WorldWideScience

Sample records for beta oscillations reflect

  1. Language-motor interference reflected in MEG beta oscillations.

    Science.gov (United States)

    Klepp, Anne; Niccolai, Valentina; Buccino, Giovanni; Schnitzler, Alfons; Biermann-Ruben, Katja

    2015-04-01

    The involvement of the brain's motor system in action-related language processing can lead to overt interference with simultaneous action execution. The aim of the current study was to find evidence for this behavioural interference effect and to investigate its neurophysiological correlates using oscillatory MEG analysis. Subjects performed a semantic decision task on single action verbs, describing actions executed with the hands or the feet, and abstract verbs. Right hand button press responses were given for concrete verbs only. Therefore, longer response latencies for hand compared to foot verbs should reflect interference. We found interference effects to depend on verb imageability: overall response latencies for hand verbs did not differ significantly from foot verbs. However, imageability interacted with effector: while response latencies to hand and foot verbs with low imageability were equally fast, those for highly imageable hand verbs were longer than for highly imageable foot verbs. The difference is reflected in motor-related MEG beta band power suppression, which was weaker for highly imageable hand verbs compared with highly imageable foot verbs. This provides a putative neuronal mechanism for language-motor interference where the involvement of cortical hand motor areas in hand verb processing interacts with the typical beta suppression seen before movements. We found that the facilitatory effect of higher imageability on action verb processing time is perturbed when verb and motor response relate to the same body part. Importantly, this effect is accompanied by neurophysiological effects in beta band oscillations. The attenuated power suppression around the time of movement, reflecting decreased cortical excitability, seems to result from motor simulation during action-related language processing. This is in line with embodied cognition theories.

  2. Beta oscillations in the monkey sensorimotor network reflect somatosensory decision making

    Science.gov (United States)

    Haegens, Saskia; Nácher, Verónica; Hernández, Adrián; Luna, Rogelio; Jensen, Ole; Romo, Ranulfo

    2011-01-01

    The neuronal correlate of perceptual decision making has been extensively studied in the monkey somatosensory system by using a vibrotactile discrimination task, showing that stimulus encoding, retention, and comparison are widely distributed across cortical areas. However, from a network perspective, it is not known what role oscillations play in this task. We recorded local field potentials (LFPs) from diverse cortical areas of the sensorimotor system while one monkey performed the vibrotactile discrimination task. Exclusively during stimulus presentation, a periodic response reflecting the stimulus frequency was observed in the somatosensory regions, suggesting that after initial processing, the frequency content of the stimulus is coded in some other way than entrainment. Interestingly, we found that oscillatory activity in the beta band reflected the dynamics of decision making in the monkey sensorimotor network. During the comparison and decision period, beta activity showed a categorical response that reflected the decision of the monkey and distinguished correct from incorrect responses. Importantly, this differential activity was absent in a control condition that involved the same stimulation and response but no decision making required, suggesting it does not merely reflect the maintenance of a motor plan. We conclude that beta band oscillations reflect the temporal and spatial dynamics of the accumulation and processing of evidence in the sensorimotor network leading to the decision outcome. PMID:21670296

  3. Oscillations in Beta UMi - Observations with SMEI

    CERN Document Server

    Tarrant, N J; Elsworth, Y; Spreckley, S A; Stevens, I R

    2008-01-01

    Aims: From observations of the K4III star Beta UMi we attempt to determine whether oscillations or any other form of variability is present. Methods: A high-quality photometric time series of approximately 1000 days in length obtained from the SMEI instrument on the Coriolis satellite is analysed. Various statistical tests were performed to determine the significance of features seen in the power density spectrum of the light curve. Results: Two oscillations with frequencies 2.44 and 2.92 microhertz have been identified. We interpret these oscillations as consecutive overtones of an acoustic spectrum, implying a large frequency spacing of 0.48 microhertz. Using derived asteroseismic parameters in combination with known astrophysical parameters, we estimate the mass of Beta UMi to be 1.3 +/- 0.3 solar masses. Peaks of the oscillations in the power density spectrum show width, implying that modes are stochastically excited and damped by convection. The mode lifetime is estimated at 18 +/- 9 days.

  4. Reflection oscillators employing series resonant crystals'

    Science.gov (United States)

    Kleinberg, Leonard L. (Inventor)

    1989-01-01

    A reflection oscillator is provided which employs an active device operated in its roll-off region and two resonant circuits. For an oscillator employing a bipolar transistor, the emitter is connected to a series resonant capacitor-crystal network and the base is connected to an L-C tank circuit with the transistor being operated in the roll-off region of its gain versus frequency curve. This will provide a very high frequency of operation with a relatively inexpensive, low frequency, active device. These oscillators are easily tuned, stable, and require little dc power.

  5. Beta Beams for Precision Measurements of Neutrino Oscillation Parameters

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Damjanovic, S; Payet, J; Chancé, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, V; Gramegna, F; Marchi, T; Collazuol, G; Mezzetto, M; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Burt, G; Dexter, A; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Moro, R; De Rosa, G; Palladino, V

    2012-01-01

    Neutrino oscillations have implications for the Standard Model of particle physics. The CERN Beta Beam has outstanding capabilities to contribute to precision measurements of the parameters governing neutrino oscillations. The FP7 collaboration EUROnu (2008-2012) is a design study that will review three facilities (Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make decisions on future European neutrino oscillation facilities. ”Beta Beams” produce collimated pure electron (anti)neutrinos by accelerating beta active ions to high energies and having them decay in a storage ring. Using existing machines and infrastructure is an advantage for the cost evaluation; however, this choice is also constraining the Beta Beams. Recent work to make the Beta Beam facility a solid option will be described: production of Beta Beam isotopes, the 60 GHz pulsed ECR source development, integratio...

  6. Constraints on neutrinoless double $\\beta$ decay from neutrino oscillation experiments

    CERN Document Server

    Bilenky, S M; Monteno, M

    1997-01-01

    We show that, in the framework of a general model with mixing of three Majorana neutrinos and a neutrino mass hierarchy, the results of the Bugey and Krasnoyarsk reactor neutrino oscillation experiments imply strong limitations for the effective Majorana mass || that characterizes the amplitude of neutrinoless double beta decay. We obtain further limitations on || from the data of the atmospheric neutrino experiments. We discuss the possible implications of the results of the future long baseline neutrino oscillation experiments for neutrinoless double beta decay.

  7. Context-related frequency modulations of macaque motor cortical LFP beta oscillations.

    Science.gov (United States)

    Kilavik, Bjørg Elisabeth; Ponce-Alvarez, Adrián; Trachel, Romain; Confais, Joachim; Takerkart, Sylvain; Riehle, Alexa

    2012-09-01

    The local field potential (LFP) is a population measure, mainly reflecting local synaptic activity. Beta oscillations (12-40 Hz) occur in motor cortical LFPs, but their functional relevance remains controversial. Power modulation studies have related beta oscillations to a "resting" motor cortex, postural maintenance, attention, sensorimotor binding and planning. Frequency modulations were largely overlooked. We here describe context-related beta frequency modulations in motor cortical LFPs. Two monkeys performed a reaching task with 2 delays. The first delay demanded attention in time in expectation of the visual spatial cue, whereas the second delay involved visuomotor integration and movement preparation. The frequency in 2 beta bands (around 20 and 30 Hz) was systematically 2-5 Hz lower during cue expectancy than during visuomotor integration and preparation. Furthermore, the frequency was directionally selective during preparation, with about 3 Hz difference between preferred and nonpreferred directions. Direction decoding with frequency gave similar accuracy as with beta power, and decoding accuracy improved significantly when combining power and frequency, suggesting that frequency might provide an additional signal for brain-machine interfaces. In conclusion, multiple beta bands coexist in motor cortex, and frequency modulations within each band are as behaviorally meaningful as power modulations, reflecting the changing behavioral context and the movement direction during preparation.

  8. Beta/gamma oscillations and event-related potentials indicate aberrant multisensory processing in schizophrenia

    Directory of Open Access Journals (Sweden)

    Johanna Balz

    2016-12-01

    Full Text Available Recent behavioral and neuroimaging studies have suggested multisensory processing deficits in patients with schizophrenia (SCZ. Thus far, the neural mechanisms underlying these deficits are not well understood. Previous studies with unisensory stimulation have shown altered neural oscillations in SCZ. As such, aberrant oscillations could contribute to aberrant multisensory processing in this patient group. To test this assumption, we conducted an electroencephalography (EEG study in 15 SCZ and 15 control participants in whom we examined neural oscillations and event-related potentials (ERPs in the sound-induced flash illusion (SIFI. In the SIFI multiple auditory stimuli that are presented alongside a single visual stimulus can induce the illusory percept of multiple visual stimuli. In SCZ and control participants we compared ERPs and neural oscillations between trials that induced an illusion and trials that did not induce an illusion. On the behavioral level, SCZ (55.7 % and control participants (55.4 % did not significantly differ in illusion rates. The analysis of ERPs revealed diminished amplitudes and altered multisensory processing in SCZ compared to controls around 135 ms after stimulus onset. Moreover, the analysis of neural oscillations revealed altered 25-35 Hz power after 100 to 150 ms over occipital scalp for SCZ compared to controls. Our findings extend previous observations of aberrant neural oscillations in unisensory perception paradigms. They suggest that altered ERPs and altered occipital beta/gamma band power reflect aberrant multisensory processing in SCZ.

  9. Altered cortical beta‐band oscillations reflect motor system degeneration in amyotrophic lateral sclerosis

    Science.gov (United States)

    Proudfoot, Malcolm; Rohenkohl, Gustavo; Quinn, Andrew; Colclough, Giles L.; Wuu, Joanne; Talbot, Kevin; Woolrich, Mark W.; Benatar, Michael

    2016-01-01

    Abstract Continuous rhythmic neuronal oscillations underpin local and regional cortical communication. The impact of the motor system neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) on the neuronal oscillations subserving movement might therefore serve as a sensitive marker of disease activity. Movement preparation and execution are consistently associated with modulations to neuronal oscillation beta (15–30 Hz) power. Cortical beta‐band oscillations were measured using magnetoencephalography (MEG) during preparation for, execution, and completion of a visually cued, lateralized motor task that included movement inhibition trials. Eleven “classical” ALS patients, 9 with the primary lateral sclerosis (PLS) phenotype, and 12 asymptomatic carriers of ALS‐associated gene mutations were compared with age‐similar healthy control groups. Augmented beta desynchronization was observed in both contra‐ and ipsilateral motor cortices of ALS patients during motor preparation. Movement execution coincided with excess beta desynchronization in asymptomatic mutation carriers. Movement completion was followed by a slowed rebound of beta power in all symptomatic patients, further reflected in delayed hemispheric lateralization for beta rebound in the PLS group. This may correspond to the particular involvement of interhemispheric fibers of the corpus callosum previously demonstrated in diffusion tensor imaging studies. We conclude that the ALS spectrum is characterized by intensified cortical beta desynchronization followed by delayed rebound, concordant with a broader concept of cortical hyperexcitability, possibly through loss of inhibitory interneuronal influences. MEG may potentially detect cortical dysfunction prior to the development of overt symptoms, and thus be able to contribute to the assessment of future neuroprotective strategies. Hum Brain Mapp 38:237–254, 2017. © 2016 Wiley Periodicals, Inc. PMID:27623516

  10. XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY

    Energy Technology Data Exchange (ETDEWEB)

    Fawley, William; Lindberg, Ryan; Kim, K-J; Shvyd' ko, Yuri

    2010-08-23

    The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.

  11. Desynchronization and rebound of beta oscillations during conscious and unconscious local neuronal processing in the macaque lateral prefrontal cortex.

    Science.gov (United States)

    Panagiotaropoulos, Theofanis I; Kapoor, Vishal; Logothetis, Nikos K

    2013-01-01

    Accumulating evidence indicates that control mechanisms are not tightly bound to conscious perception since both conscious and unconscious information can trigger control processes, probably through the activation of higher-order association areas like the prefrontal cortex. Studying the modulation of control-related prefrontal signals in a microscopic, neuronal level during conscious and unconscious neuronal processing, and under control-free conditions could provide an elementary understanding of these interactions. Here we performed extracellular electrophysiological recordings in the macaque lateral prefrontal cortex (LPFC) during monocular physical alternation (PA) and binocular flash suppression (BFS) and studied the local scale relationship between beta (15-30 Hz) oscillations, a rhythmic signal believed to reflect the current sensory, motor, or cognitive state (status-quo), and conscious or unconscious neuronal processing. First, we show that beta oscillations are observed in the LPFC during resting state. Both PA and BFS had a strong impact on the power of this spontaneous rhythm with the modulation pattern of beta power being identical across these two conditions. Specifically, both perceptual dominance and suppression of local neuronal populations in BFS were accompanied by a transient beta desynchronization followed by beta activity rebound, a pattern also observed when perception occurred without any underlying visual competition in PA. These results indicate that under control-free conditions, at least one rhythmic signal known to reflect control processes in the LPFC (i.e., beta oscillations) is not obstructed by local neuronal, and accordingly perceptual, suppression, thus being independent from temporally co-existing conscious and unconscious local neuronal representations. Future studies could reveal the additive effects of motor or cognitive control demands on prefrontal beta oscillations during conscious and unconscious processing.

  12. Neutrinoless Double Beta Decay and Future Neutrino Oscillation Precision Experiments

    CERN Document Server

    Choubey, S

    2005-01-01

    We discuss to what extent future precision measurements of neutrino mixing observables will influence the information we can draw from a measurement of (or an improved limit on) neutrinoless double beta decay. Whereas the Delta m^2 corresponding to solar and atmospheric neutrino oscillations are expected to be known with good precision, the parameter theta_{12} will govern large part of the uncertainty. We focus in particular on the possibility of distinguishing the neutrino mass hierarchies and on setting a limit on the neutrino mass. We give the largest allowed values of the neutrino masses which allow to distinguish the normal from the inverted hierarchy. All aspects are discussed as a function of the uncertainty stemming from the involved nuclear matrix elements. The implications of a vanishing, or extremely small, effective mass are also investigated. By giving a large list of possible neutrino mass matrices and their predictions for the observables, we finally explore how a measurement of (or an improve...

  13. Amyloid Beta Peptide Slows Down Sensory-Induced Hippocampal Oscillations

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2012-01-01

    Full Text Available Alzheimer’s disease (AD progresses with a deterioration of hippocampal function that is likely induced by amyloid beta (Aβ oligomers. Hippocampal function is strongly dependent on theta rhythm, and disruptions in this rhythm have been related to the reduction of cognitive performance in AD. Accordingly, both AD patients and AD-transgenic mice show an increase in theta rhythm at rest but a reduction in cognitive-induced theta rhythm. We have previously found that monomers of the short sequence of Aβ (peptide 25–35 reduce sensory-induced theta oscillations. However, considering on the one hand that different Aβ sequences differentially affect hippocampal oscillations and on the other hand that Aβ oligomers seem to be responsible for the cognitive decline observed in AD, here we aimed to explore the effect of Aβ oligomers on sensory-induced theta rhythm. Our results show that intracisternal injection of Aβ1–42 oligomers, which has no significant effect on spontaneous hippocampal activity, disrupts the induction of theta rhythm upon sensory stimulation. Instead of increasing the power in the theta band, the hippocampus of Aβ-treated animals responds to sensory stimulation (tail pinch with an increase in lower frequencies. These findings demonstrate that Aβ alters induced theta rhythm, providing an in vivo model to test for therapeutic approaches to overcome Aβ-induced hippocampal and cognitive dysfunctions.

  14. Beta Beams: an accelerator based facility to explore Neutrino oscillation physics

    CERN Document Server

    Wildner, E; Hansen, C; De Melo Mendonca, T; Stora, T; Payet, J; Chance, A; Zorin, V; Izotov, I; Rasin, S; Sidorov, A; Skalyga, V; De Angelis, G; Prete, G; Cinausero, M; Kravchuk, VL; Gramegna, F; Marchi, T; Collazuol, G; De Rosa, G; Delbar, T; Loiselet, M; Keutgen, T; Mitrofanov, S; Lamy, T; Latrasse, L; Marie-Jeanne, M; Sortais, P; Thuillier, T; Debray, F; Trophime, C; Hass, M; Hirsh, T; Berkovits, D; Stahl, A

    2011-01-01

    The discovery that the neutrino changes flavor as it travels through space has implications for the Standard Model of particle physics (SM)[1]. To know the contribution of neutrinos to the SM, needs precise measurements of the parameters governing the neutrino oscillations. This will require a high intensity beam-based neutrino oscillation facility. The EURONu Design Study will review three currently accepted methods of realizing this facility (the so-called Super-Beams, Beta Beams and Neutrino Factories) and perform a cost assessment that, coupled with the physics performance, will give means to the European research authorities to make a decision on the layout and construction of the future European neutrino oscillation facility. ”Beta Beams” produce collimated pure electron neutrino and antineutrino beams by accelerating beta active ions to high energies and letting them decay in a race-track shaped storage ring. EURONu Beta Beams are based on CERNs infrastructure and the fact that some of the already ...

  15. Beta Value Coupled Wave Theory for Nonslanted Reflection Gratings

    Directory of Open Access Journals (Sweden)

    Cristian Neipp

    2014-01-01

    Full Text Available We present a modified coupled wave theory to describe the properties of nonslanted reflection volume diffraction gratings. The method is based on the beta value coupled wave theory, which will be corrected by using appropriate boundary conditions. The use of this correction allows predicting the efficiency of the reflected order for nonslanted reflection gratings embedded in two media with different refractive indices. The results obtained by using this method will be compared to those obtained using a matrix method, which gives exact solutions in terms of Mathieu functions, and also to Kogelnik’s coupled wave theory. As will be demonstrated, the technique presented in this paper means a significant improvement over Kogelnik’s coupled wave theory.

  16. Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network.

    Science.gov (United States)

    Holgado, Alejo J Nevado; Terry, John R; Bogacz, Rafal

    2010-09-15

    The advance of Parkinson's disease is associated with the existence of abnormal oscillations within the basal ganglia with frequencies in the beta band (13-30 Hz). While the origin of these oscillations remains unknown, there is some evidence suggesting that oscillations observed in the basal ganglia arise due to interactions of two nuclei: the subthalamic nucleus (STN) and the globus pallidus pars externa (GPe). To investigate this hypothesis, we develop a computational model of the STN-GPe network based upon anatomical and electrophysiological studies. Significantly, our study shows that for certain parameter regimes, the model intrinsically oscillates in the beta range. Through an analytical study of the model, we identify a simple set of necessary conditions on model parameters that guarantees the existence of beta oscillations. These conditions for generation of oscillations are described by a set of simple inequalities and can be summarized as follows: (1) The excitatory connections from STN to GPe and the inhibitory connections from GPe to STN need to be sufficiently strong. (2) The time required by neurons to react to their inputs needs to be short relative to synaptic transmission delays. (3) The excitatory input from the cortex to STN needs to be high relative to the inhibition from striatum to GPe. We confirmed the validity of these conditions via numerical simulation. These conditions describe changes in parameters that are consistent with those expected as a result of the development of Parkinson's disease, and predict manipulations that could inhibit the pathological oscillations.

  17. Sensorimotor Oscillations Prior to Speech Onset Reflect Altered Motor Networks in Adults Who Stutter

    Science.gov (United States)

    Mersov, Anna-Maria; Jobst, Cecilia; Cheyne, Douglas O.; De Nil, Luc

    2016-01-01

    Adults who stutter (AWS) have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG). Twelve AWS and 12 age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset) and speech execution (following speech onset). Compared to controls, AWS showed stronger beta (15–25 Hz) suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population. PMID:27642279

  18. Sensorimotor oscillations prior to speech onset reflect altered motor networks in adults who stutter

    Directory of Open Access Journals (Sweden)

    Anna-Maria Mersov

    2016-09-01

    Full Text Available Adults who stutter (AWS have demonstrated atypical coordination of motor and sensory regions during speech production. Yet little is known of the speech-motor network in AWS in the brief time window preceding audible speech onset. The purpose of the current study was to characterize neural oscillations in the speech-motor network during preparation for and execution of overt speech production in AWS using magnetoencephalography (MEG. Twelve AWS and twelve age-matched controls were presented with 220 words, each word embedded in a carrier phrase. Controls were presented with the same word list as their matched AWS participant. Neural oscillatory activity was localized using minimum-variance beamforming during two time periods of interest: speech preparation (prior to speech onset and speech execution (following speech onset. Compared to controls, AWS showed stronger beta (15-25Hz suppression in the speech preparation stage, followed by stronger beta synchronization in the bilateral mouth motor cortex. AWS also recruited the right mouth motor cortex significantly earlier in the speech preparation stage compared to controls. Exaggerated motor preparation is discussed in the context of reduced coordination in the speech-motor network of AWS. It is further proposed that exaggerated beta synchronization may reflect a more strongly inhibited motor system that requires a stronger beta suppression to disengage prior to speech initiation. These novel findings highlight critical differences in the speech-motor network of AWS that occur prior to speech onset and emphasize the need to investigate further the speech-motor assembly in the stuttering population.

  19. Gamma oscillations in human primary somatosensory cortex reflect pain perception.

    Directory of Open Access Journals (Sweden)

    Joachim Gross

    2007-05-01

    Full Text Available Successful behavior requires selection and preferred processing of relevant sensory information. The cortical representation of relevant sensory information has been related to neuronal oscillations in the gamma frequency band. Pain is of invariably high behavioral relevance and, thus, nociceptive stimuli receive preferred processing. Here, by using magnetoencephalography, we show that selective nociceptive stimuli induce gamma oscillations between 60 and 95 Hz in primary somatosensory cortex. Amplitudes of pain-induced gamma oscillations vary with objective stimulus intensity and subjective pain intensity. However, around pain threshold, perceived stimuli yielded stronger gamma oscillations than unperceived stimuli of equal stimulus intensity. These results show that pain induces gamma oscillations in primary somatosensory cortex that are particularly related to the subjective perception of pain. Our findings support the hypothesis that gamma oscillations are related to the internal representation of behaviorally relevant stimuli that should receive preferred processing.

  20. Beta, but not gamma, band oscillations index visual form-motion integration.

    Directory of Open Access Journals (Sweden)

    Charles Aissani

    Full Text Available Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou's figure (bound percept or as pairs of bars oscillating independently along cardinal axes (unbound percept. We found that beta (15-25 Hz, but not gamma (55-85 Hz oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.

  1. CP-Violation in Neutrino Oscillations from EC/{beta}{sup +} decaying ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza, Catalina [Centre for Theoretical Particle Physics, IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal)

    2012-08-15

    We discuss the separation of unknown neutrino properties by means of the energy dependence of the oscillation probability and we consider an hybrid setup which combines the electron capture and the {beta}{sup +} decay from the same radioactive proton-rich ion with the same boost. We conclude that the combination of the two decay channels, with different neutrino energies, achieves remarkable results.

  2. Stochastically sustained population oscillations in high-beta nanolasers

    CERN Document Server

    Lebreton, A; Takemura, N; Kuwata-Gonokami, M; Robert-Philip, I; Beveratos, A

    2012-01-01

    Non-linear dynamical systems involving small populations of individuals may sustain oscillations in the population densities arising from the discrete changes in population numbers due to random events. By applying these ideas to nanolasers operating with small numbers of emitting dipoles and photons at threshold, we show that such lasers should display photon and dipole population cycles above threshold, which should be observable as a periodic modulation in the second-order correlation function of the nanolaser output. Such a modulation was recently reported in a single-mode vertical-cavity surface-emitting semiconductor laser.

  3. Gestalt perception is associated with reduced parietal beta oscillations.

    Science.gov (United States)

    Zaretskaya, Natalia; Bartels, Andreas

    2015-05-15

    The ability to perceive composite objects as a whole is fundamental for visual perception in a complex and cluttered natural environment. This ability may be mediated by increased communication between neural representations of distinct object elements, and has been linked to increased synchronization of oscillatory brain activity in the gamma band. Previous studies of perceptual grouping either guided attention between local and global aspects of a given stimulus or manipulated its physical properties to achieve grouped and ungrouped perceptual conditions. In contrast to those studies, we fully matched the physical properties underlying global and local percepts using a bistable stimulus that causes the viewer to perceive either local motion of multiple elements or global motion of two illusory shapes without any external change. To test the synchronization hypothesis we recorded brain activity with EEG, while human participants viewed the stimulus and reported changes in their perception. In contrast to previous findings we show that power of the beta-band was lower during perception of global Gestalt than during that of local elements. Source localization places these differences in the posterior parietal cortex, overlapping with a site previously associated with both attention and Gestalt perception. These findings reveal a role of parietal beta-band activity in internally, rather than externally or attention-driven processes of Gestalt perception. They also add to the growing evidence for shared neural substrates of attention and Gestalt perception, both being linked to parietal cortex.

  4. Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations.

    Science.gov (United States)

    Liddle, Elizabeth B; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J; Robson, Siân E; Hall, Emma L; Morris, Peter G; Liddle, Peter F

    2016-04-01

    Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long-range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks.

  5. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  6. Early and late beta-band power reflect audiovisual perception in the McGurk illusion.

    Science.gov (United States)

    Roa Romero, Yadira; Senkowski, Daniel; Keil, Julian

    2015-04-01

    The McGurk illusion is a prominent example of audiovisual speech perception and the influence that visual stimuli can have on auditory perception. In this illusion, a visual speech stimulus influences the perception of an incongruent auditory stimulus, resulting in a fused novel percept. In this high-density electroencephalography (EEG) study, we were interested in the neural signatures of the subjective percept of the McGurk illusion as a phenomenon of speech-specific multisensory integration. Therefore, we examined the role of cortical oscillations and event-related responses in the perception of congruent and incongruent audiovisual speech. We compared the cortical activity elicited by objectively congruent syllables with incongruent audiovisual stimuli. Importantly, the latter elicited a subjectively congruent percept: the McGurk illusion. We found that early event-related responses (N1) to audiovisual stimuli were reduced during the perception of the McGurk illusion compared with congruent stimuli. Most interestingly, our study showed a stronger poststimulus suppression of beta-band power (13-30 Hz) at short (0-500 ms) and long (500-800 ms) latencies during the perception of the McGurk illusion compared with congruent stimuli. Our study demonstrates that auditory perception is influenced by visual context and that the subsequent formation of a McGurk illusion requires stronger audiovisual integration even at early processing stages. Our results provide evidence that beta-band suppression at early stages reflects stronger stimulus processing in the McGurk illusion. Moreover, stronger late beta-band suppression in McGurk illusion indicates the resolution of incongruent physical audiovisual input and the formation of a coherent, illusory multisensory percept.

  7. Ground-State Cooling of a Mechanical Oscillator by Interference in Andreev Reflection

    Science.gov (United States)

    Stadler, P.; Belzig, W.; Rastelli, G.

    2016-11-01

    We study the ground-state cooling of a mechanical oscillator linearly coupled to the charge of a quantum dot inserted between a normal metal and a superconducting contact. Such a system can be realized, e.g., by a suspended carbon nanotube quantum dot with a capacitive coupling to a gate contact. Focusing on the subgap transport regime, we analyze the inelastic Andreev reflections which drive the resonator to a nonequilibrium state. For small coupling, we obtain that vibration-assisted reflections can occur through two distinct interference paths. The interference determines the ratio between the rates of absorption and emission of vibrational energy quanta. We show that ground-state cooling of the mechanical oscillator can be achieved for many of the oscillator's modes simultaneously or for single modes selectively, depending on the experimentally tunable coupling to the superconductor.

  8. Synchronized Beta-Band Oscillations in a Model of the Globus Pallidus-Subthalamic Nucleus Network under External Input

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S. Elizabeth; Worth, Robert M.; Rubchinsky, Leonid L.

    2016-01-01

    Hypokinetic symptoms of Parkinson's disease are usually associated with excessively strong oscillations and synchrony in the beta frequency band. The origin of this synchronized oscillatory dynamics is being debated. Cortical circuits may be a critical source of excessive beta in Parkinson's disease. However, subthalamo-pallidal circuits were also suggested to be a substantial component in generation and/or maintenance of Parkinsonian beta activity. Here we study how the subthalamo-pallidal circuits interact with input signals in the beta frequency band, representing cortical input. We use conductance-based models of the subthalamo-pallidal network and two types of input signals: artificially-generated inputs and input signals obtained from recordings in Parkinsonian patients. The resulting model network dynamics is compared with the dynamics of the experimental recordings from patient's basal ganglia. Our results indicate that the subthalamo-pallidal model network exhibits multiple resonances in response to inputs in the beta band. For a relatively broad range of network parameters, there is always a certain input strength, which will induce patterns of synchrony similar to the experimentally observed ones. This ability of the subthalamo-pallidal network to exhibit realistic patterns of synchronous oscillatory activity under broad conditions may indicate that these basal ganglia circuits are directly involved in the expression of Parkinsonian synchronized beta oscillations. Thus, Parkinsonian synchronized beta oscillations may be promoted by the simultaneous action of both cortical (or some other) and subthalamo-pallidal network mechanisms. Hence, these mechanisms are not necessarily mutually exclusive. PMID:28066222

  9. Climate oscillations reflected in the Arabian Sea subseafloor microbiome

    Science.gov (United States)

    Orsi, William; Coolen, Marco; He, Lijun; Wuchter, Cornelia; Irigoien, Xabier; Chust, Guillem; Johnson, Carl; Hemingway, Jordon; Lee, Mitchell; Galy, Valier; Giosan, Liviu

    2016-04-01

    Marine sediment contains a vast microbial biosphere that influences global biogeochemical cycles over geological timescales. However, the environmental factors controlling the stratigraphy of subseafloor microbial communities are poorly understood. We studied a sediment core directly underlying the Arabian Sea oxygen minimum zone (OMZ), which exhibits organic carbon rich sapropelic laminae deposited under low oxygen conditions. Consistent with several other cores from the same location, age dating revealed the sapropelic layers coincide with warm North Atlantic millennial-scale Dansgaard-Oeschger events, indicating a direct link between the strength of the OMZ and paleoclimate. A total of 214 samples spanning 13 m and 52 Kyr of deposition were selected for geochemical analyses and paleoclimate proxy measurements, as well as high-throughput metagenomic DNA sequencing of bacteria and archaea. A novel DNA extraction protocol was developed that allowed for direct (unamplified) metagenomic sequencing of DNA from each sample. This dataset represents the highest resolved sedimentary metagenomic sampling profile to date. Analysis of these data together with multiple paleoceanographic proxies show that millennial-scale paleoenvironmental conditions correlate with the metabolism and diversity of bacteria and archaea over the last glacial-interglacial cycle in the Arabian Sea. The metabolic potential for bacterial denitrification correlates with climate-driven OMZ strength and concomitant nitrogen stable isotope fractionation, whereas catabolic potential reflects changing marine organic matter sources across the Last Glacial Maximum. These results indicate that the subsisting microbial communities had been stratified to a large extent by paleoceanographic conditions at the time of deposition. Paleoenvironmental conditions should thus be considered as a mechanism that can help explain microbiome stratigraphy in marine sediment.

  10. Investigating the role of islet cytoarchitecture in its oscillation using a new beta-cell cluster model.

    Directory of Open Access Journals (Sweden)

    Aparna Nittala

    Full Text Available The oscillatory insulin release is fundamental to normal glycemic control. The basis of the oscillation is the intercellular coupling and bursting synchronization of beta cells in each islet. The functional role of islet beta cell mass organization with respect to its oscillatory bursting is not well understood. This is of special interest in view of the recent finding of islet cytoarchitectural differences between human and animal models. In this study we developed a new hexagonal closest packing (HCP cell cluster model. The model captures more accurately the real islet cell organization than the simple cubic packing (SCP cluster that is conventionally used. Using our new model we investigated the functional characteristics of beta-cell clusters, including the fraction of cells able to burst f(b, the synchronization index lambda of the bursting beta cells, the bursting period T(b, the plateau fraction p(f, and the amplitude of intracellular calcium oscillation [Ca]. We determined their dependence on cluster architectural parameters including number of cells n(beta, number of inter-beta cell couplings of each beta cell n(c, and the coupling strength g(c. We found that at low values of n(beta, n(c and g(c, the oscillation regularity improves with their increasing values. This functional gain plateaus around their physiological values in real islets, at n(beta approximately 100, n(c approximately 6 and g(c approximately 200 pS. In addition, normal beta-cell clusters are robust against significant perturbation to their architecture, including the presence of non-beta cells or dead beta cells. In clusters with n(beta> approximately 100, coordinated beta-cell bursting can be maintained at up to 70% of beta-cell loss, which is consistent with laboratory and clinical findings of islets. Our results suggest that the bursting characteristics of a beta-cell cluster depend quantitatively on its architecture in a non-linear fashion. These findings are

  11. Influence of inherent parameter of stabilized UHF oscillators on autodyne response formation at a strong reflected signal

    Directory of Open Access Journals (Sweden)

    Noskov V. Ya.

    2011-08-01

    Full Text Available Results of an autodyne response analysis in UHF oscillators stabilized by the external high-Q cavity in the case of the strong signal when the reflected wave amplitude commen-surable with the own oscillation amplitude. Coupling between the basic operation cavity and the stabilizing cavity is implemented as a pass-reflecting filter with a resistive bond. Key relations are obtained, which describe the autodyne response to the own re-reflected radiation from a target. The load and oscillating system influence on autodyne response formation is fulfilled.

  12. Coupling between intrinsic prefrontal HbO2 and central EEG beta power oscillations in the resting brain.

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    Full Text Available There is increasing interest in the intrinsic activity in the resting brain, especially that of ultraslow and slow oscillations. Using near-infrared spectroscopy (NIRS, electroencephalography (EEG, blood pressure (BP, respiration and heart rate recordings during 5 minutes of rest, combined with cross spectral and sliding cross correlation calculations, we identified a short-lasting coupling (duration [Formula: see text] s between prefrontal oxyhemoglobin (HbO2 in the frequency band between 0.07 and 0.13 Hz and central EEG alpha and/or beta power oscillations in 8 of the 9 subjects investigated. The HbO2 peaks preceded the EEG band power peaks by 3.7 s in 6 subjects, with moderate or no coupling between BP and HbO2 oscillations. HbO2 and EEG band power oscillations were approximately in phase with BP oscillations in the 2 subjects with an extremely high coupling (squared coherence [Formula: see text] between BP and HbO2 oscillation. No coupling was identified in one subject. These results indicate that slow precentral (deoxyhemoglobin concentration oscillations during awake rest can be temporarily coupled with EEG fluctuations in sensorimotor areas and modulate the excitability level in the brains' motor areas, respectively. Therefore, this provides support for the idea that resting state networks fluctuate with frequencies of between 0.01 and 0.1 Hz (Mantini et.al. PNAS 2007.

  13. Coupling between intrinsic prefrontal HbO2 and central EEG beta power oscillations in the resting brain.

    Science.gov (United States)

    Pfurtscheller, Gert; Daly, Ian; Bauernfeind, Günther; Müller-Putz, Gernot R

    2012-01-01

    There is increasing interest in the intrinsic activity in the resting brain, especially that of ultraslow and slow oscillations. Using near-infrared spectroscopy (NIRS), electroencephalography (EEG), blood pressure (BP), respiration and heart rate recordings during 5 minutes of rest, combined with cross spectral and sliding cross correlation calculations, we identified a short-lasting coupling (duration [Formula: see text] s) between prefrontal oxyhemoglobin (HbO2) in the frequency band between 0.07 and 0.13 Hz and central EEG alpha and/or beta power oscillations in 8 of the 9 subjects investigated. The HbO2 peaks preceded the EEG band power peaks by 3.7 s in 6 subjects, with moderate or no coupling between BP and HbO2 oscillations. HbO2 and EEG band power oscillations were approximately in phase with BP oscillations in the 2 subjects with an extremely high coupling (squared coherence [Formula: see text]) between BP and HbO2 oscillation. No coupling was identified in one subject. These results indicate that slow precentral (de)oxyhemoglobin concentration oscillations during awake rest can be temporarily coupled with EEG fluctuations in sensorimotor areas and modulate the excitability level in the brains' motor areas, respectively. Therefore, this provides support for the idea that resting state networks fluctuate with frequencies of between 0.01 and 0.1 Hz (Mantini et.al. PNAS 2007).

  14. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under “Cocktail-Party” Listening Conditions

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344

  15. Autodyne characteristics of stabilized UHF-oscillators at a strong reflected signal

    Directory of Open Access Journals (Sweden)

    Noskov V. Ya.

    2011-11-01

    Full Text Available Calculations and examinations of phase, amplitude, frequency and amplitude-frequency characteristics are fulfilled for the autodyne system stabilized by the external high-Q cavity as well as spectral characteristics under condition of exact and non-exact cavity tuning and the variations of distance to reflector. The distinguished peculiarities of the autodyne response at the small and large reflected signal are described. Experimental research results are discussed fulfilled on an example of the hybrid-integrated oscillator on Gunn diode of 8-mm-range, which confirm qualitatively the theoretic results.

  16. Glucose-stimulated oscillations in free cytosolic ATP concentration imaged in single islet beta-cells: evidence for a Ca2+-dependent mechanism.

    Science.gov (United States)

    Ainscow, Edward K; Rutter, Guy A

    2002-02-01

    Normal glucose-stimulated insulin secretion is pulsatile, but the molecular mechanisms underlying this pulsatility are poorly understood. Oscillations in the intracellular free [ATP]/[ADP] ratio represent one possible mechanism because they would be expected to cause fluctuations in ATP-sensitive K(+) channel activity and hence oscillatory Ca(2+) influx. After imaging recombinant firefly luciferase, expressed via an adenoviral vector in single human or mouse islet beta-cells, we report here that cytosolic free ATP concentrations oscillate and that these oscillations are affected by glucose. In human beta-cells, oscillations were observed at both 3 and 15 mmol/l glucose, but the oscillations were of a longer wavelength at the higher glucose concentration (167 vs. 66 s). Mouse beta-cells displayed oscillations in both cytosolic free [Ca(2+)] and [ATP] only at elevated glucose concentrations, both with a period of 120 s. To explore the causal relationship between [Ca(2+)] and [ATP] oscillations, the regulation of each was further investigated in populations of MIN6 beta-cells. Incubation in Ca(2+)-free medium lowered cytosolic [Ca(2+)] but increased [ATP] in MIN6 cells at both 3 and 30 mmol/l glucose. Removal of external Ca(2+) increased [ATP], possibly by decreasing ATP consumption by endoplasmic reticulum Ca(2+)-ATPases. These results allow a model to be constructed of the beta-cell metabolic oscillator that drives nutrient-induced insulin secretion.

  17. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2015-11-07

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  18. Effect of end reflections on conversion efficiency of coaxial relativistic backward wave oscillator

    Science.gov (United States)

    Teng, Yan; Chen, Changhua; Sun, Jun; Shi, Yanchao; Ye, Hu; Wu, Ping; Li, Shuang; Xiong, Xiaolong

    2015-11-01

    This paper theoretically investigates the effect of end reflections on the operation of the coaxial relativistic backward wave oscillator (CRBWO). It is found that the considerable enhancement of the end reflection at one end increases the conversion efficiency, but excessively large end reflections at both ends weaken the asynchronous wave-beam interaction and thus reduce the conversion efficiency. Perfect reflection at the post end significantly improves the interaction between the electron beam and the asynchronous harmonic so that the conversion efficiency is notably increased. Based on the theoretical research, the diffraction-CRBWO with the generated microwave diffracted and output through the front end of the coaxial slow wave structure cavity is proposed. The post end is conductively closed to provide the perfect reflection. This promotes the amplitude and uniformity of the longitudinal electric field on the beam transmission line and improves the asynchronous wave-beam interaction. In numerical simulations under the diode voltage and current of 450 kV and 5.84 kA, microwave generation with the power of 1.45 GW and the conversion efficiency of 55% are obtained at the frequency of 7.45 GHz.

  19. Estrogen receptor beta-selective agonists stimulate calcium oscillations in human and mouse embryonic stem cell-derived neurons.

    Directory of Open Access Journals (Sweden)

    Lili Zhang

    Full Text Available Estrogens are used extensively to treat hot flashes in menopausal women. Some of the beneficial effects of estrogens in hormone therapy on the brain might be due to nongenomic effects in neurons such as the rapid stimulation of calcium oscillations. Most studies have examined the nongenomic effects of estrogen receptors (ER in primary neurons or brain slices from the rodent brain. However, these cells can not be maintained continuously in culture because neurons are post-mitotic. Neurons derived from embryonic stem cells could be a potential continuous, cell-based model to study nongenomic actions of estrogens in neurons if they are responsive to estrogens after differentiation. In this study ER-subtype specific estrogens were used to examine the role of ERalpha and ERbeta on calcium oscillations in neurons derived from human (hES and mouse embryonic stem cells. Unlike the undifferentiated hES cells the differentiated cells expressed neuronal markers, ERbeta, but not ERalpha. The non-selective ER agonist 17beta-estradiol (E(2 rapidly increased [Ca2+]i oscillations and synchronizations within a few minutes. No change in calcium oscillations was observed with the selective ERalpha agonist 4,4',4''-(4-Propyl-[1H]-pyrazole-1,3,5-triyltrisphenol (PPT. In contrast, the selective ERbeta agonists, 2,3-bis(4-Hydroxyphenyl-propionitrile (DPN, MF101, and 2-(3-fluoro-4-hydroxyphenyl-7-vinyl-1,3 benzoxazol-5-ol (ERB-041; WAY-202041 stimulated calcium oscillations similar to E(2. The ERbeta agonists also increased calcium oscillations and phosphorylated PKC, AKT and ERK1/2 in neurons derived from mouse ES cells, which was inhibited by nifedipine demonstrating that ERbeta activates L-type voltage gated calcium channels to regulate neuronal activity. Our results demonstrate that ERbeta signaling regulates nongenomic pathways in neurons derived from ES cells, and suggest that these cells might be useful to study the nongenomic mechanisms of estrogenic compounds.

  20. Tactile expectation modulates pre-stimulus beta-band oscillations in human sensorimotor cortex

    NARCIS (Netherlands)

    Ede, F. van; Jensen, O.; Maris, E.

    2010-01-01

    Neuronal oscillations are postulated to play a fundamental role in top-down processes of expectation. We used magnetoencephalography (MEG) to investigate whether expectation of a tactile event involves a pre-stimulus modulation of neuronal oscillations in human somatosensory cortex. In a bimodal att

  1. Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials.

    Science.gov (United States)

    Cebolla, A M; Cheron, G

    2015-12-01

    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms. Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response

  2. Alpha-band oscillations reflect altered multisensory processing of the McGurk illusion in schizophrenia

    Directory of Open Access Journals (Sweden)

    Yadira eRoa Romero

    2016-02-01

    Full Text Available The formation of coherent multisensory percepts requires integration of stimuli across the multiple senses. Patients with schizophrenia (ScZ often experience a loss of coherent perception and hence, they might also show dysfunctional multisensory processing. In this high-density electroencephalography study we investigated the neural signatures of the McGurk illusion, as a phenomenon of speech-specific multisensory processing. In the McGurk illusion lip movements are paired with incongruent auditory syllables, which can induce a fused percept. In ScZ patients and healthy controls we compared neural oscillations and event-related potentials (ERPs to congruent audiovisual speech stimuli and McGurk illusion trials, where a visual /ga/ and an auditory /pa/ was often perceived as /ka/. There were no significant group differences in illusion rates. However, we found larger short latency ERPs to McGurk illusion compared with congruent trials in controls, whereas they were reduced in ScZ patients, indicating an early audiovisual processing deficit. Moreover, we observed stronger suppression of medio-central alpha-band power (8-10 Hz, 550-700 ms in response to McGurk illusion compared with control trials in the control group. The reversed pattern was found in SCZ patients. Within groups, alpha-band suppression was negatively correlated with the McGurk illusion rate in ScZ patients, while the correlation tended to be positive in controls. The topography of alpha-band effects suggests an involvement of auditory and/or frontal structures. Our study suggests that early ERPs and later alpha-band oscillations reflect abnormal multisensory processing of the McGurk illusion in schizophrenia.

  3. Hypersynchrony despite pathologically reduced beta oscillations in patients with Parkinson's disease: a pharmaco-magnetoencephalography study.

    Science.gov (United States)

    Heinrichs-Graham, Elizabeth; Kurz, Max J; Becker, Katherine M; Santamaria, Pamela M; Gendelman, Howard E; Wilson, Tony W

    2014-10-01

    Parkinson's disease (PD) is a progressive debilitating neurodegenerative disorder clinically manifest by motor, posture and gait abnormalities. Human neurophysiological studies recording local field potentials within the subthalamic nucleus and scalp-based electroencephalography have shown pathological beta synchrony throughout the basal ganglia-thalamic-cortical motor network in PD. Notably, suppression of this pathological beta synchrony by dopamine replacement therapy or deep-brain stimulation has been associated with improved motor function. However, due to the invasive nature of these studies, it remains unknown whether this "pathological beta" is actually stronger than that observed in healthy demographically matched controls. We used magnetoencephalography to investigate neuronal synchrony and oscillatory amplitude in the beta range and lower frequencies during the resting state in patients with PD and a matched group of patients without neurological disease. Patients with PD were studied both in the practically defined drug "OFF" state, and after administration of dopamine replacements. We found that beta oscillatory amplitude was reduced bilaterally in the primary motor regions of unmedicated patients with PD compared with controls. Administration of dopaminergic medications significantly increased beta oscillatory activity, thus having a normalizing effect. Interestingly, we also found significantly stronger beta synchrony (i.e., hypersynchrony) between the primary motor regions in unmedicated patients with PD compared with controls, and that medication reduced this coupling which is in agreement with the intraoperative studies. These results are consistent with the known functionality of the basal ganglia-thalamic-cortical motor circuit and the likely consequences of beta hypersynchrony in the subthalamic nucleus of patients with PD.

  4. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    A. Gulberti

    2015-01-01

    Full Text Available Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD patients, rhythmic auditory stimulation (RAS induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  5. Beam patterns in an optical parametric oscillator set-up employing walk-off compensating beta barium borate crystals

    Science.gov (United States)

    Kaucikas, M.; Warren, M.; Michailovas, A.; Antanavicius, R.; van Thor, J. J.

    2013-02-01

    This paper describes the investigation of an optical parametric oscillator (OPO) set-up based on two beta barium borate (BBO) crystals, where the interplay between the crystal orientations, cut angles and air dispersion substantially influenced the OPO performance, and especially the angular spectrum of the output beam. Theory suggests that if two BBO crystals are used in this type of design, they should be of different cuts. This paper aims to provide an experimental manifestation of this fact. Furthermore, it has been shown that air dispersion produces similar effects and should be taken into account. An x-ray crystallographic indexing of the crystals was performed as an independent test of the above conclusions.

  6. Anharmonicity of internal atomic oscillation and effective antineutrino mass evaluation from gaseous molecular tritium \\beta -decay

    CERN Document Server

    Lokhov, Alexey V

    2016-01-01

    Data analysis of the next generation effective antineutrino mass measurement experiment KATRIN requires reliable knowledge of systematic corrections. In particular, the width of the daughter molecular ion excitation spectrum rovibrational band should be known with a better then 1% precision. Very precise ab initio quantum calculations exist, and we compare them with the well known tritium molecule parameters within the framework of a phenomenological model. The rovibrational band width with accuracy of a few percent is interpreted as a result of the zero-point atomic oscillation in the harmonic potential. The Morse interatomic potential is used to investigate the impact of anharmonic atomic oscillations. The calculated corrections cannot account for the difference between the ab initio quantum calculations and the phenomenological model.

  7. The Mass of the Planet-hosting Giant Star Beta Geminorum Determined from its p-mode Oscillation Spectrum

    CERN Document Server

    Hatzes, A P; Matthews, J; Kuschnig, R; Walker, G A H; Doellinger, M; Guenther, D B; Moffat, A F J; Rucinski, S M; Sasselov, D

    2012-01-01

    We use precise radial velocity measurements and photometric data to derive the frequency spacing of the p-mode oscillation spectrum of the planet-hosting star Beta Gem. This spacing along with the interferometric radius for this star is used to derive an accurate stellar mass. A long time series of over 60 hours of precise stellar radial velocity measurements of Beta Gem were taken with an iodine absorption cell and the echelle spectrograph mounted on the 2m Alfred Jensch Telescope. Complementary photometric data for this star were also taken with the MOST microsatellite spanning 3.6 d. A Fourier analysis of the radial velocity data reveals the presence of up to 17 significant pulsation modes in the frequency interval 10-250 micro-Hz. Most of these fall on a grid of equally-spaced frequencies having a separation of 7.14 +/- 0.12 micro-Hz. An analysis of 3.6 days of high precision photometry taken with the MOST space telescope shows the presence of up to 16 modes, six of which are consistent with modes found i...

  8. Influence of the fiber Bragg gratings with different reflective bandwidths in high power all-fiber laser oscillator

    Science.gov (United States)

    Wang, Jianming; Yan, Dapeng; Xiong, Songsong; Huang, Bao; Li, Cheng

    2017-01-01

    The effects of large-mode-area (LMA) fiber Bragg gratings (FBGs) with different reflective bandwidths on bi-directionally pumped ytterbium-doped single-mode all-fiber laser oscillator have been investigated experimentally. The forward laser output power and the backward signal leakage were measured and analyzed. It was found that the laser output power and efficiency depended on the bandwidth of the high-reflection (HR) FBG used in the laser cavity. The broader bandwidth gives higher laser efficiency, especially at high power level.

  9. Diversity of [beta]-globin mutations in Israeli ethnic groups reflects recent historic events

    Energy Technology Data Exchange (ETDEWEB)

    Filon, D.; Oron, V.; Krichevski, S.; Shaag, A.; Goldfarb, A.; Aker, M.; Rachmilewitz, E.A.; Rund, D.; Oppenheim, A. (Hebrew Univ. Hadassah-Medical School, Jerusalem (Israel)) (and others)

    1994-05-01

    The authors characterized nearly 500 [beta]-thalassemia genes from the Israeli population representing a variety of ethnic subgroups. They found 28 different mutations in the [beta]-globin gene, including three mutations ([beta][sup S], [beta][sup C], and [beta][sup O-Arab]) causing hemoglobinopathies. Marked genetic heterogeneity was observed in both the Arab (20 mutations) and Jewish (17 mutations) populations. On the other hand, two ethnic isolates - Druze and Samaritans - had a single mutation each. Fifteen of the [beta]-thalassemia alleles are Mediterranean in type, 5 originated in Kurdistan, 2 are of Indian origin, and 2 sporadic alleles came from Europe. Only one mutant allele-nonsense codon 37-appears to be indigenous to Israel. While human habitation in Israel dates back to early prehistory, the present-day spectrum of [beta]-globin mutations can be largely explained by migration events that occurred in the past millennium. 26 refs., 2 figs., 3 tabs.

  10. Colour oscillations in arterioarterial anastomoses reflect natural differences in donor and recipient oxygenation and hematocrit

    NARCIS (Netherlands)

    de Vries, H. R.; Aalders, M. C. G.; Faber, D. J.; van den Wijngaard, J. P. H. M.; Nikkels, P. G. J.; van Gemert, M. J. C.

    2006-01-01

    Our aim was to show that the colour difference between brighter and darker red, occasionally observed as an oscillating boundary in the recipient and donor parts of an arterioarterial anastomosis in severe twin-twin transfusion syndrome (TTTS), is a consequence of natural differences in blood oxygen

  11. Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound.

    Science.gov (United States)

    Gaetz, W; Macdonald, M; Cheyne, D; Snead, O C

    2010-06-01

    We measured visually-cued motor responses in two developmentally separate groups of children and compared these responses to a group of adults. We hypothesized that if post-movement beta rebound (PMBR) depends on developmentally sensitive processes, PMBR will be greatest in adults and progressively decrease in children performing a basic motor task as a function of age. Twenty children (10 young children 4-6 years; 10 adolescent children 11-13 years) and 10 adults all had MEG recorded during separate recordings of right and left index finger movements. Beta band (15-30 Hz) event-related desynchronization (ERD) of bi-lateral sensorimotor areas was observed to increase significantly from both contralateral and ipsilateral MI with age. Movement-related gamma synchrony (60-90 Hz) was also observed from contralateral MI for each age group. However, PMBR was significantly reduced in the 4-6 year group and, while more prominent, remained significantly diminished in the adolescent (11-13 year) age group as compared to adults. PMBR measures were weak or absent in the youngest children tested and appear maximally from bilateral MI in adults. Thus PMBR may reflect an age-dependent inhibitory process of the primary motor cortex which comes on-line with normal development. Previous studies have shown PMBR may be observed from MI following a variety of movement-related tasks in adult participants - however, the origin and purpose of the PMBR is unclear. The current study shows that the expected PMBR from MI observed from adults is increasingly diminished in adolescent and young children respectively. A reduction in PMBR from children may reflect reduced motor cortical inhibition. Relatively less motor inhibition may facilitate neuronal plasticity and promote motor learning in children.

  12. Neuronal discharges and gamma oscillations explicitly reflect visual consciousness in the lateral prefrontal cortex.

    Science.gov (United States)

    Panagiotaropoulos, Theofanis I; Deco, Gustavo; Kapoor, Vishal; Logothetis, Nikos K

    2012-06-07

    Neuronal discharges in the primate temporal lobe, but not in the striate and extrastriate cortex, reliably reflect stimulus awareness. However, it is not clear whether visual consciousness should be uniquely localized in the temporal association cortex. Here we used binocular flash suppression to investigate whether visual awareness is also explicitly reflected in feature-selective neural activity of the macaque lateral prefrontal cortex (LPFC), a cortical area reciprocally connected to the temporal lobe. We show that neuronal discharges in the majority of single units and recording sites in the LPFC follow the phenomenal perception of a preferred stimulus. Furthermore, visual awareness is reliably reflected in the power modulation of high-frequency (>50 Hz) local field potentials in sites where spiking activity is found to be perceptually modulated. Our results suggest that the activity of neuronal populations in at least two association cortical areas represents the content of conscious visual perception.

  13. Tomographic reflection modelling of quasi-periodic oscillations in the black hole binary H 1743-322

    Science.gov (United States)

    Ingram, Adam; van der Klis, Michiel; Middleton, Matthew; Altamirano, Diego; Uttley, Phil

    2017-01-01

    Accreting stellar mass black holes (BHs) routinely exhibit Type-C quasi-periodic oscillations (QPOs). These are often interpreted as Lense-Thirring precession of the inner accretion flow, a relativistic effect whereby the spin of the BH distorts the surrounding space-time, inducing nodal precession. The best evidence for the precession model is the recent discovery, using a long joint XMM-Newton and NuSTAR observation of H 1743-322, that the centroid energy of the iron florescence line changes systematically with QPO phase. This was interpreted as the inner flow illuminating different azimuths of the accretion disc as it precesses, giving rise to a blueshifted/redshifted iron line when the approaching/receding disc material is illuminated. Here, we develop a physical model for this interpretation, including a self-consistent reflection continuum, and fit this to the same H 1743-322 data. We use an analytic function to parametrize the asymmetric illumination pattern on the disc surface that would result from inner flow precession, and find that the data are well described if two bright patches rotate about the disc surface. This model is preferred to alternatives considering an oscillating disc ionization parameter, disc inner radius and radial emissivity profile. We find that the reflection fraction varies with QPO phase (3.5σ), adding to the now formidable body of evidence that Type-C QPOs are a geometric effect. This is the first example of tomographic QPO modelling, initiating a powerful new technique that utilizes QPOs in order to map the dynamics of accreting material close to the BH.

  14. Dynamic reflectance of tin shocked from its beta to BCT phase

    Science.gov (United States)

    Stevens, Gerald D.; Lone, Brandon M. La; Turley, W. Dale; Veeser, Lynn R.

    2017-01-01

    Shock-induced phase transitions have historically been inferred by features in loading/unloading velocity wave profiles, which arise due to volume or sound speed differences between phases. In 2010, we used a flash-lamp-illuminated multiband reflectometer to demonstrate that iron, tin, cerium, and gallium have measureable reflectance changes at phase boundaries. We have improved upon our prior technique, utilizing an integrating sphere with an internal xenon flash lamp to illuminate a shocked metal beneath a LiF window. The new reflectance system is insensitive to motion, tilt, or curvature and measures the absolute reflectance within five bands centered at 500, 700, 850, 1064, 1300, and 1550 nm. We have made dynamic reflectance measurements of tin samples shocked to pressures above and below the β-BCT phase transition using a light gas gun. Below the transition, the visible reflectance decreases with pressure. At and above the transition, the visible reflectance increases to values higher than the ambient values. Reflectance can therefore be used to locate the β-BCT phase transition boundary for tin, independent of the velocity wave profile. Using the reflectance data, we also present experimental estimates of the phase fraction as a function of shock stress.

  15. Phenomenology of neutrino oscillations

    Indian Academy of Sciences (India)

    G Rajasekaran

    2000-07-01

    The phenomenology of solar, atmospheric, supernova and laboratory neutrino oscillations is described. Analytical formulae for matter effects are reviewed. The results from oscillations are confronted with neutrinoless double beta decay.

  16. Alpha and beta EEG power reflects L-dopa acute administration in parkinsonian patients

    Directory of Open Access Journals (Sweden)

    Jean-Marc eMelgari

    2014-11-01

    Full Text Available Aim. To evaluate the effect of an acute L-dopa administration on eye-closed resting state electroencephalographic (EEG activity of cognitively preserved Parkinsonian patients. Methods. We examined 24 right-handed patients diagnosed as uncomplicated probable Parkinson’s disease (PD. Each patient underwent UPDRS-part-III evaluation before and 60 minutes after an oral load of L-dopa-methyl-ester/carbidopa 250/25 mg. Resting condition eyes-closed EEG data were recorded both pre- and post L-dopa load. Absolute EEG power values were calculated at each scalp derivation for Delta, Theta, Alpha and Beta frequency bands. UPDRS scores (both global and subscale scores and EEG data (power values of different frequency bands for each scalp derivation were submitted to a statistical analysis to compare Pre e Post L-Dopa conditions. Finally, a correlation analysis was carried out between EEG spectral content and UPDRS scores. Results. Considering EEG power spectral analysis, no statistically significant differences arose on Delta and Theta bands after L-dopa intake. Conversely, Alpha and Beta rhythms significantly increased on centro-parietal scalp derivations, as a function of L-dopa administration. Correlation analysis indicated a significant negative correlation between Beta power increase on centro-parietal areas and UPDRS subscores (Rigidity of arms and Bradykinesia. A minor significant negative correlation was also found between Alpha band increase and resting tremor. Conclusions. Assuming that a significant change in EEG power spectrum after L-dopa intake may be related to dopaminergic mechanisms, our findings are consistent with the hypothesis that dopaminergic defective networks are implicated in cortical oscillatory abnormalities at rest in non-demented PD patients.

  17. Advantages of unity with SU(4)-color: Reflections through neutrino oscillations, baryogenesis and proton decay

    Science.gov (United States)

    Pati, Jogesh C.

    2017-03-01

     — have in fact turned out to be an asset. They are needed to (a) understand naturally the tiny mass-scales observed in neutrino oscillations by combining the seesaw mechanism together with the unification ideas based on the symmetry SU(4)-color, and also (b) to implement the attractive mechanism of baryogenesis via leptogenesis. The quantitative success of the attempts as regards understanding both (a) and (b) are discussed in Sec. 6. These provide a clear support simultaneously for the following three features: (i) the seesaw mechanism, (ii) the SU(4)-color route to higher unification based on a symmetry like SO(10) or a string-derived G(2, 2, 4) symmetry in 4D, as opposed to alternative symmetries like SU(5) or even [SU(3)]3, and (iii) the (B-L)-breaking scale being close to the unification scale ˜ 2 × 1016 GeV. The observed dramatic meeting of the three gauge couplings in the context of low-energy supersymmetry, at a scale MU ˜ 2 × 1016 GeV, providing strong evidence in favor of the ideas of both grand unification and supersymmetry, is discussed in Sec. 3. The implications of such a meeting in the context of string-unification are briefly mentioned. Weighing the possibility of a stringy origin of gauge coupling unification versus the familiar problem of doublet-triplet splitting in supersymmetric SO(10) (or SU(5)), I discuss the common advantages as well as relative merits and demerits of an effective SO(10) versus a string-derived G(2, 2, 4) symmetry in 4D. In Sec. 7, I discuss the hallmark prediction of grand unification, viz. proton decay, which is a generic feature of most models of grand unification. I present results of works carried out in collaboration with Babu and Wilczek and most recently with Babu and Tavartkiladze on expectations for decay modes and lifetimes for proton decay, including upper limits for such lifetimes, in the context of a well-motivated class of supersymmetric SO(10)-models. In view of such expectations, I stress the pressing

  18. Spectral parameters modulation and source localization of blink-related alpha and low-beta oscillations differentiate minimally conscious state from vegetative state/unresponsive wakefulness syndrome.

    Directory of Open Access Journals (Sweden)

    Luca Bonfiglio

    Full Text Available Recently, the cortical source of blink-related delta oscillations (delta BROs in resting healthy subjects has been localized in the posterior cingulate cortex/precuneus (PCC/PCu, one of the main core-hubs of the default-mode network. This has been interpreted as the electrophysiological signature of the automatic monitoring of the surrounding environment while subjects are immersed in self-reflecting mental activities. Although delta BROs were directly correlated to the degree of consciousness impairment in patients with disorders of consciousness, they failed to differentiate vegetative state/unresponsive wakefulness syndrome (VS/UWS from minimally conscious state (MCS. In the present study, we have extended the analysis of BROs to frequency bands other than delta in the attempt to find a biological marker that could support the differential diagnosis between VS/UWS and MCS. Four patients with VS/UWS, 5 patients with MCS, and 12 healthy matched controls (CTRL underwent standard 19-channels EEG recordings during resting conditions. Three-second-lasting EEG epochs centred on each blink instance were submitted to time-frequency analyses in order to extract the normalized Blink-Related Synchronization/Desynchronization (nBRS/BRD of three bands of interest (low-alpha, high-alpha and low-beta in the time-window of 50-550 ms after the blink-peak and to estimate the corresponding cortical sources of electrical activity. VS/UWS nBRS/BRD levels of all three bands were lower than those related to both CTRL and MCS, thus enabling the differential diagnosis between MCS and VS/UWS. Furthermore, MCS showed an intermediate signal intensity on PCC/PCu between CTRL and VS/UWS and a higher signal intensity on the left temporo-parieto-occipital junction and inferior occipito-temporal regions when compared to VS/UWS. This peculiar pattern of activation leads us to hypothesize that resting MCS patients have a bottom-up driven activation of the task positive network

  19. Spectral Parameters Modulation and Source Localization of Blink-Related Alpha and Low-Beta Oscillations Differentiate Minimally Conscious State from Vegetative State/Unresponsive Wakefulness Syndrome

    Science.gov (United States)

    Bonfiglio, Luca; Piarulli, Andrea; Olcese, Umberto; Andre, Paolo; Arrighi, Pieranna; Frisoli, Antonio; Rossi, Bruno; Bergamasco, Massimo; Carboncini, Maria Chiara

    2014-01-01

    Recently, the cortical source of blink-related delta oscillations (delta BROs) in resting healthy subjects has been localized in the posterior cingulate cortex/precuneus (PCC/PCu), one of the main core-hubs of the default-mode network. This has been interpreted as the electrophysiological signature of the automatic monitoring of the surrounding environment while subjects are immersed in self-reflecting mental activities. Although delta BROs were directly correlated to the degree of consciousness impairment in patients with disorders of consciousness, they failed to differentiate vegetative state/unresponsive wakefulness syndrome (VS/UWS) from minimally conscious state (MCS). In the present study, we have extended the analysis of BROs to frequency bands other than delta in the attempt to find a biological marker that could support the differential diagnosis between VS/UWS and MCS. Four patients with VS/UWS, 5 patients with MCS, and 12 healthy matched controls (CTRL) underwent standard 19-channels EEG recordings during resting conditions. Three-second-lasting EEG epochs centred on each blink instance were submitted to time-frequency analyses in order to extract the normalized Blink-Related Synchronization/Desynchronization (nBRS/BRD) of three bands of interest (low-alpha, high-alpha and low-beta) in the time-window of 50–550 ms after the blink-peak and to estimate the corresponding cortical sources of electrical activity. VS/UWS nBRS/BRD levels of all three bands were lower than those related to both CTRL and MCS, thus enabling the differential diagnosis between MCS and VS/UWS. Furthermore, MCS showed an intermediate signal intensity on PCC/PCu between CTRL and VS/UWS and a higher signal intensity on the left temporo-parieto-occipital junction and inferior occipito-temporal regions when compared to VS/UWS. This peculiar pattern of activation leads us to hypothesize that resting MCS patients have a bottom-up driven activation of the task positive network and thus

  20. Tomographic reflection modelling of quasi-periodic oscillations in the black hole binary H 1743-322

    CERN Document Server

    Ingram, Adam; Middleton, Matthew; Altamirano, Diego; Uttley, Phil

    2016-01-01

    Accreting stellar mass black holes (BHs) routinely exhibit Type-C quasi-periodic oscillations (QPOs). These are often interpreted as Lense-Thirring precession of the inner accretion flow, a relativistic effect whereby the spin of the BH distorts the surrounding space-time, inducing nodal precession. The best evidence for the precession model is the recent discovery, using a long joint XMM-Newton and NuSTAR observation of H 1743-322, that the centroid energy of the iron fluorescence line changes systematically with QPO phase. This was interpreted as the inner flow illuminating different azimuths of the accretion disc as it precesses, giving rise to a blue/red shifted iron line when the approaching/receding disc material is illuminated. Here, we develop a physical model for this interpretation, including a self-consistent reflection continuum, and fit this to the same H 1743-322 data. We use an analytic function to parameterise the asymmetric illumination pattern on the disc surface that would result from inner...

  1. Fully reflective external-cavity setup for quantum-cascade lasers as a local oscillator in mid-infrared wavelength heterodyne spectroscopy.

    Science.gov (United States)

    Stupar, Dusan; Krieg, Jürgen; Krötz, Peter; Sonnabend, Guido; Sornig, Manuela; Giesen, Thomas F; Schieder, Rudolf

    2008-06-01

    To our knowledge we present the first experiments with a fully reflective external-cavity quantum-cascade laser system at mid-infrared wavelengths for use as a local oscillator in a heterodyne receiver. The performance of the presented setup was investigated using absorption spectroscopy as well as heterodyne techniques. Tunability over approximately 30 cm(-1) at 1130 cm(-1) was demonstrated using a grating spectrometer. A continuous tuning range of 0.28 cm(-1) was verified by observing the spectra of an internally coupled confocal Fabry-Pérot interferometer and the absorption lines of gas phase SO(2). In a second step the output from the system was used as a local oscillator signal for a heterodyne setup. We show that spectral stability and side mode suppression are excellent and that a compact external-cavity quantum-cascade laser system is well suited to be used as a local oscillator in infrared heterodyne spectrometers.

  2. Enhancement of the low-frequency response of a reflective semiconductor optical amplifier slow light-based microwave phase shifter by forced coherent population oscillations

    Science.gov (United States)

    Meehan, Aidan; Connelly, Michael J.

    2014-05-01

    The enhancement of the low frequency gain response of a microwave phase shifter based on slow light in a bulk reflective semiconductor optical amplifier (RSOA), by using forced coherent population oscillations (FCPO), is experimentally demonstrated. FCPO is achieved by simultaneously modulating the input optical power and bias current. The beat signal gain improvement ranges from 45 to 0 dB over a frequency range of 0.5 to 2.5 GHz, thereby improving the noise performance of the phase shifter. Tunable phase shifts of up to 40º are possible over this frequency range.

  3. Goos-Hänchen Shift and Even-Odd Peak Oscillations in Edge-Reflections of Surface Polaritons in Atomically Thin Crystals.

    Science.gov (United States)

    Kang, Ji-Hun; Wang, Sheng; Shi, Zhiwen; Zhao, Wenyu; Yablonovitch, Eli; Wang, Feng

    2017-02-08

    Two-dimensional surface polaritons (2DSPs), such as graphene plasmons, exhibit various unusual properties, including electrical tunability and strong spatial confinement with high Q-factor, which can enable tunable photonic devices for deep subwavelength light manipulations. Reflection of plasmons at the graphene's edge plays a critical role in the manipulation of 2DSP and enables their direct visualization in near-field infrared microscopy. However, a quantitative understanding of the edge-reflections, including reflection phases and diffraction effects, has remained elusive. Here, we show theoretically and experimentally that edge-reflection of 2DSP exhibits unusual behaviors due to the presence of the evanescent waves, including an anomalous Goos-Hänchen phase shift as in total internal reflections and an unexpected even-odd peak amplitude oscillation from the wave diffraction at the edge. Our theory is not only valid for plasmons in graphene but also for other 2D polaritons, such as phonon polaritons in ultrathin boron nitride flakes and exciton polariton in two-dimensional semiconductors.

  4. Si-prism-array coupled terahertz-wave parametric oscillator with pump light totally reflected at the terahertz-wave exit surface.

    Science.gov (United States)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2016-09-01

    A Si-prism-array coupled terahertz (THz)-wave parametric oscillator with the pump totally reflected at the THz-wave exit surface (PR-Si-TPO) is demonstrated by manufacturing an 800 nm air gap between the crystal and the Si-prism array. Influence on the total reflection of the pump from the Si prisms is eliminated and efficient coupling of the THz wave is ensured by using this air gap. When the THz-wave frequency varies from 1.8 to 2.3 THz, compared with a Si-prism-array coupled TPO (Si-TPO) with the pump transmitting through the crystal directly, the THz-wave output energy is enhanced by 20-50 times, and the oscillating threshold is reduced by 10%-35%. Furthermore, the high end of the THz-wave frequency tuning range of the PR-Si-TPO is expanded to 3.66 THz compared with 2.5 THz for the Si-TPO.

  5. Absence of MxA induction by interferon beta in patients with MS reflects complete loss of bioactivity

    DEFF Research Database (Denmark)

    Hesse, D.; Sellebjerg, F.; Sorensen, P.S.

    2009-01-01

    BACKGROUND: In patients with multiple sclerosis (MS), neutralizing antibodies (NAbs) appearing during treatment with interferon (IFN) beta reduce or in high concentrations abolish bioactivity and therapeutic efficacy. In vivo MxA induction by IFNbeta is used as a marker of biologic response...... to IFNbeta. It has been argued that despite absence of MxA induction measured by PCR, some bioactivity might be preserved. In a cohort study, we measured gene expression by gene chip analysis in NAb-negative and NAb-positive patients to test that hypothesis. METHODS: The effect of IFNbeta was studied....... The corresponding number of IFNbeta-regulated genes in NAb-positive patients was zero. CONCLUSION: In neutralizing antibody (NAb)-positive patients without an MxA response, we were not able to detect differential expression of any of the 1077 interferon (IFN) beta-regulated genes identified in NAb-negative patients...

  6. Reflection of global late glacial and Holocene paleoclimate oscillations in the palynological record from bottom sediments of Tavatui Lake (Middle Urals)

    Science.gov (United States)

    Maslennikova, A. V.; Udachin, V. N.; Anfilogov, V. N.; Deryagin, V. V.

    2016-06-01

    The palynological analysis of the reliably dated core section of bottom sediments from Tavatui Lake revealed consistency between the chronology and succession of Late Pleistocene and Early Pliocene events (GI-a/b, CS-1, GH-11.2) in the Middle Urals and the North Atlantic region. It is established that the Holocene thermal maximum (5.3-8.0 cal. ka ago) in the Middle Urals was characterized by high temperatures and humidity. The initial stage of the Subboreal cooling was reffered to the interval of 4.5-5.3 cal. ka ago. The data obtained provided grounds for the conclusion that the palynological record in the Tavatui Lake section reflects in detail global and regional climate oscillations, which allows it to be used as a Holocene and late glacial reference section, as well as for predicting the behavior of the natural system of the Middle Urals in response to future climate change.

  7. Acute intracerebral treatment with amyloid-beta (1–42) alters the profile of neuronal oscillations that accompany LTP induction and results in impaired LTP in freely behaving rats

    Science.gov (United States)

    Kalweit, Alexander Nikolai; Yang, Honghong; Colitti-Klausnitzer, Jens; Fülöp, Livia; Bozsó, Zsolt; Penke, Botond; Manahan-Vaughan, Denise

    2015-01-01

    Accumulation of amyloid plaques comprises one of the major hallmarks of Alzheimer’s disease (AD). In rodents, acute treatment with amyloid-beta (Aβ; 1–42) elicits immediate debilitating effects on hippocampal long-term potentiation (LTP). Whereas LTP contributes to synaptic information storage, information is transferred across neurons by means of neuronal oscillations. Furthermore, changes in theta-gamma oscillations, that appear during high-frequency stimulation (HFS) to induce LTP, predict whether successful LTP will occur. Here, we explored if intra-cerebral treatment with Aβ(1–42), that prevents LTP, also results in alterations of hippocampal oscillations that occur during HFS of the perforant path-dentate gyrus synapse in 6-month-old behaving rats. HFS resulted in LTP that lasted for over 24 h. In Aβ-treated animals, LTP was significantly prevented. During HFS, spectral power for oscillations below 100 Hz (δ, θ, α, β and γ) was significantly higher in Aβ-treated animals compared to controls. In addition, the trough-to-peak amplitudes of theta and gamma cycles were higher during HFS in Aβ-treated animals. We also observed a lower amount of envelope-to-signal correlations during HFS in Aβ-treated animals. Overall, the characteristic profile of theta-gamma oscillations that accompany successful LTP induction was disrupted. These data indicate that alterations in network oscillations accompany Aβ-effects on hippocampal LTP. This may comprise an underlying mechanism through which disturbances in synaptic information storage and hippocampus-dependent memory occurs in AD. PMID:25999827

  8. GENIUS project, neutrino oscillations and Cosmology neutrinos reveal their nature?

    CERN Document Server

    Czakon, M; Zralek, M; Gluza, J

    2000-01-01

    The neutrinoless double beta decay as well as any other laboratory experiment has not been able to answer the question of the neutrino's nature. Hints on the answer are available when neutrino oscillations and $(\\beta\\beta)_{0 \

  9. Trial-by-trial variations in subjective attentional state are reflected in ongoing prestimulus EEG alpha oscillations

    Directory of Open Access Journals (Sweden)

    James Stuart Peter Macdonald

    2011-05-01

    Full Text Available Parieto-occipital EEG alpha power and subjective reports of attentional state are both associated with visual attention and awareness, but little is currently known about the relationship between these two measures. Here, we bring together these two literatures to explore the relationship between alpha activity and participants’ introspective judgements of attentional state as each varied from trial to trial during performance of a visual detection task. We collected participants’ subjective ratings of perceptual decision confidence and attentional state on continuous scales on each trial of a rapid serial visual presentation (RSVP detection task while recording EEG. We found that confidence and attentional state ratings were largely uncorrelated with each other, but both were strongly associated with task performance and post-stimulus decision-related EEG activity. Crucially, attentional state ratings were also negatively associated with prestimulus EEG alpha power. Attesting to the robustness of this association, we were able to classify attentional state ratings via prestimulus alpha power on a single-trial basis. Moreover, when we repeated these analyses after smoothing the time series of attentional state ratings and alpha power with increasingly large sliding windows, both the correlations and classification performance improved considerably, with the peaks occurring at a sliding window size of approximately seven minutes worth of trials. Our results therefore suggest that slow fluctuations in attentional state in the order of minutes are reflected in spontaneous alpha power. Since these subjective attentional state ratings were associated with objective measures of both behaviour and neural activity, we suggest that they provide a simple and effective estimate of task engagement that could prove useful in operational settings that require human operators to maintain a sustained focus of visual attention.

  10. Phosphorylated tau/amyloid beta 1-42 ratio in ventricular cerebrospinal fluid reflects outcome in idiopathic normal pressure hydrocephalus

    Directory of Open Access Journals (Sweden)

    Patel Sunil

    2012-03-01

    Full Text Available Abstract Background Idiopathic normal pressure hydrocephalus (iNPH is a potentially reversible cause of dementia and gait disturbance that is typically treated by operative placement of a ventriculoperitoneal shunt. The outcome from shunting is variable, and some evidence suggests that the presence of comorbid Alzheimer's disease (AD may impact shunt outcome. Evidence also suggests that AD biomarkers in cerebrospinal fluid (CSF may predict the presence of AD. The aim of this study was to investigate the relationship between the phosphorylated tau/amyloid beta 1-42 (ptau/Aβ1-42 ratio in ventricular CSF and shunt outcome in patients with iNPH. Methods We conducted a prospective trial with a cohort of 39 patients with suspected iNPH. Patients were clinically and psychometrically assessed prior to and approximately 4 months after ventriculoperitoneal shunting. Lumbar and ventricular CSF obtained intraoperatively, and tissue from intraoperative cortical biopsies were analyzed for AD biomarkers. Outcome measures included performance on clinical symptom scales, supplementary gait measures, and standard psychometric tests. We investigated relationships between the ptau/Aβ1-42 ratio in ventricular CSF and cortical AD pathology, initial clinical features, shunt outcome, and lumbar CSF ptau/Aβ1-42 ratios in the patients in our cohort. Results We found that high ptau/Aβ1-42 ratios in ventricular CSF correlated with the presence of cortical AD pathology. At baseline, iNPH patients with ratio values most suggestive of AD presented with better gait performance but poorer cognitive performance. Patients with high ptau/Aβ1-42 ratios also showed a less robust response to shunting on both gait and cognitive measures. Finally, in a subset of 18 patients who also underwent lumbar puncture, ventricular CSF ratios were significantly correlated with lumbar CSF ratios. Conclusions Levels of AD biomarkers in CSF correlate with the presence of cortical AD pathology

  11. Olfactory system oscillations across phyla.

    Science.gov (United States)

    Kay, Leslie M

    2015-04-01

    Neural oscillations are ubiquitous in olfactory systems of mammals, insects and molluscs. Neurophysiological and computational investigations point to common mechanisms for gamma or odor associated oscillations across phyla (40-100Hz in mammals, 20-30Hz in insects, 0.5-1.5Hz in molluscs), engaging the reciprocal dendrodendritic synapse between excitatory principle neurons and inhibitory interneurons in the olfactory bulb (OB), antennal lobe (AL), or procerebrum (PrC). Recent studies suggest important mechanisms that may modulate gamma oscillations, including neuromodulators and centrifugal input to the OB and AL. Beta (20Hz) and theta (2-12Hz) oscillations coordinate activity within and across brain regions. Olfactory beta oscillations are associated with odor learning and depend on centrifugal OB input, while theta oscillations are strongly associated with respiration.

  12. Neural rhythmic symphony of human walking observation: Upside-down and Uncoordinated condition on cortical theta, alpha, beta and gamma oscillations.

    Directory of Open Access Journals (Sweden)

    David eZarka

    2014-09-01

    Full Text Available Biological motion observation has been recognized to produce dynamic change in sensorimotor activation according to the observed kinematics. Physical plausibility of the spatial-kinematic relationship of human movement may play a major role in the top-down processing of human motion recognition. Here, we investigated the time course of scalp activation during observation of human gait in order to extract and use it on future integrated brain-computer interface using virtual reality (VR. We analyzed event related potentials (ERP, the event related spectral perturbation (ERSP and the inter-trial coherence (ITC from high-density EEG recording during video display onset (-200 to 600 ms and the steady state visual evoked potentials (SSVEP inside the video of human walking 3D-animation in three conditions: Normal; Upside-down (inverted images; and Uncoordinated (pseudo-randomly mixed images. We found that early visual evoked response P120 was decreased in Upside-down condition. The N170 and P300b amplitudes were decreased in Uncoordinated condition. In Upside-down and Uncoordinated conditions, we found decreased alpha power and theta phase-locking. As regards gamma oscillation, power was increased during the Upside-down animation and decreased during the Uncoordinated animation. An SSVEP-like response oscillating at about 10 Hz was also described showing that the oscillating pattern is enhanced 300 ms after the heel strike event only in the Normal but not in the Upside-down condition. Our results are consistent with most of previous point-light display studies, further supporting possible use of virtual reality for neurofeedback applications.

  13. UPTAKE OF RADIOLIGANDS BY RAT-HEART AND LUNG INVIVO - CGP-12177 DOES AND CGP-26505 DOES NOT REFLECT BINDING TO BETA-ADRENOCEPTORS

    NARCIS (Netherlands)

    van Waarde, A; Meeder, JG; BLANKSMA, PK; BRODDE, OE; VISSER, GM; ELSINGA, PH; PAANS, AMJ; VAALBURG, W; LIE, KI

    1992-01-01

    The biodistribution of (-)-4-(3-t-butylamino-2-hydroxypropoxy)-[5,7-H-3-benzimidazol-2-one (CGP12177, a non-selective beta-adrenoceptor antagonist) and 1-[2-(3-carbamoyl-4-hydroxy)-(5-H-3-phenoxy)]-2-propanol methanesulfonate, (CGP26505, a beta1-adrenoceptor antagonist) was studied in rats pretreate

  14. Brain Oscillations, Hypnosis, and Hypnotizability.

    Science.gov (United States)

    Jensen, Mark P; Adachi, Tomonori; Hakimian, Shahin

    2015-01-01

    This article summarizes the state-of-science knowledge regarding the associations between hypnosis and brain oscillations. Brain oscillations represent the combined electrical activity of neuronal assemblies, usually measured as specific frequencies representing slower (delta, theta, alpha) and faster (beta, gamma) oscillations. Hypnosis has been most closely linked to power in the theta band and changes in gamma activity. These oscillations are thought to play a critical role in both the recording and recall of declarative memory and emotional limbic circuits. The authors propose that this role may be the mechanistic link between theta (and perhaps gamma) oscillations and hypnosis, specifically, that the increases in theta oscillations and changes in gamma activity observed with hypnosis may underlie some hypnotic responses. If these hypotheses are supported, they have important implications for both understanding the effects of hypnosis and for enhancing response to hypnotic treatments.

  15. Generalized $\\mu-\\tau$ reflection symmetry and leptonic CP violation

    CERN Document Server

    Chen, Peng; Gonzalez-Canales, Felix; Valle, J W F

    2016-01-01

    We propose a generalized $\\mu-\\tau$ reflection symmetry to constrain the lepton flavor mixing parameters. We obtain a new correlation between the atmospheric mixing angle $\\theta_{23}$ and the "Dirac" CP violation phase $\\delta_{\\rm CP}$. Only in a specific limit our proposed CP transformation reduces to standard $\\mu-\\tau$ reflection, for which $\\theta_{23}$ and $\\delta_{CP}$ are both maximal. The "Majorana" phases are predicted to lie at their CP-conserving values with important implications for the neutrinoless double beta decay rates. We also study the phenomenological implications of our scheme for present and future neutrino oscillation experiments including T2K, NO$\

  16. Beta- and gamma-range human lower limb corticomuscular coherence

    Directory of Open Access Journals (Sweden)

    Joseph T Gwin

    2012-09-01

    Full Text Available Coherence between electroencephalography (EEG recorded on the scalp above the motor cortex and electromyography (EMG recorded on the skin of the limbs is thought to reflect corticospinal coupling between motor cortex and muscle motor units. Beta-range (13-30 Hz corticomuscular coherence has been extensively documented during static force output while gamma-range (31-45 Hz coherence has been linked to dynamic force output. However, the explanation for this beta-to-gamma coherence shift remains unclear. We recorded 264-channel EEG and 8-channel lower limb electromyography (EMG while 8 healthy subjects performed isometric and isotonic, knee and ankle exercises. Adaptive mixture independent component analysis (AMICA parsed EEG into models of underlying source signals. We computed magnitude squared coherence between electrocortical source signals and EMG. Significant coherence between contralateral motor cortex electrocortical signals and lower limb EMG was observed in the beta- and gamma-range for all exercise types. Gamma-range coherence was significantly greater for isotonic exercises than for isometric exercises. We conclude that active muscle movement modulates the speed of corticospinal oscillations. Specifically, isotonic contractions shift corticospinal oscillations towards the gamma-range while isometric contractions favor beta-range oscillations. Prior research has suggested that tasks requiring increased integration of visual and somatosensory information may shift corticomuscular coherence to the gamma-range. The isometric and isotonic tasks studied here likely required similar amounts of visual and somatosensory integration. This suggests that muscle dynamics, including the amount and type of proprioception, may play a role in the beta-to-gamma shift.

  17. Oscillations in motor unit discharge are reflected in the low-frequency component of rectified surface EMG and the rate of change in force.

    Science.gov (United States)

    Yoshitake, Yasuhide; Shinohara, Minoru

    2013-11-01

    Common drive to a motor unit (MU) pool manifests as low-frequency oscillations in MU discharge rate, producing fluctuations in muscle force. The aim of the study was to examine the temporal correlation between instantaneous MU discharge rate and rectified EMG in low frequencies. Additionally, we attempted to examine whether there is a temporal correlation between the low-frequency oscillations in MU discharge rate and the first derivative of force (dF/dt). Healthy young subjects produced steady submaximal force with their right finger as a single task or while maintaining a pinch-grip force with the left hand as a dual task. Surface EMG and fine-wire MU potentials were recorded from the first dorsal interosseous muscle in the right hand. Surface EMG was band-pass filtered (5-1,000 Hz) and full-wave rectified. Rectified surface EMG and the instantaneous discharge rate of MUs were smoothed by a Hann-window of 400 ms duration (equivalent to 2 Hz low-pass filtering). In each of the identified MUs, the smoothed MU discharge rate was positively correlated with the rectified-and-smoothed EMG as confirmed by the distinct peak in cross-correlation function with greater values in the dual task compared with the single task. Additionally, the smoothed MU discharge rate was temporally correlated with dF/dt more than with force and with rectified-and-smoothed EMG. The results indicated that the low-frequency component of rectified surface EMG and the first derivative of force provide temporal information on the low-frequency oscillations in the MU discharge rate.

  18. Arsenic-induced intensity oscillations in reflection high-energy electron diffraction measurements. [during MBE of GaAs and InAs

    Science.gov (United States)

    Lewis, B. F.; Fernandez, R.; Grunthaner, F. J.; Madhukar, A.

    1986-01-01

    A technique of arsenic-induced RHEED intensity oscillations has been used to accurately measure arsenic incorporation rates as a function of substrate temperature during the homoepitaxial growths of both GaAs and InAs by molecular beam epitaxy (MBE). Measurements were made at growth temperatures from 350 to 650 C and at arsenic fluxes of 0.1 to 10.0 monolayer/s. The method measures only the arsenic actually incorporated into the growing film and does not include the arsenic lost in splitting the arsenic tetramers or lost by evaporation from the sample.

  19. Surgical outcome of deep brain stimulation of subthalamic nucleus with beta oscillation in PD patients%丘脑底核电刺激治疗以beta振荡为特征的帕金森病的疗效分析

    Institute of Scientific and Technical Information of China (English)

    张弨; 王垚; 王慧敏; 张凯; 张建国; 孟凡刚

    2013-01-01

    Objective the aim of this study is to observe therapeutic effect of subthalamic nucleus deep brain stimulation (STN-DBS)for parkinsonian patients with beta neural oscillation pattern in subthalamic nucleus.Methods Clinical data of 6 parkinsonian patients underwent STN-DBS were analyzed retrospectively.The UPDRS-Ⅲ and levodopa equivalent doses (LEDD) were recorded preoperatively and 1,6,12 months postoperatively.Results As compared with base line,the patients' UPDRS-

  20. Beta Thalassemia

    Science.gov (United States)

    Beta thalassemia is found in people of Mediterranean, Middle Eastern, African, South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin genes found on chromosomes ...

  1. Neurodynamic oscillators

    Science.gov (United States)

    Espinosa, Ismael; Gonzalez, Hortensia; Quiza, Jorge; Gonazalez, J. Jesus; Arroyo, Ruben; Lara, Ritaluz

    1995-01-01

    Oscillation of electrical activity has been found in many nervous systems, from invertebrates to vertebrates including man. There exists experimental evidence of very simple circuits with the capability of oscillation. Neurons with intrinsic oscillation have been found and also neural circuits where oscillation is a property of the network. These two types of oscillations coexist in many instances. It is nowadays hypothesized that behind synchronization and oscillation there is a system of coupled oscillators responsible for activities that range from locomotion and feature binding in vision to control of sleep and circadian rhythms. The huge knowledge that has been acquired on oscillators from the times of Lord Rayleigh has made the simulation of neural oscillators a very active endeavor. This has been enhanced with more recent physiological findings about small neural circuits by means of intracellular and extracellular recordings as well as imaging methods. The future of this interdisciplinary field looks very promising; some researchers are going into quantum mechanics with the idea of trying to provide a quantum description of the brain. In this work we describe some simulations using neuron models by means of which we form simple neural networks that have the capability of oscillation. We analyze the oscillatory activity with root locus method, cross-correlation histograms, and phase planes. In the more complicated neural network models there is the possibility of chaotic oscillatory activity and we study that by means of Lyapunov exponents. The companion paper shows an example of that kind.

  2. Bidirectional Radio-Over-Fiber System With Phase-Modulation Downlink and RF Oscillator-Free Uplink Using a Reflective SOA

    DEFF Research Database (Denmark)

    Yu, Xianbin; Gibbon, Timothy Braidwood; Tafur Monroy, Idelfonso

    2008-01-01

    We propose and demonstrate a bidirectional radio-over-fiber (RoF) system based on a reflective semiconductor optical amplifier (RSOA). In this system, phase-modulated 5.25-GHz radio frequency (RF) carrying 850 Mb/s is used for the downstream signal. Optical envelope detection of 10-GHz RF carryin...

  3. Meixner oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyev, N.M. [Instituto de Matematicas. Universidad Nacional Autonoma de Mexico. Cuernavaca, Morelos (Mexico); Jafarov, E.I.; Nagiyev, S.M. [Institute of Physics, Azerbaijan Academy of Sciences. Baku, Azerbaijan (Azerbaijan); Wolf, K.B. [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas. Universidad Nacional Autonoma de Mexico. Cuernavaca, Morelos (Mexico)

    1998-10-01

    Meixner oscillators have a ground state and an energy spectrum that is equally spaced; they are a two-parameter family of models that satisfy a Hamiltonian equation with a difference operator. Meixner oscillators include as limits and particular cases the Charlier, Kravchuk and Hermite (common quantum-mechanical) harmonic oscillators. By the Sommerfeld-Watson transformation they are also related with a relativistic model of the linear harmonic oscillator, built in terms of the Meixner-Pollaczek polynomials, and their continuous weight function. We construct explicitly the corresponding coherent states with the dynamical symmetry group Sp(2,R). The reproducing kernel for the wavefunctions of these models is also found. (Author)

  4. Myocardial scintigraphy using iodine-123 15-(p-Iodophenyl)-3-R, S-methylpentadecanoic acid predicts the response to beta-blocker therapy in patients with dilated cardiomyopathy but does not reflect therapeutic effect

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, Keiichiro; Tahara, Minoru; Torii, Hiroyuki; Akimoto, Masaki [Kagoshima City Medical Association Hopital (Japan); Kihara, Koichi; Tei, Chuwa

    2000-05-01

    Myocardial fatty acid metabolism is disturbed in patients with idiopathic dilated cardiomyopathy. Myocardial scintigraphy using iodine-123 15-(p-iodophenyl)-3-R, S-methylpentadecanoic acid (BMIPP) was used to assess the response to {beta}-blocker therapy in 19 patients with dilated cardiomyopathy. BMIPP myocardial scintigraphy was performed before and 6 months after initiating {beta}-blocker therapy with metoprolol. Cardiac BMIPP uptake was assessed as the total defect score (TDS) and heart-to-mediastinum activity (H/M) ratio. Patients were classified retrospectively as responders with an improvement of at least one functional class (New York Heart Association) or an increase in ejection fraction of {>=}0.10 at 6 months, or as nonresponders meeting neither criterion. Responders had a significantly better pretreatment TDS (p<0.005) and H/M ratio (p<0.0001) than nonresponders. TDS exhibited no significant changes over 6 months in either group (responders: 13.2{+-}3.7 vs 12.5{+-}3.3; nonresponders: 20.8{+-}6.5 vs 20.5{+-}3.0). Responders showed no significant changes in H/M ratio (2.47{+-}0.28 vs 2.43{+-}0.42); paradoxically, nonresponders showed a significant increase from 1.82{+-}0.11 to 2.10{+-}0.19 (p<0.05), suggesting that {beta}-blocker therapy protected the myocardial fatty acid metabolism even in the absence of clinical improvement. BMIPP myocardial scintigraphy provides a prediction of response to {beta}-blocker treatment, but does not reflect the therapeutic effect in responders at 6 months. (author)

  5. Extreme rainfall activity in the Australian tropics reflects changes in the El Niño/Southern Oscillation over the last two millennia

    Science.gov (United States)

    Denniston, Rhawn F.; Villarini, Gabriele; Gonzales, Angelique N.; Wyrwoll, Karl-Heinz; Polyak, Victor J.; Ummenhofer, Caroline C.; Lachniet, Matthew S.; Wanamaker, Alan D.; Humphreys, William F.; Woods, David; Cugley, John

    2015-01-01

    Assessing temporal variability in extreme rainfall events before the historical era is complicated by the sparsity of long-term “direct” storm proxies. Here we present a 2,200-y-long, accurate, and precisely dated record of cave flooding events from the northwest Australian tropics that we interpret, based on an integrated analysis of meteorological data and sediment layers within stalagmites, as representing a proxy for extreme rainfall events derived primarily from tropical cyclones (TCs) and secondarily from the regional summer monsoon. This time series reveals substantial multicentennial variability in extreme rainfall, with elevated occurrence rates characterizing the twentieth century, 850–1450 CE (Common Era), and 50–400 CE; reduced activity marks 1450–1650 CE and 500–850 CE. These trends are similar to reconstructed numbers of TCs in the North Atlantic and Caribbean basins, and they form temporal and spatial patterns best explained by secular changes in the dominant mode of the El Niño/Southern Oscillation (ENSO), the primary driver of modern TC variability. We thus attribute long-term shifts in cyclogenesis in both the central Australian and North Atlantic sectors over the past two millennia to entrenched El Niño or La Niña states of the tropical Pacific. The influence of ENSO on monsoon precipitation in this region of northwest Australia is muted, but ENSO-driven changes to the monsoon may have complemented changes to TC activity. PMID:25825740

  6. Oscillate Boiling

    CERN Document Server

    Li, Fenfang; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2016-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about $10\\,\\mu$m in diameter onto a 165\\,nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatably at several $100\\,$kHz. The microbubble's oscillations are accompanied with bubble pinch-off leading to a stream of gaseous bubbles into the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by the non-spherical collapses and by surface pinning. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may allow to overcome the heat transfer thresholds observed dur...

  7. LHCb: $2\\beta_s$ measurement at LHCb

    CERN Multimedia

    Conti, G

    2009-01-01

    A measurement of $2\\beta_s$, the phase of the $B_s-\\bar{B_s}$ oscillation amplitude with respect to that of the ${\\rm b} \\rightarrow {\\rm c^{+}}{\\rm W^{-}}$ tree decay amplitude, is one of the key goals of the LHCb experiment with first data. In the Standard Model (SM), $2\\beta_s$ is predicted to be $0.0360^{+0.0020}_{-0.0016} \\rm rad$. The current constraints from the Tevatron are: $2\\beta_{s}\\in[0.32 ; 2.82]$ at 68$\\%$CL from the CDF experiment and $2\\beta_{s}=0.57^{+0.24}_{-0.30}$ from the D$\\oslash$ experiment. Although the statistical uncertainties are large, these results hint at the possible contribution of New Physics in the $B_s-\\bar{B_s}$ box diagram. After one year of data taking at LHCb at an average luminosity of $\\mathcal{L}\\sim2\\cdot10^{32}\\rm cm^{-2} \\rm s^{-1}$ (integrated luminosity $\\mathcal{L}_{\\rm int}\\sim 2 \\rm fb^{-1}$), the expected statistical uncertainty on the measurement is $\\sigma(2\\beta_s)\\simeq 0.03$. This uncertainty is similar to the $2\\beta_s$ value predicted by the SM.

  8. Post-saccadic oscillations in eye movement data recorded with pupil-based eye trackers reflect motion of the pupil inside the iris.

    Science.gov (United States)

    Nyström, Marcus; Hooge, Ignace; Holmqvist, Kenneth

    2013-11-01

    Current video eye trackers use information about the pupil center to estimate orientation and movement of the eye. While dual Purkinje eye trackers suffer from lens wobble and scleral search coils may be influenced by contact lens slippage directly after saccades, it is not known whether pupil-based eye trackers produces similar artifacts in the data. We recorded eye movements from participants making repetitive, horizontal saccades and compared the movement in the data with pupil- and iris movements extracted from the eye images. Results showed that post-saccadic instabilities clearly exist in data recorded with a pupil-based eye tracker. They also exhibit a high degree of reproducibility across saccades and within participants. While the recorded eye movement data correlated well with the movement of the pupil center, the iris center showed only little post-saccadic movement. This means that the pupil moves relative to the iris during post-saccadic eye movements, and that the eye movement data reflect pupil movement rather than eyeball rotation. Besides introducing inaccuracies and additional variability in the data, the pupil movement inside the eyeball influences the decision of when a saccade should end and the subsequent fixation should begin, and consequently higher order analyses based on fixations and saccades.

  9. Oscillation death in coupled oscillators

    Institute of Scientific and Technical Information of China (English)

    Wei ZOU; Xin-gang WANG; Qi ZHAO; Meng ZHAN

    2009-01-01

    We study dynamical behaviors in coupled nonlinear oscillators and find that under certain condi- tions, a whole coupled oscillator system can cease oscil- lation and transfer to a globally nonuniform stationary state [I.e., the so-called oscillation death (OD) state], and this phenomenon can be generally observed. This OD state depends on coupling strengths and is clearly differ- ent from previously studied amplitude death (AD) state, which refers to the phenomenon where the whole system is trapped into homogeneously steady state of a fixed point, which already exists but is unstable in the ab- sence of coupling. For larger systems, very rich pattern structures of global death states are observed. These Turing-like patterns may share some essential features with the classical Turing pattern.

  10. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    NARCIS (Netherlands)

    Lozano Soldevilla, D.; Huurne, N.P. ter; Oostenveld, R.

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in an

  11. Neutrino Oscillations

    Directory of Open Access Journals (Sweden)

    G. Bellini

    2014-01-01

    Full Text Available In the last decades, a very important breakthrough has been brought about in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understanding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has been crossed by this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future.

  12. Nonlinear oscillations

    CERN Document Server

    Nayfeh, Ali Hasan

    1995-01-01

    Nonlinear Oscillations is a self-contained and thorough treatment of the vigorous research that has occurred in nonlinear mechanics since 1970. The book begins with fundamental concepts and techniques of analysis and progresses through recent developments and provides an overview that abstracts and introduces main nonlinear phenomena. It treats systems having a single degree of freedom, introducing basic concepts and analytical methods, and extends concepts and methods to systems having degrees of freedom. Most of this material cannot be found in any other text. Nonlinear Oscillations uses sim

  13. Antiperiodic oscillations

    Science.gov (United States)

    Freire, Joana G.; Cabeza, Cecilia; Marti, Arturo; Pöschel, Thorsten; Gallas, Jason A. C.

    2013-06-01

    The investigation of regular and irregular patterns in nonlinear oscillators is an outstanding problem in physics and in all natural sciences. In general, regularity is understood as tantamount to periodicity. However, there is now a flurry of works proving the existence of ``antiperiodicity'', an unfamiliar type of regularity. Here we report the experimental observation and numerical corroboration of antiperiodic oscillations. In contrast to the isolated solutions presently known, we report infinite hierarchies of antiperiodic waveforms that can be tuned continuously and that form wide spiral-shaped stability phases in the control parameter plane. The waveform complexity increases towards the focal point common to all spirals, a key hub interconnecting them all.

  14. Physics of Neutrino Oscillation

    CERN Document Server

    Mondal, Spandan

    2015-01-01

    The Standard Model of particle physics describes neutrinos as massless, chargeless elementary particles that come in three different flavours. However, recent experiments indicate that neutrinos not only have mass, but also have multiple mass eigenstates that are not identical to the flavour states, thereby indicating mixing. As an evidence of mixing, neutrinos have been observed to change from one flavour to another during their propagation, a phenomenon called neutrino oscillation. We have studied the reasons and derived the probabilities of neutrino flavour change, both in vacuum and in matter. We have also studied the parameters affecting this probability. We have discussed the special case of two-neutrino oscillations. Lastly, we have discussed some basic properties of neutrinos that are reflected in the previous derivations and highlighted a few relevant open problems. To begin with, we have also studied the relevant topics in introductory High Energy Physics and Quantum Mechanics to familiarize with th...

  15. The functional role of neural oscillations in non-verbal emotional communication

    Directory of Open Access Journals (Sweden)

    Ashley E Symons

    2016-05-01

    Full Text Available Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS, and orbitofrontal cortex (OFC. However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterise the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronisation appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronisation may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronisation reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities, presence or absence of predictive information, and attentional or task demands. Thus, the synchronisation of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity

  16. The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication.

    Science.gov (United States)

    Symons, Ashley E; El-Deredy, Wael; Schwartze, Michael; Kotz, Sonja A

    2016-01-01

    Effective interpersonal communication depends on the ability to perceive and interpret nonverbal emotional expressions from multiple sensory modalities. Current theoretical models propose that visual and auditory emotion perception involves a network of brain regions including the primary sensory cortices, the superior temporal sulcus (STS), and orbitofrontal cortex (OFC). However, relatively little is known about how the dynamic interplay between these regions gives rise to the perception of emotions. In recent years, there has been increasing recognition of the importance of neural oscillations in mediating neural communication within and between functional neural networks. Here we review studies investigating changes in oscillatory activity during the perception of visual, auditory, and audiovisual emotional expressions, and aim to characterize the functional role of neural oscillations in nonverbal emotion perception. Findings from the reviewed literature suggest that theta band oscillations most consistently differentiate between emotional and neutral expressions. While early theta synchronization appears to reflect the initial encoding of emotionally salient sensory information, later fronto-central theta synchronization may reflect the further integration of sensory information with internal representations. Additionally, gamma synchronization reflects facilitated sensory binding of emotional expressions within regions such as the OFC, STS, and, potentially, the amygdala. However, the evidence is more ambiguous when it comes to the role of oscillations within the alpha and beta frequencies, which vary as a function of modality (or modalities), presence or absence of predictive information, and attentional or task demands. Thus, the synchronization of neural oscillations within specific frequency bands mediates the rapid detection, integration, and evaluation of emotional expressions. Moreover, the functional coupling of oscillatory activity across multiples

  17. Temperature sensitive oscillator

    Science.gov (United States)

    Kleinberg, L. L. (Inventor)

    1986-01-01

    An oscillator circuit for sensing and indicating temperature by changing oscillator frequency with temperature comprises a programmable operational amplifier which is operated on the roll-off portion of its gain versus frequency curve and has its output directly connected to the inverting input to place the amplifier in a follower configuration. Its output is also connected to the non-inverting input by a capacitor with a crystal or other tuned circuit also being connected to the non-inverting input. A resistor is connected to the program input of the amplifier to produce a given set current at a given temperature, the set current varying with temperature. As the set current changes, the gain-bandwidth of the amplifier changes and, in turn, the reflected capacitance across the crystal changes, thereby providing the desired change in oscillator frequency by pulling the crystal. There is no requirement that a crystal employed with this circuit display either a linear frequency change with temperature or a substantial frequency change with temperature.

  18. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    Reflection has moved from the margins to the mainstream in supervision. Notions of reflection have become well established since the late 1980s. These notions have provided useful framing devices to help conceptualize some important processes in guidance and counseling. However, some applications...

  19. Oscillations in sensorimotor cortex in movement disorders: an electrocorticography study.

    Science.gov (United States)

    Crowell, Andrea L; Ryapolova-Webb, Elena S; Ostrem, Jill L; Galifianakis, Nicholas B; Shimamoto, Shoichi; Lim, Daniel A; Starr, Philip A

    2012-02-01

    Movement disorders of basal ganglia origin may arise from abnormalities in synchronized oscillatory activity in a network that includes the basal ganglia, thalamus and motor cortices. In humans, much has been learned from the study of basal ganglia local field potentials recorded from temporarily externalized deep brain stimulator electrodes. These studies have led to the theory that Parkinson's disease has characteristic alterations in the beta frequency band (13-30 Hz) in the basal ganglia-thalamocortical network. However, different disorders have rarely been compared using recordings in the same structure under the same behavioural conditions, limiting straightforward assessment of current hypotheses. To address this, we utilized subdural electrocorticography to study cortical oscillations in the three most common movement disorders: Parkinson's disease, primary dystonia and essential tremor. We recorded local field potentials from the arm area of primary motor and sensory cortices in 31 subjects using strip electrodes placed temporarily during routine surgery for deep brain stimulator placement. We show that: (i) primary motor cortex broadband gamma power is increased in Parkinson's disease compared with the other conditions, both at rest and during a movement task; (ii) primary motor cortex high beta (20-30 Hz) power is increased in Parkinson's disease during the 'stop' phase of a movement task; (iii) the alpha-beta peaks in the motor and sensory cortical power spectra occur at higher frequencies in Parkinson's disease than in the other two disorders; and (iv) patients with dystonia have impaired movement-related beta band desynchronization in primary motor and sensory cortices. The findings support the emerging hypothesis that disease states reflect abnormalities in synchronized oscillatory activity. This is the first study of sensorimotor cortex local field potentials in the three most common movement disorders.

  20. Power oscillation damping controller

    DEFF Research Database (Denmark)

    2012-01-01

    A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...

  1. Beta/gamma oscillatory activity in the CA3 hippocampal area is depressed by aberrant GABAergic transmission from the dentate gyrus after seizures.

    Science.gov (United States)

    Treviño, Mario; Vivar, Carmen; Gutiérrez, Rafael

    2007-01-03

    Oscillatory activity in the CA3 region is thought to be involved in the encoding and retrieval of information. These oscillations originate from the recurrent excitation between pyramidal cells that are entrained by the synchronous rhythmic inhibition of local interneurons. We show here that, after seizures, the dentate gyrus (DG) tonically inhibits beta/gamma (20-24 Hz) field oscillations in the CA3 area through GABA-mediated signaling. These oscillations originate in the interneuron network because they are maintained in the presence of ionotropic glutamate receptor antagonists, and they can be blocked by GABA(A) receptor antagonists or by perfusion of a calcium-free extracellular medium. Inhibition of this oscillatory activity requires intact DG-to-CA3 connections, and it is suppressed by the activation of metabotropic glutamate receptors (mGluR). The influence of mGluR activation was reflected in the spontaneous subthreshold membrane oscillations of CA3 interneurons after one seizure but could also be observed in pyramidal cells after several seizures. Coincident stimulation of the DG at and beta/gamma frequencies produced a frequency-dependent excitation of interneurons and the inhibition of pyramidal cells. Indeed, these effects were maximal at the frequency that matched the mGluR-sensitive spontaneous field oscillations, suggesting a resonance phenomenon. Our results shed light on the mechanisms that may underlie the deficits in memory and cognition observed after epileptic seizures.

  2. Oscillators and Eigenvalues

    DEFF Research Database (Denmark)

    Lindberg, Erik

    1997-01-01

    In order to obtain insight in the nature of nonlinear oscillators the eigenvalues of the linearized Jacobian of the differential equations describing the oscillator are found and displayed as functions of time. A number of oscillators are studied including Dewey's oscillator (piecewise linear...... with negative resistance), Kennedy's Colpitts-oscillator (with and without chaos) and a new 4'th order oscillator with hyper-chaos....

  3. Oscillating Permanent Magnets.

    Science.gov (United States)

    Michaelis, M. M.; Haines, C. M.

    1989-01-01

    Describes several ways to partially levitate permanent magnets. Computes field line geometries and oscillation frequencies. Provides several diagrams illustrating the mechanism of the oscillation. (YP)

  4. Solar neutrinos: Oscillations or No-oscillations?

    CERN Document Server

    Smirnov, A Yu

    2016-01-01

    The Nobel prize in physics 2015 has been awarded "... for the discovery of neutrino oscillations which show that neutrinos have mass". While SuperKamiokande (SK), indeed, has discovered oscillations, SNO observed effect of the adiabatic (almost non-oscillatory) flavor conversion of neutrinos in the matter of the Sun. Oscillations are irrelevant for solar neutrinos apart from small $\

  5. The search for neutrinoless double beta decay

    CERN Document Server

    Gomez-Cadenas, J J; Mezzetto, M; Monrabal, F; Sorel, M

    2011-01-01

    In the last few years the search for neutrinoless double beta decay has evolved from being almost a marginal activity in neutrino physics to one of the highest priorities for understanding neutrinos and the origin of mass. There are two main reasons for this paradigm shift: the discovery of neutrino oscillations, which clearly established the existence of massive neutrinos; and the existence of an unconfirmed, but not refuted, claim of evidence for neutrinoless double decay in 76Ge. As a consequence, a new generation of experiments, employing different detection techniques and {\\beta}{\\beta} isotopes, is being actively promoted by experimental groups across the world. In addition, nuclear theorists are making remarkable progress in the calculation of the neutrinoless double beta decay nuclear matrix elements, thus eliminating a substantial part of the theoretical uncertainties affecting the particle physics interpretation of this process. In this report, we review the main aspects of the double beta decay pro...

  6. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  7. Reflective Teaching

    Science.gov (United States)

    Farrell, Thomas S. C.

    2013-01-01

    Thomas Farrell's "Reflective Teaching" outlines four principles that take teachers from just doing reflection to making it a way of being. Using the four principles, Reflective Practice Is Evidence Based, Reflective Practice Involves Dialogue, Reflective Practice Links Beliefs and Practices, and Reflective Practice Is a Way of Life,…

  8. Oscillations of Eccentric Pulsons

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Groenbech-Jensen, Niels; Lomdahl, Peter;

    1997-01-01

    Perturbation theory for elliptic pulsons is developed and predicts pulson and eccentricity oscillations. The pulson oscillation period is predicted qualitatively correct.......Perturbation theory for elliptic pulsons is developed and predicts pulson and eccentricity oscillations. The pulson oscillation period is predicted qualitatively correct....

  9. Differential effects of ongoing EEG beta and theta power on memory formation

    Science.gov (United States)

    Scholz, Sebastian; Schneider, Signe Luisa

    2017-01-01

    Recently, elevated ongoing pre-stimulus beta power (13–17 Hz) at encoding has been associated with subsequent memory formation for visual stimulus material. It is unclear whether this activity is merely specific to visual processing or whether it reflects a state facilitating general memory formation, independent of stimulus modality. To answer that question, the present study investigated the relationship between neural pre-stimulus oscillations and verbal memory formation in different sensory modalities. For that purpose, a within-subject design was employed to explore differences between successful and failed memory formation in the visual and auditory modality. Furthermore, associative memory was addressed by presenting the stimuli in combination with background images. Results revealed that similar EEG activity in the low beta frequency range (13–17 Hz) is associated with subsequent memory success, independent of stimulus modality. Elevated power prior to stimulus onset differentiated successful from failed memory formation. In contrast, differential effects between modalities were found in the theta band (3–7 Hz), with an increased oscillatory activity before the onset of later remembered visually presented words. In addition, pre-stimulus theta power dissociated between successful and failed encoding of associated context, independent of the stimulus modality of the item itself. We therefore suggest that increased ongoing low beta activity reflects a memory promoting state, which is likely to be moderated by modality-independent attentional or inhibitory processes, whereas high ongoing theta power is suggested as an indicator of the enhanced binding of incoming interlinked information. PMID:28192459

  10. Neuronal oscillations with non-sinusoidal morphology produce spurious phase-to-amplitude coupling and directionality.

    Directory of Open Access Journals (Sweden)

    Diego Lozano-Soldevilla

    2016-08-01

    Full Text Available Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (> 40 Hz occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC. However, the CFC patterns be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 mg or 1.5 mg of lorazepam (LZP; GABAergic enhancer in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM, we were able to demonstrate that posterior alpha (8 – 12 Hz phase was coupled to beta-low gamma band (20 – 45 Hz amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD. Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs

  11. Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality

    Science.gov (United States)

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Oostenveld, Robert

    2016-01-01

    Neuronal oscillations support cognitive processing. Modern views suggest that neuronal oscillations do not only reflect coordinated activity in spatially distributed networks, but also that there is interaction between the oscillations at different frequencies. For example, invasive recordings in animals and humans have found that the amplitude of fast oscillations (>40 Hz) occur non-uniformly within the phase of slower oscillations, forming the so-called cross-frequency coupling (CFC). However, the CFC patterns might be influenced by features in the signal that do not relate to underlying physiological interactions. For example, CFC estimates may be sensitive to spectral correlations due to non-sinusoidal properties of the alpha band wave morphology. To investigate this issue, we performed CFC analysis using experimental and synthetic data. The former consisted in a double-blind magnetoencephalography pharmacological study in which participants received either placebo, 0.5 or 1.5 mg of lorazepam (LZP; GABAergic enhancer) in different experimental sessions. By recording oscillatory brain activity with during rest and working memory (WM), we were able to demonstrate that posterior alpha (8–12 Hz) phase was coupled to beta-low gamma band (20–45 Hz) amplitude envelope during all sessions. Importantly, bicoherence values around the harmonics of the alpha frequency were similar both in magnitude and topographic distribution to the cross-frequency coherence (CFCoh) values observed in the alpha-phase to beta-low gamma coupling. In addition, despite the large CFCoh we found no significant cross-frequency directionality (CFD). Critically, simulations demonstrated that a sizable part of our empirical CFCoh between alpha and beta-low gamma coupling and the lack of CFD could be explained by two-three harmonics aligned in zero phase-lag produced by the physiologically characteristic alpha asymmetry in the amplitude of the peaks relative to the troughs. Furthermore, we

  12. Sausage oscillations of coronal plasma slabs

    Science.gov (United States)

    Hornsey, C.; Nakariakov, V. M.; Fludra, A.

    2014-07-01

    Context. Sausage oscillations are observed in plasma non-uniformities of the solar corona as axisymmetric perturbations of the non-uniformity. Often, these non-uniformities can be modelled as field-aligned slabs of the density enhancement. Aims: We perform parametric studies of sausage oscillations of plasma slabs, aiming to determine the dependence of the oscillation period on its parameters, and the onset of leaky and trapped regimes of the oscillations. Methods: Slabs with smooth transverse profiles of the density of a zero-beta plasma are perturbed by an impulsive localised perturbation of the sausage symmetry. In particular, the slab can contain an infinitely thin current sheet in its centre. The initial value problem is then solved numerically. The numerical results are subject to spectral analysis. The results are compared with analytical solutions for a slab with a step-function profile and also with sausage oscillations of a plasma cylinder. Results: We established that sausage oscillations in slabs generally have the same properties as in plasma cylinders. In the trapped regime, the sausage oscillation period increases with the increase in the longitudinal wavelength. In the leaky regime, the dependence of the period on the wavelength experiences saturation, and the period becomes independent of the wavelength in the long-wavelength limit. In the leaky regime the period is always longer than in the trapped regime. The sausage oscillation period in a slab is always longer than in a cylinder with the same transverse profile. In slabs with steeper transverse profiles, sausage oscillations have longer periods. The leaky regime occurs at shorter wavelengths in slabs with smoother profiles.

  13. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  14. Oscillating heat pipes

    CERN Document Server

    Ma, Hongbin

    2015-01-01

    This book presents the fundamental fluid flow and heat transfer principles occurring in oscillating heat pipes and also provides updated developments and recent innovations in research and applications of heat pipes. Starting with fundamental presentation of heat pipes, the focus is on oscillating motions and its heat transfer enhancement in a two-phase heat transfer system. The book covers thermodynamic analysis, interfacial phenomenon, thin film evaporation,  theoretical models of oscillating motion and heat transfer of single phase and two-phase flows, primary  factors affecting oscillating motions and heat transfer,  neutron imaging study of oscillating motions in an oscillating heat pipes, and nanofluid’s effect on the heat transfer performance in oscillating heat pipes.  The importance of thermally-excited oscillating motion combined with phase change heat transfer to a wide variety of applications is emphasized. This book is an essential resource and learning tool for senior undergraduate, gradua...

  15. The colpitts oscillator family

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamasevicius, A.

    A tutorial study of the Colpitts oscillator family defined as all oscillators based on a nonlinear amplifier and a three- terminal linear resonance circuit with one coil and two capacitors. The original patents are investigated. The eigenvalues of the linearized Jacobian for oscillators based...

  16. Neutrino Masses and Oscillations

    CERN Document Server

    Valle, J W F

    2005-01-01

    I summarize the status of three--neutrino oscillations that follow from combining the relevant world's data. The discussion includes the small parameters Delta_m-sol/Delta_m-atm and \\sin^2\\theta_{13}, which characterize the strength of CP violation in neutrino oscillations, the impact of oscillation data on the prospects for probing the absolute scale of neutrino mass in \

  17. Neutrino oscillations: theory and phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, E.K., E-mail: akhmedov@ictp.trieste.it [Department of Theoretical Physics, Royal Institute of Technology, AlbaNova University Center, SE-106 91 Stockholm (Sweden)

    2011-12-15

    A brief overview of selected topics in the theory and phenomenology of neutrino oscillations is given. These include: oscillations in vacuum and in matter; phenomenology of 3-flavour neutrino oscillations; CP and T violation in neutrino oscillations in vacuum and in matter; matter effects on {nu}{sub {mu}}{r_reversible}{nu}{sub {tau}} oscillations; parametric resonance in neutrino oscillations inside the earth; oscillations below and above the MSW resonance; unsettled issues in the theory of neutrino oscillations.

  18. Detecting Double Beta Decays Using Nuclear Emulsions

    CERN Document Server

    Dracos, Marcos

    2008-01-01

    Neutrino nature and absolute mass scale are major questions in particle physics which cannot be addressed by the present neutrino oscillation program. To answer these two questions, several neutrinoless double beta decay experiments are underway or planed for the near future. These experiments, mainly use bolometric techniques or gaseous counters coupled with scintillator detectors. The energy resolution is better in bolometric experiments but experiments coupling tracking with calorimetry have the advantage of observing the two electron tracks and remove many background sources. Here, we present a proposal of using nuclear emulsions to observe double beta decays. This technique has the advantage of precise tracking and vertexing even for low energy electrons.

  19. Covariant harmonic oscillators and coupled harmonic oscillators

    Science.gov (United States)

    Han, Daesoo; Kim, Young S.; Noz, Marilyn E.

    1995-01-01

    It is shown that the system of two coupled harmonic oscillators shares the basic symmetry properties with the covariant harmonic oscillator formalism which provides a concise description of the basic features of relativistic hadronic features observed in high-energy laboratories. It is shown also that the coupled oscillator system has the SL(4,r) symmetry in classical mechanics, while the present formulation of quantum mechanics can accommodate only the Sp(4,r) portion of the SL(4,r) symmetry. The possible role of the SL(4,r) symmetry in quantum mechanics is discussed.

  20. Evidence for Novel [beta]-Sheet Structures in Iowa Mutant [beta]-Amyloid Fibrils

    Energy Technology Data Exchange (ETDEWEB)

    Tycko, Robert; Sciarretta, Kimberly L.; Orgel, Joseph P.R.O.; Meredith, Stephen C.; (IIT); (NIH); (UC)

    2009-07-24

    Asp23-to-Asn mutation within the coding sequence of {beta}-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-A{beta}40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-A{beta}40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10{sup -3} min{sup -1} and 1.07 x 10{sup -4} min{sup -1} for D23N-A{beta}40 and the wild-type peptide WT-A{beta}40, respectively) and without a lag phase. Electron microscopy shows that D23N-A{beta}40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-{beta} pattern, with a sharp reflection at 4.7 {angstrom} and a broad reflection at 9.4 {angstrom}, which is notably smaller than the value for WT-A{beta}40 fibrils (10.4 {angstrom}). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-A{beta}40 fibrils containing the in-register, parallel {beta}-sheet structure commonly found in WT-A{beta}40 fibrils and most other amyloid fibrils. Antiparallel {beta}-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through 13C-13C and 15N-13C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-A{beta}40 fibrils and the unusual vasculotropic clinical picture in these patients.

  1. Nature's Autonomous Oscillators

    Science.gov (United States)

    Mayr, H. G.; Yee, J.-H.; Mayr, M.; Schnetzler, R.

    2012-01-01

    Nonlinearity is required to produce autonomous oscillations without external time dependent source, and an example is the pendulum clock. The escapement mechanism of the clock imparts an impulse for each swing direction, which keeps the pendulum oscillating at the resonance frequency. Among nature's observed autonomous oscillators, examples are the quasi-biennial oscillation and bimonthly oscillation of the Earth atmosphere, and the 22-year solar oscillation. The oscillations have been simulated in numerical models without external time dependent source, and in Section 2 we summarize the results. Specifically, we shall discuss the nonlinearities that are involved in generating the oscillations, and the processes that produce the periodicities. In biology, insects have flight muscles, which function autonomously with wing frequencies that far exceed the animals' neural capacity; Stretch-activation of muscle contraction is the mechanism that produces the high frequency oscillation of insect flight, discussed in Section 3. The same mechanism is also invoked to explain the functioning of the cardiac muscle. In Section 4, we present a tutorial review of the cardio-vascular system, heart anatomy, and muscle cell physiology, leading up to Starling's Law of the Heart, which supports our notion that the human heart is also a nonlinear oscillator. In Section 5, we offer a broad perspective of the tenuous links between the fluid dynamical oscillators and the human heart physiology.

  2. Brain oscillations and synchrony in neurocognitive systems

    NARCIS (Netherlands)

    van Driel, J.

    2015-01-01

    Brain activity is strongly oscillatory: the collective firing of populations of neurons waxes and wanes in a rhythmic manner. The spatiotemporal and frequency-band characteristics of these oscillations may reflect how the brain organizes its activity, in a local as well as large scale manner. But ho

  3. Quantum groups, deformed oscillators and their interrelations

    CERN Document Server

    Damaskinsky, E V; Damaskinsky, E V; Kulish, P P

    1995-01-01

    The main notions of the quantum groups: coproduct, action and coaction, representation and corepresentation are discussed using simplest examples: GL_q(2), sl_q(2), q-oscillator algebra {\\cal A}(q), and reflection equation algebra. The Gauss decompositions of quantum groups and their realizations in terms of\\, {\\cal A}(q) are given.

  4. Reflective Writing

    DEFF Research Database (Denmark)

    Ahrenkiel Jørgensen, Andriette

    2016-01-01

    Høeg etetera. The dialogues work as a tool of reflection in terms of providing opportunity to examine his own beliefs, to explore the possible reasons for engaging in a particular activity. On the basis of Sven-Ingvar Andersson’s book a teaching program at the Aarhus School of Architecture provides...... a contribution to the discussions about the role of reflection in design work and in learning situations at large. By engaging with the dialogic reflection, which is one of the four essential types of reflection, (the three others being descriptive writing, descriptive reflection and critical reflection...

  5. A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson's disease

    Science.gov (United States)

    Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.

    2016-12-01

    An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.

  6. SAUSAGE OSCILLATIONS OF CORONAL PLASMA STRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Nakariakov, V. M.; Hornsey, C. [Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom); Melnikov, V. F., E-mail: V.Nakariakov@warwick.ac.uk [Central Astronomical Observatory at Pulkovo of the Russian Academy of Sciences, 196140 St Petersburg (Russian Federation)

    2012-12-20

    The dependence of the period of sausage oscillations of coronal loops on length together with the depth and steepness of the radial profile are determined. We performed a parametric study of linear axisymmetric fast magnetoacoustic (sausage) oscillations of coronal loops modeled as a field-aligned low-{beta} plasma cylinder with a smooth inhomogeneity of the plasma density in the radial direction. The density decreases smoothly in the radial direction. Sausage oscillations are impulsively excited by a perturbation of the radial velocity, localized at the cylinder axis and with a harmonic dependence on the longitudinal coordinate. The initial perturbation results in either a leaky or a trapped sausage oscillation, depending upon whether the longitudinal wavenumber is smaller or greater than a cutoff value, respectively. The period of the sausage oscillations was found to always increase with increasing longitudinal wavelength, with the dependence saturating in the long-wavelength limit. Deeper and steeper radial profiles of the Alfven speed correspond to more efficient trapping of sausage modes: the cutoff value of the wavelength increases with the steepness and the density (or Alfven speed) contrast ratio. In the leaky regime, the period is always longer than the period of a trapped mode of a shorter wavelength in the same cylinder. For shallow density profiles and shorter wavelengths, the period increases with wavelength. In the long-wavelength limit, the period becomes independent of the wavelength and increases with the depth and steepness of the radial profile of the Alfven speed.

  7. Cross-frequency coupling of brain oscillations in studying motivation and emotion.

    Science.gov (United States)

    Schutter, Dennis J L G; Knyazev, Gennady G

    2012-03-01

    Research has shown that brain functions are realized by simultaneous oscillations in various frequency bands. In addition to examining oscillations in pre-specified bands, interactions and relations between the different frequency bandwidths is another important aspect that needs to be considered in unraveling the workings of the human brain and its functions. In this review we provide evidence that studying interdependencies between brain oscillations may be a valuable approach to study the electrophysiological processes associated with motivation and emotional states. Studies will be presented showing that amplitude-amplitude coupling between delta-alpha and delta-beta oscillations varies as a function of state anxiety and approach-avoidance-related motivation, and that changes in the association between delta-beta oscillations can be observed following successful psychotherapy. Together these studies suggest that cross-frequency coupling of brain oscillations may contribute to expanding our understanding of the neural processes underlying motivation and emotion.

  8. A memristor-based third-order oscillator: beyond oscillation

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-10-06

    This paper demonstrates the first third-order autonomous linear time variant circuit realization that enhances parametric oscillation through the usage of memristor in conventional oscillators. Although the output has sustained oscillation, the linear features of the conventional oscillators become time dependent. The poles oscillate in nonlinear behavior due to the oscillation of memristor resistance. The mathematical formulas as well as SPICE simulations are introduced for the memristor-based phase shift oscillator showing a great matching.

  9. Pseudoharmonic oscillator in quantum mechanics with a generalized uncertainty principle

    CERN Document Server

    Boukhellout, Abdelmalek

    2013-01-01

    The pseudoharmonic oscillator potential is studied in quantum mechanics with a generalized uncertainty relation characterized by the existence of a minimal length. By using the perturbative approach of Brau, we compute the correction to the energy spectrum in the first order of the minimal length parameter {\\beta}. The effect of the minimal length on the vibration-rotation of diatomic molecules is discussed.

  10. Oscillations of disks

    CERN Document Server

    Kato, Shoji

    2016-01-01

    This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...

  11. Interaction of Glycolysis and Mitochondrial Respiration in Metabolic Oscillations of Pancreatic Islets

    DEFF Research Database (Denmark)

    Bertram, Richard; Satin, Leslie S.; Pedersen, Morten Gram

    2007-01-01

    Insulin secretion from pancreatic ß-cells is oscillatory, with a typical period of 2–7 min, reflecting oscillations in membrane potential and the cytosolic Ca2+ concentration. Our central hypothesis is that the slow 2–7 min oscillations are due to glycolytic oscillations, whereas faster oscillati...

  12. Self-oscillation

    Science.gov (United States)

    Jenkins, Alejandro

    2013-04-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain dynamical systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy into the vibration: no external rate needs to be adjusted to the resonant frequency. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the swaying of the London Millennium Footbridge in 2000. Clocks are self-oscillators, as are bowed and wind musical instruments. The heart is a “relaxation oscillator”, i.e., a non-sinusoidal self-oscillator whose period is determined by sudden, nonlinear switching at thresholds. We review the general criterion that determines whether a linear system can self-oscillate. We then describe the limiting cycles of the simplest nonlinear self-oscillators, as well as the ability of two or more coupled self-oscillators to become spontaneously synchronized (“entrained”). We characterize the operation of motors as self-oscillation and prove a theorem about their limit efficiency, of which Carnot’s theorem for heat engines appears as a special case. We briefly discuss how self-oscillation applies to servomechanisms, Cepheid variable stars, lasers, and the macroeconomic business cycle, among other applications. Our emphasis throughout is on the energetics of self-oscillation, often neglected by the literature on nonlinear dynamical systems.

  13. Nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator

    CERN Document Server

    Miwadinou, C H; Monwanou, A V; Orou, J B Chabi

    2013-01-01

    This paper considers nonlinear dynamics of plasma oscillations modeled by a forced modified Van der Pol-Duffing oscillator. These plasma oscillations are described by a nonlinear differential equation of the form $ \\ddot{x}+ \\epsilon (1 +{x}^{2}){\\dot{x}} + x+ \\alpha \\epsilon{x}{\\dot{x}} + {\\beta}x^{2}+\\gamma x^{3}= F\\cos{\\Omega t}.$ The amplitudes of the forced harmonic, superharmonic and subharmonic oscillatory states are obtained using the harmonic balance technique and the multiple time scales methods. Bifurcation sequences displayed by the model for each type of oscillatory states are performed numerically through the fourth order Runge- Kutta scheme. The influences of the differents parameters and of amplitude of external forced have been found.

  14. Classical mechanics approach applied to analysis of genetic oscillators.

    Science.gov (United States)

    Vasylchenkova, Anastasiia; Mraz, Miha; Zimic, Nikolaj; Moskon, Miha

    2016-04-05

    Biological oscillators present a fundamental part of several regulatory mechanisms that control the response of various biological systems. Several analytical approaches for their analysis have been reported recently. They are, however, limited to only specific oscillator topologies and/or to giving only qualitative answers, i.e., is the dynamics of an oscillator given the parameter space oscillatory or not. Here we present a general analytical approach that can be applied to the analysis of biological oscillators. It relies on the projection of biological systems to classical mechanics systems. The approach is able to provide us with relatively accurate results in the meaning of type of behaviour system reflects (i.e. oscillatory or not) and periods of potential oscillations without the necessity to conduct expensive numerical simulations. We demonstrate and verify the proposed approach on three different implementations of amplified negative feedback oscillator.

  15. Spontaneous low-frequency oscillations in cerebral vessels

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Hansson, Andreas; Phillip, Dorte

    2010-01-01

    The etiology behind and physiological significance of spontaneous oscillations in the low-frequency spectrum in both systemic and cerebral vessels remain unknown. Experimental studies have proposed that spontaneous oscillations in cerebral blood flow reflect impaired cerebral autoregulation (CA......). Analysis of CA by measurement of spontaneous oscillations in the low-frequency spectrum in cerebral vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD) and stroke. We reviewed studies exploring spontaneous oscillations...... coefficients in the time domain are the most frequently used parameters for analyzing spontaneous oscillations in systemic and cerebral vessels. At present, there is no gold standard for analyzing spontaneous oscillations in the low-frequency spectrum, and simplistic models of CA have failed to predict...

  16. The Great Season Climatic Oscillation and the Global Warming

    CERN Document Server

    Boucenna, Ahmed

    2008-01-01

    The present earth warming up is often explained by the atmosphere gas greenhouse effect. This explanation is in contradiction with the thermodynamics second law. The warming up by greenhouse effect is quite improbable. It is cloud reflection that gives to the earth s ground its 15 degres C mean temperature. Since the reflection of the radiation by gases is negligible, the role of the atmosphere greenhouse gases in the earth warming up by earth radiation reflection loses its importance. We think that natural climatic oscillations contribute more to earth climatic disturbances. The oscillation that we hypothesize to exist has a long period (800 to 1000 years). The glacier melting and regeneration cycles lead to variations in the cold region ocean water density and thermal conductibility according to their salinity. These variations lead one to think about a macro climate oscillating between maximum hot and minimum cold temperatures. This oscillation is materialized by the passages of the planet through hot, mil...

  17. Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge

    CERN Document Server

    Brown, B A; Horoi, M

    2015-01-01

    The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...

  18. Convection and oscillations

    CERN Document Server

    Houdek, G

    2010-01-01

    In this short review on stellar convection dynamics I address the following, currently very topical, issues: (1) the surface effects of the Reynolds stresses and nonadiabaticity on solar-like pulsation frequencies, and (2) oscillation mode lifetimes of stochastically excited oscillations in red giants computed with different time-dependent convection formulations.

  19. Oscillations at low energies

    CERN Document Server

    Dwyer, D A

    2015-01-01

    A concise summary of the "Oscillation at low energies" parallel session at the 2014 Neutrino Oscillation Workshop is provided. Plans to use man-made neutrinos and antineutrinos to determine the neutrino mass hierarchy, search for sterile neutrinos, and to observe coherent neutrino-nucleus scattering were discussed. Potential measurements of solar neutrinos, supernova neutrinos, and geoneutrinos are also summarized.

  20. On the Dirac oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Universidade Federal de Campina Grande (UFCG), Cuite, PB (Brazil). Centro de Tecnologia. Unidade Academica de Educacao]. E-mail: rafael@df.ufcg.edu.br; rafaelr@cbpf.br

    2007-07-01

    In the present work we obtain a new representation for the Dirac oscillator based on the Clifford algebra C 7. The symmetry breaking and the energy eigenvalues for our model of the Dirac oscillator are studied in the non-relativistic limit. (author)

  1. Hyperchaotic Oscillator with Gyrators

    DEFF Research Database (Denmark)

    Tamasevicius, A; Cenys, A; Mykolaitis, G.;

    1997-01-01

    A fourth-order hyperchaotic oscillator is described. It contains a negative impedance converter, two gyratots, two capacitors and a diode. The dynamics of the oscillator is shown to be characterised by two positive Lyapunov exponents. The performance of the circuit is investigated by means...

  2. Cerebrospinal Fluid A beta(1-40) Improves Differential Dementia Diagnosis in Patients with Intermediate P-tau(181P) Levels

    NARCIS (Netherlands)

    Slaets, Sylvie; Le Bastard, Nathalie; Martin, Jean-Jacques; Sleegers, Kristel; Van Broeckhoven, Christine; De Deyn, Peter Paul; Engelborghs, Sebastiaan

    2013-01-01

    It is assumed that the concentration of amyloid-beta(1-40) (A beta(1-40)) in cerebrospinal fluid (CSF) reflects the total amount of A beta protein in the brain and thus allows a better interpretation of inter-individual differences in A beta quantity than the A beta(1-42) concentration. In this stud

  3. Disentangling neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew G. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: cohen@bu.edu; Glashow, Sheldon L. [Physics Department, Boston University, Boston, MA 02215 (United States)], E-mail: slg@bu.edu; Ligeti, Zoltan [Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 (United States)], E-mail: ligeti@lbl.gov

    2009-07-13

    The theory underlying neutrino oscillations has been described at length in the literature. The neutrino state produced by a weak decay is usually portrayed as a linear superposition of mass eigenstates with, variously, equal energies or equal momenta. We point out that such a description is incorrect, that in fact, the neutrino is entangled with the other particle or particles emerging from the decay. We offer an analysis of oscillation phenomena involving neutrinos (applying equally well to neutral mesons) that takes entanglement into account. Thereby we present a theoretically sound proof of the universal validity of the oscillation formulae ordinarily used. In so doing, we show that the departures from exponential decay reported by the GSI experiment cannot be attributed to neutrino mixing. Furthermore, we demonstrate that the 'Moessbauer' neutrino oscillation experiment proposed by Raghavan, while technically challenging, is correctly and unambiguously describable by means of the usual oscillation formalae.

  4. Conceptual design report for a Beta-Beam facility

    CERN Document Server

    Benedikt, M; Borgnolutti, F; Bouquerel, E; Bozyk, L; Bruer, J; Chance, A; Delahaye, P; Fabich, A; Hancock, S; Hansen, C; Jensen, E; Kallberg, A; Kirk, M; Lachaize, A; Lindroos, M; Loiselet, M; Magistris, M; Mitrofanov, S; Mueller, A C; Payet, J; Podlech, H; Puppel, P; Silari, M; Simonsson, A; Spiller, P; Stadlmann, J; Stora, T; Tkatchenko, A; Trovati, S; Vlachoudis, V; Wildner, E

    2011-01-01

    The Beta-Beam is a concept of large-scale facility that aims at providing pure electronic neutrino and antineutrino beams for the measurement of v(e) -> v(mu) oscillations. Beta-decaying nuclides are produced in large amounts in a facility of the scale of EURISOL, and are then post-accelerated and stored at large gamma in a racetrack decay ring. We present here a conceptual design of the accelerator chain of a Beta-Beam based at CERN.

  5. Beta-carotene

    Science.gov (United States)

    ... patches on the tongue and mouth called oral leukoplakia. Taking beta-carotene by mouth for up to 12 months seems to decrease symptoms of oral leukoplakia. Osteoarthritis. Beta-carotene taken by mouth may prevent ...

  6. Quasi-Fibonacci oscillators

    CERN Document Server

    Gavrilik, A M; Rebesh, A P

    2010-01-01

    We study the properties of sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p,q-oscillator, the 3-, 4- and 5-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consequtive energy levels satisfy the relation E_{n+1}=\\lambda E_n+\\rho E_{n-1} with real constants \\lambda, \\rho. On the other hand, for certain \\mu-oscillator known from 1993 we prove the fact of its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed among which for the \\mu$-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with non-constant, n-dependent coefficients \\lambda and \\rho. Various aspects of the QF relation are elaborated for the \\mu-oscillator and some of its extensions.

  7. Quasi-Fibonacci oscillators

    Science.gov (United States)

    Gavrilik, A. M.; Kachurik, I. I.; Rebesh, A. P.

    2010-06-01

    We study the properties of the sequences of the energy eigenvalues for some generalizations of q-deformed oscillators including the p, q-oscillator, and the three-, four- and five-parameter deformed oscillators given in the literature. It is shown that most of the considered models belong to the class of so-called Fibonacci oscillators for which any three consecutive energy levels satisfy the relation En + 1 = λEn + ρEn - 1 with real constants λ, ρ. On the other hand, for a certain μ-oscillator known since 1993, we prove its non-Fibonacci nature. Possible generalizations of the three-term Fibonacci relation are discussed, among which for the μ-oscillator we choose, as the most adequate, the so-called quasi-Fibonacci (or local Fibonacci) property of the energy levels. The property is encoded in the three-term quasi-Fibonacci (QF) relation with the non-constant, n-dependent coefficients λ and ρ. Various aspects of the QF relation are elaborated for the μ-oscillator and some of its extensions.

  8. Boxing with neutrino oscillations

    Science.gov (United States)

    Wagner, D. J.; Weiler, Thomas J.

    1999-06-01

    We develop a characterization of neutrino oscillations based on the coefficients of the oscillating terms. These coefficients are individually observable; although they are quartic in the elements of the unitary mixing matrix, they are independent of the conventions chosen for the angle and phase parametrization of the mixing matrix. We call these reparametrization-invariant observables ``boxes'' because of their geometric relation to the mixing matrix, and because of their association with the Feynman box diagram that describes oscillations in field theory. The real parts of the boxes are the coefficients for the CP- or T-even oscillation modes, while the imaginary parts are the coefficients for the CP- or T-odd oscillation modes. Oscillation probabilities are linear in the boxes, so measurements can straightforwardly determine values for the boxes (which can then be manipulated to yield magnitudes of mixing matrix elements). We examine the effects of unitarity on the boxes and discuss the reduction of the number of boxes to a minimum basis set. For the three-generation case, we explicitly construct the basis. Using the box algebra, we show that CP violation may be inferred from measurements of neutrino flavor mixing even when the oscillatory factors have averaged. The framework presented here will facilitate general analyses of neutrino oscillations among n>=3 flavors.

  9. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    . It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning...

  10. Reflection ciphers

    DEFF Research Database (Denmark)

    Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde;

    2017-01-01

    study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...... and analyze the security properties of different families of coupling permutations. Finally, we concentrate on the case of reflection block ciphers and, as an illustration, we provide concrete examples of key schedules corresponding to several coupling permutations, which lead to new variants of the block...

  11. Oscillating Filaments: I - Oscillation and Geometrical Fragmentation

    CERN Document Server

    Gritschneder, Matthias; Burkert, Andreas

    2016-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid based AMR-code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, e.g. with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process `geometrical fragmentation'. In our realization the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristical scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. ...

  12. Amyloid Beta-Protein and Neural Network Dysfunction

    Directory of Open Access Journals (Sweden)

    Fernando Peña-Ortega

    2013-01-01

    Full Text Available Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ represents one of the major challenges for Alzheimer’s disease (AD research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic.

  13. Challenges in Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Oliviero Cremonesi

    2014-01-01

    Full Text Available In the past ten years, neutrino oscillation experiments have provided the incontrovertible evidence that neutrinos mix and have finite masses. These results represent the strongest demonstration that the electroweak Standard Model is incomplete and that new Physics beyond it must exist. In this scenario, a unique role is played by the Neutrinoless Double Beta Decay searches which can probe lepton number conservation and investigate the Dirac/Majorana nature of the neutrinos and their absolute mass scale (hierarchy problem with unprecedented sensitivity. Today Neutrinoless Double Beta Decay faces a new era where large-scale experiments with a sensitivity approaching the so-called degenerate-hierarchy region are nearly ready to start and where the challenge for the next future is the construction of detectors characterized by a tonne-scale size and an incredibly low background. A number of new proposed projects took up this challenge. These are based either on large expansions of the present experiments or on new ideas to improve the technical performance and/or reduce the background contributions. In this paper, a review of the most relevant ongoing experiments is given. The most relevant parameters contributing to the experimental sensitivity are discussed and a critical comparison of the future projects is proposed.

  14. Forward-Looking Betas

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Jacobs, Kris; Vainberg, Gregory

    Few issues are more important for finance practice than the computation of market betas. Existing approaches compute market betas using historical data. While these approaches differ in terms of statistical sophistication and the modeling of the time-variation in the betas, they are all backward......-looking. This paper introduces a radically different approach to estimating market betas. Using the tools in Bakshi and Madan (2000) and Bakshi, Kapadia and Madan (2003) we employ the information embedded in the prices of individual stock options and index options to compute our forward-looking market beta...

  15. High frequency nanotube oscillator

    Science.gov (United States)

    Peng, Haibing; Zettl, Alexander K.

    2012-02-21

    A tunable nanostructure such as a nanotube is used to make an electromechanical oscillator. The mechanically oscillating nanotube can be provided with inertial clamps in the form of metal beads. The metal beads serve to clamp the nanotube so that the fundamental resonance frequency is in the microwave range, i.e., greater than at least 1 GHz, and up to 4 GHz and beyond. An electric current can be run through the nanotube to cause the metal beads to move along the nanotube and changing the length of the intervening nanotube segments. The oscillator can operate at ambient temperature and in air without significant loss of resonance quality. The nanotube is can be fabricated in a semiconductor style process and the device can be provided with source, drain, and gate electrodes, which may be connected to appropriate circuitry for driving and measuring the oscillation. Novel driving and measuring circuits are also disclosed.

  16. Synchronization of hyperchaotic oscillators

    DEFF Research Database (Denmark)

    Tamasevicius, A.; Cenys, A.; Mykolaitis, G.;

    1997-01-01

    Synchronization of chaotic oscillators is believed to have promising applications in secure communications. Hyperchaotic systems with multiple positive Lyapunov exponents (LEs) have an advantage over common chaotic systems with only one positive LE. Three different types of hyperchaotic electronic...

  17. A novel photonic oscillator

    Science.gov (United States)

    Yao, X. S.; Maleki, L.

    1995-01-01

    We report a novel oscillator for photonic RF systems. This oscillator is capable of generating high-frequency signals up to 70 GHz in both electrical and optical domains and is a special voltage-controlled oscillator with an optical output port. It can be used to make a phase-locked loop (PLL) and perform all functions that a PLL is capable of for photonic systems. It can be synchronized to a reference source by means of optical injection locking, electrical injection locking, and PLL. It can also be self-phase locked and self-injection locked to generate a high-stability photonic RF reference. Its applications include high-frequency reference regeneration and distribution, high-gain frequency multiplication, comb-frequecy and square-wave generation, carrier recovery, and clock recovery. We anticipate that such photonic voltage-controlled oscillators (VCOs) will be as important to photonic RF systems as electrical VCOs are to electrical RF systems.

  18. Neural Oscillators Programming Simplified

    Directory of Open Access Journals (Sweden)

    Patrick McDowell

    2012-01-01

    Full Text Available The neurological mechanism used for generating rhythmic patterns for functions such as swallowing, walking, and chewing has been modeled computationally by the neural oscillator. It has been widely studied by biologists to model various aspects of organisms and by computer scientists and robotics engineers as a method for controlling and coordinating the gaits of walking robots. Although there has been significant study in this area, it is difficult to find basic guidelines for programming neural oscillators. In this paper, the authors approach neural oscillators from a programmer’s point of view, providing background and examples for developing neural oscillators to generate rhythmic patterns that can be used in biological modeling and robotics applications.

  19. Neutrino anomalies without oscillations

    Indian Academy of Sciences (India)

    Sandip Pakvasa

    2000-01-01

    I review explanations for the three neutrino anomalies (solar, atmospheric and LSND) which go beyond the `conventional' neutrino oscillations induced by mass-mixing. Several of these require non-zero neutrino masses as well.

  20. Oscillations in counting statistics

    CERN Document Server

    Wilk, Grzegorz

    2016-01-01

    The very large transverse momenta and large multiplicities available in present LHC experiments on pp collisions allow a much closer look at the corresponding distributions. Some time ago we discussed a possible physical meaning of apparent log-periodic oscillations showing up in p_T distributions (suggesting that the exponent of the observed power-like behavior is complex). In this talk we concentrate on another example of oscillations, this time connected with multiplicity distributions P(N). We argue that some combinations of the experimentally measured values of P(N) (satisfying the recurrence relations used in the description of cascade-stochastic processes in quantum optics) exhibit distinct oscillatory behavior, not observed in the usual Negative Binomial Distributions used to fit data. These oscillations provide yet another example of oscillations seen in counting statistics in many different, apparently very disparate branches of physics further demonstrating the universality of this phenomenon.

  1. Oscillating Filaments. I. Oscillation and Geometrical Fragmentation

    Science.gov (United States)

    Gritschneder, Matthias; Heigl, Stefan; Burkert, Andreas

    2017-01-01

    We study the stability of filaments in equilibrium between gravity and internal as well as external pressure using the grid-based AMR code RAMSES. A homogeneous, straight cylinder below a critical line mass is marginally stable. However, if the cylinder is bent, such as with a slight sinusoidal perturbation, an otherwise stable configuration starts to oscillate, is triggered into fragmentation, and collapses. This previously unstudied behavior allows a filament to fragment at any given scale, as long as it has slight bends. We call this process “geometrical fragmentation.” In our realization, the spacing between the cores matches the wavelength of the sinusoidal perturbation, whereas up to now, filaments were thought to be only fragmenting on the characteristic scale set by the mass-to-line ratio. Using first principles, we derive the oscillation period as well as the collapse timescale analytically. To enable a direct comparison with observations, we study the line-of-sight velocity for different inclinations. We show that the overall oscillation pattern can hide the infall signature of cores.

  2. Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice

    Science.gov (United States)

    Sherman, Maxwell A.; Lee, Shane; Law, Robert; Haegens, Saskia; Thorn, Catherine A.; Hämäläinen, Matti S.; Moore, Christopher I.; Jones, Stephanie R.

    2016-01-01

    Human neocortical 15–29-Hz beta oscillations are strong predictors of perceptual and motor performance. However, the mechanistic origin of beta in vivo is unknown, hindering understanding of its functional role. Combining human magnetoencephalography (MEG), computational modeling, and laminar recordings in animals, we present a new theory that accounts for the origin of spontaneous neocortical beta. In our MEG data, spontaneous beta activity from somatosensory and frontal cortex emerged as noncontinuous beta events typically lasting <150 ms with a stereotypical waveform. Computational modeling uniquely designed to infer the electrical currents underlying these signals showed that beta events could emerge from the integration of nearly synchronous bursts of excitatory synaptic drive targeting proximal and distal dendrites of pyramidal neurons, where the defining feature of a beta event was a strong distal drive that lasted one beta period (∼50 ms). This beta mechanism rigorously accounted for the beta event profiles; several other mechanisms did not. The spatial location of synaptic drive in the model to supragranular and infragranular layers was critical to the emergence of beta events and led to the prediction that beta events should be associated with a specific laminar current profile. Laminar recordings in somatosensory neocortex from anesthetized mice and awake monkeys supported these predictions, suggesting this beta mechanism is conserved across species and recording modalities. These findings make several predictions about optimal states for perceptual and motor performance and guide causal interventions to modulate beta for optimal function. PMID:27469163

  3. The Liege Oscillation Code

    CERN Document Server

    Scuflaire, R; Théado, S; Bourge, P -O; Miglio, A; Godart, M; Thoul, A; Noels, A

    2007-01-01

    The Liege Oscillation code can be used as a stand-alone program or as a library of subroutines that the user calls from a Fortran main program of his own to compute radial and non-radial adiabatic oscillations of stellar models. We describe the variables and the equations used by the program and the methods used to solve them. A brief account is given of the use and the output of the program.

  4. Ultrastable Multigigahertz Photonic Oscillator

    Science.gov (United States)

    Logan, Ronald T., Jr.

    1996-01-01

    Novel photonic oscillator developed to serve as ultrastable source of microwave and millimeter-wave signals. In system, oscillations generated photonically, then converted to electronic form. Includes self-mode-locked semiconductor laser producing stream of pulses, detected and fed back to laser as input. System also includes fiber-optic-delay-line discriminator, which detects fluctuations of self-mode-locking frequency and generates error signal used in negative-feedback loop to stabilize pulse-repetition frequency.

  5. Indirect neutrino oscillations

    CERN Document Server

    Babu, K S; Wilczek, Frank; Pati, Jogesh C; Wilczek, Frank

    1995-01-01

    We show how two different scales for oscillations between e and \\mu neutrinos, characterized by different mixing angles and effective mass scales, can arise in a simple and theoretically attractive framework. One scale characterizes direct oscillations, which can accommodate the MSW approach to the solar neutrino problem, whereas the other can be considered as arising indirectly, through virtual transitions involving the \\tau neutrino with a mass \\sim 1 eV. This indirect transition allows the possibility of observable \\bar \

  6. Oscillators and operational amplifiers

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2005-01-01

    A generalized approach to the design of oscillators using operational amplifiers as active elements is presented. A piecewise-linear model of the amplifier is used so that it make sense to investigate the eigenvalues of the Jacobian of the differential equations. The characteristic equation...... of the general circuit is derived. The dynamic nonlinear transfer characteristic of the amplifier is investigated. Examples of negative resistance oscillators are discussed....

  7. First harmonic injection locking of 24-GHz-oscillators

    Directory of Open Access Journals (Sweden)

    M. R. Kühn

    2003-01-01

    Full Text Available An increasing number of applications is proposed for the 24 GHz ISM-band, like automotive radar systems and short-range communication links. These applications demand for oscillators providing moderate output power of a few mW and moderate frequency stability of about 0.5%. The maximum oscillation frequency of low-cost off-theshelf transistors is too low for stable operation of a fundamental 24GHz oscillator. Thus, we designed a 24 GHz first harmonic oscillator, where the power generated at the fundamental frequency (12 GHz is reflected resulting in effective generation of output power at the first harmonic. We measured a radiated power from an integrated planar antenna of more than 1mW. Though this oscillator provides superior frequency stability compared to fundamental oscillators, for some applications additional stabilization is required. As a low-cost measure, injection locking can be used to phase lock oscillators that provide sufficient stability in free running mode. Due to our harmonic oscillator concept injection locking has to be achieved at the first harmonic, since only the antenna is accessible for signal injection. We designed, fabricated and characterized a harmonic oscillator using the antenna as a port for injection locking. The locking range was measured versus various parameters. In addition, phase-noise improvement was investigated. A theoretical approach for the mechanism of first harmonic injection locking is presented.

  8. Modulation of synchrotron radiation by acoustic oscillations

    CERN Document Server

    Mkrtchyan, A R; Kocharyan, L A; Mirzoyan, V K

    1986-01-01

    By means of a quartz single crystal excited by piezoelectric oscillations, the modulation of synchrotron radiation reflected from the quartz planes (1011) is realized for frequencies ranging from 1 Hz to 15 kHz when the Bragg condition is satisfied. The wavelength of synchrotron radiation ranged from 0.3 to 12A. The patterns of modulated beams taken from oscillograph and analyzer screens are shown.

  9. Self-oscillation

    CERN Document Server

    Jenkins, Alejandro

    2011-01-01

    Physicists are very familiar with forced and parametric resonance, but usually not with self-oscillation, a property of certain linear systems that gives rise to a great variety of vibrations, both useful and destructive. In a self-oscillator, the driving force is controlled by the oscillation itself so that it acts in phase with the velocity, causing a negative damping that feeds energy from the environment into the vibration: no external rate needs to be tuned to the resonant frequency. A paper from 1830 by G. B. Airy gives us the opening to introduce self-oscillation as a sort of "perpetual motion" responsible for the human voice. The famous collapse of the Tacoma Narrows bridge in 1940, often attributed by introductory physics texts to forced resonance, was actually a self-oscillation, as was the more recent swaying of the London Millenium Footbridge. Clocks are self-oscillators, as are bowed and wind musical instruments, and the heartbeat. We review the criterion that determines whether an arbitrary line...

  10. Frequency of self-oscillations

    CERN Document Server

    Groszkowski, Janusz

    2013-01-01

    Frequency of Self-Oscillations covers the realm of electric oscillations that plays an important role both in the scientific and technical aspects. This book is composed of nine chapters, and begins with the introduction to the alternating currents and oscillation. The succeeding chapters deal with the free oscillations in linear isolated systems. These topics are followed by discussions on self-oscillations in linear systems. Other chapters describe the self-oscillations in non-linear systems, the influence of linear elements on frequency of oscillations, and the electro mechanical oscillato

  11. Relaxation oscillations in a laser with a Gaussian mirror.

    Science.gov (United States)

    Mossakowska-Wyszyńska, Agnieszka; Witoński, Piotr; Szczepański, Paweł

    2002-03-20

    We present an analysis of the relaxation oscillations in a laser with a Gaussian mirror by taking into account the three-dimensional spatial field distribution of the laser modes and the spatial hole burning effect. In particular, we discuss the influence of the Gaussian mirror peak reflectivity and a Gaussian parameter on the damping rate and frequency of the relaxation oscillation for two different laser structures, i.e., with a classically unstable resonator and a classically stable resonator.

  12. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  13. Implications of 3+1 short-baseline neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Giunti, Carlo, E-mail: giunti@to.infn.it [INFN, Sezione di Torino, Via P. Giuria 1, I-10125 Torino (Italy); Laveder, Marco, E-mail: laveder@pd.infn.it [Dipartimento di Fisica ' ' G. Galilei' ' , Universita di Padova, and INFN, Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy)

    2011-12-06

    We present an upgrade of the 3+1 global fit of short-baseline neutrino oscillation data obtained with the addition of KARMEN and LSND {nu}{sub e}+{sup 12}C{yields}{sup 12}N{sub g.s.}+e{sup -} scattering data. We discuss the implications for the measurements of the effective neutrino mass in {beta}-decay and neutrinoless double-{beta}-decay experiments. We find respective predicted ranges of about 0.1-0.7 eV and 0.01-0.1 eV.

  14. Reflective equilibrium

    NARCIS (Netherlands)

    van der Burg, W.; van Willigenburg, T.

    1998-01-01

    The basic idea of reflective equilibrium, as a method for theory construction and decision making in ethics, is that we should bring together a broad variety of moral and non-moral beliefs and, through a process of critical scrutiny and mutual adjustment, combine these into one coherent belief syste

  15. Experience Drives Synchronization: The phase and Amplitude Dynamics of Neural Oscillations to Musical Chords Are Differentially Modulated by Musical Expertise.

    Directory of Open Access Journals (Sweden)

    Karen Johanne Pallesen

    Full Text Available Musical expertise is associated with structural and functional changes in the brain that underlie facilitated auditory perception. We investigated whether the phase locking (PL and amplitude modulations (AM of neuronal oscillations in response to musical chords are correlated with musical expertise and whether they reflect the prototypicality of chords in Western tonal music. To this aim, we recorded magnetoencephalography (MEG while musicians and non-musicians were presented with common prototypical major and minor chords, and with uncommon, non-prototypical dissonant and mistuned chords, while watching a silenced movie. We then analyzed the PL and AM of ongoing oscillations in the theta (4-8 Hz alpha (8-14 Hz, beta- (14-30 Hz and gamma- (30-80 Hz bands to these chords. We found that musical expertise was associated with strengthened PL of ongoing oscillations to chords over a wide frequency range during the first 300 ms from stimulus onset, as opposed to increased alpha-band AM to chords over temporal MEG channels. In musicians, the gamma-band PL was strongest to non-prototypical compared to other chords, while in non-musicians PL was strongest to minor chords. In both musicians and non-musicians the long-latency (> 200 ms gamma-band PL was also sensitive to chord identity, and particularly to the amplitude modulations (beats of the dissonant chord. These findings suggest that musical expertise modulates oscillation PL to musical chords and that the strength of these modulations is dependent on chord prototypicality.

  16. Oscillations in stellar superflares

    CERN Document Server

    Balona, L A; Kosovichev, A; Nakariakov, V M; Pugh, C E; Van Doorsselaere, T

    2015-01-01

    Two different mechanisms may act to induce quasi-periodic pulsations (QPP) in whole-disk observations of stellar flares. One mechanism may be magneto-hydromagnetic (MHD) forces and other processes acting on flare loops as seen in the Sun. The other mechanism may be forced local acoustic oscillations due to the high-energy particle impulse generated by the flare (known as `sunquakes' in the Sun). We analyze short-cadence Kepler data of 257 flares in 75 stars to search for QPP in the flare decay branch or post-flare oscillations which may be attributed to either of these two mechanisms. About 18 percent of stellar flares show a distinct bump in the flare decay branch of unknown origin. The bump does not seem to be a highly-damped global oscillation because the periods of the bumps derived from wavelet analysis do not correlate with any stellar parameter. We detected damped oscillations covering several cycles (QPP), in seven flares on five stars. The periods of these oscillations also do not correlate with any ...

  17. Oscillations following periodic reinforcement.

    Science.gov (United States)

    Monteiro, Tiago; Machado, Armando

    2009-06-01

    Three experiments examined behavior in extinction following periodic reinforcement. During the first phase of Experiment 1, four groups of pigeons were exposed to fixed interval (FI 16s or FI 48s) or variable interval (VI 16s or VI 48s) reinforcement schedules. Next, during the second phase, each session started with reinforcement trials and ended with an extinction segment. Experiment 2 was similar except that the extinction segment was considerably longer. Experiment 3 replaced the FI schedules with a peak procedure, with FI trials interspersed with non-food peak interval (PI) trials that were four times longer. One group of pigeons was exposed to FI 20s PI 80s trials, and another to FI 40s PI 160s trials. Results showed that, during the extinction segment, most pigeons trained with FI schedules, but not with VI schedules, displayed pause-peck oscillations with a period close to, but slightly greater than the FI parameter. These oscillations did not start immediately after the onset of extinction. Comparing the oscillations from Experiments 1 and 2 suggested that the alternation of reconditioning and re-extinction increases the reliability and earlier onset of the oscillations. In Experiment 3 the pigeons exhibited well-defined pause-peck cycles since the onset of extinction. These cycles had periods close to twice the value of the FI and lasted for long intervals of time. We discuss some hypotheses concerning the processes underlying behavioral oscillations following periodic reinforcement.

  18. Oscillate boiling from microheaters

    Science.gov (United States)

    Li, Fenfang; Gonzalez-Avila, S. Roberto; Nguyen, Dang Minh; Ohl, Claus-Dieter

    2017-01-01

    We report about an intriguing boiling regime occurring for small heaters embedded on the boundary in subcooled water. The microheater is realized by focusing a continuous wave laser beam to about 10 μ m in diameter onto a 165-nm-thick layer of gold, which is submerged in water. After an initial vaporous explosion a single bubble oscillates continuously and repeatedly at several 100 kHz albeit with constant laser power input. The microbubble's oscillations are accompanied with bubble pinch-off, leading to a stream of gaseous bubbles in the subcooled water. The self-driven bubble oscillation is explained with a thermally kicked oscillator caused by surface attachment and by the nonspherical collapses. Additionally, Marangoni stresses induce a recirculating streaming flow which transports cold liquid towards the microheater, reducing diffusion of heat along the substrate and therefore stabilizing the phenomenon to many million cycles. We speculate that this oscillate boiling regime may overcome the heat transfer thresholds observed during the nucleate boiling crisis and offers a new pathway for heat transfer under microgravity conditions.

  19. Finite q-oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Atakishiyev, Natig M [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Klimyk, Anatoliy U [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Wolf, Kurt Bernardo [Centro de Ciencias FIsicas, UNAM, Apartado Postal 48-3, 62251 Cuernavaca, Morelos (Mexico)

    2004-05-28

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra su{sub q}(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x{sub s} = 1/2 [2s]{sub q}, s element of {l_brace}-j, -j+1, ..., j{r_brace}, and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schroedinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q {yields} 1 we recover the finite oscillator Lie algebra, the N = 2j {yields} {infinity} limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  20. Finite q-oscillator

    Science.gov (United States)

    Atakishiyev, Natig M.; Klimyk, Anatoliy U.; Wolf, Kurt Bernardo

    2004-05-01

    The finite q-oscillator is a model that obeys the dynamics of the harmonic oscillator, with the operators of position, momentum and Hamiltonian being functions of elements of the q-algebra suq(2). The spectrum of position in this discrete system, in a fixed representation j, consists of 2j + 1 'sensor'-points x_s={\\case12}[2s]_q, s\\in\\{-j,-j+1,\\ldots,j\\} , and similarly for the momentum observable. The spectrum of energies is finite and equally spaced, so the system supports coherent states. The wavefunctions involve dual q-Kravchuk polynomials, which are solutions to a finite-difference Schrödinger equation. Time evolution (times a phase) defines the fractional Fourier-q-Kravchuk transform. In the classical limit as q rarr 1 we recover the finite oscillator Lie algebra, the N = 2j rarr infin limit returns the Macfarlane-Biedenharn q-oscillator and both limits contract the generators to the standard quantum-mechanical harmonic oscillator.

  1. Betting against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    2014-01-01

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model's five central predictions: (1) Because constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for......, the return of the BAB factor is low. (4) Increased funding liquidity risk compresses betas toward one. (5) More constrained investors hold riskier assets....... for US equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures. (2) A betting against beta (BAB) factor, which is long leveraged low-beta assets and short high-beta assets, produces significant positive risk-adjusted returns. (3) When funding constraints tighten...

  2. Betting Against Beta

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    We present a model with leverage and margin constraints that vary across investors and time. We find evidence consistent with each of the model’s five central predictions: (1) Since constrained investors bid up high-beta assets, high beta is associated with low alpha, as we find empirically for U...... of the BAB factor is low; (4) Increased funding liquidity risk compresses betas toward one; (5) More constrained investors hold riskier assets........S. equities, 20 international equity markets, Treasury bonds, corporate bonds, and futures; (2) A betting-against-beta (BAB) factor, which is long leveraged low beta assets and short high-beta assets, produces significant positive risk-adjusted returns; (3) When funding constraints tighten, the return...

  3. Tunable Soft X-Ray Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Wurtele, Jonathan; Gandhi, Punut; Gu, X-W; Fawley, William M; Reinsch, Matthia; Penn, Gregory; Kim, K-J; Lindberg, Ryan; Zholents, Alexander

    2010-09-17

    A concept for a tunable soft x-ray free electron laser (FEL) photon source is presented and studied numerically. The concept is based on echo-enabled harmonic generation (EEHG), wherein two modulator-chicane sections impose high harmonic structure with much greater efficacy as compared to conventional high harmonic FELs that use only one modulator-chicane section. The idea proposed here is to replace the external laser power sources in the EEHG modulators with FEL oscillators, and to combine the bunching of the beam with the production of radiation. Tunability is accomplished by adjusting the magnetic chicanes while the two oscillators remain at a fixed frequency. This scheme eliminates the need to develop coherent sources with the requisite power, pulse length, and stability requirements by exploiting the MHz bunch repetition rates of FEL continuous wave (CW) sources driven by superconducting (SC) linacs. We present time-dependent GINGER simulation results for an EEHG scheme with an oscillator modulator at 43 nm employing 50percent reflective dielectric mirrors and a second modulator employing an external, 215-nm drive laser. Peak output of order 300 MW is obtained at 2.7 nm, corresponding to the 80th harmonic of 215 nm. An alternative single-cavity echo-oscillator scheme based on a 13.4 nm oscillator is investigated with time-independent simulations that a 180-MW peak power at final wavelength of 1.12 nm. Three alternate configurations that use separate bunches to produce the radiation for EEHG microbunching are also presented. Our results show that oscillator-based soft x-ray FELs driven by CWSC linacs are extremely attractive because of their potential to produce tunable radiation at high average power together with excellent longitudinal coherence and narrow spectral bandwidth.

  4. Imperfect World of $\\beta\\beta$-decay Nuclear Data Sets

    CERN Document Server

    Pritychenko, B

    2015-01-01

    The precision of double-beta ($\\beta\\beta$) decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for $\\beta\\beta$-decay T$_{1/2}^{2\

  5. Implications of Fermionic Dark Matter on recent neutrino oscillation data

    CERN Document Server

    Singirala, Shivaramakrishna

    2016-01-01

    We investigate flavor phenomenology and dark matter in the context of scotogenic model. In this model, the neutrino masses are generated through radiative corrections at one-loop level. Considering the neutrino mixing matrix to be of tri-bimaximal form with additional perturbations to accommodate the recently observed non-zero value of reactor mixing angle $\\theta_{13}$, we obtain the relation between various neutrino oscillation parameters and the model parameters. Working in degenerate heavy neutrino mass spectrum, we obtain light neutrino masses obeying normal heirarchy and also study the relic abundance of fermionic dark matter candidate including coannihilation effects. A viable parameter space is thus obtained, consistent with neutrino oscillation data, relic abundance and various lepton flavor violating decays such as $\\ell_\\alpha\\to\\ell_\\beta\\gamma$ and $\\ell_\\alpha \\to 3 \\, \\ell_\\beta$.

  6. Arbitrary Spin Galilean Oscillator

    CERN Document Server

    Hagen, C R

    2014-01-01

    The so-called Dirac oscillator was proposed as a modification of the free Dirac equation which reproduces many of the properties of the simple harmonic oscillator but accompanied by a strong spin-orbit coupling term. It has yet to be extended successfully to the arbitrary spin S case primarily because of the unwieldiness of general spin Lorentz invariant wave equations. It is shown here using the formalism of totally symmetric multispinors that the Dirac oscillator can, however, be made to accommodate spin by incorporating it into the framework of Galilean relativity. This is done explicitly for spin zero and spin one as special cases of the arbitrary spin result. For the general case it is shown that the coefficient of the spin-orbit term has a 1/S behavior by techniques which are virtually identical to those employed in the derivation of the g-factor carried out over four decades ago.

  7. Oscillations in neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Hoeye, Gudrun Kristine

    1999-07-01

    We have studied radial and nonradial oscillations in neutron stars, both in a general relativistic and non-relativistic frame, for several different equilibrium models. Different equations of state were combined, and our results show that it is possible to distinguish between the models based on their oscillation periods. We have particularly focused on the p-, f-, and g-modes. We find oscillation periods of II approx. 0.1 ms for the p-modes, II approx. 0.1 - 0.8 ms for the f-modes and II approx. 10 - 400 ms for the g-modes. For high-order (l (>{sub )} 4) f-modes we were also able to derive a formula that determines II{sub l+1} from II{sub l} and II{sub l-1} to an accuracy of 0.1%. Further, for the radial f-mode we find that the oscillation period goes to infinity as the maximum mass of the star is approached. Both p-, f-, and g-modes are sensitive to changes in the central baryon number density n{sub c}, while the g-modes are also sensitive to variations in the surface temperature. The g-modes are concentrated in the surface layer, while p- and f-modes can be found in all parts of the star. The effects of general relativity were studied, and we find that these are important at high central baryon number densities, especially for the p- and f-modes. General relativistic effects can therefore not be neglected when studying oscillations in neutron stars. We have further developed an improved Cowling approximation in the non-relativistic frame, which eliminates about half of the gap in the oscillation periods that results from use of the ordinary Cowling approximation. We suggest to develop an improved Cowling approximation also in the general relativistic frame. (Author)

  8. Stimulus Dependence of Gamma Oscillations in Human Visual Cortex.

    Science.gov (United States)

    Hermes, D; Miller, K J; Wandell, B A; Winawer, J

    2015-09-01

    A striking feature of some field potential recordings in visual cortex is a rhythmic oscillation within the gamma band (30-80 Hz). These oscillations have been proposed to underlie computations in perception, attention, and information transmission. Recent studies of cortical field potentials, including human electrocorticography (ECoG), have emphasized another signal within the gamma band, a nonoscillatory, broadband signal, spanning 80-200 Hz. It remains unclear under what conditions gamma oscillations are elicited in visual cortex, whether they are necessary and ubiquitous in visual encoding, and what relationship they have to nonoscillatory, broadband field potentials. We demonstrate that ECoG responses in human visual cortex (V1/V2/V3) can include robust narrowband gamma oscillations, and that these oscillations are reliably elicited by some spatial contrast patterns (luminance gratings) but not by others (noise patterns and many natural images). The gamma oscillations can be conspicuous and robust, but because they are absent for many stimuli, which observers can see and recognize, the oscillations are not necessary for seeing. In contrast, all visual stimuli induced broadband spectral changes in ECoG responses. Asynchronous neural signals in visual cortex, reflected in the broadband ECoG response, can support transmission of information for perception and recognition in the absence of pronounced gamma oscillations.

  9. Effects of the Facet Reflectivity of a Laser Diode on Fiber Bragg Grating Semiconductor Lasers

    Institute of Scientific and Technical Information of China (English)

    Honggang; Yu; Chang-Qing; Xu; Na; Li; Zhilin; Peng; Jacek; Wojcik; Peter; Mascher

    2003-01-01

    Effects of facet reflectivity of a laser diode on the performance of fiber Bragg grating semiconductor lasers are studied experimentally. Facet reflectivity of less than 10-4 is necessary to obtain stable oscillation wavelength.

  10. Solar-neutrino oscillations

    Science.gov (United States)

    Krauss, L.; Wilczek, F.

    1985-01-01

    The theory of oscillations of solar neutrinos is developed as it applies to the electron-recoil spectrum in neutrino-electron scattering. The spectral information obtained by such measurements (as opposed to counting total event rates) is crucial for allowing observation of neutrino oscillations for masses down to 500 neV. In this regard, the effects of different masses and mixing angles, as well as such subtleties as thermal and pressure broadening, finite solar-core size, and variable indices of refraction are investigated.

  11. Friedel oscillations in graphene

    DEFF Research Database (Denmark)

    Lawlor, J. A.; Power, S. R.; Ferreira, M.S.

    2013-01-01

    Symmetry breaking perturbations in an electronically conducting medium are known to produce Friedel oscillations in various physical quantities of an otherwise pristine material. Here we show in a mathematically transparent fashion that Friedel oscillations in graphene have a strong sublattice...... asymmetry. As a result, the presence of impurities and/or defects may impact the distinct graphene sublattices very differently. Furthermore, such an asymmetry can be used to explain the recent observations that nitrogen atoms and dimers are not randomly distributed in graphene but prefer to occupy one...

  12. Nonlinear harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Calogero, F [Dipartimento di Fisica, Universita di Roma ' La Sapienza' (Italy); Inozemtsev, V I [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2002-12-06

    The existence is noted of assemblies of an arbitrary number of complex oscillators, or equivalently, of an arbitrary even number of real oscillators, characterized by Newtonian equations of motion ('acceleration equal force') with one-body velocity-dependent linear forces and many-body velocity-independent cubic forces, all the nonsingular solutions of which are isochronous (completely periodic with the same period). As for the singular solutions, as usual they emerge, in the context of the initial-value problem, from a closed domain in phase space having lower dimensionality.

  13. Studies to confirm the source of 11 beta-hydroxyandrostenedione.

    Science.gov (United States)

    Holownia, P; Owen, E J; Conway, G S; Round, J; Honour, J W

    1992-03-01

    In a longitudinal study of 82 children we found a gradual rise in median plasma concentrations of 11 beta-hydroxyandrostenedione (11 beta-OH-A4) from 2.5 to 6.4 nmol/l during childhood which was similar in both sexes. This could reflect changes in adrenal function during the adrenarche and sexual maturation. Plasma concentrations of 11 beta-OH-A4 in adults follow the patterns of cortisol secretion. In patients with diseases of the adrenal cortex, the plasma concentrations of 11 beta-OH-A4 were consistent with the pathology of each condition. In women with polycystic ovaries (PCO) undergoing gonadotrophic stimulation for in vitro fertilization and embryo transfer, 11 beta-OH-A4 (median = 3.8 nmol/l), testosterone and androstenedione, were raised when compared to women with normal ovaries (11 beta-OH-A4 median = 2.6 nmol/l). Follicular fluid has concentrations of 11 beta-OH-A4 six to twelve times greater than plasma levels and in women with PCO, 11 beta-OH-A4 concentrations were lower than in women with normal ovaries, which is consistent with an inhibition of ovarian 11 beta-hydroxylase. Granulosa cells in vitro demonstrated the production of 11 beta-OH-A4 by side chain cleavage of cortisol. These data support an adrenal source for 11 beta-OH-A4 but the raised plasma concentrations in women with polycystic ovary syndrome (PCOS) may reflect the excess androgen output from the ovary. 11 beta-OH-A4 may therefore be an additional marker for ovarian dysfunction.

  14. New expectations and uncertainties on Neutrinoless Double Beta Decay

    CERN Document Server

    Dell'Oro, Stefano; Vissani, Francesco

    2014-01-01

    The discovery of neutrino oscillations and its implication that neutrinos have mass have boosted the importance of neutrinoless double beta decay. Neutrinoless double beta decay offers unique chances to investigate the nature of the neutrino mass term, giving also information on the absolute scale and the mass hierarchy, assuming that neutrinos are Majorana particles. We study the Majorana Effective Mass, i. e. the crucial parameter that regulates the rate of the neutrinoless double beta decay due to light neutrino exchange. We update the previous estimations of this parameter, using the most recent data analysis, phase space factors and nuclear matrix elements. We evaluate the impact of the quenching in the nuclear medium of the axial vector coupling constant, as discussed by Iachello and collaborators. We provide estimations of the sensitivity of recent and future neutrinoless double beta decay experiments in terms of the Majorana Effective Mass. Finally, we discuss the possibility of taking advantage of th...

  15. Current and future searches for neutrinoless double beta decay

    Science.gov (United States)

    Dolinski, Michelle J.

    2016-09-01

    With the discovery of neutrino oscillations and neutrino mass, it has become a pressing question whether neutrinos have distinct antiparticle states. The most practical experimental approach to answering this question is the search for neutrinoless double beta decay, a version of a rare nuclear process that would violate lepton number conservation. The observation of neutrinoless double beta decay would prove that neutrinos are their own antiparticles. Neutrinoless double beta decay experiments deploy large source masses consisting of a select few (usually enriched) isotopes of interest. Detectors must achieve extremely low levels of radioactive background to detect this rare decay. I will report on recent searches for neutrinoless double beta decay and discuss the technical challenges that the next generation of experiments will overcome.

  16. Oscillation Baselining and Analysis Tool

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-27

    PNNL developed a new tool for oscillation analysis and baselining. This tool has been developed under a new DOE Grid Modernization Laboratory Consortium (GMLC) Project (GM0072 - “Suite of open-source applications and models for advanced synchrophasor analysis”) and it is based on the open platform for PMU analysis. The Oscillation Baselining and Analysis Tool (OBAT) performs the oscillation analysis and identifies modes of oscillations (frequency, damping, energy, and shape). The tool also does oscillation event baselining (fining correlation between oscillations characteristics and system operating conditions).

  17. Theoretical analysis of spectrum flattening in fiber laser oscillator

    Science.gov (United States)

    Shi, Chen; Wang, Xiaolin; Zhou, Pu; Wang, Zefeng; Xu, Xiaojun; Lu, Qisheng

    2017-01-01

    The flatness of laser spectrum is important in many applications. In this manuscript, a method of acquiring flattened spectrum directly from a fiber oscillator by optimizing the reflective spectrum of Fiber Bragg Gratings (FBG) was demonstrated and optimized result at wavelength around 1064 nm and 1080 nm was presented. An optimization path to alter the reflectivity of FBGs using greedy algorithm was interpreted by analyzing the single-trip gain inside the resonant cavity. Our method has a guiding significance of controlling the output spectrum of laser oscillator using FBGs.

  18. How adaptation shapes spike rate oscillations in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Moritz eAugustin

    2013-02-01

    Full Text Available Neural mass signals from in-vivo recordings often show oscillations with frequencies ranging from <1 Hz to 100 Hz. Fast rhythmic activity in the beta and gamma range can be generated by network based mechanisms such as recurrent synaptic excitation-inhibition loops. Slower oscillations might instead depend on neuronal adaptation currents whose timescales range from tens of milliseconds to seconds. Here we investigate how the dynamics of such adaptation currents contribute to spike rate oscillations and resonance properties in recurrent networks of excitatory and inhibitory neurons. Based on a network of sparsely coupled spiking model neurons with two types of adaptation current and conductance based synapses with heterogeneous strengths and delays we use a mean-field approach to analyze oscillatory network activity. For constant external input, we find that spike-triggered adaptation currents provide a mechanism to generate slow oscillations over a wide range of adaptation timescales as long as recurrent synaptic excitation is sufficiently strong. Faster rhythms occur when recurrent inhibition is slower than excitation and oscillation frequency increases with the strength of inhibition. Adaptation facilitates such network based oscillations for fast synaptic inhibition and leads to decreased frequencies. For oscillatory external input, adaptation currents amplify a narrow band of frequencies and cause phase advances for low frequencies in addition to phase delays at higher frequencies. Our results therefore identify the different key roles of neuronal adaptation dynamics for rhythmogenesis and selective signal propagation in recurrent networks.

  19. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex.

  20. In sync: gamma oscillations and emotional memory

    Directory of Open Access Journals (Sweden)

    Drew Battenfield Headley

    2013-11-01

    Full Text Available Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz. Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.

  1. Large-scale shell-model analysis of the neutrinoless $\\beta\\beta$ decay of $^{48}$Ca

    CERN Document Server

    Iwata, Y; Otsuka, T; Utsuno, Y; Menendez, J; Honma, M; Abe, T

    2016-01-01

    We present the nuclear matrix element for the neutrinoless double-beta decay of $^{48}$Ca based on large-scale shell-model calculations including two harmonic oscillator shells ($sd$ and $pf$ shells). The excitation spectra of $^{48}$Ca and $^{48}$Ti, and the two-neutrino double-beta decay of $^{48}$Ca are reproduced in good agreement to experiment. We find that the neutrinoless double-beta decay nuclear matrix element is enhanced by about 30\\% compared to $pf$-shell calculations. This reduces the decay lifetime by almost a factor of two. The matrix-element increase is mostly due to pairing correlations associated with cross-shell $sd$-$pf$ excitations. We also investigate possible implications for heavier neutrinoless double-beta decay candidates.

  2. Negative Beta Encoder

    CERN Document Server

    Kohda, Tohru; Aihara, Kazuyuki

    2008-01-01

    A new class of analog-digital (A/D), digital-analog (D/A) converters as an alternative to conventional ones, called $\\beta$-encoder, has been shown to have exponential accuracy in the bit rates while possessing self-correction property for fluctuations of amplifier factor $\\beta$ and quantizer threshold $\

  3. Double beta decay experiments

    CERN Document Server

    Barabash, A S

    2011-01-01

    The present status of double beta decay experiments is reviewed. The results of the most sensitive experiments are discussed. Proposals for future double beta decay experiments with a sensitivity to the $$ at the level of (0.01--0.1) eV are considered.

  4. From excitability to oscillations

    DEFF Research Database (Denmark)

    Postnov, D. E.; Neganova, A. Y.; Jacobsen, J. C. B.;

    2013-01-01

    One consequence of cell-to-cell communication is the appearance of synchronized behavior, where many cells cooperate to generate new dynamical patterns. We present a simple functional model of vasomotion based on the concept of a two-mode oscillator with dual interactions: via relatively slow...

  5. Neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Camilleri, L. [European Organization for Nuclear Research, Geneva (Switzerland)

    1996-11-01

    Neutrino oscillation experiments ({nu}{sub {mu}}{yields}{nu}{sub e} and {nu}{sub {mu}}{yields}{nu}{sub {tau}}) currently being performed at accelerators are reviewed. Future plans for short and long base-line experiments are summarized. (author) 10 figs., 2 tabs., 29 refs.

  6. Multiphoton coherent population oscillation

    CERN Document Server

    Sharypov, A V

    2014-01-01

    We study the bichromatic driving of a two-level system which displays long-lived coherent population oscillations (CPO). We show that under certain conditions, multiphoton parametric interaction leads to the appearance of CPO resonances at the subharmonic frequencies. In addition, in the region of the CPO resonances, there is strong parametric interaction between the weak sideband components of the electromagnetic field.

  7. A simple violin oscillator

    Science.gov (United States)

    Jones, R. T.

    1976-01-01

    For acoustic tests the violin is driven laterally at the bridge by a small speaker of the type commonly found in pocket transistor radios. An audio oscillator excites the tone which is picked up by a sound level meter. Gross patterns of vibration modes are obtained by the Chladni method.

  8. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, Sidse M; Hansen, Lars Kai; Parnas, Josef;

    2007-01-01

    A proprioceptive stimulus consisting of a weight change of a handheld load has recently been shown to elicit an evoked potential. Previously, somatosensory gamma oscillations have only been evoked by electrical stimuli. We conjectured that a natural proprioceptive stimulus also would be able...

  9. [Oscillating physiotherapy for secretolysis].

    Science.gov (United States)

    Brückner, U

    2008-03-01

    Assisted coughing and mechanical cough aids compensate for the weak cough flow in patients with neuromuscular diseases (NMD). In cases with preserved respiratory muscles also breathing techniques and special devices, e. g., flutter or acapella can be used for secretion mobilisation during infections of the airways. These means are summarised as oscillating physiotherapy. Their mechanisms are believed to depend on separation of the mucus from the bronchial wall by vibration, thus facilitating mucus transport from the peripheral to the central airways. In mucoviscidosis and chronic obstructive pulmonary disease their application is established, but there is a paucity of data regarding the commitment in patients with neuromuscular diseases. The effective adoption of simple oscillation physiotherapeutic interventions demands usually a sufficient force of the respiratory muscles--exceptions are the application of the percussionaire (intrapulmonary percussive ventilator, IPV) or high frequency chest wall oscillation (HFCWO). In daily practice there is evidence that patients with weak respiratory muscles are overstrained with the use of these physiotherapeutic means, or get exhausted. A general recommendation for the adoption of simple oscillating physiotherapeutic interventions cannot be made in patients with NMDs. Perhaps in the future devices such as IPV or HFCWO will prove to be more effective in NMD patients.

  10. Proprioceptive evoked gamma oscillations

    DEFF Research Database (Denmark)

    Arnfred, S.M.; Hansen, Lars Kai; Parnas, J.;

    2007-01-01

    to evoke gamma oscillations. EEG was recorded using 64 channels in 14 healthy subjects. In each of three runs a stimulus of 100 g load increment in each hand was presented in 120 trials. Data were wavelet transformed and runs collapsed. Inter-trial phase coherence (ITPC) was computed as the best measure...

  11. Microwave transistor oscillator frequency tripling

    OpenAIRE

    B. A. Kotserzhynskyi

    2010-01-01

    The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  12. Microwave transistor oscillator frequency tripling

    Directory of Open Access Journals (Sweden)

    B. A. Kotserzhynskyi

    2010-01-01

    Full Text Available The frequency tripler state of the art is consided. The oscillator-frequency tripler design is now at the state of scientific research. Microwave companies release the devices of the such structure: oscillator, buffer, amplifier-tripler.

  13. Neutrino Velocity and Neutrino Oscillations

    CERN Document Server

    Minakata, H

    2012-01-01

    We study distances of propagation and the group velocities of the muon neutrinos in the presence of mixing and oscillations assuming that Lorentz invariance holds. Oscillations lead to distortion of the $\

  14. Associated neutrino mixing and neutrino oscillations in left-right electro weak gauge theory

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, R.

    1982-12-01

    The question of the associated neutrino mixing is investigated within the frame work of leftright symmetric gauge theory of electro weak interactions. It is shown that the weak leptonic neutral currents are independent of the mixing angle while the charged counterpart crucially depend on them. As the mass of right handed gauge boson becomes very large, the results reduce to those of the standard model, albeit the arbitrarily small mass for the neutrino. With the associated mixing of neutrinos, the muonness changing neutral weak currents are absent at the tree level. A condition for ..nu..sub(..cap alpha..)reversible..nu..sub(..beta..) oscillation is derived as mind(..nu..sub(..cap alpha..))/mind(..nu..sub(..beta..))>msub(..cap alpha..)/msub(..beta..) where ..cap alpha.., ..beta.. stand for e, ..mu.., tau in that order (..cap alpha..not=..beta..). With three neutrino mixing by SO(3) rotation, the present experimental data on neutrino oscillations are satisfactorily explained with the conclusion that ..nu..sub(e) oscilates mostly with ..nu..sub(tau) and vice-versa while ..nu..sub(..mu..) beam suffers very little oscillation. Consequently it is conjectured that most probably Lsub(e) and Lsub(tau) (lepton numbers) are not conversed while Lsub(..mu..) is nearly conserved in weak interaction.

  15. Genetics Home Reference: beta thalassemia

    Science.gov (United States)

    ... Understand Genetics Home Health Conditions beta thalassemia beta thalassemia Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Beta thalassemia is a blood disorder that reduces the production ...

  16. Inspiring Reflections

    DEFF Research Database (Denmark)

    Muchie, Mammo

    2011-01-01

    A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... life is not free from fluctuations, cycles, disruptions, crises and destructions both human and ecological. Innovation research ought to position itself to address environmental, financial and economic crises. The third is innovation research for development by addressing not only poverty erdaication...

  17. High-frequency oscillations in human and monkey neocortex during the wake-sleep cycle.

    Science.gov (United States)

    Le Van Quyen, Michel; Muller, Lyle E; Telenczuk, Bartosz; Halgren, Eric; Cash, Sydney; Hatsopoulos, Nicholas G; Dehghani, Nima; Destexhe, Alain

    2016-08-16

    Beta (β)- and gamma (γ)-oscillations are present in different cortical areas and are thought to be inhibition-driven, but it is not known if these properties also apply to γ-oscillations in humans. Here, we analyze such oscillations in high-density microelectrode array recordings in human and monkey during the wake-sleep cycle. In these recordings, units were classified as excitatory and inhibitory cells. We find that γ-oscillations in human and β-oscillations in monkey are characterized by a strong implication of inhibitory neurons, both in terms of their firing rate and their phasic firing with the oscillation cycle. The β- and γ-waves systematically propagate across the array, with similar velocities, during both wake and sleep. However, only in slow-wave sleep (SWS) β- and γ-oscillations are associated with highly coherent and functional interactions across several millimeters of the neocortex. This interaction is specifically pronounced between inhibitory cells. These results suggest that inhibitory cells are dominantly involved in the genesis of β- and γ-oscillations, as well as in the organization of their large-scale coherence in the awake and sleeping brain. The highest oscillation coherence found during SWS suggests that fast oscillations implement a highly coherent reactivation of wake patterns that may support memory consolidation during SWS.

  18. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  19. Symmetry-breaking oscillations in membrane optomechanics

    Science.gov (United States)

    Wurl, C.; Alvermann, A.; Fehske, H.

    2016-12-01

    We study the classical dynamics of a membrane inside a cavity in the situation where this optomechanical system possesses a reflection symmetry. Symmetry breaking occurs through supercritical and subcritical pitchfork bifurcations of the static fixed-point solutions. Both bifurcations can be observed through variation of the laser-cavity detuning, which gives rise to a boomerang-like fixed-point pattern with hysteresis. The symmetry-breaking fixed points evolve into self-sustained oscillations when the laser intensity is increased. In addition to the analysis of the accompanying Hopf bifurcations we describe these oscillations at finite amplitudes with an ansatz that fully accounts for the frequency shift relative to the natural membrane frequency. We complete our study by following the route to chaos for the membrane dynamics.

  20. Neutrino Oscillations with Nil Mass

    Science.gov (United States)

    Floyd, Edward R.

    2016-09-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and ν ,bar{ν } oscillations are examined.

  1. On Reflection

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2012-01-01

    This article explores how the concept of reflexivity is used in intercultural education. Reflexivity is often presented as a key learning goal in acquiring intercultural competence (ICC). Yet, reflexivity can be defined in different ways, and take different forms across time and space, depending...... in designing learning objectives in intercultural education and in devising ways to attain them. Greater attention is also needed in intercultural education to the ways in which selfhood, and hence also reflexivity and constructions of difference, differ across space and time....... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...

  2. Reflectivity-modulated grating-mirror

    DEFF Research Database (Denmark)

    2012-01-01

    The invention relates to vertical cavity lasers (VCL) incorporating a reflectivity-modulated grating mirror (1) for modulating the laser output. A cavity is formed by a bottom mirror (4), an active region (3), and an outcoupling top grating mirror (1) formed by a periodic refractive index grating...... to the oscillation axis. A modulated voltage (91) is applied in reverse bias between the n- and p-doped layers to modulate the refractive index of the electrooptic material layer (12) and thereby the reflectivity spectrum of the grating mirror (1). The reflectivity of the grating mirror (1) can be modulated between...... a reflectivity with little or no out coupling and a reflectivity with normal out coupling, wherein lasing in the VCL is supported at both the first and the second reflectivity. As the out coupling mirror modulates the output, the lasing does not need to be modulated, and the invention provides the advantage...

  3. Solution Hamilton-Jacobi equation for oscillator Caldirola-Kanai

    Directory of Open Access Journals (Sweden)

    LEONARDO PASTRANA ARTEAGA

    2016-12-01

    Full Text Available The method allows Hamilton-Jacobi explicitly determine the generating function from which is possible to derive a transformation that makes soluble Hamilton's equations. Using the separation of variables the partial differential equation of the first order called Hamilton-Jacobi equation is solved; as a particular case consider the oscillator Caldirola-Kanai (CK, which is characterized in that the mass presents a temporal evolution exponentially  . We demonstrate that the oscillator CK position presents an exponential decay in time similar to that obtained in the damped sub-critical oscillator, which reflects the dissipation of total mechanical energy. We found that in the limit that the damping factor  is small, the behavior is the same as an oscillator with simple harmonic motion, where the effects of energy dissipation is negligible.

  4. Voltage-controlled photonic oscillator.

    Science.gov (United States)

    Savchenkov, A A; Ilchenko, V S; Liang, W; Eliyahu, D; Matsko, A B; Seidel, D; Maleki, L

    2010-05-15

    We report the development and demonstration of an X-band voltage-controlled photonic oscillator based on a whispering gallery mode resonator made of an electro-optic crystalline material. The oscillator has good spectral purity and wide, agile, linear tunability. We have modified the existing theoretical model of the opto-electronic oscillator to describe the performance of our tunable oscillator and have found a good agreement between the theoretical predictions and the measurement results. We show that the device is promising for higher-frequency applications where high-performance tunable oscillators with wide tunability do not exist.

  5. Stable local oscillator module.

    Energy Technology Data Exchange (ETDEWEB)

    Brocato, Robert Wesley

    2007-11-01

    This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

  6. Entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, M.; Dell' Anno, F.; De Siena, S.; Illuminati, F. [Universita degli Studi di Salerno Via Ponte don Melillon, Dipt. di Matematica e Informatica, Fisciano SA (Italy); INFN Sezione di Napoli, Gruppo collegato di Salerno - Baronissi SA (Italy); Dell' Anno, F.; De Siena, S.; Illuminati, F. [CNR-INFM Coherentia - Napoli (Italy); Blasone, M. [ISI Foundation for Scientific Interchange, Torino (Italy)

    2009-03-15

    Flavor oscillations in elementary particle physics are related to multimode entanglement of single-particle states. We show that mode entanglement can be expressed in terms of flavor transition probabilities, and therefore that single-particle entangled states acquire a precise operational characterization in the context of particle mixing. We treat in detail the physically relevant cases of two- and three-flavor neutrino oscillations, including the effective measure of CP violation. We discuss experimental schemes for the transfer of the quantum information encoded in single-neutrino states to spatially delocalized two-flavor charged-lepton states, thus showing, at least in principle, that single-particle entangled states of neutrino mixing are legitimate physical resources for quantum information tasks. (authors)

  7. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  8. Neutrino Masses and Oscillations

    CERN Document Server

    CERN. Geneva. Audiovisual Unit; Treille, Daniel

    2002-01-01

    This course will not cover its subject in the customary way. The emphasis will be on the simple theoretical concepts (helicity, handedness, chirality, Majorana masses) which are obscure in most of the literature, and on the quantum mechanics of oscillations, that ALL books get wrong. Which, hopefully, will not deter me from discussing some of the most interesting results from the labs and from the cosmos.

  9. Oscillations in the bispectrum

    CERN Document Server

    Meerburg, P Daniel

    2010-01-01

    There exist several models of inflation that produce primordial bispectra that contain a large number of oscillations. In this paper we discuss these models, and aim at finding a method of detecting such bispectra in the data. We explain how the recently proposed method of mode expansion of bispectra might be able to reconstruct these spectra from separable basis functions. Extracting these basis functions from the data might then lead to observational constraints on these models.

  10. Polychromatic optical Bloch oscillations.

    Science.gov (United States)

    Longhi, Stefano

    2009-07-15

    Bloch oscillations (BOs) of polychromatic beams in circularly curved optical waveguide arrays are smeared out owing to the dependence of the BO spatial period on the wavelength. Here it is shown that restoring of the self-imaging property of the array and approximate BOs over relatively broad spectral ranges can be achieved by the insertion of suitable lumped phase slips uniformly applied across the array.

  11. Nonlinear Oscillators in Space Physics

    Science.gov (United States)

    Lester,Daniel; Thronson, Harley

    2011-01-01

    We discuss dynamical systems that produce an oscillation without an external time dependent source. Numerical results are presented for nonlinear oscillators in the Em1h's atmosphere, foremost the quasi-biennial oscillation (QBOl. These fluid dynamical oscillators, like the solar dynamo, have in common that one of the variables in a governing equation is strongly nonlinear and that the nonlinearity, to first order, has particular form. of 3rd or odd power. It is shown that this form of nonlinearity can produce the fundamental li'equency of the internal oscillation. which has a period that is favored by the dynamical condition of the fluid. The fundamental frequency maintains the oscillation, with no energy input to the system at that particular frequency. Nonlinearities of 2nd or even power could not maintain the oscillation.

  12. Reflected Glory

    Science.gov (United States)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  13. Neutrinoless double beta decay

    Indian Academy of Sciences (India)

    Kai Zuber

    2012-10-01

    The physics potential of neutrinoless double beta decay is discussed. Furthermore, experimental considerations as well as the current status of experiments are presented. Finally, an outlook towards the future, work on nuclear matrix elements and alternative processes is given.

  14. Transient oxidation of single-crystal beta-NiAl

    Science.gov (United States)

    Doychak, J.; Smialek, J. L.; Mitchell, T. E.

    1989-01-01

    The transient oxidation of beta-NiAl in air at 800 C and 1100 C has been studied using electron microscopy. The oxide scale consists predominantly of metastable Al2O3 phases. Theta-Al2O3 is the major oxide phase within 10.0 hr of oxidation at 800 C and 0.1 hr at 1100 C. The scales form epitaxially on (001) sub beta and (012) sub beta specimens throughout the transient stage, whereas the degree of preferred oxide orientation decreases with oxidation time on (011) sub beta and (111) sub beta specimens. The orientation relationships reflect the small mismatch between parallel close-packed directions in the metal and in the cation sublattice of the oxides. The correlation of distinctive oxide surface morphologies with internal structural defects indicates the strong tendency of the Al2O3 scale to grow via short-circuit diffusion paths.

  15. Alpha and Beta Determinations

    CERN Document Server

    Dunietz, Isard

    1999-01-01

    Because the Bd -> J/psi Ks asymmetry determines only sin(2 beta), a discrete ambiguity in the true value of beta remains. This note reviews how the ambiguity can be removed. Extractions of the CKM angle alpha are discussed next. Some of the methods require very large data samples and will not be feasible in the near future. In the near future, semi-inclusive CP-violating searches could be undertaken, which are reviewed last.

  16. Recent advances in neutrinoless double beta decay search

    CERN Document Server

    Miramonti, L; Miramonti, Lino; Reseghetti, Franco

    2004-01-01

    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay ($0\

  17. Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator/Power Oscillator) Optical Parametric Oscillator

    Science.gov (United States)

    1997-09-30

    SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ACQUISITION OF A ND-YAG PUMPED MOPO (MASTER OSCILLATOR / POWER OSCILLATOR) OPTICAL...instrument is configured in a master oscillator/power oscillator configuration, hence the designation MOPO . The MOPO will be used in conjunction

  18. {beta} - amyloid imaging probes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jae Min [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2007-04-15

    Imaging distribution of {beta} - amyloid plaques in Alzheimer's disease is very important for early and accurate diagnosis. Early trial of the {beta} -amyloid plaques includes using radiolabeled peptides which can be only applied for peripheral {beta} - amyloid plaques due to limited penetration through the blood brain barrier (BBB). Congo red or Chrysamine G derivatives were labeled with Tc-99m for imaging {beta} - amyloid plaques of Alzheimer patient's brain without success due to problem with BBB penetration. Thioflavin T derivatives gave breakthrough for {beta} - amyloid imaging in vivo, and a benzothiazole derivative [C-11]6-OH-BTA-1 brought a great success. Many other benzothiazole, benzoxazole, benzofuran, imidazopyridine, and styrylbenzene derivatives have been labeled with F-18 and I-123 to improve the imaging quality. However, [C-11]6-OH-BTA-1 still remains as the best. However, short half-life of C-11 is a limitation of wide distribution of this agent. So, it is still required to develop an Tc-99m, F-18 or I-123 labeled agent for {beta} - amyloid imaging agent.

  19. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes.

    Science.gov (United States)

    Cerf, Marlon E

    2013-10-01

    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  20. Neutrino Mass Spectrum and Neutrinoless Double $\\beta$ Decay

    CERN Document Server

    Klapdor-Kleingrothaus, H V; Smirnov, Yu A

    2001-01-01

    The relations between the effective Majorana mass of the electron neutrino, $m_{ee}$, responsible for neutrinoless double beta decay, and the neutrino oscillation parameters are considered. We show that for any specific oscillation pattern $m_{ee}$ can take any value (from zero to the existing upper bound) for normal mass hierarchy and it can have a minimum for inverse hierarchy. This means that oscillation experiments cannot fix in general $m_{ee}$. Mass ranges for $m_{ee}$ can be predicted in terms of oscillation parameters with additional assumptions about the level of degeneracy and the type of hierarchy of the neutrino mass spectrum. These predictions for $m_{ee}$ are systematically studied in the specific schemes of neutrino mass and flavor which explain the solar and atmospheric neutrino data. The contributions from individual mass eigenstates in terms of oscillation parameters have been quantified. We study the dependence of $m_{ee}$ on the non-oscillation parameters: the overall scale of the neutrino...

  1. Pre-stimulus beta and gamma oscillatory power predicts perceived audiovisual simultaneity.

    Science.gov (United States)

    Yuan, Xiangyong; Li, Haijiang; Liu, Peiduo; Yuan, Hong; Huang, Xiting

    2016-09-01

    Pre-stimulus oscillation activity in the brain continuously fluctuates, but it is correlated with subsequent behavioral and perceptual performance. Here, using fast Fourier transformation of pre-stimulus electroencephalograms, we explored how oscillatory power modulates the subsequent discrimination of perceived simultaneity from non-simultaneity in the audiovisual domain. We found that the over-scalp high beta (20-28Hz), parieto-occipital low beta (14-20Hz), and high gamma oscillations (55-80Hz) were significantly stronger before audition-then-vision sequence when they were judged as simultaneous rather than non-simultaneous. In contrast, a broad range of oscillations, mainly the beta and gamma bands over a great part of the scalp were significantly weaker before vision-then-audition sequences when they were judged as simultaneous versus non-simultaneous. Moreover, for auditory-leading sequence, pre-stimulus beta and gamma oscillatory power successfully predicted subjects' reports of simultaneity on a trial-by-trial basis, with stronger activity resulting in more simultaneous judgments. These results indicate that ongoing fluctuations of beta and gamma oscillations can modulate subsequent perceived audiovisual simultaneity, but with an opposing pattern for auditory- and visual-leading sequences.

  2. High intensity neutrino oscillation facilities in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Edgecock, T. R.; Caretta, O.; Davenne, T.; Densam, C.; Fitton, M.; Kelliher, D.; Loveridge, P.; Machida, S.; Prior, C.; Rogers, C.; Rooney, M.; Thomason, J.; Wilcox, D.; Wildner, E.; Efthymiopoulos, I.; Garoby, R.; Gilardoni, S.; Hansen, C.; Benedetto, E.; Jensen, E.; Kosmicki, A.; Martini, M.; Osborne, J.; Prior, G.; Stora, T.; Melo Mendonca, T.; Vlachoudis, V.; Waaijer, C.; Cupial, P.; Chancé, A.; Longhin, A.; Payet, J.; Zito, M.; Baussan, E.; Bobeth, C.; Bouquerel, E.; Dracos, M.; Gaudiot, G.; Lepers, B.; Osswald, F.; Poussot, P.; Vassilopoulos, N.; Wurtz, J.; Zeter, V.; Bielski, J.; Kozien, M.; Lacny, L.; Skoczen, B.; Szybinski, B.; Ustrycka, A.; Wroblewski, A.; Marie-Jeanne, M.; Balint, P.; Fourel, C.; Giraud, J.; Jacob, J.; Lamy, T.; Latrasse, L.; Sortais, P.; Thuillier, T.; Mitrofanov, S.; Loiselet, M.; Keutgen, Th.; Delbar, Th.; Debray, F.; Trophine, C.; Veys, S.; Daversin, C.; Zorin, V.; Izotov, I.; Skalyga, V.; Burt, G.; Dexter, A. C.; Kravchuk, V. L.; Marchi, T.; Cinausero, M.; Gramegna, F.; De Angelis, G.; Prete, G.; Collazuol, G.; Laveder, M.; Mazzocco, M.; Mezzetto, M.; Signorini, C.; Vardaci, E.; Di Nitto, A.; Brondi, A.; La Rana, G.; Migliozzi, P.; Moro, R.; Palladino, V.; Gelli, N.; Berkovits, D.; Hass, M.; Hirsh, T. Y.; Schaumann, M.; Stahl, A.; Wehner, J.; Bross, A.; Kopp, J.; Neuffer, D.; Wands, R.; Bayes, R.; Laing, A.; Soler, P.; Agarwalla, S. K.; Cervera Villanueva, A.; Donini, A.; Ghosh, T.; Gómez Cadenas, J. J.; Hernández, P.; Martín-Albo, J.; Mena, O.; Burguet-Castell, J.; Agostino, L.; Buizza-Avanzini, M.; Marafini, M.; Patzak, T.; Tonazzo, A.; Duchesneau, D.; Mosca, L.; Bogomilov, M.; Karadzhov, Y.; Matev, R.; Tsenov, R.; Akhmedov, E.; Blennow, M.; Lindner, M.; Schwetz, T.; Fernández Martinez, E.; Maltoni, M.; Menéndez, J.; Giunti, C.; González García, M. C.; Salvado, J.; Coloma, P.; Huber, P.; Li, T.; López Pavón, J.; Orme, C.; Pascoli, S.; Meloni, D.; Tang, J.; Winter, W.; Ohlsson, T.; Zhang, H.; Scotto-Lavina, L.; Terranova, F.; Bonesini, M.; Tortora, L.; Alekou, A.; Aslaninejad, M.; Bontoiu, C.; Kurup, A.; Jenner, L. J.; Long, K.; Pasternak, J.; Pozimski, J.; Back, J. J.; Harrison, P.; Beard, K.; Bogacz, A.; Berg, J. S.; Stratakis, D.; Witte, H.; Snopok, P.; Bliss, N.; Cordwell, M.; Moss, A.; Pattalwar, S.; Apollonio, M.

    2013-02-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.

  3. High intensity neutrino oscillation facilities in Europe

    CERN Document Server

    Edgecock, T R; Davenne, T; Densham, C; Fitton, M; Kelliher, D; Loveridge, P; Machida, S; Prior, C; Rogers, C; Rooney, M; Thomason, J; Wilcox, D; Wildner, E; Efthymiopoulos, I; Garoby, R; Gilardoni, S; Hansen, C; Benedetto, E; Jensen, E; Kosmicki, A; Martini, M; Osborne, J; Prior, G; Stora, T; Melo-Mendonca, T; Vlachoudis, V; Waaijer, C; Cupial, P; Chancé, A; Longhin, A; Payet, J; Zito, M; Baussan, E; Bobeth, C; Bouquerel, E; Dracos, M; Gaudiot, G; Lepers, B; Osswald, F; Poussot, P; Vassilopoulos, N; Wurtz, J; Zeter, V; Bielski, J; Kozien, M; Lacny, L; Skoczen, B; Szybinski, B; Ustrycka, A; Wroblewski, A; Marie-Jeanne, M; Balint, P; Fourel, C; Giraud, J; Jacob, J; Lamy, T; Latrasse, L; Sortais, P; Thuillier, T; Mitrofanov, S; Loiselet, M; Keutgen, Th; Delbar, Th; Debray, F; Trophine, C; Veys, S; Daversin, C; Zorin, V; Izotov, I; Skalyga, V; Burt, G; Dexter, A C; Kravchuk, V L; Marchi, T; Cinausero, M; Gramegna, F; De Angelis, G; Prete, G; Collazuol, G; Laveder, M; Mazzocco, M; Mezzetto, M; Signorini, C; Vardaci, E; Di Nitto, A; Brondi, A; La Rana, G; Migliozzi, P; Moro, R; Palladino, V; Gelli, N; Berkovits, D; Hass, M; Hirsh, T Y; Schaumann, M; Stahl, A; Wehner, J; Bross, A; Kopp, J; Neuffer, D; Wands, R; Bayes, R; Laing, A; Soler, P; Agarwalla, S K; Villanueva, A Cervera; Donini, A; Ghosh, T; Cadenas, J J Gómez; Hernández, P; Martín-Albo, J; Mena, O; Burguet-Castell, J; Agostino, L; Buizza-Avanzini, M; Marafini, M; Patzak, T; Tonazzo, A; Duchesneau, D; Mosca, L; Bogomilov, M; Karadzhov, Y; Matev, R; Tsenov, R; Akhmedov, E; Blennow, M; Lindner, M; Schwetz, T; Martinez, E Fernández; Maltoni, M; Menéndez, J; Giunti, C; García, M C González; Salvado, J; Coloma, P; Huber, P; Li, T; López-Pavón, J; Orme, C; Pascoli, S; Meloni, D; Tang, J; Winter, W; Ohlsson, T; Zhang, H; Scotto-Lavina, L; Terranova, F; Bonesini, M; Tortora, L; Alekou, A; Aslaninejad, M; Bontoiu, C; Kurup, A; Jenner, L J; Long, K; Pasternak, J; Pozimski, J; Back, J J; Harrison, P; Beard, K; Bogacz, A; Berg, J S; Stratakis, D; Witte, H; Snopok, P; Bliss, N; Cordwell, M; Moss, A; Pattalwar, S; Apollonio, M

    2013-01-01

    The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fr\\'ejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of {\\mu}+ and {\\mu}- beams in a storage ring. The far detector in this case is a 100 kt Magnetised Iron Neutrino Detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fr\\'ejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the ph...

  4. Theta oscillations accompanying concurrent auditory stream segregation.

    Science.gov (United States)

    Tóth, Brigitta; Kocsis, Zsuzsanna; Urbán, Gábor; Winkler, István

    2016-08-01

    The ability to isolate a single sound source among concurrent sources is crucial for veridical auditory perception. The present study investigated the event-related oscillations evoked by complex tones, which could be perceived as a single sound and tonal complexes with cues promoting the perception of two concurrent sounds by inharmonicity, onset asynchrony, and/or perceived source location difference of the components tones. In separate task conditions, participants performed a visual change detection task (visual control), watched a silent movie (passive listening) or reported for each tone whether they perceived one or two concurrent sounds (active listening). In two time windows, the amplitude of theta oscillation was modulated by the presence vs. absence of the cues: 60-350ms/6-8Hz (early) and 350-450ms/4-8Hz (late). The early response appeared both in the passive and the active listening conditions; it did not closely match the task performance; and it had a fronto-central scalp distribution. The late response was only elicited in the active listening condition; it closely matched the task performance; and it had a centro-parietal scalp distribution. The neural processes reflected by these responses are probably involved in the processing of concurrent sound segregation cues, in sound categorization, and response preparation and monitoring. The current results are compatible with the notion that theta oscillations mediate some of the processes involved in concurrent sound segregation.

  5. Modeling microtubule oscillations

    DEFF Research Database (Denmark)

    Jobs, E.; Wolf, D.E.; Flyvbjerg, H.

    1997-01-01

    Synchronization of molecular reactions in a macroscopic volume may cause the volume's physical properties to change dynamically and thus reveal much about the reactions. As an example, experimental time series for so-called microtubule oscillations are analyzed in terms of a minimal model...... for this complex polymerization-depolymerization cycle. The model reproduces well the qualitatively different time series that result from different experimental conditions, and illuminates the role and importance of individual processes in the cycle. Simple experiments are suggested that can further test...... and define the model and the polymer's reaction cycle....

  6. On particle oscillations

    CERN Document Server

    Góźdź, Marek

    2013-01-01

    It has been firmly established, that neutrinos change their flavour during propagation. This feature is attributed to the fact, that each flavour eigenstate is a superposition of three mass eigenstates, which propagate with different frequencies. This picture, although widely accepted, is wrong in the simplest approach and requires quite sophisticated treatment based on the wave-packet description within quantum field theory. In this communication we present a novel, much simpler explanation and show, that oscillations among massive particles can be obtained in a natural way. We use the framework of quantum mechanics with time being a physical observable, not just a parameter.

  7. Kravchuk oscillator revisited

    Science.gov (United States)

    Atakishiyeva, Mesuma K.; Atakishiyev, Natig M.; Wolf, Kurt Bernardo

    2014-05-01

    The study of irreducible representations of Lie algebras and groups has traditionally considered their action on functions of a continuous manifold (e.g. the 'rotation' Lie algebra so(3) on functions on the sphere). Here we argue that functions of a discrete variable -Kravchuk functions- are on equal footing for that study in the case of so(3). They lead to a discrete quantum model of the harmonic oscillator, and offer a corresponding set of special function relations. The technique is applicable to other special function families of a discrete variable, which stem from low-dimensional Lie algebras and are stationary solutions for the corresponding discrete quantum models.

  8. On Oscillating Dark Energy

    CERN Document Server

    Linder, E V

    2006-01-01

    Distance-redshift data can impose strong constraints on dark energy models even when the equation of state is oscillatory. Despite the double integral dependence of the distance on the equation of state, precision measurement of the distance-redshift relation for z=0-2 is more incisive than the linear growth factor, CMB last scattering surface distance, and the age of the universe in distinguishing oscillatory behavior from an average behavior. While oscillating models might help solve the coincidence problem (since acceleration occurs periodically), next generation observations will strongly constrain such possibilities.

  9. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    CERN Document Server

    Alessandria, F; Ardito, R; Arnaboldi, C; Avignone, F T; Balata, M; Bandac, I; Banks, T I; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bryant, A; Bucci, C; Cai, X Z; Canonica, L; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, R J; Dafinei, I; Dally, A; De Biasi, A; Decowski, M P; Deninno, M M; de Waard, A; Di Domizio, S; Ejzak, L; Faccini, R; Fang, D Q; Farach, H A; Ferri, E; Ferroni, F; Fiorini, E; Foggetta, L; Franceschi, M A; Freedman, S J; Frossati, G; Fujikawa, B; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, T D; Haller, E E; Han, K; Heeger, K M; Huang, H Z; Ichimura, K; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, Yu G; Kraft, S; Lenz, D; Li, Y L; Liu, X; Longo, E; Ma, Y G; Maiano, C; Maier, G; Maino, M; Mancini, C; Martinez, C; Martinez, M; Maruyama, R H; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Orlandi, D; Ouellet, J; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Salvioni, C; Sangiorgio, S; Schaeffer, D; Scielzo, N D; Sisti, M; Smith, A R; Stivanello, F; Taffarello, L; Terenziani, G; Tian, W D; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, B; Wang, H W; Whitten, C A; Wise, T; Woodcraft, A; Xu, N; Zanotti, L; Zarra, C; Zhu, B X; Zucchelli, S

    2011-01-01

    We study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the estimation of the sensitivity are provided. Assuming a background rate of 10^-2 cts/(keV kg y), we find that, after 5 years of live time, CUORE has a 1 sigma sensitivity to the neutrinoless double-beta decay half-life of T_1/2 = 1.6 \\times 10^26 y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV. This range is compared with the claim of observation of neutrinoless double-beta decay in 76Ge and the preferred range of the neutrino mass parameter space from oscillation results.

  10. C P -violating baryon oscillations

    Science.gov (United States)

    McKeen, David; Nelson, Ann E.

    2016-10-01

    We enumerate the conditions necessary for C P violation to be manifest in n -n ¯ oscillations and build a simple model that can give rise to such effects. We discuss a possible connection between neutron oscillations and dark matter, provided the mass of the latter lies between mp-me and mp+me. We apply our results to a possible baryogenesis scenario involving C P violation in the oscillations of the Ξ0.

  11. Linearization of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, A; Alvarez, M L [Departamento de Fisica, IngenierIa de Sistemas y TeorIa de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, E; Pascual, I [Departamento de Optica, FarmacologIa y AnatomIa, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-03-11

    A linearization method of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force which allows us to obtain a frequency-amplitude relation which is valid not only for small but also for large amplitudes and, sometimes, for the complete range of oscillation amplitudes. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of the technique.

  12. How pervasive are circadian oscillations?

    OpenAIRE

    2014-01-01

    Circadian oscillations play a critical role in coordinating the physiology, homeostasis, and behavior of biological systems. Once thought to only be controlled by a master clock, recent high-throughput experiments suggest many genes and metabolites in a cell are potentially capable of circadian oscillations. Each cell can reprogram itself and select a relatively small fraction of this broad repertoire for circadian oscillations, as a result of genetic, environmental, and even diet changes.

  13. Boosted beta regression.

    Directory of Open Access Journals (Sweden)

    Matthias Schmid

    Full Text Available Regression analysis with a bounded outcome is a common problem in applied statistics. Typical examples include regression models for percentage outcomes and the analysis of ratings that are measured on a bounded scale. In this paper, we consider beta regression, which is a generalization of logit models to situations where the response is continuous on the interval (0,1. Consequently, beta regression is a convenient tool for analyzing percentage responses. The classical approach to fit a beta regression model is to use maximum likelihood estimation with subsequent AIC-based variable selection. As an alternative to this established - yet unstable - approach, we propose a new estimation technique called boosted beta regression. With boosted beta regression estimation and variable selection can be carried out simultaneously in a highly efficient way. Additionally, both the mean and the variance of a percentage response can be modeled using flexible nonlinear covariate effects. As a consequence, the new method accounts for common problems such as overdispersion and non-binomial variance structures.

  14. Unfolding, aggregation, and seeded amyloid formation of lysine-58-cleaved beta(2)-microglobulin

    DEFF Research Database (Denmark)

    Heegaard, N.H.H.; Jørgensen, T.J.D.; Rozlosnik, N.;

    2005-01-01

    beta(2)-Microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)M that has been linked to cancer and inflammation and may be present in the ci......beta(2)-Microglobulin (beta(2)m) is the amyloidogenic protein in dialysis-related amyloidosis, but the mechanisms underlying beta(2)m fibrillogenesis in vivo are largely unknown. We study a structural variant of beta(2)M that has been linked to cancer and inflammation and may be present...... in the circulation of dialysis patients. This beta(2)M variant, Delta K58-beta(2)m, is a disulfide-linked two-chain molecule consisting of amino acid residues 1-57 and 59-99 of intact beta(2)m, and we here demonstrate and characterize its decreased conformational stability as compared to wild-type (wt) beta(2)M......, and at 37 degrees C the half-time for unfolding is more than 170-fold faster than at 15 degrees C. Conformational changes are also reflected by a very prominent Congo red binding of Delta K58-beta(2)m at 37 degrees C, by the evolution of thioflavin T fluorescence, and by changes in intrinsic fluorescence...

  15. Experiments on Deflecting & Oscillating Waterjet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type jet,the oscillating & deflecting jet ,is put forward and its oscillating and deflecting characteristics are investigated.The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle,a downstream nozzle,an oscillating chamber and two switches,It is experimentally shown that the deflective angle may reach 9.53 degeree,the generated pressure fluctuation is very regular and the jet can efficiently increase the ability for bradking and cutting by eliminating the water cushion effect associated with a continuous jet.

  16. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...

  17. Unstable oscillators based hyperchaotic circuit

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;

    1999-01-01

    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the circ......A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations...

  18. MULTIPLE OSCILLATION STABILIZING CONTROL.

    Energy Technology Data Exchange (ETDEWEB)

    YUE,M.; SCHLUETER,R.; AZARM,M.; BARI,R.

    2004-07-23

    This paper presents a strategy that may be used to guide stabilizing control design for multiple oscillations, which are difficult to control using conventional control design procedures. A multiple oscillation phenomena is observed in an example power system. A local bifurcation and an interarea bifurcation develop in an example power system due to multiple bifurcation parameter variations. The dynamic behaviors of the bifurcating system are complex due to the overlapping of the two different bifurcation subsystems and are shown to be difficult to control. The double bifurcations are studied in this paper and in order to stabilize them, three kind of {mu}-synthesis robust controls are designed, (a) {mu}-synthesis power system stabilizer (MPSS); (b) {mu}-synthesis SVC control (MSVC); and (c) a mixed MPSS/MSVC control. Based on the bifurcation subsystem analysis, the measurement signals and locations of the controls are selected. The control performances of three kind of controls are evaluated and compared. The conclusions are given according to the analysis and time simulation results.

  19. Scanning for oscillations

    Science.gov (United States)

    de Cheveigné, Alain; Arzounian, Dorothée

    2015-12-01

    Objective. Oscillations are an important aspect of brain activity, but they often have a low signal-to-noise ratio (SNR) due to source-to-electrode mixing with competing brain activity and noise. Filtering can improve the SNR of narrowband signals, but it introduces ringing effects that may masquerade as genuine oscillations, leading to uncertainty as to the true oscillatory nature of the phenomena. Likewise, time-frequency analysis kernels have a temporal extent that blurs the time course of narrowband activity, introducing uncertainty as to timing and causal relations between events and/or frequency bands. Approach. Here, we propose a methodology that reveals narrowband activity within multichannel data such as electroencephalography, magnetoencephalography, electrocorticography or local field potential. The method exploits the between-channel correlation structure of the data to suppress competing sources by joint diagonalization of the covariance matrices of narrowband filtered and unfiltered data. Main results. Applied to synthetic and real data, the method effectively extracts narrowband components at unfavorable SNR. Significance. Oscillatory components of brain activity, including weak sources that are hard or impossible to observe using standard methods, can be detected and their time course plotted accurately. The method avoids the temporal artifacts of standard filtering and time-frequency analysis methods with which it remains complementary.

  20. Nanoscale relaxation oscillator

    Science.gov (United States)

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  1. Regulation of the rate of beta-galactosidase synthese by the Bgs and Bgt loci in the mouse.

    Science.gov (United States)

    Berger, F G; Paigen, K

    1978-08-10

    We have developed an assay for the in vivo rate of beta-galactosidase synthesis in mouse tissues to assess the mechanism by which the Bgs and Bgt loci regulate activity levels of this enzyme. Genetically determined differences in liver and kidney beta-galactosidase content reflect equivalent differences in specific rates of enzyme synthesis. We conclude that Bgs and Bgt regulate beta-galactosidase activity by controlling the rate of synthesis of the beta-galactosidase molecule.

  2. Combustion-Driven Oscillation in Process Heaters

    Energy Technology Data Exchange (ETDEWEB)

    Seebold, J.G. [Chevron Corporation (Retired), 198 James Avenue, Atherton, CA 94027 (United States)

    2005-10-15

    At this moment in thousands of process heaters all over the world there are, to borrow a phrase from the late Carl Sagan, 'billions and billions' of Btu/hr beneficially being released entirely free of pulsation. On those few occasions, perhaps a dozen and a half in my career, when I would get the inevitable 'Why me?' call, I have generally responsed with something like, 'Consider yourself lucky, you have a rare scientific curiosity on your hands'. Reflecting on the solutions ultimately found, I'm reminded that many years ago my friend Abbott Putnam shared with me an early AGA (American Gas Association) field-service bulletin that included a prescription for eliminating combustion-driven oscillations in home heating units; viz., 'Drill a hole; if that doesn't work, drill another hole' or words to that effect. Many times have I wished that I still had a copy of that bulletin and in this paper we will have occasion, once again, to reflect upon the value of that advice. In this paper we will discuss an instance that arose in a pioneering installation of a breakthrough development of 'extremely', to distinguish it from 'ultra', low-NOx lean premix burner technology. We will illustrate how, when and under what circumstances combustion-driven oscillation can arise; we will touch on the many alternatives for its elimination that were considered and investigated; and we will discuss three practical alternatives for eliminating combustion-driven oscillations.

  3. Chemical oscillation in electrochemical oxidation of methanol on Pt surface

    Institute of Scientific and Technical Information of China (English)

    LI LanLan; WEI ZiDong; QI XueQiang; SUN CaiXin; YIN GuangZhi

    2008-01-01

    Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla-tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant k1= exp(a e-e1)). The analysis to the established model discloses the following: there are different kinetics be-haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidallon, which is the in-duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in-volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab-lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.

  4. Motivation, emotion, and their inhibitory control mirrored in brain oscillations.

    Science.gov (United States)

    Knyazev, Gennady G

    2007-01-01

    Recent studies suggest brain oscillations as a mechanism for cerebral integration. Such integration can exist across a number of functional domains, with different frequency rhythms associated with each domain. Here, evidence is summarized which shows that delta oscillations depend on activity of motivational systems and participate in salience detection. Theta oscillations are involved in memory and emotional regulation. Alpha oscillations participate in inhibitory processes which contribute to a variety of cognitive operations such as attention and memory. The importance of inhibitory functions associated with alpha oscillations increases during the course of evolution. In ontogenesis, these functions develop later and may be more sensitive to a variety of detrimental environmental influences. In a number of developmental stages and pathological conditions, a deficient alpha and/or increased slow-wave activity are associated with cognitive deficits and a lack of inhibitory control. It is shown that slow-wave and alpha oscillations are reciprocally related to each other. This reciprocal relationship may reflect an inhibitory control over motivational and emotional drives which is implemented by the prefrontal cortex.

  5. Physical formulation of mixed modes of stellar oscillations

    Science.gov (United States)

    Takata, Masao

    2016-12-01

    The frequency condition for eigenmodes of nonradial stellar oscillations with a mixed character, which have been extensively detected in red giants and subgiants, is generally examined by a simple physical model based on a progressive-wave picture. The coupling coefficient between the gravity-wave oscillation in the core and the acoustic-wave oscillation in the envelope is expressed in terms of the reflection coefficient at the intermediate evanescent region. This relation is fully consistent with the recent asymptotic analysis for dipolar modes, but disagrees with the conventional asymptotic analysis, which assumes that the coupling is weak. The expression for the amplitude ratio between the core and envelope oscillations is also derived. The upper and lower bounds of the ratio are found to be determined by the reflection coefficient at the intermediate region. It is also argued that the eigenmode condition should appropriately be modified if the wave generated near the surface and transmitted to the core is (partially) lost either by damping or scattering in the core. The developed formulation opens a possibility to characterize the core damping (or scattering) of the red giant stars in terms of the formal reflection coefficient at the inner boundary of the inner cavity, which would provide a valuable insight into those physical processes.

  6. Physical formulation of mixed modes of stellar oscillations

    Science.gov (United States)

    Takata, Masao

    2016-10-01

    The frequency condition for eigenmodes of nonradial stellar oscillations with a mixed character, which have been extensively detected in red giants and subgiants, is generally examined by a simple physical model based on a progressive-wave picture. The coupling coefficient between the gravity-wave oscillation in the core and the acoustic-wave oscillation in the envelope is expressed in terms of the reflection coefficient at the intermediate evanescent region. This relation is fully consistent with the recent asymptotic analysis for dipolar modes, but disagrees with the conventional asymptotic analysis, which assumes that the coupling is weak. The expression for the amplitude ratio between the core and envelope oscillations is also derived. The upper and lower bounds of the ratio are found to be determined by the reflection coefficient at the intermediate region. It is also argued that the eigenmode condition should appropriately be modified if the wave generated near the surface and transmitted to the core is (partially) lost either by damping or scattering in the core. The developed formulation opens a possibility to characterize the core damping (or scattering) of the red giant stars in terms of the formal reflection coefficient at the inner boundary of the inner cavity, which would provide a valuable insight into those physical processes.

  7. Minimally allowed beta beata 0_nu rates from approximate flavor symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, James [Los Alamos National Laboratory

    2008-01-01

    Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee} , the e - e element of the Majorana mass matrix. This is expected to hold true for small {beta}{beta}{nu} rates ({Gamma}{sub {beta}{beta}0{nu}}), even in the presence of new physics. Naively, current data allows for vanishing m{sub ee} , but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. Hence, Majorana neutrinos imply nonzero {Gamma}{sub {beta}{beta}0{nu}}. I perform a spurion analysis to break all possible abelian symmetries that guarantee {Gamma}{sub {beta}{beta}0{nu}} = 0 and search for minimally allowed m{sub ee} values. Specifically, I survey 259 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee} > 4 x 10{sup -6} eV at 99% confidence. Bounds below this value would indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. This limit can be raised by improvements in neutrino parameter measurements, particularly of the reactor mixing angle, depending on the best fit parameter values. Such improvements will also significantly constrain the available model space and aid in future constructions.

  8. Beta and Gamma Gradients

    DEFF Research Database (Denmark)

    Løvborg, Leif; Gaffney, C. F.; Clark, P. A.;

    1985-01-01

    Experimental and/or theoretical estimates are presented concerning, (i) attenuation within the sample of beta and gamma radiation from the soil, (ii) the gamma dose within the sample due to its own radioactivity, and (iii) the soil gamma dose in the proximity of boundaries between regions...... of differing radioactivity. It is confirmed that removal of the outer 2 mm of sample is adequate to remove influence from soil beta dose and estimates are made of the error introduced by non-removal. Other evaluations include variation of the soil gamma dose near the ground surface and it appears...

  9. Surface optical Bloch oscillations in semi-infinite waveguide arrays.

    Science.gov (United States)

    Chremmos, I D; Efremidis, N K

    2012-06-01

    We predict that surface optical Bloch oscillations can exist in semi-infinite waveguide arrays with a linear index variation, if the array parameters close to the boundary are appropriately perturbed. The perturbation is such that the surface states obtain the Wannier-Stark ladder eigenvalues of the unperturbed infinite array. The number of waveguides, whose parameters need to be controlled, decreases with increasing ratio of index gradient over coupling. The configuration can find applications as a "matched" termination of waveguide arrays to eliminate the distortion of Bloch oscillations due to reflection on the boundaries.

  10. Physics of bubble oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Lauterborn, Werner; Kurz, Thomas [Third Physical Institute, University of Goettingen (Germany)

    2010-10-01

    Bubbles in liquids, soft and squeezy objects made of gas and vapour, yet so strong as to destroy any material and so mysterious as at times turning into tiny light bulbs, are the topic of the present report. Bubbles respond to pressure forces and reveal their full potential when periodically driven by sound waves. The basic equations for nonlinear bubble oscillation in sound fields are given, together with a survey of typical solutions. A bubble in a liquid can be considered as a representative example from nonlinear dynamical systems theory with its resonances, multiple attractors with their basins, bifurcations to chaos and not yet fully describable behaviour due to infinite complexity. Three stability conditions are treated for stable trapping of bubbles in standing sound fields: positional, spherical and diffusional stability. Chemical reactions may become important in that respect, when reacting gases fill the bubble, but the chemistry of bubbles is just touched upon and is beyond the scope of the present report. Bubble collapse, the runaway shrinking of a bubble, is presented in its current state of knowledge. Pressures and temperatures that are reached at this occasion are discussed, as well as the light emission in the form of short flashes. Aspherical bubble collapse, as for instance enforced by boundaries nearby, mitigates most of the phenomena encountered in spherical collapse, but introduces a new effect: jet formation, the self-piercing of a bubble with a high velocity liquid jet. Examples of this phenomenon are given from light induced bubbles. Two oscillating bubbles attract or repel each other, depending on their oscillations and their distance. Upon approaching, attraction may change to repulsion and vice versa. When being close, they also shoot self-piercing jets at each other. Systems of bubbles are treated as they appear after shock wave passage through a liquid and with their branched filaments that they attain in standing sound fields. The N

  11. Getting Information on |Ue3|2 from Neutrinoless Double Beta Decay

    Directory of Open Access Journals (Sweden)

    Alexander Merle

    2007-01-01

    neutrinoless double beta decay. We show that typically a lower limit on |Ue3| as a function of the smallest neutrino mass can be set. Furthermore, we give the values of the sum of neutrino masses and |Ue3| which are allowed and forbidden by an experimental upper limit on the effective mass. Alternative explanations for neutrinoless double beta decay, Dirac neutrinos or unexplained cosmological features would be required if future measurements showed that the values lie in the respective regions. Moreover, we show that a measurement of |Ue3| from neutrinoless double beta decay is very difficult due to the expected errors on the effective mass and the oscillation parameters.

  12. Simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament induced by a single shock wave

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yuandeng [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China); Liu, Ying D. [State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190 (China); Chen, P. F. [Key Laboratory of Modern Astronomy and Astrophysics, School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Ichimoto, Kiyoshi, E-mail: ydshen@ynao.ac.cn [Kwasan and Hida Observatories, Kyoto University, Yamashina-ku, Kyoto 607-8471 (Japan)

    2014-11-10

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using Hα Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments shows weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large-amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are about 26.8 km s{sup –1} and 80.3 minutes, respectively. We propose that the orientation of a filament or prominence relative to the normal vector of the incoming shock should be an important factor for launching transverse or longitudinal filament oscillations. In addition, the restoring forces of the transverse prominence are most likely due to the coupling of gravity and magnetic tension of the supporting magnetic field, while that for the longitudinal filament oscillation is probably the resultant force of gravity and magnetic pressure.

  13. Cortical Alpha Oscillations Predict Speech Intelligibility

    Science.gov (United States)

    Dimitrijevic, Andrew; Smith, Michael L.; Kadis, Darren S.; Moore, David R.

    2017-01-01

    Understanding speech in noise (SiN) is a complex task involving sensory encoding and cognitive resources including working memory and attention. Previous work has shown that brain oscillations, particularly alpha rhythms (8–12 Hz) play important roles in sensory processes involving working memory and attention. However, no previous study has examined brain oscillations during performance of a continuous speech perception test. The aim of this study was to measure cortical alpha during attentive listening in a commonly used SiN task (digits-in-noise, DiN) to better understand the neural processes associated with “top-down” cognitive processing in adverse listening environments. We recruited 14 normal hearing (NH) young adults. DiN speech reception threshold (SRT) was measured in an initial behavioral experiment. EEG activity was then collected: (i) while performing the DiN near SRT; and (ii) while attending to a silent, close-caption video during presentation of identical digit stimuli that the participant was instructed to ignore. Three main results were obtained: (1) during attentive (“active”) listening to the DiN, a number of distinct neural oscillations were observed (mainly alpha with some beta; 15–30 Hz). No oscillations were observed during attention to the video (“passive” listening); (2) overall, alpha event-related synchronization (ERS) of central/parietal sources were observed during active listening when data were grand averaged across all participants. In some participants, a smaller magnitude alpha event-related desynchronization (ERD), originating in temporal regions, was observed; and (3) when individual EEG trials were sorted according to correct and incorrect digit identification, the temporal alpha ERD was consistently greater on correctly identified trials. No such consistency was observed with the central/parietal alpha ERS. These data demonstrate that changes in alpha activity are specific to listening conditions. To our

  14. Solar neutrino oscillation phenomenology

    Indian Academy of Sciences (India)

    Srubabati Goswami

    2004-02-01

    This article summarises the status of the solar neutrino oscillation phenomenology at the end of 2002 in the light of the SNO and KamLAND results. We first present the allowed areas obtained from global solar analysis and demonstrate the preference of the solar data towards the large-mixing-angle (LMA) MSW solution. A clear confirmation in favour of the LMA solution comes from the KamLAND reactor neutrino data. the KamLAND spectral data in conjunction with the global solar data further narrows down the allowed LMA region and splits it into two allowed zones - a low $ m^{2}$ region (low-LMA) and high $ m^{2}$ region (high-LMA). We demonstrate through a projected analysis that with an exposure of 3 kton-year (kTy) KamLAND can remove this ambiguity.

  15. Collective supernova neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mirizzi, Alessandro [Max Planck Institute for Physics, Munich (Germany)

    2009-07-01

    Neutrinos emitted by core-collapse supernovae (SNe) represent an important laboratory for both particle physics and astrophysics. While propagating in the dense SN environment, they can feel not only the presence of background matter (via ordinary Mikheev-Smirnov-Wolfenstein effects) but also of the gas of neutrinos and antineutrinos (via neutrino-neutrino interaction effects). The neutrino-neutrino interactions appear to modify the flavor evolution of SN neutrinos in a collective way, completely different from the ordinary matter effects. In these conditions, the flavor evolution equations become highly nonlinear, sometimes resulting in surprising phenomena when the entire neutrino system oscillates coherently as a single collective mode. In this talk, I present the recent results on collective supernova neutrino flavor conversions and I discuss about the sensitivity of these effects to the ordering of the neutrino mass spectrum.

  16. Longitudinal oscillation of launch vehicles

    Science.gov (United States)

    Glaser, R. F.

    1973-01-01

    During powered flight a vehicle may develop longitudinal self-excited oscillations, so-called oscillations, of its structure. The energy supplying the vibration is tapped from the thrust by the activity of the system itself; that is, oscillation of the structure causes oscillation of the propellant system, especially of the pumps. In this way an oscillating thrust can be created that, by a feedback loop, may sustain the structural oscillation under certain circumstances. Two special features of the system proved to be essential for creation of instability. One is the effect of the inherent time interval that the thrust oscillation is lagging behind the structural oscillation. The other is the decreased of system mass caused by the exhausting of gas. The latter feature may cause an initially stable system to become unstable. To examine the stability of the system, a single mass-spring model, which is the result of a one-term Galerkin approach to the equation of motion, has been considered. The Nyquist stability criterion leads to a stability graph that shows the stability conditions in terms of the system parameter and also demonstrates the significance of time lag, feedback magnitude, and loss of mass. An important conclusion can be drawn from the analysis: large relative displacements of the pump-engine masses favor instability. This is also confirmed by flight measurements.

  17. Solar Neutrino Oscillation - An Overview

    CERN Document Server

    Roy, D P

    2005-01-01

    After a brief summary of the neutrino oscillation formalism and the solar neutrino sources and experiments I discuss the matter effect on solar neutrino oscillation. Then I discuss how the resulting alternative solutions are experimentally resolved in favour of the LMA solution, with particular exphasis on the SK, SNO and KL data.

  18. On The Harmonic Oscillator Group

    CERN Document Server

    Lopez, Raquel M; Vega-Guzman, Jose M

    2011-01-01

    We discuss the maximum kinematical invariance group of the quantum harmonic oscillator from a view point of the Ermakov-type system. The invariance group of generalized driven harmonic oscillator is shown to be isomorphic to the corresponding Schroedinger group of the free particle.

  19. The Wien Bridge Oscillator Family

    DEFF Research Database (Denmark)

    Lindberg, Erik

    2006-01-01

    A tutorial in which the Wien bridge family of oscillators is defined and investigated. Oscillators which do not fit into the Barkhausen criterion topology may be designed. A design procedure based on initial complex pole quality factor is reported. The dynamic transfer characteristic...

  20. Lorentz violation and neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Mewes, Matthew [Marquette University, P.O. Box 1881, Milwaukee, WI 53201 (United States)

    2011-12-15

    Lorentz violation naturally leads to neutrino oscillations and provides an alternative mechanism that may explain current data. This contribution to the proceedings of The XXII International Conference on Neutrino Physics and Astrophysics provides a brief review of possible signals of Lorentz violation in neutrino-oscillation experiments.

  1. Neutrino Oscillations with Nil Mass

    CERN Document Server

    Floyd, Edward R

    2016-01-01

    An alternative neutrino oscillation process is presented as a counterexample for which the neutrino may have nil mass consistent with the standard model. The process is developed in a quantum trajectories representation of quantum mechanics, which has a Hamilton-Jacobi foundation. This process has no need for mass differences between mass eigenstates. Flavor oscillations and $\\bar{\

  2. Oscillator With Low Phase Noise

    Science.gov (United States)

    Kleinberg, Leonard L.

    1987-01-01

    Phase errors cancelled for high frequency stability. Radio-frequency oscillator achieves high stability of frequency through parallel, two-amplifier configuration in which effects cause phase noise tend to cancel each other. Circuit includes two amplifiers with resonating elements, each constitutes part of feedback loop of other. Generate same frequency because each circuit provides other with conditions necessary for oscillation.

  3. Hyperchaotic system with unstable oscillators

    DEFF Research Database (Denmark)

    Murali, K.; Tamasevicius, A.; Mykolaitis, G.;

    2000-01-01

    A simple electronic system exhibiting hyperchaotic behaviour is described. The system includes two nonlinearly coupled 2nd order unstable oscillators, each composed of an LC resonance loop and an amplifier. The system is investigated by means of numerical integration of appropriate differential e...... equations, PSPICE simulations and hardware experiments. The Lyapunov exponents are presented to confirm hyperchaotic mode of the oscillations....

  4. Mechanical Parametric Oscillations and Waves

    Science.gov (United States)

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  5. Coupled oscillators on evolving networks

    Science.gov (United States)

    Singh, R. K.; Bagarti, Trilochan

    2016-12-01

    In this work we study coupled oscillators on evolving networks. We find that the steady state behavior of the system is governed by the relative values of the spread in natural frequencies and the global coupling strength. For coupling strong in comparison to the spread in frequencies, the system of oscillators synchronize and when coupling strength and spread in frequencies are large, a phenomenon similar to amplitude death is observed. The network evolution provides a mechanism to build inter-oscillator connections and once a dynamic equilibrium is achieved, oscillators evolve according to their local interactions. We also find that the steady state properties change by the presence of additional time scales. We demonstrate these results based on numerical calculations studying dynamical evolution of limit-cycle and van der Pol oscillators.

  6. Photoacoustic elastic oscillation and characterization.

    Science.gov (United States)

    Gao, Fei; Feng, Xiaohua; Zheng, Yuanjin

    2015-08-10

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ratio beyond optical absorption only, which is experimentally demonstrated in this paper.

  7. Photoacoustic elastic oscillation and characterization

    CERN Document Server

    Gao, Fei; Zheng, Yuanjin

    2014-01-01

    Photoacoustic imaging and sensing have been studied extensively to probe the optical absorption of biological tissue in multiple scales ranging from large organs to small molecules. However, its elastic oscillation characterization is rarely studied and has been an untapped area to be explored. In literature, photoacoustic signal induced by pulsed laser is commonly modelled as a bipolar "N-shape" pulse from an optical absorber. In this paper, the photoacoustic damped oscillation is predicted and modelled by an equivalent mass-spring system by treating the optical absorber as an elastic oscillator. The photoacoustic simulation incorporating the proposed oscillation model shows better agreement with the measured signal from an elastic phantom, than conventional photoacoustic simulation model. More interestingly, the photoacoustic damping oscillation effect could potentially be a useful characterization approach to evaluate biological tissue's mechanical properties in terms of relaxation time, peak number and ra...

  8. Applied Beta Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Rich, B.L.

    1986-01-01

    Measurements of beta and/or nonpenetrating exposure results is complicated and past techniques and capabilities have resulted in significant inaccuracies in recorded results. Current developments have resulted in increased capabilities which make the results more accurate and should result in less total exposure to the work force. Continued development of works in progress should provide equivalent future improvements.

  9. Beta Thalassemia (For Parents)

    Science.gov (United States)

    ... had their spleens removed. Slower growth rates. The anemia resulting from beta thalassemia can cause children to grow more slowly and also can lead ... boost production of new red blood cells. Some children with moderate anemia may require an occasional blood transfusion , particularly after ...

  10. Trichoderma .beta.-glucosidase

    Science.gov (United States)

    Dunn-Coleman, Nigel; Goedegebuur, Frits; Ward, Michael; Yao, Jian

    2006-01-03

    The present invention provides a novel .beta.-glucosidase nucleic acid sequence, designated bgl3, and the corresponding BGL3 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL3, recombinant BGL3 proteins and methods for producing the same.

  11. Roughing up Beta

    DEFF Research Database (Denmark)

    Bollerslev, Tim; Li, Sophia Zhengzi; Todorov, Viktor

    Motivated by the implications from a stylized equilibrium pricing framework, we investigate empirically how individual equity prices respond to continuous, or \\smooth," and jumpy, or \\rough," market price moves, and how these different market price risks, or betas, are priced in the cross-section...

  12. Neutrinoless Double Beta Decay: 2015 Review

    Directory of Open Access Journals (Sweden)

    Stefano Dell’Oro

    2016-01-01

    Full Text Available The discovery of neutrino masses through the observation of oscillations boosted the importance of neutrinoless double beta decay (0νββ. In this paper, we review the main features of this process, underlining its key role from both the experimental and theoretical point of view. In particular, we contextualize the 0νββ in the panorama of lepton number violating processes, also assessing some possible particle physics mechanisms mediating the process. Since the 0νββ existence is correlated with neutrino masses, we also review the state of the art of the theoretical understanding of neutrino masses. In the final part, the status of current 0νββ experiments is presented and the prospects for the future hunt for 0νββ are discussed. Also, experimental data coming from cosmological surveys are considered and their impact on 0νββ expectations is examined.

  13. Free oscillation of the Earth

    Directory of Open Access Journals (Sweden)

    Y. Abedini

    2000-06-01

    Full Text Available   This work is a study of the Earths free oscillations considering a merge of solid and liquid model. At the turn of 19th century Geophysicists presented the theory of the free oscillations for a self-gravitating, isotropic and compressible sphere. Assuming a steel structure for an Earth size sphere, they predicted a period of oscillation of about 1 hour. About 50 years later, the free oscillations of stars was studied by Cowling and others. They classified the oscillation modes of the stars into acoustic and gravity modes on the basis of their driving forces. These are pressure and buoyancy forces respectively. The earliest measurements for the period of the free oscillations of the Earth was made by Benyove from a study of Kamchathca earthquake. Since then, the Geophysicists have been trying to provide a theoretical basis for these measurements. Recently, the theory concerning oscillations of celestial fluids is extended by Sobouti to include the possible oscillations of the Earthlike bodies. Using the same technique, we study the free oscillations of a spherically symmetric, non-rotating and elastic model for the Earth.   We used the actual data of the Earths interior structure in our numerical calculations. Numerical results show that there exist three distinct oscillation modes namely acoustic, gravity and toroidal modes. These modes are driven by pressure, buoyancy and shear forces respectively. The shear force is due to the elastic properties of the solid part of the Earth. Our numerical results are consistent with the seismic data recorded from earthquake measurements.

  14. Polynomially deformed oscillators as k-bonacci oscillators

    CERN Document Server

    Gavrilik, A M

    2009-01-01

    A family of multi-parameter, polynomially deformed oscillators (PDOs) given by polynomial structure function \\phi(n) is studied from the viewpoint of being (or not) in the class of Fibonacci oscillators. These obey the Fibonacci relation/property (FR/FP) meaning that the n-th level energy E_n is given linearly, with real coefficients, by the two preceding ones E_{n-1}, E_{n-2}. We first prove that the PDOs do not fall in the Fibonacci class. Then, three different paths of generalizing the usual FP are developed for these oscillators: we prove that the PDOs satisfy respective k-term generalized Fibonacci (or "k-bonacci") relations; for these same oscillators we examine two other generalizations of the FR, the inhomogeneous FR and the "quasi-Fibonacci" relation. Extended families of deformed oscillators are studied too: the (q;\\mu)-oscillator with \\phi(n) quadratic in the basic q-number [n]_q is shown to be Tribonacci one, while the (p,q;\\mu)-oscillators with \\phi(n) quadratic (cubic) in the p,q-number [n]_{p,q...

  15. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  16. Study of neutrino oscillations in long-baseline accelerator experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kudenko, Yurii G [Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-06-30

    A review of the title subject is given. The phenomenology of neutrino oscillations in the framework of the so-called neutrino Standard Model ({nu}SM) with three active neutrinos is considered. The recently completed long-baseline accelerator experiment K2K and currently in-progress MINOS and OPERA experiments are described in detail. The oscillation parameters obtained from the global analysis of all oscillation data are given. The short-baseline experiment MiniBooNE and its results on the search for light sterile neutrinos are discussed in detail. Considerable attention is given to searching for {nu}{sub {mu}{yields}{nu}e} oscillations and measuring the {theta}{sub 13} angle in muon neutrino experiments. The concept of the off-axis neutrino beam is reviewed. The T2K experiment, collecting statistics since early 2010, is described for its details and objectives. The NO{nu}A experiment under construction and the next-generation beta beam and neutrino factory experiments are also discussed. (reviews of topical problems)

  17. Brain oscillations in sport: toward EEG biomakers of performance

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2016-02-01

    Full Text Available Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  18. Signatures of beta-sheet secondary structures in linear and two-dimensional infrared spectroscopy

    NARCIS (Netherlands)

    Cheatum, CM; Tokmakoff, A; Knoester, J

    2004-01-01

    Using idealized models for parallel and antiparallel beta sheets, we calculate the linear and two-dimensional infrared spectra of the amide I vibration as a function of size and secondary structure. The model assumes transition-dipole coupling between the amide I oscillators in the sheet and account

  19. TGF-beta and osteoarthritis.

    NARCIS (Netherlands)

    Blaney Davidson, E.N.; Kraan, P.M. van der; Berg, W.B. van den

    2007-01-01

    OBJECTIVE: Cartilage damage is a major problem in osteoarthritis (OA). Growth factors like transforming growth factor-beta (TGF-beta) have great potential in cartilage repair. In this review, we will focus on the potential therapeutic intervention in OA with TGF-beta, application of the growth facto

  20. Is an absolute level of cortical beta suppression required for proper movement? Magnetoencephalographic evidence from healthy aging.

    Science.gov (United States)

    Heinrichs-Graham, Elizabeth; Wilson, Tony W

    2016-07-01

    Previous research has connected a specific pattern of beta oscillatory activity to proper motor execution, but no study to date has directly examined how resting beta levels affect motor-related beta oscillatory activity in the motor cortex. Understanding this relationship is imperative to determining the basic mechanisms of motor control, as well as the impact of pathological beta oscillations on movement execution. In the current study, we used magnetoencephalography (MEG) and a complex movement paradigm to quantify resting beta activity and movement-related beta oscillations in the context of healthy aging. We chose healthy aging as a model because preliminary evidence suggests that beta activity is elevated in older adults, and thus by examining older and younger adults we were able to naturally vary resting beta levels. To this end, healthy younger and older participants were recorded during motor performance and at rest. Using beamforming, we imaged the peri-movement beta event-related desynchronization (ERD) and extracted virtual sensors from the peak voxels, which enabled absolute and relative beta power to be assessed. Interestingly, absolute beta power during the pre-movement baseline was much stronger in older relative to younger adults, and older adults also exhibited proportionally large beta desynchronization (ERD) responses during motor planning and execution compared to younger adults. Crucially, we found a significant relationship between spontaneous (resting) beta power and beta ERD magnitude in both primary motor cortices, above and beyond the effects of age. A similar link was found between beta ERD magnitude and movement duration. These findings suggest a direct linkage between beta reduction during movement and spontaneous activity in the motor cortex, such that as spontaneous beta power increases, a greater reduction in beta activity is required to execute movement. We propose that, on an individual level, the primary motor cortices have an

  1. Beta and gamma oscillatory activities associated with olfactory memory tasks: Different rhythms for different functional networks?

    Directory of Open Access Journals (Sweden)

    Claire eMartin

    2014-06-01

    Full Text Available Olfactory processing in behaving animals, even at early stages, is inextricable from top down influences associated with odor perception. The anatomy of the olfactory network (olfactory bulb, piriform and entorhinal cortices and its unique direct access to the limbic system makes it particularly attractive to study how sensory processing could be modulated by learning and memory. Moreover, olfactory structures have been early reported to exhibit oscillatory population activities easy to capture through local field potential recordings. An attractive hypothesis is that neuronal oscillations would serve to ‘bind’ distant structures to reach a unified and coherent perception. In relation to this hypothesis, we will assess the functional relevance of different types of oscillatory activity observed in the olfactory system of behaving animals. This review will focus primarily on two types of oscillatory activities: beta (15-40 Hz and gamma (60-100 Hz. While gamma oscillations are dominant in the olfactory system in the absence of odorant, both beta and gamma rhythms have been reported to be modulated depending on the nature of the olfactory task. Studies from the authors of the present review and other groups brought evidence for a link between these oscillations and behavioral changes induced by olfactory learning. However, differences in studies led to divergent interpretations concerning the respective role of these oscillations in olfactory processing. Based on a critical reexamination of those data, we propose hypotheses on the functional involvement of beta and gamma oscillations for odor perception and memory.

  2. Unity of CP and T Violation in Neutrino Oscillations

    CERN Document Server

    Blom, Martin; Blom, Martin; Minakata, Hisakazu

    2004-01-01

    In a previous work a simultaneous P- CP[P] and P- T[P] bi-probability plot was proposed as a useful tool for unified graphical description of CP and T violation in neutrino oscillation. The ``baseball diamond'' structure of the plot is understood as a consequence of the approximate CP-CP and the T-CP relations obeyed by the oscillation probabilities. In this paper, we make a step forward toward deeper understanding of the unified graphical representation by showing that these two relations are identical in its content, suggesting a truly unifying view of CP and T violation in neutrino oscillations. We suspect that the unity reflects the underlying CPT theorem. We also present calculation of corrections to the CP-CP and the T-CP relations to leading order in Delta m^2_{21} / Delta m^2_{31} and s^2_{13}.

  3. Beta-adrenergic modulation of tremor and corticomuscular coherence in humans.

    Directory of Open Access Journals (Sweden)

    Mark R Baker

    Full Text Available Coherence between the bioelectric activity of sensorimotor cortex and contralateral muscles can be observed around 20 Hz. By contrast, physiological tremor has a dominant frequency around 10 Hz. Although tremor has multiple sources, it is partly central in origin, reflecting a component of motoneuron discharge at this frequency. The motoneuron response to ~20 Hz descending input could be altered by non-linear interactions with ~10 Hz motoneuron firing. We investigated this further in eight healthy human subjects by testing the effects of the beta-adrenergic agents propranolol (non-selective β-antagonist and salbutamol (β(2-agonist, which are known to alter the size of physiological tremor. Corticomuscular coherence was assessed during an auxotonic precision grip task; tremor was quantified using accelerometry during index finger extension. Experiments with propranolol used a double-blind, placebo-controlled crossover design. A single oral dose of propranolol (40 mg significantly increased beta band (15.3-32.2 Hz corticomuscular coherence compared with placebo, but reduced tremor in the 6.2-11.9 Hz range. Salbutamol (2.5 mg was administered by inhalation. Whilst salbutamol significantly increased tremor amplitude as expected, it did not change corticomuscular coherence. The opposite direction of the effects of propranolol on corticomuscular coherence and tremor, and the fact that salbutamol enhances tremor but does not affect coherence, implies that the magnitude of corticomuscular coherence is little influenced by non-linear interactions with 10 Hz oscillations in motoneurons or the periphery. Instead, we suggest that propranolol and salbutamol may affect both tremor and corticomuscular coherence partly via a central site of action.

  4. Increased production of beta2-microglobulin after heart transplantation.

    Science.gov (United States)

    Erez, E; Aravot, D; Erman, A; Sharoni, E; van Oyk, D J; Raanani, E; Abramov, D; Sulkes, J; Vidne, B A

    1998-05-01

    Serum beta2-microglobulin (beta2m) levels were measured to evaluate the state of immunoactivation in stable heart transplant recipients. Serum beta2m and renal function of 29 heart transplant recipients were compared with 16 control subjects, who were age and sex matched, and 11 patients with chronic kidney failure. Serum creatinine and 24-hour urine collection for albuminuria were used as markers of renal impairment. Heart transplant recipients with normal renal function (n = 7) had significantly elevated beta2m levels compared with control subjects: 2.6 +/- 0.9 vs 1.66 +/- 0.32 microg/ml, p < or = 0.05. Heart transplant recipients with impaired renal function (n = 22) had significantly elevated beta2m compared with the chronic kidney failure group: 4.42 +/- 1.3 vs 3.49 +/- 0.66 microg/ml (p < or = 0.05); although there was no significant difference in serum creatinine levels. Albuminuria excretion was significantly elevated in the chronic kidney failure group compared with the heart transplant recipients with impaired renal function (p < or = 0.05). Elevated serum beta2m in heart transplant recipients suggests increased beta2m production, reflecting increased immunoactivation. This observation could be useful in monitoring long-term immunosuppressive therapy.

  5. A theory of generalized Bloch oscillations.

    Science.gov (United States)

    Duggen, Lars; Lew Yan Voon, L C; Lassen, Benny; Willatzen, Morten

    2016-04-20

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.

  6. Differential regulation of chemoattractant-stimulated beta 2, beta 3, and beta 7 integrin activity.

    Science.gov (United States)

    Sadhu, C; Masinovsky, B; Staunton, D E

    1998-06-01

    Leukocyte adhesion to endothelium and extravasation are dynamic processes that require activation of integrins. Chemoattractants such as IL-8 and FMLP are potent activators of leukocyte integrins. To compare the chemoattractant-stimulated activation of three integrins, alpha 4 beta 7, alpha L beta 2, and alpha V beta 3, in the same cellular context, we expressed an IL-8 receptor (IL-8RA) and FMLP receptor (FPR) in the lymphoid cell line JY. Chemoattractants induced a rapid increase in alpha L beta 2- and alpha V beta 3-dependent JY adhesion within 5 min, and it was sustained for 30 min. In contrast, stimulation of alpha 4 beta 7-dependent adhesion was transient, returning to basal levels by 30 min. The activation profiles of the integrins were similar regardless of whether IL-8 or FMLP was used for induction. We also demonstrate that alpha 4 beta 7-dependent adhesion was uniquely responsive to the F actin-disrupting agent cytochalasin D and the protein kinase C (PKC) inhibitor chelerythrin. While alpha V beta 3- and alpha L beta 2-mediated cell adhesion was significantly reduced by cytochalasin D, alpha 4 beta 7-mediated adhesion was enhanced. Chelerythrin inhibited both the IL-8 and PMA activation of alpha L beta 2 and alpha V beta 3. In contrast, inducible alpha 4 beta 7 activity was unaffected, and basal activity was increased. These findings demonstrate that the mechanism of alpha 4 beta 7 regulation by chemoattractants is different from that of alpha L beta 2 and alpha V beta 3 and that it appears to involve distinct cytoskeletal and PKC dependencies. In addition, PKC activity may be a positive or negative regulator of integrin-dependent adhesion.

  7. Forced synchronization of quasiperiodic oscillations

    Science.gov (United States)

    Stankevich, N. V.; Kurths, J.; Kuznetsov, A. P.

    2015-01-01

    A model of a generator of quasiperiodic oscillations forced by a periodic pulse sequence is studied. We analyze synchronization when the autonomous generator demonstrates periodic, quasiperiodic, respective weakly chaotic oscillations. For the forced quasiperiodic oscillations a picture of synchronization, consisting of small-scale and large-scale structures was uncovered. It even includes the existence of stable the three-frequency tori. For the regime of weak chaos a partial destruction of this features and of the regime of three-frequency tori are found.

  8. Collective oscillations in a plasma

    CERN Document Server

    Akhiezer, A I; Polovin, R V; ter Haar, D

    2013-01-01

    International Series of Monographs in Natural Philosophy: Collective Oscillations in a Plasma, Volume 7 presents specific topics within the general field of radio waves propagation. This book contains five chapters that address the theory of linear oscillations in a plasma, the spectra of the eigen oscillations, and the mechanism of high-frequency heating. The opening chapters deal with the self-consistent fields; development of initial perturbation; dispersion permittivity tensor of a plasma in a magnetic field; effect of thermal motion of particles on low-frequency resonances; excitation of

  9. Oscillating solitons in nonlinear optics

    Indian Academy of Sciences (India)

    Lin Xiao-Gang; Liu Wen-Jun; Lei Ming

    2016-03-01

    Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic soliton solutions are derived, and the relevant properties and features of oscillating solitons are illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical communication system and mode-locked fibre lasers.

  10. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  11. Neutrinoless double beta decay search with SNO+

    Directory of Open Access Journals (Sweden)

    Lozza V.

    2014-01-01

    Full Text Available The SNO+ experiment is the follow up of SNO. The detector is located 2 km underground in the Vale Canada Ltd.’s Creighton Mine near Sudbury, Ontario, Canada. The active volume of the detector consists of 780 tonnes of Linear Alkyl Benzene (LAB in an acrylic vessel of 12 m diameter, surrounded by about 9500 PMTs. The main goal of the SNO+ experiment is the search for neutrinoless double beta decay of 130Te. With an initial loading of 0.3% of natural tellurium (nearly 800 kg of 130Te, it is expected to reach a sensitivity on the effective Majorana neutrino mass of about 100 meV after several years of data taking. Designed as a general purpose neutrino experiment, other exciting physical goals can be explored, like the measurement of reactor neutrino oscillations and geo-neutrinos in a geologically-interesting location, watch of supernova neutrinos and studies of solar neutrinos. A first commissioning phase with water filled detector will start at the end of 2013, while the double beta decay phase will start in 2015.

  12. Brain oscillatory activity during motor preparation: Effect of directional uncertainty on beta, but not alpha, frequency band

    Directory of Open Access Journals (Sweden)

    Charidimos eTzagarakis

    2015-07-01

    Full Text Available In time-constraint activities, such as sports, it is advantageous to be prepared to act even before knowing precisely what action will be needed. Here, we studied the relation between neural oscillations during motor preparation and amount of uncertainty about the direction of the upcoming target. Ten right-handed volunteers participated in a cued center-out task. A brief visual cue identified the region of space in which the target would appear. Three cue sizes were used to vary the amount of information about the direction of the upcoming target. The target appeared at a random location within the region indicated by the cue, and the participants moved a joystick-controlled cursor towards it. Time-frequency analyses showed phasic increases of power in low (delta/theta: 30 Hz frequency-bands in relation to the onset of visual stimuli and of the motor response. More importantly in regard to motor preparation, there was a tonic reduction of power in the alpha (8-12 Hz and beta (14-30 Hz bands during the period between cue presentation and target onset. During motor preparation, the main source of change of power of the alpha band was localized over the contralateral sensorimotor region and both parietal cortices, whereas for the beta-band the main source was the contralateral sensorimotor region. During cue presentation, the reduction of power of the alpha-band in the occipital lobe showed a brief differentiation of condition: the wider the visual cue, the more the power of the alpha-band decreased. However during motor preparation, only the power of the beta-band was dependent on directional uncertainty: the less the directional uncertainty, the more the power of the beta-band decreased. In conclusion, the results indicate that the power in the alpha-band is associated briefly with cue size, but is otherwise an undifferentiated indication of neural activation, whereas the power of the beta-band reflects the level of motor preparation.

  13. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  14. Oscillations in Mathematical Biology

    CERN Document Server

    1983-01-01

    The papers in this volume are based on talks given at a one day conference held on the campus of Adelphi University in April 1982. The conference was organized with the title "Oscillations in Mathematical Biology;" however the speakers were allowed considerable latitutde in their choice of topics. In the event, the talks all concerned the dynamics of non-linear systems arising in biology so that the conference achieved a good measure of cohesion. Some of the speakers cho~e not to submit a manuscript for these proceedings, feeling that their material was too conjectural to be committed to print. Also the paper of Rinzel and Troy is a distillation of the two separate talks that the authors gave. Otherwise the material reproduces the conference proceedings. The conference was made possible by the generous support of the Office of the Dean of the College of Arts and Sciences at Adelphi. The bulk of the organization of the conference was carried out by Dr. Ronald Grisell whose energy was in large measure responsib...

  15. Chromosome oscillations in mitosis

    Science.gov (United States)

    Campas, Otger

    2008-03-01

    Successful cell division necessitates a tight regulation of chromosome movement via the activity of molecular motors. Many of the key players at the origin of the forces generating the motion have been identified, but their spatial and temporal organization remains elusive. In animal cells, chromosomes periodically switch between phases of movement towards and away from the pole. This characteristic oscillatory behaviour cannot be explained by the current models of chromosome positioning and congression. We perform a self-contained theoretical analysis in which the motion of mono-oriented chromosomes results from the competition between the activity of the kinetochore and chromokinesin motors on the chromosome arms. Our analysis, consistent with the available experimental data, proposes that the interplay between the aster-like morphology of the spindle and the collective kinetics of molecular motors is at the origin of chromosome oscillations, positioning and congression. It provides a natural explanation for the so-called chromosome directional instability and for the mechanism by which chromosomes sense their position in space. In addition, we estimate the in vivo velocity of chromokinesins at vanishing load and propose new experiments to assess the mechanism at the origin of chromosome movement in cell division.

  16. The radius and other fundamental parameters of the F9 V star beta Virginis

    CERN Document Server

    North, J R; Robertson, J G; Bedding, T R; Bruntt, H; Ireland, M J; Jacob, A P; Lacour, S; O'Byrne, J W; Owens, S M; Stello, D; Tango, W J; Tuthill, P G

    2008-01-01

    We have used the Sydney University Stellar Interferometer (SUSI) to measure the angular diameter of the F9 V star beta Virginis. After correcting for limb darkening and combining with the revised Hipparcos parallax, we derive a radius of 1.703 +/- 0.022 R_sun (1.3%). We have also calculated the bolometric flux from published measurements which, combined with the angular diameter, implies an effective temperature of 6059 +/- 49 K (0.8%). We also derived the luminosity of beta Vir to be L = 3.51 +/- 0.08 L_sun (2.1%). Solar-like oscillations were measured in this star by Carrier et al. (2005) and using their value for the large frequency separation yields the mean stellar density with an uncertainty of about 2%. Our constraints on the fundamental parameters of beta Vir will be important to test theoretical models of this star and its oscillations.

  17. Beta-thalassemia

    Directory of Open Access Journals (Sweden)

    Origa Raffaella

    2010-05-01

    Full Text Available Abstract Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands, dilated myocardiopathy, liver fibrosis and cirrhosis. Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes, gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely

  18. Beta-thalassemia.

    Science.gov (United States)

    Galanello, Renzo; Origa, Raffaella

    2010-05-21

    Beta-thalassemias are a group of hereditary blood disorders characterized by anomalies in the synthesis of the beta chains of hemoglobin resulting in variable phenotypes ranging from severe anemia to clinically asymptomatic individuals. The total annual incidence of symptomatic individuals is estimated at 1 in 100,000 throughout the world and 1 in 10,000 people in the European Union. Three main forms have been described: thalassemia major, thalassemia intermedia and thalassemia minor. Individuals with thalassemia major usually present within the first two years of life with severe anemia, requiring regular red blood cell (RBC) transfusions. Findings in untreated or poorly transfused individuals with thalassemia major, as seen in some developing countries, are growth retardation, pallor, jaundice, poor musculature, hepatosplenomegaly, leg ulcers, development of masses from extramedullary hematopoiesis, and skeletal changes that result from expansion of the bone marrow. Regular transfusion therapy leads to iron overload-related complications including endocrine complication (growth retardation, failure of sexual maturation, diabetes mellitus, and insufficiency of the parathyroid, thyroid, pituitary, and less commonly, adrenal glands), dilated myocardiopathy, liver fibrosis and cirrhosis). Patients with thalassemia intermedia present later in life with moderate anemia and do not require regular transfusions. Main clinical features in these patients are hypertrophy of erythroid marrow with medullary and extramedullary hematopoiesis and its complications (osteoporosis, masses of erythropoietic tissue that primarily affect the spleen, liver, lymph nodes, chest and spine, and bone deformities and typical facial changes), gallstones, painful leg ulcers and increased predisposition to thrombosis. Thalassemia minor is clinically asymptomatic but some subjects may have moderate anemia. Beta-thalassemias are caused by point mutations or, more rarely, deletions in the beta

  19. Beta and muon decays

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, A.; Pascual, P.

    1967-07-01

    These notes represent a series of lectures delivered by the authors in the Junta de Energia Nuclear, during the Spring term of 1965. They were devoted to graduate students interested in the Theory of Elementary Particles. Special emphasis was focussed into the computational problems. Chapter I is a review of basic principles (Dirac equation, transition probabilities, final state interactions.) which will be needed later. In Chapter II the four-fermion punctual Interaction is discussed, Chapter III is devoted to the study of beta-decay; the main emphasis is given to the deduction of the formulae corresponding to electron-antineutrino correlation, electron energy spectrum, lifetimes, asymmetry of electrons emitted from polarized nuclei, electron and neutrino polarization and time reversal invariance in beta decay. In Chapter IV we deal with the decay of polarized muons with radiative corrections. Chapter V is devoted to an introduction to C.V.C. theory. (Author)

  20. Realized Beta GARCH

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger; Voev, Valeri Radkov

    2014-01-01

    We introduce a multivariate generalized autoregressive conditional heteroskedasticity (GARCH) model that incorporates realized measures of variances and covariances. Realized measures extract information about the current levels of volatilities and correlations from high-frequency data, which...... is particularly useful for modeling financial returns during periods of rapid changes in the underlying covariance structure. When applied to market returns in conjunction with returns on an individual asset, the model yields a dynamic model specification of the conditional regression coefficient that is known...... as the beta. We apply the model to a large set of assets and find the conditional betas to be far more variable than usually found with rolling-window regressions based exclusively on daily returns. In the empirical part of the paper, we examine the cross-sectional as well as the time variation...

  1. Experimental study of a multiplicative model of multiple ionospheric reflections

    Science.gov (United States)

    Mirkotan, S. F.; Zhuravlev, S. V.; Kosovtsov, Iu. N.

    1983-04-01

    An important parameter of a partially scattered ionospheric signal is the signal-noise energy parameter beta. A new method for determining beta sub n (where n is the multiplicity of reflection) has been proposed on the basis of the statistical multiplicative model of Mirkotan et al. (1981, 1982). This paper describes an experimental verification of the proposed method; data on beta sub n obtained by the traditional method and by the new method are compared. In addition, the validity of the multiplicative model is evaluated, and features of the mechanism responsible for the multiple scattering of an ionospheric signal are examined.

  2. Coroutine Sequencing in BETA

    DEFF Research Database (Denmark)

    Kristensen, Bent Bruun; Madsen, Ole Lehrmann; Møller-Pedersen, Birger;

    In object-oriented programming, a program execution is viewed as a physical model of some real or imaginary part of the world. A language supporting object-oriented programming must therefore contain comprehensive facilities for modeling phenomena and concepts form the application domain. Many ap...... applications in the real world consist of objects carrying out sequential processes. Coroutines may be used for modeling objects that alternate between a number of sequential processes. The authors describe coroutines in BETA...

  3. Magic Baseline Beta Beam

    CERN Document Server

    Agarwalla, Sanjib Kumar; Raychaudhuri, Amitava

    2007-01-01

    We study the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The CERN-INO distance is close to the so-called "magic" baseline which helps evade some of the parameter degeneracies and allows for a better measurement of the neutrino mass hierarchy and $\\theta_{13}$.

  4. Beta cell adaptation in pregnancy

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    2016-01-01

    Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin...... and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades......, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved...

  5. Regulation of beta cell replication

    DEFF Research Database (Denmark)

    Lee, Ying C; Nielsen, Jens Høiriis

    2008-01-01

    Beta cell mass, at any given time, is governed by cell differentiation, neogenesis, increased or decreased cell size (cell hypertrophy or atrophy), cell death (apoptosis), and beta cell proliferation. Nutrients, hormones and growth factors coupled with their signalling intermediates have been...... suggested to play a role in beta cell mass regulation. In addition, genetic mouse model studies have indicated that cyclins and cyclin-dependent kinases that determine cell cycle progression are involved in beta cell replication, and more recently, menin in association with cyclin-dependent kinase...... inhibitors has been demonstrated to be important in beta cell growth. In this review, we consider and highlight some aspects of cell cycle regulation in relation to beta cell replication. The role of cell cycle regulation in beta cell replication is mostly from studies in rodent models, but whether...

  6. Chemical oscillation in electrochemical oxidation of methanol on Pt surface

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on dual path reaction mechanism, a nonlinear dynamics model reflecting the potential oscilla- tion in electrooxidation of methanol on Pt surface was established. The model involves three variables, the electrode potential (e), the surface coverage of carbon monoxide (x), and adsorbed water (y). The chemical reactions and electrode potential were coupled together through the rate constant ki = exp(ai(e ? ei)). The analysis to the established model discloses the following: there are different kinetics be- haviors in different ranges of current densities. The chemical oscillation in methanol electrooxidation is assigned to two aspects, one from poison mediate CO of methanol electrooxidation, which is the in- duced factor of the chemical oscillation, and the other from the oxygen-containing species, such as H2Oa. The formation and disappearance of H2Oa deeply depend on the electrode potential, and directly cause the chemical oscillation. The established model makes clear that the potential oscillation in methanol electrooxidation is the result of the feedback of electrode potential e on the reactions in- volving poison mediates CO and oxygen-containing species H2Oa. The numerical analysis of the estab- lished model successfully explains why the potential oscillation in methanol galvanostatic oxidation on a Pt electrode only happens in a certain range of current densities but not at any current density.

  7. Gamma Oscillations and Visual Binding

    Science.gov (United States)

    Robinson, Peter A.; Kim, Jong Won

    2006-03-01

    At the root of visual perception is the mechanism the brain uses to analyze features in a scene and bind related ones together. Experiments show this process is linked to oscillations of brain activity in the 30-100 Hz gamma band. Oscillations at different sites have correlation functions (CFs) that often peak at zero lag, implying simultaneous firing, even when conduction delays are large. CFs are strongest between cells stimulated by related features. Gamma oscillations are studied here by modeling mm-scale patchy interconnections in the visual cortex. Resulting predictions for gamma responses to stimuli account for numerous experimental findings, including why oscillations and zero-lag synchrony are associated, observed connections with feature preferences, the shape of the zero-lag peak, and variations of CFs with attention. Gamma waves are found to obey the Schroedinger equation, opening the possibility of cortical analogs of quantum phenomena. Gamma instabilities are tied to observations of gamma activity linked to seizures and hallucinations.

  8. Matrix Theory of Small Oscillations

    Science.gov (United States)

    Chavda, L. K.

    1978-01-01

    A complete matrix formulation of the theory of small oscillations is presented. Simple analytic solutions involving matrix functions are found which clearly exhibit the transients, the damping factors, the Breit-Wigner form for resonances, etc. (BB)

  9. Global Analysis of Neutrino Oscillation

    CERN Document Server

    Goswami, S; Choubey, S; Goswami, Srubabati; Bandyopadhyay, Abhijit; Choubey, Sandhya

    2005-01-01

    We present the constraints on neutrino oscillation parameters $\\Delta m^2_{\\odot}$ and $\\theta_{\\odot}$ governing the solar neutrino oscillations from two generation analysis of solar and KamLAND data. We include the latest 766.3 ton year KamLAND data in our analysis. We also present the allowed values of parameters $\\Delta m^2_{atm}$ and $\\sin^2\\theta_{atm}$ from two generation oscillation analysis of SuperKamiokande atmospheric and K2K data. For both cases we discuss the precision achieved in the present set of experiments and also how the precision can be improved in future. We also obtain the bounds on $\\theta_{13}$ from three generation analysis of global oscillation data. We emphasise on the roles played by different data sets in constraining the allowed parameter ranges.

  10. Global Analysis of Neutrino Oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, Srubabati [Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211 019 (India); Bandyopadhyay, Abhijit [Theory Group, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Calcutta 700 064 (India); Choubey, Sandhya [INFN, Sezione di Trieste and Scuola Internazionale Superiore di Studi Avanzati, I-34014, Trieste (Italy)

    2005-06-15

    We present the constraints on neutrino oscillation parameters {delta}m{sub -}bar {sup 2} and {theta}{sub -}bar governing the solar neutrino oscillations from two generation analysis of solar and KamLAND data. We include the latest 766.3 ton year KamLAND data in our analysis. We also present the allowed values of parameters {delta}m{sub atm}{sup 2} and sin{sup 2}{theta}{sub atm} from two generation oscillation analysis of SuperKamiokande atmospheric and K2K data. For both cases we discuss the precision achieved in the present set of experiments and also how the precision can be improved in future. We also obtain the bounds on {theta}{sub 13} from three generation analysis of global oscillation data. We emphasise on the roles played by different data sets in constraining the allowed parameter ranges.

  11. Strongly nonlinear oscillators analytical solutions

    CERN Document Server

    Cveticanin, Livija

    2014-01-01

    This book provides the presentation of the motion of pure nonlinear oscillatory systems and various solution procedures which give the approximate solutions of the strong nonlinear oscillator equations. The book presents the original author’s method for the analytical solution procedure of the pure nonlinear oscillator system. After an introduction, the physical explanation of the pure nonlinearity and of the pure nonlinear oscillator is given. The analytical solution for free and forced vibrations of the one-degree-of-freedom strong nonlinear system with constant and time variable parameter is considered. Special attention is given to the one and two mass oscillatory systems with two-degrees-of-freedom. The criteria for the deterministic chaos in ideal and non-ideal pure nonlinear oscillators are derived analytically. The method for suppressing chaos is developed. Important problems are discussed in didactic exercises. The book is self-consistent and suitable as a textbook for students and also for profess...

  12. Oscillations of a chemical garden

    Science.gov (United States)

    Pantaleone, J.; Toth, A.; Horvath, D.; Rother McMahan, J.; Smith, R.; Butki, D.; Braden, J.; Mathews, E.; Geri, H.; Maselko, J.

    2008-04-01

    When soluble metal salts are placed in a silicate solution, chemical gardens grow. These gardens are treelike structures formed of long, thin, hollow tubes. Here we study one particular case: a calcium nitrate pellet in a solution of sodium trisilicate. We observe that tube growth results from a relaxation oscillation. The average period and the average growth rate are approximately constant for most of the structures growth. The period does fluctuate from cycle to cycle, with the oscillation amplitude proportional to the period. Based on our observations, we develop a model of the relaxation oscillations which calculates the average oscillation period and the average tube radius in terms of fundamental membrane parameters. We also propose a model for the average tube growth rate. Predictions are made for future experiments.

  13. Matter Effects On Neutrino Oscillations

    Science.gov (United States)

    Gordon, Michael

    An introduction to neutrino oscillations in vacuum is presented, followed by a survey of various techniques for obtaining either exact or approximate expressions for numu → nue oscillations in matter. The method developed by Arafune, Koike, and Sato uses a perturbative analysis to find an approximation for the evolution operator. The method used by Freund yields an approximate oscillation probability by diagonalizing the Hamiltonian, finding the eigenvalues and eigenvectors, and then using those to find modified mixing angles with the matter effect taken into account. The method devised by Mann, Kafka, Schneps, and Altinok produces an exact expression for the oscillation by determining explicitly the evolution operator. These methods are compared to each other using the T2K, MINOS, NOnuA, and LBNE parameters.

  14. Atmospheric Neutrino Oscillations in Antares

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, J.

    2013-04-15

    The data taken with the ANTARES neutrino telescope from 2007 to 2010, a total live time of 863 days, are used to measure the oscillation parameters of atmospheric neutrinos. Muon tracks are reconstructed with energies as low as 20 GeV. Neutrino oscillations will cause a suppression of vertical upgoing muon neutrinos of such energies crossing the Earth. The parameters determining the oscillation of atmospheric neutrinos are extracted by fitting the event rate as a function of the ratio of the estimated neutrino energy and reconstructed flight path through the Earth. Measurement contours of the oscillation parameters in a two-flavour approximation are derived. Assuming maximum mixing, a mass difference of Δm{sub 32}{sup 2}=(3.1±0.9)⋅10{sup −3}eV{sup 2} is obtained, in good agreement with the world average value.

  15. Oscillations of thick accretion discs

    Energy Technology Data Exchange (ETDEWEB)

    Jaroszynski, M.

    1986-06-15

    The non-axisymmetric oscillations of polytropic, ideal fluid tori rotating in the external gravitational field of a point mass are investigated both numerically and analytically. Normal modes of oscillations are found; their classification into 'radial', 'p', 'g' and 'f' modes is done in analogy to the stellar case. The non-discrete spectrum of modes which are neutral in the limit of axisymmetric perturbations is also present.

  16. Interconverting conformations of variants of the human amyloidogenic protein beta2-microglobulin quantitatively characterized by dynamic capillary electrophoresis and computer simulation

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Jørgensen, Thomas J D; Cheng, Lei

    2006-01-01

    Capillary electrophoretic separation profiles of cleaved variants of beta2-microglobulin (beta2m) reflect the conformational equilibria existing in solutions of these proteins. The characterization of these equilibria is of interest since beta2m is responsible for amyloid formation in dialysis-re...

  17. Harmonic Oscillators and Elementary Particles

    CERN Document Server

    Sobouti, Y

    2016-01-01

    Two dynamical systems with same symmetry should have features in common, and as far as their shared symmetry is concerned, one may represent the other. The three light quark constituents of the hadrons, a) have an approximate flavor SU(3) symmetry, b) have an exact color SU(3) symmetry, and c) as spin 1/2 particles, have a Lorentz SO(3,1) symmetry. So does a 3D harmonic oscillator. a) Its Hamiltonian has the SU(3) symmetry, breakable if the 3 fundamental modes of oscillation are not identical. b) The 3 directions of oscillation have the permutation symmetry. This enables one to create three copies of unbreakable SU(3) symmetry for each mode of the oscillation, and mimic the color of the elementary particles. And c) The Lagrangian of the 3D oscillator has the SO(3,1) symmetry. This can be employed to accommodate the spin of the particles. In this paper we draw up a one-to-one correspondence between the eigen modes of the Poisson bracket operator of the 3D oscillator and the flavor multiplets of the particles, ...

  18. Inter-hemispheric oscillations in human sleep.

    Directory of Open Access Journals (Sweden)

    Lukas L Imbach

    Full Text Available Sleep is generally categorized into discrete stages based on characteristic electroencephalogram (EEG patterns. This traditional approach represents sleep architecture in a static way, but it cannot reflect variations in sleep across time and across the cortex. To investigate these dynamic aspects of sleep, we analyzed sleep recordings in 14 healthy volunteers with a novel, frequency-based EEG analysis. This approach enabled comparison of sleep patterns with low inter-individual variability. We then implemented a new probability dependent, automatic classification of sleep states that agreed closely with conventional manual scoring during consolidated sleep. Furthermore, this analysis revealed a previously unrecognized, interhemispheric oscillation during rapid eye movement (REM sleep. This quantitative approach provides a new way of examining the dynamic aspects of sleep, shedding new light on the physiology of human sleep.

  19. Inter-hemispheric oscillations in human sleep.

    Science.gov (United States)

    Imbach, Lukas L; Werth, Esther; Kallweit, Ulf; Sarnthein, Johannes; Scammell, Thomas E; Baumann, Christian R

    2012-01-01

    Sleep is generally categorized into discrete stages based on characteristic electroencephalogram (EEG) patterns. This traditional approach represents sleep architecture in a static way, but it cannot reflect variations in sleep across time and across the cortex. To investigate these dynamic aspects of sleep, we analyzed sleep recordings in 14 healthy volunteers with a novel, frequency-based EEG analysis. This approach enabled comparison of sleep patterns with low inter-individual variability. We then implemented a new probability dependent, automatic classification of sleep states that agreed closely with conventional manual scoring during consolidated sleep. Furthermore, this analysis revealed a previously unrecognized, interhemispheric oscillation during rapid eye movement (REM) sleep. This quantitative approach provides a new way of examining the dynamic aspects of sleep, shedding new light on the physiology of human sleep.

  20. Magnetically Coupled Magnet-Spring Oscillators

    Science.gov (United States)

    Donoso, G.; Ladera, C. L.; Martin, P.

    2010-01-01

    A system of two magnets hung from two vertical springs and oscillating in the hollows of a pair of coils connected in series is a new, interesting and useful example of coupled oscillators. The electromagnetically coupled oscillations of these oscillators are experimentally and theoretically studied. Its coupling is electromagnetic instead of…

  1. On the nonlinear modeling of ring oscillators

    KAUST Repository

    Elwakil, Ahmed S.

    2009-06-01

    We develop higher-order nonlinear models of three-stage and five-stage ring oscillators based on a novel inverter model. The oscillation condition and oscillation frequency are derived and compared to classical linear model analysis. Two important special cases for five-stage ring oscillators are also studied. Numerical simulations are shown. © 2009 World Scientific Publishing Company.

  2. Quantum noise of a Michelson-Sagnac interferometer with translucent mechanical oscillator

    CERN Document Server

    Yamamoto, Kazuhiro; Westphal, Tobias; Gossler, Stefan; Danzmann, Karsten; Schnabel, Roman; Somiya, Kentaro; Danilishin, Stefan L

    2009-01-01

    Quantum fluctuations in the radiation pressure of light can excite stochastic motions of mechanical oscillators thereby realizing a linear quantum opto-mechanical coupling. When performing a precise measurement of the position of an oscillator, this coupling results in quantum radiation pressure noise. Up to now this effect has not been observed yet. Generally speaking, the strength of radiation pressure noise increases when the effective mass of the oscillator is decreased or when the power of the reflected light is increased. Recently, extremely light SiN membranes with high mechanical Q-values at room temperature have attracted attention as low thermal noise mechanical oscillators. However, the power reflectance of these membranes is much lower than unity which makes the use of advanced interferometer recycling techniques to amplify the radiation pressure noise in a standard Michelson interferometer inefficient. Here, we propose and theoretically analyze a Michelson-Sagnac interferometer that includes the ...

  3. Correlated oscillations due to similar multi-path effects seen in two widely separated radio telescopes

    CERN Document Server

    Diep, P N; Darriulat, P; Nhung, P T; Anh, P T; Dong, P N; Hoai, D T; Thao, N T

    2014-01-01

    A multipath mechanism similar to that used in Australia sixty years ago by the Sea-cliff Interferometer is shown to generate correlations between the periods of oscillations observed by two distant radio telescopes pointed to the Sun. The oscillations are the result of interferences between the direct wave detected in the main antenna lobe and its reflection on ground detected in a side lobe. A model is made of such oscillations in the case of two observatories located at equal longitudes and opposite tropical latitudes, respectively in Ha Noi (Viet Nam) and Learmonth (Australia), where similar radio telescopes are operated at 1.4 GHz. Simple specular reflection from ground is found to give a good description of the observed oscillations and to explain correlations that had been previously observed and for which no satisfactory interpretation, instrumental or other, had been found.

  4. Reflectable bases for affine reflection systems

    CERN Document Server

    Azam, Saeid; Yousofzadeh, Malihe

    2011-01-01

    The notion of a "root base" together with its geometry plays a crucial role in the theory of finite and affine Lie theory. However, it is known that such a notion does not exist for the recent generalizations of finite and affine root systems such as extended affine root systems and affine reflection systems. As an alternative, we introduce the notion of a "reflectable base", a minimal subset $\\Pi$ of roots such that the non-isotropic part of the root system can be recovered by reflecting roots of $\\Pi$ relative to the hyperplanes determined by $\\Pi$. We give a full characterization of reflectable bases for tame irreducible affine reflection systems of reduced types, excluding types $E_{6,7,8}$. As a byproduct of our results, we show that if the root system under consideration is locally finite then any reflectable base is an integral base.

  5. A theory of generalized Bloch oscillations

    DEFF Research Database (Denmark)

    Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny;

    2016-01-01

    Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...

  6. Local gravity measurement with the combination of atom interferometry and Bloch oscillations

    CERN Document Server

    Charrière, Renée; Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre

    2011-01-01

    We present a local measurement of gravity combining Bloch oscillations and atom interferometry. With a falling distance of 0.8 mm, we achieve a sensitivity of 2x10-7 g with an integration time of 300 s. No bias associated with the Bloch oscillations has been measured. A contrast decay with Bloch oscillations has been observed and attributed to the spatial quality of the laser beams. A simple experimental configuration has been adopted where a single retro-reflected laser beam is performing atoms launch, stimulated Raman transitions and Bloch oscillations. The combination of Bloch oscillations and atom interferometry can thus be realized with an apparatus no more complex than a standard atomic gravimeter.

  7. Regulation Mechanisms of Stomatal Oscillation

    Institute of Scientific and Technical Information of China (English)

    Hui-Min YANG; Jian-Hua ZHANG; Xiao-Yan ZHANG

    2005-01-01

    Stomata function as the gates between the plant and the atmospheric environment. Stomatal movement, including stomatal opening and closing, controls CO2 absorption as the raw material for photosynthesis and water loss through transpiration. How to reduce water loss and maintain enough CO2 absorption has been an interesting research topic for some time. Simple stomatal opening may elevate CO2 absorption,but, in the meantime, promote the water loss, whereas simple closing of stomatal pores may reduce both water loss and CO2 absorption, resulting in impairment of plant photosynthesis. Both processes are not economical to the plant. As a special rhythmic stomatal movement that usually occurs at smaller stomatal apertures, stomatal oscillation can keep CO2 absorption at a sufficient level and reduce water loss at the same time, suggesting a potential improvement in water use efficiency. Stomatal oscillation is usually found after a sudden change in one environmental factor in relatively constant environments. Many environmental stimuli can induce stomatal oscillation. It appears that, at the physiological level, feedback controls are involved in stomatal oscillation. At the cellular level, possibly two different patterns exist: (i) a quicker responsive pattern; and (ii) a slower response. Both involve water potential changes and water channel regulation, but the mechanisms of regulation of the two patterns are different. Some evidence suggests that the regulation of water channels may play a vital and primary role in stomatal oscillation. The present review summarizes studies on stomatal oscillation and concludes with some discussion regarding the mechanisms of regulation of stomatal oscillation.

  8. Matter neutrino oscillations, an approximation in a parametrization-free framework

    CERN Document Server

    Flores, L J

    2016-01-01

    Neutrino oscillations are one of the most studied and successful phenomena since the establishment of the solar neutrino problem in late 1960's. In this work we discuss the exact expressions for the probability P_{\\alpha\\beta} in a constant density medium, in terms of the standard vacuum parameters and the medium density. Besides of being compact, these expressions are independent of any particular parametrization, which could be helpful in the application of unitary tests of the mixing matrix. In addition, we introduce a new approximation on P_{\\alpha\\beta} and compare it with the most commonly used, discussing their main differences.

  9. Intermediate γ beta beams with a cluster of detectors

    Science.gov (United States)

    Meloni, D.; Mena, O.; Orme, C.; Palomares-Ruiz, S.; Pascoli, S.

    2008-05-01

    The acceleration of radionuclides in a beta beam provides an alternative experimental design to superbeam and neutrino factory long baseline neutrino oscillation experiments. Only single baseline beta beam scenarios have been considered thus far although a storage ring could source at least two baselines. The multitude of possible detector sites in Europe potentially allows for numerous baselines for future long baseline experiments sourced at CERN. Here, we will consider an example taking the CERN-Canfranc and CERN-Boulby baselines. We present results that indicate good sensitivity to the mass hierarchy for values of sin2 2θ13 as small as 10-3 and CP-violation discovery for sin2 2θ13 down to 10-4. These results are achieved with a single helicity since the second baseline provides the synergies usually associated with an anti-neutrino run.

  10. First Beta-Beating Measurement in the LHC

    CERN Document Server

    Aiba, M; Franchi, A; Giovannozzi, M; Kain, V; Morita, A; Tomás, R; Vanbavinckhove, G; Wenninger, J

    2009-01-01

    This note reports on the first LHC beta-beating and coupling measurements. Thanks to an excellent functioning of the BPM system and the related software, injection oscillations were recorded for the first 90 turns at all BPMs of Beam 2. Three different algorithms are used to measure the optics parameters from the BPM data. All algorithms show consistent measurements but feature different accuracy. The Singular Value Decomposition (SVD) approach shows a high resolution despite the limited number of turns. The vertical beta-beating is observed to be about a factor of two larger than in the horizontal plane. This asymetry is partly due to sextupoles misalignments but also suggests the possible existance of focusing errors at defocussing locations. Rather large coupling is observed since no skew quadrupole was excited at the time of the data acquisition. We also report a list of suspected malfunctioning BPMs identified through various analyses.

  11. El Nino Southern Oscillation as Sporadic Oscillations between Metastable States

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The main objective of this article is to establish a new mechanism of ENSO,as a self-organizing and self-excitation system,with two highly coupled processes.The first is the oscillation between the two metastable warm(El Ni(?)o phase) and cold events(La Ni(?)a phase),and the second is the spatiotemporal oscillation of the sea surface temperature(SST) field.The symbiotic interplay between these two processes gives rises the climate variability associated with the ENSO,leads to both the random and deterministic features of the ENSO,and defines a new natural feedback mechanism,which drives the sporadic oscillation of the ENSO.The new mechanism is rigorously derived using a dynamic transition theory developed recently by the authors,which has also been successfully applied to a wide range of problems in nonlinear sciences.

  12. El Nino Southern Oscillation as Sporadic Oscillations between Metastable States

    Institute of Scientific and Technical Information of China (English)

    MA Tian; Shouhong WANG

    2011-01-01

    The main objective of this article is to establish a new mechanism of ENSO, as a self-organizing and selfexcitation system, with two highly coupled processes. The first is the oscillation between the two mctastable warm (El Nino phase) and cold events (La Nina phase), and the second is the spatiotemporal oscillation of the sea surface temperature (SST) field. The symbiotic interplay between these two processes gives rises the climate variability associated with the ENSO, leads to both the random and deterministic features of the ENSO, and defines a new natural feedback mechanism, which drives the sporadic oscillation of the ENSO. The new mechanism is rigorously derived using a dynamic transition theory developed recently by the authors, which has also been successfully applied to a wide range of problems in nonlinear sciences.

  13. Physics issues associated with low-beta plasma generators

    Science.gov (United States)

    Borovsky, Joseph E.

    1992-01-01

    Kinetic aspects of MHD generators are explored by examining the propagation of dense, low-beta streams of plasma. Three situations are considered: the basic principles of plasma-stream propagation, the propagation of plasma streams into vacuum, and the propagation of plasma streams into ambient plasmas. These three situations are analogous to plasma generators, plasma generators with vacuum loads, and plasma generators with plasma loads. Kinetic (microphysics) aspects include oscillations of the generator plasma, the effects of diocotron instabilities, the acceleration of particles, the starvation of current systems, and plasma-wave production.

  14. Stochastic and coherent dynamics of single and coupled beta cells

    DEFF Research Database (Denmark)

    phenomenon, modeled by a slow-fast nonlinear system of ordinary differential equations (ODEs). The single cell oscillations are complex as the dynamical behavior is a result of traversing a series of saddle node and homoclinic bifurcations, controlled by the slow variable. We shall present results...... is the simplest reaction-diffusion partial differential equation....... on the burst period as function of an external applied stochastic term and use a technique for reducing the stochastic differential equations to ODEs for the average and higher order moments. The later method is approximate and we shall discuss the limits of validity. The individual beta cells are coupled...

  15. Simultaneous beta and gamma spectroscopy

    Science.gov (United States)

    Farsoni, Abdollah T.; Hamby, David M.

    2010-03-23

    A phoswich radiation detector for simultaneous spectroscopy of beta rays and gamma rays includes three scintillators with different decay time characteristics. Two of the three scintillators are used for beta detection and the third scintillator is used for gamma detection. A pulse induced by an interaction of radiation with the detector is digitally analyzed to classify the type of event as beta, gamma, or unknown. A pulse is classified as a beta event if the pulse originated from just the first scintillator alone or from just the first and the second scintillator. A pulse from just the third scintillator is recorded as gamma event. Other pulses are rejected as unknown events.

  16. Arrays of coupled chemical oscillators

    CERN Document Server

    Forrester, Derek Michael

    2016-01-01

    Oscillating chemical reactions result from complex periodic changes in the concentration of the reactants. In spatially ordered ensembles of candle flame oscillators the fluctuations in the ratio of oxygen atoms with respect to that of carbon, hydrogen and nitrogen produces an oscillation in the visible part of the flame related to the energy released per unit mass of oxygen. Thus, the products of the reaction vary in concentration as a function of time, giving rise to an oscillation in the amount of soot and radiative emission. Synchronisation of interacting dynamical sub-systems occurs as arrays of flames that act as master and slave oscillators, with groups of candles numbering greater than two, creating a synchronised motion in three-dimensions. In a ring of candles the visible parts of each flame move together, up and down and back and forth, in a manner that appears like a "worship". Here this effect is shown for rings of flames which collectively empower a central flame to pulse to greater heights. In ...

  17. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    localization in an oscillatory fashion unitemporally with Ca2+ oscillations, whereas a Ca2+-binding deficient mutant of ALG-2 did not redistribute. Using tagged ALG-2 as bait we identified its novel target protein Sec31A and based on the partial colocalization of endogenous ALG-2 and Sec31A we propose that ALG......A variety of stimuli can trigger intracellular calcium oscillations. Relatively little is known about the molecular mechanisms decoding these events. We show that ALG-2, a Ca2+-binding protein originally isolated as a protein associated with apoptosis, is directly linked to Ca2+ signalling. We...

  18. Evidence for novel beta-sheet structures in Iowa mutant beta-amyloid fibrils.

    Science.gov (United States)

    Tycko, Robert; Sciarretta, Kimberly L; Orgel, Joseph P R O; Meredith, Stephen C

    2009-07-01

    Asp23-to-Asn mutation within the coding sequence of beta-amyloid, called the Iowa mutation, is associated with early onset, familial Alzheimer's disease and cerebral amyloid angiopathy, in which patients develop neuritic plaques and massive vascular deposition predominantly of the mutant peptide. We examined the mutant peptide, D23N-Abeta40, by electron microscopy, X-ray diffraction, and solid-state NMR spectroscopy. D23N-Abeta40 forms fibrils considerably faster than the wild-type peptide (k = 3.77 x 10(-3) min(-1) and 1.07 x 10(-4) min(-1) for D23N-Abeta40 and the wild-type peptide WT-Abeta40, respectively) and without a lag phase. Electron microscopy shows that D23N-Abeta40 forms fibrils with multiple morphologies. X-ray fiber diffraction shows a cross-beta pattern, with a sharp reflection at 4.7 A and a broad reflection at 9.4 A, which is notably smaller than the value for WT-Abeta40 fibrils (10.4 A). Solid-state NMR measurements indicate molecular level polymorphism of the fibrils, with only a minority of D23N-Abeta40 fibrils containing the in-register, parallel beta-sheet structure commonly found in WT-Abeta40 fibrils and most other amyloid fibrils. Antiparallel beta-sheet structures in the majority of fibrils are indicated by measurements of intermolecular distances through (13)C-(13)C and (15)N-(13)C dipole-dipole couplings. An intriguing possibility exists that there is a relationship between the aberrant structure of D23N-Abeta40 fibrils and the unusual vasculotropic clinical picture in these patients.

  19. Beta section Beta: biogeographical patterns of variation and taxonomy.

    NARCIS (Netherlands)

    Letschert, J.P.W.

    1993-01-01

    In Chapter 1 an account is given of the historical subdivision of the genus Beta and its sections, and the relations of the sections are discussed. Emphasis is given to the taxonomic treatment of wild section Beta by various authors. The Linnaean names B. vulgaris L. and B. maritima L. are lectotypi

  20. Bloch oscillations in carbon nanotubes.

    Science.gov (United States)

    Jódar, Esther; Pérez-Garrido, Antonio; Rojas, Fernando

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case.

  1. Classical scattering from oscillating targets

    Energy Technology Data Exchange (ETDEWEB)

    Papachristou, P.K.; Diakonos, F.K.; Constantoudis, V.; Schmelcher, P.; Benet, L

    2002-12-30

    We study planar classical scattering from an oscillating heavy target whose dynamics defines a five-dimensional phase space. Although the system possesses no periodic orbits, and thus topological chaos is not present, the scattering functions display a variety of structures on different time scales. These structures are due to scattering events with a strong energy transfer from the projectile to the moving disk resulting in low-velocity peaks. We encounter initial conditions for which the projectile exhibits infinitely many bounces with the oscillating disk. Our numerical investigations are supported by analytical results on a specific model with a simple time-law. The observed properties possess universal character for scattering off oscillating targets.

  2. Prediction of pilot induced oscillations

    Directory of Open Access Journals (Sweden)

    Valentin PANĂ

    2011-03-01

    Full Text Available An important problem in the design of flight-control systems for aircraft under pilotedcontrol is the determination of handling qualities and pilot-induced oscillations (PIO tendencieswhen significant nonlinearities exist in the vehicle description. The paper presents a method to detectpossible pilot-induced oscillations of Category II (with rate and position limiting, a phenomenonusually due to a misadaptation between the pilot and the aircraft response during some tasks in whichtight closed loop control of the aircraft is required from the pilot. For the analysis of Pilot in the LoopOscillations an approach, based on robust stability analysis of a system subject to uncertainparameters, is proposed. In this analysis the nonlinear elements are substituted by linear uncertainparameters. This approach assumes that PIO are characterized by a limit cycle behavior.

  3. Bloch oscillations in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jodar, Esther; Perez-Garrido, Antonio [Departamento Fisica Aplicada, Antiguo Hospital de Marina Campus Muralla del Mar, UPCT, Cartagena 30202 Murcia (Spain); Rojas, Fernando [Centro de Nanociencias y Nanotecnologia-UNAM, Apartado Postal 356, Ensenada, Baja California 22800 (Mexico)], E-mail: ejodar@upct.es

    2009-05-27

    Bloch oscillations arise when electrons are in a one-dimensional linear chain of atoms under a constant electric field. In this paper we show numerically that electrons in different types of carbon nanotubes show oscillations with a Bloch frequency proportional to the constant electric field applied along the nanotube axis. We show these oscillations, calculating the quadratic displacement as a function of the electric field. Because of the double periodicity of the nanotubes' geometry (the lattice constant and the lines of atoms) two frequencies appear, one twice the value of the other. These frequencies coincide perfectly with those predicted for a linear chain of atoms, taking into account the periodicity considered in each case. (fast track communication)

  4. Magnetically insulated transmission line oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Larry D. (Albuquerque, NM); Ballard, William P. (Albuquerque, NM); Clark, M. Collins (Albuquerque, NM); Marder, Barry M. (Albuquerque, NM)

    1988-01-01

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields arfe produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap.

  5. Cyclic modular beta-sheets.

    Science.gov (United States)

    Woods, R Jeremy; Brower, Justin O; Castellanos, Elena; Hashemzadeh, Mehrnoosh; Khakshoor, Omid; Russu, Wade A; Nowick, James S

    2007-03-07

    The development of peptide beta-hairpins is problematic, because folding depends on the amino acid sequence and changes to the sequence can significantly decrease folding. Robust beta-hairpins that can tolerate such changes are attractive tools for studying interactions involving protein beta-sheets and developing inhibitors of these interactions. This paper introduces a new class of peptide models of protein beta-sheets that addresses the problem of separating folding from the sequence. These model beta-sheets are macrocyclic peptides that fold in water to present a pentapeptide beta-strand along one edge; the other edge contains the tripeptide beta-strand mimic Hao [JACS 2000, 122, 7654] and two additional amino acids. The pentapeptide and Hao-containing peptide strands are connected by two delta-linked ornithine (deltaOrn) turns [JACS 2003, 125, 876]. Each deltaOrn turn contains a free alpha-amino group that permits the linking of individual modules to form divalent beta-sheets. These "cyclic modular beta-sheets" are synthesized by standard solid-phase peptide synthesis of a linear precursor followed by solution-phase cyclization. Eight cyclic modular beta-sheets 1a-1h containing sequences based on beta-amyloid and macrophage inflammatory protein 2 were synthesized and characterized by 1H NMR. Linked cyclic modular beta-sheet 2, which contains two modules of 1b, was also synthesized and characterized. 1H NMR studies show downfield alpha-proton chemical shifts, deltaOrn delta-proton magnetic anisotropy, and NOE cross-peaks that establish all compounds but 1c and 1g to be moderately or well folded into a conformation that resembles a beta-sheet. Pulsed-field gradient NMR diffusion experiments show little or no self-association at low (

  6. Simultaneous Transverse Oscillations of a Prominence and a Filament and Longitudinal Oscillation of another Filament Induced by a Single Shock Wave

    CERN Document Server

    Shen, Yuandeng; Chen, P F; Ichimoto, Kiyoshi

    2014-01-01

    We present the first stereoscopic and Doppler observations of simultaneous transverse oscillations of a prominence and a filament and longitudinal oscillation of another filament launched by a single shock wave. Using H-alpha Doppler observations, we derive the three-dimensional oscillation velocities at different heights along the prominence axis. The results indicate that the prominence has a larger oscillation amplitude and damping time at higher altitude, but the periods at different heights are the same (i.e., 13.5 minutes). This suggests that the prominence oscillates like a linear vertical rigid body with one end anchored on the Sun. One of the filaments shows weak transverse oscillation after the passing of the shock, which is possibly due to the low altitude of the filament and the weakening (due to reflection) of the shock wave before the interaction. Large amplitude longitudinal oscillation is observed in the other filament after the passing of the shock wave. The velocity amplitude and period are ...

  7. Frequency-dependent entrainment of neocortical slow oscillation to repeated optogenetic stimulation in the anesthetized rat.

    Science.gov (United States)

    Kuki, Toshinobu; Ohshiro, Tomokazu; Ito, Shin; Ji, Zhi-Gang; Fukazawa, Yugo; Matsuzaka, Yoshiya; Yawo, Hiromu; Mushiake, Hajime

    2013-01-01

    Local field potential (LFP) slow oscillation (entrained to repeated external sensory stimuli. To better understand the neural mechanism underlying slow-oscillation generation and its entrainment to external stimuli, we delivered optical stimulation to the cortex of anesthetized rats that exogenously expressed the light-sensitive cation channel channelrhodopsin-2 (ChR2) and simultaneously monitored LFPs across cortical layers. We found that the LFPs could be effectively entrained to repeated optical stimulation at 1Hz in deep layers. A stimulus-triggered current-source density (CSD) analysis showed that the evoked oscillation had the same depth and temporal profile as the slow oscillations, indicating that both oscillations have the same neural mechanism. Optical stimulation primarily induced the transition from the cortical up to down state. These results suggest that the anesthetized rat cortex has an intrinsic mechanism that leads to oscillation near 1Hz; effective entrainment to the 1Hz stimulation reflects the resonated state of the cortex to that stimulus. Our study is the first to demonstrate optogenetic manipulation of cortical slow oscillation and provides a mechanistic explanation for slow-oscillation entrainment.

  8. Role of white-matter pathways in coordinating alpha oscillations in resting visual cortex.

    Science.gov (United States)

    Hindriks, R; Woolrich, M; Luckhoo, H; Joensson, M; Mohseni, H; Kringelbach, M L; Deco, G

    2015-02-01

    In the absence of cognitive tasks and external stimuli, strong rhythmic fluctuations with a frequency ≈ 10 Hz emerge from posterior regions of human neocortex. These posterior α-oscillations can be recorded throughout the visual cortex and are particularly strong in the calcarine sulcus, where the primary visual cortex is located. The mechanisms and anatomical pathways through which local \\alpha-oscillations are coordinated however, are not fully understood. In this study, we used a combination of magnetoencephalography (MEG), diffusion tensor imaging (DTI), and biophysical modeling to assess the role of white-matter pathways in coordinating cortical α-oscillations. Our findings suggest that primary visual cortex plays a special role in coordinating α-oscillations in higher-order visual regions. Specifically, the amplitudes of α-sources throughout visual cortex could be explained by propagation of α-oscillations from primary visual cortex through white-matter pathways. In particular, α-amplitudes within visual cortex correlated with both the anatomical and functional connection strengths to primary visual cortex. These findings reinforce the notion of posterior α-oscillations as intrinsic oscillations of the visual system. We speculate that they might reflect a default-mode of the visual system during which higher-order visual regions are rhythmically primed for expected visual stimuli by α-oscillations in primary visual cortex.

  9. The non-local oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Maccari, A. [Istituto Tecnico `G. Cardano`, Monterotondo, Rome (Italy)

    1996-08-01

    The most important characteristics of the non-local oscillator, an oscillator subjected to an additional non-local force, are extensively studied by means of a new asymptotic perturbation method that is able to furnish an approximate solution of weakly non-linear differential equations. The resulting motion is doubly periodic, because a second little frequency appears, in addition to the fundamental harmonic frequency. Comparison with the numerical solution obtained by the Runge-Kitta method confirms the validity of the asymptotic perturbation method and its importance for the study of non-linear dynamical systems.

  10. Sound oscillation of dropwise cluster

    Science.gov (United States)

    Shavlov, A. V.; Dzhumandzhi, V. A.; Romanyuk, S. N.

    2012-06-01

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60-100 °C. The charge of drops reaches 102-103 units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method.

  11. Cherenkov radiation oscillator without reflectors

    Science.gov (United States)

    Li, D.; Wang, Y.; Hangyo, M.; Wei, Y.; Yang, Z.; Miyamoto, S.

    2014-05-01

    This Letter presents a Cherenkov radiation oscillator with an electron beam travelling over a finitely thick plate made of negative-index materials. In such a scheme, the external reflectors required in the traditional Cherenkov oscillators are not necessary, since the electromagnetic energy flows backward in the negative-index materials, leading to inherent feedback. We theoretically analyzed the interaction between the electron beam and the electromagnetic wave, and worked out the growth rate and start current through numerical calculations. With the help of particle-in-cell simulation, the theoretical predictions are well demonstrated.

  12. Primordial Lepton Oscillations and Baryogenesis

    CERN Document Server

    Hamada, Yuta

    2016-01-01

    The baryon asymmetry of the Universe should have been produced after the inflation era. We consider the possibility that the asymmetry is generated by the flavor oscillations in the reheating process after inflation, so that the baryon asymmetry is realized already at the beginning of the radiation dominated era. In the seesaw model, we show that the propagators of the left-handed leptons generically have flavor mixings in the thermal background, that can generate flavor-dependent lepton asymmetry through the $CP$ violation in the oscillation phenomena. The flavor dependent rates for the wash-out process can leave the net asymmetry today.

  13. Smart contact oscillations by IPMCs

    Science.gov (United States)

    Asanuma, H.; Asaka, K.; Su, J.; Poubel, L.; Shahinpoor, M.

    2016-02-01

    An ion migration-induced self-oscillation phenomenon observed in ionic polymer metal composites (IPMCs) is reported. These oscillations are generated from a purely static equilibrium configuration of IPMCs in loose contact with a stationary electrode, and in particular the anode of an imposed DC voltage source. Many interesting possibilities emerge, which are described in this paper. Of particular importance is the emergence of the possibility of creating tailor-made electric signals or pulse-width modulation-type signals from a DC source.

  14. Primordial lepton oscillations and baryogenesis

    Science.gov (United States)

    Hamada, Yuta; Kitano, Ryuichiro

    2016-11-01

    The baryon asymmetry of the Universe should have been produced after the inflation era. We consider the possibility that the asymmetry is generated by the flavor oscillations in the reheating process after inflation, so that the baryon asymmetry is realized already at the beginning of the radiation dominated era. In the seesaw model, we show that the propagators of the left-handed leptons generically have flavor mixings in the thermal background, that can generate flavor-dependent lepton asymmetry through the CP violation in the oscillation phenomena. The flavor dependent rates for the wash-out process can leave the net asymmetry today.

  15. Anomalous Dissipative Quantum Harmonic Oscillator

    Institute of Scientific and Technical Information of China (English)

    CHEN Dian-Yong; BAI Zhan-Wu; DONG Yu-Bing

    2008-01-01

    We investigate the low-temperature statistical properties of a harmonic oscillator coupled to a heat bath, where the low-frequency spectrum vanishes. We obtain the exact result of the zero point energy. Due to the low frequency shortage of environmental oscillators' spectral density, the coordinate and momentum correlation functions decay as r-4and r-6 respectively at zero temperature, where T is the correlation time. The low-temperature behavior of the mean energy does not violate the third law of thermodynamics, but differs largely from the Ohmic spectrum case.

  16. Resonant solar neutrino oscillation versus laboratory neutrino oscillation experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chong-Sa

    1987-02-01

    The interplay between resonant solar neutrino oscillations and neutrino oscillations in laboratory experiments is investigated in a 3 generation model. Due to the assumed hierarchy of neutrino masses, together with our choice of a convenient parameterization of the 3 generation mixing matrix, we can derive a simple analytic formula which reduces the solar neutrino problem to an effective 2 generation problem. The reduction makes it apparent that the allowed range of mixing and mass parameters crucially depend on whether the survival probability of solar neutrinos S satisfies S greater than or equal to 1/3 or not. The formulae for probabilities of laboratory neutrino oscillations are also greatly simplified. We argue that a combination of the observed solar neutrino depletion and data obtained from reactor experiments seems to rule out some range of neutrino masses. If a sizable nu/sub ..mu../ ..-->.. nu/sub e/ oscillation is observed at accelerators, as suggested at this Workshop, it severely restricts the range of 2 mixing angles.

  17. Green's Function for the Quartic Oscillator

    OpenAIRE

    Anderson, Robert L.

    2016-01-01

    In this paper, a quantum mechanical Green's function $G_{qo}(y_b,t_b;$ $y_a,t_a)$ for the quartic oscillator is presented. This result is built upon two previous papers: first [1], detailing the linearization of the quartic oscillator $(qo)$ to the harmonic oscillator $(ho)$, second [2], the integration of the classical action function for the quartic oscillator. Here an equivalent form for the quartic oscillator action function $S_{qo}(y_b,t_b;$ $y_a,t_a)$ in terms of harmonic oscillator var...

  18. Integration of BETA with Eclipse

    DEFF Research Database (Denmark)

    Andersen, Peter; Madsen, Ole Lehrmann; Enevoldsen, Mads Brøgger

    2004-01-01

    This paper presents language interoperability issues appearing in order to implement support for the BETA language in the Java-based Eclipse integrated development environment. One of the challenges is to implement plug-ins in BETA and be able to load them in Eclipse. In order to do this, some form...

  19. Measurements of sin 2 $\\beta$

    CERN Document Server

    Tricomi, A

    2000-01-01

    A review of the most recent measurements of the CP violating parameter sin 2 beta from LEP and CDF is reported. These yield an average value of sin 2 beta =0.91+or-0.35, giving a confidence level that CP violation in the B system has been observed of almost 99%. (10 refs).

  20. Beta decay of Cu-56

    NARCIS (Netherlands)

    Borcea, R; Aysto, J; Caurier, E; Dendooven, P; Doring, J; Gierlik, M; Gorska, M; Grawe, H; Hellstrom, M; Janas, Z; Jokinen, A; Karny, M; Kirchner, R; La Commara, M; Langanke, K; Martinez-Pinedo, G; Mayet, P; Nieminen, A; Nowacki, F; Penttila, H; Plochocki, A; Rejmund, M; Roeckl, E; Schlegel, C; Schmidt, K; Schwengner, R; Sawicka, M

    2001-01-01

    The proton-rich isotope Cu-56 was produced at the GSI On-Line Mass Separator by means of the Si-28(S-32, p3n) fusion-evaporation reaction. Its beta -decay properties were studied by detecting beta -delayed gamma rays and protons. A half-Life of 93 +/- 3 ms was determined for Cu-56. Compared to the p

  1. Beta Function and Anomalous Dimensions

    DEFF Research Database (Denmark)

    Pica, Claudio; Sannino, Francesco

    2011-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalou...

  2. RAVEN Beta Release

    Energy Technology Data Exchange (ETDEWEB)

    Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua Joseph [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert Arthur [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Congjian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Daniel Patrick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Talbot, Paul William [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This documents the release of the Risk Analysis Virtual Environment (RAVEN) code. A description of the RAVEN code is provided, and discussion of the release process for the M2LW-16IN0704045 milestone. The RAVEN code is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is capable of investigating the system response as well as the input space using Monte Carlo, Grid, or Latin Hyper Cube sampling schemes, but its strength is focused toward system feature discovery, such as limit surfaces, separating regions of the input space leading to system failure, using dynamic supervised learning techniques. RAVEN has now increased in maturity enough for the Beta 1.0 release.

  3. The phase of prestimulus alpha oscillations affects tactile perception.

    Science.gov (United States)

    Ai, Lei; Ro, Tony

    2014-03-01

    Previous studies have shown that neural oscillations in the 8- to 12-Hz range influence sensory perception. In the current study, we examined whether both the power and phase of these mu/alpha oscillations predict successful conscious tactile perception. Near-threshold tactile stimuli were applied to the left hand while electroencephalographic (EEG) activity was recorded over the contralateral right somatosensory cortex. We found a significant inverted U-shaped relationship between prestimulus mu/alpha power and detection rate, suggesting that there is an intermediate level of alpha power that is optimal for tactile perception. We also found a significant difference in phase angle concentration at stimulus onset that predicted whether the upcoming tactile stimulus was perceived or missed. As has been shown in the visual system, these findings suggest that these mu/alpha oscillations measured over somatosensory areas exert a strong inhibitory control on tactile perception and that pulsed inhibition by these oscillations shapes the state of brain activity necessary for conscious perception. They further suggest that these common phasic processing mechanisms across different sensory modalities and brain regions may reflect a common underlying encoding principle in perceptual processing that leads to momentary windows of perceptual awareness.

  4. Non-adiabatic oscillations of compact stars in general relativity

    CERN Document Server

    Gualtieri, L; Miniutti, G

    2004-01-01

    We have developed a formalism to study non-adiabatic, non-radial oscillations of compact stars in the frequency domain including the effects of thermal diffusion in a general relativistic framework. When a general equation of state depending on temperature is used, the perturbations of the fluid result in heat flux which is coupled with the spacetime geometry through the Einstein field equations. Our results show that the frequency of the first pressure (p) and gravity (g) oscillation modes is significantly affected by thermal diffusion, while that of the fundamental (f) mode is basically unaltered due to the global nature of that oscillation. The damping time of the oscillations is generally much smaller than in the adiabatic case (more than two orders of magnitude for the p- and g-modes) reflecting the effect of thermal dissipation. Both the isothermal and adiabatic limits are recovered in our treatment and we study in more detail the intermediate regime. Our formalism finds its natural astrophysical applic...

  5. Interneuron-mediated inhibition synchronizes neuronal activity during slow oscillation

    Science.gov (United States)

    Chen, Jen-Yung; Chauvette, Sylvain; Skorheim, Steven; Timofeev, Igor; Bazhenov, Maxim

    2012-01-01

    The signature of slow-wave sleep in the electroencephalogram (EEG) is large-amplitude fluctuation of the field potential, which reflects synchronous alternation of activity and silence across cortical neurons. While initiation of the active cortical states during sleep slow oscillation has been intensively studied, the biological mechanisms which drive the network transition from an active state to silence remain poorly understood. In the current study, using a combination of in vivo electrophysiology and thalamocortical network simulation, we explored the impact of intrinsic and synaptic inhibition on state transition during sleep slow oscillation. We found that in normal physiological conditions, synaptic inhibition controls the duration and the synchrony of active state termination. The decline of interneuron-mediated inhibition led to asynchronous downward transition across the cortical network and broke the regular slow oscillation pattern. Furthermore, in both in vivo experiment and computational modelling, we revealed that when the level of synaptic inhibition was reduced significantly, it led to a recovery of synchronized oscillations in the form of seizure-like bursting activity. In this condition, the fast active state termination was mediated by intrinsic hyperpolarizing conductances. Our study highlights the significance of both intrinsic and synaptic inhibition in manipulating sleep slow rhythms. PMID:22641778

  6. [Serum beta 2 microglobulin (beta 2M) following renal transplantation].

    Science.gov (United States)

    Pacheco-Silva, A; Nishida, S K; Silva, M S; Ramos, O L; Azjen, H; Pereira, A B

    1994-01-01

    Although there was an important improvement in graft and patient survival the last 10 years, graft rejection continues to be a major barrier to the success of renal transplantation. Identification of a laboratory test that could help to diagnose graft rejection would facilitate the management of renal transplanted patients. PURPOSE--To evaluate the utility of monitoring serum beta 2M in recently transplanted patients. METHODS--We daily determined serum beta 2M levels in 20 receptors of renal grafts (10 from living related and 10 from cadaveric donors) and compared them to their clinical and laboratory evolution. RESULTS--Eight patients who presented immediate good renal function following grafting and did not have rejection had a mean serum beta 2M of 3.7 mg/L on the 4th day post transplant. The sensitivity of the test for the diagnosis of acute rejection was 87.5%, but the specificity was only 46%. Patients who presented acute tubular necrosis (ATN) without rejection had a progressive decrease in their serum levels of beta 2M, while their serum creatinine changed as they were dialyzed. In contrast, patients with ATN and concomitance of acute rejection or CSA nephrotoxicity presented elevated beta 2M and creatinine serum levels. CONCLUSION--Daily monitoring of serum beta 2M does not improve the ability to diagnose acute rejection in patients with good renal function. However, serum beta 2M levels seemed to be useful in diagnosing acute rejection or CSA nephrotoxicity in patients with ATN.

  7. Age-related differences in EEG beta activity during an assessment of ankle proprioception.

    Science.gov (United States)

    Toledo, Diana R; Barela, José A; Manzano, Gilberto M; Kohn, André F

    2016-05-27

    The aim of this work was to compare cortical beta oscillatory activity between young (YA) and older (OA) adults during the assessment of ankle proprioception. We analyzed the response time (RT) to kinesthetic perception and beta event-related desynchronization/synchronization (ERD/ERS) in response to passive ankle movement applied at a slow speed, 0.5°/s. The relationship between ERD/ERS and RT was investigated by classifying the signals into fast-, medium-, and slow-RT. The results showed a temporal relationship between beta oscillation changes and RT for both groups, i.e., earlier ERD and ERS were obtained for trials with faster response time. ERD was larger and delayed in OA compared to the YA, and beta ERS was present only for OA. These findings suggest that a less efficient proprioceptive signaling reaching the brain of OA requires a higher level of brain processing and hence the differences in ERD potentials between YA and OA. Furthermore, the occurrence of ERS in OA might represent a compensatory strategy of active cortical resetting for adequate sensorimotor behavior due to the age-related reduced peripheral input and neuromuscular impairments. Altered balance between excitatory and inhibitory intracortical activity in older adults presumably explains the changes in beta oscillations.

  8. B0s Oscillation Results

    CERN Document Server

    Willocq, S

    2002-01-01

    We review new studies of the time dependence of B0s - B0s-bar mixing by the ALEPH, DELPHI and SLD Collaborations, with an emphasis on the different analysis methods used. Combining all available results yields a preliminary lower limit on the oscillation frequency of dms > 14.4 ps-1 at the 95% C.L.

  9. Observation of anharmonic Bloch oscillations.

    Science.gov (United States)

    Dreisow, Felix; Wang, Gang; Heinrich, Matthias; Keil, Robert; Tünnermann, Andreas; Nolte, Stefan; Szameit, Alexander

    2011-10-15

    We report on the experimental observation of Bloch oscillations of an optical wave packet in a lattice with second-order coupling. To this end, we employ zigzag waveguide arrays, in which the second-order coupling can be precisely tuned.

  10. Testing Localization in Neutrino Oscillations

    OpenAIRE

    Zhuridov, Dmitry V.

    2012-01-01

    The neutrino wave packet localization in short-baseline neutrino oscillation experiments, such as MiniBooNE, is investigated. It is shown that the transition from localization to delocalization may be observed for large neutrino mass splitting of order 1 eV, e.g., in theories with sterile neutrinos.

  11. Sound oscillation of dropwise cluster

    Energy Technology Data Exchange (ETDEWEB)

    Shavlov, A.V., E-mail: shavlov@ikz.ru [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation); Dzhumandzhi, V.A.; Romanyuk, S.N. [Institute of the Earth Cryosphere, RAS Siberian Branch, P.O. 1230, 625000 Tyumen (Russian Federation)

    2012-06-04

    There was registered sound oscillation of a dropwise cluster formed over the warmed-up water surface. We have calculated the electrical charge of drops on the basis of experimental data on ion-sound oscillation. It was demonstrated that the charge is proportional to surface area of the drops and does not depend on intensity of their evaporation (condensation) in the range of 60–100 °C. The charge of drops reaches 10{sup 2}–10{sup 3} units of elementary charge and coincides on magnitude order with the literary value of a charge calculated by another method. -- Highlights: ► The present investigation registered short-wave sound oscillations of water drops in a dropwise cluster in the range of 60–100 °C. ► We have found autocorrelation functions and Fourier transforms of time series of interdroplet distance; defined oscillation frequencies. ► Calculated electrical charge of drops and specified that the charge is proportional to the drop surface area.

  12. Optoelectronic Oscillators for Communication Systems

    Science.gov (United States)

    Romeira, Bruno; Figueiredo, José

    We introduce and report recent developments on a novel five port optoelectronic voltage controlled oscillator consisting of a resonant tunneling diode (RTD) optical-waveguide integrated with a laser diode. The RTD-based optoelectronic oscillator (OEO) has both optical and electrical input and output ports, with the fifth port allowing voltage control. The RTD-OEO locks to reference radio-frequency (RF) sources by either optical or electrical injection locking techniques allowing remote synchronization, eliminating the need of impedance matching between traditional RF oscillators. RTD-OEO functions include generation, amplification and distribution of RF carriers, clock recovery, carrier recovery, modulation and demodulation and frequency synthesis. Self-injection locking operation modes, where small portions of the output electrical/optical signals are fed back into the electrical/optical input ports, are also proposed. The self-phase locked loop configuration can give rise to low-noise high-stable oscillations, not limited by the RF source performance and with no need of external optoelectronic conversion.

  13. Solar Magnetic Waves and Oscillations

    Science.gov (United States)

    Erdelyi von Fay-Siebenburgen, R.

    2006-11-01

    Recent solar and space satellite missions (e.g. SOHO, Trace) and high- resolution ground-based observations (e.g. Swedish Solar Telescope, Dutch Open Telescope) have opened new avenues for 21st century plasma physics. With unprecedented details a very rich and abundant structure of the solar atmosphere is unveiled. Revolutionary observations clearly confirmed the existence of MHD waves and oscillations in a wide range of solar atmospheric magnetic structures, commonly described in the form of solar flux tubes. The objectives of this review are to give an up-to-date account of the theory of MHD waves and oscillations in solar and astrophysical magnetic wave-guides. Since magnetic structuring acts as excellent wave guides, plasma waves and oscillations are able to propagate from sub-surface solar regions through the solar atmosphere deep into the interplanetary space. Observations and theoretical modeling of waves can provide excellent diagnostic tools about the state of solar plasma. Key examples of the various types of MHD waves and oscillations will be discussed both from observational and theoretical perspectives and the concept of atmospheric (coronal) and magneto-seismology will be introduced. The lecture will also contain a few short exercises in order to highlight the important points of the applications of solar MHD wave theory.

  14. A systematic review of the neurophysiology of mindfulness on EEG oscillations.

    Science.gov (United States)

    Lomas, Tim; Ivtzan, Itai; Fu, Cynthia H Y

    2015-10-01

    Mindfulness meditation has been purported to be a beneficial practice for wellbeing. It would therefore be expected that the neurophysiology of mindfulness would reflect this impact on wellbeing. However, investigations of the effects of mindfulness have generated mixed reports of increases, decreases, as well as no differences in EEG oscillations in comparison with a resting state and a variety of tasks. We have performed a systematic review of EEG studies of mindfulness meditation in order to determine any common effects and to identify factors which may impact on the effects. Databases were reviewed from 1966 to August 2015. Eligibility criteria included empirical quantitative analyses of mindfulness meditation practice and EEG measurements acquired in relation to practice. A total of 56 papers met the eligibility criteria and were included in the systematic review, consisting of a total 1715 subjects: 1358 healthy individuals and 357 individuals with psychiatric diagnoses. Studies were principally examined for power outcomes in each bandwidth, in particular the power differentials between mindfulness and a control state, as well as outcomes relating to hemispheric asymmetry and event-related potentials. The systematic review revealed that mindfulness was most commonly associated with enhanced alpha and theta power as compared to an eyes closed resting state, although such outcomes were not uniformly reported. No consistent patterns were observed with respect to beta, delta and gamma bandwidths. In summary, mindfulness is associated with increased alpha and theta power in both healthy individuals and in patient groups. This co-presence of elevated alpha and theta may signify a state of relaxed alertness which is conducive to mental health.

  15. Imaging seismic reflections

    NARCIS (Netherlands)

    Op 't Root, Timotheus Johannes Petrus Maria

    2011-01-01

    The goal of reflection seismic imaging is making images of the Earth subsurface using surface measurements of reflected seismic waves. Besides the position and orientation of subsurface reflecting interfaces it is a challenge to recover the size or amplitude of the discontinuities. We investigate tw

  16. Knowledge-Level Reflection

    NARCIS (Netherlands)

    Harmelen, van F.A.H.; Wielinga, B.J.; Bredeweg, Bert; Schreiber, G.; Karbach, Werner; Reinders, Martin; Voss, A.; Akkermans, H.; Bartsch-Spoerl, Brigitte; Vinkhuyzen, Erik

    This paper presents an overview of the REFLECT project. It defines the notion of knowledge level reflection that has been central to the project, it compares this notion with existing approaches to reflection in related fields, and investigates some of the consequences of the concept of knowledge le

  17. Liberating Moral Reflection

    Science.gov (United States)

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  18. Reflective Learning in Practice.

    Science.gov (United States)

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning in Practice" (Ann…

  19. First search for Lorentz and C P T violation in double beta decay with EXO-200

    Science.gov (United States)

    Albert, J. B.; Barbeau, P. S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G. F.; Chambers, C.; Cleveland, B.; Coon, M.; Craycraft, A.; Daniels, T.; Danilov, M.; Daugherty, S. J.; Davis, C. G.; Davis, J.; Delaquis, S.; Der Mesrobian-Kabakian, A.; DeVoe, R.; Díaz, J. S.; Didberidze, T.; Dilling, J.; Dolgolenko, A.; Dolinski, M. J.; Dunford, M.; Fairbank, W.; Farine, J.; Feyzbkhsh, S.; Feldmeier, W.; Fierlinger, P.; Fudenberg, D.; Gornea, R.; Graham, K.; Gratta, G.; Hall, C.; Homiller, S.; Hughes, M.; Jewell, M. J.; Jiang, X. S.; Johnson, A.; Johnson, T. N.; Johnston, S.; Karelin, A.; Kaufman, L. J.; Killick, R.; Koffas, T.; Kravitz, S.; Krücken, R.; Kuchenkov, A.; Kumar, K. S.; Leonard, D. S.; Licciardi, C.; Lin, Y. H.; Ling, J.; MacLellan, R.; Marino, M. G.; Mong, B.; Moore, D.; Nelson, R.; Njoya, O.; Odian, A.; Ostrovskiy, I.; Piepke, A.; Pocar, A.; Prescott, C. Y.; Retiére, F.; Rowson, P. C.; Russell, J. J.; Schubert, A.; Sinclair, D.; Smith, E.; Stekhanov, V.; Tarka, M.; Tolba, T.; Tsang, R.; Twelker, K.; Vuilleumier, J.-L.; Vogel, P.; Waite, A.; Walton, J.; Walton, T.; Weber, M.; Wen, L. J.; Wichoski, U.; Wood, J.; Yang, L.; Yen, Y.-R.; Zeldovich, O. Ya.; EXO-200 Collaboration

    2016-04-01

    A search for Lorentz- and C P T -violating signals in the double beta decay spectrum of 136Xe has been performed using an exposure of 100 kg .yr with the EXO-200 detector. No significant evidence of the spectral modification due to isotropic Lorentz-violation was found, and a two-sided limit of -2.65 ×10-5 GeV SME). This is the first experimental study of the effect of the SME-defined oscillation-free and momentum-independent neutrino coupling operator on the double beta decay process.

  20. Tunable Oscillations in the Purkinje Neuron

    CERN Document Server

    Abrams, Ze'ev R; Wang, Yuan; Trauner, Dirk; Zhang, Xiang

    2011-01-01

    In this paper, we study the dynamics of slow oscillations in Purkinje neurons in vitro, and derive a strong association with a forced parametric oscillator model. We demonstrate the precise rhythmicity of the oscillations in Purkinje neurons, as well as a dynamic tunability of this oscillation using a photo-switchable compound. We show that this slow oscillation can be induced in every Purkinje neuron, having periods ranging between 10-25 seconds. Starting from a Hodgkin-Huxley model, we also demonstrate that this oscillation can be externally modulated, and that the neurons will return to their intrinsic firing frequency after the forced oscillation is concluded. These results signify an additional functional role of tunable oscillations within the cerebellum, as well as a dynamic control of a time scale in the brain in the range of seconds.

  1. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian;

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here...

  2. Opto-Electronic Oscillator and its Applications

    Science.gov (United States)

    Yao, X. S.; Maleki, L.

    1996-01-01

    We present the theoretical and experimental results of a new class of microwave oscillators called opto-electronic oscillators (OEO). We discuss techniques of achieving high stability single mode operation and demonstrate the applications of OEO in photonic communication systems.

  3. Present and future strategies for neutrinoless double beta decay searches

    Indian Academy of Sciences (India)

    C Brofferio

    2010-08-01

    The renewed interest shown in these days towards neutrinoless double beta decay, a lepton number violating process which can take place only if neutrinos are Majorana particles ($ = \\bar{}$) with a nonvanishing mass, is justified by the fact that the Majorana nature of neutrinos is expected in many theories beyond the Standard Model. We also now know, thanks to the neutrino oscillation experiments, that neutrinos are in fact massive, as expected in these theories and not requested in the Standard Model. Moreover, since neutrino oscillation experiments measure only the absolute value of the difference of the square of the neutrino masses, the discovery of neutrinoless double beta decay would help to disentangle questions that still remain unsolved: what is the absolute mass scale of the neutrinos and which mass hierarchy (normal, inverted or quasi-degenerate) is the correct one? The scope of this paper is not only to review the present results reached in the field by the different groups and technologies worldwide, but also to illustrate and comment on the (near and long-term) future strategies that experimentalists are trying to pursue to reach the needed sensitivity required to explore the inverted hierarchy neutrino mass scale.

  4. Nonlinear analysis of ring oscillator circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-06-01

    Using nonlinear systems techniques, we analyze the stability properties and synchronization conditions for ring oscillator circuits, which are essential building blocks in digital systems. By making use of its cyclic structure, we investigate local and global stability properties of an n-stage ring oscillator. We present a sufficient condition for global asymptotic stability of the origin and obtain necessity if the ring oscillator consists of identical inverter elements. We then give a synchronization condition for identical interconnected ring oscillators.

  5. Optical analogue of electronic Bloch oscillations.

    Science.gov (United States)

    Sapienza, Riccardo; Costantino, Paola; Wiersma, Diederik; Ghulinyan, Mher; Oton, Claudio J; Pavesi, Lorenzo

    2003-12-31

    We report on the observation of Bloch oscillations in light transport through periodic dielectric systems. By introducing a linear refractive index gradient along the propagation direction the optical equivalent of a Wannier-Stark ladder was obtained. Bloch oscillations were observed as time-resolved oscillations in transmission, in direct analogy to electronic Bloch oscillations in conducting crystals where the Wannier-Stark ladder is obtained via an external electric field. The observed oscillatory behavior is in excellent agreement with transfer matrix calculations.

  6. Internal dynamics of long Josephson junction oscillators

    DEFF Research Database (Denmark)

    Christiansen, Peter Leth; Lomdahl, P. S.; Scott, Alwyn C.;

    1981-01-01

    Numerical computations on a sine-Gordon model of the Josephson junction fluxon oscillator are compared with experimental measurements. Good agreement is found for the voltage current characteristic, oscillator power output, and range of current bias over which oscillation is observed. Our numeric...... results imply a ''bunched-fluxon'' mode of oscillation at larger values of bias current. Applied Physics Letters is copyrighted by The American Institute of Physics....

  7. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    E Kh Akhmedov

    2000-01-01

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we review the parametric resonance of neutrino oscillations in matter. In particular, physical interpretation of the effect and the prospects of its experimental observation in oscillations of solar and atmospheric neutrinos in the earth are discussed.

  8. Reflection Positive Doubles

    CERN Document Server

    Jaffe, Arthur

    2016-01-01

    Here we introduce reflection positive doubles, a general framework for reflection positivity, covering a wide variety of systems in statistical physics and quantum field theory. These systems may be bosonic, fermionic, or parafermionic in nature. Within the framework of reflection positive doubles, we give necessary and sufficient conditions for reflection positivity. We use a reflection-invariant cone to implement our construction. Our characterization allows for a direct interpretation in terms of coupling constants, making it easy to check in concrete situations. We illustrate our methods with numerous examples.

  9. Synchronously pumped femtosecond optical parametric oscillator with broadband chirped mirrors

    Science.gov (United States)

    Stankevičiūte, Karolina; Melnikas, Simas; Kičas, Simonas; Trišauskas, Lukas; Vengelis, Julius; Grigonis, Rimantas; Vengris, Mikas; Sirutkaitis, Valdas

    2015-05-01

    We present results obtained during investigation of synchronously pumped optical parametric oscillator (SPOPO) with broadband complementary chirped mirror pairs (CMP). The SPOPO based on β-BBO nonlinear crystal is pumped by second harmonic of femtosecond Yb:KGW laser and provides signal pulses tunable over spectral range from 625 to 980 nm. More than 500 mW are generated in the signal beam, giving up to 27 % pump power to signal power conversion efficiency. The plane SPOPO cavity mirror pairs were specially designed to provide 99 % reflection in broad spectral range corresponding to signal wavelength tuning (630-1030 nm) and to suppress group delay dispersion (GDD) oscillations down to +/-10 fs2. Dispersion properties of designed mirrors were tested with white light interferometer (WLI) and attributed to the SPOPO tuning behaviour.

  10. Wave Reflection Coefficient Spectrum

    Institute of Scientific and Technical Information of China (English)

    俞聿修; 邵利民; 柳淑学

    2003-01-01

    The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The reflection coefficients of oblique irregular waves are analyzed by the Modified Two-Point Method (MTPM) proposed by the authors. The results show that the wave reflection coefficient decreases with increasing wave frequency and incident angle or decreasing structure slope. The reflection coefficient frequency spectrum and its variation with Iribarren number are given in this paper. The paper also suggests an empirical 3-dimensional reflection coefficient spectrum, i.e. reflection coefficient directional spectrum, which can be used to illustrate quantitatively the variation of reflection coefficient with the incident angle and the Iribarren number for oblique irregular waves.

  11. Bloch-Zener oscillations in binary superlattices.

    Science.gov (United States)

    Dreisow, F; Szameit, A; Heinrich, M; Pertsch, T; Nolte, S; Tünnermann, A; Longhi, S

    2009-02-20

    Bloch-Zener oscillations, i.e., the coherent superposition of Bloch oscillations and Zener tunneling between minibands of a binary lattice, are experimentally demonstrated for light waves in curved femtosecond laser-written waveguide arrays. Visualization of double-periodicity breathing and oscillation modes is reported, and synchronous tunneling leading to wave reconstruction is demonstrated.

  12. On the excitation of Goodwin's oscillations

    Science.gov (United States)

    Antonova, A. O.; Reznik, S. N.; Todorov, M. D.

    2014-11-01

    We consider the necessary condition for excitation of long-periodic Goodwin's oscillations and short-periodic sawtooth oscillations in the Goodwin model with fixed delay in the induced investment. Also, using the method of equivalent linearization we evaluate the amplitude of steady-state oscillation.

  13. Control linearity and jitter of relaxation oscillators

    NARCIS (Netherlands)

    Gierkink, Sander Laurentius Johannes

    1999-01-01

    The body of this thesis (chapters 3,4 and 5) deals with the analysis and improvement of a specific class of voltage- or current controlled oscillators (VCO’s respectively CCO’s) called relaxation oscillators. Before going into detail on this particular class of oscillators, first the function and ap

  14. The SD oscillator and its attractors

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Q [Department of Mathematics and Physics, Shijiazhuang Railway Institute, Shijiazhuang 050043 (China); Wiercigroch, M; Pavlovskaia, E; Grebogi, C; Michael, J; Thompson, T [Centre for Applied Dynamics Research, School of Engineering, University of Aberdeen, King' s College, Aberdeen AB24 3UE, Scotland (United Kingdom)], E-mail: qingjiecao@hotmail.com

    2008-02-15

    We propose a new archetypal oscillator for smooth and discontinuous systems (SD oscillator). This oscillator behaves both smooth and discontinuous system depending on the value of the smoothness parameter. New dynamic behaviour is presented for the transitions from the smooth to discontinuous regime.

  15. On the mechanism of oscillations in neutrophils

    DEFF Research Database (Denmark)

    Brasen, Jens Christian; Barington, Torben; Olsen, Lars Folke

    2010-01-01

    We have investigated the regulation of the oscillatory generation of H(2)O(2) and oscillations in shape and size in neutrophils in suspension. The oscillations are independent of cell density and hence do not represent a collective phenomena. Furthermore, the oscillations are independent of the e...

  16. Experiments on double beta decay

    Energy Technology Data Exchange (ETDEWEB)

    Busto, J. [Neuchatel Univ. (Switzerland). Inst. de Physique

    1996-11-01

    The Double Beta Decay, and especially ({beta}{beta}){sub 0{nu}} mode, is an excellent test of Standard Model as well as of neutrino physics. From experimental point of view, a very large number of different techniques are or have been used increasing the sensitivity of this experiments quite a lot (the factor of 10{sup 4} in the last 20 years). In future, in spite of several difficulties, the sensitivity would be increased further, keeping the interest of this very important process. (author) 4 figs., 5 tabs., 21 refs.

  17. Dosimetry of {beta} extensive sources; Dosimetria de fuentes {beta} extensas

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L.; Lallena R, A.M. [Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada (Spain)

    2002-07-01

    In this work, we have been studied, making use of the Penelope Monte Carlo simulation code, the dosimetry of {beta} extensive sources in situations of spherical geometry including interfaces. These configurations are of interest in the treatment of the called cranealfaringyomes of some synovia leisure of knee and other problems of interest in medical physics. Therefore, its application can be extended toward problems of another areas with similar geometric situation and beta sources. (Author)

  18. Potassium Model for Slow (2-3 Hz) In Vivo Neocortical Paroxysmal Oscillations

    Science.gov (United States)

    Bazhenov, M.; Timofeev, I.; Steriade, M.; Sejnowski, T. J.

    2010-01-01

    In slow neocortical paroxysmal oscillations, the de- and hyperpolarizing envelopes in neocortical neurons are large compared with slow sleep oscillations. Increased local synchrony of membrane potential oscillations during seizure is reflected in larger electroencephalographic oscillations and the appearance of spike- or polyspike-wave complex recruitment at 2- to 3-Hz frequencies. The oscillatory mechanisms underlying this paroxysmal activity were investigated in computational models of cortical networks. The extracellular K+ concentration ([K+]o) was continuously computed based on neuronal K+ currents and K+ pumps as well as glial buffering. An increase of [K+]o triggered a transition from normal awake-like oscillations to 2- to 3-Hz seizure-like activity. In this mode, the cells fired periodic bursts and nearby neurons oscillated highly synchronously; in some cells depolarization led to spike inactivation lasting 50–100 ms. A [K+]o increase, sufficient to produce oscillations could result from excessive firing (e.g., induced by external stimulation) or inability of K+ regulatory system (e.g., when glial buffering was blocked). A combination of currents including high-threshold Ca2+, persistent Na+ and hyperpolarization-activated depolarizing (Ih) currents was sufficient to maintain 2- to 3-Hz activity. In a network model that included lateral K+ diffusion between cells, increase of [K+]o in a small region was generally sufficient to maintain paroxysmal oscillations in the whole network. Slow changes of [K+]o modulated the frequency of bursting and, in some case, led to fast oscillations in the 10- to 15-Hz frequency range, similar to the fast runs observed during seizures in vivo. These results suggest that modifications of the intrinsic currents mediated by increase of [K+]o can explain the range of neocortical paroxysmal oscillations in vivo. PMID:15056684

  19. A Statistical study of plasma sheet oscillations with kinetic ballooning/interchange instability signatures using THEMIS spacecraft

    Science.gov (United States)

    Jurisic, Mirjana; Panov, Evgeny; Nakamura, Rumi; Baumjohann, Wolfgang

    2016-04-01

    We use THEMIS data from 2010-2012 tail seasons to collect observations of plasma sheet oscillations with kinetic ballooning/interchange instability (BICI) signatures. Over seventy observations with closely located THEMIS probes P3-P5 reveal that BICI-like plasma sheet oscillations may appear at different magnetic local time. For these, we derive background plasma sheet parameters such as BZ, δBZ/δx and plasma beta, and investigate solar wind conditions. We also estimate the proper parameters of BICI-like oscillations such as frequency and amplitude. Based on this, we search for a relation between the background plasma sheet parameters and the proper parameters of BICI-like oscillations.

  20. The effect of phase stabilization of microwave oscillations in nanosecond Gunn oscillators

    Science.gov (United States)

    Konev, V. Yu.; Klimov, A. I.; Koval'chuk, O. B.; Gubanov, V. P.; Kozhevnikov, V. Yu.; Kozyrev, A. V.; Torkhov, N. A.

    2013-11-01

    The effect of the semiconductor structure of an oscillator diode on the phase stabilization of microwave oscillations in a nanosecond Gunn oscillator by using a modulating voltage pulse edge is investigated. Numerical simulation is employed to determine phase deviations depending on the scatter of pulseedge duration and pulse amplitude. The standard deviation of phase-delay time of microwave oscillations in the oscillator with regard to a constant level at the modulating pulse edge and the standard deviation of phase difference of microwave oscillations in two electrodynamically insulated oscillators connected in parallel to one and the same modulator have been measured.

  1. Time domain oscillating poles: Stability redefined in Memristor based Wien-oscillators

    KAUST Repository

    Talukdar, Abdul Hafiz Ibne

    2012-07-28

    Traditionally, the necessary and sufficient condition for any system to be oscillating is that its poles are located on the imaginary (jω) axis. In this paper, for the first time, we have shown that systems can oscillate with time-domain oscillating poles. The idea is verified using a Memristor based Wien oscillator. Sustained oscillations are observed without having the poles of the system fixed on the imaginary axis and the oscillating behavior of the system poles is reported. The oscillating resistance and triangular shape of FFT are also demonstrated with mathematical reasoning and simulation results to support the unusual and surprising characteristics. © 2009 IEEE.

  2. Measuring neutrino oscillation parameters using $\

    Energy Technology Data Exchange (ETDEWEB)

    Backhouse, Christopher James [Oriel College, Oxford (United Kingdom)

    2011-01-01

    MINOS is a long-baseline neutrino oscillation experiment. It consists of two large steel-scintillator tracking calorimeters. The near detector is situated at Fermilab, close to the production point of the NuMI muon-neutrino beam. The far detector is 735 km away, 716m underground in the Soudan mine, Northern Minnesota. The primary purpose of the MINOS experiment is to make precise measurements of the 'atmospheric' neutrino oscillation parameters (Δmatm2 and sin2atm). The oscillation signal consists of an energy-dependent deficit of vμ interactions in the far detector. The near detector is used to characterize the properties of the beam before oscillations develop. The two-detector design allows many potential sources of systematic error in the far detector to be mitigated by the near detector observations. This thesis describes the details of the vμ-disappearance analysis, and presents a new technique to estimate the hadronic energy of neutrino interactions. This estimator achieves a significant improvement in the energy resolution of the neutrino spectrum, and in the sensitivity of the neutrino oscillation fit. The systematic uncertainty on the hadronic energy scale was re-evaluated and found to be comparable to that of the energy estimator previously in use. The best-fit oscillation parameters of the vμ-disappearance analysis, incorporating this new estimator were: Δm2 = 2.32-0.08+0.12 x 10-3 eV2, sin 2 2θ > 0.90 (90% C.L.). A similar analysis, using data from a period of running where the NuMI beam was operated in a configuration producing a predominantly $\\bar{v}$μ beam, yielded somewhat different best-fit parameters Δ$\\bar{m}${sup 2} = (3.36-0.40+0.46(stat.) ± 0.06(syst.)) x 10-3eV2, sin2 2$\\bar{θ}$ = 0.86-0.12_0

  3. Restoration of oscillation in network of oscillators in presence of direct and indirect interactions

    Science.gov (United States)

    Majhi, Soumen; Bera, Bidesh K.; Bhowmick, Sourav K.; Ghosh, Dibakar

    2016-10-01

    The suppression of oscillations in coupled systems may lead to several unwanted situations, which requires a suitable treatment to overcome the suppression. In this paper, we show that the environmental coupling in the presence of direct interaction, which can suppress oscillation even in a network of identical oscillators, can be modified by introducing a feedback factor in the coupling scheme in order to restore the oscillation. We inspect how the introduction of the feedback factor helps to resurrect oscillation from various kinds of death states. We numerically verify the resurrection of oscillations for two paradigmatic limit cycle systems, namely Landau-Stuart and Van der Pol oscillators and also in generic chaotic Lorenz oscillator. We also study the effect of parameter mismatch in the process of restoring oscillation for coupled oscillators.

  4. Evolution of outer membrane beta-barrels from an ancestral beta beta hairpin.

    Science.gov (United States)

    Remmert, M; Biegert, A; Linke, D; Lupas, A N; Söding, J

    2010-06-01

    Outer membrane beta-barrels (OMBBs) are the major class of outer membrane proteins from Gram-negative bacteria, mitochondria, and plastids. Their transmembrane domains consist of 8-24 beta-strands forming a closed, barrel-shaped beta-sheet around a central pore. Despite their obvious structural regularity, evidence for an origin by duplication or for a common ancestry has not been found. We use three complementary approaches to show that all OMBBs from Gram-negative bacteria evolved from a single, ancestral beta beta hairpin. First, we link almost all families of known single-chain bacterial OMBBs with each other through transitive profile searches. Second, we identify a clear repeat signature in the sequences of many OMBBs in which the repeating sequence unit coincides with the structural beta beta hairpin repeat. Third, we show that the observed sequence similarity between OMBB hairpins cannot be explained by structural or membrane constraints on their sequences. The third approach addresses a longstanding problem in protein evolution: how to distinguish between a very remotely homologous relationship and the opposing scenario of "sequence convergence." The origin of a diverse group of proteins from a single hairpin module supports the hypothesis that, around the time of transition from the RNA to the protein world, proteins arose by amplification and recombination of short peptide modules that had previously evolved as cofactors of RNAs.

  5. SU(5)-inspired double beta decay

    CERN Document Server

    Fonseca, Renato M

    2015-01-01

    The short-range part of the neutrinoless double beta amplitude is generated via the exchange of exotic particles, such as charged scalars, leptoquarks and/or diquarks. In order to give a sizeable contribution to the total decay rate, the masses of these exotics should be of the order of (at most) a few TeV. Here, we argue that these exotics could be the "light" (i.e weak-scale) remnants of some $B-L$ violating variants of $SU(5)$. We show that unification of the standard model gauge couplings, consistent with proton decay limits, can be achieved in such a setup without the need to introduce supersymmetry. Since these non-minimal $SU(5)$-inspired models violate $B-L$, they generate Majorana neutrino masses and therefore make it possible to explain neutrino oscillation data. The "light" coloured particles of these models can potentially be observed at the LHC, and it might be possible to probe the origin of the neutrino masses with $\\Delta L=2$ violating signals. As particular realizations of this idea, we pres...

  6. Nonlinearity arising from noncooperative transcription factor binding enhances negative feedback and promotes genetic oscillations

    CERN Document Server

    Lengyel, Iván M; Oates, Andrew C; Morelli, Luis G

    2015-01-01

    We study the effects of multiple binding sites in the promoter of a genetic oscillator. We evaluate the regulatory function of a promoter with multiple binding sites in the absence of cooperative binding, and consider different hypotheses for how the number of bound repressors affects transcription rate. Effective Hill exponents of the resulting regulatory functions reveal an increase in the nonlinearity of the feedback with the number of binding sites. We identify optimal configurations that maximize the nonlinearity of the feedback. We use a generic model of a biochemical oscillator to show that this increased nonlinearity is reflected in enhanced oscillations, with larger amplitudes over wider oscillatory ranges. Although the study is motivated by genetic oscillations in the zebrafish segmentation clock, our findings may reveal a general principle for gene regulation.

  7. An analysis of the autodyne effect of oscillators with linear frequency modulation

    Science.gov (United States)

    Votoropin, S. D.; Noskov, V. Ya.; Smolskiy, S. M.

    2008-06-01

    General equations are obtained for the autodyne response in the case of an arbitrary frequency modulation both over the active element bias circuit and voltage variation on the voltage-dependent capacitor (varicap). The results of investigation of an autodyne oscillator with linear frequency modulation following the antisymmetric and symmetric saw-tooth function are presented, with the oscillator being affected by its own reflected radiation. Special features of self-oscillations of such autodynes are considered, with the aim to improve their characteristics and extend the functional capabilities of short-range autodyne radars. The experimental results obtained for the TIGEL 08FM oscillator module manufactured using a hybrid-integral technology on the basis of a mm-range Gunn diode are reported.

  8. Phase-locking of epileptic spikes to ongoing delta oscillations in non-convulsive status epilepticus.

    Science.gov (United States)

    Hindriks, Rikkert; Meijer, Hil G E; van Gils, Stephan A; van Putten, Michel J A M

    2013-01-01

    The EEG of patients in non-convulsive status epilepticus (NCSE) often displays delta oscillations or generalized spike-wave discharges. In some patients, these delta oscillations coexist with intermittent epileptic spikes. In this study we verify the prediction of a computational model of the thalamo-cortical system that these spikes are phase-locked to the delta oscillations. We subsequently describe the physiological mechanism underlying this observation as suggested by the model. It is suggested that the spikes reflect inhibitory stochastic fluctuations in the input to thalamo-cortical relay neurons and phase-locking is a consequence of differential excitability of relay neurons over the delta cycle. Further analysis shows that the observed phase-locking can be regarded as a stochastic precursor of generalized spike-wave discharges. This study thus provides an explanation of intermittent spikes during delta oscillations in NCSE and might be generalized to other encephathologies in which delta activity can be observed.

  9. Questions Students Ask: Beta Decay.

    Science.gov (United States)

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  10. Photonic cavity synchronization of nanomechanical oscillators.

    Science.gov (United States)

    Bagheri, Mahmood; Poot, Menno; Fan, Linran; Marquardt, Florian; Tang, Hong X

    2013-11-22

    Synchronization in oscillatory systems is a frequent natural phenomenon and is becoming an important concept in modern physics. Nanomechanical resonators are ideal systems for studying synchronization due to their controllable oscillation properties and engineerable nonlinearities. Here we demonstrate synchronization of two nanomechanical oscillators via a photonic resonator, enabling optomechanical synchronization between mechanically isolated nanomechanical resonators. Optical backaction gives rise to both reactive and dissipative coupling of the mechanical resonators, leading to coherent oscillation and mutual locking of resonators with dynamics beyond the widely accepted phase oscillator (Kuramoto) model. In addition to the phase difference between the oscillators, also their amplitudes are coupled, resulting in the emergence of sidebands around the synchronized carrier signal.

  11. Memristor-based reactance-less oscillator

    KAUST Repository

    Zidan, Mohammed A.

    2012-10-02

    The first reactance-less oscillator is introduced. By using a memristor, the oscillator can be fully implemented on-chip without the need for any capacitors or inductors, which results in an area-efficient fully integrated solution. The concept of operation of the proposed oscillator is explained and detailed mathematical analysis is introduced. Closed-form expressions for the oscillation frequency and oscillation conditions are derived. Finally, the derived equations are verified with circuit simulations showing excellent agreement. © 2011 The Institution of Engineering and Technology.

  12. Electrochemical Oscillations Induced by Surfactants

    Institute of Scientific and Technical Information of China (English)

    翟俊红; 贺占博

    2003-01-01

    A new type of electrochemical oscillation induced by surfactant was observed in experiments. The electrochemical system is a Daniell cell with a copper rod in CuSO4 aqueous and an aluminum rod in Al(NO3)3 aqueous as electrodes. The surfactants are CTAB, TX-100, SLS. The addition of trace surfactant solution by a micro-syringe made the original monotonously changing electrochemical system produce obvious periodic phenomena. At the mean time, the copper ion selective electrode and Hg2SO4 reference electrode were used to monitor the copper electrode reaction and determine its rate constant k of first order reaction. According to the experimental results of electrode reaction kinetics, the possible mechanism was found to be the polarization induced from the directional adsorption of trace surfactant on the electrode surface. That is the electrochemical oscillations.

  13. Neutrino Oscillations in Dense Matter

    Science.gov (United States)

    Lobanov, A. E.

    2017-03-01

    A modification of the electroweak theory, where the fermions with the same electroweak quantum numbers are combined in multiplets and are treated as different quantum states of a single particle, is proposed. In this model, mixing and oscillations of particles arise as a direct consequence of the general principles of quantum field theory. The developed approach enables one to calculate the probabilities of the processes taking place in the detector at long distances from the particle source. Calculations of higher-order processes, including computation of the contributions due to radiative corrections, can be performed in the framework of the perturbation theory using the regular diagram technique. As a result, the analog to the Dirac-Schwinger equation of quantum electrodynamics describing neutrino oscillations and its spin rotation in dense matter can be obtained.

  14. Experimental studies of neutrino oscillations

    CERN Document Server

    Kajita, Takaaki

    2016-01-01

    The 2015 Nobel Prize in physics has been awarded to Takaaki Kajita and Arthur McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass". Takaaki Kajita of Tokyo University is a Japanese physicist, known for neutrino experiments at the Kamiokande and its successor, Super-Kamiokande. This volume of collected works of Kajita on neutrino oscillations provides a good glimpse into as well as a record of the rise and the role of Asian research in the frontiers of neutrino physics. Japan is now a major force in the study of the 3 families of neutrinos. Much remains to be done to clarify the Dirac vs. Majorana nature of the neutrino, and the cosmological implications of the neutrino. The collected works of Kajita and his Super-Kamiokande group will leave an indelible foot-print in the history of big and better science.

  15. Oscillators: Old and new perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharjee, Jayanta K. [Harish-Chandra Research Institute, Jhunsi, Allahabad 211019 (India); Roy, Jyotirmoy [UM-DAE Centre for Excellence in Basic Sciences, Santa Cruz(E), Mumbai 400098 (India)

    2014-02-11

    We consider some of the well known oscillators in literature which are known to exhibit interesting effects of nonlinearity. We review the Lindstedt-Poincare technique for dealing with with the nonlinear effects and then go on to introduce the relevance of the renormalization group for the oscillator following the pioneering work of Chen et al. It is pointed out that the traditional Lindstedt-Poincare and the renormalization group techniques have operational connections. We use this to find an unexpected mode softening in the double pendulum. This mode softening prompted us to look for chaos in the double pendulum at low energies-energies that are just sufficient to allow the outer pendulum to rotate (the double pendulum is known to be chaotic at high energies-energies that are greater than that needed to make both pendulums to rotate). The emergence of the chaos is strongly dependent on initial conditions.

  16. A Tunable Carbon Nanotube Oscillator

    Science.gov (United States)

    Sazonova, Vera

    2005-03-01

    Nanoelectromechanical systems (NEMS) hold promise for a number of scientific and technological applications. Carbon nanotubes (NT) are perhaps the ultimate material for realizing a NEMS device as they are the stiffest material known, have low density, ultrasmall cross sections and can be defect-free. Equally important, a nanotube can act as a transistor and thus is able to sense its own motion. Here, we report the electrical actuation and detection of the guitar-string oscillation modes of doubly-clamped NT oscillators. We observed resonance frequencies in the 5MHz to 150MHz range with quality factors in the 50 to 100 range. We showed that the resonance frequencies can be widely tuned by a gate voltage. We also report on the temperature dependence of the quality factor and present a discussion of possible loss mechanisms.

  17. Cubication of conservative nonlinear oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Belendez, Augusto; Alvarez, Mariela L [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain); Fernandez, Elena; Pascual, Inmaculada [Departamento de Optica, FarmacologIa y Anatomia, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)], E-mail: a.belendez@ua.es

    2009-09-15

    A cubication procedure of the nonlinear differential equation for conservative nonlinear oscillators is analysed and discussed. This scheme is based on the Chebyshev series expansion of the restoring force, and this allows us to approximate the original nonlinear differential equation by a Duffing equation in which the coefficients for the linear and cubic terms depend on the initial amplitude, A, while in a Taylor expansion of the restoring force these coefficients are independent of A. The replacement of the original nonlinear equation by an approximate Duffing equation allows us to obtain an approximate frequency-amplitude relation as a function of the complete elliptic integral of the first kind. Some conservative nonlinear oscillators are analysed to illustrate the usefulness and effectiveness of this scheme.

  18. Status of sterile neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Schwetz, Thomas

    2013-02-15

    There are several independent hints for neutrino oscillations with a mass-squared difference at the eV{sup 2} scale. If confirmed, this would imply the existence of sterile neutrinos. I discuss the present status of the hints for ν{sub e} disappearance from reactor experiments and Gallium source experiments, as well as from the LSND and MiniBooNE ν{sub μ}→ν{sub e} appearance searches. A consistent interpretation of the global data in terms of neutrino oscillations is challenged by the non-observation of a positive signal in ν{sub μ} disappearance experiments. There is a strong tension in the global data, irrespective of the number of eV-scale neutrino states.

  19. Autonomous oscillation in supramolecular assemblies: Role of free energy landscape and fluctuations

    Science.gov (United States)

    Sereda, Yuriy V.; Ortoleva, Peter J.

    2015-11-01

    Molecular dynamics studies demonstrated that a supramolecular assembly can express autonomous structural oscillations about equilibrium. It is demonstrated here that for nanosystems such oscillations can result from the interplay of free energy landscape and structural fluctuations. Furthermore, these oscillations have intermittent character, reflecting the conflict between a tendency to oscillate due to features in the free energy landscape, and the Second Law's repression of perpetual oscillation in an isothermal, equilibrium system. The demonstration system is a T = 1 icosahedral structure constituted of 12 protein pentamers in contact with a bath at fixed temperature. The oscillations are explained in terms of a Langevin model accounting for interactions among neighboring pentamers. The model is based on a postulated free energy landscape in the 24-dimensional space of variables describing the centrifugal and rotational motion of each pentamer. The model includes features such as basins of attraction and low free energy corridors. When the system is driven slightly out of equilibrium, the oscillations are transformed into a limit cycle, as expressed in terms of power spectrum narrowing.

  20. Beta Function and Anomalous Dimensions

    CERN Document Server

    Pica, Claudio

    2010-01-01

    We demonstrate that it is possible to determine the coefficients of an all-order beta function linear in the anomalous dimensions using as data the two-loop coefficients together with the first one of the anomalous dimensions which are universal. The beta function allows to determine the anomalous dimension of the fermion masses at the infrared fixed point, and the resulting values compare well with the lattice determinations.

  1. Mathematical Models of Biochemical Oscillations

    OpenAIRE

    Conrad, Emery David

    1999-01-01

    The goal of this paper is to explain the mathematics involved in modeling biochemical oscillations. We first discuss several important biochemical concepts fundamental to the construction of descriptive mathematical models. We review the basic theory of differential equations and stability analysis as it relates to two-variable models exhibiting oscillatory behavior. The importance of the Hopf Bifurcation will be discussed in detail for the central role it plays in limit cycle behavior and...

  2. Ermakov approach for minisuperspace oscillators

    OpenAIRE

    Rosu, H. C.; Socorro, J.

    1999-01-01

    The WDW equation of arbitrary Hartle-Hawking factor ordering for several minisuperspace universe models, such as the pure gravity FRW and Taub ones, is mapped onto the dynamics of corresponding classical oscillators. The latter ones are studied by the classical Ermakov invariant method, which is a natural aproach in this context. For the more realistic case of a minimally coupled massive scalar field, one can study, within the same type of approach, the corresponding squeezing features as a p...

  3. Multipartite entanglement in neutrino oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Blasone, Massimo; Dell' Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio, E-mail: blasone@sa.infn.i [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy)

    2009-06-01

    Particle mixing is related to multi-mode entanglement of single-particle states The occupation number of both flavor eigenstates and mass eigenstates can be used to define a multiqubit space. In such a framework, flavor neutrino states can be interpreted as multipartite mode-entangled states. By using two different entanglement measures, we analyze the behavior of multipartite entanglement in the phenomenon of neutrino oscillations.

  4. Neutrino Masses and Flavor Oscillations

    Science.gov (United States)

    Wang, Yifang; Xing, Zhi-Zhong

    2016-10-01

    This essay is intended to provide a brief description of the peculiar properties of neutrinos within and beyond the standard theory of weak interactions. The focus is on the flavor oscillations of massive neutrinos, from which one has achieved some striking knowledge about their mass spectrum and flavor mixing pattern. The experimental prospects towards probing the absolute neutrino mass scale, possible Majorana nature and CP-violating effects, will also be addressed.

  5. Media for Reflection

    DEFF Research Database (Denmark)

    Knudsen, Morten

    2016-01-01

    This article develops the concept media for reflection in the interest of conceptualizing the interpretative frames that enable and limit reflection in management and leadership education. The concept ‘media for reflection’ allows us to conceptualize the social and cultural mediation of reflection...... without reducing reflection to an effect of the social structures and cultural norms in which it is embedded. Based on the developed theoretical framework, this article analyses how a renaissance ‘mirror for princes’ and contemporary research-based management education mediate reflection. The content...... of the mediations is analysed as well as the societal and organizational background. Furthermore, the means by which the two media enable and limit reflection in different ways is compared. Finally, the article discusses possible implications of the analysis in terms of management and leadership education....

  6. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    Science.gov (United States)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  7. Micro-machined resonator oscillator

    Science.gov (United States)

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  8. Automatic oscillator frequency control system

    Science.gov (United States)

    Smith, S. F. (Inventor)

    1985-01-01

    A frequency control system makes an initial correction of the frequency of its own timing circuit after comparison against a frequency of known accuracy and then sequentially checks and corrects the frequencies of several voltage controlled local oscillator circuits. The timing circuit initiates the machine cycles of a central processing unit which applies a frequency index to an input register in a modulo-sum frequency divider stage and enables a multiplexer to clock an accumulator register in the divider stage with a cyclical signal derived from the oscillator circuit being checked. Upon expiration of the interval, the processing unit compares the remainder held as the contents of the accumulator against a stored zero error constant and applies an appropriate correction word to a correction stage to shift the frequency of the oscillator being checked. A signal from the accumulator register may be used to drive a phase plane ROM and, with periodic shifts in the applied frequency index, to provide frequency shift keying of the resultant output signal. Interposition of a phase adder between the accumulator register and phase plane ROM permits phase shift keying of the output signal by periodic variation in the value of a phase index applied to one input of the phase adder.

  9. Neutrino Oscillation Experiment at JHF

    CERN Multimedia

    2002-01-01

    T2K is a long baseline neutrino experiment designed to investigate how neutrinos change from one flavor to another as they travel (neutrino oscillations). An intense beam of muon neutrinos is generated at the J-PARC nuclear physics site on the East coast of Japan and directed across the country to the Super-Kamiokande neutrino detector in the mountains of western Japan. The beam is measured once before it leaves the J-PARC site, using the near detector ND280, and again at Super-K, 295 km away: the change in the measured intensity and composition of the beam is used to provide information on the properties of neutrinos. The high intensity neutrino beam is produced in an off-axis configuration. The peak neutrino energy is tuned to the oscillation maximum of ∼ 0.6 GeV to maximize the sensitivity to neutrino oscillations. The science goals of T2K can be summarized as follows: •\tsearch for CP violation in the neutrino sector •\tdiscovery of νμ → νe ( i.e. the confirmation that θ13 > 0 ) •\tprecision ...

  10. Stochastically excited oscillations on the upper main sequence

    DEFF Research Database (Denmark)

    Antoci, Victoria

    2013-01-01

    Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough to stochastic......Convective envelopes in stars on the main sequence are usually connected only with stars of spectral types F5 or later. However, observations as well as theory indicate that the convective outer layers in earlier stars, despite being shallow, are still effective and turbulent enough...... to stochastically excite oscillations. Because of the low amplitudes, exploring stochastically excited pulsations became possible only with space missions such as Kepler and CoRoT. Here I review the recent results and discuss among others, pulsators such as delta Scuti, gamma Doradus, roAp, beta Cephei, Slowly...

  11. Quantum dynamics of the damped harmonic oscillator

    CERN Document Server

    Philbin, T G

    2012-01-01

    The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.

  12. Unanticipated Partial Behavioral Reflection

    OpenAIRE

    Roethlisberger, David; Denker, Marcus; Tanter, Éric

    2006-01-01

    International audience; Dynamic, unanticipated adaptation of running systems is of interest in a variety of situations, ranging from functional upgrades to on-the-fly debugging or monitoring of critical applications. In this paper we study a particular form of computational reflection, called unanticipated partial behavioral reflection, which is particularly well-suited for unanticipated adaptation of real-world systems. Our proposal combines the dynamicity of unanticipated reflection, i.e., ...

  13. Reflection in professional practice

    OpenAIRE

    Hetzner, Stefanie Bianca

    2014-01-01

    The purpose of this thesis is to contribute to the research on professional learning through reflective practice. The main goal is to examine—against the backdrop of workplace changes and errors—individual and contextual factors that are theoretically assumed to influence reflection in the context of professional work. Reflective practice is defined as a retrospective but future- and goal-oriented cognitive-affective process that basically involves (a) the awareness and review of incident...

  14. Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same

    Energy Technology Data Exchange (ETDEWEB)

    Morant, Marc

    2017-02-07

    The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.

  15. Sensitivity of CUORE to Neutrinoless Double-Beta Decay

    Energy Technology Data Exchange (ETDEWEB)

    CUORE; Alessandria, F.; Andreotti, E.; Ardito, R.; Arnaboldi, C.; Avignone III, F. T.; Balata, M.; Bandac, I.; Banks, T. I.; Bari, G.; Beeman, J.; Bellini, F.; Bersani, A.; Biassoni, M.; Bloxham, T.; Brofferio, C.; Bryant, A.; Bucci, C.; Cai, X. Z.; Canonica, L.; Capelli, S.; Carbone, L.; Cardani, L.; Carrettoni, M.; Casali, N.; Chott, N.; Clemenza, M.; Cosmelli, C.; Cremonesi, O.; Creswick, R. J.; Dafinei, I.; Dally, A.; Biasi, A. De; Decowski, M. P.; Deninno, M. M.; Waard, A. de; Domizio, S. Di; Ejzak, L.; Faccini, R.; Fang, D. Q.; Farach, H. A.; Ferri, E.; Ferroni, F.; Fiorini, E.; Foggetta, L.; Franceschi, M. A.; Freedman, S. J.; Frossati, G.; Fujikawa, B. K.; Giachero, A.; Gironi, L.; Giuliani, A.; Gorla, P.; Gotti, C.; Guardincerri, E.; Gutierrez, T. D.; Haller, E. E.; Han, K.; Heeger, K. M.; Huang, H. Z.; Ichimura, K.; Kadel, R.; Kazkaz, K.; Keppel, G.; Kogler, L.; Kolomensky, Yu. G.; Kraft, S.; Lenz, D.; Li, Y. L.; Liu, X.; Longo, E.; Ma, Y. G.; Maiano, C.; Maier, G.; Maino, M.; Mancini, C.; Martinez, C.; Martinez, M.; Maruyama, R. H.; Moggi, N.; Morganti, S.; Napolitano, T.; Newman, S.; Nisi, S.; Nones, C.; Norman, E. B.; Nucciotti, A.; Orio, F.; Orlandi, D.; Ouellet, J. L.; Pallavicini, M.; Palmieri, V.; Pattavina, L.; Pavan, M.; Pedretti, M.; Pessina, G.; Pirro, S.; Previtali, E.; Rampazzo, V.; Rimondi, F.; Rosenfeld, C.; Rusconi, C.; Salvioni, C.; Sangiorgio, S.; Schaeffer, D.; Scielzo, N. D.; Sisti, M.; Smith, A. R.; Stivanello, F.; Taffarello, L.; Terenziani, G.; Tian, W. D.; Tomei, C.; Trentalange, S.; Ventura, G.; Vignati, M.; Wang, B. S.; Wang, H. W.; Whitten Jr., C. A.; Wise, T.; Woodcraft, A.; Xu, N.; Zanotti, L.; Zarra, C.; Zhu, B. X.; Zucchelli, S.

    2011-11-23

    In this paper, we study the sensitivity of CUORE, a bolometric double-beta decay experiment under construction at the Laboratori Nazionali del Gran Sasso in Italy. Two approaches to the computation of experimental sensitivity are discussed and compared, and the formulas and parameters used in the sensitivity estimates are provided. Assuming a background rate of 10{sup -2} cts/(keV kg y), we find that, after 5 years of live time, CUORE will have a 1 {sigma} sensitivity to the neutrinoless double-beta decay half-life of {caret T{sup 0{nu}}{sub 1/2}}(1{sigma} ) = 1.6x 10{sup 26} y and thus a potential to probe the effective Majorana neutrino mass down to 41-95 meV; the sensitivity at 1.64{sigma} , which corresponds to 90% C.L., will be {caret T{sup 0{nu}}{sub 1/2}(1.64{sigma} }) = 9.5x10{sup 25} y. This range is compared with the claim of observation of neutrinoless double-beta decay in {sup 76}Ge and the preferred range in the neutrino mass parameter space from oscillation results.

  16. Self-Reflection

    DEFF Research Database (Denmark)

    Fausing, Bent

    2016-01-01

    and physical bodies are constantly broken with technology. Perception and reflection are in synergy. Reflection means etymologically to bend back, to mirror, and to think. My presentation will take its point of departure in this etymology and make perspectives to modern use of refection in digital media. I...... will take a look at the establishing of the modern self and possibilities of self-reflection, too. My examples will be from the so-called dark-selfies and from a new selfie form, which merge the present with the previous progressing into the future. I will discuss the media reflections as loos and/or gain...

  17. Dysrhythmias of the respiratory oscillator

    Science.gov (United States)

    Paydarfar, David; Buerkel, Daniel M.

    1995-03-01

    Breathing is regulated by a central neural oscillator that produces rhythmic output to the respiratory muscles. Pathological disturbances in rhythm (dysrhythmias) are observed in the breathing pattern of children and adults with neurological and cardiopulmonary diseases. The mechanisms responsible for genesis of respiratory dysrhythmias are poorly understood. The present studies take a novel approach to this problem. The basic postulate is that the rhythm of the respiratory oscillator can be altered by a variety of stimuli. When the oscillator recovers its rhythm after such perturbations, its phase may be reset relative to the original rhythm. The amount of phase resetting is dependent upon stimulus parameters and the level of respiratory drive. The long-range hypothesis is that respiratory dysrhythmias can be induced by stimuli that impinge upon or arise within the respiratory oscillator with certain combinations of strength and timing relative to the respiratory cycle. Animal studies were performed in anesthetized or decerebrate preparations. Neural respiratory rhythmicity is represented by phrenic nerve activity, allowing use of open-loop experimental conditions which avoid negative chemical feedback associated with changes in ventilation. In animal experiments, respiratory dysrhythmias can be induced by stimuli having specific combinations of strength and timing. Newborn animals readily exhibit spontaneous dysrhythmias which become more prominent at lower respiratory drives. In human subjects, swallowing was studied as a physiological perturbation of respiratory rhythm, causing a pattern of phase resetting that is characterized topologically as type 0. Computational studies of the Bonhoeffer-van der Pol (BvP) equations, whose qualitative behavior is representative of many excitable systems, supports a unified interpretation of these experimental findings. Rhythmicity is observed when the BvP model exhibits recurrent periods of excitation alternating with

  18. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  19. Corticospinal beta-range coherence is highly dependent on the pre-stationary motor state.

    Science.gov (United States)

    Omlor, Wolfgang; Patino, Luis; Mendez-Balbuena, Ignacio; Schulte-Mönting, Jürgen; Kristeva, Rumyana

    2011-06-01

    During steady muscle contractions, the human sensorimotor cortex generates oscillations in the beta-frequency range (15-30 Hz) that are coherent with the activity of contralateral spinal motoneurons. This corticospinal coherence is thought to favor stationary motor states, but its mode of operation remains elusive. We hypothesized that corticospinal beta-range coherence depends on the sensorimotor processing state before a steady force task and may thus increase after sensorimotor tuning to dynamic force generation. To test this hypothesis we instructed 16 human subjects to compensate static force after rest as well as after compensating predictable or unpredictable dynamic force with their right index finger. We calculated EEG-EMG coherence, cortical motor spectral power, and the motor performance during the force conditions. Corticospinal beta-coherence during stationary force was excessively elevated if the steady-state contraction was preceded by predictable dynamic force instead of rest, and was highest after unpredictable dynamic force. The beta-power decreased from rest to predictable dynamic force, and was lowest during unpredictable dynamic force. The increase in corticospinal beta-coherence showed a significant negative correlation with the preceding change in beta-power. The tuning to dynamic force did not entail an inferior motor performance during static force. The results imply a correlation between corticospinal beta-range coherence and the computational load of the preceding isometric motor engagement. We suggest beta-range coherence provides a functional corticospinal gateway for steady force-related processing that can override cortical states tuned to dynamic force. The modulation of corticospinal beta-range coherence might thus ensure comparable precision of static force in various motor contexts.

  20. Integrating Seasonal Oscillations into Basel II Behavioural Scoring Models

    Directory of Open Access Journals (Sweden)

    Goran Klepac

    2007-09-01

    Full Text Available The article introduces a new methodology of temporal influence measurement (seasonal oscillations, temporal patterns for behavioural scoring development purposes. The paper shows how significant temporal variables can be recognised and then integrated into the behavioural scoring models in order to improve model performance. Behavioural scoring models are integral parts of the Basel II standard on Internal Ratings-Based Approaches (IRB. The IRB approach much more precisely reflects individual risk bank profile.A solution of the problem of how to analyze and integrate macroeconomic and microeconomic factors represented in time series into behavioural scorecard models will be shown in the paper by using the REF II model.

  1. Fuzzy fault tree analysis of roller oscillating tooth gear drive

    Institute of Scientific and Technical Information of China (English)

    李瑰贤; 杨伟君; 张欣; 李笑; 刘福利

    2002-01-01

    Conventional fault tree and reliability analysis do not reflect the characteristics of basic events asnon-stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run faulttree analysis(FTA) of roller oscillating tooth gear drive( ROTGD), the relative frequencies of basic events areconsidered as symmetrical normal fuzzy numbers, from the logical relationship between different events in thefault tree and fuzzy operators AND and OR, fuzzy probability of top event is solved. Finally, an example is giv-en to demonstrate a real ROTGD system.

  2. On Schr\\"odinger equation with potential U = - {\\alpha}r^{-1} + {\\beta}r + kr^{2} and the bi-confluent Heun functions theory

    CERN Document Server

    Ovsiyuk, E; Veko, O

    2011-01-01

    It is shown that Schr\\"odinger equation with combination of three potentials U = - {\\alpha} r^{-1} + {\\beta} r + kr^{2}, Coulomb, linear and harmonic, the potential often used to describe quarkonium, is reduced to a bi-confluent Heun differential equation. The method to construct its solutions in the form of polynomials is developed, however with additional constraints in four parameters of the model, {\\alpha}, {\\beta}, k, l. The energy spectrum looks as a modified combination of oscillator and Coulomb parts.

  3. The effect of compressive viscosity on the slow mode oscillations of inhomogeneous solar coronal loops

    Directory of Open Access Journals (Sweden)

    A. Abedini

    2014-04-01

    Full Text Available In this paper, the effect of compressive viscosity on the slow mode oscillation of solar corona loops is studied. The coronal loops medium are considered in low beta condition, uniform magnetic field in the presence of gravitational stratification and temperature gradient. Two-dimensional Magneto-Hydro-Dynamics (MHD equations are perturbed about the equilibrium and thenthese equations are linearized and ultimately a second order differential equation is obtained for velocity perturbation by stretching method. In considering the appropriate boundary conditions for the differential equationis solved analytically and numerically. Oscillation Modes obtained from numerical solutions with real data from satellites such as SOHO, TRACE and SDO are compared. Results show that the gravitational layering, fluctuations in the corona loop for frequency values greater than the cutoff frequency occurs. In small longitudes, viscosity damping is strong . Since the observations confirms strong damping of oscillations corona, can be said viscosity alone can justify the oscillation damping in elongated loops, the oscillation period is between 2 and 48 min, corresponds to the actual data.

  4. The GERDA experiment on 0{nu}{beta}{beta} decay

    Energy Technology Data Exchange (ETDEWEB)

    Freund, Kai [Eberhard Karls Universitaet Tuebingen (Germany); Collaboration: GERDA-Collaboration

    2012-07-01

    The Gerda (Germanium Detector Array) collaboration searches for the neutrinoless double beta decay (0{nu}{beta}{beta}) of {sup 76}Ge. The existence of this decay would give rise to the assumption that the neutrino is a Majorana particle, i.e. its own antiparticle. A measured half-life could be used to determine the effective neutrino mass and hence resolve the neutrino mass hierarchy problem. Germanium diodes, isotopically enriched in {sup 76}Ge, are used as both source and detector. Due to the low rate of this decay (T{sub 1/2}>10{sup 25} y), the experimental background must be reduced to a level of 10{sup -2}counts/(kg y keV) or better in the region around Q{sub {beta}{beta}}. To minimize background from cosmogenically produced secondary particles, a low Z shielding is employed. Thus, the naked diodes are operated in a liquid argon cryostat, which is surrounded by a water tank acting as both passive shield and active muon Cherenkov veto. Gerda started the commissioning runs in 2010 and in November 2011, the first phase of data taking with enriched detectors has begun. In this talk, the first year of the experiment is summarized.

  5. Reflective Learning in Practice.

    Science.gov (United States)

    Brockbank, Anne, Ed.; McGill, Ian, Ed.; Beech, Nic, Ed.

    This book contains 22 papers on reflective learning in practice. The following papers are included: "Our Purpose" (Ann Brockbank, Ian McGill, Nic Beech); "The Nature and Context of Learning" (Ann Brockbank, Ian McGill, Nic Beech); "Reflective Learning and Organizations" (Ann Brockbank, Ian McGill, Nic Beech);…

  6. Transparencies and Reflections.

    Science.gov (United States)

    Hubbard, Guy

    1999-01-01

    Discusses the use of perspective, or showing things as the human eye sees them, when creating reflections and transparencies in works of art. Provides examples of artwork using transparency, reflection, and refraction by M. C. Escher, Richard Estes, and Janet Fish to give students an opportunity to learn about these three art techniques. (CMK)

  7. Reflective Practitioner Account

    Institute of Scientific and Technical Information of China (English)

    干青

    2009-01-01

    This article focus on the reflective account of an English teacher learning and teaching in higher education with the British post-graduate certificate program of the Yunnan Agdculture University.As n practitioner for smny years in English learning and teaching for many years,it reflects in four fields.

  8. Josephson quartic oscillator as a superconducting phase qubit

    Energy Technology Data Exchange (ETDEWEB)

    Zorin, Alexander [Physikalisch-Technische Bundesanstalt, 38116 Braunschweig (Germany); Chiarello, Fabio [Istituto di Fotonica e Nanotecnologie, CNR, 00156 Rome (Italy)

    2010-07-01

    Due to interplay between the cosine Josephson potential and parabolic magnetic-energy potential the radio-frequency SQUID with the screening parameter value {beta}{sub L} {identical_to}(2{pi}/{phi}{sub 0})LI{sub c} {approx}1 presents an oscillator circuit which energy well can dramatically change its shape. Ultimately, the magnetic flux bias of half flux quantum {phi}{sub e}={phi}{sub 0}/2 leads to the quartic polynomial shape of the well and, therefore, to significant anharmonicity of oscillations (> 30%). We show that the two lowest eigenstates in this symmetric global minimum perfectly suit for designing the qubit which is inherently insensitive to the charge variable, always biased in the optimal point and allows efficient dispersive and bifurcation-based readouts. Moreover, in the case of a double-SQUID configuration (dc SQUID instead of a single junction) the transition frequency in this Josephson phase qubit can be easy tuned within an appreciable range allowing variable qubit-qubit and qubit-resonator couplings.

  9. In-trap decay spectroscopy for {beta}{beta} decays

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, Thomas

    2011-01-18

    The presented work describes the implementation of a new technique to measure electron-capture (EC) branching ratios (BRs) of intermediate nuclei in {beta}{beta} decays. This technique has been developed at TRIUMF in Vancouver, Canada. It facilitates one of TRIUMF's Ion Traps for Atomic and Nuclear science (TITAN), the Electron Beam Ion Trap (EBIT) that is used as a spectroscopy Penning trap. Radioactive ions, produced at the radioactive isotope facility ISAC, are injected and stored in the spectroscopy Penning trap while their decays are observed. A key feature of this technique is the use of a strong magnetic field, required for trapping. It radially confines electrons from {beta} decays along the trap axis while X-rays, following an EC, are emitted isotropically. This provides spatial separation of X-ray and {beta} detection with almost no {beta}-induced background at the X-ray detector, allowing weak EC branches to be measured. Furthermore, the combination of several traps allows one to isobarically clean the sample prior to the in-trap decay spectroscopy measurement. This technique has been developed to measure ECBRs of transition nuclei in {beta}{beta} decays. Detailed knowledge of these electron capture branches is crucial for a better understanding of the underlying nuclear physics in {beta}{beta} decays. These branches are typically of the order of 10{sup -5} and therefore difficult to measure. Conventional measurements suffer from isobaric contamination and a dominating {beta} background at theX-ray detector. Additionally, X-rays are attenuated by the material where the radioactive sample is implanted. To overcome these limitations, the technique of in-trap decay spectroscopy has been developed. In this work, the EBIT was connected to the TITAN beam line and has been commissioned. Using the developed beam diagnostics, ions were injected into the Penning trap and systematic studies on injection and storage optimization were performed. Furthermore, Ge

  10. Analysis of betaS and betaA genes in a Mexican population with African roots.

    Science.gov (United States)

    Magaña, María Teresa; Ongay, Zoyla; Tagle, Juan; Bentura, Gilberto; Cobián, José G; Perea, F Javier; Casas-Castañeda, Maricela; Sánchez-López, Yoaly J; Ibarra, Bertha

    2002-01-01

    To investigate the origin of the beta(A) and beta(S) genes in a Mexican population with African roots and a high frequency of hemoglobin S, we analyzed 467 individuals (288 unrelated) from different towns in the states of Guerrero and Oaxaca in the Costa Chica region. The frequency of the sickle-cell trait was 12.8%, which may represent a public health problem. The frequencies of the beta-haplotypes were determined from 350 nonrelated chromosomes (313 beta(A) and 37 beta(S)). We observed 15 different beta(A) haplotypes, the most common of which were haplotypes 1 (48.9%), 2 (13.4%), and 3 (13.4%). The calculation of pairwise distributions and Nei's genetic distance analysis using 32 worldwide populations showed that the beta(A) genes are more closely related to those of Mexican Mestizos and North Africans. Bantu and Benin haplotypes and haplotype 9 were related to the beta(S) genes, with frequencies of 78.8, 18.2, and 3.0%, respectively. Comparison of these haplotypes with 17 other populations revealed a high similitude with the population of the Central African Republic. These data suggest distinct origins for the beta(A) and beta(S) genes in Mexican individuals from the Costa Chica region.

  11. Double beta decay - physics beyond the standard model now, and in future (Genius)

    Energy Technology Data Exchange (ETDEWEB)

    Klapdor-Kleingrothaus, H.V.

    1998-08-01

    Nuclear double beta decay provides an extraordinarily broad potential to search for beyond standard model physics, probing already now the TeV scale, on which new physics should manifest itself. These possibilities are reviewed here. First, the results of present generation experiments are presented. The most sensitive one of them - the Heidelberg-Moscow experiment in the Gran Sasso - probes the electron mass now in the sub eV region and will reach a limit of {proportional_to}0.1 eV in a few years. Basing to a large extent on the theoretical work of the Heidelberg double beta group in the last two years, results are obtained also for SUSY models (R-parity breaking, sneutrino mass), leptoquarks (leptoquark-Higgs coupling), compositeness, right-handed W boson mass and others. These results are comfortably competitive to corresponding results from high-energy accelerators like TEVATRON, HERA, etc. Second, future perspectives of {beta}{beta} research are discussed. A new Heidelberg experimental proposal (GENIUS) is presented which would allow to increase the sensitivity for Majorana neutrino masses from the present level of at best 0.1 eV down to 0.01 or even 0.001 eV. Its physical potential would be a breakthrough into the multi-TeV range for many beyond standard models. Its sensitivity for neutrino oscillation parameters would be larger than of all present terrestrial neutrino oscillation experiments and of those planned for the future. (orig.)

  12. The relationship between some beta-adrenergic mediated responses and plasma concentrations of adrenaline and cyclic AMP in man

    DEFF Research Database (Denmark)

    Philipsen, E K; Myhre, John Gabriel; Larsen, S;

    1990-01-01

    concentrations at low adrenaline infusion rates was prevented, whereas a small increase in cyclic AMP was found at high adrenaline infusion rates, probably owing to incomplete beta-receptor blockade. Likewise, the adrenaline-induced increments in blood substrates (glucose, lactate, glycerol and beta......To test the hypothesis that increments in plasma cyclic AMP during beta-adrenergic stimulation reflect integrated second messenger function of the tissues activated by the agonist, graded adrenaline infusion resulting in plasma adrenaline concentrations within the physiological range was performed...... hydroxybutyric acid) were significantly reduced but not completely prevented by beta-blockade. We conclude that an altered relationship between beta-agonist concentrations and plasma cyclic AMP may provide evidence for the existence of differences in beta-adrenergic sensitivity in man....

  13. Reflection and teaching: a taxonomy

    OpenAIRE

    Vos, Henk; Cowan, John

    2009-01-01

    A major problem in teaching reflection is that educational objectives for reflection in terms of student behaviour are lacking. Therefore a taxonomy of reflection has been developed based on Bloom’s taxonomy. Reflective assignments can then be better focused on any chosen educational objectives. The act of reflection has been analysed and abstracted from goal, content, context, means, and moment of reflecting. Reflection was operationalised as answering reflective questions. Bloom’s taxonomy ...

  14. beta (+)-Thalassaemia in the Po river delta region (northern Italy): genotype and beta globin synthesis.

    Science.gov (United States)

    Del Senno, L; Pirastu, M; Barbieri, R; Bernardi, F; Buzzoni, D; Marchetti, G; Perrotta, C; Vullo, C; Kan, Y W; Conconi, F

    1985-01-01

    Six beta(+)-thalassaemic patients from the Po river delta region have been studied. Using synthetic oligonucleotides as specific hybridisation probes, the beta(+) IVS I mutation (G----A at position 108) was demonstrated. This lesion and the enzyme polymorphism pattern in the subjects examined are the same as have been described for other Mediterranean beta(+)-thalassaemias. Antenatal diagnosis through DNA analysis of beta(+)-thalassaemia is therefore possible. The production of beta globin in a beta(+), homozygote and in a beta (+), beta(0) 39 (nonsense mutation at codon 39) double heterozygote is approximately 20% and 10% respectively of total non-alpha globin synthesis. Despite some overlapping of the results, similar beta globin synthesis levels have been obtained in 43 beta(+)-thalassaemia patients. This suggests that in the Po river delta region the most common thalassaemic genes are beta(0) 39 and beta(+) IVS I. Images PMID:2580095

  15. Chemotaxis of Dictyostelium discoideum: collective oscillation of cellular contacts.

    Directory of Open Access Journals (Sweden)

    Edith Schäfer

    Full Text Available Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells.

  16. Reorganization of the North Atlantic Oscillation during early Holocene deglaciation

    Science.gov (United States)

    Wassenburg, Jasper A.; Dietrich, Stephan; Fietzke, Jan; Fohlmeister, Jens; Jochum, Klaus Peter; Scholz, Denis; Richter, Detlev K.; Sabaoui, Abdellah; Spötl, Christoph; Lohmann, Gerrit; Andreae, Meinrat O.; Immenhauser, Adrian

    2016-08-01

    The North Atlantic Oscillation is the dominant atmospheric pressure mode in the North Atlantic region and affects winter temperature and precipitation in the Mediterranean, northwest Europe, Greenland, and Asia. The index that describes the sea-level pressure difference between Iceland and the Azores is correlated with a dipole precipitation pattern over northwest Europe and northwest Africa. How the North Atlantic Oscillation will develop as the Greenland ice sheet melts is unclear. A potential past analogue is the early Holocene, during which melting ice sheets around the North Atlantic freshened surface waters, affecting the strength of the meridional overturning circulation. Here we present a Holocene rainfall record from northwest Africa based on speleothem δ18O and compare it against a speleothem-based rainfall record from Europe. The two records are positively correlated during the early Holocene, followed by a shift to an anti-correlation, similar to the modern record, during the mid-Holocene. On the basis of our simulations with an Earth system model, we suggest the shift to the anti-correlation reflects a large-scale atmospheric and oceanic reorganization in response to the demise of the Laurentide ice sheet and a strong reduction of meltwater flux to the North Atlantic, pointing to a potential sensitivity of the North Atlantic Oscillation to the melting of ice sheets.

  17. Quantizing the damped harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, D C [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)

    2005-03-04

    We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that the unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.

  18. Ermakov approach for minisuperspace oscillators

    CERN Document Server

    Rosu, H C

    1999-01-01

    The WDW equation of arbitrary Hartle-Hawking factor ordering for several minisuperspace universe models, such as the pure gravity FRW and Taub ones, is mapped onto the dynamics of corresponding classical oscillators. The latter ones are studied by the classical Ermakov invariant method, which is a natural aproach in this context. For the more realistic case of a minimally coupled massive scalar field, one can study, within the same type of approach, the corresponding squeezing features as a possible means of describing cosmological evolution. Finally, we comment on the analogy with the accelerator physics

  19. Bloch oscillations in atom interferometry

    CERN Document Server

    Cladé, Pierre

    2014-01-01

    In Paris, we are using an atom interferometer to precisely measure the recoil velocity of an atom that absorbs a photon. In order to reach a high sensitivity, many recoils are transferred to atoms using the Bloch oscillations technique. In this lecture, I will present in details this technique and its application to high precision measurement. I will especially describe in details how this method allows us to perform an atom recoil measurement at the level of $1.3 \\times 10^{-9}$. This measurement is used in the most precise determination of the fine structure constant that is independent of quantum electrodynamics.

  20. Magnus approximation in neutrino oscillations

    Science.gov (United States)

    Acero, Mario A.; Aguilar-Arevalo, Alexis A.; D'Olivo, J. C.

    2011-04-01

    Oscillations between active and sterile neutrinos remain as an open possibility to explain some anomalous experimental observations. In a four-neutrino (three active plus one sterile) mixing scheme, we use the Magnus expansion of the evolution operator to study the evolution of neutrino flavor amplitudes within the Earth. We apply this formalism to calculate the transition probabilities from active to sterile neutrinos with energies of the order of a few GeV, taking into account the matter effect for a varying terrestrial density.

  1. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  2. Carnot cycle for an oscillator

    Science.gov (United States)

    Arnaud, Jacques; Chusseau, Laurent; Philippe, Fabrice

    2002-09-01

    In 1824 Carnot established that the efficiency of cyclic engines operating between a hot bath at absolute temperature Thot and a bath at a lower temperature Tcold cannot exceed 1 - Tcold/Thot. We show that linear oscillators alternately in contact with hot and cold baths obey this principle in the quantum as well as classical regime. The expression of the work performed is derived from a simple prescription. Reversible and non-reversible cycles are illustrated. The paper begins with historical considerations and is essentially self-contained.

  3. Strange nonchaotic self-oscillator

    Science.gov (United States)

    Jalnine, Alexey Yu.; Kuznetsov, Sergey P.

    2016-08-01

    An example of strange nonchaotic attractor (SNA) is discussed in a dissipative system of mechanical nature driven by a constant torque applied to one of the elements of the construction. So the external force is not oscillatory, and the system is autonomous. Components of the motion with incommensurable frequencies emerge due to the irrational ratio of the sizes of the involved rotating elements. We regard the phenomenon as strange nonchaotic self-oscillations, and its existence sheds new light on the question of feasibility of SNA in autonomous systems.

  4. Wave Physics Oscillations - Solitons - Chaos

    CERN Document Server

    Nettel, Stephen

    2009-01-01

    This textbook is intended for those second year undergraduates in science and engineering who will later need an understanding of electromagnetic theory and quantum mechanics. The classical physics of oscillations and waves is developed at a more advanced level than has been customary for the second year, providing a basis for the quantum mechanics that follows. In this new edition the Green's function is explained, reinforcing the integration of quantum mechanics with classical physics. The text may also form the basis of an "introduction to theoretical physics" for physics majors. The concluding chapters give special attention to topics in current wave physics: nonlinear waves, solitons, and chaotic behavior.

  5. Modeling of Coupled Chaotic Oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Y. [Departments of Physics and Astronomy and of Mathematics, University of Kansas, Lawrence, Kansas 66045 (United States); Grebogi, C. [Institute for Plasma Research, Department of Mathematics, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States)

    1999-06-01

    Chaotic dynamics may impose severe limits to deterministic modeling by dynamical equations of natural systems. We give theoretical argument that severe modeling difficulties may occur for high-dimensional chaotic systems in the sense that no model is able to produce reasonably long solutions that are realized by nature. We make these ideas concrete by investigating systems of coupled chaotic oscillators. They arise in many situations of physical and biological interests, and they also arise from discretization of nonlinear partial differential equations. {copyright} {ital 1999} {ital The American Physical Society}

  6. Visual Grouping by Neural Oscillators

    CERN Document Server

    Yu, Guoshen

    2008-01-01

    Distributed synchronization is known to occur at several scales in the brain, and has been suggested as playing a key functional role in perceptual grouping. State-of-the-art visual grouping algorithms, however, seem to give comparatively little attention to neural synchronization analogies. Based on the framework of concurrent synchronization of dynamic systems, simple networks of neural oscillators coupled with diffusive connections are proposed to solve visual grouping problems. Multi-layer algorithms and feedback mechanisms are also studied. The same algorithm is shown to achieve promising results on several classical visual grouping problems, including point clustering, contour integration and image segmentation.

  7. Making space for harmonic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Michelotti, Leo; /Fermilab

    2004-11-01

    If we restrict the number of harmonic oscillator energy eigenstates to some finite value, N, then the discrete spectrum of the corresponding position operator comprise the roots of the Hermite polynomial H{sub N+1}. Its range is just large enough to accommodate classical motion at high energy. A negative energy term must be added to the Hamiltonian which affects only the last eigenstate, |N>, suggesting it is concentrated at the extrema of this finite ''space''. Calculations support a conjecture that, in the limit of large N, the global distribution of points approaches the differential form for classical action.

  8. Bruno Pontecorvo and Neutrino Oscillations

    Directory of Open Access Journals (Sweden)

    Samoil M. Bilenky

    2013-01-01

    Full Text Available I discuss briefly in this review, dedicated to the centenary of the birth of the great neutrino physicist Bruno Pontecorvo, the following ideas he proposed: (i the radiochemical method of neutrino detection; (ii the μ - e universality of the weak interaction; (iii the accelerator neutrino experiment which allowed to prove that muon and electron neutrinos are different particles (the Brookhaven experiment. I consider in some details Pontecorvo's pioneering idea of neutrino masses, mixing, and oscillations and the development of this idea by Pontecorvo, by Pontecorvo and Gribov, and by Pontecorvo and myself.

  9. Pair creation and plasma oscillations.

    Energy Technology Data Exchange (ETDEWEB)

    Prozorkevich, A. V.; Vinnik, D. V.; Schmidt, S. M.; Hecht, M. B.; Roberts, C. D.

    2000-12-15

    We describe aspects of particle creation in strong fields using a quantum kinetic equation with a relaxation-time approximation to the collision term. The strong electric background field is determined by solving Maxwell's equation in tandem with the Vlasov equation. Plasma oscillations appear as a result of feedback between the background field and the field generated by the particles produced. The plasma frequency depends on the strength of the initial background fields and the collision frequency, and is sensitive to the necessary momentum-dependence of dressed-parton masses.

  10. Review of Teacher's Teaching Reflection

    Institute of Scientific and Technical Information of China (English)

    王爽爽

    2015-01-01

    Teacher's teaching reflection has become the core focus in school.However,there are different understandings of the concept of teacher's teaching reflection.The paper introduces and compares different understandings of the concept of teachers' teaching reflection.Based on the summarizing of the concept on reflection and teaching reflection,this paper tries to provide reference for the teacher's teaching reflection.

  11. Reflectivity in Research Practice

    Directory of Open Access Journals (Sweden)

    Luigina Mortari

    2015-11-01

    Full Text Available The article grounds on the assumption that researchers, in order to be not mere technicians but competent practitioners of research, should be able to reflect in a deep way. That means they should reflect not only on the practical acts of research but also on the mental experience which constructs the meaning about practice. Reflection is a very important mental activity, both in private and professional life. Learning the practice of reflection is fundamental because it allows people to engage into a thoughtful relationship with the world-life and thus gain an awake stance about one’s lived experience. Reflection is a crucial cognitive practice in the research field. Reflexivity is largely practiced in qualitative research, where it is used to legitimate and validate research procedures. This study introduces different perspectives of analysis by focusing the discourse on the main philosophical approaches to reflection: pragmatistic, critical, hermeneutic, and finally phenomenological. The thesis of this study is that the phenomenological theory makes possible to analyze in depth the reflective activity and just by that to support an adequate process of training of the researcher.

  12. Entangled states of spin and clock oscillators

    Science.gov (United States)

    Polzik, Eugene

    2016-05-01

    Measurements of one quadrature of an oscillator with precision beyond its vacuum state uncertainty have occupied a central place in quantum physics for decades. We have recently reported the first experimental implementation of such measurement with a magnetic oscillator. However, a much more intriguing goal is to trace an oscillator trajectory with the precision beyond the vacuum state uncertainty in both position and momentum, a feat naively assumed not possible due to the Heisenberg uncertainty principle. We have demonstrated that such measurement is possible if the oscillator is entangled with a quantum reference oscillator with an effective negative mass. The key element is the cancellation of the back action of the measurement on the composite system of two oscillators. Applications include measurements of e.-m. fields, accelleration, force and time with practically unlimited accuracy. In a more general sense, this approach leads to trajectories without quantum uncertainties and to achieving new fundamental bounds on the measurement precision.

  13. Damped transverse oscillations of interacting coronal loops

    CERN Document Server

    Soler, Roberto

    2015-01-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...

  14. Phase noise and frequency stability in oscillators

    CERN Document Server

    Rubiola, Enrico

    2009-01-01

    Presenting a comprehensive account of oscillator phase noise and frequency stability, this practical text is both mathematically rigorous and accessible. An in-depth treatment of the noise mechanism is given, describing the oscillator as a physical system, and showing that simple general laws govern the stability of a large variety of oscillators differing in technology and frequency range. Inevitably, special attention is given to amplifiers, resonators, delay lines, feedback, and flicker (1/f) noise. The reverse engineering of oscillators based on phase-noise spectra is also covered, and end-of-chapter exercises are given. Uniquely, numerous practical examples are presented, including case studies taken from laboratory prototypes and commercial oscillators, which allow the oscillator internal design to be understood by analyzing its phase-noise spectrum. Based on tutorials given by the author at the Jet Propulsion Laboratory, international IEEE meetings, and in industry, this is a useful reference for acade...

  15. Collective neutrino oscillations and spontaneous symmetry breaking

    Science.gov (United States)

    Duan, Huaiyu

    2015-08-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.

  16. Lepton asymmetry and neutrino oscillations interplay

    Energy Technology Data Exchange (ETDEWEB)

    Kirilova, Daniela, E-mail: dani@astro.bas.bg [Bulgarian Academy of Sciences, Institute of Astronomy and NAO (Bulgaria)

    2013-03-15

    We discuss the interplay between lepton asymmetry L and {nu} oscillations in the early Universe. Neutrino oscillations may suppress or enhance previously existing L. On the other hand L is capable to suppress or enhance neutrino oscillations. The mechanism of L enhancement in MSW resonant {nu} oscillations in the early Universe is numerically analyzed. L cosmological effects through {nu} oscillations are discussed. We discuss how L may change the cosmological BBN constraints on neutrino and show that BBN model with {nu}{sub e}{r_reversible}{nu}{sub s} oscillations is extremely sensitive to L - it allows to obtain the most stringent constraints on L value. We discuss also the cosmological role of active-sterile {nu} mixing and L in connection with the indications about additional relativistic density in the early Universe, pointed out by BBN, CMB and LSS data and the analysis of global {nu} data.

  17. Collective neutrino oscillations and spontaneous symmetry breaking

    CERN Document Server

    Duan, Huaiyu

    2015-01-01

    Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience collective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have "reset" this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillation...

  18. Smart Beta or Smart Alpha

    DEFF Research Database (Denmark)

    Winther, Kenneth Lillelund; Steenstrup, Søren Resen

    2016-01-01

    Smart beta has become the flavor of the decade in the investment world with its low fees, easy access to rewarded risk premiums, and appearance of providing good investment results relative to both traditional passive benchmarks and actively managed funds. Although we consider it well documented...... that smart beta investing probably will do better than passive market capitalization investing over time, we believe many are coming to a conclusion too quickly regarding active managers. Institutional investors are able to guide managers through benchmarks and risk frameworks toward the same well......-documented smart beta risk premiums and still motivate active managers to avoid value traps, too highly priced small caps, defensives, etc. By constructing the equity portfolios of active managers that resemble the most widely used risk premiums, we show that the returns and risk-adjusted returns measures...

  19. Characterizing correlations of flow oscillations at bottlenecks

    Science.gov (United States)

    Kretz, Tobias; Wölki, Marko; Schreckenberg, Michael

    2006-02-01

    'Oscillations' occur in quite different kinds of many-particle systems when two groups of particles with different directions of motion meet or intersect at a certain spot. In this work a model of pedestrian motion is presented that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to include observables that can be used to characterize different kinds of oscillations.

  20. Characterizing correlations of flow oscillations at bottlenecks

    OpenAIRE

    Kretz, Tobias; Woelki, Marko; Schreckenberg, Michael

    2006-01-01

    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations.