe3O4 was successfully yielded, and an oil-base as a working carrier and dispersing agent was determined. The preparation process of the magnetic fluid and prescription of the oil-base magnetic fluid were discussed. The simulation experimental rig of magnetic fluid sealing for propeller shaft was designed. The sealing ability experiment was conducted and results were analyzed. The pressure of sealing is up to 2 MPa.

  6. Self-propelled magnesium based micromotors: synthesis and magnetic steering

    Directory of Open Access Journals (Sweden)

    Jin Dongdong


    Full Text Available In this work the magnesium based Janus micromotors were prepared by an asymmetric coating of Co-Au bilayer on the surface of Mg microparticles. The micromotor could efficiently self-propel in phosphate buffer saline (PBS with a highest speed of 221 μm·s−1 without any extra additives through the macrogalvanic corrosion and pitting corrosion mechanism. The influence of pH value of PBS buffer on the motion of micromotor was also investigated. Moreover, we demonstrated that the motion of micromotor could be controlled by an external magnetic field rapidly and accurately, indicating the potential application in biomedicine.

  7. Parametric study of propeller boss cap fins for container ships (United States)

    Lim, Sang-Seop; Kim, Tae-Won; Lee, Dong-Myung; Kang, Chung-Gil; Kim, Soo-Young


    The global price of oil, which is both finite and limited in quantity, has been rising steadily because of the increasing requirements for energy in both developing and developed countries. Furthermore, regulations have been strengthened across all industries to address global warming. Many studies of hull resistance, propulsion and operation of ships have been performed to reduce fuel consumption and emissions. This study examined the design parameters of the propeller boss cap fin (PBCF) and hub cap for 6,000TEU container ships to improve the propulsion efficiency. The design parameters of PBCF have been selected based on the geometrical shape. Computational fluid dynamics (CFD) analysis with a propeller open water (POW) test was performed to check the validity of CFD analysis. The design of experiment (DOE) case was selected as a full factorial design, and the experiment was analyzed by POW and CFD analysis. Analysis of variance (ANOVA) was performed to determine the correlation among design parameters. Four design alternatives of PBCF were selected from the DOE. The shape of a propeller hub cap was selected as a divergent shape, and the divergent angle was determined by the DOE. Four design alternatives of PBCF were attached to the divergent hub cap, and the POW was estimated by CFD. As a result, the divergent hub cap with PBCF has a negative effect on the POW, which is induced by an increase in torque coefficient. A POW test and cavitation test were performed with a divergent hub cap with PBCF to verify the CFD result. The POW test result showed that the open water efficiency was increased approximately 2% with a divergent hub cap compared to a normal cap. The POW test result was similar to the CFD result, and the divergent hub cap with the PBCF models showed lower open water efficiency. This was attributed to an increase in the torque coefficient just like the CFD results. A cavitation test was performed using the 2 models selected. The test result showed

  8. High-Pressure Burning Rate Studies of Solid Rocket Propellants (United States)


    monopropellant burning rate. The self-de§agration rates of neat AP are plotted in Fig. 2 for both pressed pellets and single crystals. There is agreement...rate data from various investigators: 1 ¡ [2]; pressed pellets : 2 ¡ [3], 3 ¡ [4], and 4 ¡ [2]; and single crystals: 5 ¡ [5], and 6 ¡ [6]. Line ¡ AP...7]. Strand or window burners have had more use in the solid propellant community. There are numerous types and styles of combustion vessels, but they

  9. On the hydrodynamics of rocket propellant engine inducers and turbopumps

    International Nuclear Information System (INIS)

    D'Agostino, L


    The lecture presents an overview of some recent results of the work carried out at Alta on the hydrodynamic design and rotordynamic fluid forces of cavitating turbopumps for liquid propellant feed systems of modern rocket engines. The reduced order models recently developed for preliminary geometric definition and noncavitating performance prediction of tapered-hub axial inducers and centrifugal turbopumps are illustrated. The experimental characterization of the rotordynamic forces acting on a whirling four-bladed, tapered-hub, variable-pitch high-head inducer, under different load and cavitation conditions is presented. Future perspectives of the work to be carried out at Alta in this area of research are briefly illustrated

  10. Tables of double beta decay data

    Energy Technology Data Exchange (ETDEWEB)

    Tretyak, V.I. [AN Ukrainskoj SSR, Kiev (Ukraine)]|[Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Zdesenko, Y.G. [AN Ukrainskoj SSR, Kiev (Ukraine)


    A compilation of experimental data on double beta decay is presented. The tables contain the most stringent known experimental limits or positive results of 2{beta} transitions of 69 natural nuclides to ground and excited states of daughter nuclei for different channels (2{beta}{sup -}; 2{beta}{sup +}; {epsilon}{beta}{sup +}; 2{epsilon}) and modes (0{nu}; 2{nu}; 0{nu}M) of decay. (authors). 189 refs., 9 figs., 3 tabs.

  11. Beta Instability and Stochastic Market Weights


    David H. Goldenberg


    An argument is given for individual firm beta instability based upon the stochastic character of the market weights defining the market portfolio and the constancy of its beta. This argument is generalized to market weighted portfolios and the form of the stochastic process generating betas is linked to that of the market return process. The implications of this analysis for adequacy of models of beta nonstationarity and estimation of betas are considered in light of the available empirical e...

  12. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions (United States)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.


    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  13. JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommittee Joint Meeting. Volume 1 (United States)

    Cocchiaro, James E. (Editor); Mulder, Edwin J. (Editor); Gomez-Knight, Sylvia J. (Editor)


    This volume contains 37 unclassified/unlimited-distribution technical papers that were presented at the JANNAF 28th Propellant Development & Characterization Subcommittee (PDCS) and 17th Safety & Environmental Protection Subcommittee (S&EPS) Joint Meeting, held 26-30 April 1999 at the Town & Country Hotel and the Naval Submarine Base, San Diego, California. Volume II contains 29 unclassified/limited-distribution papers that were presented at the 28th PDCS and 17th S&EPS Joint Meeting. Volume III contains a classified paper that was presented at the 28th PDCS Meeting on 27 April 1999. Topics covered in PDCS sessions include: solid propellant rheology; solid propellant surveillance and aging; propellant process engineering; new solid propellant ingredients and formulation development; reduced toxicity liquid propellants; characterization of hypergolic propellants; and solid propellant chemical analysis methods. Topics covered in S&EPS sessions include: space launch range safety; liquid propellant hazards; vapor detection methods for toxic propellant vapors and other hazardous gases; toxicity of propellants, ingredients, and propellant combustion products; personal protective equipment for toxic liquid propellants; and demilitarization/treatment of energetic material wastes.

  14. Performance Gains of Propellant Management Devices for Liquid Hydrogen Depots (United States)

    Hartwig, Jason W.; McQuillen, John B.; Chato, David J.


    This paper presents background, experimental design, and preliminary experimental results for the liquid hydrogen bubble point tests conducted at the Cryogenic Components Cell 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. The purpose of the test series was to investigate the parameters that affect liquid acquisition device (LAD) performance in a liquid hydrogen (LH2) propellant tank, to mitigate risk in the final design of the LAD for the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, and to provide insight into optimal LAD operation for future LH2 depots. Preliminary test results show an increase in performance and screen retention over the low reference LH2 bubble point value for a 325 2300 screen in three separate ways, thus improving fundamental LH2 LAD performance. By using a finer mesh screen, operating at a colder liquid temperature, and pressurizing with a noncondensible pressurant gas, a significant increase in margin is achieved in bubble point pressure for LH2 screen channel LADs.

  15. Solid Propellant Microthruster Design, Fabrication, and Testing for Nanosatellites (United States)

    Sathiyanathan, Kartheephan

    This thesis describes the design, fabrication, and testing of a solid propellant microthruster (SPM), which is a two-dimensional matrix of millimeter-sized rockets each capable of delivering millinewtons of thrust and millinewton-seconds of impulse to perform fine orbit and attitude corrections. The SPM is a potential payload for nanosatellites to increase spacecraft maneuverability and is constrained by strict mass, volume, and power requirements. The dimensions of the SPM in the millimeter-scale result in a number of scaling issues that need consideration such as a low Reynolds number, high heat loss, thermal and radical quenching, and incomplete combustion. The design of the SPM, engineered to address these issues, is outlined. The SPM fabrication using low-cost commercial off-the-shelf materials and standard micromachining is presented. The selection of a suitable propellant and its customization are described. Experimental results of SPM firing to demonstrate successful ignition and sustained combustion are presented for three configurations: nozzleless, sonic nozzle, and supersonic nozzle. The SPM is tested using a ballistic pendulum thrust stand. Impulse and thrust values are calculated and presented. The performance values of the SPM are found to be consistent with existing designs.

  16. Development of an advanced rocket propellant handler's suit (United States)

    Doerr, D. F.


    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (rights reserved.

  17. CFD Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks (United States)

    Yang, H. Q.; West, Jeff


    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. This study uses first-principles based CFD methodology to compute heat transfer from the tank wall to the cryogenic fluids and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between the tank wall and cryogenic propellant, and that between the tank wall and ullage gas were then simulated. The results showed that the commonly used heat transfer correlations for either vertical or horizontal plate over-predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  18. Unsteady potential flow past a propeller blade section (United States)

    Takallu, M. A.


    An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

  19. Development of an advanced rocket propellant handler's suit (United States)

    Doerr, DonaldF.


    Most launch vehicles and satellites in the US inventory rely upon the use of hypergolic rocket propellants, many of which are toxic to humans. These fuels and oxidizers, such as hydrazine and nitrogen tetroxide have threshold limit values as low as 0.01 PPM. It is essential to provide space workers handling these agents whole body protection as they are universally hazardous not only to the respiratory system, but the skin as well. This paper describes a new method for powering a whole body protective garment to assure the safety of ground servicing crews. A new technology has been developed through the small business innovative research program at the Kennedy Space Center. Currently, liquid air is used in the environmental control unit (ECU) that powers the propellant handlers suit (PHE). However, liquid air exhibits problems with attitude dependence, oxygen enrichment, and difficulty with reliable quantity measurement. The new technology employs the storage of the supply air as a supercritical gas. This method of air storage overcomes all of three problems above while maintaining high density storage at relatively low vessel pressures (protective ensemble marked an advancement in the state-of-the-art in personal protective equipment. Not only was long duration environmental control provided, but it was done without a high pressure vessel. The unit met human performance needs for attitude independence, oxygen stability, and relief of heat stress. This supercritical air (and oxygen) technology is suggested for microgravity applications in life support such as the Extravehicular Mobility Unit.

  20. Green Propellant Infusion Mission Program Development and Technology Maturation (United States)

    McLean, Christopher H.; Deininger, William D.; Joniatis, John; Aggarwal, Pravin K.; Spores, Ronald A.; Deans, Matthew; Yim, John T.; Bury, Kristen; Martinez, Jonathan; Cardiff, Eric H.; hide


    The NASA Space Technology Mission Directorate's (STMD) Green Propellant Infusion Mission (GPIM) Technology Demonstration Mission (TDM) is comprised of a cross-cutting team of domestic spacecraft propulsion and storable green propellant technology experts. This TDM is led by Ball Aerospace & Technologies Corp. (BATC), who will use their BCP- 100 spacecraft to carry a propulsion system payload consisting of one 22 N thruster for primary divert (DeltaV) maneuvers and four 1 N thrusters for attitude control, in a flight demonstration of the AF-M315E technology. The GPIM project has technology infusion team members from all three major market sectors: Industry, NASA, and the Department of Defense (DoD). The GPIM project team includes BATC, includes Aerojet Rocketdyne (AR), Air Force Research Laboratory, Aerospace Systems Directorate, Edwards AFB (AFRL), NASA Glenn Research Center (GRC), NASA Kennedy Space Center (KSC), and NASA Goddard Space Flight Center (GSFC). STMD programmatic and technology oversight is provided by NASA Marshall Space Flight Center. The GPIM project shall fly an operational AF-M315E green propulsion subsystem on a Ball-built BCP-100 spacecraft.

  1. Improving catalase-based propelled motor endurance by enzyme encapsulation (United States)

    Simmchen, Juliane; Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, Maria


    Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed.Biocatalytic propulsion is expected to play an important role in the future of micromotors as it might drastically increase the number of available fuelling reactions. However, most of the enzyme-propelled micromotors so far reported still rely on the degradation of peroxide by catalase, in spite of being vulnerable to relatively high peroxide concentrations. To overcome this limitation, herein we present a strategy to encapsulate the catalase and to graft the resulting enzyme capsules on motor particles. Significant improvement of the stability in the presence of peroxide and other aggressive agents has been observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02459a

  2. Deflagration of thermite - ammonium nitrate based propellant mixture (United States)

    Duraes, Luisa; Morgado, Joel; Portugal, Antonio; Campos, Jose


    Reaction between iron oxide (Fe2O3) and aluminum (Al) is the reference of the classic thermite compositions. The efficency of the reaction, for a given initial composition of Fe2O3 and Al, is evaluated by the final temperature and by the mass ratio of Al2O3 /AlO in products of combustion (in condensed phase). In order to increase pressure in products of thermite reaction, the original composition is mixed, with an original twin screw extruder, with a propellant binder composed of ammonium and sodium nitrates, initialy solved in formamide (CH3NO) and mixed with a polyurethane solution. The products of combustion and pyrolysis of this binder, reacting with thermite products, generates high pressure and high temperature conditions. These experimental conditions are also predicted using THOR code. The study presents DSC and TGA results of components and mixtures, and correlates them to the ignition phenomena and reaction properties. The regression rate of combustion and final attained temperature and pressure, in a closed confinement, as a function of composition of thermite components/propellant binder, are presented and discussed. They show the influence of gaseous combustion and pyrolysis products of binder in final reaction.

  3. Self-propelled nanotools drilling into cells and tissues

    International Nuclear Information System (INIS)

    Sanchez, Samuel; Xi, Wang; Solovev, Alexander; Schmidt, Oliver


    We designed nanoscale tools in the form of autonomous and remotely guided catalytically and magnetically self-propelled micro- and nanotools. Asymmetrically rolled-up nanotools move in a corkscrewlike trajectory, allowing these tiny tubes to drill and embed themselves into biomaterials (fixed HeLa cells and tissues). First, we designed the smallest self-propelled nanojet engine (InGaAs/GaAs/(Cr)Pt) with diameters in the range of 280-600 nm, which move in hydrogen peroxide solutions with speeds as high as 180 μm.s -1 and perform advanced tasks such as drilling into cancer cells. Also, we demonstrated that tubular fuelfree Ti/Cr/Fe micro-drillers containing sharp tips can be applied for mechanical drilling operations of porcine liver tissue ex vivo. An external rotational magnetic field is used to remotely locate and actuate the micro-drillers in a solution with a viscosity comparable to that of biological fluids (e.g., blood). (authors)

  4. On Nonlinear Combustion Instability in Liquid Propellant Rocket Motors (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.


    All liquid propellant rocket instability calculations in current use have limited value in the predictive sense and serve mainly as a correlating framework for the available data sets. The well-known n-t model first introduced by Crocco and Cheng in 1956 is still used as the primary analytical tool of this type. A multitude of attempts to establish practical analytical methods have achieved only limited success. These methods usually produce only stability boundary maps that are of little use in making critical design decisions in new motor development programs. Recent progress in understanding the mechanisms of combustion instability in solid propellant rockets"' provides a firm foundation for a new approach to prediction, diagnosis, and correction of the closely related problems in liquid motor instability. For predictive tools to be useful in the motor design process, they must have the capability to accurately determine: 1) time evolution of the pressure oscillations and limit amplitude, 2) critical triggering pulse amplitude, and 3) unsteady heat transfer rates at injector surfaces and chamber walls. The method described in this paper relates these critical motor characteristics directly to system design parameters. Inclusion of mechanisms such as wave steepening, vorticity production and transport, and unsteady detonation wave phenomena greatly enhance the representation of key features of motor chamber oscillatory behavior. The basic theoretical model is described and preliminary computations are compared to experimental data. A plan to develop the new predictive method into a comprehensive analysis tool is also described.

  5. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas


    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  6. Development of a Microchannel In Situ Propellant Production System

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Kriston P.; Rassat, Scot D.; TeGrotenhuis, Ward E.


    An in situ propellant production (ISPP) plant on future Mars robotic missions can produce oxygen (O2) and methane (CH4) that can be used for propellant for the return voyage. By producing propellants from Mars atmospheric carbon dioxide (CO2) and hydrogen (H2) brought from Earth, the initial mass launched in low Earth orbit can be reduced by 20% to 45%, as compared to carrying all of the propellant for a round-trip mission to the Mars surface from Earth. Pacific Northwest National Laboratory used microchannel architecture to develop a Mars-based In Situ Propellant Production (ISPP) system. This three year research and development effort focused on process intensification and system miniaturization of three primary subsystems: a thermochemical compressor, catalytic reactors, and components for separating gas phases from liquid phases. These systems were designed based on a robotic direct return mission scenario, but can be scaled up to human flight missions by simply numbering up the microchannel devices. The thermochemical compression was developed both using absorption and adsorption. A multichannel adsorption system was designed to meet the full-scale CO2 collection requirements using temperature swing adsorption. Each stage is designed to achieve a 10x compression of CO2. A compression ratio to collect Martian atmospheric CO2 at ~0.8 kPa and compress it to at least 100 kPa can be achieved with two adsorption stages in series. A compressor stage incorporates eight thermally coupled adsorption cells at various stages in the adsorption/desorption cycle to maximize the recuperation of thermal energy and provide a nearly continuous flow of CO2 to the downstream reactors. The thermochemically compressed CO2 is then mixed with hydrogen gas and fed to two reactors: a Sabatier Reaction unit and a Reverse Water/Gas Shift unit. The microchannel architecture allows better heat control than is possible in an adiabatic system, resulting in significantly higher conversion. The

  7. Definition of a JA2 equivalent propellant to be produced by continuous solvent-less extrusion

    NARCIS (Netherlands)

    Manning, T.G.; Leone, J.; Zebregs, M.; Ramlal, D.R.; Driel, C.A. van


    The aim of this work is to demonstrate the manufacturing of a propellant by solvent-less continuous twin screw extrusion processing while maintaining gun performance characteristics of conventional JA-2 propellant. This is elucidated by explicitly researching the relationship between interior

  8. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella

    NARCIS (Netherlands)

    Vutukuri, Hanumantha Rao|info:eu-repo/dai/nl/304838926; Bet, Bram|info:eu-repo/dai/nl/370530667; van Roij, Rene|info:eu-repo/dai/nl/152978984; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807; Huck, Wilhelm T S


    The quest for designing new self-propelled colloids is fuelled by the demand for simple experimental models to study the collective behaviour of their more complex natural counterparts. Most synthetic self-propelled particles move by converting the input energy into translational motion. In this

  9. Calculation of marine propeller static strength based on coupled BEM/FEM

    Directory of Open Access Journals (Sweden)

    YE Liyu


    Full Text Available [Objectives] The reliability of propeller stress has a great influence on the safe navigation of a ship. To predict propeller stress quickly and accurately,[Methods] a new numerical prediction model is developed by coupling the Boundary Element Method(BEMwith the Finite Element Method (FEM. The low order BEM is used to calculate the hydrodynamic load on the blades, and the Prandtl-Schlichting plate friction resistance formula is used to calculate the viscous load. Next, the calculated hydrodynamic load and viscous correction load are transmitted to the calculation of the Finite Element as surface loads. Considering the particularity of propeller geometry, a continuous contact detection algorithm is developed; an automatic method for generating the finite element mesh is developed for the propeller blade; a code based on the FEM is compiled for predicting blade stress and deformation; the DTRC 4119 propeller model is applied to validate the reliability of the method; and mesh independence is confirmed by comparing the calculated results with different sizes and types of mesh.[Results] The results show that the calculated blade stress and displacement distribution are reliable. This method avoids the process of artificial modeling and finite element mesh generation, and has the advantages of simple program implementation and high calculation efficiency.[Conclusions] The code can be embedded into the code of theoretical and optimized propeller designs, thereby helping to ensure the strength of designed propellers and improve the efficiency of propeller design.

  10. New Horizons for Lipoprotein ReceptorsCommunication by β-propellers

    DEFF Research Database (Denmark)

    Andersen, Olav Michael; Dagil, Robert; Kragelund, Birthe B


    , this dogma has transformed with the observation that β-propellers of some LRs actively engage in complex formation too. Based on an in-depth decomposition of current structures and sequences, we suggest that exploitation of the β-propellers as binding targets depends on receptor subgroups. In particular, we...

  11. A Comparative Study of Conventional and Tip-Fin Propeller Performance

    DEFF Research Database (Denmark)

    Andersen, Poul


    During more than a decade several attempts have been made to obtain higher propeller efficiencies by radically modifying the geometry in the tip region of the blade. In the tip-fin propeller a tip fin or winglet is attached to the blade tip and integrated into the blade in such a way that the bla...

  12. Hydro-Elastic Tailoring and Optimization of a Composite Marine Propeller

    DEFF Research Database (Denmark)

    Blasques, José Pedro Albergaria Amaral; Berggreen, Christian; Andersen, Poul


    The following paper deals with the design and optimization of a flexible composite marine propeller. The blade shape is obtained from an existing high skew metal propeller. The aim is to tailor the laminate to control the elastic couplings and therefore the deformed shape of the blade. The develo...

  13. Influence of Propulsion Type on the Stratified Near Wake of an Axisymmetric Self-Propelled Body

    Directory of Open Access Journals (Sweden)

    Matthew C. Jones


    Full Text Available To better understand the influence of swirl on the thermally-stratified near wake of a self-propelled axisymmetric vehicle, three propulsor schemes were considered: a single propeller, contra-rotating propellers (CRP, and a zero-swirl, uniform-velocity jet. The propellers were modeled using an Actuator-Line model in an unsteady Reynolds-Averaged Navier–Stokes simulation, where the Reynolds number is R e L = 3.1 × 10 8 using the freestream velocity and body length. The authors previously showed good comparison to experimental data with this approach. Visualization of vortical structures shows the helical paths of blade-tip vortices from the single propeller as well as the complicated vortical interaction between contra-rotating blades. Comparison of instantaneous and time-averaged fields shows that temporally stationary fields emerge by half of a body length downstream. Circumferentially-averaged axial velocity profiles show similarities between the single propeller and CRP in contrast to the jet configuration. Swirl velocity of the CRP, however, was attenuated in comparison to that of the single propeller case. Mixed-patch contour maps illustrate the unique temperature distribution of each configuration as a consequence of their respective swirl profiles. Finally, kinetic and potential energy is integrated along downstream axial planes to reveal key differences between the configurations. The CRP configuration creates less potential energy by reducing swirl that would otherwise persist in the near wake of a single-propeller wake.

  14. Accelerated aging of AP/HTPB propellants and the influence of various environmental aging conditions

    NARCIS (Netherlands)

    Keizers, H.L.J.


    Preliminary resuits on accelerated aging of lab-scale produced AP/HTPB propellant and propellants from dissectioned rocket motors are discussed, including aging logic, storage conditions, test techniques and resuits on mechanical, ballistic and safety testing. The mam aging effect observed was

  15. On the Stress Analysis of the Kappel Propeller using Finite Elements

    DEFF Research Database (Denmark)

    Atkinson, P.; Andersen, Poul


    The Kappel propeller design concept promotes the inclusion of a "forward facing" blade tip winglet with the objective that propeller efficiency may be improved. Design development has enabled a series of finite element investigations in order to establish how the inclusion of an unconventional bl...


    Directory of Open Access Journals (Sweden)

    Samir. E. Belhenniche


    Full Text Available The present paper deals with the effect of the geometric characteristics on the propeller hydrodynamic performances. Several propeller configurations are created by changing number of blades, expanded area and pitch ratios. The Reynolds-Averaged Navier-Stokes (RANS equations are solved using the commercial code FLUENT 6.3.26. The standard

  17. Active matter in silico : phase behaviour of attractive, repulsive and anisotropic self-propelled particles

    NARCIS (Netherlands)

    Prymidis, V.


    In this thesis we study emergent statistical properties of many-particle systems of self-propelled particles using computer simulations. Ensembles of self-propelled particles belong to the class of physical systems labeled active matter, a term that refers to systems whose individual components are

  18. Propellant Containers and Expulsion Charges for M483A1 and M509 Projectiles. (United States)


    program. This malfunction occurred when a 58 g charge of MIO propellant misfired at -65*F. Phase II The celcon/acrylic bags had a history of a high...polyethylene loaded bags, making a total of 38 bags, each type containing 51 g of MIO propellant, were submitted to EMD, Chemistry Brioch for the following

  19. Simulations of the DARPA Suboff Submarine Including Self-Propulsion with the E1619 Propeller (United States)


    Young and Kinnas (2003) to evaluate supercavitating and surface-piercing propellers. The simulation’s predicted results compare well with experimental...Young Y, Kinnas S. 2003. Analysis of supercavitating and surface-piercing propeller flows via BEM. Comput. Mech. 32, 269-280. Yu-cun P, Huai-xin Z

  20. In-Situ tensile testing of propellants in SEM: influence of temperature

    NARCIS (Netherlands)

    Di Benedetto, G.L.; Ramshorst, M.C.J.; Duvalois, W.; Hooijmeijer, P.; Heijden, A. van der


    A tensile module system placed within a Scanning Electron Microscope (SEM) was utilized to conduct insitu tensile testing of propellant samples. The tensile module system allows for real-time in-situ SEM analysis of the samples to determine the failure mechanism of the propellant material under

  1. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers. (United States)


    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  2. Nonlinear output feedback control of underwater vehicle propellers using feedback form estimated axial flow velocity

    DEFF Research Database (Denmark)

    Fossen, T. I.; Blanke, Mogens


    Accurate propeller shaft speed controllers can be designed by using nonlinear control theory and feedback from the axial water velocity in the propeller disc. In this paper, an output feedback controller is derived, reconstructing the axial flow velocity from vehicle speed measurements, using...... a three-state model of propeller shaft speed, forward (surge) speed of the vehicle, and the axial flow velocity. Lyapunov stability theory is used to prove that a nonlinear observer combined with an output feedback integral controller provide exponential stability. The output feedback controller...... compensates for variations in thrust due to time variations in advance speed. This is a major problem when applying conventional vehicle-propeller control systems, The proposed controller is simulated for an underwater vehicle equipped with a single propeller. The simulations demonstrate that the axial water...

  3. Development of surrogate models for the prediction of the flow around an aircraft propeller (United States)

    Salpigidou, Christina; Misirlis, Dimitris; Vlahostergios, Zinon; Yakinthos, Kyros


    In the present work, the derivation of two surrogate models (SMs) for modelling the flow around a propeller for small aircrafts is presented. Both methodologies use derived functions based on computations with the detailed propeller geometry. The computations were performed using k-ω shear stress transport for modelling turbulence. In the SMs, the modelling of the propeller was performed in a computational domain of disk-like geometry, where source terms were introduced in the momentum equations. In the first SM, the source terms were polynomial functions of swirl and thrust, mainly related to the propeller radius. In the second SM, regression analysis was used to correlate the source terms with the velocity distribution through the propeller. The proposed SMs achieved faster convergence, in relation to the detail model, by providing also results closer to the available operational data. The regression-based model was the most accurate and required less computational time for convergence.

  4. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant (United States)

    Guan, Hao-Sen; Li, Guo-Xiu; Zhang, Nai-Yuan


    Due to the current global energy shortage and increasingly serious environmental issues, green propellants are attracting more attention. In particular, the ammonium dinitramide (ADN)-based monopropellant thruster is gaining world-wide attention as a green, non-polluting and high specific impulse propellant. Gel propellants combine the advantages of liquid and solid propellants, and are becoming popular in the field of spaceflight. In this paper, a swirling atomization experimental study was carried out using an ADN aqueous gel propellant under different injection pressures. A high-speed camera and a Malvern laser particle size analyzer were used to study the spray process. The flow coefficient, cone angle of swirl atomizing spray, breakup length of spray membrane, and droplet size distribution were analyzed. Furthermore, the effects of different injection pressures on the swirling atomization characteristics were studied.

  5. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen


    that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  6. Evaluation for probabilistic distributions of fatigue life of marine propeller materials by using a Monte Carlo simulation

    International Nuclear Information System (INIS)

    Yoon, Han Yong; Zhang, Jian Wei


    Engineering materials have been studied and developed remarkably for a long time. But, few reports about marine propeller materials are presented. Recently, some researchers have studied the material strength of marine propellers. However, studies on parametric sensitivity and probabilistic distribution of fatigue life of propeller materials have not been made yet. In this study, a method to predict the probabilistic distributions of fatigue life of propeller materials is presented, and the influence of several parameters on the life distribution is discussed

  7. Deconsolidation and combustion performance of thermally consolidated propellants deterred by multi-layers coating

    Directory of Open Access Journals (Sweden)

    Zheng-gang Xiao


    Full Text Available Both heating and solvent-spray methods are used to consolidate the standard grains of double-base oblate sphere propellants plasticized with triethyleneglycol dinitrate (TEGDN (TEGDN propellants to high density propellants. The obtained consolidated propellants are deterred and coated with the slow burning multi-layer coating. The maximum compaction density of deterred and coated consolidated propellants can reach up to 1.39 g/cm3. Their mechanic, deconsolidation and combustion performances are tested by the materials test machine, interrupted burning set-up and closed vessel, respectively. The static compression strength of consolidated propellants deterred by multi-layer coating increases significantly to 18 MPa, indicating that they can be applied in most circumstances of charge service. And the samples are easy to deconsolidate in the interrupted burning test. Furthermore, the closed bomb burning curves of the samples indicate a two-stage combustion phenomenon under the condition of certain thickness of coated multi-layers. After the outer deterred multi-layer coating of consolidated samples is finished burning, the inner consolidated propellants continue to burn and breakup into aggregates and grains. The high burning progressivity can be carefully obtained by the smart control of deconsolidation process and duration of consolidated propellants. The preliminary results of consolidated propellants show that a rapid deconsolidation process at higher deconsolidation pressure is presented in the dynamic vivacity curves of closed bomb test. Higher density and higher macro progressivity of consolidated propellants can be obtained by the techniques in this paper.

  8. Beta decay of 22O

    International Nuclear Information System (INIS)

    Hubert, F.; Dufour, J.P.; Moral, R. del; Fleury, A.; Jean, D.; Pravikoff, M.S.; Delagrange, H.; Geissel, H.; Schmidt, K.H.; Hanelt, E.


    The beta-gamma spectroscopic study of 22 O is presented. This nucleus, produced as a projectile-like fragment from the interaction of a 60 MeV/n 40 Ar beam with a Be target, has been separated by the LISE spectrometer. Several gamma rays from 22 O decay have been observed, from which a half-life of (2.25±0.15) s has been determined. Accurate excitation energies have been deduced for several states in 22 F. A partial beta decay scheme of 22 O has been established. Experimental results have been compared with shell model calculations. (orig.)

  9. Beta-hemolytic Streptococcal Bacteremia

    DEFF Research Database (Denmark)

    Nielsen, Hans Ulrik; Kolmos, Hans Jørn; Frimodt-Møller, Niels


    Bacteremia with beta-hemolytic Streptococci groups A, B, C and G has a mortality rate of approximately 20%. In this study we analyzed the association of various patient risk factors with mortality. Records from 241 patients with beta-hemolytic streptococcal bacteremia were reviewed with particular...... attention to which predisposing factors were predictors of death. A logistic regression model found age, burns, immunosuppressive treatment and iatrogenic procedures prior to the infection to be significant predictors of death, with odds ratios of 1.7 (per decade), 19.7, 3.6 and 6.8, respectively...

  10. The Beta Transmuted Weibull Distribution

    Directory of Open Access Journals (Sweden)

    Manisha Pal


    Full Text Available The paper introduces a beta transmuted Weibull distribution, which contains a number ofdistributions as special cases. The properties of the distribution are discussed and explicit expressions are derived for the mean deviations, Bonferroni and Lorenz curves, and reliability. The distribution and moments of order statistics are also studied. Estimation of the model parameters by the method of maximum likelihood is discussed. The log beta transmuted Weibull model is introduced to analyze censored data. Finally, the usefulness of the new distribution in analyzing positive data is illustrated.

  11. Beta activity of enriched uranium

    International Nuclear Information System (INIS)

    Nambiar, P.P.V.J.; Ramachandran, V.


    Use of enriched uranium as reactor fuel necessitates its handling in various forms. For purposes of planning and organising radiation protection measures in enriched uranium handling facilities, it is necessary to have a basic knowledge of the radiation status of enriched uranium systems. The theoretical variations in beta activity and energy with U 235 enrichment are presented. Depletion is considered separately. Beta activity build up is also studied for two specific enrichments, in respect of which experimental values for specific alpha activity are available. (author)

  12. Ignition and combustion characteristics of metallized propellants, phase 2 (United States)

    Mueller, D. C.; Turns, S. R.


    Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass

  13. Propellant injection strategy for suppressing acoustic combustion instability (United States)

    Diao, Qina

    Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz

  14. Partial drift volume due to a self-propelled swimmer (United States)

    Chisholm, Nicholas G.; Khair, Aditya S.


    We assess the ability of a self-propelled swimmer to displace a volume of fluid that is large compared to its own volume via the mechanism of partial drift. The swimmer performs rectilinear locomotion in an incompressible, unbounded Newtonian fluid. The partial drift volume D is the volume of fluid enclosed between the initial and final profiles of an initially flat circular disk of marked fluid elements; the disk is initially aligned perpendicular to the direction of locomotion and subsequently distorted due to the passage of the swimmer, which travels a finite distance. To focus on the possibility of large-scale drift, we model the swimmer simply as a force dipole aligned with the swimming direction. At zero Reynolds number (Re =0 ), we demonstrate that D grows without limit as the radius of the marked fluid disk h is made large, indicating that a swimmer at Re =0 can generate a partial drift volume much larger than its own volume. Next, we consider a steady swimmer at small Re , which is modeled as the force-dipole solution to Oseen's equation. Here, we find that D no longer diverges with h , which is due to inertial screening of viscous forces, and is effectively proportional to the magnitude of the force dipole exerted by the swimmer. The validity of this result is extended to Re ≥O (1 ) —the realm of intermediate-Re swimmers such as copepods—by taking advantage of the fact that, in this case, the flow is also described by Oseen's equations at distances much larger than the characteristic linear dimension of the swimmer. Next, we utilize an integral momentum balance to demonstrate that our analysis for a steady inertial swimmer also holds, in a time-averaged sense, for an unsteady swimmer that does not experience a net acceleration over a stroke cycle. Finally, we use experimental data to estimate D for a few real swimmers. Interestingly, we find that D depends heavily on the kinematics of swimming, and, in certain cases, D can be significantly greater

  15. A {beta} - {gamma} coincidence; Metodo de coincidencias {beta} - {gamma}

    Energy Technology Data Exchange (ETDEWEB)

    Agullo, F


    A {beta} - {gamma} coincidence method for absolute counting is given. The fundamental principles are revised and the experimental part is detailed. The results from {sup 1}98 Au irradiated in the JEN 1 Swimming pool reactor are given. The maximal accuracy is 1 per cent. (Author) 11 refs.

  16. Burning Characteristics of Ammonium-Nitrate-Based Composite Propellants with a Hydroxyl-Terminated Polybutadiene/Polytetrahydrofuran Blend Binder

    Directory of Open Access Journals (Sweden)

    Makoto Kohga


    Full Text Available Ammonium-nitrate-(AN- based composite propellants prepared with a hydroxyl-terminated polybutadiene (HTPB/polytetrahydrofuran (PTHF blend binder have unique thermal decomposition characteristics. In this study, the burning characteristics of AN/HTPB/PTHF propellants are investigated. The specific impulse and adiabatic flame temperature of an AN-based propellant theoretically increases with an increase in the proportion of PTHF in the HTPB/PTHF blend. With an AN/HTPB propellant, a solid residue is left on the burning surface of the propellant, and the shape of this residue is similar to that of the propellant. On the other hand, an AN/HTPB/PTHF propellant does not leave a solid residue. The burning rates of the AN/HTPB/PTHF propellant are not markedly different from those of the AN/HTPB propellant because some of the liquefied HTPB/PTHF binder cover the burning surface and impede decomposition and combustion. The burning rates of an AN/HTPB/PTHF propellant with a burning catalyst are higher than those of an AN/HTPB propellant supplemented with a catalyst. The beneficial effect of the blend binder on the burning characteristics is clarified upon the addition of a catalyst. The catalyst suppresses the negative influence of the liquefied binder that covers the burning surface. Thus, HTPB/PTHF blend binders are useful in improving the performance of AN-based propellants.

  17. N-Benzylhydroxylamine addition to beta-aryl enoates. Enantioselective synthesis of beta-aryl-beta-amino acid precursors (United States)

    Sibi; Liu


    Chiral Lewis acid catalyzed N-benzylhydroxylamine addition to pyrrolidinone-derived enoates afforded beta-aryl-beta-amino acid derivatives in high enantiomeric purity with moderate to very good chemical efficiency.

  18. On spacecraft maneuvers control subject to propellant engine modes. (United States)

    Mazinan, A H


    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  19. Phase separation of self-propelled ballistic particles (United States)

    Bruss, Isaac R.; Glotzer, Sharon C.


    Self-propelled particles phase-separate into coexisting dense and dilute regions above a critical density. The statistical nature of their stochastic motion lends itself to various theories that predict the onset of phase separation. However, these theories are ill-equipped to describe such behavior when noise becomes negligible. To overcome this limitation, we present a predictive model that relies on two density-dependent timescales: τF, the mean time particles spend between collisions; and τC, the mean lifetime of a collision. We show that only when τF<τC do collisions last long enough to develop a growing cluster and initiate phase separation. Using both analytical calculations and active particle simulations, we measure these timescales and determine the critical density for phase separation in both two and three dimensions.

  20. Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades

    Directory of Open Access Journals (Sweden)

    Spyros A. Kinnas


    Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.

  1. Ground effect on a self-propelled undulatory foil (United States)

    Zhang, Dong; Chao, Liming; Pan, Guang


    The unsteady ground effect on a self-propelled undulatory foil is numerically investigated in this paper. The situation can be widely found in nature especially for fish swimming near the ground. In this study, frequency varies from 0.1 Hz to 2 Hz and distance from the ground varies from 0.2 L to 1 L. Under most kinematics, the ground has a negative effect on the performance of the foil. The swimming velocity slows down, power spend increases and swimming economy reduces. The higher frequency can produce a larger negative effect. Only at the low frequencies f = 0.1 Hz, 0.25 Hz and 0.5 Hz with distance of 0.2 L the velocity can be enhanced by 18%, 6%, 0.8%, respectively. The lift production is found to be increased. The link between the performance and the wake dynamics is also established by studying the vortex structures.

  2. Fluctuations and pattern formation in self-propelled particles. (United States)

    Mishra, Shradha; Baskaran, Aparna; Marchetti, M Cristina


    We consider a coarse-grained description of a collection of self-propelled particles given by hydrodynamic equations for the density and polarization fields. We find that the ordered moving or flocking state of the system is unstable to spatial fluctuations beyond a threshold set by the self-propulsion velocity of the individual units. In this region, the system organizes itself into an inhomogeneous state of well-defined propagating stripes of flocking particles interspersed with low-density disordered regions. Further, we find that even in the regime where the homogeneous flocking state is stable, the system exhibits large fluctuations in both density and orientational order. We study the hydrodynamic equations analytically and numerically to characterize both regimes.

  3. Recent Progress in Bionic Condensate Microdrop Self-Propelling Surfaces. (United States)

    Gong, Xiaojing; Gao, Xuefeng; Jiang, Lei


    Bionic condensate microdrop self-propelling (CMDSP) surfaces are attracting increased attention as novel, low-adhesivity superhydrophobic surfaces due to their value in fundamental research and technological innovation, e.g., for enhancing heat transfer, energy-effective antifreezing, and electrostatic energy harvesting. Here, the focus is on recent progress in bionic CMDSP surfaces. Metal-based CMDSP surfaces, which are the most promising in their respective fields, are highlighted for use in future applications. The selected topics are divided into four sections: biological prototypes, mechanism and construction rules, fabrication, and applications of metal-based CMDSP surfaces. Finally, the challenges and future development trends in bionic CMDSP surfaces are envisioned, especially the utilization of potential bionic inspiration in the design of more advanced CMDSP surfaces. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A study of ADC value in PROPELLER DWI

    International Nuclear Information System (INIS)

    Naka, Takanori; Takahashi, Mitsuyuki


    Diffusion weighted imaging (DWI) is rapidly becoming widespread in MRI, with many reports of the differential diagnosis using the Apparent Diffusion Coefficient (ADC) being seen. We examined the influence of scan parameter on ADC in periodically rotated overlapping parallel lines with enhanced reconstruction (PROPELLER)-DWI. Neither the repetition time (TR) nor T1 value had a major influence on the ADC value. Number of motion probing gradient (MPG) pulse, effective echo time (TE), and T2 value were the factors in which the ADC value was changed. In addition, the ADC value has been changed by the scan sequence. The factor that influenced the ADC value was able to be confirmed by this experiment. It is necessary to understand the influence that an individual factor has on ADC. (author)

  5. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines (United States)

    Wollen, Mark A. (Inventor)


    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved in one or more charging chambers to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  6. Mixing and combustion enhancement of Turbocharged Solid Propellant Ramjet (United States)

    Liu, Shichang; Li, Jiang; Zhu, Gen; Wang, Wei; Liu, Yang


    Turbocharged Solid Propellant Ramjet is a new concept engine that combines the advantages of both solid rocket ramjet and Air Turbo Rocket, with a wide operation envelope and high performance. There are three streams of the air, turbine-driving gas and augment gas to mix and combust in the afterburner, and the coaxial intake mode of the afterburner is disadvantageous to the mixing and combustion. Therefore, it is necessary to carry out mixing and combustion enhancement research. In this study, the numerical model of Turbocharged Solid Propellant Ramjet three-dimensional combustion flow field is established, and the numerical simulation of the mixing and combustion enhancement scheme is conducted from the aspects of head region intake mode to injection method in afterburner. The results show that by driving the compressed air to deflect inward and the turbine-driving gas to maintain strong rotation, radial and tangential momentum exchange of the two streams can be enhanced, thereby improving the efficiency of mixing and combustion in the afterburner. The method of injecting augment gas in the transverse direction and making sure the injection location is as close as possible to the head region is beneficial to improve the combustion efficiency. The outer combustion flow field of the afterburner is an oxidizer-rich environment, while the inner is a fuel-rich environment. To improve the efficiency of mixing and combustion, it is necessary to control the injection velocity of the augment gas to keep it in the oxygen-rich zone of the outer region. The numerical simulation for different flight conditions shows that the optimal mixing and combustion enhancement scheme can obtain high combustion efficiency and have excellent applicability in a wide working range.

  7. Manganese oxalate nanorods as ballistic modifier for composite solid propellants

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Supriya [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India); Chawla, Mohit [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Siril, Prem Felix, E-mail: [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi 175005, H.P. (India); Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur 273009, U.P. (India)


    Highlights: • Manganese oxalate nanorods were prepared using mild thermal precipitation and aging. • The nanorods were found to be efficient ballistic modifier for solid propellants. • The nanorods sensitized the thermolysis of ammonium perchlorate. • Controlled thermal decomposition of nanorods yielded manganese oxide nanoparticles. • MnO nanoparticles formed insitu in the condensed phase enhance the burning rates. - Abstract: Rod-shaped nanostructures of manganese oxalate (MnC{sub 2}O{sub 4}) were synthesized via mild thermal precipitation and aging process. Chemical composition of the MnC{sub 2}O{sub 4} nanorods was confirmed using Fourier transform infra-red (FTIR) spectroscopy and energy dispersive X-ray spectroscopy (EDS). X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed the crystal structure. Field emission scanning electron microscopy (FE-SEM) imaging and high resolution transmission electron microscopy (HR-TEM) were employed to study the structural features of the nanorods. The MnC{sub 2}O{sub 4} nanorods were found to be efficient ballistic modifier for the burning rate enhancement of composite solid propellants (CSPs). Thermal analysis using TGA-DSC showed that MnC{sub 2}O{sub 4} nanorods sensitized the thermal decomposition of ammonium perchlorate (AP) and the CSPs. Controlled thermal decomposition of the MnC{sub 2}O{sub 4} nanorods resulted in the formation of managanese oxide nanoparticles with mesoporosity. A plausible mechanism for the burning rate enhancement using MnC{sub 2}O{sub 4} nanorods was proposed.

  8. Fiber-Optic Continuous Liquid Sensor for Cryogenic Propellant Gauging (United States)

    Xu. Wei


    An innovative fiber-optic sensor has been developed for low-thrust-level settled mass gauging with measurement uncertainty optical fiber to measure liquid level and liquid distribution of cryogenic propellants. Every point of the sensing fiber is a point sensor that not only distinguishes liquid and vapor, but also measures temperature. This sensor is able to determine the physical location of each point sensor with 1-mm spatial resolution. Acting as a continuous array of numerous liquid/vapor point sensors, the truly distributed optical sensing fiber can be installed in a propellant tank in the same manner as silicon diode point sensor stripes using only a single feedthrough to connect to an optical signal interrogation unit outside the tank. Either water or liquid nitrogen levels can be measured within 1-mm spatial resolution up to a distance of 70 meters from the optical interrogation unit. This liquid-level sensing technique was also compared to the pressure gauge measurement technique in water and liquid nitrogen contained in a vertical copper pipe with a reasonable degree of accuracy. It has been demonstrated that the sensor can measure liquid levels in multiple containers containing water or liquid nitrogen with one signal interrogation unit. The liquid levels measured by the multiple fiber sensors were consistent with those virtually measured by a ruler. The sensing performance of various optical fibers has been measured, and has demonstrated that they can survive after immersion at cryogenic temperatures. The fiber strength in liquid nitrogen has also been measured. Multiple water level tests were also conducted under various actual and theoretical vibration conditions, and demonstrated that the signal-to-noise ratio under these vibration conditions, insofar as it affects measurement accuracy, is manageable and robust enough for a wide variety of spacecraft applications. A simple solution has been developed to absorb optical energy at the termination of

  9. Nonlinear Longitudinal Mode Instability in Liquid Propellant Rocket Engine Preburners (United States)

    Sims, J. D. (Technical Monitor); Flandro, Gary A.; Majdalani, Joseph; Sims, Joseph D.


    Nonlinear pressure oscillations have been observed in liquid propellant rocket instability preburner devices. Unlike the familiar transverse mode instabilities that characterize primary combustion chambers, these oscillations appear as longitudinal gas motions with frequencies that are typical of the chamber axial acoustic modes. In several respects, the phenomenon is similar to longitudinal mode combustion instability appearing in low-smoke solid propellant motors. An important feature is evidence of steep-fronted wave motions with very high amplitude. Clearly, gas motions of this type threaten the mechanical integrity of associated engine components and create unacceptably high vibration levels. This paper focuses on development of the analytical tools needed to predict, diagnose, and correct instabilities of this type. For this purpose, mechanisms that lead to steep-fronted, high-amplitude pressure waves are described in detail. It is shown that such gas motions are the outcome of the natural steepening process in which initially low amplitude standing acoustic waves grow into shock-like disturbances. The energy source that promotes this behavior is a combination of unsteady combustion energy release and interactions with the quasi-steady mean chamber flow. Since shock waves characterize the gas motions, detonation-like mechanisms may well control the unsteady combustion processes. When the energy gains exceed the losses (represented mainly by nozzle and viscous damping), the waves can rapidly grow to a finite amplitude limit cycle. Analytical tools are described that allow the prediction of the limit cycle amplitude and show the dependence of this wave amplitude on the system geometry and other design parameters. This information can be used to guide corrective procedures that mitigate or eliminate the oscillations.

  10. Analytical Solution and Physics of a Propellant Damping Device (United States)

    Yang, H. Q.; Peugeot, John


    NASA design teams have been investigating options for "detuning" Ares I to prevent oscillations originating in the vehicle solid-rocket main stage from synching up with the natural resonance of the rest of the vehicle. An experimental work started at NASA MSFC center in 2008 using a damping device showed great promise in damping the vibration level of an 8 resonant tank. However, the mechanisms of the vibration damping were not well understood and there were many unknowns such as the physics, scalability, technology readiness level (TRL), and applicability for the Ares I vehicle. The objectives of this study are to understand the physics of intriguing slosh damping observed in the experiments, to further validate a Computational Fluid Dynamics (CFD) software in propellant sloshing against experiments with water, and to study the applicability and efficiency of the slosh damper to a full scale propellant tank and to cryogenic fluids. First a 2D fluid-structure interaction model is built to model the system resonance of liquid sloshing and structure vibration. A damper is then added into the above model to simulate experimentally observed system damping phenomena. Qualitative agreement is found. An analytical solution is then derived from the Newtonian dynamics for the thrust oscillation damper frequency, and a slave mass concept is introduced in deriving the damper and tank interaction dynamics. The paper will elucidate the fundamental physics behind the LOX damper success from the derivation of the above analytical equation of the lumped Newtonian dynamics. Discussion of simulation results using high fidelity multi-phase, multi-physics, fully coupled CFD structure interaction model will show why the LOX damper is unique and superior compared to other proposed mitigation techniques.

  11. Electret dosemeter for beta radiation

    International Nuclear Information System (INIS)

    Campos, L.L.; Caldas, L.V.E.; Mascarenhas, S.

    The response characteristics of an electret dosemeter for beta radiation are studied. Experiments were performed using different geometries and walls, and it was verified for which geometry the dosemeter sensitivity is greater. Sources of 90 Sr - 90 Y, 204 Tl and 85 Kr were used in the experiments. (I.C.R.) [pt

  12. Personnel monitoring for beta rays

    International Nuclear Information System (INIS)

    Piesch, E.; Johns, T.F.


    The practical considerations which have to be taken into account in the design of personnel monitors intended to measure doses resulting from exposure to beta rays are discussed. These include the measurement of doses in situations involving either fairly uniform or non-uniform irradiation and of doses to the male gonads. (UK)

  13. Constraining neutrinoless double beta decay

    International Nuclear Information System (INIS)

    Dorame, L.; Meloni, D.; Morisi, S.; Peinado, E.; Valle, J.W.F.


    A class of discrete flavor-symmetry-based models predicts constrained neutrino mass matrix schemes that lead to specific neutrino mass sum-rules (MSR). We show how these theories may constrain the absolute scale of neutrino mass, leading in most of the cases to a lower bound on the neutrinoless double beta decay effective amplitude.

  14. Beta Cell Workshop 2013 Kyoto

    DEFF Research Database (Denmark)

    Heller, R Scott; Madsen, Ole D; Nielsen, Jens Høiriis


    The very modern Kyoto International Conference Center provided the site for the 8th workshop on Beta cells on April 23-26, 2013. The preceding workshops were held in Boston, USA (1991); Kyoto, Japan (1994); Helsingør, Denmark (1997); Helsinki, Finland (2003); El Perello, Spain (2006); Peebles...

  15. Beta calibration and dosimetry at IPEN

    International Nuclear Information System (INIS)

    Caldas, L.V.E.


    A commercial extrapolation chamber (PTW, Germany) was tested in different beta radiation fields and its properties investigated. Its usefullness for beta radiation calibration and dosimetry was demonstrated. (Author) [pt

  16. Design and numerical investigation of swirl recovery vanes for the Fokker 29 propeller

    Directory of Open Access Journals (Sweden)

    Wang Yangang


    Full Text Available Swirl recovery vanes (SRVs are a set of stationary vanes located downstream from a propeller, which may recover some of the residual swirl from the propeller, hoping for an improvement in both thrust and efficiency. The SRV concept design for a scaled version representing the Fokker 29 propeller is performed in this paper, which may give rise to a promotion in propulsive performance of this traditional propeller. Firstly the numerical strategy is validated from two aspects of global quantities and the local flow field of the propeller compared with experimental data, and then the exit flow together with the development of propeller wake is analyzed in detail. Three kinds of SRV are designed with multiple circular airfoils. The numerical results show that the swirl behind the propeller is recovered significantly with Model V3, which is characterized by the highest solidity along spanwise, for various working conditions, and the combination of rotor and vane produced 5.76% extra thrust at the design point. However, a lower efficiency is observed asking for a better vane design and the choice of a working point. The vane position is studied which shows that there is an optimum range for higher thrust and efficiency.

  17. Feasibility Study and Demonstration of an Aluminum and Ice Solid Propellant

    Directory of Open Access Journals (Sweden)

    Timothee L. Pourpoint


    Full Text Available Aluminum-water reactions have been proposed and studied for several decades for underwater propulsion systems and applications requiring hydrogen generation. Aluminum and water have also been proposed as a frozen propellant, and there have been proposals for other refrigerated propellants that could be mixed, frozen in situ, and used as solid propellants. However, little work has been done to determine the feasibility of these concepts. With the recent availability of nanoscale aluminum, a simple binary formulation with water is now feasible. Nanosized aluminum has a lower ignition temperature than micron-sized aluminum particles, partly due to its high surface area, and burning times are much faster than micron aluminum. Frozen nanoscale aluminum and water mixtures are stable, as well as insensitive to electrostatic discharge, impact, and shock. Here we report a study of the feasibility of an nAl-ice propellant in small-scale rocket experiments. The focus here is not to develop an optimized propellant; however improved formulations are possible. Several static motor experiments have been conducted, including using a flight-weight casing. The flight weight casing was used in the first sounding rocket test of an aluminum-ice propellant, establishing a proof of concept for simple propellant mixtures making use of nanoscale particles.

  18. Characteristic Evaluation of a Shrouded Propeller Mechanism for a Magnetic Actuated Microrobot

    Directory of Open Access Journals (Sweden)

    Qiang Fu


    Full Text Available Medical microrobots have been widely used in clinical applications, particularly the spiral type locomotion mechanism, which was recently considered one of the main self-propelling mechanisms for the next medical microrobot to perform tasks such as capsule endoscopy and drug delivery. However, limits in clinical applications still exist. The spiral action of the microrobot while being used for diagnosis may lead to pain or even damage to the intestinal wall due to the exposed mechanisms. Therefore, a new locomotive mechanism, named the shrouded propeller mechanism, was proposed to achieve a high level of medical safety as well as effective propulsive performance in our study. The shrouded propeller mechanism consists of a bare spiral propeller and a non-rotating nozzle. To obtain a high effective propulsive performance, two types of screw grooves with different shapes including the cylindrical screw groove and the rectangular screw groove with different parameters were analyzed using the shrouded model. Two types of magnetic actuated microrobots with different driving modes, the electromagnetic (three-pole rotor actuated microrobot and the permanent magnet (O-ring type magnet actuated microrobot were designed to evaluate the performance of the electromagnetic actuation system. Based on experimental results, the propulsive force of the proposed magnetic actuated microrobot with a shrouded propeller was larger than the magnetic actuated microrobot with a bare spiral propeller under the same parameters. Additionally, the shrouded propeller mechanism as an actuator can be used for other medical microrobots for flexible locomotion.

  19. A Cis-Lunar Propellant Infrastructure for Flexible Path Exploration and Space Commerce (United States)

    Oeftering, Richard C.


    This paper describes a space infrastructure concept that exploits lunar water for propellant production and delivers it to users in cis-lunar space. The goal is to provide responsive economical space transportation to destinations beyond low Earth orbit (LEO) and enable in-space commerce. This is a game changing concept that could fundamentally affect future space operations, provide greater access to space beyond LEO, and broaden participation in space exploration. The challenge is to minimize infrastructure development cost while achieving a low operational cost. This study discusses the evolutionary development of the infrastructure from a very modest robotic operation to one that is capable of supporting human operations. The cis-lunar infrastructure involves a mix of technologies including cryogenic propellant production, reusable lunar landers, propellant tankers, orbital transfer vehicles, aerobraking technologies, and electric propulsion. This cislunar propellant infrastructure replaces Earth-launched propellants for missions beyond LEO. It enables users to reach destinations with smaller launchers or effectively multiplies the user s existing payload capacity. Users can exploit the expanded capacity to launch logistics material that can then be traded with the infrastructure for propellants. This mutually beneficial trade between the cis-lunar infrastructure and propellant users forms the basis of in-space commerce.

  20. On Fuzzy {beta}-I-open sets and Fuzzy {beta}-I-continuous functions

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Aynur [Department of Mathematics, Faculty of Science and Arts, Selcuk University, Campus, 42075 Konya (Turkey)], E-mail:


    In this paper, first of all we obtain some properties and characterizations of fuzzy {beta}-I-open sets. After that, we also define the notion of {beta}-I-closed sets and obtain some properties. Lastly, we introduce the notions of fuzzy {beta}-I-continuity with the help of fuzzy {beta}-I-open sets to obtain decomposition of fuzzy continuity.

  1. Beta-Catenin Stability in Breast Cancer

    National Research Council Canada - National Science Library

    Baswaran, Vijay


    .... beta-catenin also binds the adenomatous polyposis coli protein (APC). The tumor suppressor function of APC is suggested to depend in part on its ability to bind beta-catenin and to facilitate beta-catenin degradation by an unknown mechanism...

  2. Beta-lactamases in Enterobacteriaceae in broilers

    NARCIS (Netherlands)

    Dierikx, C.M.


    Resistance to cephalosprins due to the production of extended spectrum beta-lactamases (ESBLs) or plasmid mediated AmpC beta-lactamases is increasingly found in infections in humans outside the hospital. The genes encoding for these beta-lactamases are located on mobile DNA (plasmids), which can be

  3. A computational tool for the rapid design and prototyping of propellers for underwater vehicles


    D'Epagnier, Kathryn Port.


    An open source, MATLAB (trademarked)-based propeller design code MPVL was improved to include rapid prototyping capabilities as well as other upgrades as part of this effort. The resulting code, OpenPVL is described in this thesis. In addition, results from the development code BasicPVL are presented. An intermediate code, BasicPVL, was created by the author while OpenPVL was under development, and it provides guidance for initial propeller designs and propeller efficiency analysis. OpenPVL i...

  4. Sea trials of wave propulsion of a yacht using a flexible fin propeller

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, R.C.; Thomson, G.R. [Glasgow Univ. (United Kingdom). Dept. of Mechanical Engineering


    Evidence has been accumulating from theoretical and model test studies over several years that propellers that could be designated as ``oscillating foil`` are potentially more energy efficient than conventional screw propellers. There has been demonstrations that, in the controlled conditions of a laboratory, the flexible fin propeller can convert wave energy into an auxiliary means of forward propulsion. Two questions which are immediately raised are ``is the effect realisable in a real seaway?`` and ``what is the mechanism of energy transfer?``. This paper provides clear evidence of a positive answer to the first question. (author)

  5. On the mechanism of energy transfer in the plasma-propellant interaction

    Energy Technology Data Exchange (ETDEWEB)

    Porwitzky, Andrew J.; Keidar, Michael; Boyd, Iain D. [University of Michigan, Department of Aerospace Engineering, Ann Arbor, Michigan 48109-2140 (United States)


    A coupled plasma sheath/ablation model is developed for electrothermal chemical gun applications. By combining a commonly employed collisional sheath model with a previous ablation model, the convective heat flux as a function of time to the propellant bed is determined for two potential electrothermal chemical gun propellants, XM39 and JA2. It is found that the convective heat flux varies smoothly from a nearly collisionless to a fully collisional regime over the short duration of the plasma pulse. The possibility of determining an accurate estimate of the amount of heat flux to the propellant bed due to radiation from the bulk plasma presents itself. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. CFD Analysis of Scale Effects on Conventional and Tip-Modified Propellers

    DEFF Research Database (Denmark)

    Shin, Keun Woo; Andersen, Poul


    Full-scale propeller performance is traditionally predictedby scaling model-scale test results, but the traditionalscaling methods do not take into account hydrodynamicdistinctions of tip-modified propellers in full-scaleperformance. An open-water CFD analysis is made onscale effects of tip...... the transition model shows that laminar and transitionalflow modeling is crucial in model-scale computations.Grid-independent solutions at model and full scale areachieved by grid verification studies. The CFD analysis of scale effects shows that theefficiency gain of the tip-modified propeller is increasedat...

  7. Pre-Swirl Stator and Propeller Design for Varying Operating Conditions

    DEFF Research Database (Denmark)

    Saettone, Simone; Regener, Pelle Bo; Andersen, Poul


    blades ahead of the propeller.This paper describes the hydrodynamic design of apre-swirl stator with radially variable pitch, paired with aconventional propeller. The aim is to achieve the highest possible effciency in various operating conditions, and to avoid effciency penalties in off-design operation.......To investigate the propeller and stator designs and configurations in different operating conditions, the computationally inexpensive vortex-lattice method is used a sa first step to optimize the geometry in an initial parameter study. Then the flow over hull, stator and propelleris simulated in a CFD...

  8. Simulation technique on combustion of solid propellant; Kotai suishin`yaku nensho no simyureshon gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Akihide.; Bazaki, Hakobu.; Douke, Kiyotaka. [Asahi Chemical Industry Corp., Tokyo (Japan). Oita Plant


    The burning area of propellant grain is one of the most important parameter in conducting of design on solid rocket performance. However, it has been difficult to calculate the burning area of propellant grain with precise and speed by geometrical way since most of propellant configuration have been adopted as complicated. In the present study, the simulation system was developed and produced, which was adapted `particle chasing method` to and made ot compute the burning area transition. Moreover, the reliability on computation by the system was check up on. It was found that the discrepancy of calculation between by the geometrical way and by the system was less than 1%. (author)

  9. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy (United States)

    Gill, W.; Cruz-Cabrera, A. A.; Donaldson, A. B.; Lim, J.; Sivathanu, Y.; Bystrom, E.; Haug, A.; Sharp, L.; Surmick, D. M.


    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified.

  10. Combustion diagnosis for analysis of solid propellant rocket abort hazards: Role of spectroscopy

    International Nuclear Information System (INIS)

    Gill, W; Cruz-Cabrera, A A; Bystrom, E; Donaldson, A B; Haug, A; Sharp, L; Lim, J; Sivathanu, Y; Surmick, D M


    Solid rocket propellant plume temperatures have been measured using spectroscopic methods as part of an ongoing effort to specify the thermal-chemical-physical environment in and around a burning fragment of an exploded solid rocket at atmospheric pressures. Such specification is needed for launch safety studies where hazardous payloads become involved with large fragments of burning propellant. The propellant burns in an off-design condition producing a hot gas flame loaded with burning metal droplets. Each component of the flame (soot, droplets and gas) has a characteristic temperature, and it is only through the use of spectroscopy that their temperature can be independently identified

  11. Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations

    Directory of Open Access Journals (Sweden)

    Jianxi Yao


    Full Text Available This paper presents a numerical study on investigating on hydrodynamic characteristics of a marine propeller in oblique flow. The study is achieved by RANS simulations on an open source platform - OpenFOAM. A sliding grid approach is applied to compute the rotating motion of the propeller. Total force and moment acting on blades, as well as average force distributions in one revolution on propeller disk, are obtained for 70 cases of com- binations of advance ratios and oblique angles. The computed results are compared with available experimental data and discussed.

  12. Development and applications of beta and near beta titanium alloys

    International Nuclear Information System (INIS)

    Takemura, A.; Ohyama, H.; Nishimura, T.; Abumiya, T.


    In this report the authors introduced application of beta and near beta titanium alloys also development and processing of these alloys at Kobe Steel LTD. Ti-15Mo-5Zr-3Al is an alloy developed by Kobe Steel which has been applied for variety of sporting goods, also used as an erosion shield of steam turbine blades. Ti-15Mo-5Zr-3Al high strength wire for valve springs is under development. New beta alloys(Ti-V-Nb-Sn-Al) are under development which have lower flow stress at room temperature than Ti 15V-3Cr-3Sn-3Al, expected to improve productivity of cold forging. NNS forging and thermo mechanical treatment of Ti-10V-2Fe-3Al were studied. Ti-10V-2Fe3Al steam turbine blades and structural parts for aircraft were developed. Fine grain cold strips of Ti 15V-3Cr-3Sn-3Al are produced by annealing and pickling process. These cold strips are used for parts of a fishing rod

  13. Beta genus papillomaviruses and skin cancer. (United States)

    Howley, Peter M; Pfister, Herbert J


    A role for the beta genus HPVs in keratinocyte carcinoma (KC) remains to be established. In this article we examine the potential role of the beta HPVs in cancer revealed by the epidemiology associating these viruses with KC and supported by oncogenic properties of the beta HPV proteins. Unlike the cancer associated alpha genus HPVs, in which transcriptionally active viral genomes are invariably found associated with the cancers, that is not the case for the beta genus HPVs and keratinocyte carcinomas. Thus a role for the beta HPVs in KC would necessarily be in the carcinogenesis initiation and not in the maintenance of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Alpha and beta detection and spectrometry

    International Nuclear Information System (INIS)

    Saro, S.


    The theory of alpha and beta radioactive decay, the interaction of alpha and beta particles with matter, and their detection and spectrometry are dealt with in seven chapters: 1. Alpha transformation of atomic nuclei; 2. Basic properties of detectors and statistics of detection; 3. Alpha detectors and spectrometers; 4. Applications of alpha detection and spectrometry; 5. Beta transformation of atomic nuclei; 6. Beta particle detectors and spectrometers; 7. Detection of low energy beta particles. Chapter 8 is devoted to sampling and preparation of samples for radiometry. (E.F.)

  15. Antibodies against chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Giwercman, B; Rasmussen, J W; Ciofu, Oana


    A murine monoclonal anti-chromosomal beta-lactamase antibody was developed and an immunoblotting technique was used to study the presence of serum and sputum antibodies against Pseudomonas aeruginosa chromosomal group 1 beta-lactamase in patients with cystic fibrosis (CF). The serum antibody...... 1 cephalosporinase. We found a wide range of chromosomal beta-lactamase activity in the sputum samples, with no correlation with basal or induced activity of beta-lactamase expression. The presence of anti-beta-lactamase antibodies in endobronchial sputum could be an important factor in the defense...


    Directory of Open Access Journals (Sweden)

    V. K. Perederey


    Full Text Available The paper reveals one of possible methods for higher productivity and reliability of building self-propelled pneumopunchers which are intended for making holes in soil while using trenchless method and constructing various engineering communications under car, tram and rail lines, airport runways. A new design of building pneumopuncher with increased productivity due to higher speed for hole formation in soil and its reliability has been presented in the paper. A formula for determination of displacement increment for a new pneumopuncher in comparison with the conventional one has been obtained in the paper. The paper describes a design and operation principal of the building self-propelled pneumopuncher which is equipped with a locking mechanism with the purpose to neutralize action of soil elastic forces and reactive repulsive force. The locking mechanism keeps the pneumopuncher in the hole. The pneumopuncher consists of a body with anvil, movable hammer, a manifold which is set in axial deepening of the hammer, a nut and a locking mechanism. Improvement of operational pneumopuncher reliability is attained due to the fact that the locking mechanism is made in the form of two coaxially positioned inner and outer cups having a common basis. A piston is installed in the middle of the inner cup, a spring is fixed over the piston and a rod with a breaking shoe is positioned at the end. Height of the inner cup is less the outer cup height and there is an annular cavity between them which is connected with a chamber. The chamber is formed by the piston, the inner cup and the manifold. The annular cavity through an opening in the inner cup wall, two sylphons, a channel in the nut end and an opening in the vertical wall of the manifold are connected with a chamber of operating stroke. The sylphons are placed between the outer cup and the nut, between the nut and the manifold. Differential equations for movement of pneumopuncher in soil have been

  17. Characterization of a Green Solid Electric Propellant Microthruster for Small Spacecraft (United States)

    National Aeronautics and Space Administration — The development of Solid Electric Propellants is an emerging topic of research with major implications in the field of space propulsion from the micro to macro...

  18. Lateral-directional aerodynamic characteristics of light, twin-engine, propeller driven airplanes (United States)

    Wolowicz, C. H.; Yancey, R. B.


    Analytical procedures and design data for predicting the lateral-directional static and dynamic stability and control characteristics of light, twin engine, propeller driven airplanes for propeller-off and power-on conditions are reported. Although the consideration of power effects is limited to twin engine airplanes, the propeller-off considerations are applicable to single engine airplanes as well. The procedures are applied to a twin engine, propeller driven, semi-low-wing airplane in the clean configuration through the linear lift range. The calculated derivative characteristics are compared with wind tunnel and flight data. Included in the calculated characteristics are the spiral mode, roll mode, and Dutch roll mode over the speed range of the airplane.

  19. Determination of the Basis for Temperature Compensation in ETC Ignited Solid Propellant Guns

    National Research Council Canada - National Science Library

    Pesce-Rodriguez, R. A; Beyer, R. A


    A series of experiments and reanalysis of previously published results has led to the discovery of the key interaction between the plasma of an electrothermal igniter and the gun propellant in large caliber cannon...

  20. Propeller alustab tuuri vürsti lapsepõlvelinnast / Allar Viivik

    Index Scriptorium Estoniae

    Viivik, Allar


    Tänavu 30. juubelit tähistavast punkansamblist Propeller eesotsas Peeter Volkonskiga, kes alustavad koos ansambliga Kosmikud 30. oktoobril Keila kultuurikeskusest üle-eestilist juubelituuri, esinejatest

  1. Spot Size Limited Carbon Propellant Characterization for Efficient High Isp Laser Propulsion

    International Nuclear Information System (INIS)

    Uchida, Shigeaki; Shimada, Yoshinori; Hashimoto, Kazuhisa; Yamaura, Michiteru; Birou, Tomoya; Yoshida, Minoru


    Laser propulsion has very unique advantage of producing exhausting gas (ions) of very high velocity. Specific impulse from laser plasma could easily exceed 10,000 seconds that reduce the current propellant consumption rate on space born thrusters significantly. For efficient propellant usage, it is desirable that the exhaust plasma has rather narrow velocity distribution of fast ions. In order to accomplish the requirements, thermal conduction and neutral particle losses at and vicinity of the laser heated region have to be eliminated. A concept of spot size limited propellant shape has been proposed and tested in terms of the effects of the loss reduction. Ion and neutral particle measurements from laser plasmas produced on the above mentioned carbon targets are used to characterize the performance of the propellant

  2. Resonant Laser Ignition Study of HAN-HEHN Propellant Mixture (Preprint)

    National Research Council Canada - National Science Library

    Alfano, Angelo J; Mills, Jeffrey D; Vaghjiani, Ghanshyam L


    ...) - hydroxyethylhydrazinium nitrate (HEHN) mixtures. This prototypical ionic liquid propellant was successfully and reliably ignited/detonated under confinement with single laser pulses in the mid IR at 2.94 and 10.6 microns...

  3. Seat Vibration in Military Propeller Aircraft: Characterization, Exposure Assessment, and Mitigation

    National Research Council Canada - National Science Library

    Smith, Suzanne D


    There have been increasing reports of annoyance, fatigue, and even neck and back pain during prolonged operation of military propeller aircraft, where persistent multi-axis vibration occurs at higher...

  4. Cathode for Electric Space Propulsion Utilizing Iodine as Propellant, Phase I (United States)

    National Aeronautics and Space Administration — We propose a hollow reservoir cathode suitable for use in ion or Hall thrusters which utilizes iodine as a propellant. Reservoir cathodes have several unique...

  5. Engine-propeller power plant aircraft community noise reduction key methods (United States)

    Moshkov P., A.; Samokhin V., F.; Yakovlev A., A.


    Basic methods of aircraft-type flying vehicle engine-propeller power plant noise reduction were considered including single different-structure-and-arrangement propellers and piston engines. On the basis of a semiempirical model the expressions for blade diameter and number effect evaluation upon propeller noise tone components under thrust constancy condition were proposed. Acoustic tests performed at Moscow Aviation institute airfield on the whole qualitatively proved the obtained ratios. As an example of noise and detectability reduction provision a design-and-experimental estimation of propeller diameter effect upon unmanned aircraft audibility boundaries was performed. Future investigation ways were stated to solve a low-noise power plant design problem for light aircraft and unmanned aerial vehicles.

  6. Technologies for propelled hypersonic flight: Technologies des vols hypersoniques propulsés

    National Research Council Canada - National Science Library


    These reports document the results of the Applied Vehicle Technology Panel Working Group 10, Subgroups 1, 2, and 3, who aimed to address selected critical issues related to propelled hypersonic flight...

  7. In-Depth Chemistry in Plasma-Exposed M30 and JA2 Gun Propellants

    National Research Council Canada - National Science Library

    Pesce-Rodriguez, Rose


    ...) method to detect low levels of NO in the propellant. It appears that for M30, profiles for radiation-induced denitration of nitrate esters are consistent with Beer's law, and that effects occur as deep...

  8. Mars Ascent Vehicle Needs Technology Development with a Focus on High Propellant Fractions (United States)

    Whitehead, J. C.


    Launching from Mars to orbit requires a miniature launch vehicle, beyond any known spacecraft propulsion. The Mars Ascent Vehicle (MAV) needs an unusually high propellant mass fraction. MAV mass has high leverage for the cost of Mars Sample Return.

  9. Construction and design of solid-propellant rocket engines. Konstruktsiia i proektirovanie raketnykh dvigatelei tverdogo topliva

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrutdinov, I.K.; Kotel' nikov, A.V.


    Methods for assessing the durability of different components of solid-propellant rocket engines are presented. The following aspects of engine development are discussed: task formulation, parameter calculation, construction scheme selection, materials, and durability assessment. 45 references.


    National Aeronautics and Space Administration — This program will utilize a well-characterized Pulsed Plasma Thruster (PPT) to test experimental high-energy extinguishable solid propellants (HE), instead of...

  11. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition (United States)

    Paik, Kwang-Jun; Park, Hyung-Gil; Seo, Jongsoo


    Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS) are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT). The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  12. RANS simulation of cavitation and hull pressure fluctuation for marine propeller operating behind-hull condition

    Directory of Open Access Journals (Sweden)

    Kwang-Jun Paik


    Full Text Available Simulations of cavitation flow and hull pressure fluctuation for a marine propeller operating behind a hull using the unsteady Reynolds-Averaged Navier-Stokes equations (RANS are presented. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. Simulations are performed in design and ballast draught conditions to study the effect of cavitation number. And two propellers with slightly different geometry are simulated to validate the detectability of the numerical simulation. All simulations are performed using a commercial CFD software FLUENT. Cavitation patterns of the simulations show good agreement with the experimental results carried out in Samsung CAvitation Tunnel (SCAT. The simulation results for the hull pressure fluctuation induced by a propeller are also compared with the experimental results showing good agreement in the tendency and amplitude, especially, for the first blade frequency.

  13. Microwave Dielectric Properties of XM46 and a Surrogate Liquid Propellant

    National Research Council Canada - National Science Library

    Bossoli, Robert


    .... The dielectric constant (permittivity) of LP was determined in support of possible studies of the feasibility of using microwave energy to preheat LP for more consistent electric ignition in regenerative liquid propellant guns (RLPG...

  14. Development of a novel hydroxyl ammonium nitrate based liquid propellant for air-independent propulsion (United States)

    Fontaine, Joseph Henry

    The focus of this dissertation is the development of an Unmanned Undersea Vehicle (UUV) liquid propellant employing Hydroxyl Ammonium Nitrate (HAN) as the oxidizer. Hydroxyl Ammonium Nitrate is a highly acidic aqueous based liquid oxidizer. Therefore, in order to achieve efficient combustion of a propellant using this oxidizer, the fuel must be highly water soluble and compatible with the oxidizer to prevent a premature ignition prior to being heated within the combustion chamber. An extensive search of the fuel to be used with this oxidizer was conducted. Propylene glycol was chosen as the fuel for this propellant, and the propellant given the name RF-402. The propellant development process will first evaluate the propellants thermal stability and kinetic parameters using a Differential Scanning Calorimeter (DSC). The purpose of the thermal stability analysis is to determine the temperature at which the propellant decomposition begins for the future safe handling of the propellant and the optimization of the combustion chamber. Additionally, the thermogram results will provide information regarding any undesirable endotherms prior to the decomposition and whether or not the decomposition process is a multi-step process. The Arrhenius type kinetic parameters will be determined using the ASTM method for thermally unstable materials. The activation energy and pre-exponential factor of the propellant will be determined by evaluating the decomposition peak temperature over a temperature scan rate ranging from 1°C per minute to 10°C per minute. The kinetic parameters of the propellant will be compared to those of 81 wt% HAN to determine if the HAN decomposition is controlling the overall decomposition of the propellant RF-402. The lifetime of individual droplets will be analyzed using both experimental and theoretical techniques. The theoretical technique will involve modeling the lifetime of an individual droplet in a combustion chamber like operating environment

  15. DMPD: Immunoreceptor-like signaling by beta 2 and beta 3 integrins. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17913496 Immunoreceptor-like signaling by beta 2 and beta 3 integrins. Jakus Z, Fod...) Show Immunoreceptor-like signaling by beta 2 and beta 3 integrins. PubmedID 17913496 Title signaling by beta 2 and beta 3 integrins. Authors Jakus Z, Fodor S, Abram CL

  16. Studies on Flame Spread with Sudden Expansions of Ports of Solid Propellant Rockets under Elevated Pressure.


    B.N. Raghunandan; N.S. Madhavan; C. Sanjeev; V.R.S. Kumar


    A detailed experimental study on flame spread over non-uniform ports of solid propellant rockets has been carried out. An idealised. 2-dimensional laboratory motor was used for the experimental study with the aid of cinephotography. Freshly prepared rectangular HTPB propellant with backward facing step was used as the specimenfor this study. It has been shown conclusively that under certain conditions of step location. step height and port height which govern the velocity of gases at the step...

  17. An Improved Model of Cryogenic Propellant Stratification in a Rotating, Reduced Gravity Environment (United States)

    Oliveira, Justin; Kirk, Daniel R.; Schallhorn, Paul A.; Piquero, Jorge L.; Campbell, Mike; Chase, Sukhdeep


    This paper builds on a series of analytical literature models used to predict thermal stratification within rocket propellant tanks. The primary contribution to the literature is to add the effect of tank rotation and to demonstrate the influence of rotation on stratification times and temperatures. This work also looks levels of thermal stratification for generic propellant tanks (cylindrical shapes) over a parametric range of upper-stage coast times, heating levels, rotation rates, and gravity levels.

  18. Orbital Dynamics of Low-Earth Orbit Laser-Propelled Space Vehicles

    International Nuclear Information System (INIS)

    Yamakawa, Hiroshi; Funaki, Ikkoh; Komurasaki, Kimiya


    Trajectories applicable to laser-propelled space vehicles with a laser station in low-Earth orbit are investigated. Laser vehicles are initially located in the vicinity of the Earth-orbiting laser station in low-earth orbit at an altitude of several hundreds kilometers, and are accelerated by laser beaming from the laser station. The laser-propelled vehicles start from low-earth orbit and finally escape from the Earth gravity well, enabling interplanetary trajectories and planetary exploration

  19. Evaluation of Resuspension from Propeller Wash in Pearl Harbor and San Diego Bay (United States)


    Figure 45) for twin-engine tug-boat. Input parameters for the model include propeller type (Kort nozzle or traditional), propeller diameter, thrust ...2D velocity field revealed by PIV. The vector field represents the actual velocity field subtracting the mean stream-wise velocity averaged over the...A. 1974. Fundamental Aspects of Surface Erosion of Cohesive Soils. Ph.D. thesis , University of California, Davis, Davis, CA. Liao, Q., H. A

  20. Studies on Decomposition and Combustion Mechanism of Solid Fuel Rich Propellants (United States)


    thrust to cruise at supersonic speed. This was followed by the test of large diameter ramjet called burner test vehicle (BTV). Advanced low volume...propellant surface. Vernekar et al (43) found that in pressed AP-Al pellets , maximum burn rate is obtained at intermediate metal content. Jain et al...conjunction with high pressure window strand burner . They found that the propellant combustion was irregular and regression rate varied from 0.3 to 3

  1. Coolant Design System for Liquid Propellant Aerospike Engines (United States)

    McConnell, Miranda; Branam, Richard


    Liquid propellant rocket engines burn at incredibly high temperatures making it difficult to design an effective coolant system. These particular engines prove to be extremely useful by powering the rocket with a variable thrust that is ideal for space travel. When combined with aerospike engine nozzles, which provide maximum thrust efficiency, this class of rockets offers a promising future for rocketry. In order to troubleshoot the problems that high combustion chamber temperatures pose, this research took a computational approach to heat analysis. Chambers milled into the combustion chamber walls, lined by a copper cover, were tested for their efficiency in cooling the hot copper wall. Various aspect ratios and coolants were explored for the maximum wall temperature by developing our own MATLAB code. The code uses a nodal temperature analysis with conduction and convection equations and assumes no internal heat generation. This heat transfer research will show oxygen is a better coolant than water, and higher aspect ratios are less efficient at cooling. This project funded by NSF REU Grant 1358991.

  2. Self-propelled x-ray flaw detector

    International Nuclear Information System (INIS)

    Ershov, L.S.; Krasilnikov, S.B.; Lozovoi, L.N.; Losev, J.F.; Morgovsky, L.Y.; Pelix, E.A.; Khakimyanov, R.R.


    A self-propelled X-ray flaw detector for radiographic inspection of welded joints in pipelines comprises a carriage mounting a motor, a detector having two Geiger counters, a pulsed X-ray generator, and an exposure and carriage electronic control system. A memory unit in the control system has four storage elements containing information about the motion of the carriage. As the carriage moves in direction A, first one and then the other of the Geiger counters receives radiation from an isotope source positioned near a joint, and by means of logic circuitry in the control system, the information in the storage elements is modified to stop the carriage and to operate a timer to expose the weld. During exposure the X-rays may interfere with the information in the storage elements, but by means of a square-wave generator and the logic circuitry, the stored information is correctly reset in order to eliminate false operation of the memory unit. (author)

  3. Synthesis and characterization of energetic thermoplastic elastomers for propellant formulations

    Directory of Open Access Journals (Sweden)

    Aparecida M. Kawamoto


    Full Text Available Synthesis and characterization of energetic ABA-type thermoplastic elastomers for propellant formulations has been carried out. Following the working plan elaborated, the synthesis and characterization of Poly 3- bromomethyl-3-methyl oxetane (PolyBrMMO, Poly 3- azidomethyl-3-methyl oxetane (PolyAMMO, Poly 3,3-bis-azidomethyl oxetane (PolyBAMO and Copolymer PolyBAMO/AMMO (by TDI end capping has been successfully performed. The thermoplastic elastomers (TPEs were synthesized using the chain elongation process PolyAMMO, GAP and PolyBAMO by diisocyanates. In this method 2.4-toluene diisocyanate (TDI is used to link block A (hard and mono- functional to B (soft and di-functional. For the hard A-block we used PolyBAMO and for the soft B-block we used PolyAMMO or GAP.This is a joint project set up, some years ago, between the Chemistry Division of the Institute of Aeronautics and Space (IAE - subordinated to the Brazilian Ministry of Defense - and the Fraunhofer Institut Chemische Technologie (ICT, in Germany. The products were characterized by different techniques as IR- and (1H,13CNMR spectroscopies, elemental and thermal analyses. New methodologies based on FT-IR analysis have been developed as an alternative for the determination of the molecular weight and CHNO content of the energetic polymers.

  4. Hot-Spot Ignition Mechanisms for Explosives and Propellants (United States)

    Field, J. E.; Bourne, N. K.; Palmer, S. J. P.; Walley, S. M.


    This paper describes the response of explosives to stress and impact and in particular the mechanisms of `hot-spot' production. Samples in the form of single crystals, powder layers, pressed pellets, gels, polymer bonded explosives (PBXs) and propellants have been studied. Techniques used include a drop-weight facility with transparent anvils which allows photography at microsecond framing intervals, an instrumented drop-weight machine, a miniaturized Hopkinson bar system for high strain rate property measurement, laser speckle for studying the deformation and fracture of PBXs, an automated system for analysing speckle patterns and heat sensitive film for recording the positions and temperatures of hot spots. Polishing and staining methods have been developed to observe the microstructure of PBXs and failure during quasi-static loading. Ignition, when it occurred, took place at local hot-spot sites. Evidence is discussed for a variety of ignition mechanisms including adiabatic shear of the explosive, adiabatic heating of trapped gases during cavity collapse, viscous flow, friction, fracture and shear of added particles and triboluminescent discharge.

  5. Effect of Propeller Angle Relative to Flow on Aerodynamic Characteristics (United States)

    Schueller, Joseph; Hubner, Paul


    As the interest in small unmanned air systems (UASs) for delivery and surveillance grows, new hybrid designs are being studied to take advantage of both quadcopters and fixed-wing aircraft. The tiltrotor design is able to combine the vertical take-off, hover, and landing of a multi-rotor copter with the efficiency of forward flight of a conventional airplane. However, literature documenting aerodynamic performance of the rotor as it rotates between the forward-flight and hover positions, especially in this low Reynolds number range, is limited. This data is critical for validating computational models and developing safe transition corridors. The objective of this research was to design, build and test a rotor thrust stand capable of rotating between the forward-flight and hover configurations suitable for senior design studies at low Reynolds number research. The poster covers the design of the rotating mechanism, the range and resolution of the load cell, and the thrust, torque and efficiency results for a conventional UAS motor and propeller for various advance ratios and thrust-line orientations. NSF Grant: EEC 1659710.

  6. Radiative Ignition of fine-ammonium perchlorate composite propellants

    Energy Technology Data Exchange (ETDEWEB)

    Cain, Jeremy; Brewster, M. Quinn [Department of Mechanical Science and Industrial Engineering, University of Illinois, Urbana, IL 61801 (United States)


    Radiative ignition of quasi-homogeneous mixtures of ammonium perchlorate (AP) and hydroxyterminated polybutadiene (HTPB) binder has been investigated experimentally. Solid propellants consisting of fine AP (2 {mu}m) and HTPB binder ({proportional_to}76/24% by mass) were ignited by CO{sub 2} laser radiation. The lower boundary of a go/no-go ignition map (minimum ignition time vs. heat flux) was obtained. Opacity was varied by adding carbon black up to 1% by mass. Ignition times ranged from 0.78 s to 0.076 s for incident fluxes ranging from 60 W/cm{sup 2} to 400 W/cm{sup 2}. It was found that AP and HTPB are sufficiently strongly absorbing of 10.6 {mu}m CO{sub 2} laser radiation (absorption coefficient {approx}250 cm{sup -1}) so that the addition of carbon black in amounts typical of catalysts or opacitymodifying agents (up to 1%) would have only a small influence on radiative ignition times at 10.6 {mu}m. A simple theoretical analysis indicated that the ignition time-flux data are consistent with in-depth absorption effects. Furthermore, this analysis showed that the assumption of surface absorption is not appropriate, even for this relatively opaque system. For broadband visible/near-infrared radiation, such as from burning metal/oxide particle systems, the effects of in-depth absorption would probably be even stronger. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. A bubble detection system for propellant filling pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng [Robotics Institute, Beihang University, 100191 Beijing (China)


    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  8. Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. (United States)

    Zhao, Guanjia; Sanchez, Samuel; Schmidt, Oliver G; Pumera, Martin


    Self-propelled catalytic microjets have attracted considerable attention in recent years and these devices have exhibited the ability to move in complex media. The mechanism of propulsion is via the Pt catalysed decomposition of H2O2 and it is understood that the Pt surface is highly susceptible to poisoning by sulphur-containing molecules. Here, we show that important extracellular thiols as well as basic organic molecules can significantly hamper the motion of catalytic microjet engines. This is due to two different mechanisms: (i) molecules such as dimethyl sulfoxide can quench the hydroxyl radicals produced at Pt surfaces and reduce the amount of oxygen gas generated and (ii) molecules containing -SH, -SSR, and -SCH3 moieties can poison the catalytically active platinum surface, inhibiting the motion of the jet engines. It is essential that the presence of such molecules in the environment be taken into consideration for future design and operation of catalytic microjet engines. We show this effect on catalytic micromotors prepared by both rolled-up and electrodeposition approaches, demonstrating that such poisoning is universal for Pt catalyzed micromotors. We believe that our findings will contribute significantly to this field to develop alternative systems or catalysts for self-propulsion when practical applications in the real environment are considered.

  9. Comparison of model propeller tests with airfoil theory (United States)

    Durand, William F; Lesley, E P


    The purpose of the investigation covered by this report was the examination of the degree of approach which may be anticipated between laboratory tests on model airplane propellers and results computed by the airfoil theory, based on tests of airfoils representative of successive blade sections. It is known that the corrections of angles of attack and for aspect ratio, speed, and interference rest either on experimental data or on somewhat uncertain theoretical assumptions. The general situation as regards these four sets of corrections is far from satisfactory, and while it is recognized that occasion exists for the consideration of such corrections, their determination in any given case is a matter of considerable uncertainty. There exists at the present time no theory generally accepted and sufficiently comprehensive to indicate the amount of such corrections, and the application to individual cases of the experimental data available is, at best, uncertain. While the results of this first phase of the investigation are less positive than had been hoped might be the case, the establishment of the general degree of approach between the two sets of results which might be anticipated on the basis of this simpler mode of application seems to have been desirable.

  10. Fuel-cell-propelled submarine-tanker-system study

    International Nuclear Information System (INIS)

    Court, K.E.; Kumm, W.H.; O'Callaghan, J.E.


    This report provides a systems analysis of a commercial Arctic Ocean submarine tanker system to carry fossil energy to markets. The submarine is to be propelled by a modular Phosphoric Acid Fuel Cell system. The power level is 20 Megawatts. The DOE developed electric utility type fuel cell will be fueled with methanol. Oxidant will be provided from a liquid oxygen tank carried onboard. The twin screw submarine tanker design is sized at 165,000 deadweight tons and the study includes costs and an economic analysis of the transport system of 6 ships. The route will be under the polar icecap from a loading terminal located off Prudhoe Bay, Alaska to a transshipment facility postulated to be in a Norwegian fjord. The system throughput of the gas-fed methanol cargo will be 450,000 barrels per day. The total delivered cost of the methanol including well head purchase price of natural gas, methanol production, and shipping would be $25/bbl from Alaska to the US East Coast. Of this, the shipping cost is $6.80/bbl. All costs in 1981 dollars

  11. Time Frequency Analysis of Spacecraft Propellant Tank Spinning Slosh (United States)

    Green, Steven T.; Burkey, Russell C.; Sudermann, James


    Many spacecraft are designed to spin about an axis along the flight path as a means of stabilizing the attitude of the spacecraft via gyroscopic stiffness. Because of the assembly requirements of the spacecraft and the launch vehicle, these spacecraft often spin about an axis corresponding to a minor moment of inertia. In such a case, any perturbation of the spin axis will cause sloshing motions in the liquid propellant tanks that will eventually dissipate enough kinetic energy to cause the spin axis nutation (wobble) to grow further. This spinning slosh and resultant nutation growth is a primary design problem of spinning spacecraft and one that is not easily solved by analysis or simulation only. Testing remains the surest way to address spacecraft nutation growth. This paper describes a test method and data analysis technique that reveal the resonant frequency and damping behavior of liquid motions in a spinning tank. Slosh resonant frequency and damping characteristics are necessary inputs to any accurate numerical dynamic simulation of the spacecraft.

  12. Inverse Leidenfrost effect: self-propelling drops on a bath (United States)

    Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team


    When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.

  13. Exploring Kupffer's Vescicle Through Self Propelled Particle Simulations (United States)

    Lundy, Kassidy; Dasgupta, Agnik; Amack, Jeff; Manning, M. Lisa

    Early development is an important stage in the formation of functional, relatively healthy organisms. In zebrafish embryos, a transient organ in the tailbud called Kupffer's Vescicle (KV) is responsible for the initial left-right (L-R) asymmetry that results in asymmetric organ and tissue placement in the adult zebrafish. Originating as a collection of symmetrically organized monociliated cells, the KV experiences a shift in cell shapes over time that leaves more cells on the anterior or top side of the KV. This arrangement helps to generate a stronger counter-clockwise fluid flow across the anterior side of the organ, which is required for L-R asymmetry. In seeking to understand the source of the shape changes occurring within the KV, we simulate a Self Propelled Particle (SPP) model that includes parameters for cell polarization and speed. We model the KV as a large particle moving in a straight line with constant velocity to mimic the physical forces of the notochord acting on this organ, and we model the surrounding tailbud cells as smaller, slower active particles with an orientation that changes over time due to rotational noise. Our goal is to calculate the forces exerted on the KV by the surrounding tissue, to see if they are sufficient to explain the shape changes we observe in the KV that lead to L-R asymmetry.

  14. Boundaries Control Collective Dynamics of Inertial Self-Propelled Robots (United States)

    Deblais, A.; Barois, T.; Guerin, T.; Delville, P. H.; Vaudaine, R.; Lintuvuori, J. S.; Boudet, J. F.; Baret, J. C.; Kellay, H.


    Simple ingredients, such as well-defined interactions and couplings for the velocity and orientation of self-propelled objects, are sufficient to produce complex collective behavior in assemblies of such entities. Here, we use assemblies of rodlike robots made motile through self-vibration. When confined in circular arenas, dilute assemblies of these rods act as a gas. Increasing the surface fraction leads to a collective behavior near the boundaries: polar clusters emerge while, in the bulk, gaslike behavior is retained. The coexistence between a gas and surface clusters is a direct consequence of inertial effects as shown by our simulations. A theoretical model, based on surface mediated transport accounts for this coexistence and illustrates the exact role of the boundaries. Our study paves the way towards the control of collective behavior: By using deformable but free to move arenas, we demonstrate that the surface induced clusters can lead to directed motion, while the topology of the surface states can be controlled by biasing the motility of the particles.

  15. Capturing self-propelled particles in a moving microwedge (United States)

    Kaiser, A.; Popowa, K.; Wensink, H. H.; Löwen, H.


    Catching fish with a fishing net is typically done either by dragging a fishing net through quiescent water or by placing a stationary basket trap into a stream. We transfer these general concepts to micron-sized self-motile particles moving in a solvent at low Reynolds number and study their collective trapping behavior by means of computer simulations of a two-dimensional system of self-propelled rods. A chevron-shaped obstacle is dragged through the active suspension with a constant speed v and acts as a trapping “net.” Three trapping states can be identified corresponding to no trapping, partial trapping, and complete trapping and their relative stability is studied as a function of the apex angle of the wedge, the swimmer density, and the drag speed v. When the net is dragged along the inner wedge, complete trapping is facilitated and a partially trapped state changes into a complete trapping state if the drag speed exceeds a certain value. Reversing the drag direction leads to a reentrant transition from no trapping to complete trapping and then back to no trapping upon increasing the drag speed along the outer wedge contour. The transition to complete trapping is marked by a templated self-assembly of rods forming polar smectic structures anchored onto the inner contour of the wedge. Our predictions can be verified in experiments of artificial or microbial swimmers confined in microfluidic trapping devices.

  16. High-Fidelity Microstructural Characterization and Performance Modeling of Aluminized Composite Propellant

    International Nuclear Information System (INIS)

    Kosiba, Graham D.; Wixom, Ryan R.; Oehlschlaeger, Matthew A.


    Image processing and stereological techniques were used to characterize the heterogeneity of composite propellant and inform a predictive burn rate model. Composite propellant samples made up of ammonium perchlorate (AP), hydroxyl-terminated polybutadiene (HTPB), and aluminum (Al) were faced with an ion mill and imaged with a scanning electron microscope (SEM) and x-ray tomography (micro-CT). Properties of both the bulk and individual components of the composite propellant were determined from a variety of image processing tools. An algebraic model, based on the improved Beckstead-Derr-Price model developed by Cohen and Strand, was used to predict the steady-state burning of the aluminized composite propellant. In the presented model the presence of aluminum particles within the propellant was introduced. The thermal effects of aluminum particles are accounted for at the solid-gas propellant surface interface and aluminum combustion is considered in the gas phase using a single global reaction. In conclusion, properties derived from image processing were used directly as model inputs, leading to a sample-specific predictive combustion model.

  17. A Design Tool for Matching UAV Propeller and Power Plant Performance (United States)

    Mangio, Arion L.

    A large body of knowledge is available for matching propellers to engines for large propeller driven aircraft. Small UAV's and model airplanes operate at much lower Reynolds numbers and use fixed pitch propellers so the information for large aircraft is not directly applicable. A design tool is needed that takes into account Reynolds number effects, allows for gear reduction, and the selection of a propeller optimized for the airframe. The tool developed in this thesis does this using propeller performance data generated from vortex theory or wind tunnel experiments and combines that data with an engine power curve. The thrust, steady state power, RPM, and tip Mach number vs. velocity curves are generated. The Reynolds number vs. non dimensional radial station at an operating point is also found. The tool is then used to design a geared power plant for the SAE Aero Design competition. To measure the power plant performance, a purpose built engine test stand was built. The characteristics of the engine test stand are also presented. The engine test stand was then used to characterize the geared power plant. The power plant uses a 26x16 propeller, 100/13 gear ratio, and an LRP 0.30 cubic inch engine turning at 28,000 RPM and producing 2.2 HP. Lastly, the measured power plant performance is presented. An important result is that 17 lbf of static thrust is produced.


    Directory of Open Access Journals (Sweden)

    Boucetta Djahida


    Full Text Available In the present paper, a numerical simulation based on Kω-SST turbulence model has been carried out to determine the tandem propeller hydrodynamic characteristics in non-cavitating viscous flow by using the commercial code Fluent. As the first step, the numerical approach has been applied to the case of single propeller and the comparison with experiment results was in a good agreement. Next, the effects of axial and angular displacement as well as the diameter ratio between the tandem propellers have been investigated. This part of the study reveals that the tandem with idem propeller diameters is strongly recommended to assure more advantages. Furthermore, the tandem geometry corresponding to the axial displacement equal to 0.6D seems to be the best configuration and the open water performances remain almost unchanged with the variation of angular displacement. On the other hand, details of the mutual interaction between tandem propellers were also given by showing pressure contours, streamlines and thrust coefficient. Globally, this study illustrates the advantages of replacing single propellers by tandem solution.

  19. Formulation development and characterization of cellulose acetate nitrate based propellants for improved insensitive munitions properties

    Directory of Open Access Journals (Sweden)

    Thelma Manning


    Full Text Available Cellulose acetate nitrate (CAN was used as an insensitive energetic binder to improve the insensitive munitions (IM properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC, but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.

  20. CFD Fuel Slosh Modeling of Fluid-Structure Interaction in Spacecraft Propellant Tanks with Diaphragms (United States)

    Sances, Dillon J.; Gangadharan, Sathya N.; Sudermann, James E.; Marsell, Brandon


    Liquid sloshing within spacecraft propellant tanks causes rapid energy dissipation at resonant modes, which can result in attitude destabilization of the vehicle. Identifying resonant slosh modes currently requires experimental testing and mechanical pendulum analogs to characterize the slosh dynamics. Computational Fluid Dynamics (CFD) techniques have recently been validated as an effective tool for simulating fuel slosh within free-surface propellant tanks. Propellant tanks often incorporate an internal flexible diaphragm to separate ullage and propellant which increases modeling complexity. A coupled fluid-structure CFD model is required to capture the damping effects of a flexible diaphragm on the propellant. ANSYS multidisciplinary engineering software employs a coupled solver for analyzing two-way Fluid Structure Interaction (FSI) cases such as the diaphragm propellant tank system. Slosh models generated by ANSYS software are validated by experimental lateral slosh test results. Accurate data correlation would produce an innovative technique for modeling fuel slosh within diaphragm tanks and provide an accurate and efficient tool for identifying resonant modes and the slosh dynamic response.

  1. The steady performance prediction of propeller-rudder-bulb system based on potential iterative method

    International Nuclear Information System (INIS)

    Liu, Y B; Su, Y M; Ju, L; Huang, S L


    A new numerical method was developed for predicting the steady hydrodynamic performance of propeller-rudder-bulb system. In the calculation, the rudder and bulb was taken into account as a whole, the potential based surface panel method was applied both to propeller and rudder-bulb system. The interaction between propeller and rudder-bulb was taken into account by velocity potential iteration in which the influence of propeller rotation was considered by the average influence coefficient. In the influence coefficient computation, the singular value should be found and deleted. Numerical results showed that the method presented is effective for predicting the steady hydrodynamic performance of propeller-rudder system and propeller-rudder-bulb system. Comparing with the induced velocity iterative method, the method presented can save programming and calculation time. Changing dimensions, the principal parameter—bulb size that affect energy-saving effect was studied, the results show that the bulb on rudder have a optimal size at the design advance coefficient.

  2. Launch Vehicle Performance for Bipropellant Propulsion Using Atomic Propellants With Oxygen (United States)

    Palaszewski, Bryan


    Atomic propellants for bipropellant launch vehicles using atomic boron, carbon, and hydrogen were analyzed. The gross liftoff weights (GLOW) and dry masses of the vehicles were estimated, and the 'best' design points for atomic propellants were identified. Engine performance was estimated for a wide range of oxidizer to fuel (O/F) ratios, atom loadings in the solid hydrogen particles, and amounts of helium carrier fluid. Rocket vehicle GLOW was minimized by operating at an O/F ratio of 1.0 to 3.0 for the atomic boron and carbon cases. For the atomic hydrogen cases, a minimum GLOW occurred when using the fuel as a monopropellant (O/F = 0.0). The atomic vehicle dry masses are also presented, and these data exhibit minimum values at the same or similar O/F ratios as those for the vehicle GLOW. A technology assessment of atomic propellants has shown that atomic boron and carbon rocket analyses are considered to be much more near term options than the atomic hydrogen rockets. The technology for storing atomic boron and carbon has shown significant progress, while atomic hydrogen is not able to be stored at the high densities needed for effective propulsion. The GLOW and dry mass data can be used to estimate the cost of future vehicles and their atomic propellant production facilities. The lower the propellant's mass, the lower the overall investment for the specially manufactured atomic propellants.

  3. On the combustion mechanisms of ZrH2 in double-base propellant. (United States)

    Yang, Yanjing; Zhao, Fengqi; Yuan, Zhifeng; Wang, Ying; An, Ting; Chen, Xueli; Xuan, Chunlei; Zhang, Jiankan


    Metal hydrides are regarded as a series of promising hydrogen-supplying fuel for solid rocket propellants. Their effects on the energetic and combustion performances of propellants are closely related to their reaction mechanisms. Here we report a first attempt to determine the reaction mechanism of ZrH 2 , a high-density metal hydride, in the combustion of a double-base propellant to evaluate its potential as a fuel. ZrH 2 is determined to possess good resistance to oxidation by nitrocellulose and nitroglycerine. Thus its combustion starts with dehydrogenation to generate H 2 and metallic Zr. Subsequently, the newly formed Zr and H 2 participate in the combustion and, especially, Zr melts and then combusts on the burning surface which favors the heat feedback to the propellant. This phenomenon is completely different from the combustion behavior of the traditional fuel Al, where the Al particles are ejected off the burning surface of the propellant to get into the luminous flame zone to burn. The findings in this work validate the potential of ZrH 2 as a hydrogen-supplying fuel for double-base propellants.

  4. Metalo-beta-lactamases Metallo-beta-lactamases

    Directory of Open Access Journals (Sweden)

    Rodrigo Elisandro Mendes


    Full Text Available Nos últimos anos tem sido observada maior incidência de bacilos Gram-negativos resistentes a cefalosporinas de espectro ampliado no ambiente hospitalar, ocasionando, assim, maior uso de betalactâmicos mais potentes, como os carbapenens. A utilização de carbapenens exerce maior pressão seletiva sobre a microbiota hospitalar, o que pode ocasionar aumento da resistência a esses agentes. Entre os mecanismos de resistência a carbapenens mais comumente identificados estão a produção de betalactamases, como, por exemplo, as pertencentes à classe D de Ambler e as que pertencem à classe B de Ambler, ou metalo-beta-lactamases (MbetaL. Essas últimas hidrolisam todos betalactâmicos comercialmente disponíveis, sendo a única exceção o monobactam aztreonam. Desde o início da década de 1990, novos genes que codificam MbetaLs têm sido descritos em microrganismos clinicamente importantes, como Pseudomonas spp., Acinetobacter spp. e membros da família Enterobacteriaceae. O encontro desses microrganismos não-sensíveis a carbapenens pode ser submetido a metodologias fenotípicas para detecção da produção de MbetaL com o intuito de auxiliar a Comissão de Controle de Infecção Hospitalar (CCIH e prevenir a disseminação desses determinantes de resistência, uma vez que genes que codificam MbetaLs estão contidos em estruturas genéticas que propiciam sua mobilidade de forma muito efetiva, sendo então facilmente disseminados.Increase isolation of Gram-negative bacilli resistant to broad-spectrum cephalosporin has been observed during the last few years, thus determining the use of more potent beta-lactams, such as carbapenems. The use of these antimicrobial agents may lead to the emergence of carbapenem resistant Gram-negative bacilli in the nosocomial environment. Carbapenem resistance may be due to the production of Ambler class D beta-lactamase or Ambler class B beta-lactamase, also called metallo-beta-lactamase (MbetaL. Apart from

  5. Fuels and Space Propellants for Reusable Launch Vehicles: A Small Business Innovation Research Topic and Its Commercial Vision (United States)

    Palaszewski, Bryan A.


    Under its Small Business Innovation Research (SBIR) program (and with NASA Headquarters support), the NASA Lewis Research Center has initiated a topic entitled "Fuels and Space Propellants for Reusable Launch Vehicles." The aim of this project would be to assist in demonstrating and then commercializing new rocket propellants that are safer and more environmentally sound and that make space operations easier. Soon it will be possible to commercialize many new propellants and their related component technologies because of the large investments being made throughout the Government in rocket propellants and the technologies for using them. This article discusses the commercial vision for these fuels and propellants, the potential for these propellants to reduce space access costs, the options for commercial development, and the benefits to nonaerospace industries. This SBIR topic is designed to foster the development of propellants that provide improved safety, less environmental impact, higher density, higher I(sub sp), and simpler vehicle operations. In the development of aeronautics and space technology, there have been limits to vehicle performance imposed by traditionally used propellants and fuels. Increases in performance are possible with either increased propellant specific impulse, increased density, or both. Flight system safety will also be increased by the use of denser, more viscous propellants and fuels.

  6. Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultrafine fraction

    Directory of Open Access Journals (Sweden)

    K.V. Suresh Babu


    Full Text Available Composite solid propellant is prepared using tri-modal Ammonium perchlorate (AP containing coarse, fine and ultrafine fractions of AP with average particle size (APS 340, 40 and 5 μm respectively, in various compositions and their rheological, mechanical and burn rate characteristics are evaluated. The optimum combination of AP coarse to fine to ultrafine weight fraction was obtained by testing of series of propellant samples by varying the AP fractions at fixed solid loading. The concentration of aluminium was maintained constant throughout the experiments for ballistics requirement. The propellant formulation prepared using AP with coarse to fine to ultrafine ratio of 67:24:9 has lowest viscosity for the propellant paste and highest tensile strength due to dense packing as supported by the literature. A minimum modulus value was also observed at 9 wt. % of ultrafine AP concentration indicates the maximum solids packing density at this ratio of AP fractions. The burn rate is evaluated at different pressures to obtain pressure exponent. Incorporation of ultrafine fraction of AP in propellant increased burn rate without adversely affecting the pressure exponent. Higher solid loading propellants are prepared by increased AP concentration from 67 to 71 wt. % using AP with coarse to fine to ultrafine ratio of 67:24:9. Higher solid content up to 89 wt. % was achieved and hence increased solid motor performance. The unloading viscosity showed a trend with increased AP content and the propellant couldn't able to cast beyond 71 wt. % of AP. Mechanical properties were also studied and from the experiments noticed that % elongation decreased with increased AP content from 67 to 71 wt.%, whereas tensile strength and modulus increased. Burn rate increased with increased AP content and observed that pressure exponent also increased and it is high for the propellant containing with 71 wt.% of AP due to increased oxidiser to fuel ratio. Catalysed

  7. Resistance training & beta-hydroxy-beta-methylbutyrate supplementation on hormones

    Directory of Open Access Journals (Sweden)

    Hamid Arazi


    Full Text Available RESUMOIntroduction:In recent years, there was an increased interest on the effects of beta-hydroxy-beta-methylbutyrate (HMB supplementation on skeletal muscle due to its anti-catabolic effects.Objectives:To investigate the effect of HMB supplementation on body composition, muscular strength and anabolic-catabolic hormones after resistance training.Methods:Twenty amateur male athletes were randomly assigned to supplement and control groups in a double-blind crossover design and participated in four weeks resistance training. Before and after the test period fasting blood samples were obtained to determine anabolic (the growth hormone and testosterone and catabolic (cortisol hormones, and fat mass, lean body mass (LBM and muscular strength were measured. Dependent and independent t-tests were used to analyze data.Results:After the training period, there were no significant differen-ces between the groups with respect to fat mass, LBM and anabolic-catabolic hormones. HMB supplementation resulted in a significantly greater strength gain (p≤0.05.Conclusion:Greater increase in strength for HMB group was not accompanied by body composition and basal circulating anabolic-catabolic hormonal changes. It seems that HMB supplementation may have beneficial effects on neurological adaptations of strength gain.

  8. Electrets for beta radiation detection

    International Nuclear Information System (INIS)

    Campos, L.L.; Caldas, L.V.E.; Mascarenhas, S.


    Electret dosimetry has been reviewed by Gross. A cylindrical electret ionization-chamber type dosimeter has been studied for X and gamma rays and neutrons. The principle of the dosimeter is electret charge compensation due to ionization in the chamber volume. Electret ionization chambers can be designed with one or more electrets and in various shapes. This study is concerned with a simple system, similar to a cylindrical ionization chamber (sensitive volume: 3,5 cm 3 ) using teflon electrets. Aluminum and lucite were used as wall-materials. Other experiences were performed using chambers without wall, i.e., without defined sensitive volume. The teflon electrets were obtained by Corona discharge in the gas surrounding them. The measurement of the electret charge was made by induction using a co-axial insulated metal chamber connected to an electrometer Keithley 610C. By measuring the charge before and after irradiation it is possible to obtain a calibration curve: charge (Q) versus absorbed dose (D) for the dosimeter. The irradiation setup used was the Beta Secondary Standard System of IPEN calibration laboratory with four beta sources: 90 Sr 90 Y (74 and 1850 MBq), 204 Tl (18,5 MBq) and 147 Pm (518 MBq). In some cases a 85 Kr source was also used. The electrets were tested in different radiation field geometries: electret axis parallel and perpendicular to the field. In conclusion, depending on the wall material and radiation field geometry, the teflon electret detector can be used for different dose interval determinations, using beta radiation

  9. Abstraction Mechanisms in the BETA Programming Language

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger


    . It is then necessary that the abstraction mechanisms are powerful in order to define more specialized constructs. BETA is an object oriented language like SIMULA 67 ([SIMULA]) and SMALLTALK ([SMALLTALK]). By this is meant that a construct like the SIMULA class/subclass mechanism is fundamental in BETA. In contrast......]) --- covering both data, procedural and control abstractions, substituting constructs like class, procedure, function and type. Correspondingly objects, procedure activation records and variables are all regarded as special cases of the basic building block of program executions: the entity. A pattern thus......The BETA programming language is developed as part of the BETA project. The purpose of this project is to develop concepts, constructs and tools in the field of programming and programming languages. BETA has been developed from 1975 on and the various stages of the language are documented in [BETA...

  10. High-beta linac structures

    International Nuclear Information System (INIS)

    Schriber, S.O.


    Accelerating structures for high-beta linacs that have been and are in use are reviewed in terms of their performance. Particular emphasis is given to room-temperature structures and the disk-and-washer structure. The disk-and-washer structure has many attractive features that are discussed for pulsed high-gradient linacs, for 100% duty-cycle medium-gradient linacs and for high-current linacs requiring maximal amounts of stored energy in the electric fields available to the beam

  11. Fabrication of Graded Porous and Skin-Core Structure RDX-Based Propellants via Supercritical CO2 Concentration Profile (United States)

    Yang, Weitao; Li, Yuxiang; Ying, Sanjiu


    A fabrication process to produce graded porous and skin-core structure propellants via supercritical CO2 concentration profile is reported in this article. It utilizes a partial gas saturation technique to obtain nonequilibrium gas concentration profiles in propellants. Once foamed, the propellant obtains a graded porous or skin-pore structure. This fabrication method was studied with RDX(Hexogen)-based propellant under an SC-CO2 saturation condition. The principle was analyzed and the one-dimensional diffusion model was employed to estimate the gas diffusion coefficient and to predict the gas concentration profiles inside the propellant. Scanning electron microscopy images were used to analyze the effects of partial saturation on the inner structure. The results also suggested that the sorption time and desorption time played an important role in gas profile generation and controlled the inner structure of propellants.

  12. Impact initiation of explosives and propellants via statistical crack mechanics (United States)

    Dienes, J. K.; Zuo, Q. H.; Kershner, J. D.


    A statistical approach has been developed for modeling the dynamic response of brittle materials by superimposing the effects of a myriad of microcracks, including opening, shear, growth and coalescence, taking as a starting point the well-established theory of penny-shaped cracks. This paper discusses the general approach, but in particular an application to the sensitivity of explosives and propellants, which often contain brittle constituents. We examine the hypothesis that the intense heating by frictional sliding between the faces of a closed crack during unstable growth can form a hot spot, causing localized melting, ignition, and fast burn of the reactive material adjacent to the crack. Opening and growth of a closed crack due to the pressure of burned gases inside the crack and interactions of adjacent cracks can lead to violent reaction, with detonation as a possible consequence. This approach was used to model a multiple-shock experiment by Mulford et al. [1993. Initiation of preshocked high explosives PBX-9404, PBX-9502, PBX-9501, monitored with in-material magnetic gauging. In: Proceedings of the 10th International Detonation Symposium, pp. 459-467] involving initiation and subsequent quenching of chemical reactions in a slab of PBX 9501 impacted by a two-material flyer plate. We examine the effects of crack orientation and temperature dependence of viscosity of the melt on the response. Numerical results confirm our theoretical finding [Zuo, Q.H., Dienes, J.K., 2005. On the stability of penny-shaped cracks with friction: the five types of brittle behavior. Int. J. Solids Struct. 42, 1309-1326] that crack orientation has a significant effect on brittle behavior, especially under compressive loading where interfacial friction plays an important role. With a reasonable choice of crack orientation and a temperature-dependent viscosity obtained from molecular dynamics calculations, the calculated particle velocities compare well with those measured using

  13. Numerical simulation of a liquid propellant rocket motor (United States)

    Salvador, Nicolas M. C.; Morales, Marcelo M.; Migueis, Carlos E. S. S.; Bastos-Netto, Demétrio


    This work presents a numerical simulation of the flow field in a liquid propellant rocket engine chamber and exit nozzle using techniques to allow the results to be taken as starting points for designing those propulsive systems. This was done using a Finite Volume method simulating the different flow regimes which usually take place in those systems. As the flow field has regions ranging from the low subsonic to the supersonic regimes, the numerical code used, initially developed for compressible flows only, was modified to work proficiently in the whole velocity range. It is well known that codes have been developed in CFD, for either compressible or incompressible flows, the joint treatment of both together being complex even today, given the small number of references available in this area. Here an existing code for compressible flow was used and primitive variables, the pressure, the Cartesian components of the velocity and the temperature instead of the conserved variables were introduced in the Euler and Navier-Stokes equations. This was done to permit the treatment at any Mach number. Unstructured meshes with adaptive refinements were employed here. The convective terms were treated with upwind first and second order methods. The numerical stability was kept with artificial dissipation and in the spatial coverage one used a five stage Runge-Kutta scheme for the Fluid Mechanics and the VODE (Value of Ordinary Differential Equations) scheme along with the Chemkin II in the chemical reacting solution. During the development of this code simulating the flow in a rocket engine, comparison tests were made with several different types of internal and external flows, at different velocities, seeking to establish the confidence level of the techniques being used. These comparisons were done with existing theoretical results and with other codes already validated and well accepted by the CFD community.

  14. Starship Sails Propelled by Cost-Optimized Directed Energy (United States)

    Benford, J.

    Microwave and laser-propelled sails are a new class of spacecraft using photon acceleration. It is the only method of interstellar flight that has no physics issues. Laboratory demonstrations of basic features of beam-driven propulsion, flight, stability (`beam-riding'), and induced spin, have been completed in the last decade, primarily in the microwave. It offers much lower cost probes after a substantial investment in the launcher. Engineering issues are being addressed by other applications: fusion (microwave, millimeter and laser sources) and astronomy (large aperture antennas). There are many candidate sail materials: carbon nanotubes and microtrusses, beryllium, graphene, etc. For acceleration of a sail, what is the cost-optimum high power system? Here the cost is used to constrain design parameters to estimate system power, aperture and elements of capital and operating cost. From general relations for cost-optimal transmitter aperture and power, system cost scales with kinetic energy and inversely with sail diameter and frequency. So optimal sails will be larger, lower in mass and driven by higher frequency beams. Estimated costs include economies of scale. We present several starship point concepts. Systems based on microwave, millimeter wave and laser technologies are of equal cost at today's costs. The frequency advantage of lasers is cancelled by the high cost of both the laser and the radiating optic. Cost of interstellar sailships is very high, driven by current costs for radiation source, antennas and especially electrical power. The high speeds necessary for fast interstellar missions make the operating cost exceed the capital cost. Such sailcraft will not be flown until the cost of electrical power in space is reduced orders of magnitude below current levels.

  15. Theoretical aspects of double beta decay

    International Nuclear Information System (INIS)

    Haxton, W.C.


    Considerable effort has been expended recently in theoretical studies of double beta decay. Much of this work has focussed on the constraints this process places on gauge theories of the weak interaction, in general, and on the neutrino mass matrix, in particular. In addition, interesting nuclear structure questions have arisen in studies of double beta decay matrix elements. After briefly reviewing the theory of double beta decay, some of the progress that has been made in these areas is summarized. 25 references

  16. Origins of Beta Tantalum in Sputtered Coatings

    National Research Council Canada - National Science Library

    Mulligan, C


    .... Some of the most recent work has attempted to relate the energetics (i.e., atom/ion energy) of the plasma to the alpha right arrow beta transition. It has been shown that the energetics of the plasma can relate to the most crucial sputtering parameters. The most significant feature of the use of plasma energy to explain the alpha right arrow beta transition is that it relates the formation of beta-tantalum to a quantifiable measure.

  17. High beta plasmas in the PBX tokamak

    International Nuclear Information System (INIS)

    Bol, K.; Buchenauer, D.; Chance, M.


    Bean-shaped configurations favorable for high β discharges have been investigated in the Princeton Beta Experiment (PBX) tokamak. Strongly indented bean-shaped plasmas have been successfully formed, and beta values of over 5% have been obtained with 5 MW of injected neutral beam power. These high beta discharges still lie in the first stability regime for ballooning modes, and MHD stability analysis implicates the external kink as responsible for the present β limit

  18. Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters (United States)

    Ling, William Yeong Liang; Schönherr, Tony; Koizumi, Hiroyuki


    In the past several decades, the use of electric propulsion in spacecraft has experienced tremendous growth. With the increasing adoption of small satellites in the kilogram range, suitable propulsion systems will be necessary in the near future. Pulsed plasma thrusters (PPTs) were the first form of electric propulsion to be deployed in orbit, and are highly suitable for small satellites due to their inherent simplicity. However, their lifetime is limited by disadvantages such as carbon deposition leading to thruster failure, and complicated feeding systems required due to the conventional use of solid propellants (usually polytetrafluoroethylene (PTFE)). A promising alternative to solid propellants has recently emerged in the form of non-volatile liquids that are stable in vacuum. This study presents a broad comparison of the non-volatile liquid perfluoropolyether (PFPE) and solid PTFE as propellants on a PPT with a common design base. We show that liquid PFPE can be successfully used as a propellant, and exhibits similar plasma discharge properties to conventional solid PTFE, but with a mass bit that is an order of magnitude higher for an identical ablation area. We also demonstrate that the liquid PFPE propellant has exceptional resistance to carbon deposition, completely negating one of the major causes of thruster failure, while solid PTFE exhibited considerable carbon build-up. Energy dispersive X-ray spectroscopy was used to examine the elemental compositions of the surface deposition on the electrodes and the ablation area of the propellant (or PFPE encapsulator). The results show that based on its physical characteristics and behavior, non-volatile liquid PFPE is an extremely promising propellant for use in PPTs, with an extensive scope available for future research and development.

  19. Effect of Chamber Pressurization Rate on Combustion and Propagation of Solid Propellant Cracks (United States)

    Yuan, Wei-Lan; Wei, Shen; Yuan, Shu-Shen


    area of the propellant grain satisfies the designed value. But cracks in propellant grain can be generated during manufacture, storage, handing and so on. The cracks can provide additional surface area for combustion. The additional combustion may significantly deviate the performance of the rocket motor from the designed conditions, even lead to explosive catastrophe. Therefore a thorough study on the combustion, propagation and fracture of solid propellant cracks must be conducted. This paper takes an isolated propellant crack as the object and studies the effect of chamber pressurization rate on the combustion, propagation and fracture of the crack by experiment and theoretical calculation. deformable, the burning inside a solid propellant crack is a coupling of solid mechanics and combustion dynamics. In this paper, a theoretical model describing the combustion, propagation and fracture of the crack was formulated and solved numerically. The interaction of structural deformation and combustion process was included in the theoretical model. The conservation equations for compressible fluid flow, the equation of state for perfect gas, the heat conducting equation for the solid-phase, constitutive equation for propellant, J-integral fracture criterion and so on are used in the model. The convective burning inside the crack and the propagation and fracture of the crack were numerically studied by solving the set of nonlinear, inhomogeneous gas-phase governing equations and solid-phase equations. On the other hand, the combustion experiments for propellant specimens with a precut crack were conducted by RTR system. Predicted results are in good agreement with experimental data, which validates the reasonableness of the theoretical model. Both theoretical and experimental results indicate that the chamber pressurization rate has strong effects on the convective burning in the crack, crack fracture initiation and fracture pattern.

  20. Monitor for alpha beta contamination of hands; Moniteur de contamination alpha beta des mains

    Energy Technology Data Exchange (ETDEWEB)

    Guitton, J


    The following specifications of hands alpha beta contamination monitor are presented: the position of the hands, the detection and separation of alpha and beta, the information processing, the programming, the results presentation and general characteristics. (A.L.B.)