WorldWideScience

Sample records for beta brain response

  1. Copper Exposure Perturbs Brain Inflammatory Responses and Impairs Clearance of Amyloid-Beta.

    Science.gov (United States)

    Kitazawa, Masashi; Hsu, Heng-Wei; Medeiros, Rodrigo

    2016-07-01

    Copper promotes a toxic buildup of amyloid-beta (Aβ) and neurofibrillary tangle pathology in the brain, and its exposure may increase the risk for Alzheimer's disease (AD). However, underlying molecular mechanisms by which copper triggers such pathological changes remain largely unknown. We hypothesized that the copper exposure perturbs brain inflammatory responses, leading to impairment of Aβ clearance from the brain parenchyma. Here, we investigated whether copper attenuated Aβ clearance by microglial phagocytosis or by low-density lipoprotein-related receptor protein-1 (LRP1) dependent transcytosis in both in vitro and in vivo When murine monocyte BV2 cells were exposed to copper, their phagocytic activation induced by fibrillar Aβ or LPS was significantly reduced, while the secretion of pro-inflammatory cytokines, such as IL-1β, TNF-α, and IL-6, were increased. Interestingly, not only copper itself but also IL-1β, IL-6, or TNF-α were capable of markedly reducing the expression of LRP1 in human microvascular endothelial cells (MVECs) in a concentration-dependent manner. While copper-mediated downregulation of LRP1 was proteasome-dependent, the cytokine-induced loss of LRP1 was proteasome- or lysosome-independent. In the mouse model, copper exposure also significantly elevated neuroinflammation and downregulated LRP1 in the brain, consistent with our in vitro results. Taken together, our findings support the pathological impact of copper on inflammatory responses and Aβ clearance in the brain, which could serve as key mechanisms to explain, in part, the copper exposure as an environmental risk factor for AD. PMID:27122238

  2. Modulation of. beta. -adrenergic response in rat brain astrocytes by serum and hormones

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.K.; Morrison, R.S.; de Vellis, J.

    1985-01-01

    Purified astrocyte cultures from neonatal rat cerebrum respond to isoproterenol, a ..beta..-adrenergic agonist, with a transient rise in cAMP production. This astroglial property was regulated by serum, a chemically defined medium (serum-free medium plus hydrocortisone, putrescine, prostaglandin F/sub 2/, insulin, and fibroblast growth factor) and epidermal growth factor. Compared to astrocytes grown in serum-supplemented medium, astrocytes grown in the chemically defined medium were nonresponsive to isoproterenol stimulation, and this difference did not appear to be due to selection of a subpopulation of cells by either medium. The data suggest that a decreased ..beta..-adrenergic receptor number and an increased degradation of cAMP may account for the reduced response to ..beta..-adrenergic stimulation. The nonresponsive state of astrocytes in the defined medium was reversible when the medium was replaced with serum-supplemented medium. An active substance(s) in serum was responsible for restoring the responsiveness of astrocytes. Each of the five components of the defined medium had little effect by itself; however, together they acted synergistically to desensitize astrocytes to ..beta..-adrenergic stimulation. On the other hand, epidermal growth factor, a potent mitogen for astrocytes, was very competent by itself in reducing the cAMP response of astrocytes to ..beta..-adrenergic stimulation. Thus purified astrocytes grown in the chemically defined medium appear to be a good model for the study of hormonal interactions and of serum factors which may modulate the ..beta..-adrenergic response.

  3. Antibody formation against beta-tubulin class III in response to brain trauma

    Czech Academy of Sciences Publication Activity Database

    Škoda, D.; Kranda, K.; Bojar, M.; Glosová, L.; Bäurle, J.; Kenney, Jana; Romportl, D.; Pelichovská, M.; Cvachovec, K.

    2006-01-01

    Roč. 68, č. 4 (2006), s. 213-216. ISSN 0361-9230 R&D Projects: GA MZd(CZ) NR8114 Institutional research plan: CEZ:AV0Z5011922 Keywords : autoantibodies * beta–tubulin * brain injury Subject RIV: FH - Neurology Impact factor: 1.684, year: 2006

  4. Regularity increases middle latency evoked and late induced beta brain response following proprioceptive stimulation

    DEFF Research Database (Denmark)

    Arnfred, Sidse M.; Hansen, Lars Kai; Parnas, Josef;

    2008-01-01

    as an indication of increased readiness. This is achieved through detailed analysis of both evoked and induced responses in the time-frequency domain. Electroencephalography in a 64 channels montage was recorded in four-teen healthy subjects. Two paradigms were explored: A Regular alternation between hand......Focal attention increases the middle-latency amplitude of somatosensory evoked potentials. Previously this effect has been suggested to be due to increased readiness in somatosensory cortex. Presently, we examine whether regularity of stimulus occurrence increases the proprioceptive evoked response...

  5. Beta contamination monitor energy response

    International Nuclear Information System (INIS)

    Beta contamination is monitored at Los Alamos National Laboratory (LANL) with portable handheld probes and their associated counters, smear counters, air-breathing continuous air monitors (CAM), personnel contamination monitors (PCM), and hand and foot monitors (HFM). The response of these monitors was measured using a set of anodized-aluminum beta sources for the five isotopes: Carbon-14, Technetium-99, Cesium-137, Chlorine-36 and Strontium/Yttrium-90. The surface emission rates of the sources are traceable to the National Institute of Standards and Technology (NIST) with a precision of one relative standard deviation equal to 1.7%. All measurements were made in reproducible geometry, mostly using aluminum source holders. All counts, significantly above background, were collected to a precision of 1% or better. The study of the hand-held probes included measurements of six air gaps from 0.76 to 26.2 mm. The energy response of the detectors is well-parameterized as a function of the average beta energy of the isotopes (C14=50 keV, Tc99=85, Cs137=188, C136=246, and Sr/Y90=934). The authors conclude that Chlorine-36 is a suitable beta emitter for routine calibration. They recommend that a pancake Geiger-Mueller (GM) or gas-proportional counter be used for primarily beta contamination surveys with an air gap not to exceed 6 mm. Energy response varies about 30% from Tc99 to Sr/Y90 for the pancake GM detector. Dual alpha/beta probes have poor to negligible efficiency for low-energy betas. The rugged anodized sources represent partially imbedded contamination found in the field and they are provided with precise, NIST-traceable, emission rates for reliable calibration

  6. Distribution of beta-amyloid in the canine brain.

    Science.gov (United States)

    Hou, Y; White, R G; Bobik, M; Marks, J S; Russell, M J

    1997-03-01

    The distribution of amyloid-beta protein (A beta) in the canine brain was demonstrated by immunochemistry on serially sectioned tissues from 10 aged mixed breed dogs. Summation of quantitative data and relegation to anatomical sites for the 10 dogs showed A beta to be widely distributed in the cortex and hippocampus while completely absent in the brain stem and cerebellum. The highest density of A beta was in the dentate gyrus of the hippocampus. Cortical areas exhibiting the greatest A beta deposition were the posterior and medial suprasylvius gyrus and the proreus gyrus of the frontal lobe. Unlike humans the canine entorhinal cortex, amygdala, basal ganglia and olfactory bulbs were rarely affected. This suggested that the highly developed olfactory pathways of the canine are generally spared from A beta deposition. PMID:9141082

  7. Survey instrument response to beta radiations

    International Nuclear Information System (INIS)

    Available survey instruments do not have the beta measurement characteristics needed for accurate dose rate assessments. Such instruments have severe angular and energy dependence. In addition, beta measurements often require corrections for the source geometry response of the detector to permit accurate assessments. Studies were performed to characterize present instruments and to determine optimum characteristics for a field instrument. Results of the studies were used to specify and procure an instrument with improved characteristics. The purpose of this paper is to describe the results of the studies and the design of the instrument

  8. Survey instrument response to beta radiations

    International Nuclear Information System (INIS)

    Available survey instruments do not have the beta measurement characteristics needed for accurate dose rate assessments. Such instruments have severe angular and energy dependence. In addition, beta measurements often require corrections for the source geometry response of the detector to permit accurate assessments. Studies were performed to characterize present instruments and to determine optimum characteristics for a field instrument. Results of the studies were used to specify and procure an instrument with improved characteristics. The purpose of this paper is to describe the results of the studies and the design of the instrument. 6 refs., 6 figs., 4 tabs

  9. Neurogenic Responses to Amyloid-Beta Plaques in the Brain of Alzheimer's Disease-Like Transgenic (pPDGF-APPSw,Ind) Mice

    OpenAIRE

    Gan, Li; Qiao, Shuhong; Lan, Xun; Chi, Liying; Luo, Chun; Lien, Lindsey; Liu, Qing Yan; Liu, Rugao

    2007-01-01

    Formation and accumulation of amyloid-beta (Aβ) plaques are associated with declined memory and other neurocognitive function in Alzheimer's Disease (AD) patients. However, the effects of Aβ plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice ...

  10. AMYLOID BETA ACCUMULATION IN HIV-1-INFECTED BRAIN: THE ROLE OF THE BLOOD BRAIN BARRIER

    OpenAIRE

    András, Ibolya E.; Toborek, Michal

    2012-01-01

    In recent years we face an increase in the aging of the HIV-1-infected population, which is not only due to effective antiretroviral therapy but also to new infections among older people. Even with the use of the antiretroviral therapy, HIV-associated neurocognitive disorders represent an increasing problem as the HIV-1-infected population ages. Increased amyloid beta (Aβ) deposition is characteristic of HIV-1-infected brains, and it has been hypothesized that brain vascular dysfunction contr...

  11. Evidence for the presence of beta 3-adrenergic receptor mRNA in the human brain.

    Science.gov (United States)

    Rodriguez, M; Carillon, C; Coquerel, A; Le Fur, G; Ferrara, P; Caput, D; Shire, D

    1995-04-01

    The beta 3-adrenergic receptor (AR) is widely distributed in peripheral tissues, but up to now it has not been detected in the central nervous system. By using the polymerase chain reaction (PCR) technique, we found the beta 3-AR mRNA to be present in all the regions of the human brain we investigated. The quantities found were very low compared to those of the beta 1-AR and beta 2-AR mRNAs, being hardly detectable in adult brain. In contrast, the brain of very young infants contained about 100 times more beta 3-AR mRNA than the adult brain, whereas the amounts of beta 1-AR and beta 2-AR transcripts were essentially the same. In addition, using PCR we have cloned a central beta 3-AR coding region from a human frontal cortex cDNA library and have found it to be identical to the corresponding peripheral sequence. PMID:7609625

  12. Beta and low energy photon response

    International Nuclear Information System (INIS)

    This study quantifies the observed dosimeter response for a variety of beta and photon energies. The reportable skin dose is also included in the discussion. Presently, the reportable skin dose is determined by adding the nonpenetrating and penetrating dose components together. The scheme presently used to estimate the nonpenetrating dose component for personnel at Hanford utilizes the difference in light outputs of a TLD-700 chip filtered only by the security credential (total of 88 mg/cm2) and a TLD-700 chip filtered by a 0.064 cm thick aluminum filter as well as the credential. The study indicates that a maximum chip response occurs in the range of photon energies between 30 keV and 40 keV and results in an overestimation of the calculated nonpenetrating dose by a factor of approximately 2. The reportable skin dose is overestimated by a factor of approximately 2.5 following adding the nonpenetrating and penetrating dose components. The effect of removing the security credential is slight and tends to increase the steepness of slope in the photon response curve

  13. Beta-secretase-cleaved amyloid precursor protein in Alzheimer brain: a morphologic study

    DEFF Research Database (Denmark)

    Sennvik, Kristina; Bogdanovic, N; Volkmann, Inga; Fastbom, J; Benedikz, Eirikur

    2004-01-01

    (beta-sAPP) in brain tissue sections from the frontal, temporal and occipital lobe. Strong granular beta-sAPP staining was found throughout the gray matter of all three areas, while white matter staining was considerably weaker. beta-sAPP was found to be localized in astrocytes and in axons. We found...... the beta-sAPP immunostaining to be stronger and more extensive in gray matter in Alzheimer disease (AD) cases than controls. The axonal beta-sAPP staining was patchy and unevenly distributed for the AD cases, indicating impaired axonal transport. beta-sAPP was also found surrounding senile plaques and......beta-amyloid (Abeta) is the main constituent of senile plaques seen in Alzheimer's disease. Abeta is derived from the amyloid precursor protein (APP) via proteolytic cleavage by proteases beta- and gamma-secretase. In this study, we examined content and localization of beta-secretase-cleaved APP...

  14. Characterization of recombinant RI beta and evaluation of the presence of RI beta protein in rat brain and testicular extracts.

    Science.gov (United States)

    DeManno, D A; Jackiw, V; Brooks, E; Hunzicker-Dunn, M

    1994-07-21

    Based upon recent reports that the mRNA from the regulatory (R) RI beta subunit of cAMP-dependent protein kinase (PKA) was expressed in testicular extracts, we determined whether testicular extracts exhibited RI beta protein. To accomplish this goal, we initially determined the fundamental labeling and ionic characteristics of recombinant RI beta. Recombinant RI beta eluted from DEAE-cellulose with a salt concentration (of 0.075 M) equivalent to its elution position from soluble mouse brain extracts with catalytic subunit-free RI alpha. As predicted by its amino acid sequence homology to RI alpha, recombinant RI beta was not phosphorylated by PKA but was labeled specifically with 8-azido-adenosine 3':5'-[32P]monophosphate (8-N3[32P]cAMP). Additionally, RI antisera reacted equally with RI alpha (47 kDa) and recombinant RI beta (53 kDa). However, recombinant RI beta exhibited an unexpectedly basic pI of 6.65-6.85. By using a pH gradient for isoelectric focussing that allowed for clear focussing of 8-N3[32P]cAMP-labeled recombinant RI beta, 8-N3[32P]cAMP-labeled RI beta was readily detected by two-dimensional gel electrophoresis in rat brain particulate extracts and exhibited a pI equivalent to that of recombinant RI beta. The 53-kDa RI beta was undetectable either by its immunoreactivity or upon photoaffinity labeling with 8-N3[32P]cAMP by one or two-dimensional gel electrophoresis in soluble or particulate extracts of testes of 14-day-old, 45-day-old, or adult rats or in epididymal sperm. However, 8-N3[32P]cAMP-labeled RI beta was detected, albeit in very small levels, by two-dimensional electrophoresis upon separation of PKAs in testes of 14-day-old rats by DEAE-cellulose chromatography but was absent in equivalent extracts from adult rat testes. These results demonstrate that the unexpectedly basic pI of RI beta allows for its clear separation by two-dimensional electrophoresis from the RII proteins and therefore allows for its unambiguous identification. Further

  15. Effects of beta-alanine supplementation on brain homocarnosine/carnosine signal and cognitive function: an exploratory study.

    Directory of Open Access Journals (Sweden)

    Marina Yazigi Solis

    Full Text Available Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d(-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1 and on cognitive function before and after exercise in trained cyclists (Study 2.In Study 1, seven healthy vegetarians (3 women and 4 men and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen trained male cyclists completed four 20-Km cycling time trials (two pre supplementation and two post supplementation, with a battery of cognitive function tests (Stroop test, Sternberg paradigm, Rapid Visual Information Processing task being performed before and after exercise on each occasion.In Study 1, there were no within-group effects of beta-alanine supplementation on brain homocarnosine/carnosine signal in either vegetarians (p = 0.99 or omnivores (p = 0.27; nor was there any effect when data from both groups were pooled (p = 0.19. Similarly, there was no group by time interaction for brain homocarnosine/carnosine signal (p = 0.27. In study 2, exercise improved cognitive function across all tests (P 0.05 of beta-alanine supplementation on response times or accuracy for the Stroop test, Sternberg paradigm or RVIP task at rest or after exercise.28 d of beta-alanine supplementation at 6.4 g d(-1 appeared not to influence brain homocarnosine/carnosine signal in either omnivores or vegetarians; nor did it influence cognitive function before or after exercise in trained cyclists.

  16. Association of the interleukin 1 beta gene and brain spontaneous activity in amnestic mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Zhuang Liying

    2012-12-01

    Full Text Available Abstract Purpose The inflammatory response has been associated with the pathogenesis of Alzheimer’s disease (AD. The purpose of this study is to determine whether the rs1143627 polymorphism of the interleukin-1 beta (IL-1β gene moderates functional magnetic resonance imaging (fMRI-measured brain regional activity in amnestic mild cognitive impairment (aMCI. Methods Eighty older participants (47 with aMCI and 33 healthy controls were recruited for this study. All of the participants were genotyped for variant rs1143627 in the IL1B gene and were scanned using resting-state fMRI. Brain activity was assessed by amplitude of low-frequency fluctuation (ALFF. Results aMCI patients had abnormal ALFF in many brain regions, including decreases in the inferior frontal gyrus, the superior temporal lobe and the middle temporal lobe, and increases in the occipital cortex (calcarine, parietal cortex (Pcu and cerebellar cortex. The regions associated with an interaction of group X genotypes of rs1143627 C/T were the parietal cortex (left Pcu, frontal cortex (left superior, middle, and medial gyrus, right anterior cingulum, occipital cortex (left middle lobe, left cuneus and the bilateral posterior lobes of the cerebellum. Regarding the behavioral significance, there were significant correlations between ALFF in different regions of the brain and with the cognitive scores of each genotype group. Conclusions The present study provided evidence that aMCI patients had abnormal ALFF in many brain regions. Specifically, the rs1143627 C/T polymorphism of the IL1B gene may modulate regional spontaneous brain activity in aMCI patients.

  17. Law, Responsibility, and the Brain

    Science.gov (United States)

    Mobbs, Dean; Lau, Hakwan C.; Jones, Owen D.; Frith, Chris D.

    In perhaps the first attempt to link the brain to mental illness, Hippocrates elegantly wrote that it is the brain that makes us mad or delirious. Epitomizing one of the fundamental assumptions of contemporary neuroscience, Hippocrates' words resonate far beyond the classic philosophical puzzle of mind and body and posit that our behavior, no matter how monstrous, lies at the mercy of our brain's integrity. While clinicopathological observations have long pointed to several putative neurobiological systems as important in antisocial and violent criminal behavior, recent advances in brain-imaging have the potential to provide unparalleled insight. Consequently, brain-imaging studies have reinvigorated the neurophilosophical and legal debate of whether we are free agents in control of our own actions or mere prisoners of a biologically determined brain. In this chapter, we review studies pointing to brain dysfunction in criminally violent individuals and address a range of philosophical and practical issues concerning the use of brainimaging in court. We finally lay out several guidelines for its use in the legal system.

  18. Excitotoxic brain damage in the rat induces interleukin-1beta protein in microglia and astrocytes: correlation with the progression of cell death.

    Science.gov (United States)

    Pearson, V L; Rothwell, N J; Toulmond, S

    1999-02-15

    Interleukin-1 beta (IL-1beta) has been proposed as a mediator of several forms of brain damage, including that induced by excitotoxins. In vitro studies suggest that glial cells are the effector cells of IL-1beta-mediated neurodegeneration. We have investigated the expression of IL-1beta protein by glial cells in vivo in response to NMDA receptor-mediated excitotoxicity in the rat parietal cortex and striatum. Expression of IL-1beta by glial cells was investigated using immunocytochemistry 30 min to 7 days after infusion of the NMDA agonist cis-2,4-methanoglutamate (MGlu; 10 nmol) into the cortex. Early expression (1-4 h) of IL-1beta by microglia was directly related to lesion development. Later expression by microglia (up to 24 h), and by astrocytes (2-7 days), was widespread compared to the area involved in excitotoxic cell death and co-localised with areas of reactive gliosis. Infusion of MGlu into the striatum induced a similar temporal pattern of IL-1beta expression by microglia and astrocytes. However, IL-1beta-expressing glial cells were localised strictly to the area of striatal cell death. Infusion of PBS or a subtoxic dose of MGlu into the cortex or striatum induced only limited neuronal death and negligible glial IL-1beta expression. These studies reveal that IL-1beta is expressed specifically by microglia during the early response to excitotoxicity in the adult rat cortex and striatum. However, the widespread and delayed IL-1beta expression by astrocytes suggests diverse roles for IL-1beta in response to excitotoxicity. PMID:10028914

  19. Autoimmune Responses to Brain Following Stroke

    OpenAIRE

    Becker, Kyra

    2012-01-01

    This review provides a synthesis of the work done by our laboratory that demonstrates the presence of cellular immune responses directed towards brain antigens in animals following experimental stroke as well as in patients following ischemic stroke. These responses include both antigenspecific Th1(+) responses, which are associated with worse stroke outcome, and antigen-specific Treg responses, which are associated with better stroke outcome. The likelihood of developing a detrimental Th1(+)...

  20. Effect of prolonged 5-hydroxytryptamine uptake inhibition by paroxetine on cortical. beta. sub 1 and. beta. sub 2 -adrenoceptors in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, D.R.; Palmer, K.J.; Johnson, A.M. (SmithKline Beecham Pharmaceuticals, Essex (England))

    1990-01-01

    The effects of prolonged oral administration of the antidepressants paroxetine and amitriptyline on rat brain cortical {beta}{sub 1}- and {beta}{sub 2}-adrenoceptor numbers and affinities were investigated using ({sup 3}H)-CGP 12177. Although amitriptyline, 27 mg/kg, caused a significant 20% reduction in the number of {beta}{sub 1}-adrenoceptors, paroxetine, at does up to 8.9 mg/kg p.o., did not influence binding of ({sup 3}H)-CGP 12177 to cortical {beta}{sub 1}- or {beta}{sub 2}-adrenoceptors. This study with paroxetine provides further evidence that the down-regulation of central {beta}{sub 1}-adrenoceptors in rat brain after repeated administration is not a property of all antidepressant drugs.

  1. Corporative social responsibility: a case study in the beta company

    OpenAIRE

    Andréa Cristina Trierweiller; Débora Spenassato; Blênio César Severo Peixe; Ramonn Santos Tomaz; Antonio Cezar Bornia; Rafael Tezza; Silvana Ligia Vincenzi Bortolotti

    2013-01-01

    The Production Engineering addresses concerns related to sustainable development considering the technology, management models for organizations and their stakeholders. This article aims to analyze the perception of employees Beta Innovation in Engineering Ltda. regarding to the actions of the Corporate Social Responsibility. The items elaboration was based on the Social Responsibility dimensions from Araújo (2006), and the focus group technic conducted to assist the preparation of items, con...

  2. Protective Effects of Beta Glucan and Gliclazide on Brain Tissue and Sciatic Nerve of Diabetic Rats Induced by Streptozosin

    OpenAIRE

    Alp, Harun; Varol, Sefer; Celik, Muhammet Murat; Altas, Murat; Evliyaoglu, Osman; Tokgoz, Orhan; Tanrıverdi, Mehmet Halis; Uzar, Ertugrul

    2012-01-01

    There have not been yet enough studies about effects of beta glucan and gliclazide on oxidative stress created by streptozotocin in the brain and sciatic nerve of diabetic rats. The aim of this paper was to investigate the antioxidant effects of gliclazide and beta glucan on oxidative stress and lipid peroxidation created by streptozotosin in brain and sciatic nerve. Total of 42 rats were divided into 6 groups including control, diabetic untreated (DM) (only STZ, diabetic), STZ (DM) + beta gl...

  3. [2,4-13 C2 ]-beta-Hydroxybutyrate metabolism in human brain.

    Science.gov (United States)

    Pan, Jullie W; de Graaf, Robin A; Petersen, Kitt F; Shulman, Gerald I; Hetherington, Hoby P; Rothman, Douglas L

    2002-07-01

    Infusions of [2,4-13C2]-beta-hydroxybutyrate and 1H-13C polarization transfer spectroscopy were used in normal human subjects to detect the entry and metabolism of beta-hydroxybutyrate in the brain. During the 2-hour infusion study, 13C label was detectable in the beta-hydroxybutyrate resonance positions and in the amino acid pools of glutamate, glutamine, and aspartate. With a plasma concentration of 2.25 +/- 0.24 mmol/L (four volunteers), the apparent tissue beta-hydroxybutyrate concentration reached 0.18 +/- 0.06 mmol/L during the last 20 minutes of the study. The relative fractional enrichment of 13C-4-glutamate labeling was 6.78 +/- 1.71%, whereas 13C-4-glutamine was 5.68 +/- 1.84%. Steady-state modeling of the 13C label distribution in glutamate and glutamine suggests that, under these conditions, the consumption of the beta-hydroxybutyrate is predominantly neuronal, used at a rate of 0.032 +/- 0.009 mmol. kg-1. min-1, and accounts for 6.4 +/- 1.6% of total acetyl coenzyme A oxidation. These results are consistent with minimal accumulation of cerebral ketones with rapid utilization, implying blood-brain barrier control of ketone oxidation in the nonfasted adult human brain. PMID:12142574

  4. Beta-cell mitochondrial carriers and the diabetogenic stress response.

    Science.gov (United States)

    Brun, Thierry; Maechler, Pierre

    2016-10-01

    Mitochondria play a central role in pancreatic beta-cells by coupling metabolism of the secretagogue glucose to distal events of regulated insulin exocytosis. This process requires transports of both metabolites and nucleotides in and out of the mitochondria. The molecular identification of mitochondrial carriers and their respective contribution to beta-cell function have been uncovered only recently. In type 2 diabetes, mitochondrial dysfunction is an early event and may precipitate beta-cell loss. Under diabetogenic conditions, characterized by glucotoxicity and lipotoxicity, the expression profile of mitochondrial carriers is selectively modified. This review describes the role of mitochondrial carriers in beta-cells and the selective changes in response to glucolipotoxicity. In particular, we discuss the importance of the transfer of metabolites (pyruvate, citrate, malate, and glutamate) and nucleotides (ATP, NADH, NADPH) for beta-cell function and dysfunction. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou. PMID:26979549

  5. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, S.V.; Changeux, J.P.; Granon, S. [Unite de Neurobiologie Integrative du Systeme Cholinergique, URA CNRS 2182, Institut Pasteur, Departement de Neuroscience, 25 rue du Dr Roux, 75015 Paris (France); Amadon, A.; Giacomini, E.; Le Bihan, D. [Service Hospitalier Frederic Joliot, 4 place du general Leclerc, 91400 Orsay (France); Wiklund, A. [Section of Anaesthesiology and Intensive Care Medicine, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm (Sweden)

    2009-07-01

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity {beta}2-containing nicotinic receptors ({beta}2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the {beta}2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and {beta}2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, {beta}2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via {alpha}7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on {beta}2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  6. Category-specific visual responses: an intracranial study comparing gamma, beta, alpha and ERP response selectivity

    Directory of Open Access Journals (Sweden)

    Juan R Vidal

    2010-11-01

    Full Text Available The specificity of neural responses to visual objects is a major topic in visual neuroscience. In humans, functional magnetic resonance imaging (fMRI studies have identified several regions of the occipital and temporal lobe that appear specific to faces, letter-strings, scenes, or tools. Direct electrophysiological recordings in the visual cortical areas of epileptic patients have largely confirmed this modular organization, using either single-neuron peri-stimulus time-histogram or intracerebral event-related potentials (iERP. In parallel, a new research stream has emerged using high-frequency gamma-band activity (50-150 Hz (GBR and low-frequency alpha/beta activity (8-24 Hz (ABR to map functional networks in humans. An obvious question is now whether the functional organization of the visual cortex revealed by fMRI, ERP, GBR, and ABR coincide. We used direct intracerebral recordings in 18 epileptic patients to directly compare GBR, ABR, and ERP elicited by the presentation of seven major visual object categories (faces, scenes, houses, consonants, pseudowords, tools, and animals, in relation to previous fMRI studies. Remarkably both GBR and iERP showed strong category-specificity that was in many cases sufficient to infer stimulus object category from the neural response at single-trial level. However, we also found a strong discrepancy between the selectivity of GBR, ABR, and ERP with less than 10% of spatial overlap between sites eliciting the same category-specificity. Overall, we found that selective neural responses to visual objects were broadly distributed in the brain with a prominent spatial cluster located in the posterior temporal cortex. Moreover, the different neural markers (GBR, ABR, and iERP that elicit selectivity towards specific visual object categories present little spatial overlap suggesting that the information content of each marker can uniquely characterize high-level visual information in the brain.

  7. Role of beta adrenoceptors in the hypertrophic response to thyroxine

    International Nuclear Information System (INIS)

    The ability of beta-adrenoceptor blockade to reduce the hypertrophic response to thyroxine (T4, 0.5 mg/kg per day, s.c.) was tested in New Zealand white rabbits. Two beta-adrenergic blocking agents, one a full antagonist (propranolol, 9.6 mg/kg per day) and the other a partial agonist (pindolol, 0.96 mg/kg per day) were administered in combination with T4 in an effort to reduce myocardial hypertrophy. A 3 and 16 day group were generated to test the time course of the hypertrophic and receptor responses. Coronary blood flow was measured using radioactive microspheres, and beta-adrenoceptor number and affinity were measured using 125I(-) pindolol as the radioligand. T4 increased coronary blood flow to 1.95 times control values in the 3 day group and 2.2 times control levels in the 16 day group; beta-adrenoceptor number was increased similarly in 3 and 16 day groups to 1.9 times control Bmax levels. Heart weight (HW) to body weight (BW) ratios were significantly increased in only the 16 day group to 1.22 and 1.61 times control, respectively. Treatment with propranolol + T4 blunted the coronary blood flow increase, but receptor upregulation occurred to the same extent as with either substance alone. The HW/BW was increased to 1.49 times control. Pindolol + T4 did not decrease coronary blood flow but blocked beta-adrenoceptor upregulation. The HW was reduced to control levels and the HW/BW ratio was 1.40 times control and significantly decreased from T4 alone. Thus, pindolol was effective in reducing the hypertrophic response to T4, whereas propranolol was only moderately effective in doing so

  8. {beta}-adrenergic receptor density and adenylate cyclase activity in lead-exposed rat brain after cessation of lead exposure

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Huoy-Rou [I-Shou University, Department of Biomedical Engineering, Dashu Shiang, Kaohsiung County (Taiwan); Tsao, Der-An [Fooyin University of Technology, Department of Medical Technology (Taiwan); Yu, Hsin-Su [Taiwan University, Department of Dermatology, College of Medicine (Taiwan); Ho, Chi-Kung [Kaohsiung Medical University, Occupational Medicine (Taiwan); Kaohsiung Medical University, Graduate Institute of Medicine, Research Center for Occupational Disease (Taiwan)

    2005-01-01

    To understanding the reversible or irreversible harm to the {beta}-adrenergic system in the brain of lead-exposed rats, this study sets up an animal model to estimate the change in the sympathetic nervous system of brain after lead exposure was withdrawn. We address the following topics in this study: (a) the relationship between withdrawal time of lead exposure and brain {beta}-adrenergic receptor, blood lead level, and brain lead level in lead-exposed rats after lead exposure was stopped; and (b) the relationship between lead level and {beta}-adrenergic receptor and cyclic AMP (c-AMP) in brain. Wistar rats were chronically fed with 2% lead acetate and water for 2 months. Radioligand binding was assayed by a method that fulfilled strict criteria of {beta}-adrenergic receptor using the ligand [{sup 125}I]iodocyanopindolol. The levels of lead were determined by electrothermal atomic absorption spectrometry. The c-AMP level was determined by radioimmunoassay. The results showed a close relationship between decreasing lead levels and increasing numbers of brain {beta}-adrenergic receptors and brain adenylate cyclase activity after lead exposure was withdrawn. The effect of lead exposure on the {beta}-adrenergic system of the brain is a partly reversible condition. (orig.)

  9. Predictive timing functions of cortical beta oscillations are impaired in Parkinson's disease and influenced by L-DOPA and deep brain stimulation of the subthalamic nucleus

    Directory of Open Access Journals (Sweden)

    A. Gulberti

    2015-01-01

    Full Text Available Cortex-basal ganglia circuits participate in motor timing and temporal perception, and are important for the dynamic configuration of sensorimotor networks in response to exogenous demands. In Parkinson's disease (PD patients, rhythmic auditory stimulation (RAS induces motor performance benefits. Hitherto, little is known concerning contributions of the basal ganglia to sensory facilitation and cortical responses to RAS in PD. Therefore, we conducted an EEG study in 12 PD patients before and after surgery for subthalamic nucleus deep brain stimulation (STN-DBS and in 12 age-matched controls. Here we investigated the effects of levodopa and STN-DBS on resting-state EEG and on the cortical-response profile to slow and fast RAS in a passive-listening paradigm focusing on beta-band oscillations, which are important for auditory–motor coupling. The beta-modulation profile to RAS in healthy participants was characterized by local peaks preceding and following auditory stimuli. In PD patients RAS failed to induce pre-stimulus beta increases. The absence of pre-stimulus beta-band modulation may contribute to impaired rhythm perception in PD. Moreover, post-stimulus beta-band responses were highly abnormal during fast RAS in PD patients. Treatment with levodopa and STN-DBS reinstated a post-stimulus beta-modulation profile similar to controls, while STN-DBS reduced beta-band power in the resting-state. The treatment-sensitivity of beta oscillations suggests that STN-DBS may specifically improve timekeeping functions of cortical beta oscillations during fast auditory pacing.

  10. Nuclear responses for neutrinos and neutrino studies by double beta decays and inverse beta decays

    Indian Academy of Sciences (India)

    H Ejiri

    2001-08-01

    This is a brief report on recent studies of nuclear responses for neutrinos () by charge exchange reactions, masses by double beta () decays and of solar and supernova ’s by inverse decays. Subjects discussed include (1) studies in nuclear micro-laboratories, (2) masses studied by decays of 100Mo and nuclear responses for -, (3) solar and supernova ’s by inverse decays and responses for 71Ga and 100Mo, and (4) MOON (molybdenum observatory of neutrinos) for spectroscopic studies of Majorana masses with sensitivity of ∼ 0.03 eV by decays of 100Mo and real-time studies of low energy solar and supernova ’s by inverse decays of 100Mo.

  11. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus

    OpenAIRE

    Dirk De Ridder, Elsa van der Loo, Karolien Van der Kelen, Tomas Menovsky, Paul van de Heyning, Aage Moller

    2007-01-01

    Introduction: Some forms of tinnitus are considered to be auditory phantom phenomena related to reorganization and hyperactivity of the auditory central nervous system. Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive tool capable of modulating human brain activity, using single pulse or burst stimuli. Burst rTMS has only been performed in the theta range, and has not been used clinically. The authors analyze whether burst TMS at theta (5 Hz), alpha (10 Hz) and beta (20 H...

  12. Auditory brain-stem responses in syphilis.

    OpenAIRE

    Rosenhall, U; Roupe, G

    1981-01-01

    Analysis of auditory brain-stem electrical responses (BSER) provides an effective means of detecting lesions in the auditory pathways. In the present study the wave patterns were analysed in 11 patients with secondary or latent syphilis with no clinical symptoms referrable to the central nervous system and in two patients with congenital syphilis and general paralysis. Decreased amplitudes and prolonged latencies occurred frequently in patients with secondary and with advanced syphilis. This ...

  13. BRAIN STEM EVOKED RESPONSE AUDIOMETRY A REVIEW

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2015-01-01

    Full Text Available Brain stem evoked response audiometry (BERA is a useful objective assessment of hearing. Major advantage of this procedure is its ability to test even infants in whom conventional audiometry may not be useful. This investigation can be used as a screening test for deafness in high risk infants. Early diagnosis and rehabilitation will reduce disability in these children. This article attempts to review the published literature on this subject.

  14. Corporative social responsibility: a case study in the beta company

    Directory of Open Access Journals (Sweden)

    Andréa Cristina Trierweiller

    2013-11-01

    Full Text Available The Production Engineering addresses concerns related to sustainable development considering the technology, management models for organizations and their stakeholders. This article aims to analyze the perception of employees Beta Innovation in Engineering Ltda. regarding to the actions of the Corporate Social Responsibility. The items elaboration was based on the Social Responsibility dimensions from Araújo (2006, and the focus group technic conducted to assist the preparation of items, configuring the qualitative phase of the research. The quantitative phase is related to the response categories which used a Likert scale, and presented the results through percentages, means and confidence intervals. The higher mean was obtained to the item "actions and business of the company are guided by ethics". The employees' evaluation regarding their participation as volunteers obtained the lowest mean. We suggest a continuous relationship with employees through an appropriate communication plan, and the participation of other stakeholders in future surveys.

  15. PET imaging of dopamine transporters in the human brain using [{sup 11}C]-{beta}-CPPIT, a cocaine derivative lacking the 2{beta}-ester function

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbaechler, Roland D.; Gucker, Pascale M.; Arigoni, Michele; Kneifel, Stefan; Vollenweider, Franz X.; Buck, Alfred; Burger, Cyrill; Berthold, Thomas; Bruehlmeier, Matthias; Schubiger, P. August; Ametamey, Simon M. E-mail: simon-mensah.ametamey@psi.ch

    2002-01-01

    The compound 3{beta}-(4'-chlorophenyl)-2{beta}-(3'-phenylisoxazol-5'-yl)tropane (CPPIT or RTI 177) is a 2{beta}-heterocyclic substituted cocaine congener with high in vitro selectivity and affinity for the dopamine transporter relative to serotonin and norepinephrine transporters. The aim of the present study was to evaluate the in vivo selectivity of [{sup 11}C]-{beta}-CPPIT and to determine whether [{sup 11}C]-{beta}-CPPIT may be a suitable alternative to existing DAT PET radioligands. [{sup 11}C]-{beta}-CPPIT was prepared by N-alkylation of the free amine with [{sup 11}C]methyl iodide. In mouse brain, the striatal binding of [{sup 11}C]-{beta}-CPPIT was reduced significantly by preinjecting the dopamine reuptake antagonist GBR 12909 (5 mg/kg). By contrast, radioactivity uptake in the brain was not affected significantly by the preinjection of citalopram (5 mg/kg) and desipramine (5 mg/kg), inhibitors for the serotonin and norepinephrine transporters, respectively. No effect was also observed by pretreatment with ketanserin (2.5 mg/kg) a compound with high affinity for the 5-HT{sub 2A}-receptor and the vesicular monoamine transporter. In a PET study with six healthy volunteers high striatal uptake was observed. The distribution pattern of [{sup 11}C]-{beta}-CPPIT was similar to the known distribution of the dopamine transporter in the human brain. Compared to {sup 123}I labeled {beta}-CIT, the rate of metabolic degradation of [{sup 11}C]-{beta}-CPPIT was almost twofold slower suggesting that bioisosteric heterocyclic substitution of the ester group at the 2{beta}-position of the tropane ring does have an influence on the rate of metabolism of [{sup 11}C]-{beta}-CPPIT. The rank order of the distribution volumes obtained via the one-tissue compartment model is also similar to the reported distribution of DAT. These preliminary results suggest that [{sup 11}C]-{beta}-CPPIT may be a useful PET radioligand for the visualization and quantification of

  16. Detection of Alzheimer’s disease amyloid-beta plaque deposition by deep brain impedance profiling

    Science.gov (United States)

    Béduer, Amélie; Joris, Pierre; Mosser, Sébastien; Fraering, Patrick C.; Renaud, Philippe

    2015-04-01

    Objective. Alzheimer disease (AD) is the most common form of neurodegenerative disease in elderly people. Toxic brain amyloid-beta (Aß) aggregates and ensuing cell death are believed to play a central role in the pathogenesis of the disease. In this study, we investigated if we could monitor the presence of these aggregates by performing in situ electrical impedance spectroscopy measurements in AD model mice brains. Approach. In this study, electrical impedance spectroscopy measurements were performed post-mortem in APPPS1 transgenic mice brains. This transgenic model is commonly used to study amyloidogenesis, a pathological hallmark of AD. We used flexible probes with embedded micrometric electrodes array to demonstrate the feasibility of detecting senile plaques composed of Aß peptides by localized impedance measurements. Main results. We particularly focused on deep brain structures, such as the hippocampus. Ex vivo experiments using brains from young and old APPPS1 mice lead us to show that impedance measurements clearly correlate with the percentage of Aβ plaque load in the brain tissues. We could monitor the effects of aging in the AD APPPS1 mice model. Significance. We demonstrated that a localized electrical impedance measurement constitutes a valuable technique to monitor the presence of Aβ-plaques, which is complementary with existing imaging techniques. This method does not require prior Aβ staining, precluding the risk of variations in tissue uptake of dyes or tracers, and consequently ensuring reproducible data collection.

  17. Visfatin induces sickness responses in the brain.

    Directory of Open Access Journals (Sweden)

    Byong Seo Park

    Full Text Available BACKGROUND/OBJECTIVE: Visfatin, also known as nicotiamide phosphoribosyltransferase or pre-B cell colony enhancing factor, is a pro-inflammatory cytokine whose serum level is increased in sepsis and cancer as well as in obesity. Here we report a pro-inflammatory role of visfatin in the brain, to mediate sickness responses including anorexia, hyperthermia and hypoactivity. METHODOLOGY: Rats were intracerebroventricularly (ICV injected with visfatin, and changes in food intake, body weight, body temperature and locomotor activity were monitored. Real-time PCR was applied to determine the expressions of pro-inflammatory cytokines, proopiomelanocortin (POMC and prostaglandin-synthesizing enzymes in their brain. To determine the roles of cyclooxygenase (COX and melanocortin in the visfatin action, rats were ICV-injected with visfatin with or without SHU9119, a melanocortin receptor antagonist, or indomethacin, a COX inhibitor, and their sickness behaviors were evaluated. PRINCIPAL FINDINGS: Administration of visfatin decreased food intake, body weight and locomotor activity and increased body temperature. Visfatin evoked significant increases in the levels of pro-inflammatory cytokines, prostaglandin-synthesizing enzymes and POMC, an anorexigenic neuropeptide. Indomethacin attenuated the effects of visfatin on hyperthermia and hypoactivity, but not anorexia. Further, SHU9119 blocked visfatin-induced anorexia but did not affect hyperthermia or hypoactivity. CONCLUSIONS: Visfatin induced sickness responses via regulation of COX and the melanocortin pathway in the brain.

  18. The effect of beta-turn structure on the permeation of peptides across monolayers of bovine brain microvessel endothelial cells

    DEFF Research Database (Denmark)

    Sorensen, M; Steenberg, B; Knipp, G T; Wang, W; Steffansen, B; Frokjaer, S; Borchardt, R T

    1997-01-01

    PURPOSE: To investigate the effects of the beta-turn structure of a peptide on its permeation via the paracellular and transcellular routes across cultured bovine brain microvessel endothelial cell (BBMEC) monolayers, an in vitro model of the blood-brain barrier (BBB). METHODS: The effective perm...

  19. Brain Activity in Response to Visual Symmetry

    Directory of Open Access Journals (Sweden)

    Marco Bertamini

    2014-12-01

    Full Text Available A number of studies have explored visual symmetry processing by measuring event related potentials and neural oscillatory activity. There is a sustained posterior negativity (SPN related to the presence of symmetry. There is also functional magnetic resonance imaging (MRI activity in extrastriate visual areas and in the lateral occipital complex. We summarise the evidence by answering six questions. (1 Is there an automatic and sustained response to symmetry in visual areas? Answer: Yes, and this suggests automatic processing of symmetry. (2 Which brain areas are involved in symmetry perception? Answer: There is an extended network from extrastriate areas to higher areas. (3 Is reflection special? Answer: Reflection is the optimal stimulus for a more general regularity-sensitive network. (4 Is the response to symmetry independent of view angle? Answer: When people classify patterns as symmetrical or random, the response to symmetry is view-invariant. When people attend to other dimensions, the network responds to residual regularity in the image. (5 How are brain rhythms in the two hemispheres altered during symmetry perception? Answer: Symmetry processing (rather than presence produces more alpha desynchronization in the right posterior regions. Finally, (6 does symmetry processing produce positive affect? Answer: Not in the strongest sense, but behavioural measures reveal implicit positive evaluation of abstract symmetry.

  20. Photon and beta response of a new thermoluminescent dosimeter badge

    International Nuclear Information System (INIS)

    The Los Alamos Scientific Laboratory is in the process of converting from a film to a thermoluminescent dosimeter (TLD) badge. The new badge is made of Cycolac plastic and contains an aluminum card in which are mounted three TLD-700s and one TLD-600 LiF chips. One TLD-700 and the TLD-600 are within a cadmium filter and are used to determine the neutron exposure. The photon response of the TLD chips was measured over an energy range of 10 to 1000 keV. A TLD-700 chip, covered by a 90 mg/cm2-thick copper filter embedded in a 250 mg/cm2-thick Cycolac, was selected to measure penetrating radiation. A 60 mg/cm2-thick Cycolac filter is used to measure nonpenetrating radiation. The photon energy and angular response of the TLDs under the penetrating and nonpenetrating filters is presented. The response of the badge to beta radiation, varying in maximum energy over the range of 0.77 to 2.3 MeV, is given. Finally, the accuracy of the new TLD badge in measuring photon radiation from plutonium is discussed

  1. Preferential Transport Theory for Beta-Amyloid Clearance from the Brain

    Science.gov (United States)

    Coloma, Mikhail; Schaffer, David; Chiarot, Paul; Huang, Peter

    2015-11-01

    The failure to clear beta-amyloid from the aging brain leads to its accumulation within the walls of arteries and to Alzheimer's disease. However, the transport mechanism for beta-amyloid clearance is not well understood. In this study, we propose a preferential transport theory for flow within the vascular walls in the cerebral arterial basement membrane. The flow conduit within the arterial basement membrane is modeled as an annulus between deformable concentric cylinders filled with an incompressible, single-phase Newtonian fluid. The transport is driven by arterial lumen deformation induced by heart pulsations superimposed with reflected boundary waves. Our theory predicts that while the overall arterial wave propagation is in the same direction as the blood flow toward the capillaries, a reverse flow in the basement membrane can be preferentially induced toward larger arteries. This has been suggested as a potential clearance pathway for beta-amyloid. We estimate the magnitude of the reverse transport through a control volume analysis which is corroborated by numerical solutions of the Navier-Stokes equations. Bench-top experiments to validate our computational models are presented.

  2. Protein kinase CK2: evidence for a protein kinase CK2beta subunit fraction, devoid of the catalytic CK2alpha subunit, in mouse brain and testicles

    DEFF Research Database (Denmark)

    Guerra, B; Siemer, S; Boldyreff, B;

    1999-01-01

    The highest CK2 activity was found in mouse testicles and brain, followed by spleen, liver, lung, kidney and heart. The activity values were directly correlated with the protein expression level of the CK2 subunits alpha (catalytic) and beta (regulatory). The alpha' subunit was only detected in...... found for testicles and brain. The amount of CK2beta protein in brain in comparison to the other organs (except testicles) was estimated to be ca. 2-3-fold higher whereas the ratio of CK2beta between testicles and brain was estimated to be 3-4-fold. Results from the immunoprecipitation experiments...... support the notion for the existence of free CK2beta population and/or CK2beta in complex with other protein(s) present in brain and testicles. In all other mouse organs investigated, i.e. heart, lung, liver, kidney and spleen, no comparable amount of free CK2beta was observed. This is the first...

  3. Effects of Beta-Alanine Supplementation on Brain Homocarnosine/Carnosine Signal and Cognitive Function: An Exploratory Study

    OpenAIRE

    Marina Yazigi Solis; Simon Cooper; Hobson, Ruth M; Artioli, Guilherme G.; Otaduy, Maria C.; Hamilton Roschel; Jacques Robertson; Daniel Martin; Vitor S Painelli; Harris, Roger C; Bruno Gualano; Craig Sale

    2015-01-01

    Objectives Two independent studies were conducted to examine the effects of 28 d of beta-alanine supplementation at 6.4 g d-1 on brain homocarnosine/carnosine signal in omnivores and vegetarians (Study 1) and on cognitive function before and after exercise in trained cyclists (Study 2). Methods In Study 1, seven healthy vegetarians (3 women and 4 men) and seven age- and sex-matched omnivores undertook a brain 1H-MRS exam at baseline and after beta-alanine supplementation. In study 2, nineteen...

  4. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    Science.gov (United States)

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes. PMID:20413894

  5. Quartz luminescence response to a mixed alpha-beta field: Investigations on Romanian loess

    DEFF Research Database (Denmark)

    Constantin, Daniela; Jain, Mayank; Murray, Andrew S.; Buylaert, Jan-Pieter; Timar-Gabor, Alida

    2015-01-01

    beta radiation follow the same recombination path. We also show that a mixed alpha-beta dose response reproduces the beta dose response only up to about 800Gy. Assuming an a-value of 0.04 we have shown that laboratory alpha and beta dose response curves overlap up to effective alpha doses of ~50Gy....... Based on these results, we conclude that exposure of fine grains to alpha radiation during burial and transport cycles prior to deposition, as well exposure to the mixed radiation field experienced during burial are not responsible for the age discrepancies previously reported on fine and coarse grained......-OSL laboratory dose response curves do not reflect the growth of the OSL signal in nature. A main difference in coarse- and fine-grained quartz dating lies in the alpha irradiation history, but the effect of mixed alpha-beta fields has so far received little attention. In the present study we investigate whether...

  6. Effect of naloxone hydrochloride on c-fos protein expression in brain and plasma beta-endorphin level in rats with diffuse brain injury and secondary brain insult

    Directory of Open Access Journals (Sweden)

    Jun-jie JING

    2012-09-01

    Full Text Available Objective To observe the changes of c-fos protein expression in brain and beta-endorphin (β-EP level in blood plasma in rats with diffuse brain injury (DBI and secondary brain insult (SBI after intraperitoneal injection of naloxone hydrochloride, and explore the role of c-fos andβ-EP in development of SBI in rats. Methods Seventy health male SD rats were enrolled in the present study and randomly divided into group A (intraperitoneally injected with 0.9% saline after DBI and SBI model was reproduced, group B (injected intraperitoneally with 1.0mg/kg naloxone hydrochloride after DBI and SBI model was reproduced, and group C (intraperitoneally injected with 1.0mg/kg naloxone hydrochloride after DBI and before SBI model was reproduced. The animals were sacrificed 3, 24 and 48 hours after injury, and the number of c-fos positive cells in brain and content of β-EP in blood plasma were determined by immunohistochemistry and radioimmunoassay respectively, the water content and number of injured neurons in brain tissue were measured by pathomorphological observation of the brain tissue. Results No significant difference was observed between group B and C for all the detection parameters. In group B and C, the water content in brain tissue at 3h and 24h was found to be decreased, while the number of injured neurons at 24h and 48h increased, number of c-fos positive cells in brain at 3h, 24h and 48h decreased, and content of β-EP in blood plasma at 3h and 24h decreased when compared with group A(P < 0.05. Conclusion Naloxone hydrochloride could decrease the c-fos expression in brain and β-EP level in blood plasma, alleviate the nerve injury, and protect neural function. The therapeutic effect of naloxone administered either after DBI and SBI or after DBI and before SBI was similar.

  7. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administrated antigen

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Kjær, T.M.R.; Barkholt, Vibeke; Frøkiær, Hanne

    intraperitoneal immunization without adjuvant was measured, and oral tolerance induction against beta-LG after administration of either an aqueous solution or water-in-oil (w/o) emulsion of beta-LG was evaluated. RESULTS: LPS contamination of beta-LG provoked a beta-LG-specific IgG2a response, as well as an......-LG was contaminated with LPS. CONCLUSIONS: LPS contamination of an aqueous protein solution does not affect oral tolerance induction, whereas LPS present in emulsion prevents oral tolerance induction towards the food protein.......'s milk. It is not well established, however, how this presence of LPS affects oral tolerance induction. METHODS: We studied the effect of LPS contamination in a commercial preparation of the cow milk protein beta-lactoglobulin (beta-LG) on antigen-specific immune responses. IgG1/IgG2a production upon...

  8. The beta-neurexin-neuroligin link is essential for quantum brain dynamics

    CERN Document Server

    Georgiev, D D

    2002-01-01

    There are many blank areas in understanding the brain dynamics and especially how it gives rise to conscious experience. Quantum mechanics is believed to be capable of explaining the enigma of consciousness, however till now there is not good enough model considering both the data from clinical neurology and having some explanatory power! In this paper is presented a novel model in defense of macroscopic quantum events within and between neural cells. The beta-neurexin-neuroligin link is claimed to be not just the core of the central neural synapse, instead it is a device mediating entanglement between the cytoskeletons of the cortical neurons. The neurexin is also participating in the process of exocytosis through quantum tunneling. The gap junction tunneling supposed by Stuart Hameroff is shown to be incapable of sustaining quantum coherence between neurons for the needed 25 milliseconds. The possible role of DLBs, mitochondria and different types of glia in conscious experience is rationally criticized.

  9. Diffusion Based Modeling of Human Brain Response to External Stimuli

    CERN Document Server

    Namazi, Hamidreza

    2012-01-01

    Human brain response is the overall ability of the brain in analyzing internal and external stimuli in the form of transferred energy to the mind/brain phase-space and thus, making the proper decisions. During the last decade scientists discovered about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research there was less effort which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling of human EEG signal, as an alert state of overall human brain activity monitoring, due to receiving external stimuli, based on fractional diffusion equation. The results of this modeling show very good agreement with the real human EEG signal and thus, this model can be used as a strong representative of the human brain activity.

  10. Effects of beta radiation from organically bound tritium on cultured mouse embryonic mid brain cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bing [Univ. of Tokyo (Japan)]|[Toho Univ. School of Medicine, Tokyo (Japan); Watanabe, Keiko; Yamada, Takeshi [Toho Univ. School of Medicine, Tokyo (Japan); Shima, Akihiro [Univ. of Tokyo (Japan)

    1996-12-01

    Effects of beta radiation from four kinds of organically bound tritium compounds were investigated on cultured mouse embryonic mid brain cells, isolated form 11-d-old mouse embryos. The MBC showed a critical time when they were more radiosensitive. Although dose-dependent inhibition was found for both cellular proliferation and differentiation. the differential was more sensitive to radiation than proliferation when compared at ID50, the inhibitory dose that reduced assessment value by 50% of the control. Dose-dependent decrease of DNA and protein contents were also observed. The relative biological effectiveness values, ranging from 4.6 to 8.7, of beta ray from organically bound tritium compounds were obtained when compared with x irradiation at their ID50s on the inhibition of cell proliferation and differentiation, and on the decrease of DNA and protein contents of the cultures. Th mixed exposure to x ray and one kind of organically bound tritium compound or to any two kinds of organically bound tritium compound resulted in a more efficiently inhibitory effect on differentiation than the exposure to x ray or to any one kind of organically bound tritium compound d alone, especially when methyl-{sup 3}H-thymidine was used. Doses as low as 0.05 Gy (5 cGy) from a mixed exposure resulted in detectable inhibitory effects. 21 refs., 4 figs., 1 tab.

  11. Effects of beta radiation from organically bound tritium on cultured mouse embryonic mid brain cells

    International Nuclear Information System (INIS)

    Effects of beta radiation from four kinds of organically bound tritium compounds were investigated on cultured mouse embryonic mid brain cells, isolated form 11-d-old mouse embryos. The MBC showed a critical time when they were more radiosensitive. Although dose-dependent inhibition was found for both cellular proliferation and differentiation. the differential was more sensitive to radiation than proliferation when compared at ID50, the inhibitory dose that reduced assessment value by 50% of the control. Dose-dependent decrease of DNA and protein contents were also observed. The relative biological effectiveness values, ranging from 4.6 to 8.7, of beta ray from organically bound tritium compounds were obtained when compared with x irradiation at their ID50s on the inhibition of cell proliferation and differentiation, and on the decrease of DNA and protein contents of the cultures. Th mixed exposure to x ray and one kind of organically bound tritium compound or to any two kinds of organically bound tritium compound resulted in a more efficiently inhibitory effect on differentiation than the exposure to x ray or to any one kind of organically bound tritium compound d alone, especially when methyl-3H-thymidine was used. Doses as low as 0.05 Gy (5 cGy) from a mixed exposure resulted in detectable inhibitory effects. 21 refs., 4 figs., 1 tab

  12. Deficiency of Calcium-Independent Phospholipase A2 Beta Induces Brain Iron Accumulation through Upregulation of Divalent Metal Transporter 1

    OpenAIRE

    Goichi Beck; Koei Shinzawa; Hideki Hayakawa; Kousuke Baba; Toru Yasuda; Hisae Sumi-Akamaru; Yoshihide Tsujimoto; Hideki Mochizuki

    2015-01-01

    Mutations in PLA2G6 have been proposed to be the cause of neurodegeneration with brain iron accumulation type 2. The present study aimed to clarify the mechanism underlying brain iron accumulation during the deficiency of calcium-independent phospholipase A2 beta (iPLA2β), which is encoded by the PLA2G6 gene. Perl's staining with diaminobenzidine enhancement was used to visualize brain iron accumulation. Western blotting was used to investigate the expression of molecules involved in iron hom...

  13. Support Network Responses to Acquired Brain Injury

    Science.gov (United States)

    Chleboun, Steffany; Hux, Karen

    2011-01-01

    Acquired brain injury (ABI) affects social relationships; however, the ways social and support networks change and evolve as a result of brain injury is not well understood. This study explored ways in which survivors of ABI and members of their support networks perceive relationship changes as recovery extends into the long-term stage. Two…

  14. Theta, alpha and beta burst transcranial magnetic stimulation: brain modulation in tinnitus

    Directory of Open Access Journals (Sweden)

    Dirk De Ridder, Elsa van der Loo, Karolien Van der Kelen, Tomas Menovsky, Paul van de Heyning, Aage Moller

    2007-01-01

    Full Text Available Introduction: Some forms of tinnitus are considered to be auditory phantom phenomena related to reorganization and hyperactivity of the auditory central nervous system. Repetitive transcranial magnetic stimulation (rTMS is a non-invasive tool capable of modulating human brain activity, using single pulse or burst stimuli. Burst rTMS has only been performed in the theta range, and has not been used clinically. The authors analyze whether burst TMS at theta (5 Hz, alpha (10 Hz and beta (20 Hz frequencies can temporarily suppress narrow band noise/white noise tinnitus, which has been demonstrated to be intractable to tonic stimulation. Methods: rTMS is performed both in tonic and burst mode in 46 patients contralateral to the tinnitus side, at 5, 10 and 20 Hz. Fourteen placebo negative rTMS responders are further analyzed. Results: In 5 patients, maximal tinnitus suppression is obtained with theta, in 2 with alpha and in 7 with beta burst stimulation. Burst rTMS suppresses narrow band/white tinnitus much better than tonic rTMS t(13=6.4, p<.000. Women experience greater suppression of their tinnitus with burst stimulation than men, t(12=2.9, p<.05. Furthermore left sided tinnitus is perceived as more distressing on the TQ than right sided tinnitus, t(12=3.2, p<.01. The lower the tinnitus pitch the more effectively rTMS suppresses tinnitus(r=-0.65, p<0.05. Discussion: Burst rTMS can be used clinically, not only theta burst, but also alpha and beta burst. Burst rTMS is capable of suppressing narrow band/white noise tinnitus very much better than tonic rTMS. This could be due the simple fact that burst neuromodulation is more powerful than tonic neuromodulation or to a differential effect of burst and tonic stimulation on the lemniscal and extralemniscal auditory system. In some patients only alpha or beta burst rTMS is capable of suppressing tinnitus, and theta burst not. Therefore in future rTMS studies it could be worthwhile not to limit burst

  15. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administered antigen

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Kjær, T.M.R.; Barkholt, Vibeke; Frøkiær, Hanne

    2004-01-01

    intraperitoneal immunization without adjuvant was measured, and oral tolerance induction against beta-LG after administration of either an aqueous solution or water-in-oil (w/o) emulsion of beta-LG was evaluated. Results: LPS contamination of beta-LG provoked a beta-LG-specific IgG2a lresponse, as well as an......-LG was contaminated with LPS. Conclusions: LPS contamination of an aqueous protein solution does not affect oral tolerance induction, whereas LPS present in emulsion prevents oral tolerance induction towards the food protein.......'s milk. It is not well established, however, how this presence of LPS affects oral tolerance induction. Methods: We studied the effect of LPS contamination in a commercial preparation of the cow milk protein beta-lactoglobulin (beta-LG) on antigen-specific immune responses. IgG1/IgG2a production upon...

  16. BEGe detector response to alpha and beta-radiation near its p{sup +} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Agostini, Matteo; Barnabe-Heider, Marik; Budjas, Dusan; Schoenert, Stefan [Technische Universitaet Muenchen (Germany); Collaboration: GERDA-Collaboration

    2012-07-01

    In Phase II of the GERDA (Germanium Detector Array) experiment Broad Energy Germanium (BEGe) detectors will continue the search for the neutrinoless double beta decay (0{nu}{beta}{beta}) of {sup 76}Ge. The main feature of these detectors is their small p{sup +} electrode used for signal read-out. Due to the thin dead layer of the p{sup +} contact, surface events close to this electrode represent a potential background for the search of 0{nu}{beta}{beta}. A study was conducted to determine the response of the detector to alpha and beta-radiation using movable collimated sources within a custom-build cryostat. Preliminary results of this study and a possible method to discriminate these events will be presented.

  17. The effects of beta2 adrenoceptor gene polymorphisms on pressor response during laryngoscopy and tracheal intubation.

    Science.gov (United States)

    Kim, N-S; Lee, I-O; Lee, M-K; Lim, S-H; Choi, Y-S; Kong, M-H

    2002-03-01

    We investigated whether human beta2 adrenoceptor (beta2AR) gene polymorphisms are associated with the pressor response to laryngoscopy and tracheal intubation. Ninety-two patients undergoing elective surgery under general anaesthesia were enrolled into this study. Arterial systolic pressure, heart rate and rate pressure product were measured before induction of anaesthesia and 1 min following laryngoscopy and tracheal intubation. Genomic DNA was then used to identify the beta2AR-16 and beta2AR-27 genes using an allele-specific polymerase chain reaction method. Using multiple linear regression models, controlling for age, sex, weight, baseline blood pressure, heart rate and rate pressure product, we found that patients who possessed the glutamic acid homozygote of beta2AR-27 produced significantly greater changes in mean arterial pressure and rate pressure products than patients with the glutamine homozygote of beta2AR-27 (beta coefficient for mean blood pressure = 11.81, beta coefficient for pulse-pressure product = 8.76, both p-values = 0.023). These findings suggest that genetic variability in the human beta2AR gene polymorphisms may be associated with the pressor response to laryngoscopy and tracheal intubation. PMID:11879211

  18. Functional MRI of food-induced brain responses

    OpenAIRE

    Smeets, P.A.M.

    2006-01-01

    The ultimate goal of this research was to find central biomarkers of satiety, i.e., physiological measures in the brain that relate to subjectively rated appetite, actual food intake, or both. This thesis describes the changes in brain activity in response to food stimuli as measured by functional MRI, with a focus on the hypothalamus. The hypothalamus is a brain area of particular interest because of its central role in the regulation of food intake. Two earlier studies showed that one long ...

  19. Brain Responses Differ to Faces of Mothers and Fathers

    Science.gov (United States)

    Arsalidou, Marie; Barbeau, Emmanuel J.; Bayless, Sarah J.; Taylor, Margot J.

    2010-01-01

    We encounter many faces each day but relatively few are personally familiar. Once faces are familiar, they evoke semantic and social information known about the person. Neuroimaging studies demonstrate differential brain activity to familiar and non-familiar faces; however, brain responses related to personally familiar faces have been more rarely…

  20. Benevolent sexism alters executive brain responses.

    Science.gov (United States)

    Dardenne, Benoit; Dumont, Muriel; Sarlet, Marie; Phillips, Christophe; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Salmon, Eric; Maquet, Pierre; Collette, Fabienne

    2013-07-10

    Benevolence is widespread in our societies. It is defined as considering a subordinate group nicely but condescendingly, that is, with charity. Deleterious consequences for the target have been reported in the literature. In this experiment, we used functional MRI (fMRI) to identify whether being the target of (sexist) benevolence induces changes in brain activity associated with a working memory task. Participants were confronted by benevolent, hostile, or neutral comments before and while performing a reading span test in an fMRI environment. fMRI data showed that brain regions associated previously with intrusive thought suppression (bilateral, dorsolateral, prefrontal, and anterior cingulate cortex) reacted specifically to benevolent sexism compared with hostile sexism and neutral conditions during the performance of the task. These findings indicate that, despite being subjectively positive, benevolence modifies task-related brain networks by recruiting supplementary areas likely to impede optimal cognitive performance. PMID:23660680

  1. Fourteen. beta. -(bromoacetamido)morphine irreversibly labels. mu. opioid receptors in rat brain membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.; Archer, S. (Univ. of Rochester School of Medicine and Dentistry, NY (USA))

    1989-05-16

    The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){sup 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.

  2. Brain response abnormalities during verbal learning among patients with schizophrenia

    OpenAIRE

    Eyler, Lisa T; Jeste, Dilip V.; Brown, Gregory G.

    2007-01-01

    Patients with schizophrenia often show verbal learning deficits that have been linked to the pathophysiology of the disorder and result in functional impairment. This study examined the biological basis of these deficits by comparing the brain response of patients with schizophrenia (n=17) to that of healthy comparison participants (n=14) during a verbal paired-associates learning task using functional magnetic resonance imaging (fMRI). Brain response during new word learning was examined wit...

  3. A wireless beta-microprobe based on pixelated silicon for in vivo brain studies in freely moving rats

    Science.gov (United States)

    Märk, J.; Benoit, D.; Balasse, L.; Benoit, M.; Clémens, J. C.; Fieux, S.; Fougeron, D.; Graber-Bolis, J.; Janvier, B.; Jevaud, M.; Genoux, A.; Gisquet-Verrier, P.; Menouni, M.; Pain, F.; Pinot, L.; Tourvielle, C.; Zimmer, L.; Morel, C.; Laniece, P.

    2013-07-01

    The investigation of neurophysiological mechanisms underlying the functional specificity of brain regions requires the development of technologies that are well adjusted to in vivo studies in small animals. An exciting challenge remains the combination of brain imaging and behavioural studies, which associates molecular processes of neuronal communications to their related actions. A pixelated intracerebral probe (PIXSIC) presents a novel strategy using a submillimetric probe for beta+ radiotracer detection based on a pixelated silicon diode that can be stereotaxically implanted in the brain region of interest. This fully autonomous detection system permits time-resolved high sensitivity measurements of radiotracers with additional imaging features in freely moving rats. An application-specific integrated circuit (ASIC) allows for parallel signal processing of each pixel and enables the wireless operation. All components of the detector were tested and characterized. The beta+ sensitivity of the system was determined with the probe dipped into radiotracer solutions. Monte Carlo simulations served to validate the experimental values and assess the contribution of gamma noise. Preliminary implantation tests on anaesthetized rats proved PIXSIC's functionality in brain tissue. High spatial resolution allows for the visualization of radiotracer concentration in different brain regions with high temporal resolution.

  4. The Teenage Brain: The Stress Response and the Adolescent Brain

    OpenAIRE

    Romeo, Russell D.

    2013-01-01

    Adolescence is a time of many psychosocial and physiological changes. One such change is how an individual responds to stressors. Specifically, adolescence is marked by significant shifts in hypothalamic-pituitary-adrenal (HPA) axis reactivity, resulting in heightened stress-induced hormonal responses. It is presently unclear what mediates these changes in stress reactivity and what impacts they may have on an adolescent individual. However, stress-sensitive limbic and corti...

  5. Biochemical studies of mouse brain tubulin: colchicine binding (DEAE-cellulose filter) assay and subunits (. cap alpha. and. beta. ) biosynthesis and degradation (in newborn brain)

    Energy Technology Data Exchange (ETDEWEB)

    Tse, Cek-Fyne

    1978-01-01

    A DEAE-cellulose filter assay, measuring (/sup 3/H)colchicine bound to colchicine binding protein (CBP) absorbed on filter discs, has been modified to include lM sucrose in the incubation medium for complexing colchicine to CBP in samples before applying the samples to filter discs (single point assay). Due to the much greater stability of colchicine binding capacity in the presence of lM sucrose, multiple time-point assays and least squares linear regression analysis were not necessary for accurate determination of CBP in hybrid mouse brain at different stages of development. The highest concentrations of CBP were observed in the 160,000g supernatant and pellet of newborn brain homogenate. Further studies of the modified filter assay documented that the assay has an overall counting efficiency of 27.3%, that DEAE-cellulose filters bind and retain all tubulin in the assay samples, and that one molecule of colchicine binds approximately one molecule of tubulin dimer. Therefore, millimoles of colchicine bound per milligram total protein can be used to calculate tubulin content. With this technique tubulin content of brain supernatant was found to be 11.9% for newborn, and 7.15% for 11 month old mice. Quantitative densitometry was also used to measure mouse brain supernatant actin content for these two stages. In vivo synthesis and degradation rates of tubulin ..cap alpha.. and ..beta.. subunits of two day mouse brain 100,000g supernatant were studied after intracerebral injection of (/sup 3/H)leucine. Quantitative changes of the ratio of tritium specific activities of tubulin ..cap alpha.. and ..beta.. subunits with time were determined. The pattern of change was biphasic. During the first phase the ratio decreased; during the second phase the ratio increased continuously. An interpretation consistent with all the data in this study is that the ..cap alpha.. subunit is synthesized at a more rapid rate than the ..beta.. subunit. (ERB)

  6. Protective effects of beta glucan in brain tissues of post-menopausal rats: a histochemical and ultra-structural study.

    Science.gov (United States)

    Selli, Jale; Unal, Deniz; Mercantepe, Filiz; Akaras, Nurhan; Kabayel, Rabia; Unal, Bunyami; Atilay, Hilal

    2016-01-01

    Decline of estrogen during menopause has been associated with numerous significant changes that have been linked to many pathophysiological complications. In addition, ovarian hormone deficiency increases the production of reactive oxygen radicals which could result in oxidative stress and cell damage. While estrogen therapy is often considered to overcome the behavioral and physiological shortcomings, antioxidants are gaining popularity for their beneficial property. For this purpose, in the present study, utilizing the antioxidant properties of beta glucan has been examined in treatment of menopause induced oxidative stress in cerebral neurons. Four groups of female Wistar rats were used: control, ovariectomy, ovariectomy + estrogen treated and ovariectomy + beta glucan treated. We observed a significant increase in neural degeneration in ovariectomized rats as compared to controls. Moreover, increased oxidative stress in the brains of the ovariectomized rats has been detected by performing immunohistochemical analysis. A large number of immuno-positive cerebral neurons have been observed in ovariectomy group rat brains. Interestingly, providing beta glucan treatment to ovariectomized rats reduced the number of degenerated neurons. Our study is the first to examine light and electron microscopic examination and immunohistochemical and stereological analysis of estrogen depletion in rats and to test protective role of beta glucan in the experimental study. PMID:26486170

  7. Endoglin negatively regulates transforming growth factor beta1-induced profibrotic responses in intestinal fibroblasts.

    LENUS (Irish Health Repository)

    Burke, J P

    2012-02-01

    BACKGROUND: Fibroblasts isolated from strictures in Crohn\\'s disease (CD) exhibit reduced responsiveness to stimulation with transforming growth factor (TGF) beta1. TGF-beta1, acting through the smad pathway, is critical to fibroblast-mediated intestinal fibrosis. The membrane glycoprotein, endoglin, is a negative regulator of TGF-beta1. METHODS: Intestinal fibroblasts were cultured from seromuscular biopsies of patients undergoing intestinal resection for CD strictures or from control patients. Endoglin expression was assessed using confocal microscopy, flow cytometry and western blot. The effect of small interfering (si) RNA-mediated knockdown and plasmid-mediated overexpression of endoglin on fibroblast responsiveness to TGF-beta1 was assessed by examining smad phosphorylation, smad binding element (SBE) promoter activity, connective tissue growth factor (CTGF) expression and ability to contract collagen. RESULTS: Crohn\\'s stricture fibroblasts expressed increased constitutive cell-surface and whole-cell endoglin relative to control cells. Endoglin co-localized with filamentous actin. Fibroblasts treated with siRNA directed against endoglin exhibited enhanced TGF-beta1-mediated smad-3 phosphorylation, and collagen contraction. Cells transfected with an endoglin plasmid did not respond to TGF-beta1 by exhibiting SBE promoter activity or producing CTGF. CONCLUSION: Fibroblasts from strictures in CD express increased constitutive endoglin. Endoglin is a negative regulator of TGF-beta1 signalling in the intestinal fibroblast, modulating smad-3 phosphorylation, SBE promoter activity, CTGF production and collagen contraction.

  8. 5-HTTLPR differentially predicts brain network responses to emotional faces

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Grady, Cheryl L; Madsen, Martin K;

    2015-01-01

    The effects of the 5-HTTLPR polymorphism on neural responses to emotionally salient faces have been studied extensively, focusing on amygdala reactivity and amygdala-prefrontal interactions. Despite compelling evidence that emotional face paradigms engage a distributed network of brain regions...... involved in emotion, cognitive and visual processing, less is known about 5-HTTLPR effects on broader network responses. To address this, we evaluated 5-HTTLPR differences in the whole-brain response to an emotional faces paradigm including neutral, angry and fearful faces using functional magnetic...... to fearful faces was significantly greater in S' carriers compared to LA LA individuals. These findings provide novel evidence for emotion-specific 5-HTTLPR effects on the response of a distributed set of brain regions including areas responsive to emotionally salient stimuli and critical components...

  9. Effects of beta-1,3-glucan from Septoria tritici on structural defence responses in wheat

    DEFF Research Database (Denmark)

    Shetty, N.P.; Jensen, J.D.; Knudsen, A.;

    2009-01-01

    -1,3-glucanase and chitinase transcripts followed by a subsequent reduction in level. Resistance was also associated with high activity of beta-1,3-glucanase, especially in the apoplastic fluid, in accordance with the biotrophic/endophytic lifestyle of the pathogen in the apoplastic spaces, thus...... of callose. Collectively, these data indicate that resistance is dependent on a fast, initial recognition of the pathogen, probably due to beta-1,3-glucan in the fungal cell walls, and this results in the accumulation of beta-1,3-glucanase and structural defence responses, which may directly inhibit...... the pathogen and protect the host against fungal enzymes and toxins....

  10. Asymmetric Responses of CAPM - Beta to the Bull and Bear Markets on the Bucharest Stock Exchange

    OpenAIRE

    RĂZVAN ŞTEFĂNESCU; COSTEL NISTOR; RAMONA DUMITRIU

    2009-01-01

    The CAPM - beta is one of the most used tools to estimate the systematic risks associated to stock. In the last decades different behaviours of beta were revealed for the circumstances of the bull and the bear markets. This paper analyses the CAPM – beta responses for bad and good news for ten representative stocks from the Bucharest Stock Exchange. We identify the bull, the bear and the tranquil markets using a univariate kernal density function and we calculate for each stage the single and...

  11. Anti-inflammatory response of IL-4, IL-10 and TGF-beta in patients with systemic inflammatory response syndrome.

    OpenAIRE

    Torre, D; Tambini, R; Aristodemo, S; Gavazzeni, G; Goglio, A.; Cantamessa, C; Pugliese, A; Biondi, G.

    2000-01-01

    The systemic inflammatory response syndrome (SIRS) is an inflammatory process seen in association with a large number of clinical infective and non-infective conditions. The aim of this study was to investigate the role of anti-inflammatory cytokines such as interleukin-4 (IL-4), interleukin-10 (IL-10), and transforming growth factor-beta (TGF-beta). Serum levels of IL-4, IL-10 and TGF-beta were determined in 45 patients with SIRS: 38 patients had SIRS of infectious origin, whereas seven pati...

  12. Influence of Age on Brain Edema Formation, Secondary Brain Damage and Inflammatory Response after Brain Trauma in Mice

    Science.gov (United States)

    Timaru-Kast, Ralph; Luh, Clara; Gotthardt, Philipp; Huang, Changsheng; Schäfer, Michael K.; Engelhard, Kristin; Thal, Serge C.

    2012-01-01

    After traumatic brain injury (TBI) elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months) and old (21 months) male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI) on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count) were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2%) compared to young (0%). This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral inflammation

  13. Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice.

    Directory of Open Access Journals (Sweden)

    Ralph Timaru-Kast

    Full Text Available After traumatic brain injury (TBI elderly patients suffer from higher mortality rate and worse functional outcome compared to young patients. However, experimental TBI research is primarily performed in young animals. Aim of the present study was to clarify whether age affects functional outcome, neuroinflammation and secondary brain damage after brain trauma in mice. Young (2 months and old (21 months male C57Bl6N mice were anesthetized and subjected to a controlled cortical impact injury (CCI on the right parietal cortex. Animals of both ages were randomly assigned to 15 min, 24 h, and 72 h survival. At the end of the observation periods, contusion volume, brain water content, neurologic function, cerebral and systemic inflammation (CD3+ T cell migration, inflammatory cytokine expression in brain and lung, blood differential cell count were determined. Old animals showed worse neurological function 72 h after CCI and a high mortality rate (19.2% compared to young (0%. This did not correlate with histopathological damage, as contusion volumes were equal in both age groups. Although a more pronounced brain edema formation was detected in old mice 24 hours after TBI, lack of correlation between brain water content and neurological deficit indicated that brain edema formation is not solely responsible for age-dependent differences in neurological outcome. Brains of old naïve mice were about 8% smaller compared to young naïve brains, suggesting age-related brain atrophy with possible decline in plasticity. Onset of cerebral inflammation started earlier and primarily ipsilateral to damage in old mice, whereas in young mice inflammation was delayed and present in both hemispheres with a characteristic T cell migration pattern. Pulmonary interleukin 1β expression was up-regulated after cerebral injury only in young, not aged mice. The results therefore indicate that old animals are prone to functional deficits and strong ipsilateral cerebral

  14. Immune responses at brain barriers and implications for brain development and neurological function in later life

    Directory of Open Access Journals (Sweden)

    Helen B. Stolp

    2013-08-01

    Full Text Available For a long time the brain has been considered an immune-privileged site due to a muted inflammatory response and the presence of protective brain barriers. It is now recognised that neuroinflammation may play an important role in almost all neurological disorders and that the brain barriers may be contributing through either normal immune signalling, or disruption of their basic physiological mechanisms. The distinction between normal function and dysfunction at the barriers is difficult to dissect, partly due to a lack of understanding of normal barrier function and partly because of physiological changes that occur as part of normal development and ageing. Brain barriers consist of a number of interacting structural and physiological elements including tight junctions between adjacent barrier cells and an array of influx and efflux transporters. Despite these protective mechanisms, the capacity for immune-surveillance of the brain is maintained, and there is evidence of inflammatory signalling at the brain barriers that may be an important part of the body’s response to damage or infection. This signalling system appears to change both with normal ageing, and during disease. Changes may affect diapedesis of immune cells and active molecular transfer, or cause rearrangement of the tight junctions and an increase in passive permeability across barrier interfaces. Here we review the many elements that contribute to brain barrier functions and how they respond to inflammation, particularly during development and aging. The implications of inflammation–induced barrier dysfunction for brain development and subsequent neurological function are also discussed.

  15. Food-induced brain responses and eating behaviour

    OpenAIRE

    Smeets, P.A.M.; CHARBONNIER, L.; Meer, van der, D; Laan, van der, Paul Maarten; Spetter, M.S.

    2012-01-01

    The brain governs food intake behaviour by integrating many different internal and external state and trait-related signals. Understanding how the decisions to start and to stop eating are made is crucial to our understanding of (maladaptive patterns of) eating behaviour. Here, we aim to (1) review the current state of the field of 'nutritional neuroscience' with a focus on the interplay between food-induced brain responses and eating behaviour and (2) highlight research needs and techniques ...

  16. Alzheimer's disease amyloid-beta links lens and brain pathology in Down syndrome.

    Directory of Open Access Journals (Sweden)

    Juliet A Moncaster

    Full Text Available Down syndrome (DS, trisomy 21 is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans. In DS, triplication of chromosome 21 invariably includes the APP gene (21q21 encoding the Alzheimer's disease (AD amyloid precursor protein (APP. Triplication of the APP gene accelerates APP expression leading to cerebral accumulation of APP-derived amyloid-beta peptides (Abeta, early-onset AD neuropathology, and age-dependent cognitive sequelae. The DS phenotype complex also includes distinctive early-onset cerulean cataracts of unknown etiology. Previously, we reported increased Abeta accumulation, co-localizing amyloid pathology, and disease-linked supranuclear cataracts in the ocular lenses of subjects with AD. Here, we investigate the hypothesis that related AD-linked Abeta pathology underlies the distinctive lens phenotype associated with DS. Ophthalmological examinations of DS subjects were correlated with phenotypic, histochemical, and biochemical analyses of lenses obtained from DS, AD, and normal control subjects. Evaluation of DS lenses revealed a characteristic pattern of supranuclear opacification accompanied by accelerated supranuclear Abeta accumulation, co-localizing amyloid pathology, and fiber cell cytoplasmic Abeta aggregates (approximately 5 to 50 nm identical to the lens pathology identified in AD. Peptide sequencing, immunoblot analysis, and ELISA confirmed the identity and increased accumulation of Abeta in DS lenses. Incubation of synthetic Abeta with human lens protein promoted protein aggregation, amyloid formation, and light scattering that recapitulated the molecular pathology and clinical features observed in DS lenses. These results establish the genetic etiology of the distinctive lens phenotype in DS and identify the molecular origin and pathogenic mechanism by which lens pathology is expressed in this common chromosomal disorder. Moreover, these findings confirm increased Abeta

  17. The effect of polymorphisms of beta2 adrenoceptors on response to long-acting beta2 agonists in Iranian asthmatic patients.

    OpenAIRE

    Fatemeh Soleimani; Fanak Fahimi; Parisa Adimi Naghan; Seyed Alireza Nadji; Saeid Morowati; Nima Naderi; Mohammad Reza Masjedi

    2013-01-01

    The results of many studies suggested possible relationship between polymorphism at codons 16 and 27 and development of tolerance to beta-2 adrenoceptor agonist responses as well as disease severity in asthmatic patients. This study was designed to evaluate the effect of polymorphism of beta2 adrenoceptors on response to salmeterol and fluticasone (as inhaled Seretide).Sixty-four patients with either mild or moderate-severe asthma were evaluated in this study. A four-week therapy with Seretid...

  18. [C-11]{beta}CNT: A new monoamine uptake ligand for studying serotonin and dopamine transporter sites in the living brain with PET

    Energy Technology Data Exchange (ETDEWEB)

    Mulholland, G.K.; Zheng, Q.H.; Zhou, F.C. [Indiana Univ. Medical Center, Indianapolis, IN (United States)] [and others

    1996-05-01

    There is considerable interest in measuring serotonin (5HT) and dopamine (DA) function in the human brain. Altered levels of 5HT and DA are recognized in drug abuse, neurotoxicities, psychiatric disorders, and neurodegenerative conditions including Alzheimer`s and Parkinson`s disease. Several phenyltropane analogs of cocaine bind tightly to both DA and 5HT uptake proteins. We have made a new agent from this class called {beta}CNT, 2{beta}-carboxymethyl-3{beta}-(2-naphthyl)-tropane, the isosteric O-for-CH{sub 2} analog of a compound reported to have among the highest measured affinities for DA and 5HT transporters and studied its in vivo brain distributions in animals for the first time. Optically pure {beta}CNT was made from cocaine, and labeled at the O-methyl position by esterification of {beta}CNT-acid with [C-11]CH{sub 3}OTfl under conditions similar to Wilson`s. HPLC-purified (99+%) final products (15-50% eob yield from CO{sub 2}, 40 min synth) had specific activities 0.1-1.2 Ci/{mu}mol at the time of injection. Preliminary [C-11]{beta}{beta}CNT rodent distribution showed very high brain uptake (3% ID at 60 min) and localization (striat: fr cort: hypo: cer: blood, 11: 5: 4: 1: 06). {beta}CNT-PET studies in juvenile pigs (5-20 mCi, 20-35 kg) found rapid brain uptake, and prominent retention (85 min) in midbrain, anterior brainstem and striatum, followed by cortex and olfactory bulb. Paroxetine pretreatment (5HT uptake blocker, 2mg/kg), diminished retention in most brain areas; nomifensine (DA/NE uptake blocker, 6 mg/kg) reduced striatum selectively. Direct comparisons of [C-11]{beta}CNT with other PET transporter radioligands {beta}CFT, {beta}CIT, and {beta}CTT (RTI-32) in the same pig found {beta}CNT had highest overall brain uptake among the agents. These initial results suggest {beta}CNT has favorable properties for imaging both 5HT and DA transporters in vivo, and further evaluation of its potential as a human PET agent is warranted.

  19. Fetal Inflammatory Response and Brain Injury in the Preterm Newborn

    OpenAIRE

    Malaeb, Shadi; Dammann, Olaf

    2009-01-01

    Preterm birth can be caused by intrauterine infection and maternal/fetal inflammatory responses. Maternal inflammation (chorioamnionitis) is often followed by a systemic fetal inflammatory response characterized by elevated levels of pro-inflammatory cytokines in the fetal circulation. The inflammation signal is likely transmitted across the blood-brain barrier, and initiates a neuroinflammatory response. Microglial activation has a central role in this process, and triggers excitotoxic, infl...

  20. The fetal brain sparing response to hypoxia: physiological mechanisms.

    Science.gov (United States)

    Giussani, Dino A

    2016-03-01

    How the fetus withstands an environment of reduced oxygenation during life in the womb has been a vibrant area of research since this field was introduced by Joseph Barcroft, a century ago. Studies spanning five decades have since used the chronically instrumented fetal sheep preparation to investigate the fetal compensatory responses to hypoxia. This defence is contingent on the fetal cardiovascular system, which in late gestation adopts strategies to decrease oxygen consumption and redistribute the cardiac output away from peripheral vascular beds and towards essential circulations, such as those perfusing the brain. The introduction of simultaneous measurement of blood flow in the fetal carotid and femoral circulations by ultrasonic transducers has permitted investigation of the dynamics of the fetal brain sparing response for the first time. Now we know that major components of fetal brain sparing during acute hypoxia are triggered exclusively by a carotid chemoreflex and that they are modified by endocrine agents and the recently discovered vascular oxidant tone. The latter is determined by the interaction between nitric oxide and reactive oxygen species. The fetal brain sparing response matures as the fetus approaches term, in association with the prepartum increase in fetal plasma cortisol, and treatment of the preterm fetus with clinically relevant doses of synthetic steroids mimics this maturation. Despite intense interest into how the fetal brain sparing response may be affected by adverse intrauterine conditions, this area of research has been comparatively scant, but it is likely to take centre stage in the near future. PMID:26496004

  1. In vitro and in vivo characterisation of nor-{beta}-CIT: a potential radioligand for visualisation of the serotonin transporter in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, K.A. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden)]|[Kuopio University Hospital, Clinical Physiology, FIN-70210 Kuopio (Finland); Halldin, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Hall, H. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Lundkvist, C. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Ginovart, N. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Swahn, C.G. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden); Farde, L. [Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm (Sweden)

    1997-06-10

    Radiolabelled 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) has been used in clinical studies for the imaging of dopamine and serotonin transporters with single-photon emission tomography (SPET). 2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)nortropane (nor-{beta}-CIT) is a des-methyl analogue of {beta}-CIT, which in vitro has tenfold higher affinity (IC{sub 50}=0.36 nM) to the serotonin transporter than {beta}-CIT (IC{sub 50}=4.2 nM). Nor-{beta}-CIT may thus be a useful radioligand for imaging of the serotonin transporter. In the present study iodine-125 and carbon-11 labelled nor-{beta}-CIT were prepared for in vitro autoradiographic studies on post-mortem human brain cryosections and for in vivo positron emission tomography (PET) studies in Cynomolgus monkeys. Whole hemisphere autoradiography with [{sup 125}I]nor-{beta}-CIT demonstrated high binding in the striatum, the thalamus and cortical regions of the human brain. Addition of a high concentration (1 {mu}M) of citalopram inhibited binding in the thalamus and the neocortex, but not in the striatum. In PET studies with [{sup 11}C]nor-{beta}-CIT there was rapid uptake of radioactivity in the monkey brain (6% of injected dose at 15 min) and high accumulation of radioactivity in the striatum, thalamus and neocortex. Thalamus to cerebellum and cortex to cerebellum ratios were 2.5 and 1.8 at 60 min, respectively. The ratios obtained with [{sup 11}C]nor-{beta}-CIT were 20%-40% higher than those previously obtained with [{sup 11}C]{beta}-CIT. Radioactivity in the thalamus and the neocortex but not in the striatum was displaceable with citalopram (5 mg/kg). In conclusion, nor-{beta}-CIT binds to the serotonin transporter in the primate brain in vitro and in vivo and has potential for PET and SPET imaging of the serotonin transporter in human brain. (orig.). With 4 figs.

  2. Regional genome transcriptional response of adult mouse brain to hypoxia

    Directory of Open Access Journals (Sweden)

    Lu Aigang

    2011-10-01

    Full Text Available Abstract Background Since normal brain function depends upon continuous oxygen delivery and short periods of hypoxia can precondition the brain against subsequent ischemia, this study examined the effects of brief hypoxia on the whole genome transcriptional response in adult mouse brain. Result Pronounced changes of gene expression occurred after 3 hours of hypoxia (8% O2 and after 1 hour of re-oxygenation in all brain regions. The hypoxia-responsive genes were predominantly up-regulated in hindbrain and predominantly down-regulated in forebrain - possibly to support hindbrain survival functions at the expense of forebrain cognitive functions. The up-regulated genes had a significant role in cell survival and involved both shared and unshared signaling pathways among different brain regions. Up-regulation of transcriptional signaling including hypoxia inducible factor, insulin growth factor (IGF, the vitamin D3 receptor/retinoid X nuclear receptor, and glucocorticoid signaling was common to many brain regions. However, many of the hypoxia-regulated target genes were specific for one or a few brain regions. Cerebellum, for example, had 1241 transcripts regulated by hypoxia only in cerebellum but not in hippocampus; and, 642 (54% had at least one hepatic nuclear receptor 4A (HNF4A binding site and 381 had at least two HNF4A binding sites in their promoters. The data point to HNF4A as a major hypoxia-responsive transcription factor in cerebellum in addition to its known role in regulating erythropoietin transcription. The genes unique to hindbrain may play critical roles in survival during hypoxia. Conclusion Differences of forebrain and hindbrain hypoxia-responsive genes may relate to suppression of forebrain cognitive functions and activation of hindbrain survival functions, which may coordinately mediate the neuroprotection afforded by hypoxia preconditioning.

  3. Brain stem auditory evoked responses in human infants and adults

    Science.gov (United States)

    Hecox, K.; Galambos, R.

    1974-01-01

    Brain stem evoked potentials were recorded by conventional scalp electrodes in infants (3 weeks to 3 years of age) and adults. The latency of one of the major response components (wave V) is shown to be a function both of click intensity and the age of the subject; this latency at a given signal strength shortens postnatally to reach the adult value (about 6 msec) by 12 to 18 months of age. The demonstrated reliability and limited variability of these brain stem electrophysiological responses provide the basis for an optimistic estimate of their usefulness as an objective method for assessing hearing in infants and adults.

  4. Behavioural and brain responses related to Internet search and memory.

    Science.gov (United States)

    Dong, Guangheng; Potenza, Marc N

    2015-10-01

    The ready availability of data via searches on the Internet has changed how many people seek and perhaps store and recall information, although the brain mechanisms underlying these processes are not well understood. This study investigated brain mechanisms underlying Internet-based vs. non-Internet-based searching. The results showed that Internet searching was associated with lower accuracy in recalling information as compared with traditional book searching. During functional magnetic resonance imaging, Internet searching was associated with less regional brain activation in the left ventral stream, the association area of the temporal-parietal-occipital cortices, and the middle frontal cortex. When comparing novel items with remembered trials, Internet-based searching was associated with higher brain activation in the right orbitofrontal cortex and lower brain activation in the right middle temporal gyrus when facing those novel trials. Brain activations in the middle temporal gyrus were inversely correlated with response times, and brain activations in the orbitofrontal cortex were positively correlated with self-reported search impulses. Taken together, the results suggest that, although Internet-based searching may have facilitated the information-acquisition process, this process may have been performed more hastily and be more prone to difficulties in recollection. In addition, people appear less confident in recalling information learned through Internet searching and that recent Internet searching may promote motivation to use the Internet. PMID:26262779

  5. Brain MR finding of {beta}-fluoroethyl acetate rodenticide intoxication: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Jung, Cheol Kyu; Lee, Seung Ro; Park, Dong Woo [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    2008-05-15

    {beta}-fluoroethyl acetate rodenticide intoxication can manifest as several different clinical abnormalities such as respiratory, neurologic, cardiologic and fluid-electrolyte problems. We report here on the MR findings of a case that showed symmetric cytotoxic edema in the while matter of the cerebral hemispheres after the ingestion of {beta} - fluoroethyl acetate rodenticide by a woman who was attempting suicide.

  6. Seeded growth of beta-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure.

    Science.gov (United States)

    Paravastu, Anant K; Qahwash, Isam; Leapman, Richard D; Meredith, Stephen C; Tycko, Robert

    2009-05-01

    Studies by solid-state nuclear magnetic resonance (NMR) of amyloid fibrils prepared in vitro from synthetic 40-residue beta-amyloid (Abeta(1-40)) peptides have shown that the molecular structure of Abeta(1-40) fibrils is not uniquely determined by amino acid sequence. Instead, the fibril structure depends on the precise details of growth conditions. The molecular structures of beta-amyloid fibrils that develop in Alzheimer's disease (AD) are therefore uncertain. We demonstrate through thioflavin T fluorescence and electron microscopy that fibrils extracted from brain tissue of deceased AD patients can be used to seed the growth of synthetic Abeta(1-40) fibrils, allowing preparation of fibrils with isotopic labeling and in sufficient quantities for solid-state NMR and other measurements. Because amyloid structures propagate themselves in seeded growth, as shown in previous studies, the molecular structures of brain-seeded synthetic Abeta(1-40) fibrils most likely reflect structures that are present in AD brain. Solid-state (13)C NMR spectra of fibril samples seeded with brain material from two AD patients were found to be nearly identical, indicating the same molecular structures. Spectra of an unseeded control sample indicate greater structural heterogeneity. (13)C chemical shifts and other NMR data indicate that the predominant molecular structure in brain-seeded fibrils differs from the structures of purely synthetic Abeta(1-40) fibrils that have been characterized in detail previously. These results demonstrate a new approach to detailed structural characterization of amyloid fibrils that develop in human tissue, and to investigations of possible correlations between fibril structure and the degree of cognitive impairment and neurodegeneration in AD. PMID:19376973

  7. Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation

    Science.gov (United States)

    Hayflick, Susan J.; Kruer, Michael C.; Gregory, Allison; Haack, Tobias B.; Kurian, Manju A.; Houlden, Henry H.; Anderson, James; Boddaert, Nathalie; Sanford, Lynn; Harik, Sami I.; Dandu, Vasuki H.; Nardocci, Nardo; Zorzi, Giovanna; Dunaway, Todd; Tarnopolsky, Mark; Skinner, Steven; Holden, Kenton R.; Frucht, Steven; Hanspal, Era; Schrander-Stumpel, Connie; Mignot, Cyril; Héron, Delphine; Saunders, Dawn E.; Kaminska, Margaret; Lin, Jean-Pierre; Lascelles, Karine; Cuno, Stephan M.; Meyer, Esther; Garavaglia, Barbara; Bhatia, Kailash; de Silva, Rajith; Crisp, Sarah; Lunt, Peter; Carey, Martyn; Hardy, John; Meitinger, Thomas; Prokisch, Holger; Hogarth, Penelope

    2013-01-01

    Neurodegenerative disorders with high iron in the basal ganglia encompass an expanding collection of single gene disorders collectively known as neurodegeneration with brain iron accumulation. These disorders can largely be distinguished from one another by their associated clinical and neuroimaging features. The aim of this study was to define the phenotype that is associated with mutations in WDR45, a new causative gene for neurodegeneration with brain iron accumulation located on the X chromosome. The study subjects consisted of WDR45 mutation-positive individuals identified after screening a large international cohort of patients with idiopathic neurodegeneration with brain iron accumulation. Their records were reviewed, including longitudinal clinical, laboratory and imaging data. Twenty-three mutation-positive subjects were identified (20 females). The natural history of their disease was remarkably uniform: global developmental delay in childhood and further regression in early adulthood with progressive dystonia, parkinsonism and dementia. Common early comorbidities included seizures, spasticity and disordered sleep. The symptoms of parkinsonism improved with l-DOPA; however, nearly all patients experienced early motor fluctuations that quickly progressed to disabling dyskinesias, warranting discontinuation of l-DOPA. Brain magnetic resonance imaging showed iron in the substantia nigra and globus pallidus, with a ‘halo’ of T1 hyperintense signal in the substantia nigra. All patients harboured de novo mutations in WDR45, encoding a beta-propeller protein postulated to play a role in autophagy. Beta-propeller protein-associated neurodegeneration, the only X-linked disorder of neurodegeneration with brain iron accumulation, is associated with de novo mutations in WDR45 and is recognizable by a unique combination of clinical, natural history and neuroimaging features. PMID:23687123

  8. Brain connectomics predict response to treatment in social anxiety disorder.

    Science.gov (United States)

    Whitfield-Gabrieli, S; Ghosh, S S; Nieto-Castanon, A; Saygin, Z; Doehrmann, O; Chai, X J; Reynolds, G O; Hofmann, S G; Pollack, M H; Gabrieli, J D E

    2016-05-01

    We asked whether brain connectomics can predict response to treatment for a neuropsychiatric disorder better than conventional clinical measures. Pre-treatment resting-state brain functional connectivity and diffusion-weighted structural connectivity were measured in 38 patients with social anxiety disorder (SAD) to predict subsequent treatment response to cognitive behavioral therapy (CBT). We used a priori bilateral anatomical amygdala seed-driven resting connectivity and probabilistic tractography of the right inferior longitudinal fasciculus together with a data-driven multivoxel pattern analysis of whole-brain resting-state connectivity before treatment to predict improvement in social anxiety after CBT. Each connectomic measure improved the prediction of individuals' treatment outcomes significantly better than a clinical measure of initial severity, and combining the multimodal connectomics yielded a fivefold improvement in predicting treatment response. Generalization of the findings was supported by leave-one-out cross-validation. After dividing patients into better or worse responders, logistic regression of connectomic predictors and initial severity combined with leave-one-out cross-validation yielded a categorical prediction of clinical improvement with 81% accuracy, 84% sensitivity and 78% specificity. Connectomics of the human brain, measured by widely available imaging methods, may provide brain-based biomarkers (neuromarkers) supporting precision medicine that better guide patients with neuropsychiatric diseases to optimal available treatments, and thus translate basic neuroimaging into medical practice. PMID:26260493

  9. Brain activation by short-term nicotine exposure in anesthetized wild-type and beta2-nicotinic receptors knockout mice: a BOLD fMRI study

    International Nuclear Information System (INIS)

    Rationale: The behavioral effects of nicotine and the role of the beta2-containing nicotinic receptors in these behaviors are well documented. However, the behaviors altered by nicotine rely on the functioning on multiple brain circuits where the high-affinity β2-containing nicotinic receptors (β2*nAChRs) are located. Objectives We intend to see which brain circuits are activated when nicotine is given in animals naive for nicotine and whether the β2*nAChRs are needed for its activation of the blood oxygen level dependent (BOLD) signal in all brain areas. Materials and methods: We used functional magnetic resonance imaging (fMRI) to measure the brain activation evoked by nicotine (1 mg/kg delivered at a slow rate for 45 min) in anesthetized C57BL/6J mice and β2 knockout (KO) mice. Results: Acute nicotine injection results in a significant increased activation in anterior frontal, motor, and somatosensory cortices and in the ventral tegmental area and the substantia nigra. Anesthetized mice receiving no nicotine injection exhibited a major decreased activation in all cortical and subcortical structures, likely due to prolonged anesthesia. At a global level, β2 KO mice were not rescued from the globally declining BOLD signal. However, nicotine still activated regions of a meso-cortico-limbic circuit likely via α7 nicotinic receptors. Conclusions: Acute nicotine exposure compensates for the drop in brain activation due to anesthesia through the meso-cortico-limbic network via the action of nicotine on β2*nAChRs. The developed fMRI method is suitable for comparing responses in wild-type and mutant mice. (authors)

  10. Study of radiation detectors response in standard X, gamma and beta radiation standard beams

    International Nuclear Information System (INIS)

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams (37Cs and 60Co), and some of them were tested in beta radiation (90Sr+9'0Y e 204Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  11. Anti-α-galactosidase A antibody response to agalsidase beta treatment

    DEFF Research Database (Denmark)

    Wilcox, William R; Linthorst, Gabor E; Germain, Dominique P; Feldt-Rasmussen, Ulla; Waldek, Stephen; Richards, Susan M; Beitner-Johnson, Dana; Cizmarik, Marta; Cole, J Alexander; Kingma, Wytske; Warnock, David G

    2012-01-01

    Agalsidase beta, a form of recombinant human α-galactosidase A (αGAL), is approved for use as enzyme replacement therapy (ERT) for Fabry disease. An immunogenic response against a therapeutic protein could potentially impact its efficacy or safety. The development of anti-αGAL IgG antibodies was ...

  12. Precise expression of Fis1 is important for glucose responsiveness of beta cells.

    Science.gov (United States)

    Schultz, Julia; Waterstradt, Rica; Kantowski, Tobias; Rickmann, Annekatrin; Reinhardt, Florian; Sharoyko, Vladimir; Mulder, Hindrik; Tiedge, Markus; Baltrusch, Simone

    2016-07-01

    Mitochondrial network functionality is vital for glucose-stimulated insulin secretion in pancreatic beta cells. Altered mitochondrial dynamics in pancreatic beta cells are thought to trigger the development of type 2 diabetes mellitus. Fission protein 1 (Fis1) might be a key player in this process. Thus, the aim of this study was to investigate mitochondrial morphology in dependence of beta cell function, after knockdown and overexpression of Fis1. We demonstrate that glucose-unresponsive cells with impaired glucose-stimulated insulin secretion (INS1-832/2) showed decreased mitochondrial dynamics compared with glucose-responsive cells (INS1-832/13). Accordingly, mitochondrial morphology visualised using MitoTracker staining differed between the two cell lines. INS1-832/2 cells formed elongated and clustered mitochondria, whereas INS1-832/13 cells showed a homogenous mitochondrial network. Fis1 overexpression using lentiviral transduction significantly improved glucose-stimulated insulin secretion and mitochondrial network homogeneity in glucose-unresponsive cells. Conversely, Fis1 downregulation by shRNA, both in primary mouse beta cells and glucose-responsive INS1-832/13 cells, caused unresponsiveness and significantly greater numbers of elongated mitochondria. Overexpression of FIS1 in primary mouse beta cells indicated an upper limit at which higher FIS1 expression reduced glucose-stimulated insulin secretion. Thus, FIS1 was overexpressed stepwise up to a high concentration in RINm5F cells using the RheoSwitch system. Moderate FIS1 expression improved glucose-stimulated insulin secretion, whereas high expression resulted in loss of glucose responsiveness and in mitochondrial artificial loop structures and clustering. Our data confirm that FIS1 is a key regulator in pancreatic beta cells, because both glucose-stimulated insulin secretion and mitochondrial dynamics were clearly adapted to precise expression levels of this fission protein. PMID:27179109

  13. Pre-injury beta blocker use does not affect the hyperdynamic response in older trauma patients

    Directory of Open Access Journals (Sweden)

    David C Evans

    2014-01-01

    Full Text Available Purpose: Trauma dogma dictates that the physiologic response to injury is blunted by beta-blockers and other cardiac medications. We sought to determine how the pre-injury cardiac medication profile influences admission physiology and post-injury outcomes. Materials and Methods: Trauma patients older than 45 evaluated at our center were retrospectively studied. Pre-injury medication profiles were evaluated for angiotensin-converting enzyme inhibitors / angiotensin receptor blockers (ACE-I/ARB, beta-blockers, calcium channel blockers, amiodarone, or a combination of the above mentioned agents. Multivariable logistic regression or linear regression analyses were used to identify relationships between pre-injury medications, vital signs on presentation, post-injury complications, length of hospital stay, and mortality. Results: Records of 645 patients were reviewed (mean age 62.9 years, Injury Severity Score >10, 23%. Our analysis demonstrated no effect on systolic and diastolic blood pressures from beta-blocker, ACE-I/ARB, calcium channel blocker, and amiodarone use. The triple therapy (combined beta-blocker, calcium channel blocker, and ACE-I/ARB patient group had significantly lower heart rate than the no cardiac medication group. No other groups were statistically different for heart rate, systolic, and diastolic blood pressure. Conclusions: Pre-injury use of cardiac medication lowered heart rate in the triple-agent group (beta-blocker, calcium channel blocker, and ACEi/ARB when compared the no cardiac medication group. While most combinations of cardiac medications do not blunt the hyperdynamic response in trauma cases, patients on combined beta-blocker, calcium channel blocker, and ACE-I/ARB therapy had higher mortality and more in-hospital complications despite only mild attenuation of the hyperdynamic response.

  14. Estimation of the response of ion chamber detectors to beta radiation

    International Nuclear Information System (INIS)

    A technique was developed to calculate the response of cylindrical ion chambers to large area beta sources. Beta particles were simulated as vectors originating from a point on a source plane. Response calculations were performed for various source-plane-to-detector distances. The data testified to the dependency of response on source position and size. The results were compared with measured data. The technique was then used to evaluate the response characteristics of two chamber designs. Results showed that a design with concentric dual chambers could provide a means to estimate source geometry and distance. In addition, a detector employing stacked thin chambers could directly measure the extent of non-uniform ionisation in the chamber. (author)

  15. Cooperative dynamics in auditory brain response

    CERN Document Server

    Kwapien, J; Liu, L C; Ioannides, A A

    1998-01-01

    Simultaneous estimates of the activity in the left and right auditory cortex of five normal human subjects were extracted from Multichannel Magnetoencephalography recordings. Left, right and binaural stimulation were used, in separate runs, for each subject. The resulting time-series of left and right auditory cortex activity were analysed using the concept of mutual information. The analysis constitutes an objective method to address the nature of inter-hemispheric correlations in response to auditory stimulations. The results provide a clear evidence for the occurrence of such correlations mediated by a direct information transport, with clear laterality effects: as a rule, the contralateral hemisphere leads by 10-20ms, as can be seen in the average signal. The strength of the inter-hemispheric coupling, which cannot be extracted from the average data, is found to be highly variable from subject to subject, but remarkably stable for each subject.

  16. Beta oscillatory responses in healthy subjects and subjects with mild cognitive impairment ☆

    OpenAIRE

    Güntekin, Bahar; Emek-Savaş, Derya Durusu; KURT, Pınar; Yener, Görsev Gülmen; Başar, Erol

    2013-01-01

    The aim of the present study was to investigate the role of beta oscillatory responses upon cognitive load in healthy subjects and in subjects with mild cognitive impairment (MCI). The role of beta oscillations upon cognitive stimulation is least studied in comparison to other frequency bands. The study included 17 consecutive patients with MCI (mean age = 70.8 ± 5.6 years) according to Petersen's criteria, and 17 age- and education-matched normal elderly controls (mean age = 68.5 ± 5.5 years...

  17. DNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid

    NARCIS (Netherlands)

    A. Copani; J.J.M. Hoozemans; F. Caraci; M. Calafiore; E.S. van Haastert; R. Veerhuis; A.J.M. Rozemuller; E. Aronica; M.A. Sortino; F. Nicoletti

    2006-01-01

    Cultured neurons exposed to synthetic beta-amyloid (A beta) fragments reenter the cell cycle and initiate a pathway of DNA replication that involves the repair enzyme DNA polymerase-beta (DNA pol-beta) before undergoing apoptotic death. In this study, by performing coimmunoprecipitation experiments

  18. Submillisecond unmasked subliminal visual stimuli evoke electrical brain responses.

    Science.gov (United States)

    Sperdin, Holger F; Spierer, Lucas; Becker, Robert; Michel, Christoph M; Landis, Theodor

    2015-04-01

    Subliminal perception is strongly associated to the processing of meaningful or emotional information and has mostly been studied using visual masking. In this study, we used high density 256-channel EEG coupled with an liquid crystal display (LCD) tachistoscope to characterize the spatio-temporal dynamics of the brain response to visual checkerboard stimuli (Experiment 1) or blank stimuli (Experiment 2) presented without a mask for 1 ms (visible), 500 µs (partially visible), and 250 µs (subliminal) by applying time-wise, assumption-free nonparametric randomization statistics on the strength and on the topography of high-density scalp-recorded electric field. Stimulus visibility was assessed in a third separate behavioral experiment. Results revealed that unmasked checkerboards presented subliminally for 250 µs evoked weak but detectable visual evoked potential (VEP) responses. When the checkerboards were replaced by blank stimuli, there was no evidence for the presence of an evoked response anymore. Furthermore, the checkerboard VEPs were modulated topographically between 243 and 296 ms post-stimulus onset as a function of stimulus duration, indicative of the engagement of distinct configuration of active brain networks. A distributed electrical source analysis localized this modulation within the right superior parietal lobule near the precuneus. These results show the presence of a brain response to submillisecond unmasked subliminal visual stimuli independently of their emotional saliency or meaningfulness and opens an avenue for new investigations of subliminal stimulation without using visual masking. PMID:25487054

  19. Implicit Theories and Beta Change in Longitudinal Evaluations of Training Effectiveness: An Investigation Using Item Response Theory

    OpenAIRE

    Craig, Stephen Bartholomew

    2002-01-01

    Golembiewski, Billingsly, and Yeager (1976) conceptualized three distinct types of change that might result from development interventions, called alpha, beta, and gamma change. Recent research has found that beta and gamma change do occur as hypothesized, but the phenomena are somewhat infrequent and the precise conditions under which they occur have not been established. This study used confirmatory factor analysis and item response theory to identify gamma and beta change on a multidimensi...

  20. Comparison of (/sup 125/I)beta-endorphin binding to rat brain and NG108-15 cells using a monoclonal antibody directed against the opioid receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bidlack, J.M.; O' Malley, W.E.; Schulz, R.

    1988-02-01

    The properties of (/sup 125/I)beta h-endorphin-binding sites from rat brain membranes and membranes from the NG108-15 cell line were compared using a monoclonal antibody directed against the opioid receptor and opioid peptides as probes. The binding of (/sup 125/I)beta h-endorphin to both rat brain and NG108-15 membranes yielded linear Scatchard plots with Kd values of 1.2 nM and 1.5 nM, respectively, and Bmax values of 865 fmol/mg rat brain membrane protein and 1077 fmol/mg NG108-15 membrane protein. A monoclonal antibody, OR-689.2.4, capable of inhibiting mu and delta binding but not kappa binding to rat brain membranes, noncompetitively inhibited the binding of 1 nM (/sup 125/I)beta h-endorphin to rat brain and NG108-15 membranes with an IC50 value of 405 nM for rat brain membranes and 543 nM for NG108-15 membranes. The monoclonal antibody also inhibited the binding of 3 nM (/sup 3/H) (D-penicillamine2, D-penicillamine5) enkephalin to NG108-15 membranes with an IC50 value of 370 nM. In addition to blocking the binding of (/sup 125/I)beta h-endorphin to brain membranes, the antibody also displaced (/sup 125/I)beta h-endorphin from membranes. Site-specific opioid peptides had large variations in their IC50 values depending on whether they were inhibiting (/sup 125/I)beta h-endorphin binding to rat brain or the NG108-15 membranes. When the peptides were tested with the monoclonal antibody for their combined ability to inhibit (/sup 125/I)beta h-endorphin binding to both membrane preparations, the peptides and antibody blocked binding as though they were acting at allosterically coupled sites, not two totally independent sites. These studies suggest that mu-, delta-, and beta-endorphin-binding sites share some sequence homology with the 35,000-dalton protein that the antibody is directed against.

  1. Aspergillus fumigatus Triggers Inflammatory Responses by Stage-Specific beta-Glucan Display.

    Directory of Open Access Journals (Sweden)

    2005-11-01

    Full Text Available Inhalation of fungal spores (conidia occurs commonly and, in specific circumstances, can result in invasive disease. We investigated the murine inflammatory response to conidia of Aspergillus fumigatus, the most common invasive mold in immunocompromised hosts. In contrast to dormant spores, germinating conidia induce neutrophil recruitment to the airways and TNF-alpha/MIP-2 secretion by alveolar macrophages. Fungal beta-glucans act as a trigger for the induction of these inflammatory responses through their time-dependent exposure on the surface of germinating conidia. Dectin-1, an innate immune receptor that recognizes fungal beta-glucans, is recruited in vivo to alveolar macrophage phagosomes that have internalized conidia with exposed beta-glucans. Antibody-mediated blockade of Dectin-1 partially inhibits TNF-alpha/MIP-2 induction by metabolically active conidia. TLR-2- and MyD88-mediated signals provide an additive contribution to macrophage activation by germinating conidia. Selective responsiveness to germinating conidia provides the innate immune system with a mechanism to restrict inflammatory responses to metabolically active, potentially invasive fungal spores.

  2. Energy response of an imaging plate exposed to standard beta sources

    International Nuclear Information System (INIS)

    Imaging plates (IPs) are a reusable media, which when exposed to ionizing radiation, store a latent image that can be read out with a red laser as photostimulated luminescence (PSL). They are widely used as a substitute for X-ray films for diagnostic studies. In diagnostic radiology this technology is known as computed radiography. In this work, the energy response of a commercial IP to beta-particle reference radiation fields used for calibrations at the National Institute of Standards and Technology was investigated. The absorbed dose in the active storage phosphor layer was calculated following the scaling procedure for depth dose for high Z materials with reference to water. It was found that the beta particles from Pm-147 and Kr-85 gave 68% and 24% higher PSL responses than that induced by Sr-90, respectively, which was caused by the different PSL detection efficiencies. In addition, normalized response curves of the IPs as a function of depth in polystyrene were measured and compared with the data measured using extrapolation chamber techniques. The difference between both sets of data resulted from the continuous energy change as the beta particle travels across the material, which leads to a different PSL response

  3. Drosophila E-cadherin and its binding partner Armadillo/ beta-catenin are required for axonal pathway choices in the developing larval brain.

    Science.gov (United States)

    Fung, Siaumin; Wang, Fay; Spindler, Shana R; Hartenstein, Volker

    2009-08-15

    The fly brain is formed by approximately hundred paired lineages of neurons, each lineage derived from one neuroblast. Embryonic neuroblasts undergo a small number of divisions and produce the primary neurons that form the functioning larval brain. In the larva, neuroblasts produce the secondary lineages that make up the bulk of the adult brain. Axons of a given secondary lineage fasciculate with each other and form a discrete bundle, the secondary axon tract (SAT). Secondary axon tracts prefigure the long axon connections of the adult brain, and therefore pathway choices of SATs made in the larva determine adult brain circuitry. Drosophila Shotgun/E-cadherin (DE-cad) and its binding partner Armadillo/beta-catenin (beta-cat) are expressed in newly born secondary neurons and their axons. The fact that the highly diverse, yet invariant pattern of secondary lineages and SATs has been recently mapped in the wild-type brain enabled us to investigate the role of DE-cad and beta-cat with the help of MARCM clones. Clones were validated by their absence of DE-cad immuno-reactivity. The most significant phenotype consists in the defasciculation and an increased amount of branching of SATs at the neuropile-cortex boundary, as well as subtle changes in the trajectory of SATs within the neuropile. In general, only a fraction of mutant clones in a given lineage showed structural abnormalities. Furthermore, although they all globally express DE-cad and beta-cat, lineages differ in their requirement for DE-cad function. Some lineages never showed morphological abnormalities in MARCM clones, whereas others reacted with abnormal branching and changes in SAT trajectory at a high frequency. We conclude that DE-cad/beta-cat form part of the mechanism that control branching and trajectory of axon tracts in the larval brain. PMID:19520071

  4. Regional Brain Responses in Nulliparous Women to Emotional Infant Stimuli

    OpenAIRE

    Montoya, Jessica L.; Nicole Landi; Hedy Kober; Worhunsky, Patrick D.; Rutherford, Helena J. V.; W Einar Mencl; Mayes, Linda C.; POTENZA, MARC N.

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infan...

  5. Global genetic variations predict brain response to faces

    DEFF Research Database (Denmark)

    Dickie, Erin W; Tahmasebi, Amir; French, Leon;

    2014-01-01

    Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximu...... of connections with other network nodes, suggesting that the genetic model captures variations across the adolescent brains in co-opting these regions into the face network.......Face expressions are a rich source of social signals. Here we estimated the proportion of phenotypic variance in the brain response to facial expressions explained by common genetic variance captured by ∼ 500,000 single nucleotide polymorphisms. Using genomic-relationship-matrix restricted maximum...... face network, as defined previously. In 9 out of these 25 regions, common genetic variance explained a significant proportion of phenotypic variance (40-50%) in their response to ambiguous facial expressions; this was not the case for angry facial expressions. Across the network, the strength of the...

  6. Chronic exposure to a beta 2-adrenoceptor agonist increases the airway response to methacholine.

    Science.gov (United States)

    Witt-Enderby, P A; Yamamura, H I; Halonen, M; Palmer, J D; Bloom, J W

    1993-09-01

    Scheduled chronic administration of beta 2-adrenoceptor agonist bronchodilators in patients with asthma recently has been reported to be associated with a worsening of symptoms and an increase in bronchial responsiveness. We wanted to determine whether a 28-day in vivo exposure to albuterol (beta 2-adrenoceptor agonist) altered the response of rabbit airways to the cholinergic agonist methacholine. We found, using in vitro tissue bath techniques, that in mainstem bronchi from rabbits given a 28-day exposure to albuterol, maximum contraction to methacholine was increased in the albuterol-treated group (control group = 1.10 +/- 0.11 g vs. treated group = 1.50 +/- 0.13 g, P airway smooth muscle to methacholine.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7901034

  7. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    OpenAIRE

    Williams, Shawniqua; Conte, Mary; Goldfine, Andrew; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas; Victor, Jonathan; Laureys, Steven; Schiff, Nicholas

    2013-01-01

    eLife digest Some individuals who experience severe brain damage are left with disorders of consciousness. While they can appear to be awake, these individuals lack awareness of their surroundings and cannot respond to events going on around them. Few treatments are available, but a minority of patients show striking improvements in speech, alertness and movement in response to the sleeping pill zolpidem. Although the idea of a sleeping pill increasing consciousness is paradoxical, it is poss...

  8. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward

    DEFF Research Database (Denmark)

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja;

    2016-01-01

    Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women...... to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to...

  9. Differential role of tumor necrosis factor receptors in mouse brain inflammatory responses in cryolesion brain injury

    DEFF Research Database (Denmark)

    Quintana, Albert; Giralt, Mercedes; Rojas, Santiago;

    2005-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via intracell......Tumor necrosis factor-alpha (TNF-alpha) is one of the mediators dramatically increased after traumatic brain injury that leads to the activation, proliferation, and hypertrophy of mononuclear, phagocytic cells and gliosis. Eventually, TNF-alpha can induce both apoptosis and necrosis via...... intracellular signaling. This cytokine exerts its functions via interaction with two receptors: type-1 receptor (TNFR1) and type-2 receptor (TNFR2). In this work, the inflammatory response after a freeze injury (cryolesion) in the cortex was studied in wild-type (WT) animals and in mice lacking TNFR1 (TNFR1 KO...... affected by TNFR1 deficiency. Overall, these results suggest that TNFR1 is involved in the early establishment of the inflammatory response and that its deficiency causes a decreased inflammatory response and tissue damage following brain injury....

  10. Extended spectrum beta-lactamase-producing Escherichia coli forms filaments as an initial response to cefotaxime treatment

    DEFF Research Database (Denmark)

    Kjeldsen, Thea S. B.; Sommer, Morten Otto Alexander; Olsen, John E.

    2015-01-01

    Background: beta-lactams target the peptidoglycan layer in the bacterial cell wall and most beta-lactam antibiotics cause filamentation in susceptible Gram-negative bacteria at low concentrations. The objective was to determine the initial morphological response of cephalosporin resistant CTX-M-1...

  11. Transforming growth factor-beta inhibits human antigen-specific CD4(+) T cell proliferation without modulating the cytokine response

    NARCIS (Netherlands)

    Tiemessen, MM; Kunzmann, S; Schmidt-Weber, CB; Garssen, J; Bruijnzeel-Koomen, CAFM; Knol, EF; Van Hoffen, E

    2003-01-01

    Transforming growth factor (TGF)-beta has been demonstrated to play a key role in the regulation of the immune response, mainly by its suppressive function towards cells of the immune system. In humans, the effect of TGF-beta on antigen-specific established memory T cells has not been investigated y

  12. The androgen 5alpha-dihydrotestosterone and its metabolite 5alpha-androstan-3beta, 17beta-diol inhibit the hypothalamo-pituitary-adrenal response to stress by acting through estrogen receptor beta-expressing neurons in the hypothalamus.

    Science.gov (United States)

    Lund, Trent D; Hinds, Laura R; Handa, Robert J

    2006-02-01

    Estrogen receptor beta (ERbeta) and androgen receptor (AR) are found in high levels within populations of neurons in the hypothalamus. To determine whether AR or ERbeta plays a role in regulating hypothalamo-pituitary-adrenal (HPA) axis function by direct action on these neurons, we examined the effects of central implants of 17beta-estradiol (E2), 5alpha-dihydrotestosterone (DHT), the DHT metabolite 5alpha-androstan-3beta, 17beta-diol (3beta-diol), and several ER subtype-selective agonists on the corticosterone and adrenocorticotropin (ACTH) response to immobilization stress. In addition, activation of neurons in the paraventricular nucleus (PVN) was monitored by examining c-fos mRNA expression. Pellets containing these compounds were stereotaxically implanted near the PVN of gonadectomized male rats. Seven days later, animals were killed directly from their home cage (nonstressed) or were restrained for 30 min (stressed) before they were killed. Compared with controls, E2 and the ERalpha-selective agonists moxestrol and propyl-pyrazole-triol significantly increased the stress induced release of corticosterone and ACTH. In contrast, central administration of DHT, 3beta-diol, and the ERbeta-selective compound diarylpropionitrile significantly decreased the corticosterone and ACTH response to immobilization. Cotreatment with the ER antagonist tamoxifen completely blocked the effects of 3beta-diol and partially blocked the effect of DHT, whereas the AR antagonist flutamide had no effect. Moreover, DHT, 3beta-diol, and diarylpropionitrile treatment significantly decreased restraint-induced c-fos mRNA expression in the PVN. Together, these studies indicate that the inhibitory effects of DHT on HPA axis activity may be in part mediated via its conversion to 3beta-diol and subsequent binding to ERbeta. PMID:16452668

  13. Modulation of untruthful responses with noninvasive brain stimulation

    Directory of Open Access Journals (Sweden)

    FelipeFregni

    2013-02-01

    Full Text Available Deceptive abilities have long been studied in relation to personality traits. More recently, studies explored the neural substrates associated with deceptive skills suggesting a critical role of the prefrontal cortex. Here we investigated whether noninvasive brain stimulation over the dorsolateral prefrontal cortex (DLPFC could modulate generation of untruthful responses about subject’s personal life across contexts (i.e., deceiving on guilt-free questions on daily activities; generating previously memorized lies about past experience; and producing spontaneous lies about past experience, as well as across modality responses (verbal and motor responses. Results reveal that real, but not sham, transcranial direct current stimulation (tDCS over the DLPFC can reduce response latency for untruthful over truthful answers across contexts and modality responses. Also, contexts of lies seem to incur a different hemispheric laterality. These findings add up to previous studies demonstrating that it is possible to modulate some processes involved in generation of untruthful answers by applying noninvasive brain stimulation over the DLPFC and extend these findings by showing a differential hemispheric contribution of DLPFCs according to contexts.

  14. The Anisotropic Dynamic Response of Ultrafast Shocked Single Crystal PETN and Beta-HMX

    Science.gov (United States)

    Zaug, Joseph; Armstrong, Michael; Crowhurst, Jonathan; Austin, Ryan; Ferranti, Louis; Fried, Laurence; Bastea, Sorin

    2015-06-01

    We report results from ultrafast shockwave experiments conducted on single crystal high explosives. Experimental results consist of 12 picosecond time-resolved dynamic response wave profile data, (ultrafast time-domain interferometry-TDI), which are used to validate calculations of anisotropic stress-strain behavior of shocked loaded energetic materials. In addition, here we present unreacted equations of state data from PETN and beta-HMX up to higher pressures than previously reported, which are used to extend the predictive confidence of hydrodynamic simulations. Our previous results derived from a 360 ps drive duration yielded anisotropic elastic wave response in single crystal beta-HMX ((110) and (010) impact planes). Here we provide results using a 3x longer drive duration to probe the plastic response regime of these materials. We compare our ultrafast time domain interferometry (TDI) results with previous gun platform results. Ultrafast time scale resolution TDI measurements further guide the development of continuum models aimed to study pore collapse and energy localization in shock-compressed crystals of beta-HMX. This work was performed under the auspices of the U.S. Department of Energy jointly by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  15. Signaling the Unfolded Protein Response in primary brain cancers.

    Science.gov (United States)

    Le Reste, Pierre-Jean; Avril, Tony; Quillien, Véronique; Morandi, Xavier; Chevet, Eric

    2016-07-01

    The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. PMID:27016056

  16. Is 'bipolar disorder' the brain's autopoietic response to schizophrenia?

    Science.gov (United States)

    Llewellyn, Sue

    2009-10-01

    Evidence is accumulating that schizophrenia and bipolar disorder are related conditions. This paper proposes a particular form of relatedness. If 'schizophrenia' is a mind/brain 'trapped' between waking and dreaming, in a disordered in-between state, then bipolar 'disorder' could actually be an attempt to restore order. The mind/brain is a self-producing, self-organizing system. Autopoiesis applies to such systems. Neuromodulation accomplishes self-organization in the mind/brain. If schizophrenia is a state in-between waking and dreaming, characterized by aminergic/cholinergic interpenetration and dopaminergic imbalance then bipolar 'disorder' could be a modulatory response. This autopoietic reaction may take the form of either aminergic hyperactivity aimed at producing a purer waking state, (precipitating mania in the waking state), or cholinergic hyperactivity aimed at producing a purer dreaming state, (producing depression in the waking state), or both, resulting in rapid cycling bipolar disorder. Thus bipolar activity may be an autopoietic response aimed at restoring differentiation to the in-between state of schizophrenia. PMID:19589644

  17. Cardiovascular response to beta-adrenergic blockade or activation in 23 inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Corinne Berthonneche

    Full Text Available We report the characterisation of 27 cardiovascular-related traits in 23 inbred mouse strains. Mice were phenotyped either in response to chronic administration of a single dose of the beta-adrenergic receptor blocker atenolol or under a low and a high dose of the beta-agonist isoproterenol and compared to baseline condition. The robustness of our data is supported by high trait heritabilities (typically H(2>0.7 and significant correlations of trait values measured in baseline condition with independent multistrain datasets of the Mouse Phenome Database. We then focused on the drug-, dose-, and strain-specific responses to beta-stimulation and beta-blockade of a selection of traits including heart rate, systolic blood pressure, cardiac weight indices, ECG parameters and body weight. Because of the wealth of data accumulated, we applied integrative analyses such as comprehensive bi-clustering to investigate the structure of the response across the different phenotypes, strains and experimental conditions. Information extracted from these analyses is discussed in terms of novelty and biological implications. For example, we observe that traits related to ventricular weight in most strains respond only to the high dose of isoproterenol, while heart rate and atrial weight are already affected by the low dose. Finally, we observe little concordance between strain similarity based on the phenotypes and genotypic relatedness computed from genomic SNP profiles. This indicates that cardiovascular phenotypes are unlikely to segregate according to global phylogeny, but rather be governed by smaller, local differences in the genetic architecture of the various strains.

  18. Structural requirements for galanin interaction with receptors from pancreatic beta cells and from brain tissue of the rat

    Energy Technology Data Exchange (ETDEWEB)

    Lagny-Pourmir, I.; Lorinet, A.M.; Yanaihara, N.; Laburthe, M. (Unite de Recherches sur la Differenciation et la Neuroendocrinologie de Cellules Digestives, Batiment INSERM, Villejuif (France))

    1989-07-01

    The binding activity of several galanin fragments and analogs was measured on specific receptors present in rat brain and the rat pancreatic beta cell line Rin m 5F. In both tissues it was observed that: (1) galanin(3-29), galanin(10-29) and (Ile2)-galanin were ineffective for inhibiting ({sup 125}I) galanin binding and (2) active peptides had the following rank order of potency: galanin(1-29) greater than (Ac-Trp2)-galanin(2-29) greater than galanin(2-29) greater than galanin(1-15) greater than (Phe2)-galanin greater than (Tyr2)-galanin. It was concluded that the N-terminal portion of galanin is very important for interaction with central or peripheral receptors. The aromatic amino acid in position 2 (Trp in native galanin) plays a crucial role.

  19. Thermoluminescent response of CaSO4: Dy + PTFE to beta particles

    International Nuclear Information System (INIS)

    In this work the results of studying the thermoluminescent properties of CaSO4: Dy + PTFE are presented when it is irradiated with beta particles. The conclusion was the obtention of the Tl response curve in function of dose is that to desexcite the dosemeters at temperature 300 C during 30 minutes and after that were irradiated at different times in groups and to do the reading of dosemeter, it can be observed that a greater irradiation time major is the Tl response and this depends of the material has been used. (Author)

  20. Disruption of estrogen receptor beta in mice brain results in pathological alterations resembling Alzheimer disease

    Institute of Scientific and Technical Information of China (English)

    Qing-hong ZHANG; Yan-hong HUANG; Yu-zhen HU; Geng-ze WEI; Xue-feng HAN; Shun-yan LU; Yu-feng ZHAO

    2004-01-01

    AIM: To study the pathological characteristics of the mice with estrogen receptor β (ERβ) disruption in brain.METHODS: Immunohistochemistry method was applied in the study. RESULTS: β-Amyloid peptide(Aβ42) and apolipoprotein E (ApoE) immunoreactive substances were accumulated notably in cortex and limbic structures such as the hippocampus and amygdala in brain, resembling the pathological changes of human Alzheimer disease (AD). Aβ formed cloudy-like deposits in parenchyma of brain, while apoE also deposited along or surrounding the blood vessels. CONCLUSIONS: ERβ is crucial to the development of neural degenerative disease, so modulation of Aβ metabolism via ERβ signal pathway might be beneficial for AD prevention or therapy.

  1. Antigen-specific immune responses in cattle with inherited beta2-integrin deficiency.

    Science.gov (United States)

    Müller, K E; Hoek, A; Rutten, V P; Bernadina, W E; Wentink, G H

    1997-08-01

    The significance of beta2-integrins for the generation of antigen-specific immune responses in vivo was studied employing the bovine model of beta2-integrin deficiency. To that end four cattle with bovine leukocyte adhesion deficiency (BLAD) and healthy age-matched controls were immunized with tetanus toxoid (TT) and rabies virus (RV) vaccines three times in monthly intervals. In addition, two animals with BLAD and three controls received a fourth vaccination 8 months after the start of the study. Proliferative responses of peripheral blood mononuclear cells (PBMC) to the antigens TT and RV as well as specific serum immunoglobulin G (IgG) titers were determined in intervals for up to 10 months after primary vaccination. Proliferative responses of PBMC to TT and RV were substantially lower in cattle with BLAD than in controls, although PBMC from cattle with BLAD were shown to have the capacity to proliferate in the response to the mitogen concanavalin A. Occurrence of antigen-specific IgG titers was delayed and they were considerably lower in cattle with BLAD compared to controls. Finally, treatment of TT- and RV-stimulated PBMC from an immunized control with different concentrations of the anti-CD18 monoclonal antibody R15.7 resulted in a dose-dependent inhibition of lymphocyte proliferation to almost 100%. The results of the present study show that beta2-integrin deficiency leads to delayedand severely impaired immune responsiveness in vivo. The observations that antibody production, although considerably delayed and impaired, does occur and that apparently class-switching takes place in BLAD indicate T-cell reactivity in vivo. PMID:9343338

  2. BEGe detector response to alpha and beta-radiation near its p+ electrode

    International Nuclear Information System (INIS)

    In Phase II of the GERDA (Germanium Detector Array) experiment Broad Energy Germanium (BEGe) detectors will continue the search for the neutrinoless double beta decay (0νββ) of 76Ge. The main feature of these detectors is their small p+ electrode used for signal read-out. Due to the thin dead layer of the p+ contact, surface events close to this electrode represent a potential background for the search of 0νββ. A study was conducted to determine the response of the detector to alpha and beta-radiation using movable collimated sources within a custom-build cryostat. Preliminary results of this study and a possible method to discriminate these events will be presented.

  3. Responses of different dosemeters in beta dosimetry of 106Ru/106Rh ophthalmic applicators

    International Nuclear Information System (INIS)

    This work presents the TL response of three kinds of dosimeters from different manufacturing characteristics under irradiation of 106 Ru / 106 Rh sealed sources used in ophthalmic brachytherapy. They are: Ca SO4:Dy + teflon (D- Ca SO4:Dy -0,4), LiF:Mg, Ti (TLD-100) and Ca SO4:Dy (TLD-900). Some of reports accepted by scientific community (NCS report 14 e ICRU report 72) as reference in the quality control of beta applicators dosimetry recommend that the absorbed dose standard uncertainties can be kept below 20%. The TLD Ca SO4:Dy + teflon presented proper sensibility and high precision comparing with the others. Considering the similar dimensions of ophthalmic tumors and aside critical structures it is relevant to reduce undesirable effects due to the irradiation of these structures. Therefore, the quality control in the beta dosimetry using this kind of source is a constant challenge. (author)

  4. Hormonal contraceptives, menstrual cycle and brain response to faces

    DEFF Research Database (Denmark)

    Marecková, Klara; Perrin, Jennifer S; Nawaz Khan, Irum;

    2014-01-01

    fusiform face area (FFA) in women taking oral contraceptives (vs freely cycling women) and during mid-cycle (vs menstruation) in both groups. Mean blood oxygenation level-dependent response in both left and right FFA increased as function of the duration of OC use. Next, this relationship between the use......Both behavioral and neuroimaging evidence support a female advantage in the perception of human faces. Here we explored the possibility that this relationship may be partially mediated by female sex hormones by investigating the relationship between the brain's response to faces and the use of oral...... contraceptives, as well as the phase of the menstrual cycle. First, functional magnetic resonance images were acquired in 20 young women [10 freely cycling and 10 taking oral contraception (OC)] during two phases of their cycle: mid-cycle and menstruation. We found stronger neural responses to faces in the right...

  5. A new model for separation between brain dopamine and serotonin transporters in {sup 123}I-{beta}-CIT SPECT measurements: normal values and sex and age dependence

    Energy Technology Data Exchange (ETDEWEB)

    Ryding, Erik; Rosen, Ingmar [Department of Clinical Neurophysiology, University Hospital, Lund (Sweden); Lindstroem, Mats; Bosson, Peter; Traeskman-Bendz, Lil [Department of Psychiatry, University Hospital, Lund (Sweden); Braadvik, Bjoern; Grabowski, Martin [Department of Neurology, University Hospital, Lund (Sweden)

    2004-08-01

    {sup 123}I-{beta}-CIT is a radioactive ligand for single-photon emission computed tomography (SPECT) imaging of the pre-synaptic (transporter) re-uptake sites for dopamine (DAT) and serotonin (5HTT), and it is widely used to visualize monoamine turnover. Since {sup 123}I-{beta}-CIT uptake occurs at 5HTT and DAT sites in conjunction with the presence of freely soluble {sup 123}I-{beta}-CIT in brain tissue, adequate separation of these three components is necessary. However, only partial separation is possible with current methods. Two main strategies have previously been used for {sup 123}I-{beta}-CIT component separation, based on the following considerations: (1) the faster uptake rate for 5HTT compared with DAT enables temporal separation by performing 5HTT imaging at 1-2 h and DAT imaging at 20-24 h; (2) blocking the 5HTT re-uptake with citalopram renders {sup 123}I-{beta}-CIT imaging DAT (non-5HTT) specific. In a new analytical model, we combined these two approaches with methods to isolate the passively dissolved {sup 123}I-{beta}-CIT in brain tissue from the monoamine transporter uptake, and to correct the 5HTT and DAT values for concomitant uptake. The new analytical model was used to study brain 5HTT and DAT in 23 normal subjects, with the aim of clarifying the effect of age and sex. A significant correlation between 5HTT and DAT values was found only in the thalamus, indicating successful component separation. Negative correlations between age and DAT were found for basal ganglia, thalami, brain stem and temporal lobes, but not for the frontal, parietal or occipital regions. No correlation with age was found for 5HTT. We found no sex difference for 5HTT or DAT. (orig.)

  6. Effects of prior treatment with salmeterol and formoterol on airway and systemic beta 2 responses to fenoterol.

    OpenAIRE

    Grove, A.; Lipworth, B J

    1996-01-01

    BACKGROUND: Previous studies have shown that both salmeterol and formoterol act as partial beta 2 receptor agonists in terms of antagonising the extrapulmonary responses to fenoterol in normal subjects. The aim of the present study was to extend previous observations in evaluating the effect of prior treatment with salmeterol and formoterol on bronchodilator responses to fenoterol, a full beta 2 receptor agonist, in patients with asthma. METHODS: Ten stable asthmatic patients of mean (SE) age...

  7. Coupling between intrinsic prefrontal HbO2 and central EEG beta power oscillations in the resting brain.

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    Full Text Available There is increasing interest in the intrinsic activity in the resting brain, especially that of ultraslow and slow oscillations. Using near-infrared spectroscopy (NIRS, electroencephalography (EEG, blood pressure (BP, respiration and heart rate recordings during 5 minutes of rest, combined with cross spectral and sliding cross correlation calculations, we identified a short-lasting coupling (duration [Formula: see text] s between prefrontal oxyhemoglobin (HbO2 in the frequency band between 0.07 and 0.13 Hz and central EEG alpha and/or beta power oscillations in 8 of the 9 subjects investigated. The HbO2 peaks preceded the EEG band power peaks by 3.7 s in 6 subjects, with moderate or no coupling between BP and HbO2 oscillations. HbO2 and EEG band power oscillations were approximately in phase with BP oscillations in the 2 subjects with an extremely high coupling (squared coherence [Formula: see text] between BP and HbO2 oscillation. No coupling was identified in one subject. These results indicate that slow precentral (deoxyhemoglobin concentration oscillations during awake rest can be temporarily coupled with EEG fluctuations in sensorimotor areas and modulate the excitability level in the brains' motor areas, respectively. Therefore, this provides support for the idea that resting state networks fluctuate with frequencies of between 0.01 and 0.1 Hz (Mantini et.al. PNAS 2007.

  8. Brain mechanisms that underlie the effects of motivational audiovisual stimuli on psychophysiological responses during exercise.

    Science.gov (United States)

    Bigliassi, Marcelo; Silva, Vinícius B; Karageorghis, Costas I; Bird, Jonathan M; Santos, Priscila C; Altimari, Leandro R

    2016-05-01

    Motivational audiovisual stimuli such as music and video have been widely used in the realm of exercise and sport as a means by which to increase situational motivation and enhance performance. The present study addressed the mechanisms that underlie the effects of motivational stimuli on psychophysiological responses and exercise performance. Twenty-two participants completed fatiguing isometric handgrip-squeezing tasks under two experimental conditions (motivational audiovisual condition and neutral audiovisual condition) and a control condition. Electrical activity in the brain and working muscles was analyzed by use of electroencephalography and electromyography, respectively. Participants were asked to squeeze the dynamometer maximally for 30s. A single-item motivation scale was administered after each squeeze. Results indicated that task performance and situational motivational were superior under the influence of motivational stimuli when compared to the other two conditions (~20% and ~25%, respectively). The motivational stimulus downregulated the predominance of low-frequency waves (theta) in the right frontal regions of the cortex (F8), and upregulated high-frequency waves (beta) in the central areas (C3 and C4). It is suggested that motivational sensory cues serve to readjust electrical activity in the brain; a mechanism by which the detrimental effects of fatigue on the efferent control of working muscles is ameliorated. PMID:26948160

  9. Sex-Steroid Hormone Manipulation Reduces Brain Response to Reward.

    Science.gov (United States)

    Macoveanu, Julian; Henningsson, Susanne; Pinborg, Anja; Jensen, Peter; Knudsen, Gitte M; Frokjaer, Vibe G; Siebner, Hartwig R

    2016-03-01

    Mood disorders are twice as frequent in women than in men. Risk mechanisms for major depression include adverse responses to acute changes in sex-steroid hormone levels, eg, postpartum in women. Such adverse responses may involve an altered processing of rewards. Here, we examine how women's vulnerability for mood disorders is linked to sex-steroid dynamics by investigating the effects of a pharmacologically induced fluctuation in ovarian sex steroids on the brain response to monetary rewards. In a double-blinded placebo controlled study, healthy women were randomized to receive either placebo or the gonadotropin-releasing hormone agonist (GnRHa) goserelin, which causes a net decrease in sex-steroid levels. Fifty-eight women performed a gambling task while undergoing functional MRI at baseline, during the mid-follicular phase, and again following the intervention. The gambling task enabled us to map regional brain activity related to the magnitude of risk during choice and to monetary reward. The GnRHa intervention caused a net reduction in ovarian sex steroids (estradiol and testosterone) and increased depression symptoms. Compared with placebo, GnRHa reduced amygdala's reactivity to high monetary rewards. There was a positive association between the individual changes in testosterone and changes in bilateral insula response to monetary rewards. Our data provide evidence for the involvement of sex-steroid hormones in reward processing. A blunted amygdala response to rewarding stimuli following a rapid decline in sex-steroid hormones may reflect a reduced engagement in positive experiences. Abnormal reward processing may constitute a neurobiological mechanism by which sex-steroid fluctuations provoke mood disorders in susceptible women. PMID:26245498

  10. Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Moos, T; Carrasco, J;

    1999-01-01

    response in the brain following disruption of the blood-brain barrier (BBB), we examined the effects of a focal cryo injury to the fronto-parietal cortex in interleukin-6-deficient (IL-6-/-) and normal (IL-6+/+) mice. In IL-6+/+ mice, brain injury resulted in the appearance of brain macrophages and...... brain macrophages and reactive astrocytes was markedly depressed and the number of NSE positive neurons was reduced. Brain damage-induced GM-CSF and MT-I+II expression were also markedly depressed compared to IL-6+/+ mice. In contrast, MT-III immunoreactivity was markedly increased in brain macrophages...

  11. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses.

    Science.gov (United States)

    Srinivasan, Karpagam; Friedman, Brad A; Larson, Jessica L; Lauffer, Benjamin E; Goldstein, Leonard D; Appling, Laurie L; Borneo, Jovencio; Poon, Chungkee; Ho, Terence; Cai, Fang; Steiner, Pascal; van der Brug, Marcel P; Modrusan, Zora; Kaminker, Joshua S; Hansen, David V

    2016-01-01

    A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. PMID:27097852

  12. Untangling the brain's neuroinflammatory and neurodegenerative transcriptional responses

    Science.gov (United States)

    Srinivasan, Karpagam; Friedman, Brad A.; Larson, Jessica L.; Lauffer, Benjamin E.; Goldstein, Leonard D.; Appling, Laurie L.; Borneo, Jovencio; Poon, Chungkee; Ho, Terence; Cai, Fang; Steiner, Pascal; van der Brug, Marcel P.; Modrusan, Zora; Kaminker, Joshua S.; Hansen, David V.

    2016-01-01

    A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing. Using peripheral endotoxemia to establish the method, we reveal highly specific transcriptional responses and altered RNA processing in each cell type, with Tnfr1 required for the astrocytic response. Extending the method to an Alzheimer's disease model, we confirm that transcriptomic changes observed in whole tissue are driven primarily by cell type composition, not transcriptional regulation, and identify hundreds of cell type-specific changes undetected in whole tissue RNA. Applying similar methods to additional models and patient tissues will transform our understanding of aberrant gene expression in neurological disease. PMID:27097852

  13. The shopping brain: math anxiety modulates brain responses to buying decisions.

    Science.gov (United States)

    Jones, William J; Childers, Terry L; Jiang, Yang

    2012-01-01

    Metacognitive theories propose that consumers track fluency feelings when buying, which may have biological underpinnings. We explored this using event-related potential (ERP) measures as twenty high-math anxiety (High MA) and nineteen low-math anxiety (Low MA) consumers made buying decisions for promoted (e.g., 15% discount) and non-promoted products. When evaluating prices, ERP correlates of higher perceptual and conceptual fluency were associated with buys, however only for High MA females under no promotions. In contrast, High MA females and Low MA males demonstrated greater FN400 amplitude, associated with enhanced conceptual processing, to prices of buys relative to non-buys under promotions. Concurrent late positive component (LPC) differences under no promotions suggest discrepant retrieval processes during price evaluations between consumer groups. When making decisions to buy or not, larger (smaller) P3, sensitive to outcome responses in the brain, was associated with buying for High MA females (Low MA females) under promotions, an effect also present for males under no promotions. Thus, P3 indexed decisions to buy differently between anxiety groups, but only for promoted items among females and for no promotions among males. Our findings indicate that perceptual and conceptual processes interact with anxiety and gender to modulate brain responses during consumer choices. PMID:22027087

  14. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses.

    Science.gov (United States)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J; Stein, Peter P; Mari, Andrea; Holst, Jens J; Nijpels, Giel; Dekker, Jacqueline M

    2010-04-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insulin, glucagon, and incretin responses. In a randomized crossover study, 18 subjects with type 2 diabetes mellitus and 6 healthy volunteers underwent three 4-hour meal tolerance tests (small carbohydrate [CH]-rich meal, large CH-rich meal, and fat-rich meal). Non-model-based and model-based estimates of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response as compared with the small CH-rich meal and led to a slightly shorter period of hyperglycemia, but only in healthy subjects. Model-based insulin secretion estimates did not show pronounced differences between meals. Both in healthy individuals and in those with diabetes, more CH resulted in higher GLP-1 release. In contrast with the other meals, GIP release was still rising 2 hours after the fat-rich meal. The initial glucagon response was stimulated by the large CH-rich meal, whereas the fat-rich meal induced a late glucagon response. Fat preferentially stimulates GIP secretion, whereas CH stimulates GLP-1 secretion. Differences in meal size and composition led to differences in insulin and incretin responses but not to differences in postprandial glucose levels of the well-controlled patients with diabetes. PMID:19846181

  15. Aggressiveness and brain amine concentration in dominant and subordinate finishing pigs fed the beta-adrenoreceptor agonist ractopamine.

    Science.gov (United States)

    Poletto, R; Cheng, H W; Meisel, R L; Garner, J P; Richert, B T; Marchant-Forde, J N

    2010-09-01

    Under farm conditions, aggression related to the formation of social hierarchy and competition for resources can be a major problem because of associated injuries, social stress, and carcass losses. Any factor that may affect the regulation and amount of aggression within a farmed system, for instance, feeding the beta-adrenoreceptor agonist ractopamine (RAC), is therefore worthy of investigation. The objectives of this study were to assess the effects of the widely used swine feed additive RAC, considering also the effects of sex and social rank on aggressiveness and concentrations of brain amines, neurotransmitters essential for controlling aggression, in finishing pigs. Thirty-two barrows and 32 gilts (4 pigs/pen by sex) were fed either a control diet or a diet with RAC (Paylean, Elanco Animal Health, Greenfield, IN) added (5 mg/kg for 2 wk, followed by 10 mg/kg for 2 wk). The top dominant and bottom subordinate pigs (16 pigs/sex) in each pen were determined after mixing by a 36-h period of continuous behavioral observation. These pigs were then subjected to resident-intruder tests (maximum 300 s) during the feeding trial to measure aggressiveness. At the end of wk 4, the amygdala, frontal cortex, hypothalamus, and raphe nuclei were dissected and analyzed for concentrations of dopamine (DA); serotonin (5-HT); their metabolites 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid, and 5-hydroxyindoleacetic acid (5-HIAA), respectively; norepinephrine; and epinephrine using HPLC. Ractopamine-fed gilts performed more attacks during the first 30 s of testing than pigs in all other subgroups (P < 0.05). By the end of the resident-intruder test (300 s), the dominant control gilts and barrows, and both dominant and subordinate RAC-fed gilts performed the greatest percentage of attacks (P < 0.05). Gilts had decreased norepinephrine and DOPAC concentrations in the amygdala and frontal cortex, and when fed RAC, gilts also had the least 5-HIAA concentration and

  16. Relative response of TL and component-resolved OSL to alpha and beta radiations in annealed sedimentary quartz

    Energy Technology Data Exchange (ETDEWEB)

    Polymeris, George S., E-mail: polymers@auth.gr [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. ' ATHENA' , Tsimiski 58, 67100 Xanthi (Greece); ISIK University, Faculty of Science and Arts, Physics Department, Sile 34980, Istanbul (Turkey); Afouxenidis, Dimitrios; Raptis, Spyridoula [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. ' ATHENA' , Tsimiski 58, 67100 Xanthi (Greece); Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Liritzis, Ioannis [Laboratory of Archaeometry, Dept. of Mediterranean Studies, University of the Aegean, 1 Demokratias Ave., 85100 Rhodes (Greece); Tsirliganis, Nestor C. [Archaeometry Laboratory, Cultural and Educational Technology Institute, R.C. ' ATHENA' , Tsimiski 58, 67100 Xanthi (Greece); Kitis, George [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

    2011-10-15

    Knowledge of the relative luminescence response to alpha and beta radiation is very important in TL and OSL dating. In the present study the relative alpha to beta response is studied in a sedimentary quartz sample, previously fired at 900 deg. C for 1 h, in the dose region between 1 and 128 Gy, for both thermoluminescence (TL) and linearly modulated optically stimulated luminescence (LM - OSL). The LM - OSL measurements were performed at room temperature and at 125 deg. C. All OSL signals were deconvolved into their individual components. Comparison of OSL curves after alpha and beta irradiation strongly supports that quartz OSL components follow first order kinetics in both cases. In the case of TL, the relative alpha to beta response is found to be very different for each TL glow-peak, but it does not depend strongly on irradiation dose. In the case of LM - OSL measurements, it is found that the relative behaviour of the alpha to beta response is different for three distinct regions, namely the fast OSL component, the region of medium OSL component originating from the TL glow-peak at 110 deg. C when stimulation takes place at room temperature and finally the region of slow OSL component. Following stimulation at ambient temperature, the relative alpha to beta response of all components was not observed to depend significantly on dose, with the value of ratio being 0.03 and a tendency to decrease with increasing dose. However, in the case of measurements performed at 125 deg. C, the relative response of the fast components is much enhanced, and for the remaining components it increases with increasing dose. Special care must be taken to examine the relative alpha to beta response of the fast component at 125 deg. C which contrasts the relative response of the TL peak at ca. 325 deg. C. The implications for the dating of annealed quartz are also briefly discussed. - Highlights: > Relative alpha to beta response for TL and LM-OSL is studied in annealed sedimentary

  17. Regional brain responses in nulliparous women to emotional infant stimuli.

    Science.gov (United States)

    Montoya, Jessica L; Landi, Nicole; Kober, Hedy; Worhunsky, Patrick D; Rutherford, Helena J V; Mencl, W Einar; Mayes, Linda C; Potenza, Marc N

    2012-01-01

    Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational

  18. Regional brain responses in nulliparous women to emotional infant stimuli.

    Directory of Open Access Journals (Sweden)

    Jessica L Montoya

    Full Text Available Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high and unknown infant faces of varying affect (happy, sad, and neutral in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences

  19. Methylprednisolone does not restore biological response in multiple sclerosis patients with neutralizing antibodies against interferon-beta

    DEFF Research Database (Denmark)

    Hesse, D; Frederiksen, J L; Koch-Henriksen, N;

    2009-01-01

    Background and purpose: Neutralizing antibodies (NAbs) appearing during treatment with Interferon-beta (IFN-beta) reduce or abolish bioactivity and therapeutic efficacy. Initial combination therapy with methylprednisolone (MP) may reduce the frequency of NAb positive patients. We hypothesized that...... Resistance Protein A (MxA) mRNA induction in whole blood using real time PCR. Results: At the end of study, median NAb NC was 92% in both groups. Eight patients (21%) in the MP group and four patients (11%) in the control group had regained an in vivo MxA response to IFN-beta (P = 0.35). Conclusions: Monthly...

  20. Huperzine A protects isolated rat brain mitochondria against beta-amyloid peptide.

    Science.gov (United States)

    Gao, Xin; Zheng, Chun Yan; Yang, Ling; Tang, Xi Can; Zhang, Hai Yan

    2009-06-01

    Our previous work in cells and animals showed that mitochondria are involved in the neuroprotective effect of huperzine A (HupA). In this study, the effects of HupA on isolated rat brain mitochondria were investigated. In addition to inhibiting the Abeta(25-35) (40 microM)-induced decrease in mitochondrial respiration, adenosine 5'-triphosphate (ATP) synthesis, enzyme activity, and transmembrane potential, HupA (0.01 or 0.1 microM) effectively prevented Abeta-induced mitochondrial swelling, reactive oxygen species increase, and cytochrome c release. More interestingly, administration of HupA to isolated mitochondria promoted the rate of ATP production and blocked mitochondrial swelling caused by normal osmosis. These results indicate that HupA protects mitochondria against Abeta at least in part by preserving membrane integrity and improving energy metabolism. These direct effects on mitochondria further extend the noncholinergic functions of HupA. PMID:19272446

  1. Differential chemokine responses in the murine brain following lyssavirus infection.

    Science.gov (United States)

    Hicks, D J; Núñez, A; Banyard, A C; Williams, A; Ortiz-Pelaez, A; Fooks, A R; Johnson, N

    2013-11-01

    The hallmark of lyssavirus infection is lethal encephalomyelitis. Previous studies have reported distinct lyssavirus isolate-related differences in severity of cellular recruitment into the encephalon in a murine model of infection following peripheral inoculation with rabies virus (RABV) and European bat lyssavirus (EBLV)-1 and -2. In order to understand the role of chemokines in this process, comparative studies of the chemokine pattern, distribution and production in response to infection with these lyssaviruses were undertaken. Expression of CCL2, CCL5 and CXCL10 was observed throughout the murine brain with a distinct caudal bias in distribution, similar to both inflammatory changes and virus antigen distribution. CCL2 immunolabelling was localized to neuronal and astroglial populations. CCL5 immunolabelling was only detected in the astroglia, while CXCL10 labelling, although present in the astroglia, was more prominent in neurons. Isolate-dependent differences in the amount of chemokine immunolabelling in specific brain regions and chemokine production by neurons in vitro were observed, with a greater expression of CCL5 in vivo and CXCL10 production in vitro after EBLV infection. Additionally, strong positive associations between chemokine immunolabelling and perivascular cuffing and, to a lesser extent, virus antigen score were also observed. These differences in chemokine expression may explain the variation in severity of encephalitic changes observed in animals infected with different lyssavirus isolates. PMID:23746482

  2. The effect of training on responses of beta-endorphin and other pituitary hormones to insulin-induced hypoglycemia

    DEFF Research Database (Denmark)

    Mikines, K J; Kjær, Michael; Hagen, C; Sonne, B; Richter, Erik; Galbo, H

    1985-01-01

    We studied whether the previously reported intensified beta-endorphin response to exercise after training might result from a training-induced general increase in anterior pituitary secretory capacity. Identical hypoglycemia was induced by insulin infusion in 7 untrained (VO2max 49 +/- 4 ml X (kg X...... hypoglycemia neither in trained nor in untrained subjects. Finally, differences in beta-endorphin responses to exercise between trained and untrained subjects cannot be ascribed to differences in responsiveness to hypoglycemia....... min)-1, mean and SE) and 8 physically trained (VO2max 65 +/- 4 ml X (kg X min)-1) subjects. In response to hypoglycemia, levels of beta-endorphin and prolactin immunoreactivity in serum increased similarly in trained (from 41 +/- 2 pg X ml-1 and 6 +/- 1 pg X ml-1 before hypoglycemia to 103 +/- 11 pg X...

  3. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    Science.gov (United States)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  4. Brain response to traumatic brain injury in wild-type and interleukin-6 knockout mice: a microarray analysis

    DEFF Research Database (Denmark)

    Poulsen, Christian Bjørn; Penkowa, Milena; Borup, Rehannah; Nielsen, Finn Cilius; Cáceres, Mario; Quintana, Albert; Molinero, Amalia; Carrasco, Javier; Giralt, Mercedes; Hidalgo, Juan

    2005-01-01

    Traumatic injury to the brain is one of the leading causes of injury-related death or disability. Brain response to injury is orchestrated by cytokines, such as interleukin (IL)-6, but the full repertoire of responses involved is not well known. We here report the results obtained with microarrays...... processes involved in the initial tissue injury and later regeneration of the parenchyma. IL-6 deficiency showed a dramatic effect in the expression of many genes, especially in the 1 day post-lesion timing, which presumably underlies the poor capacity of IL-6 knockout mice to cope with brain damage. The...... results highlight the importance of IL-6 controlling the response of the brain to injury as well as the suitability of microarrays for identifying specific targets worthy of further study....

  5. Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury

    Science.gov (United States)

    Williams, Shawniqua T; Conte, Mary M; Goldfine, Andrew M; Noirhomme, Quentin; Gosseries, Olivia; Thonnard, Marie; Beattie, Bradley; Hersh, Jennifer; Katz, Douglas I; Victor, Jonathan D; Laureys, Steven; Schiff, Nicholas D

    2013-01-01

    Zolpidem produces paradoxical recovery of speech, cognitive and motor functions in select subjects with severe brain injury but underlying mechanisms remain unknown. In three diverse patients with known zolpidem responses we identify a distinctive pattern of EEG dynamics that suggests a mechanistic model. In the absence of zolpidem, all subjects show a strong low frequency oscillatory peak ∼6–10 Hz in the EEG power spectrum most prominent over frontocentral regions and with high coherence (∼0.7–0.8) within and between hemispheres. Zolpidem administration sharply reduces EEG power and coherence at these low frequencies. The ∼6–10 Hz activity is proposed to arise from intrinsic membrane properties of pyramidal neurons that are passively entrained across the cortex by locally-generated spontaneous activity. Activation by zolpidem is proposed to arise from a combination of initial direct drug effects on cortical, striatal, and thalamic populations and further activation of underactive brain regions induced by restoration of cognitively-mediated behaviors. DOI: http://dx.doi.org/10.7554/eLife.01157.001 PMID:24252875

  6. Brain

    Science.gov (United States)

    ... will return after updating. Resources Archived Modules Updates Brain Cerebrum The cerebrum is the part of the ... the outside of the brain and spinal cord. Brain Stem The brain stem is the part of ...

  7. Attenuated Response to Methamphetamine Sensitization and Deficits in Motor Learning and Memory after Selective Deletion of [beta]-Catenin in Dopamine Neurons

    Science.gov (United States)

    Diaz-Ruiz, Oscar; Zhang, YaJun; Shan, Lufei; Malik, Nasir; Hoffman, Alexander F.; Ladenheim, Bruce; Cadet, Jean Lud; Lupica, Carl R.; Tagliaferro, Adriana; Brusco, Alicia; Backman, Cristina M.

    2012-01-01

    In the present study, we analyzed mice with a targeted deletion of [beta]-catenin in DA neurons (DA-[beta]cat KO mice) to address the functional significance of this molecule in the shaping of synaptic responses associated with motor learning and following exposure to drugs of abuse. Relative to controls, DA-[beta]cat KO mice showed significant…

  8. Bone response and mechanical strength of rabbit femoral defects filled with injectable CaP cements containing TGF-beta 1 loaded gelatin microparticles.

    NARCIS (Netherlands)

    Link, D.P.; Dolder, J. van den; Beucken, J.J.J.P van den; Wolke, J.G.C.; Mikos, A.G.; Jansen, J.A.

    2008-01-01

    This study focused at the potential of transforming growth factor beta 1 (TGF-beta 1) loaded gelatin microparticles to enhance the bone response and mechanical strength of rabbit femoral defects filled with injectable calcium phosphate (CaP)/gelatin microparticle composites. Therefore, TGF-beta1 loa

  9. Response-surface models for deterministic effects of localized irradiation of the skin by discrete {beta}/{gamma} -emitting sources

    Energy Technology Data Exchange (ETDEWEB)

    Scott, B.R.

    1995-12-01

    Individuals who work at nuclear reactor facilities can be at risk for deterministic effects in the skin from exposure to discrete {Beta}- and {gamma}-emitting ({Beta}{gamma}E) sources (e.g., {Beta}{gamma}E hot particles) on the skin or clothing. Deterministic effects are non-cancer effects that have a threshold and increase in severity as dose increases (e.g., ulcer in skin). Hot {Beta}{gamma}E particles are {sup 60}Co- or nuclear fuel-derived particles with diameters > 10 {mu}m and < 3 mm and contain at least 3.7 kBq (0.1 {mu}Ci) of radioactivity. For such {Beta}{gamma}E sources on the skin, it is the beta component of the dose that is most important. To develop exposure limitation systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for systems that adequately control exposure of workers to discrete {Beta}{gamma}E sources, models are needed for evaluating the risk of deterministic effects of localized {Beta} irradiation of the skin. The purpose of this study was to develop dose-rate and irradiated-area dependent, response-surface models for evaluating risks of significant deterministic effects of localized irradiation of the skin by discrete {Beta}{gamma}E sources and to use modeling results to recommend approaches to limiting occupational exposure to such sources. The significance of the research results as follows: (1) response-surface models are now available for evaluating the risk of specific deterministic effects of localized irradiation of the skin; (2) modeling results have been used to recommend approaches to limiting occupational exposure of workers to {Beta} radiation from {Beta}{gamma}E sources on the skin or on clothing; and (3) the generic irradiated-volume, weighting-factor approach to limiting exposure can be applied to other organs including the eye, the ear, and organs of the respiratory or gastrointestinal tract and can be used for both deterministic and stochastic effects.

  10. Volume specific response criteria for brain metastases following salvage stereotactic radiosurgery and associated predictors of response

    International Nuclear Information System (INIS)

    Background. We aimed to derive three-dimensional volume-based (V3D) response criteria that approximate those based on Response Evaluation Criteria in Solid Tumours (RECIST) in patients with brain metastases (BM) treated with salvage stereotactic radiosurgery (SRS). Material and methods. Seventy patients with 178 BM were treated with SRS. Each BM was characterised at baseline and at each follow-up MRI according to its widest diameter and V3D using ITK-SNAP image segmentation software. Results. The median tumour diameter was 1.2 cm (range, 0.2-4.5 cm) and V3D was 0.73 cm3 (range, 0.01-22.7 cm3). The V3D percent changes that best matched RECIST response criteria were: an increase of ≥71.5% for progressive disease, a ≥58.5% decrease for partial response and a 3.0 cm (p =0.006) and a V3D >6.0 cm3 (p =0.043) predicted for local failure, and a baseline cumulative V3D of >3.0 cm3 (p =0.02) was adversely prognostic for survival. Conclusions. We define 3D volume specific criteria to base response upon for brain metastases treated with salvage SRS. Tumours with a V3D of greater than 6 cm3 are at a higher risk of local failure

  11. Combination therapy with IFN-beta, ACNU and radiation (IAR) for malignant brain tumors

    International Nuclear Information System (INIS)

    In order to analyze the efficacy of combination therapy with Hu-IFN-β, ACNU and radiation (IAR), nine patients with malignant glioma were treated as a control study. They received 100 x 104 IU Hu-IFN-β daily for seven days intravenously or intratumorally, 3 mg/kg ACNU on day 2 and 5,000 - 6,000 rads of radiation from day 3. Four out of nine patients showed complete response and one partial response with this IAR therapy. Case 1 was a 64-year-old man who had glioblastoma in the left frontal lobe. Postoperative residual tumors disappeared completely with this therapy. Case 3 was a 8-year-old girl who had an enhanced high-density lesion in the medulla oblongata and pons. After IAR therapy, the high-density lesion was completely vanished and her clinical manifestations of multiple cranial nerve palsy and pyramidal sign were improved remarkably. The major side effects of IAR therapy were mild or moderate myelosuppression, and some patients also showed hepatic dysfunction, mild fever and gastrointestinal toxicities. However, all these side effects were mild and transient and soon recovered to normal levels. These results suggest that IAR therapy is effective and will prolong the survival time of patients with malignant glioma. (author)

  12. Reference beta radiations for calibrating dosemeters and dose ratemeters and for determining their response as a function of beta radiation energy. 1. ed.

    International Nuclear Information System (INIS)

    This International Standard specifies the requirements for reference beta radiations produced by radionuclide sources to be used for the calibration of protection level dosemeters and dose ratemeters, and for the determination of their response as a function of beta energy. It gives the characteristics of radionuclides which have been used to produce reference beta radiations, gives examples of suitable source constructions and describes methods for the measurement of the residual maximum beta energy and the absorbed dose rate at a depth of 7 mg·cm-2 in a semi-infinite tissue-equivalent medium. The energy range involved lies between 66 keV and 3.6 MeV and the absorbed dose rates are in the range from about 10 μGy·h-1 (1 mrad·h-1) to at least 10 Gy·h-1 (103 rad·h-1). This International Standard proposes two series of beta reference radiations from which the radiation necessary for determining the characteristics (calibration and energy response) of an instrument shall be selected. Series 1 reference radiations are produced by radionuclide sources used with beam flattening filters designed to give uniform dose rates over a large area at a specific distance. The proposed sources of 90Sr+90Y, 204TI and 147Pm produce maximum dose rates of approximately 5mGy·h-1 (0.5 rad·h-1). Series 2 reference radiations are produced without the use of beam flattening filters which allows a range of source-to-calibration plane distances to be used. Close to the sources only relatively small areas of uniform dose rate are produced but this Series has the advantage of extending the energy and dose rate ranges beyond those of Series 1. The radionuclides used are those of Series 1 with the addition of the radionuclides 14C and 106Ru+106Rh; these sources produce dose rates of up to 10 Gy·h-1 (103 rad·h-1)

  13. Deletion of glutamate dehydrogenase in beta-cells abolishes part of the insulin secretory response not required for glucose homeostasis

    DEFF Research Database (Denmark)

    Carobbio, Stefania; Frigerio, Francesca; Rubi, Blanca;

    2009-01-01

    secretion was reduced by 37% in betaGlud1(-/-). Furthermore, isolated islets with either constitutive or acute adenovirus-mediated knock-out of GDH showed a 49 and 38% reduction in glucose-induced insulin release, respectively. Adenovirus-mediated re-expression of GDH in betaGlud1(-/-) islets fully restored......Insulin exocytosis is regulated in pancreatic ss-cells by a cascade of intracellular signals translating glucose levels into corresponding secretory responses. The mitochondrial enzyme glutamate dehydrogenase (GDH) is regarded as a major player in this process, although its abrogation has not been...... glucose-induced insulin release. Thus, GDH appears to account for about 40% of glucose-stimulated insulin secretion and to lack redundant mechanisms. In betaGlud1(-/-) mice, the reduced secretory capacity resulted in lower plasma insulin levels in response to both feeding and glucose load, while body...

  14. Brain development and predation: plastic responses depend on evolutionary history

    OpenAIRE

    Gonda, Abigél; Välimäki, Kaisa; Herczeg, Gábor; Merilä, Juha

    2011-01-01

    Although the brain is known to be a very plastic organ, the effects of common ecological interactions like predation or competition on brain development have remained largely unexplored. We reared nine-spined sticklebacks (Pungitius pungitius) from two coastal marine (predation-adapted) and two isolated pond (competition-adapted) populations in a factorial experiment, manipulating perceived predatory risk and food supply to see (i) if the treatments affected brain development and (ii) if ther...

  15. Brain response to affective pictures in the chimpanzee

    OpenAIRE

    Satoshi Hirata; Goh Matsuda; Ari Ueno; Hirokata Fukushima; Koki Fuwa; Keiko Sugama; Kiyo Kusunoki; Masaki Tomonaga; Kazuo Hiraki; Toshikazu Hasegawa

    2013-01-01

    Advancement of non-invasive brain imaging techniques has allowed us to examine details of neural activities involved in affective processing in humans; however, no comparative data are available for chimpanzees, the closest living relatives of humans. In the present study, we measured event-related brain potentials in a fully awake adult chimpanzee as she looked at affective and neutral pictures. The results revealed a differential brain potential appearing 210 ms after presentation of an aff...

  16. Candidate Gene Study of TRAIL and TRAIL Receptors: Association with Response to Interferon Beta Therapy in Multiple Sclerosis Patients

    Science.gov (United States)

    Órpez-Zafra, Teresa; Pinto-Medel, María Jesús; Oliver-Martos, Begoña; Ortega-Pinazo, Jesús; Arnáiz, Carlos; Guijarro-Castro, Cristina; Varadé, Jezabel; Álvarez-Lafuente, Roberto; Urcelay, Elena; Sánchez-Jiménez, Francisca

    2013-01-01

    TRAIL and TRAIL Receptor genes have been implicated in Multiple Sclerosis pathology as well as in the response to IFN beta therapy. The objective of our study was to evaluate the association of these genes in relation to the age at disease onset (AAO) and to the clinical response upon IFN beta treatment in Spanish MS patients. We carried out a candidate gene study of TRAIL, TRAILR-1, TRAILR-2, TRAILR-3 and TRAILR-4 genes. A total of 54 SNPs were analysed in 509 MS patients under IFN beta treatment, and an additional cohort of 226 MS patients was used to validate the results. Associations of rs1047275 in TRAILR-2 and rs7011559 in TRAILR-4 genes with AAO under an additive model did not withstand Bonferroni correction. In contrast, patients with the TRAILR-1 rs20576-CC genotype showed a better clinical response to IFN beta therapy compared with patients carrying the A-allele (recessive model: p = 8.88×10−4, pc = 0.048, OR = 0.30). This SNP resulted in a non synonymous substitution of Glutamic acid to Alanine in position 228 (E228A), a change previously associated with susceptibility to different cancer types and risk of metastases, suggesting a lack of functionality of TRAILR-1. In order to unravel how this amino acid change in TRAILR-1 would affect to death signal, we performed a molecular modelling with both alleles. Neither TRAIL binding sites in the receptor nor the expression levels of TRAILR-1 in peripheral blood mononuclear cell subsets (monocytes, CD4+ and CD8+ T cells) were modified, suggesting that this SNP may be altering the death signal by some other mechanism. These findings show a role for TRAILR-1 gene variations in the clinical outcome of IFN beta therapy that might have relevance as a biomarker to predict the response to IFN beta in MS. PMID:23658636

  17. Polymorphisms of innate pattern recognition receptors, response to interferon-beta and development of neutralizing antibodies in multiple sclerosis patients

    DEFF Research Database (Denmark)

    Enevold, Christian; Oturai, Annette Bang; Sørensen, Per Soelberg; Ryder, Lars P.; Koch-Henriksen, Nils; Bendtzen, Klaus

    2010-01-01

    Interferon-beta therapy of patients with relapsing-remitting multiple sclerosis involves repeated 'immunizations' with exogenous protein solutions. Innate pattern recognition receptors play an important role in immune responses towards foreign substances and may thus be related to treatment outcome....

  18. Active microwave computed brain tomography: the response to a challenge.

    Science.gov (United States)

    Almirall, H; Broquetas, A; Jofre, L

    1991-02-01

    The potential application of active microwave techniques to brain imaging is studied by numerical simulations and experimentally using a recently developed cylindrical microwave scanner. The potential advantages and limitations of this method in static and dynamic brain imaging are presented and compared with other imaging techniques. PMID:2062119

  19. A Response to the Legitimacy of Brain Death in Islam.

    Science.gov (United States)

    Rady, Mohamed Y; Verheijde, Joseph L

    2016-08-01

    Brain death is a novel construct of death for the procurement of transplantable organs. Many authoritative Islamic organizations and governments have endorsed brain death as true death for organ donation. Many commentators have reiterated the misconception that the Quranic text does not define death. We respond by clarifying: (1) the Quran does define death as biologic disintegration and clearly distinguishes it from the dying process, (2) brain death belongs scientifically within the spectrum of neurologic disorders of consciousness and should not be confused with death, and (3) religious and legal discord about brain death has grown in jurisdictions worldwide. We urge for public transparency and truthfulness about brain death and the accommodation and respect of religious objection to the determination of death by neurologic criteria. PMID:27010462

  20. New Delhi metallo-beta-lactamase 1-producing Enterobacteriaceae: emergence and response in Europe.

    Science.gov (United States)

    Struelens, M J; Monnet, D L; Magiorakos, A P; Santos O'Connor, F; Giesecke, J

    2010-11-18

    Acquired carbapenemases confer extensive antibiotic resistance to Enterobacteriaceae and represent a public health threat. A novel acquired carbapenemase, New Delhi metallo-beta-lactamase 1 (NDM-1), has recently been described in the United Kingdom and Sweden, mostly in patients who had received care on the Indian subcontinent. We conducted a survey among 29 European countries (the European Union Member States, Iceland and Norway) to gather information on the spread of NDM-1-producing Enterobacteriaceae in Europe, on public health responses and on available national guidance on detection, surveillance and control. A total of 77 cases were reported from 13 countries from 2008 to 2010. Klebsiella pneumoniae was the most frequently reported species with 54%. Among 55 cases with recorded travel history, 31 had previously travelled or been admitted to a hospital in India or Pakistan and five had been hospitalised in the Balkan region. Possible nosocomial acquisition accounted for 13 of 77 cases. National guidance on NDM-1 detection was available in 14 countries and on NDM-1 control in 11 countries. In conclusion, NDM-1 is spreading across Europe, where it is frequently linked to a history of healthcare abroad, but also to emerging nosocomial transmission. National guidance in response to the threat of carbapenemase-producing Enterobacteriaceae is available in approximately half of the surveyed European countries. Surveillance of carbapenemase- producing Enterobacteriaceae must be enhanced in Europe and effective control measures identified and implemented. PMID:21144431

  1. Effects of a beta-blocker on the cardiovascular response to MDMA (Ecstasy)

    OpenAIRE

    Hysek, C M; Vollenweider, F X; Liechti, M. E.

    2010-01-01

    BACKGROUND: MDMA (3,4-methylenedioxymethamphetamine, 'Ecstasy') produces tachycardia and hypertension and is rarely associated with cardiovascular and cerebrovascular complications. In clinical practice, beta-blockers are often withheld in patients with stimulant intoxication because they may increase hypertension and coronary artery vasospasm due to loss of beta(2)-mediated vasodilation and unopposed alpha-receptor activation. However, it is unknown whether beta-blockers affect the cardiovas...

  2. Low sodium diet corrects the defect in lymphocyte beta-adrenergic responsiveness in hypertensive subjects.

    OpenAIRE

    Feldman, R D; Lawton, W J; McArdle, W L

    1987-01-01

    To determine the role of dietary sodium intake in the reduction in beta-adrenergic sensitivity in hypertension, lymphocyte beta-receptors from 8 borderline hypertensive and 16 normotensive subjects were studied after 5 d on a high sodium diet (400 meq/d) and also following a low sodium diet (10 meq/d). During the high sodium diet, lymphocyte beta-receptor-stimulated adenylate cyclase activity, expressed as the relative increase over basal levels stimulated by the beta-agonist isoproterenol, w...

  3. The effect of polymorphisms of beta2 adrenoceptors on response to long-acting beta2 agonists in Iranian asthmatic patients.

    Science.gov (United States)

    Soleimani, Fatemeh; Fahimi, Fanak; Adimi Naghan, Parisa; Nadji, Seyed Alireza; Morowati, Saeid; Naderi, Nima; Masjedi, Mohammad Reza

    2013-12-01

    The results of many studies suggested possible relationship between polymorphism at codons 16 and 27 and development of tolerance to beta-2 adrenoceptor agonist responses as well as disease severity in asthmatic patients. This study was designed to evaluate the effect of polymorphism of beta2 adrenoceptors on response to salmeterol and fluticasone (as inhaled Seretide).Sixty-four patients with either mild or moderate-severe asthma were evaluated in this study. A four-week therapy with Seretide was conducted in moderate-severe asthmatics. The respiratory parameters and asthma score (based on GINA guidelines) were measured before and after run in period. Blood samples were genotyped at codons 16 and 27.No significant difference was observed in genotypes neither at codon 16 nor at codon 27 between mild and moderate-severe asthma groups. However, Patients in Arg/Arg (n = 8) category showed significant improvement in asthma control parameters and lung function compared with Arg/Gly genotype (n =20).These results suggest that genotyping may be useful in some asthmatic patients in order to better tailor asthma treatment plan. PMID:23996715

  4. The effect of polymorphisms of beta2 adrenoceptors on response to long-acting beta2 agonists in Iranian asthmatic patients.

    Directory of Open Access Journals (Sweden)

    Fatemeh Soleimani

    2013-12-01

    Full Text Available The results of many studies suggested possible relationship between polymorphism at codons 16 and 27 and development of tolerance to beta-2 adrenoceptor agonist responses as well as disease severity in asthmatic patients. This study was designed to evaluate the effect of polymorphism of beta2 adrenoceptors on response to salmeterol and fluticasone (as inhaled Seretide.Sixty-four patients with either mild or moderate-severe asthma were evaluated in this study. A four-week therapy with Seretide was conducted in moderate-severe asthmatics. The respiratory parameters and asthma score (based on GINA guidelines were measured before and after run in period. Blood samples were genotyped at codons 16 and 27.No significant difference was observed in genotypes neither at codon 16 nor at codon 27 between mild and moderate-severe asthma groups. However, Patients in Arg/Arg (n = 8 category showed significant improvement in asthma control parameters and lung function compared with Arg/Gly genotype (n =20.These results suggest that genotyping may be useful in some asthmatic patients in order to better tailor asthma treatment plan.

  5. Deep Brain Stimulation Response in Pathologically Confirmed Cases of Multiple System Atrophy

    OpenAIRE

    Ullman, Michael; Vedam-Mai, Vinata; Resnick, Andrew S.; Yachnis, Anthony T.; McFarland, Nikolaus R.; Merritt, Stacy; Zeilman, Pamela; Foote, Kelly D; Okun, Michael S.

    2011-01-01

    Deep brain stimulation is a treatment for select cases of medication refractory movement disorders including Parkinson’s disease. Deep brain stimulation has not been recommended for treatment in multiple system atrophy patients. However, the paucity of literature documenting the effects of deep brain stimulation in multiple system atrophy patients and the revelation of a levodopa-responsive subtype of multiple system atrophy suggests further investigation is necessary.

  6. Scintillation response of CsI: Tl crystal under neutron, gamma, alpha particles and beta excitations

    International Nuclear Information System (INIS)

    Among the converters of X and gamma radiation in light photons, known as scintillators, the one which is the most efficient emits photons with a wavelength near 400 nm. Particularly, among them, the cesium iodine doped with thallium (CsI:Tl) crystal is that which matches better between the light emission spectrum (peak at 540 nm) and the quantum sensitivity curve of the photodiodes and CCD (Charge Coupled Device). This explains the renewed interest in using this crystal as scintillator. Although the CsI:Tl crystal is commercially available, its local development would give the possibility to obtain it in different geometric configurations and coupling. Moreover, there is a special interest in studying new conditions that will alter the properties of this crystal in order to achieve a optimal level of its functional characteristics. Having an efficient national scintillator with low cost is a strategic opportunity to study the response of a detector applied to different types of radiation. The crystal of cesium iodide activated with thallium (CsI:Tl) has a high gamma detection efficiency per unit volume. In this paper, the CsI:Tl crystal, grown by the vertical Bridgman technique in evacuated silica ampoules and with the purpose of use as radiation detectors, is described. To evaluate the scintillator, measures of the thallium distribution in the crystal volume were taken, with overall efficiency score. The scintillator response was studied through gamma radiation from sources of 137Cs, 60Co, 22Na, 54Mn, 131I and 99mTc; the beta radiation from source of 90Sr/90Y, alpha particles from 241Am source and the scintillator response to neutrons from Am/Be source. The energetic resolution for 137Cs gamma rays (662 keV) was 10%. The results showed the validity of using the CsI:Tl crystal developed in our laboratory, in many applications in the area of radiation detectors. (author)

  7. Substrate utilization and thermogenic responses to beta-adrenergic stimulation in obese subjects with NIDDM

    NARCIS (Netherlands)

    Blaak, E E; Saris, W H; Wolffenbuttel, B H

    1999-01-01

    OBJECTIVE: This study intended to investigate disturbances in beta-adrenergically-mediated substrate utilization and thermogenesis in obese subjects with mild non insulin-dependent diabetes mellitus (NIDDM). DESIGN: Following a baseline period of 30 min, the beta-agonist isoproterenol (ISO) was admi

  8. The human brain response to dental pain relief.

    Science.gov (United States)

    Meier, M L; Widmayer, S; Abazi, J; Brügger, M; Lukic, N; Lüchinger, R; Ettlin, D A

    2015-05-01

    Local anesthesia has made dental treatment more comfortable since 1884, but little is known about associated brain mechanisms. Functional magnetic resonance imaging is a modern neuroimaging tool widely used for investigating human brain activity related to sensory perceptions, including pain. Most brain regions that respond to experimental noxious stimuli have recently been found to react not only to nociception alone, but also to visual, auditory, and other stimuli. Thus, presumed functional attributions have come under scrutiny regarding selective pain processing in the brain. Evidently, innovative approaches are warranted to identify cerebral regions that are nociceptive specific. In this study, we aimed at circumventing known methodological confounders by applying a novel paradigm in 14 volunteers: rather than varying the intensity and thus the salience of painful stimuli, we applied repetitive noxious dental stimuli at constant intensity to the left mandibular canine. During the functional magnetic resonance imaging paradigm, we suppressed the nociceptive barrage by a mental nerve block. Brain activity before and after injection of 4% articaine was compared intraindividually on a group level. Dental pain extinction was observed to correspond to activity reduction in a discrete region of the left posterior insular cortex. These results confirm previous reports demonstrating that direct electrical stimulation of this brain region-but not of others-evokes bodily pain sensations. Hence, our investigation adds further evidence to the notion that the posterior insula plays a unique role in nociceptive processing. PMID:25691071

  9. A Bayesian model of category-specific emotional brain responses.

    Science.gov (United States)

    Wager, Tor D; Kang, Jian; Johnson, Timothy D; Nichols, Thomas E; Satpute, Ajay B; Barrett, Lisa Feldman

    2015-04-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories--fear, anger, disgust, sadness, or happiness--is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  10. [Levels of beta-endorphin in response to exercise and overtraining].

    Science.gov (United States)

    Cunha, Giovani S; Ribeiro, Jerri L; Oliveira, Alvaro R

    2008-06-01

    Overtraining (OT) is a complex and multifactorial sport phenomenon, and there is no independent marker that can diagnose OT. Interestingly, some symptoms of OT are related to beta-endorphin (beta-end(1-31)) effects. Some of its effects, such as analgesia, increasing lactate tolerance, and exercise-induced euphoria, are important for training. These effects can be reverted by detraining or OT, which may cause decrease in performance, reduced load tolerance, and depression. The main stimulus for beta-end(1-31) secretion is to exercise because its secretion is volume/intensity dependent for both aerobic and anaerobic exercise. Excess training, however, may reduce beta-end(1-31) concentrations, thus altering its beneficial effects. Therefore, beta-end(1-31) could be used as an additional OT marker, mainly because its effects are strongly related to OT symptoms. PMID:18604371

  11. Improved Detection of Time Windows of Brain Responses in Fmri Using Modified Temporal Clustering Analysis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ Temporal clustering analysis (TCA) has been proposed recently as a method to detect time windows of brain responses in functional MRI (fMRI) studies when the timing and location of the activation are completely unknown. Modifications to the TCA technique are introduced in this report to further improve the sensitivity in detecting brain activation.

  12. Photodynamic therapy stimulates anti-tumor immune response in mouse models: the role of regulatory Tcells, anti-tumor antibodies, and immune attacks on brain metastases

    Science.gov (United States)

    Vatansever, Fatma; Kawakubo, Masayoshi; Chung, Hoon; Hamblin, Michael R.

    2013-02-01

    We have previously shown that photodynamic therapy mediated by a vascular regimen of benzoporphyrin derivative and 690nm light is capable of inducing a robust immune response in the mouse CT26.CL25 tumor model that contains a tumor-rejection antigen, beta-galactosidase (β-gal). For the first time we show that PDT can stimulate the production of serum IgG antibodies against the β-gal antigen. It is known that a common cause of death from cancer, particularly lung cancer, is brain metastases; especially the inoperable ones that do not respond to traditional cytotoxic therapies either. We asked whether PDT of a primary tumor could stimulate immune response that could attack the distant brain metastases. We have developed a mouse model of generating brain metastases by injecting CT26.CL25 tumor cells into the brain as well as injecting the same cancer cells under the skin at the same time. When the subcutaneous tumor was treated with PDT, we observed a survival advantage compared to mice that had untreated brain metastases alone.

  13. A new DNA vaccine fused with the C3d-p28 induces a Th2 immune response against amyloid-beta*

    Institute of Scientific and Technical Information of China (English)

    Wanshu Guo; Sha Sha; Tongzi Jiang; Xiaona Xing; Yunpeng Cao

    2013-01-01

    To enhance anti-amyloid-beta (Aβ) antibody generation and induce a Th2 immune response, we constructed a new DNA vaccine p(Aβ3-10 )10-C3d-p28.3 encoding ten repeats of Aβ3-10 and three copies of C3d-p28 as a molecular adjuvant. In this study, we administered this adjuvant intramus-cularly to female C57BL/6J mice at 8-10 weeks of age. Enzyme linked immunosorbent assay was used to detect the titer of serum anti-Aβ antibody, isotypes, and cytokines in splenic T cel s. A 3-(4,5-cimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to detect the prolifera-tion rate of splenic T cel s. Brain sections from a 12-month-old APP/PS1 transgenic mouse were used for detecting the binding capacities of anti-Aβ antibodies to Aβ plaques. The p(Aβ3-10)10-C3d-p28.3 vaccine induced high titers of anti-amyloid-βantibodies, which bound to Aβplaques in APP/PS1 transgenic mouse brain tissue, demonstrating that the vaccine is effective against plaques in a mouse model of Alzheimer’s disease. Moreover, the vaccine elicited a pre-dominantly IgG1 humoral response and low levels of interferon-γ in ex vivo cultured splenocytes, indicating that the vaccine could shift the cel ular immune response towards a Th2 phenotype. This indicated that the vaccine did not elicit a detrimental immune response and had a favorable safety profile. Our results indicate that the p(Aβ3-10)10-C3d-p28.3 vaccine is a promising immunothera-peutic option for Aβvaccination in Alzheimer’s disease.

  14. Altered Brain Response to Drinking Glucose and Fructose in Obese Adolescents.

    Science.gov (United States)

    Jastreboff, Ania M; Sinha, Rajita; Arora, Jagriti; Giannini, Cosimo; Kubat, Jessica; Malik, Saima; Van Name, Michelle A; Santoro, Nicola; Savoye, Mary; Duran, Elvira J; Pierpont, Bridget; Cline, Gary; Constable, R Todd; Sherwin, Robert S; Caprio, Sonia

    2016-07-01

    Increased sugar-sweetened beverage consumption has been linked to higher rates of obesity. Using functional MRI, we assessed brain perfusion responses to drinking two commonly consumed monosaccharides, glucose and fructose, in obese and lean adolescents. Marked differences were observed. In response to drinking glucose, obese adolescents exhibited decreased brain perfusion in brain regions involved in executive function (prefrontal cortex [PFC]) and increased perfusion in homeostatic appetite regions of the brain (hypothalamus). Conversely, in response to drinking glucose, lean adolescents demonstrated increased PFC brain perfusion and no change in perfusion in the hypothalamus. In addition, obese adolescents demonstrated attenuated suppression of serum acyl-ghrelin and increased circulating insulin level after glucose ingestion; furthermore, the change in acyl-ghrelin and insulin levels after both glucose and fructose ingestion was associated with increased hypothalamic, thalamic, and hippocampal blood flow in obese relative to lean adolescents. Additionally, in all subjects there was greater perfusion in the ventral striatum with fructose relative to glucose ingestion. Finally, reduced connectivity between executive, homeostatic, and hedonic brain regions was observed in obese adolescents. These data demonstrate that obese adolescents have impaired prefrontal executive control responses to drinking glucose and fructose, while their homeostatic and hedonic responses appear to be heightened. Thus, obesity-related brain adaptations to glucose and fructose consumption in obese adolescents may contribute to excessive consumption of glucose and fructose, thereby promoting further weight gain. PMID:27207544

  15. Laser-Induced In-Source Decay Applied to the Determination of Amyloid-Beta in Alzheimer's Brains.

    Science.gov (United States)

    Kelley, Andrea R; Perry, George; Castellani, Rudolph J; Bach, Stephan B H

    2016-03-16

    A method for the analysis of amyloid-beta peptides in isolated plaques and intact tissue sections affected by Alzheimer's disease (AD) is presented. This method employs matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry and the inherent laser-induced in-source decay (ISD) that occurs coupled with imaging mass spectrometry (IMS) to investigate the composition of these samples eliminating the need for other confirmational MS/MS techniques. These results demonstrate this technique's usefulness for the identification of amyloid-beta peptides in tissue and isolated senile plaques from AD patients using the reproducible fragmentation pattern demonstrated via the laser-induced ISD of synthetic amyloid-beta peptide clips (1-40, 1-42). Clear differences between the hippocampal AD tissue and the control hippocampal tissue regarding the presence of amyloid-beta have been identified. These are based on laser-induced ISD of standard amyloid-beta clips as controls as well as the analysis of isolated senile plaques as a confirmation before tissue analysis. Using the resulting observed peptide clip masses from the control data, we present mass spectrometry based identification of the amyloid-beta peptides in both isolated plaques and hippocampal regions of those patients diagnosed with AD. PMID:26720297

  16. Brain response to affective pictures in the chimpanzee.

    Science.gov (United States)

    Hirata, Satoshi; Matsuda, Goh; Ueno, Ari; Fukushima, Hirokata; Fuwa, Koki; Sugama, Keiko; Kusunoki, Kiyo; Tomonaga, Masaki; Hiraki, Kazuo; Hasegawa, Toshikazu

    2013-01-01

    Advancement of non-invasive brain imaging techniques has allowed us to examine details of neural activities involved in affective processing in humans; however, no comparative data are available for chimpanzees, the closest living relatives of humans. In the present study, we measured event-related brain potentials in a fully awake adult chimpanzee as she looked at affective and neutral pictures. The results revealed a differential brain potential appearing 210 ms after presentation of an affective picture, a pattern similar to that in humans. This suggests that at least a part of the affective process is similar between humans and chimpanzees. The results have implications for the evolutionary foundations of emotional phenomena, such as emotional contagion and empathy. PMID:23439389

  17. Language and the newborn brain: Does prenatal language experience shape the neonate neural response to speech?

    OpenAIRE

    LillianMay; KristaByers-Heinlein; JuditGervain

    2011-01-01

    Previous research has shown that by the time of birth, the neonate brain responds specially to the native language when compared to acoustically similar non-language stimuli. In the current study, we use Near Infrared Spectroscopy to ask how prenatal language experience might shape the brain response to language in newborn infants. To do so, we examine the neural response of neonates when listening to familiar versus unfamiliar language, as well as to non-linguistic backwards language. T...

  18. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity

    OpenAIRE

    Koelsch, S.; Kilches, S.; Steinbeis, N.; Schelinski, S.

    2008-01-01

    BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs), skin conductance responses (SCRs) and heart rate (HR) elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts pl...

  19. Local Modulation of Human Brain Responses by Circadian Rhythmicity and Sleep Debt

    OpenAIRE

    Muto, V.; Jaspar, M; Meyer, C.; Kussé, C; Chellappa, SL; Degueldre, C.; Balteau, E.; Shaffii-Le Bourdiec, A; Luxen, A; Middleton, B; Archer, SN; Phillips, C.; Collette, F.; Vandewalle, G; Dijk, D

    2016-01-01

    Human performance results from an interaction between circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level is not established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging (fMRI) sessions scheduled across the circadian cycle during 42h of wakefulness and following recovery sleep, in 33 healthy participants. Cortical responses showed significant...

  20. Function of glycoprotein VI and integrin alpha2beta1 in the procoagulant response of single, collagen-adherent platelets.

    Science.gov (United States)

    Heemskerk, J W; Siljander, P; Vuist, W M; Breikers, G; Reutelingsperger, C P; Barnes, M J; Knight, C G; Lassila, R; Farndale, R W

    1999-05-01

    Various collagen-based materials were used to assess the structural requirements of collagen for inducing the procoagulant response of adhering platelets, as well as the collagen receptors involved. Cross-linked or monomeric collagen-related peptide (CRP), Gly-Cys-Hyp-(Gly-Pro-Hyp)10-Gly-Cys-Hyp-Gly was highly adhesive for platelets in a glycoprotein VI-(GpVI-)dependent manner. Adhesion was followed by a prolonged increase in cytosolic [Ca2+]i, formation of membrane blebs, exposure of phosphatidylserine (PS) and generation of prothrombinase-stimulating activity. Fibrils of type-I collagen were less adhesive but, once adhered, many of the platelets presented a full procoagulant response. Monomeric type-I collagen was unable to support adhesion, unless Mg(2+)-dependent integrin alpha2beta1 interactions were facilitated by omission of Ca2+ ions. With all surfaces, however, post-addition of CaCl2 to adhering platelets resulted in a potent Ca(2+)-influx signal, followed by PS exposure and bleb formation. The procoagulant response elicited by binding to CRP was inhibited by anti-GpVI Fab fragments, but not by impeding integrin alpha2beta1-mediated events. With fibrillar collagen, it was inhibited by blocking either the GpVI- or integrin alpha2beta1-mediated interactions. This suggests that the triple-helical Gly-Pro-Hyp repeat in CRP and analogous sequences in fibrillar collagen stimulate the procoagulant response of adherent platelets by acting as ligands for GpVI. Influx of Ca2+ is required for this response, and adhesion via integrin alpha2beta1 serves to potentiate the signaling effects of GpVI. PMID:10365754

  1. The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury

    DEFF Research Database (Denmark)

    Pedersen, Martin Volmer; Helweg-Larsen, Rehannah Borup; Nielsen, Finn Cilius;

    2008-01-01

    Cerebral responses to traumatic brain injury (TBI) include up- and downregulation of a vast number of proteins involved in endogenous inflammatory responses and defense mechanisms developing postinjury. The present study analyzed the global gene expression profile in response to cryo-induced TBI by...

  2. The acute effects of alpha and beta irradiation of mouse skin and the factors affecting the response

    International Nuclear Information System (INIS)

    Several problems regarding acute effects of alpha and beta irradiation were investigated in order to clarify protection problems of localised doses to the skin. A study into the acute biological effects of different energy beta emitters and the effects of energy and area on the response showed direct relationships between these criteria for a range of different acute responses with different time courses. Three different types of acute response were found and these are described as 'moist desquamation', 'acute ulceration' and 'acute epidermal necrosis'. An unexpected finding was that the lower energy beta emitter 170Tm was as efficient at inducing scab formation as the higher energy 90Sr sources for the same area of exposure. Experiments using 2x4 cm2 exposures to 224Cm alpha particles showed that the response to this poorly penetrating radiation was minimal after doses as high as 180 Gy measured at 10 μm into the skin. In comparison, large area exposure to 170Tm produced areas of prolonged scabbing after doses up to 100 Gy. However, the intensity of the reaction varied between strains. (author)

  3. Fractional Diffusion Based Modelling and Prediction of Human Brain Response to External Stimuli

    Directory of Open Access Journals (Sweden)

    Hamidreza Namazi

    2015-01-01

    Full Text Available Human brain response is the result of the overall ability of the brain in analyzing different internal and external stimuli and thus making the proper decisions. During the last decades scientists have discovered more about this phenomenon and proposed some models based on computational, biological, or neuropsychological methods. Despite some advances in studies related to this area of the brain research, there were fewer efforts which have been done on the mathematical modeling of the human brain response to external stimuli. This research is devoted to the modeling and prediction of the human EEG signal, as an alert state of overall human brain activity monitoring, upon receiving external stimuli, based on fractional diffusion equations. The results of this modeling show very good agreement with the real human EEG signal and thus this model can be used for many types of applications such as prediction of seizure onset in patient with epilepsy.

  4. Glial response to 17β-estradiol in neonatal rats with excitotoxic brain injury.

    Science.gov (United States)

    Pansiot, Julien; Pham, Hoa; Dalous, Jeremie; Chevenne, Didier; Colella, Marina; Schwendimann, Leslie; Fafouri, Assia; Mairesse, Jérôme; Moretti, Raffaella; Schang, Anne-Laure; Charriaut-Marlangue, Christiane; Gressens, Pierre; Baud, Olivier

    2016-08-01

    White-matter injury is the most common cause of the adverse neurodevelopmental outcomes observed in preterm infants. Only few options exist to prevent perinatal brain injury associated to preterm delivery. 17β-estradiol (E2) is the predominant estrogen in circulation and has been shown to be neuroprotective in vitro and in vivo. However, while E2 has been found to modulate inflammation in adult models of brain damage, how estrogens influence glial cells response in the developing brain needs further investigations. Using a model of ibotenate-induced brain injury, we have refined the effects of E2 in the developing brain. E2 provides significant neuroprotection both in the cortical plate and the white matter in neonatal rats subjected to excitotoxic insult mimicking white matter and cortical damages frequently observed in very preterm infants. E2 promotes significant changes in microglial phenotypes balance in response to brain injury and the acceleration of oligodendrocyte maturation. Maturational effects of E2 on myelination process were observed both in vivo and in vitro. Altogether, these data demonstrate that response of glial cells to E2 could be responsible for its neuroprotective properties in neonatal excitotoxic brain injury. PMID:27222132

  5. beta-Adrenoceptor agonists enhance 5-hydroxytryptamine-mediated behavioural responses.

    OpenAIRE

    Cowen, P. J.; Grahame-Smith, D.G.; Green, A R; Heal, D. J.

    1982-01-01

    The beta-adrenoceptor agonists, salbutamol, terbutaline and clenbuterol, were investigated for their effect on 5-hydroxytryptamine-mediated (5-HT) hyperactivity. 2 The lipophilic beta-adrenoceptor agonist, clenbuterol (5 mg/kg) enhanced the behaviours induced by quipazine (25 mg/kg), including headweaving, forepaw treading and hind-limb abduction and thus increased automated activity recording. Clenbuterol (5 mg/kg) also enhanced the hyperactivity syndrome produced by the 5-HT agonist, 5-meth...

  6. A Response: All "Thinking" Paths Lead to the Brain.

    Science.gov (United States)

    Hart, Leslie A.

    1986-01-01

    Assails schools for rushing into the thinking skills approach without examining advances in cognitive science, artificial intelligence, neuropsychology, and other brain-related disciplines. Blames the classroom situation itself for forcing teachers into counterproductive, direct teaching methods that don't work. Asserts the need for…

  7. Optically stimulated luminescence response to Al2O3 to beta radiation

    DEFF Research Database (Denmark)

    Akselrod, A.; Akselrod, M.S.; Agersnap Larsen, N.; Banerjee, D.; Bøtter-Jensen, L.; Christensen, P.; Lucas, A.C.; McKeever, S.W.S.; Yoder, C.

    High sensitivity dosemeters based on Al2O3:C have been prepared and tested for use as beta dosemeters using optically stimulated luminescence (OSL). Two types of sample were prepared and tested, namely unpolished thick, single crystal chips and thin powder layers on aluminium substrates. The...... cover thicknesses. The response per unit H-p(0.07), normalised to Co-60, is compared for each dosemeter type and discussed within the framework of DOELAP and EU recommended limits....

  8. beta-endorphin modulates the acute response to a social conflict in male mice but does not play a role in stress-induced changes in sleep

    NARCIS (Netherlands)

    Vaanholt, LM; Turek, FW; Meerlo, P

    2003-01-01

    beta-Endorphin is an endogenous opioid peptide that is released during stress and has been associated with many physiological functions. In this experiment beta-endorphin deficient mice were used to study the role of endorphins in the acute physiological and behavioral responses to a social conflict

  9. Magnetic and electrical responses of the human brain to texture-defined form and to textons.

    Science.gov (United States)

    Regan, D; He, P

    1995-09-01

    1. We searched for a neurophysical correlate of preattentive texture discrimination by recording magnetic and electric evoked responses from the human brain during the first few hundred milliseconds following the presentation of texture-defined (TD) checkerboard form. The only two textons that changed when the TD checkerboard appeared or disappeared were the local orientation and line termination textons. (Textons are conspicuous local features within a texture pattern). 2. Our evidence that the magnetic response to TD form cannot be explained in terms of responses to the two associated textons is as follows: 1) by dissociating the two responses we showed that the magnetic response to TD form is almost entirely independent of the magnetic response to the local orientation texton; 2) a further distinction between the two responses is that their distributions over the head are different; and 3) the magnetic response to TD form differs from the magnetic response to the line termination texton in both distribution over the head and waveform. We conclude that this evidence identifies the existence of a brain response correlate of preattentive texture discrimination. 3. We also recorded brain responses to luminance-defined (LD) checkerboard form. Our grounds for concluding that magnetic brain responses to the onset of checkerboard form are generated by different and independent neural systems for TD and LD form are as follows: 1) magnetic responses to the onset of TD form and LD form had different distributions over the skull, had different waveforms, and depended differently on check size; and 2) the waveform of the response to superimposed TD and LD checks closely approximated the linear sum of responses to TD checks and LD checks alone. 4. One possible explanation for the observed differences between the magnetic and electric evoked responses is that responses to both onset and offset of TD form predominantly involve neurons aligned parallel to the skull, whereas that

  10. Thrombospondin 2-null mice display an altered brain foreign body response to polyvinyl alcohol sponge implants

    Energy Technology Data Exchange (ETDEWEB)

    Tian Weiming; Kyriakides, Themis R, E-mail: themis.kyriakides@yale.ed [Vascular Biology and Therapeutics Program, Departments of Pathology and Biomedical Engineering, Yale University, New Haven, CT 06519 (United States)

    2009-02-15

    Thrombospondin (TSP)-2 is a matricellular protein that participates in the processes of tissue repair and the foreign body response. In addition, TSP2 has been shown to influence synaptogenesis and recovery of the brain following stroke. In the present study we investigated the response following the implantation of polyvinyl alcohol (PVA) sponges in the brain. PVA sponges were implanted into the brain cortex of wild type and TSP2-null mice for a period of 4 and 8 weeks and the response was analyzed by histochemistry and quantitative immunohistochemistry. TSP2 expression was detected in the interstices of the sponge and co-localized with the extracellular matrix and astrocytes. PVA sponge invasion in TSP2-null mice was characterized by dense deposition of extracellular matrix and increased invasion of reactive astrocytes and macrophages/microglia. Furthermore, the angiogenic response was elevated and the detection of mouse serum albumin (MSA) in the brain cortex indicated excessive vessel leakage, suggesting that TSP2 plays a role in the repair/maintenance of the blood brain barrier. Finally, immunostaining demonstrated an increase in the levels of matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, our observations support a role for TSP2 as critical determinant of the brain response to biomaterials.

  11. MicroRNA responses to focal cerebral ischemia in male and female mouse brain

    Directory of Open Access Journals (Sweden)

    Theresa Ann Lusardi

    2014-02-01

    Full Text Available Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses in females. Thus, we examined miRNA responses in male and female brain in response to cerebral ischemia using miRNA arrays. These studies revealed that in male and female brains, ischemia leads to both a universal miRNA response as well as a sexually distinct response to challenge. Target prediction analysis of the miRNAs increased in male or female ischemic brain reveal sex-specific differences in gene targets and protein pathways. These data support that the mechanisms underlying sexually dimorphic responses to cerebral ischemia includes distinct changes in miRNAs in male and female brain, in addition to a miRNA signature response to ischemia that is common to both.

  12. Pedophilic brain potential responses to adult erotic stimuli.

    Science.gov (United States)

    Knott, Verner; Impey, Danielle; Fisher, Derek; Delpero, Emily; Fedoroff, Paul

    2016-02-01

    Cognitive mechanisms associated with the relative lack of sexual interest in adults by pedophiles are poorly understood and may benefit from investigations examining how the brain processes adult erotic stimuli. The current study used event-related brain potentials (ERP) to investigate the time course of the explicit processing of erotic, emotional, and neutral pictures in 22 pedophilic patients and 22 healthy controls. Consistent with previous studies, early latency anterior ERP components were highly selective for erotic pictures. Although the ERPs elicited by emotional stimuli were similar in patients and controls, an early frontal positive (P2) component starting as early as 185 ms was significantly attenuated and slow to onset in pedophilia, and correlated with a clinical measure of cognitive distortions. Failure of rapid attentional capture by erotic stimuli suggests a relative reduction in early processing in pedophilic patients which may be associated with relatively diminished sexual interest in adults. PMID:26683083

  13. Impaired dopaminergic neurotransmission in patients with traumatic brain injury: a SPET study using {sup 123}I-{beta}-CIT and {sup 123}I-IBZM

    Energy Technology Data Exchange (ETDEWEB)

    Donnemiller, E.; Riccabona, G. [Innsbruck Univ. (Austria). Dept. of Nuclear Medicine; Brenneis, C.; Wissel, J.; Scherfler, C.; Poewe, W.; Wenning, G.K. [Dept. of Neurology, Univ. of Innsbruck (Austria)

    2000-09-01

    Structural imaging suggests that traumatic brain injury (TBI) may be associated with disruption of neuronal networks, including the nigrostriatal dopaminergic pathway. However, to date deficits in pre- and/or postsynaptic dopaminergic neurotransmission have not been demonstrated in TBI using functional imaging. We therefore assessed dopaminergic function in ten TBI patients using [{sup 123}I]2-{beta}-carbomethoxy-3-{beta}-(4-iodophenyl)tropane ({beta}-CIT) and [{sup 123}I]iodobenzamide (IBZM) single-photon emission tomography (SPET). Average Glasgow Coma Scale score ({+-}SD) at the time of head trauma was 5.8{+-}4.2. SPET was performed on average 141 days (SD {+-}92) after TBI. The SPET images were compared with structural images using cranial computerised tomography (CCT) and magnetic resonance imaging (MRI). SPET was performed with an ADAC Vertex dual-head camera. The activity ratios of striatal to cerebellar uptake were used as a semiquantitative parameter of striatal dopamine transporter (DAT) and D2 receptor (D2R) binding. Compared with age-matched controls, patients with TBI had significantly lower striatal/cerebellar {beta}-CIT and IBZM binding ratios (P{<=}0.01). Overall, the DAT deficit was more marked than the D2R loss. CCT and MRI studies revealed varying cortical and subcortical lesions, with the frontal lobe being most frequently affected whereas the striatum appeared structurally normal in all but one patient. Our findings suggest that nigrostriatal dysfunction may be detected using SPET following TBI despite relative structural preservation of the striatum. Further investigations of possible clinical correlates and efficacy of dopaminergic therapy in patients with TBI seem justified. (orig.)

  14. Fuel not fun: Reinterpreting attenuated brain responses to reward in obesity.

    Science.gov (United States)

    Kroemer, Nils B; Small, Dana M

    2016-08-01

    There is a well-established literature linking obesity to altered dopamine signaling and brain response to food-related stimuli. Neuroimaging studies frequently report enhanced responses in dopaminergic regions during food anticipation and decreased responses during reward receipt. This has been interpreted as reflecting anticipatory "reward surfeit", and consummatory "reward deficiency". In particular, attenuated response in the dorsal striatum to primary food rewards is proposed to reflect anhedonia, which leads to overeating in an attempt to compensate for the reward deficit. In this paper, we propose an alternative view. We consider brain response to food-related stimuli in a reinforcement-learning framework, which can be employed to separate the contributions of reward sensitivity and reward-related learning that are typically entangled in the brain response to reward. Consequently, we posit that decreased striatal responses to milkshake receipt reflect reduced reward-related learning rather than reward deficiency or anhedonia because reduced reward sensitivity would translate uniformly into reduced anticipatory and consummatory responses to reward. By re-conceptualizing reward deficiency as a shift in learning about subjective value of rewards, we attempt to reconcile neuroimaging findings with the putative role of dopamine in effort, energy expenditure and exploration and suggest that attenuated brain responses to energy dense foods reflect the "fuel", not the fun entailed by the reward. PMID:27085908

  15. Sodium Channel Voltage-Gated Beta 2 Plays a Vital Role in Brain Aging Associated with Synaptic Plasticity and Expression of COX5A and FGF-2.

    Science.gov (United States)

    XiYang, Yan-Bin; Wang, You-Cui; Zhao, Ya; Ru, Jin; Lu, Bing-Tuan; Zhang, Yue-Ning; Wang, Nai-Chao; Hu, Wei-Yan; Liu, Jia; Yang, Jin-Wei; Wang, Zhao-Jun; Hao, Chun-Guang; Feng, Zhong-Tang; Xiao, Zhi-Cheng; Dong, Wei; Quan, Xiong-Zhi; Zhang, Lian-Feng; Wang, Ting-Hua

    2016-03-01

    The role of sodium channel voltage-gated beta 2 (SCN2B) in brain aging is largely unknown. The present study was therefore designed to determine the role of SCN2B in brain aging by using the senescence-accelerated mice prone 8 (SAMP8), a brain senescence-accelerated animal model, together with the SCN2B transgenic mice. The results showed that SAMP8 exhibited impaired learning and memory functions, assessed by the Morris water maze test, as early as 8 months of age. The messenger RNA (mRNA) and protein expressions of SCN2B were also upregulated in the prefrontal cortex at this age. Treatment with traditional Chinese anti-aging medicine Xueshuangtong (Panax notoginseng saponins, PNS) significantly reversed the SCN2B expressions in the prefrontal cortex, resulting in improved learning and memory. Moreover, SCN2B knockdown transgenic mice were generated and bred to determine the roles of SCN2B in brain senescence. A reduction in the SCN2B level by 60.68% resulted in improvement in the hippocampus-dependent spatial recognition memory and long-term potential (LTP) slope of field excitatory postsynaptic potential (fEPSP), followed by an upregulation of COX5A mRNA levels and downregulation of fibroblast growth factor-2 (FGF-2) mRNA expression. Together, the present findings indicated that SCN2B could play an important role in the aging-related cognitive deterioration, which is associated with the regulations of COX5A and FGF-2. These findings could provide the potential strategy of candidate target to develop antisenescence drugs for the treatment of brain aging. PMID:25575679

  16. Gender effects on treatment response to interferon-beta in multiple sclerosis

    DEFF Research Database (Denmark)

    Magyari, M; Koch-Henriksen, N; Laursen, B; Sørensen, P S

    2014-01-01

    BACKGROUND: Gender appears to play a role in incidence and disease course of multiple sclerosis (MS). OBJECTIVE: The objective was to determine whether male and female patients with MS respond differently to interferon-beta treatment in terms of reduction in relapse rates. METHODS: We included all....... Patients served as their own controls, and relapse rates were compared between NAb-negative and NAb-positive periods. RESULTS: NAbs significantly abrogated the interferon-beta treatment efficacy in both genders. The all-over women:men relapse rate ratio irrespective of NAb status was 1.47 (95%CI; 1...

  17. Optically stimulated luminescence response to Al2O3 to beta radiation

    DEFF Research Database (Denmark)

    Akselrod, A.; Akselrod, M.S.; Agersnap Larsen, N.;

    1999-01-01

    High sensitivity dosemeters based on Al2O3:C have been prepared and tested for use as beta dosemeters using optically stimulated luminescence (OSL). Two types of sample were prepared and tested, namely unpolished thick, single crystal chips and thin powder layers on aluminium substrates. The samp......High sensitivity dosemeters based on Al2O3:C have been prepared and tested for use as beta dosemeters using optically stimulated luminescence (OSL). Two types of sample were prepared and tested, namely unpolished thick, single crystal chips and thin powder layers on aluminium substrates...

  18. Invasive and transcranial photoacoustic imaging of the vascular response to brain electrical stimulation

    Science.gov (United States)

    Tsytsarev, Vassiliy; Yao, Junjie; Hu, Song; Li, Li; Favazza, Christopher P.; Maslov, Konstantin I.; Wang, Lihong V.

    2010-02-01

    Advances in the brain functional imaging greatly facilitated the understanding of neurovascular coupling. For monitoring of the microvascular response to the brain electrical stimulation in vivo we used optical-resolution photoacoustic microscopy (OR-PAM) through the cranial openings as well as transcranially. Both types of the vascular response, vasoconstriction and vasodilatation, were clearly observed with good spatial and temporal resolution. Obtained results confirm one of the primary points of the neurovascular coupling theory that blood vessels could present vasoconstriction or vasodilatation in response to electrical stimulation, depending on the balance between inhibition and excitation of the different parts of the elements of the neurovascular coupling system.

  19. Markers of beta cell failure predict poor glycemic response to GLP-1 receptor agonist therapy in type 2 diabetes

    Science.gov (United States)

    Jones, Angus G; McDonald, Timothy J; Shields, Beverley M; Hill, Anita V; Hyde, Christopher J; Knight, Bridget A; Hattersley, Andrew T

    2016-01-01

    Objective To assess whether clinical characteristics and simple biomarkers of beta cell failure are associated with individual variation in glycemic response to GLP-1 receptor agonist therapy in patients with type 2 diabetes. Research Design and Methods We prospectively studied 620 participants with type 2 diabetes and HbA1c ≥58mmol/mol (7.5%) commencing GLP-1 receptor agonist therapy as part of their usual diabetes care and assessed response to therapy over 6 months. We assessed the association between baseline clinical measurements associated with beta cell failure and glycemic response (HbA1c change 0 to 6 months, primary outcome) with change in weight (0 to 6 months) as a secondary outcome using linear regression and ANOVA with adjustment for baseline HbA1c and co-treatment change. Results Reduced glycemic response to GLP-1R agonists was associated with longer duration diabetes, insulin co-treatment, lower fasting C-peptide, lower post meal urine C-peptide creatinine ratio and positive GAD or IA2 islet autoantibodies (p≤0.01 for all). Participants with positive autoantibodies or severe insulin deficiency (fasting C-peptide ≤0.25nmol/L) had markedly reduced glycemic response to GLP-1RA therapy (autoantibodies: mean HbA1c change -5.2 vs -15.2 mmol/mol (-0.5 vs -1.4%), p=0.005 C-peptide diabetes. PMID:26242184

  20. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation

    DEFF Research Database (Denmark)

    Babcock, Alicia; Wirenfeldt, Martin; Holm, Thomas;

    2006-01-01

    -mutant mice. Consistent with the fact that responses in knock-out mice had all returned to wild-type levels by 8 d, there was no evidence for effects on neuronal plasticity at 20 d. These results identify a role for TLR2 signaling in the early glial response to brain injury, acting as an innate bridge to...

  1. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    Science.gov (United States)

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels. PMID:19160674

  2. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Science.gov (United States)

    Chao, Tzu-Hao Harry; Chen, Jyh-Horng; Yen, Chen-Tung

    2014-01-01

    Functional magnetic resonance imaging (fMRI) provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol) with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP) thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1). The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91), and location (overlap ratio from 0.61 to 0.67). The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI. PMID:24825464

  3. Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats.

    Directory of Open Access Journals (Sweden)

    Tzu-Hao Harry Chao

    Full Text Available Functional magnetic resonance imaging (fMRI provides a picture of the global spatial activation pattern of the brain. Interest is growing regarding the application of fMRI to rodent models to investigate adult brain plasticity. To date, most rodent studies used an electrical forepaw stimulation model to acquire fMRI data, with α-chloralose as the anesthetic. However, α-chloralose is harmful to animals, and not suitable for longitudinal studies. Moreover, peripheral stimulation models enable only a limited number of brain regions to be studied. Processing between peripheral regions and the brain is multisynaptic, and renders interpretation difficult and uncertain. In the present study, we combined the medetomidine-based fMRI protocol (a noninvasive rodent fMRI protocol with chronic implantation of an MRI-compatible stimulation electrode in the ventroposterior (VP thalamus to repetitively sample thalamocortical responses in the rat brain. Using this model, we scanned the forebrain responses evoked by the VP stimulation repeatedly of individual rats over 1 week. Cortical BOLD responses were compared between the 2 profiles obtained at day1 and day8. We discovered reproducible frequency- and amplitude-dependent BOLD responses in the ipsilateral somatosensory cortex (S1. The S1 BOLD responses during the 2 sessions were conserved in maximal response amplitude, area size (size ratio from 0.88 to 0.91, and location (overlap ratio from 0.61 to 0.67. The present study provides a long-term chronic brain stimulation protocol for studying the plasticity of specific neural circuits in the rodent brain by BOLD-fMRI.

  4. Thymosin Beta-4 Suppresses Osteoclastic Differentiation and Inflammatory Responses in Human Periodontal Ligament Cells

    Science.gov (United States)

    Lee, Sang-Im; Yi, Jin-Kyu; Bae, Won-Jung; Lee, Soojung; Cha, Hee-Jae; Kim, Eun-Cheol

    2016-01-01

    Background Recent reports suggest that thymosin beta-4 (Tβ4) is a key regulator for wound healing and anti-inflammation. However, the role of Tβ4 in osteoclast differentiation remains unclear. Purpose The purpose of this study was to evaluate Tβ4 expression in H2O2-stimulated human periodontal ligament cells (PDLCs), the effects of Tβ4 activation on inflammatory response in PDLCs and osteoclastic differentiation in mouse bone marrow-derived macrophages (BMMs), and identify the underlying mechanism. Methods Reverse transcription-polymerase chain reactions and Western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages (BMMs) using conditioned medium (CM) from H2O2-treated PDLCs. Results Tβ4 was down-regulated in H2O2-exposed PDLCs in dose- and time-dependent manners. Tβ4 activation with a Tβ4 peptide attenuated the H2O2-induced production of NO and PGE2 and up-regulated iNOS, COX-2, and osteoclastogenic cytokines (TNF-α, IL-1β, IL-6, IL-8, and IL-17) as well as reversed the effect on RANKL and OPG in PDLCs. Tβ4 peptide inhibited the effects of H2O2 on the activation of ERK and JNK MAPK, and NF-κB in PDLCs. Furthermore, Tβ4 peptide inhibited osteoclast differentiation, osteoclast-specific gene expression, and p38, ERK, and JNK phosphorylation and NF-κB activation in RANKL-stimulated BMMs. In addition, H2O2 up-regulated Wnt5a and its cell surface receptors, Frizzled and Ror2 in PDLCs. Wnt5a inhibition by Wnt5a siRNA enhanced the effects of Tβ4 on H2O2-mediated induction of pro-inflammatory cytokines and osteoclastogenic cytokines as well as helping osteoclastic differentiation whereas Wnt5a activation by Wnt5a peptide reversed it. Conclusion In conclusion, this study demonstrated, for the first time, that Tβ4 was down-regulated in ROS-stimulated PDLCs as well as Tβ4 activation exhibited anti-inflammatory effects and anti-osteoclastogenesis in vitro

  5. Sensation Seeking Predicts Brain Responses in the Old-New Task: Converging Multimodal Neuroimaging Evidence

    OpenAIRE

    Lawson, Adam L.; Liu, Xun; Joseph, Jane; Vagnini, Victoria L.; Kelly, Thomas H.; Jiang, Yang

    2012-01-01

    Novel images and message content enhance visual attention and memory for high sensation seekers, but the neural mechanisms associated with this effect are unclear. To investigate the individual differences in brain responses to new and old (studied) visual stimuli, we utilized Event-related Potentials (ERP) and functional Magnetic Resonance Imaging (fMRI) measures to examine brain reactivity among high and low sensation seekers during a classic old-new memory recognition task. Twenty low and ...

  6. Evaluation of Auditory Brain Stems Evoked Response in Newborns With Pathologic Hyperbilirubinemia in Mashhad, Iran

    OpenAIRE

    Okhravi, Tooba; Tarvij Eslami, Saeedeh; Hushyar Ahmadi, Ali; Nassirian, Hossain; Najibpour, Reza

    2015-01-01

    Background: Neonatal jaundice is a common cause of sensorneural hearing loss in children. Objectives: We aimed to detect the neurotoxic effects of pathologic hyperbilirubinemia on brain stem and auditory tract by auditory brain stem evoked response (ABR) which could predict early effects of hyperbilirubinemia. Patients and Methods: This case-control study was performed on newborns with pathologic hyperbilirubinemia. The inclusion criteria were healthy term and near term (35 - 37 weeks) newbor...

  7. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    OpenAIRE

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed...

  8. Perfusion and Volume Response of Canine Brain Tumors to Stereotactic Radiosurgery and Radiotherapy.

    OpenAIRE

    Zwingenberger, AL; Pollard, RE; Taylor, SL; Chen, RX; Nunley, J; Kent, MS

    2016-01-01

    Stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) are highly conformal, high-dose radiation treatment techniques used to treat people and dogs with brain tumors.To evaluate the response to SRS- and SRT-treated tumors using volume and perfusion variables and to measure the survival times of affected dogs.Prospective study of 34 dogs with evidence of brain tumors undergoing stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT).Computed tomography and MRI imaging w...

  9. Effects of Oxytocin and Prosocial Behavior on Brain Responses to Direct and Vicariously Experienced Pain

    OpenAIRE

    Singer, Tania; Snozzi, Romana; Bird, Geoffrey; Petrovic, Predrag; Silani, Giorgia; Heinrichs, Markus; Dolan, Raymond J.

    2008-01-01

    In this study, we tested the validity of 2 popular assumptions about empathy: (a) empathy can be enhanced by oxytocin, a neuropeptide known to be crucial in affiliative behavior, and (b) individual differences in prosocial behavior are positively associated with empathic brain responses. To do so, we measured brain activity in a double-blind placebo-controlled study of 20 male participants either receiving painful stimulation to their own hand (self condition) or observing their female partne...

  10. Ceramide formation is involved in Lactobacillus acidophilus-induced IFN-beta response in dendritic cells

    DEFF Research Database (Denmark)

    Fuglsang, Eva; Henningsen, Louise; Frøkiær, Hanne

    of sphingomyelin to ceramide by acid sphingomyelinase (ASMase) at the outer leaflet of the PM is a key event in endocytosis of gram-positive Lactobacillus acidophilus (L. acidophilus) and the subsequent induction of IFN-beta in DCs and, as the gram-negative Escherichia coli (E. coli) does not induce appreciable...

  11. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses

    DEFF Research Database (Denmark)

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J;

    2009-01-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insu...

  12. Response of sugar beet (Beta vulgaris) recombinant inbred lines to post-harvest rot fungi

    Science.gov (United States)

    Sugar beet (Beta vulgaris) is commonly stored in outdoor piles prior to processing for food and animal feed. During this storage period the crop is subject to multiple post-harvest rots. Resistance to three post harvest rots was identified in two sugar beet germplasm in the 1970s, but there has been...

  13. Hepatic fat is not associated with beta-cell function or postprandial free fatty acid response

    NARCIS (Netherlands)

    Rijkelijkhuizen, J.M.; Doesburg, T.; Girman, C.J.; Mari, A.; Rhodes, T.; Gastaldelli, A.; Nijpels, M.G.A.A.M.; Dekker, J.M.

    2009-01-01

    We evaluated the association of hepatic fat with beta-cell function estimated from the oral glucose tolerance test. In addition, we tested the hypothesis that postprandial free fatty acid (FFA) suppression after a meal tolerance test (MTT) is linked to hepatic fat. Individuals with normal glucose me

  14. A study of brain MRI findings and clinical response of bladder empting failure in brain bladder

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoda, Keiichi (Yamashina Aiseikai Hospital, Kyoto (Japan)); Watanabe, Kousuke

    1993-02-01

    In 45 patients (38 males and 7 females; average age:78 years) with brain bladder, who did not have any peripheral neuropathies and spinal disturbance, cerebral findings of MRI (1.5 T) T[sub 2] enhanced image were analyzed in comparison with those of 7 control patients with normal urination after BPH operations. Patients with neurogenic bladder were divided into three groups as follows: 33 patients with a chief complaint of urinary disturbance (Group I), 9 patients with urinary incontinence (Group II) and 3 patients with balanced bladder (Group III). High frequency of lacune (24%) of the globus pallidus and low signalling of the corpus striatum (30%) was found in Group I patients, but low frequency in other Group patients and control patients. Furthermore, pathologic changes with various grades in the globus pallidus were observed in 91% of Group I patients. In the treatment of urinary disturbance, a high improvement rate of micturition disorder (77%) was obtained in patients treated with a combination of dantrolene and TURp (TUIbn for females). However, patients who had clear lacune of the globus pallidus showed the low improvement rate. It should be possible that the globus pallidus contributes to control the movement of the external sphincter and the pelvic base muscles as well as other striated muscles. Moreover, lacune was rarely found in the urination center of the brain-stem on MRI. (author).

  15. Local modulation of human brain responses by circadian rhythmicity and sleep debt.

    Science.gov (United States)

    Muto, Vincenzo; Jaspar, Mathieu; Meyer, Christelle; Kussé, Caroline; Chellappa, Sarah L; Degueldre, Christian; Balteau, Evelyne; Shaffii-Le Bourdiec, Anahita; Luxen, André; Middleton, Benita; Archer, Simon N; Phillips, Christophe; Collette, Fabienne; Vandewalle, Gilles; Dijk, Derk-Jan; Maquet, Pierre

    2016-08-12

    Human performance is modulated by circadian rhythmicity and homeostatic sleep pressure. Whether and how this interaction is represented at the regional brain level has not been established. We quantified changes in brain responses to a sustained-attention task during 13 functional magnetic resonance imaging sessions scheduled across the circadian cycle, during 42 hours of wakefulness and after recovery sleep, in 33 healthy participants. Cortical responses showed significant circadian rhythmicity, the phase of which varied across brain regions. Cortical responses also significantly decreased with accrued sleep debt. Subcortical areas exhibited primarily a circadian modulation that closely followed the melatonin profile. These findings expand our understanding of the mechanisms involved in maintaining cognition during the day and its deterioration during sleep deprivation and circadian misalignment. PMID:27516598

  16. Effect of lighting conditions on brain network complexity associated with response learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida M; González-Pardo, Héctor; Arias, Jorge L

    2013-10-25

    Several studies have reported the brain regions involved in response learning. However, there is discrepancy regarding the lighting conditions in the experimental setting (i.e. under dark or light conditions). In this regard, it would be relevant to know if the presence/absence of visual cues in the environment has any effect in the brain networks involved in a response learning task. Animals were trained in a water T-maze under two different lighting conditions (light versus dark). All subjects reached the learning criterion of 80% correct arm choices. Quantitative cytochrome oxidase (CO) histochemistry was used as a metabolic brain mapping technique. Our results show that the ventral hippocampus and the parietal cortex are associated with the acquisition of a response learning task regardless of lighting conditions. In addition, when the same task is run in the dark, widespread recruitment of structures involving cortical, limbic and striatal regions was found. PMID:24084195

  17. Mechanotransduction molecules in the plant gravisensory response: amyloplast/statolith membranes contain a beta 1 integrin-like protein

    Science.gov (United States)

    Lynch, T. M.; Lintilhac, P. M.; Domozych, D.

    1998-01-01

    It has been hypothesized that the sedimentation of amyloplasts within root cap cells is the primary event in the plant gravisensory-signal transduction cascade. Statolith sedimentation, with its ability to generate weighty mechanical signals, is a legitimate means for organisms to discriminate the direction of the gravity vector. However, it has been demonstrated that starchless mutants with reduced statolith densities maintain some ability to sense gravity, calling into question the statolith sedimentation hypothesis. Here we report on the presence of a beta 1 integrin-like protein localized inside amyloplasts of tobacco NT-1 suspension culture, callus cells, and whole-root caps. Two different antibodies to the beta 1 integrin, one to the cytoplasmic domain and one to the extracellular domain, localize in the vicinity of the starch grains within amyloplasts of NT-1. Biochemical data reveals a 110-kDa protein immunoprecipitated from membrane fractions of NT-1 suspension culture indicating size homology to known beta 1 integrin in animals. This study provides the first direct evidence for the possibility of integrin-mediated signal transduction in the perception of gravity by higher plants. An integrin-mediated pathway, initiated by starch grain sedimentation within the amyloplast, may provide the signal amplification necessary to explain the gravitropic response in starch-depleted cultivars.

  18. The response of the brain tissue to DNA double strand breaks

    International Nuclear Information System (INIS)

    Double-strand breaks (DSB) are the most deleterious form of DNA damage after ionizing radiation, the response of the brain tissue to DNA damage is related to the developmental dynamics of this system. Homology recombination is particularly important for proliferating cells, while non-homologous end joining is critical for differentiating cells. Defects in the related factors to DNA damage pathway underpin many human genopathy with neuropathology. Reviewed the signal conduction system involved in the DNA DSB response and human neuropathology genopathy related to DNA DSB factors deficiencies in the brain cells. (authors)

  19. Finite element modeling of human brain response to football helmet impacts.

    Science.gov (United States)

    Darling, T; Muthuswamy, J; Rajan, S D

    2016-10-01

    The football helmet is used to help mitigate the occurrence of impact-related traumatic (TBI) and minor traumatic brain injuries (mTBI) in the game of American football. While the current helmet design methodology may be adequate for reducing linear acceleration of the head and minimizing TBI, it however has had less effect in minimizing mTBI. The objectives of this study are (a) to develop and validate a coupled finite element (FE) model of a football helmet and the human body, and (b) to assess responses of different regions of the brain to two different impact conditions - frontal oblique and crown impact conditions. The FE helmet model was validated using experimental results of drop tests. Subsequently, the integrated helmet-human body FE model was used to assess the responses of different regions of the brain to impact loads. Strain-rate, strain, and stress measures in the corpus callosum, midbrain, and brain stem were assessed. Results show that maximum strain-rates of 27 and 19 s(-1) are observed in the brain-stem and mid-brain, respectively. This could potentially lead to axonal injuries and neuronal cell death during crown impact conditions. The developed experimental-numerical framework can be used in the study of other helmet-related impact conditions. PMID:26867124

  20. Are beta2-agonists responsible for increased mortality in heart failure?

    LENUS (Irish Health Repository)

    Bermingham, Margaret

    2012-02-01

    AIMS: Previous large-scale, retrospective studies have shown increased mortality in heart failure (HF) patients using beta2-agonists (B2As). We further examined the relationship between B2A use and mortality in a well-characterized population by adjusting for natriuretic peptide levels as a measure of HF severity. METHODS AND RESULTS: This was a retrospective cohort study of patients attending an HF Disease Management Programme with mean follow-up of 2.9 +\\/- 2.4 years. Chart review confirmed B2A use, dose and duration of use, and documented pulmonary function evaluation. The primary endpoint was the effect of B2A use compared with no B2A use on mortality using unadjusted and adjusted Kaplan-Meier survival curves. Data were available for 1294 patients (age 70.6 +\\/- 11.5 years) of whom 64% were male and 22.2% were taking B2As. beta2-Agonist users were older, more likely to be male, to have smoked, to have chronic obstructive pulmonary disease (COPD) and asthma, and less likely to take beta-blockers. Multivariable associates of mortality included: B-type natriuretic peptide (BNP), coronary artery disease, age, and beta-blocker use. Unadjusted mortality rates for B2A users were found to be significantly higher than non-B2A users [hazard ratio (HR) 1.304, 95% confidence interval (CI) 1.030-1.652, P= 0.028]. However, when adjusted for age, sex, medication, co-morbidity, smoking, COPD, and BNP differences, overall mortality rates were similar [HR 1.043, 95% CI (0.771-1.412), P= 0.783]. CONCLUSION: Unlike previous reports, this retrospective evaluation of B2A therapy in HF patients shows no relationship with long-term mortality when adjusted for population differences including BNP. Large, prospective studies are required to define the risk\\/benefit ratio of B2As in patients with heart failure.

  1. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kamei, Hidekazu (Tokyo Women' s Medical Coll. (Japan))

    1989-06-01

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author).

  2. Correlation of auditory brain stem response and the MRI measurements in neuro-degenerative disorders

    International Nuclear Information System (INIS)

    The purpose of this study is to elucidate correlations of several MRI measurements of the cranium and brain, functioning as a volume conductor, to the auditory brain stem response (ABR) in neuro-degenerative disorders. The subjects included forty-seven patients with spinocerebellar degeneration (SCD) and sixteen of amyotrophic lateral sclerosis (ALS). Statistically significant positive correlations were found between I-V and III-V interpeak latencies (IPLs) and the area of cranium and brain in the longitudinal section of SCD patients, and between I-III and III-V IPLs and the area in the longitudinal section of those with ALS. And, also there were statistically significant correlations between the amplitude of the V wave and the area of brain stem as well as that of the cranium in the longitudinal section of SCD patients, and between the amplitude of the V wave and the area of the cerebrum in the longitudinal section of ALS. In conclusion, in the ABR, the IPLs were prolonged and the amplitude of the V wave was decreased while the MRI size of the cranium and brain increased. When the ABR is applied to neuro-degenerative disorders, it might be important to consider not only the conduction of the auditory tracts in the brain stem, but also the correlations of the size of the cranium and brain which act as a volume conductor. (author)

  3. Pancreatic beta cell function increases in a linear dose-response manner following exercise training in adults with prediabetes

    DEFF Research Database (Denmark)

    Malin, Steven K; Solomon, Thomas; Blaszczak, Alecia;

    2013-01-01

    composition (dual-energy x-ray absorptiometry and computed tomography) were also measured before and after the intervention. Exercise dose was computed using VO2-heart rate derived linear-regression equations. Subjects expended 474.5±8.8 kcal/session (2372.5±44.1 kcal/week) during the intervention, and lost......While some studies suggest that a linear dose-response relationship exists between exercise and insulin sensitivity, the exercise dose required to enhance pancreatic beta-cell function is unknown. Thirty-five older, obese adults with prediabetes underwent a progressive 12-week supervised exercise...

  4. Comparison of gamma- and beta radiation stress responses on anti-oxidative defense system and DNA modifications in Lemna minor

    International Nuclear Information System (INIS)

    The biological effects and interactions of different radiation types in plants are still far from understood. Additional knowledge on the impact of various kinds of ionizing radiation in plants on individual, biochemical and molecular level is needed to unravel and compare the toxic mode of action. Among different radiation types, external gamma radiation treatments have been mostly studied both in lab and field studies to derive the biological impact of radiation toxicity in organisms. However, environmental relevant studies on chronic low-dose gamma exposures are scarce. The radio-ecologically relevant radionuclide 90Sr is a pure beta emitting isotope and originates from nuclear activities and accidents. Although this radionuclide is not essential for plant metabolism, it bears a chemical analogy with the essential plant macro-nutrient Ca2+ thereby taking advantage of Ca2+ transport systems to contaminate plant organs and tissues. Ones plants are exposed to radiation stress, ionization events can cause an increase in reactive oxygen species (ROS) and can induce damage to biological material like DNA, lipids and structural proteins. The following work aimed at evaluating individual, biochemical and molecular endpoints to understand and to compare the mode of action of gamma- and beta radiation stress in plants. Having an equal relative biological effectiveness to non-human biota, it is still not clear in how plants differ or overlap in sensing and interpreting highly penetrating electromagnetic radiation with short-range particle radiation. The floating plant Lemna minor was chosen as model system. Following the OECD guidelines Lemna plants were being exposed separately to an external gamma radiation source or to a 90Sr-contaminated growth medium to obtain single-dose response curves for each type of radiation. In order to acquire accurate dose rate quantifications for beta radiation exposures, 90Sr uptake and accumulation of root and frond have been implemented

  5. Comparison of gamma- and beta radiation stress responses on anti-oxidative defense system and DNA modifications in Lemna minor

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoeck, Arne [SCK.CEN, Boeretang 200 2400 Mol (Belgium); University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium); Horemans, Nele; Van Hees, May; Nauts, Robin; Vandenhove, Hildegarde [SCK.CEN, Boeretang 200 2400 Mol (Belgium); Knapen, Dries; Blust, Ronny [University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen (Belgium)

    2014-07-01

    The biological effects and interactions of different radiation types in plants are still far from understood. Additional knowledge on the impact of various kinds of ionizing radiation in plants on individual, biochemical and molecular level is needed to unravel and compare the toxic mode of action. Among different radiation types, external gamma radiation treatments have been mostly studied both in lab and field studies to derive the biological impact of radiation toxicity in organisms. However, environmental relevant studies on chronic low-dose gamma exposures are scarce. The radio-ecologically relevant radionuclide {sup 90}Sr is a pure beta emitting isotope and originates from nuclear activities and accidents. Although this radionuclide is not essential for plant metabolism, it bears a chemical analogy with the essential plant macro-nutrient Ca{sup 2+} thereby taking advantage of Ca{sup 2+} transport systems to contaminate plant organs and tissues. Ones plants are exposed to radiation stress, ionization events can cause an increase in reactive oxygen species (ROS) and can induce damage to biological material like DNA, lipids and structural proteins. The following work aimed at evaluating individual, biochemical and molecular endpoints to understand and to compare the mode of action of gamma- and beta radiation stress in plants. Having an equal relative biological effectiveness to non-human biota, it is still not clear in how plants differ or overlap in sensing and interpreting highly penetrating electromagnetic radiation with short-range particle radiation. The floating plant Lemna minor was chosen as model system. Following the OECD guidelines Lemna plants were being exposed separately to an external gamma radiation source or to a {sup 90}Sr-contaminated growth medium to obtain single-dose response curves for each type of radiation. In order to acquire accurate dose rate quantifications for beta radiation exposures, {sup 90}Sr uptake and accumulation of root and

  6. Endogenous neurogenic cell response in the mature mammalian brain following traumatic injury.

    Science.gov (United States)

    Sun, Dong

    2016-01-01

    In the mature mammalian brain, new neurons are generated throughout life in the neurogenic regions of the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Over the past two decades, extensive studies have examined the extent of adult neurogenesis in the SVZ and DG, the role of the adult generated new neurons in normal brain function and the underlying mechanisms regulating the process of adult neurogenesis. The extent and the function of adult neurogenesis under neuropathological conditions have also been explored in varying types of disease models in animals. Increasing evidence has indicated that these endogenous neural stem/progenitor cells may play regenerative and reparative roles in response to CNS injuries or diseases. This review will discuss the potential functions of adult neurogenesis in the injured brain and will describe the recent development of strategies aimed at harnessing this neurogenic capacity in order to repopulate and repair the injured brain following trauma. PMID:25936874

  7. Dosimetric response of radioactive bio glass seeds implants on rabbit brain

    International Nuclear Information System (INIS)

    Interstitial implants of radioactive seeds are used as an efficient way of treating brain tumors. Bio glasses is an interesting alternative to the metallic implanted materials, because they can be absorbed by the organism, reducing the possibilities of side effects. The present paper investigates the dosimetry by the implants performed on rabbit's brain on the NRI/UFMG research group. The spatial distribution of the specific ionizing energy deposited per unit of mass generated by Sm-153 seeds were evaluated. A computational model of the brain's region was built using the software SISCODES produced by the research group. The sections of the computer tomography of a rabbit, which was included on the experiment, were digitalized. Those were converted in a three dimensional voxel model, including the tissues, its chemical composition and density. A simulation of the particles transport is performed by the stochastic code MCNP5. The implants consist of 15 ceramic Ca-Si-Sm seeds enriched with Sm-153, with 1.1.6 mm of length and 0.3 mm diameter, implanted on the rabbit's brain. It was predicted on the model three ribbons of 5 seeds each, spaced by 1.1.2 mm, since the ribbons were in a triangular topology whose vertices were spaced by 8 mm. The activities were 120 MBq/seed. The results show isodose regions superposed over the rabbits' model, reproducing the spatial energy deposition on the brain region. The absorbed dose predicted was 3.2 Gy per 15 seed; however it was not enough to tumor control. The authors suggest to increase the number of seeds and activity, reduction of the space to 5-6 mm among ribbons, improving dose with the beta emitting. (author)

  8. Beta-Amyloid Downregulates MDR1-P-Glycoprotein (Abcb1 Expression at the Blood-Brain Barrier in Mice

    Directory of Open Access Journals (Sweden)

    Anja Brenn

    2011-01-01

    Full Text Available Neurovascular dysfunction is an important component of Alzheimer's disease, leading to reduced clearance across the blood-brain barrier and accumulation of neurotoxic β-amyloid (Aβ peptides in the brain. It has been shown that the ABC transport protein P-glycoprotein (P-gp, ABCB1 is involved in the export of Aβ from the brain into the blood. To determine whether Aβ influences the expression of key Aβ transporters, we studied the effects of 1-day subcutaneous Aβ1-40 and Aβ1-42 administration via Alzet mini-osmotic pumps on P-gp, BCRP, LRP1, and RAGE expression in the brain of 90-day-old male FVB mice. Our results demonstrate significantly reduced P-gp, LRP1, and RAGE mRNA expression in mice treated with Aβ1-42 compared to controls, while BCRP expression was not affected. The expression of the four proteins was unchanged in mice treated with Aβ1-40 or reverse-sequence peptides. These findings indicate that, in addition to the age-related decrease of P-gp expression, Aβ1-42 itself downregulates the expression of P-gp and other Aβ-transporters, which could exacerbate the intracerebral accumulation of Aβ and thereby accelerate neurodegeneration in Alzheimer's disease and cerebral β-amyloid angiopathy.

  9. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  10. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Science.gov (United States)

    Gilmore, Rick O; Thomas, Amanda L; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  11. Brain responses to acupuncture stimulation in the prosthetic hand of an amputee patient.

    Science.gov (United States)

    Lee, In-Seon; Jung, Won-Mo; Lee, Ye-Seul; Wallraven, Christian; Chae, Younbyoung

    2015-10-01

    This report describes the brain responses to acupuncture in an upper limb amputee patient. A 62-year-old male had previously undergone a lower left arm amputation following an electrical accident. Using functional MRI, we investigated brain responses to acupuncture stimulation in the aforementioned amputee under three conditions: (a) intact hand, (b) prosthetic hand (used by the patient), and (c) fake fabric hand. The patient described greater de qi sensation when he received acupuncture stimulation in his prosthetic hand compared to a fake hand, with both stimulations performed in a similar manner. We found enhanced brain activation in the insula and sensorimotor cortex in response to acupuncture stimulation in the amputee's prosthetic hand, while there was only minimal activation in the visual cortex in response to acupuncture stimulation in a fake hand. The enhanced brain responses to acupuncture stimulation of the patient's prosthetic hand might be derived from cortical reorganisation, as he has been using his prosthetic hand for over 40 years. Our findings suggest the possible use of acupuncture stimulation in a prosthetic hand as an enhanced sensory feedback mechanism, which may represent a new treatment approach for phantom limb pain. PMID:26033865

  12. Magnetic resonance imaging in assessment of treatment response of gamma knife for brain tumors

    Institute of Scientific and Technical Information of China (English)

    GAO Xiao; ZHANG Xue-ning; ZHANG Yun-ting; YU Chun-shui; XU De-sheng

    2011-01-01

    Objective To review the applications of magnetic resonance imaging (MRI) techniques in assessing treatment response to gamma knife radiosurgery for brain tumors.Data sources Published articles about assessing treatment response to gamma knife radiosurgery for brain tumors were selected using PubMed. The search terms were "MRI", "gamma knife" and "brain tumors".Study selection Articles regarding the MRI techniques using for early assessment of treatment response of gamma knife were selected.Results MRI techniques, especially diffusion weighted imaging, perfusion weighted imaging, magnetic resonance spectroscopy, are useful for early assessment of treatment response of gamma knife by detecting the hemodynamic, metabolic, and cellular alterations. Moreover, they can also provide important information on prognosis.Conclusions Diffusion weighted imaging, perfusion weighted imaging and magnetic resonance spectroscopy can provide early assessment of treatment response of gamma knife for brain tumors, and also information of tumor progression or recurrence earlier than conventional MRI. But there are still many questions to be answered which should be based on the development and advancement of MRI and related disciplines.

  13. A rapid response of beta-amylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination.

    Science.gov (United States)

    Zhang, Hua; Shen, Wen-Biao; Zhang, Wei; Xu, Lang-Lai

    2005-03-01

    The effects of nitric oxide (NO) and gibberellic acid (GA(3)) on the responses of amylases in wheat (Triticum aestivum L.) seeds (caryopses) were investigated during the first 12 h of germination. GA(3) had no effects on the activities of alpha-amylase (EC 3.2.1.1) or beta-amylase (EC 3.2.1.2), either in intact seeds or embryoless halves within 12 h. In contrast, addition of sodium nitroprusside (SNP), an NO donor, was able to induce a rapid increase in beta-amylase activity without affecting alpha-amylase. Furthermore, the rapid response of beta-amylase to SNP in wheat seeds could be attributed to NO and was approximately dose-dependent. Some other aspects of SNP induction of amylase isozymes were also characterized. Further investigations showed that SNP might play an interesting role in the dissociation of free beta-amylase from small homopolymers or heteropolymers. Furthermore, SNP also directly induced the release of bound beta-amylase from glutenin and its crude enzyme preparation. However, the slight increase in protease also induced by SNP might not be responsible for this action. Interestingly, based on the fact that the rapid response of beta-amylase to NO also existed in seeds of other species, such as barley, soybean, rice and watermelon, it might be a universal event in early seed germination. PMID:15517355

  14. Study of radiation detectors response in standard X, gamma and beta radiation standard beams; Estudo da resposta de monitores de radioprotecao em feixes padronizados de radiacao X, gama e beta

    Energy Technology Data Exchange (ETDEWEB)

    Nonato, Fernanda Beatrice Conceicao

    2010-07-01

    The response of 76 Geiger-Mueller detectors, 4 semiconductor detectors and 34 ionization chambers were studied. Many of them were calibrated with gamma radiation beams ({sup 37}Cs and {sup 60}Co), and some of them were tested in beta radiation ({sup 90}Sr+{sup 9'}0Y e {sup 204}Tl) and X radiation (N-60, N-80, N-100, N-150) beams. For all three types of radiation, the calibration factors of the instruments were obtained, and the energy and angular dependences were studied. For beta and gamma radiation, the angular dependence was studied for incident radiation angles of 0 deg and +- 45 deg. The curves of the response of the instruments were obtained over an angle interval of 0 deg to +- 90 deg, for gamma, beta and X radiations. The calibration factors obtained for beta radiation were compared to those obtained for gamma radiation. For gamma radiation, 24 of the 66 tested Geiger-Mueller detectors presented results for the energy dependence according to international recommendation of ISO 4037-2 and 56 were in accordance with the Brazilian ABNT 10011 recommendation. The ionization chambers and semiconductors were in accordance to national and international recommendations. All instruments showed angular dependence less than 40%. For beta radiation, the instruments showed unsatisfactory results for the energy dependence and angular dependence. For X radiation, the ionization chambers presented results for energy dependence according to the national recommendation, and the angular dependence was less than 40%. (author)

  15. Tunicamycin-induced unfolded protein response in the developing mouse brain

    International Nuclear Information System (INIS)

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific

  16. Tunicamycin-induced unfolded protein response in the developing mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiping; Wang, Xin [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Ke, Zun-Ji [Department of Biochemistry, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203 (China); Comer, Ashley L.; Xu, Mei; Frank, Jacqueline A. [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Zhang, Zhuo; Shi, Xianglin [Graduate Center for Toxicology, University of Kentucky College of Medicine, Lexington, KY 40536 (United States); Luo, Jia, E-mail: jialuo888@uky.edu [Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536 (United States)

    2015-03-15

    Accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) causes ER stress, resulting in the activation of the unfolded protein response (UPR). ER stress and UPR are associated with many neurodevelopmental and neurodegenerative disorders. The developing brain is particularly susceptible to environmental insults which may cause ER stress. We evaluated the UPR in the brain of postnatal mice. Tunicamycin, a commonly used ER stress inducer, was administered subcutaneously to mice of postnatal days (PDs) 4, 12 and 25. Tunicamycin caused UPR in the cerebral cortex, hippocampus and cerebellum of mice of PD4 and PD12, which was evident by the upregulation of ATF6, XBP1s, p-eIF2α, GRP78, GRP94 and MANF, but failed to induce UPR in the brain of PD25 mice. Tunicamycin-induced UPR in the liver was observed at all stages. In PD4 mice, tunicamycin-induced caspase-3 activation was observed in layer II of the parietal and optical cortex, CA1–CA3 and the subiculum of the hippocampus, the cerebellar external germinal layer and the superior/inferior colliculus. Tunicamycin-induced caspase-3 activation was also shown on PD12 but to a much lesser degree and mainly located in the dentate gyrus of the hippocampus, deep cerebellar nuclei and pons. Tunicamycin did not activate caspase-3 in the brain of PD25 mice and the liver of all stages. Similarly, immature cerebellar neurons were sensitive to tunicamycin-induced cell death in culture, but became resistant as they matured in vitro. These results suggest that the UPR is developmentally regulated and the immature brain is more susceptible to ER stress. - Highlights: • Tunicamycin caused a development-dependent UPR in the mouse brain. • Immature brain was more susceptible to tunicamycin-induced endoplasmic reticulum stress. • Tunicamycin caused more neuronal death in immature brain than mature brain. • Tunicamycin-induced neuronal death is region-specific.

  17. Curcumin inhibits beta-amyloid protein 40/42 expression in the brain in a concentration-and time-dependent manner

    Institute of Scientific and Technical Information of China (English)

    Xiong Zhang; Lu Si; Xiaodong Shi; Wenke Yin; Yu Li

    2010-01-01

    Several studies have demonstrated that the amount of beta-amyloid(Aβ)protein in the brain can be lowered by down-regulating Aβ production,promoting Aβ degradation,reducing Aβ oligomerization or deposition,thereby alleviating symptoms of Alzheimer's disease.Curcumin has been known to be a peroxisome proliferator activated receptor gamma(PPARy)agonist and can obviously inhibit Aβ production and oligomerization.This study investigated the effects of curcumin on the β-site APP cleaving enzyme 1(BACE1)activity and PPARy expression in human neuroblastoma SH-SY5Y cells,and validated the inhibitory effects of curcumin on Aβ40/42 expression in the brain.Results revealed that PPARy mRNA and protein expression in the human neuroblastoma SH-SY5Y cells significantly increased with increasing curcumin concentration and time course(P < 0.05);BACE1 mRNA and protein expression and Aβ40/42 production significantly decreased with increasing curcumin concentration and time course(P < 0.05).The changes in PPARY and BACE1expression during Aβ production could be reversed by the PPARy antagonist GW9662.These findings indicate that curcumin reduced Aβ production by activating PPARy expression and inhibiting BACE1 expression in a concentration-and time-dependent manner.

  18. Brain connectivity reflects human aesthetic responses to music.

    Science.gov (United States)

    Sachs, Matthew E; Ellis, Robert J; Schlaug, Gottfried; Loui, Psyche

    2016-06-01

    Humans uniquely appreciate aesthetics, experiencing pleasurable responses to complex stimuli that confer no clear intrinsic value for survival. However, substantial variability exists in the frequency and specificity of aesthetic responses. While pleasure from aesthetics is attributed to the neural circuitry for reward, what accounts for individual differences in aesthetic reward sensitivity remains unclear. Using a combination of survey data, behavioral and psychophysiological measures and diffusion tensor imaging, we found that white matter connectivity between sensory processing areas in the superior temporal gyrus and emotional and social processing areas in the insula and medial prefrontal cortex explains individual differences in reward sensitivity to music. Our findings provide the first evidence for a neural basis of individual differences in sensory access to the reward system, and suggest that social-emotional communication through the auditory channel may offer an evolutionary basis for music making as an aesthetically rewarding function in humans. PMID:26966157

  19. Prostaglandin E2 in Brain-mediated Illness Responses

    OpenAIRE

    Elander, Louise

    2010-01-01

    We are unceasingly exposed to potentially harmful microorganisms. The battle against threatening infectious agents includes activation of both the innate and of the adaptive immune systems. Illness responses are elicited and include inflammation, fever, decreased appetite, lethargy and increased sensitivity to painful stimuli in order to defeat invaders. While many of these signs of disease are controlled by the central nervous system, it has remained an enigma how signals from the peripheral...

  20. Up-regulation of the integrin alpha 1/beta 1 in human neuroblastoma cells differentiated by retinoic acid: correlation with increased neurite outgrowth response to laminin.

    OpenAIRE

    Rossino, P; P. Defilippi; Silengo, L; Tarone, G.

    1991-01-01

    Retinoic acid (RA) is known to induce differentiation of neuroblastoma cells in vitro. Here we show that treatment of two human neuroblastoma cell lines, SY5Y and IMR32, with RA resulted in a fivefold increase of the integrin alpha 1/beta 1 expression. The effect was selective because expression of the alpha 3/beta 1 integrin, also present in these cells, was not increased. The up-regulation of the alpha 1/beta 1 differentiated SY5Y cells correlated with increased neurite response to laminin....

  1. Individualized quantification of brain {beta}-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls

    Energy Technology Data Exchange (ETDEWEB)

    Barthel, Henryk; Luthardt, Julia; Becker, Georg; Patt, Marianne; Sattler, Bernhard; Schildan, Andreas; Hesse, Swen; Meyer, Philipp M.; Sabri, Osama [University of Leipzig, Department of Nuclear Medicine, Leipzig (Germany); Hammerstein, Eva; Hartwig, Kristin; Gertz, Hermann-Josef [University of Leipzig, Department of Psychiatry, Leipzig (Germany); Eggers, Birk [Arzneimittelforschung Leipzig GmbH, Leipzig (Germany); Wolf, Henrike [University of Leipzig, Department of Psychiatry, Leipzig (Germany); University of Zurich, Department of Psychiatry, Zurich (Switzerland); Zimmermann, Torsten; Reischl, Joachim; Rohde, Beate; Reininger, Cornelia [Bayer Healthcare, Berlin (Germany)

    2011-09-15

    Complementing clinical findings with those generated by biomarkers - such as {beta}-amyloid-targeted positron emission tomography (PET) imaging - has been proposed as a means of increasing overall accuracy in the diagnosis of Alzheimer's disease (AD). Florbetaben ([{sup 18}F]BAY 94-9172) is a novel {beta}-amyloid PET tracer currently in global clinical development. We present the results of a proof of mechanism study in which the diagnostic efficacy, pharmacokinetics, safety and tolerability of florbetaben were assessed. The value of various quantitative parameters derived from the PET scans as potential surrogate markers of cognitive decline was also investigated. Ten patients with mild-moderate probable AD (DSM-IV and NINCDS-ADRDA criteria) and ten age-matched ({>=} 55 years) healthy controls (HCs) were administered a single dose of 300 MBq florbetaben, which contained a tracer mass dose of < 5 {mu}g. The 70-90 min post-injection brain PET data were visually analysed by three blinded experts. Quantitative assessment was also performed via MRI-based, anatomical sampling of predefined volumes of interest (VOI) and subsequent calculation of standardized uptake value (SUV) ratios (SUVRs, cerebellar cortex as reference region). Furthermore, single-case, voxelwise analysis was used to calculate individual ''whole brain {beta}-amyloid load''. Visual analysis of the PET data revealed nine of the ten AD, but only one of the ten HC brains to be {beta}-amyloid positive (p = 0.001), with high inter-reader agreement (weighted kappa {>=} 0.88). When compared to HCs, the neocortical SUVRs were significantly higher in the ADs (with descending order of effect size) in frontal cortex, lateral temporal cortex, occipital cortex, anterior and posterior cingulate cortices, and parietal cortex (p = 0.003-0.010). Voxel-based group comparison confirmed these differences. Amongst the PET-derived parameters, the Statistical Parametric Mapping-based whole brain

  2. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    Energy Technology Data Exchange (ETDEWEB)

    Guedj, Eric; Cammilleri, Serge; Colavolpe, Cecile; Taieb, David; Laforte, Catherine de; Mundler, Olivier [Centre Hospitalo-Universitaire de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Assistance Publique des Hopitaux de Marseille, Marseille Cedex 5 (France); Niboyet, Jean [Clinique La Phoceanne, Unite d' Etude et de Traitement de la Douleur, Marseille (France)

    2007-08-15

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 {+-} 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 {+-} 4.2 before ketamine and 31.8 {+-} 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  3. Event-related brain responses while listening to entire pieces of music

    DEFF Research Database (Denmark)

    Poikonen, Hanna; Alluri, Vinoo; Brattico, Elvira; Lartillot, Olivier; Tervaniemi, Mari; Huotilainen, Minna

    2016-01-01

    Brain responses to discrete short sounds have been studied intensively using the event-related potential (ERP) method, in which the electroencephalogram (EEG) signal is divided into epochs time-locked to stimuli of interest. Here we introduce and apply a novel technique which enables one to isolate...

  4. Predictive value of brain perfusion SPECT for ketamine response in hyperalgesic fibromyalgia

    International Nuclear Information System (INIS)

    Ketamine has been used successfully in various proportions of fibromyalgia (FM) patients. However, the response to this specific treatment remains largely unpredictable. We evaluated brain SPECT perfusion before treatment with ketamine, using voxel-based analysis. The objective was to determine the predictive value of brain SPECT for ketamine response. Seventeen women with FM (48 ± 11 years; ACR criteria) were enrolled in the study. Brain SPECT was performed before any change was made in therapy in the pain care unit. We considered that a patient was a good responder to ketamine if the VAS score for pain decreased by at least 50% after treatment. A voxel-by-voxel group analysis was performed using SPM2, in comparison to a group of ten healthy women matched for age. The VAS score for pain was 81.8 ± 4.2 before ketamine and 31.8 ± 27.1 after ketamine. Eleven patients were considered ''good responders'' to ketamine. Responder and non-responder subgroups were similar in terms of pain intensity before ketamine. In comparison to responding patients and healthy subjects, non-responding patients exhibited a significant reduction in bilateral perfusion of the medial frontal gyrus. This cluster of hypoperfusion was highly predictive of non-response to ketamine (positive predictive value 100%, negative predictive value 91%). Brain perfusion SPECT may predict response to ketamine in hyperalgesic FM patients. (orig.)

  5. USING DIFFERENTIAL REINFORCEMENT TO DECREASE ACADEMIC RESPONSE LATENCIES OF AN ADOLESCENT WITH ACQUIRED BRAIN INJURY

    OpenAIRE

    Heinicke, Megan R; Carr, James E; Mozzoni, Michael P

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which differential reinforcement was used to decrease slow responding to academic tasks.

  6. Using Differential Reinforcement to Decrease Academic Response Latencies of an Adolescent with Acquired Brain Injury

    Science.gov (United States)

    Heinicke, Megan R.; Carr, James E.; Mozzoni, Michael P.

    2009-01-01

    The present study investigated the effects of contingency-specifying rules and a token economy to decrease the latency to comply with academic instructions by a 16-year-old girl with acquired brain injury. Results showed that treatment was successful in reducing academic response latencies. These results replicate previous research in which…

  7. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    OpenAIRE

    R, Namas; A, Ghuma; L, Hermus; R, Zamora; DO Okonkwo; TR, Billiar; Y, Vodovotz

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI). Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherently detrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and rege...

  8. Differential Brain Response to Alcohol Cue Distractors across Stages of Alcohol Dependence

    OpenAIRE

    Fryer, Susanna L.; Jorgensen, Kasper W.; Yetter, Elizabeth J.; Daurignac, Elsa C.; Watson, Todd D.; Shanbhag, Harshad; Krystal, John H.; Mathalon, Daniel H.

    2012-01-01

    Altered attention to alcohol-related cues is implicated in the craving and relapse cycle characteristic of alcohol dependence (ALC). Prior cue reactivity studies typically invoke explicit attention to alcohol cues, so the neural response underlying incidental cue exposure remains unclear. Here, we embed infrequent, task-irrelevant alcohol and non-alcohol cues in an attention-demanding task, enabling evaluation of brain responses to distracting alcohol cues. Alcohol dependent individuals, acro...

  9. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    OpenAIRE

    David B. Stone; Coffman, Brian A; Juan Bustillo; Cheryl Aine

    2014-01-01

    Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46) and heal...

  10. Biphasic modeling of brain tumor biomechanics and response to radiation treatment.

    Science.gov (United States)

    Angeli, Stelios; Stylianopoulos, Triantafyllos

    2016-06-14

    Biomechanical forces are central in tumor progression and response to treatment. This becomes more important in brain cancers where tumors are surrounded by tissues with different mechanical properties. Existing mathematical models ignore direct mechanical interactions of the tumor with the normal brain. Here, we developed a clinically relevant model, which predicts tumor growth accounting directly for mechanical interactions. A three-dimensional model of the gray and white matter and the cerebrospinal fluid was constructed from magnetic resonance images of a normal brain. Subsequently, a biphasic tissue growth theory for an initial tumor seed was employed, incorporating the effects of radiotherapy. Additionally, three different sets of brain tissue properties taken from the literature were used to investigate their effect on tumor growth. Results show the evolution of solid stress and interstitial fluid pressure within the tumor and the normal brain. Heterogeneous distribution of the solid stress exerted on the tumor resulted in a 35% spatial variation in cancer cell proliferation. Interestingly, the model predicted that distant from the tumor, normal tissues still undergo significant deformations while it was found that intratumoral fluid pressure is elevated. Our predictions relate to clinical symptoms of brain cancers and present useful tools for therapy planning. PMID:27086116

  11. Plasma levels of beta-endorphin and serotonin in response to specific spinal based exercises

    Directory of Open Access Journals (Sweden)

    O. Sokunbi

    2008-02-01

    Full Text Available Exercises as the primary mode of treatment for low back disorders aim to achieve pain reduction, improvement in functional abilityand quality of life of for low back disorder sufferers. However the bio-chemical events associated with the use of these exercises in terms of theireffects on pain relieving neuropeptides have not been well established. Thisstudy was carried out to investigate the effects of spinal stabilisation, backextension and treadmill walking exercises on plasma levels of serotonin andbeta-endorphin.Twenty volunteers (10 males and 10 females without low back pain participated in the study. They were randomly allocated either to one of theexercise groups, where participants carried out one of the spinal stabilisation, back extension and treadmill walkingexercises or the control (no exercise group. The main outcome measures used in this study were plasma levels of serotonin and beta-endorphin measured with Enzyme linked immuno absorbent assay (ELISA technique.The results of this study showed that spinal stabilisation and treadmill walking exercises produced significantincrease in plasma serotonin levels (P < 0.05 however there were no significant changes in the plasma levels of beta-endorphin in all the exercise groups (P > 0.05.It could be that biochemical effects associated with stabilisation and treadmill walking exercises therefore mayinvolve production of serotonin and its release into the plasma.

  12. Abnormal hemodynamic response to forepaw stimulation in rat brain after cocaine injection

    Science.gov (United States)

    Chen, Wei; Park, Kicheon; Choi, Jeonghun; Pan, Yingtian; Du, Congwu

    2015-03-01

    Simultaneous measurement of hemodynamics is of great importance to evaluate the brain functional changes induced by brain diseases such as drug addiction. Previously, we developed a multimodal-imaging platform (OFI) which combined laser speckle contrast imaging with multi-wavelength imaging to simultaneously characterize the changes in cerebral blood flow (CBF), oxygenated- and deoxygenated- hemoglobin (HbO and HbR) from animal brain. Recently, we upgraded our OFI system that enables detection of hemodynamic changes in response to forepaw electrical stimulation to study potential brain activity changes elicited by cocaine. The improvement includes 1) high sensitivity to detect the cortical response to single forepaw electrical stimulation; 2) high temporal resolution (i.e., 16Hz/channel) to resolve dynamic variations in drug-delivery study; 3) high spatial resolution to separate the stimulation-evoked hemodynamic changes in vascular compartments from those in tissue. The system was validated by imaging the hemodynamic responses to the forepaw-stimulations in the somatosensory cortex of cocaine-treated rats. The stimulations and acquisitions were conducted every 2min over 40min, i.e., from 10min before (baseline) to 30min after cocaine challenge. Our results show that the HbO response decreased first (at ~4min) followed by the decrease of HbR response (at ~6min) after cocaine, and both did not fully recovered for over 30min. Interestingly, while CBF decreased at 4min, it partially recovered at 18min after cocaine administration. The results indicate the heterogeneity of cocaine's effects on vasculature and tissue metabolism, demonstrating the unique capability of optical imaging for brain functional studies.

  13. High beta-palmitate fat controls the intestinal inflammatory response and limits intestinal damage in mucin Muc2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available BACKGROUND: Palmitic-acid esterified to the sn-1,3 positions of the glycerol backbone (alpha, alpha'-palmitate, the predominant palmitate conformation in regular infant formula fat, is poorly absorbed and might cause abdominal discomfort. In contrast, palmitic-acid esterified to the sn-2 position (beta-palmitate, the main palmitate conformation in human milk fat, is well absorbed. The aim of the present study was to examine the influence of high alpha, alpha'-palmitate fat (HAPF diet and high beta-palmitate fat (HBPF diet on colitis development in Muc2 deficient (Muc2(-/- mice, a well-described animal model for spontaneous enterocolitis due to the lack of a protective mucus layer. METHODS: Muc2(-/- mice received AIN-93G reference diet, HAPF diet or HBPF diet for 5 weeks after weaning. Clinical symptoms, intestinal morphology and inflammation in the distal colon were analyzed. RESULTS: Both HBPF diet and AIN-93G diet limited the extent of intestinal erosions and morphological damage in Muc2(-/- mice compared with HAPF diet. In addition, the immunosuppressive regulatory T (Treg cell response as demonstrated by the up-regulation of Foxp3, Tgfb1 and Ebi3 gene expression levels was enhanced by HBPF diet compared with AIN-93G and HAPF diets. HBPF diet also increased the gene expression of Pparg and enzymatic antioxidants (Sod1, Sod3 and Gpx1, genes all reported to be involved in promoting an immunosuppressive Treg cell response and to protect against colitis. CONCLUSIONS: This study shows for the first time that HBPF diet limits the intestinal mucosal damage and controls the inflammatory response in Muc2(-/- mice by inducing an immunosuppressive Treg cell response.

  14. Maintained activity of glycogen synthase kinase-3{beta} despite of its phosphorylation at serine-9 in okadaic acid-induced neurodegenerative model

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yong-Whan [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yoon, Seung-Yong, E-mail: ysy@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Choi, Jung-Eun [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Kim, Sang-Min [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Hui-Sun; Choe, Han [Department of Physiology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Lee, Seung-Chul [CrystalGenomics, Seoul (Korea, Republic of); Kim, Dong-Hou, E-mail: dhkim@amc.seoul.kr [Department of Anatomy and Cell Biology, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Institute for Biomacromolecules, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2010-04-30

    Glycogen synthase kinase-3{beta} (GSK3{beta}) is recognized as one of major kinases to phosphorylate tau in Alzheimer's disease (AD), thus lots of AD drug discoveries target GSK3{beta}. However, the inactive form of GSK3{beta} which is phosphorylated at serine-9 is increased in AD brains. This is also inconsistent with phosphorylation status of other GSK3{beta} substrates, such as {beta}-catenin and collapsin response mediator protein-2 (CRMP2) since their phosphorylation is all increased in AD brains. Thus, we addressed this paradoxical condition of AD in rat neurons treated with okadaic acid (OA) which inhibits protein phosphatase-2A (PP2A) and induces tau hyperphosphorylation and cell death. Interestingly, OA also induces phosphorylation of GSK3{beta} at serine-9 and other substrates including tau, {beta}-catenin and CRMP2 like in AD brains. In this context, we observed that GSK3{beta} inhibitors such as lithium chloride and 6-bromoindirubin-3'-monoxime (6-BIO) reversed those phosphorylation events and protected neurons. These data suggest that GSK3{beta} may still have its kinase activity despite increase of its phosphorylation at serine-9 in AD brains at least in PP2A-compromised conditions and that GSK3{beta} inhibitors could be a valuable drug candidate in AD.

  15. Upregulation of B7 molecules (CD80 and CD86) and exacerbated eosinophilic pulmonary inflammatory response in mice lacking the IFN-beta gene

    DEFF Research Database (Denmark)

    Matheu, Victor; Treschow, Alexandra; Navikas, Vaidrius;

    2003-01-01

    BACKGROUND: IFN-beta has been shown to be effective as therapy for multiple sclerosis. Some reports attributed its beneficial effects to the capacity to induce a T(H)2 response. However, other studies have suggested that endogenous type I IFN might downregulate the allergic response in mice...

  16. Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised.

    OpenAIRE

    Landreth Gary E; Heneka Michael T; Breidert Tilo; Schmidt Stephen D; Mathews Paul M; Lacombe Pierre; Feinstein Douglas L; Galea Elena

    2004-01-01

    Abstract Background The over-expression of transforming growth factor β-1(TGF-β1) has been reported to cause hydrocephalus, glia activation, and vascular amyloidβ (Aβ) deposition in mouse brains. Since these phenomena partially mimic the cerebral amyloid angiopathy (CAA) concomitant to Alzheimer's disease, the findings in TGF-β1 over-expressing mice prompted the hypothesis that CAA could be caused or enhanced by the abnormal production of TGF-β1. This idea was in accordance with the view that...

  17. Affective responses after different intensities of exercise in patients with traumatic brain injury

    OpenAIRE

    Rzezak, Patricia; Caxa, Luciana; Santolia, Patricia; Hanna K.M. Antunes; Suriano, Italo; Tufik, Sérgio; de Mello, Marco T.

    2015-01-01

    Background: Patients with traumatic brain injury (TBI) usually have mood and anxiety symptoms secondary to their brain injury. Exercise may be a cost-effective intervention for the regulation of the affective responses of this population. However, there are no studies evaluating the effects of exercise or the optimal intensity of exercise for this clinical group. Methods: Twelve male patients with moderate or severe TBI [mean age of 31.83 and SD of 9.53] and 12 age- and gender-matched heal...

  18. Acute pharmacologically induced shifts in serotonin availability abolish emotion-selective responses to negative face emotions in distinct brain networks

    DEFF Research Database (Denmark)

    Grady, Cheryl Lynn; Siebner, Hartwig R; Hornboll, Bettina;

    2013-01-01

    Pharmacological manipulation of serotonin availability can alter the processing of facial expressions of emotion. Using a within-subject design, we measured the effect of serotonin on the brain's response to aversive face emotions with functional MRI while 20 participants judged the gender...... distributed brain responses identified two brain networks with modulations of activity related to face emotion and serotonin level. The first network included the left amygdala, bilateral striatum, and fusiform gyri. During the Control session this network responded only to fearful faces; increasing serotonin...... is critical for maintaining a differentiated brain response to threatening face emotions. Lower serotonin leads to a broadening of a normally fear-specific response to anger, and higher levels reduce the differentiated brain response to aversive face emotions....

  19. Effect of beta 1,3 glucan in stress responses of the pencilfish (Nannostomus trifasciatus during transport within the rio Negro basin

    Directory of Open Access Journals (Sweden)

    Janessa S. Abreu

    2014-09-01

    Full Text Available We investigated the use of beta 1,3 glucan as an imunostimulant during a transport experiment to determine the effects upon the stress response of the pencilfish (Nannostomus trifasciatus. Pencilfish were fed for seven days with different concentrations of beta 1,3 glucan: 0.0% (control; 0.01%; 0.1% and 0.5% of beta 1,3 glucan per kg of feed-1. Fish were then transported for 24 hours by boat from Barcelos to Manaus. The highest dose of beta 1,3 glucan in the food increased Na+influx after 12 hours of transport and 0.1 and 0.5% beta 1,3 glucan maintained the flux of both ions close to zero at 24 hours. All doses of beta 1,3 glucan reduced K+ loss significantly in the beginning of the transport, but after 12 to 24 hours did not. No significant differences in whole body cortisol or survival were observed. Our results indicate that pencilfish had ionic alterations during transport from Barcelos to Manaus. The lack of significant differences in whole body cortisol and survival rate in addition to the maintenance of Na+ and K+ balance during transport reinforce the positive effects of beta 1,3 glucan immunostimulant on fish homeostasis. Therefore, we recommend its addition to food prior to transport.

  20. Lactate fuels the human brain during exercise

    DEFF Research Database (Denmark)

    Quistorff, Bjørn; Secher, Niels H; Van Lieshout, Johannes J

    2008-01-01

    The human brain releases a small amount of lactate at rest, and even an increase in arterial blood lactate during anesthesia does not provoke a net cerebral lactate uptake. However, during cerebral activation associated with exercise involving a marked increase in plasma lactate, the brain takes up...... suggests that lactate may partially replace glucose as a substrate for oxidation. Thus, the notion of the human brain as an obligatory glucose consumer is not without exceptions....... blockade but not with beta(1)-adrenergic blockade alone. Also, CMR decreases in response to epinephrine, suggesting that a beta(2)-adrenergic receptor mechanism enhances glucose and perhaps lactate transport across the blood-brain barrier. The pattern of CMR decrease under various forms of brain activation...

  1. Responsiveness of fetal rat brain cells to glia maturation factor during neoplastic transformation in cell culture

    DEFF Research Database (Denmark)

    Haugen, A; Laerum, O D; Bock, E

    1981-01-01

    The effect of partially purified extracts from adult pig brains containing a glia maturation protein factor (BE) has been investigated on neural cells during carcinogenesis. Pregnant BD IX-rats were given a single transplacental dose of the carcinogen ethylnitrosourea (EtNU) on the 18th day of...... gestation. The brains of the treated fetuses were transferred to cell culture and underwent neoplastic transformation with a characteristic sequence of phenotypic alterations which could be divided into five different stages. During the first 40 days after explantation (stage I & II) BE induced...... appreciable effect on GFA-content was seen any longer, although some few weakly GFA positive cells could be observed in all permanent cell lines. Fetal rat brain cells therefore seem to become less responsive to this differentiation inducer during neoplastic transformation in cell culture....

  2. Effect of oculomotor rehabilitation on accommodative responsivity in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Preethi Thiagarajan, BS Optom, MS, PhD

    2014-03-01

    Full Text Available Accommodative dysfunction is a common oculomotor sequelae of mild traumatic brain injury (mTBI. This study evaluated a range of dynamic (objective and static (subjective measures of accommodation in 12 nonstrabismic individuals with mTBI and near vision-related symptoms before and after oculomotor training (OMT and placebo (P training (6 wk, two sessions per week, 3 h of training each. Following OMT, the dynamics of accommodation improved markedly. Clinically, there was a significant increase in the maximum accommodative amplitude both monocularly and binocularly. In addition, the near vision symptoms reduced along with improved visual attention. None of the measures were found to change significantly following P training. These results provide evidence for a significant positive effect of the accommodatively based OMT on accommodative responsivity. Such improvement is suggestive of oculomotor learning, demonstrating considerable residual brain-visual system plasticity in the adult compromised brain.

  3. Brain Connectivity Dissociates Responsiveness from Drug Exposure during Propofol-Induced Transitions of Consciousness.

    Science.gov (United States)

    Chennu, Srivas; O'Connor, Stuart; Adapa, Ram; Menon, David K; Bekinschtein, Tristan A

    2016-01-01

    Accurately measuring the neural correlates of consciousness is a grand challenge for neuroscience. Despite theoretical advances, developing reliable brain measures to track the loss of reportable consciousness during sedation is hampered by significant individual variability in susceptibility to anaesthetics. We addressed this challenge using high-density electroencephalography to characterise changes in brain networks during propofol sedation. Assessments of spectral connectivity networks before, during and after sedation were combined with measurements of behavioural responsiveness and drug concentrations in blood. Strikingly, we found that participants who had weaker alpha band networks at baseline were more likely to become unresponsive during sedation, despite registering similar levels of drug in blood. In contrast, phase-amplitude coupling between slow and alpha oscillations correlated with drug concentrations in blood. Our findings highlight novel markers that prognosticate individual differences in susceptibility to propofol and track drug exposure. These advances could inform accurate drug titration and brain state monitoring during anaesthesia. PMID:26764466

  4. Staged stromal extracellular 3D matrices differentially regulate breast cancer cell responses through PI3K and beta1-integrins

    International Nuclear Information System (INIS)

    invasion altogether. We propose that both cells and matrices are important to promote effective breast cancer cell invasion through three-dimensional matrices and that beta1-integrin inhibition is not necessarily sufficient to block tumor-matrix induced breast cancer cell invasion. Additionally, we believe that characterizing stroma staging (e.g., early vs. late or tumor-associated) might be beneficial for predicting matrix-induced cancer cell responses in order to facilitate the selection of therapies

  5. Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised

    Directory of Open Access Journals (Sweden)

    Landreth Gary E

    2004-07-01

    Full Text Available Abstract Background The over-expression of transforming growth factor β-1(TGF-β1 has been reported to cause hydrocephalus, glia activation, and vascular amyloidβ (Aβ deposition in mouse brains. Since these phenomena partially mimic the cerebral amyloid angiopathy (CAA concomitant to Alzheimer's disease, the findings in TGF-β1 over-expressing mice prompted the hypothesis that CAA could be caused or enhanced by the abnormal production of TGF-β1. This idea was in accordance with the view that chronic inflammation contributes to Alzheimer's disease, and drew attention to the therapeutic potential of anti-inflammatory drugs for the treatment of Aβ-elicited CAA. We thus studied the effect of anti-inflammatory drug administration in TGF-β1-induced pathology. Methods Two-month-old TGF-β1 mice and littermate controls were orally administered pioglitazone, a peroxisome proliferator-activated receptor-γ agonist, or ibuprofen, a non steroidal anti-inflammatory agent, for two months. Glia activation was assessed by immunohistochemistry and western blot analysis; Aβ precursor protein (APP by western blot analysis; Aβ deposition by immunohistochemistry, thioflavin-S staining and ELISA; and hydrocephalus by measurements of ventricle size on autoradiographies of brain sections. Results are expressed as means ± SD. Data comparisons were carried with the Student's T test when two groups were compared, or ANOVA analysis when more than three groups were analyzed. Results Animals displayed glia activation, hydrocephalus and a robust thioflavin-S-positive vascular deposition. Unexpectedly, these deposits contained no Aβ or serum amyloid P component, a common constituent of amyloid deposits. The thioflavin-S-positive material thus remains to be identified. Pioglitazone decreased glia activation and basal levels of Aβ42- with no change in APP contents – while it increased hydrocephalus, and had no effect on the thioflavin-S deposits. Ibuprofen mimicked

  6. Untangling the Effect of Head Acceleration on Brain Responses to Blast Waves.

    Science.gov (United States)

    Mao, Haojie; Unnikrishnan, Ginu; Rakesh, Vineet; Reifman, Jaques

    2015-12-01

    Multiple injury-causing mechanisms, such as wave propagation, skull flexure, cavitation, and head acceleration, have been proposed to explain blast-induced traumatic brain injury (bTBI). An accurate, quantitative description of the individual contribution of each of these mechanisms may be necessary to develop preventive strategies against bTBI. However, to date, despite numerous experimental and computational studies of bTBI, this question remains elusive. In this study, using a two-dimensional (2D) rat head model, we quantified the contribution of head acceleration to the biomechanical response of brain tissues when exposed to blast waves in a shock tube. We compared brain pressure at the coup, middle, and contre-coup regions between a 2D rat head model capable of simulating all mechanisms (i.e., the all-effects model) and an acceleration-only model. From our simulations, we determined that head acceleration contributed 36-45% of the maximum brain pressure at the coup region, had a negligible effect on the pressure at the middle region, and was responsible for the low pressure at the contre-coup region. Our findings also demonstrate that the current practice of measuring rat brain pressures close to the center of the brain would record only two-thirds of the maximum pressure observed at the coup region. Therefore, to accurately capture the effects of acceleration in experiments, we recommend placing a pressure sensor near the coup region, especially when investigating the acceleration mechanism using different experimental setups. PMID:26458125

  7. Response of rat brain protein synthesis to ethanol and sodium barbital

    International Nuclear Information System (INIS)

    Central nervous system (CNS) depressants such as ethanol and barbiturates under acute or chronic conditions can induce changes in rat brain protein synthesis. While these data demonstrate the individual effects of drugs on protein synthesis, the response of brain protein synthesis to alcohol-drug interactions is not known. The goal of the present study was to determine the individual and combined effects of ethanol and sodium barbital on brain protein synthesis and gain an understanding of the mechanisms by which these alterations in protein synthesis are produced. Specifically, the in vivo and in vitro effects of sodium barbital (one class of barbiturates which is not metabolized by the hepatic tissue) were examined on brain protein synthesis in rats made physically dependent upon ethanol. Using cell free brain polysomal systems isolated from Control, Ethanol and 24 h Ethanol Withdrawn rats, data show that sodium barbital, when intubated intragastrically, inhibited the time dependent incorporation of 14C) leucine into protein by all three groups of ribosomes. Under these conditions, the Ethanol Withdrawn group displayed the largest inhibition of the 14C) leucine incorporation into protein when compared to the Control and Ethanol groups. In addition, sodium barbital when added at various concentrations in vitro to the incubation medium inhibited the incorporation of 14C) leucine into protein by Control and Ethanol polysomes. The inhibitory effects were also obtained following preincubation of ribosomes in the presence of barbital but not cycloheximide. Data suggest that brain protein synthesis, specifically brain polysomes, through interaction with ethanol or barbital are involved in the functional development of tolerance. These interactions may occur through proteins or polypeptide chains or alterations in messenger RNA components associated with the ribosomal units

  8. Brain Fingerprinting

    Directory of Open Access Journals (Sweden)

    ravi kumar

    2012-12-01

    Full Text Available Brain Fingerprinting is a scientific technique to determine whether or not specific information is stored in an individual's brain by measuring a electrical brain wave response to Word, phrases, or picture that are presented on computer screen. Brain Fingerprinting is a controversial forensic science technique that uses electroencephalograph y (EEG to determine whether specific information is stored in a subject's brain

  9. Diet-Induced Weight Loss Alters Functional Brain Responses during an Episodic Memory Task

    Directory of Open Access Journals (Sweden)

    Carl-Johan Boraxbekk

    2015-07-01

    Full Text Available Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 months. We used functional magnetic resonance imaging to examine brain function during an episodic memory task as well as anthropometric and biochemical data before and after the interventions. Results: Episodic memory performance improved significantly (p = 0.010 after the dietary interventions. Concomitantly, brain activity increased in the anterior part of the right hippocampus during memory encoding, without differences between diets. This was associated with decreased levels of plasma free fatty acids (FFA. Brain activity increased in pre-frontal cortex and superior/middle temporal gyri. The magnitude of increase correlated with waist circumference reduction. During episodic retrieval, brain activity decreased in inferior and middle frontal gyri, and increased in middle/superior temporal gyri. Conclusions: Diet-induced weight loss, associated with decreased levels of plasma FFA, improves episodic memory linked to increased hippocampal activity.

  10. Mitochondrial responses to prolonged anoxia in brain of red-eared slider turtles.

    Science.gov (United States)

    Pamenter, Matthew E; Gomez, Crisostomo R; Richards, Jeffrey G; Milsom, William K

    2016-01-01

    Mitochondria are central to aerobic energy production and play a key role in neuronal signalling. During anoxia, however, the mitochondria of most vertebrates initiate deleterious cell death cascades. Nonetheless, a handful of vertebrate species, including some freshwater turtles, are remarkably tolerant of low oxygen environments and survive months of anoxia without apparent damage to brain tissue. This tolerance suggests that mitochondria in the brains of such species are adapted to withstand prolonged anoxia, but little is known about potential neuroprotective responses. In this study, we address such mechanisms by comparing mitochondrial function between brain tissues isolated from cold-acclimated red-eared slider turtles (Trachemys scripta elegans) exposed to two weeks of either normoxia or anoxia. We found that brain mitochondria from anoxia-acclimated turtles exhibited a unique phenotype of remodelling relative to normoxic controls, including: (i) decreased citrate synthase and F1FO-ATPase activity but maintained protein content, (ii) markedly reduced aerobic capacity, and (iii) mild uncoupling of the mitochondrial proton gradient. These data suggest that turtle brain mitochondria respond to low oxygen stress with a unique suite of changes tailored towards neuroprotection. PMID:26763217

  11. Brain responses in 4-month-old infants are already language specific.

    Science.gov (United States)

    Friederici, Angela D; Friedrich, Manuela; Christophe, Anne

    2007-07-17

    Language is the most important faculty that distinguishes humans from other animals. Infants learn their native language fast and effortlessly during the first years of life, as a function of the linguistic input in their environment. Behavioral studies reported the discrimination of melodic contours [1] and stress patterns [2, 3] in 1-4-month-olds. Behavioral [4, 5] and brain measures [6-8] have shown language-independent discrimination of phonetic contrasts at that age. Language-specific discrimination, however, has been reported for phonetic contrasts only for 6-12-month-olds [9-12]. Here we demonstrate language-specific discrimination of stress patterns in 4-month-old German and French infants by using electrophysiological brain measures. We compare the processing of disyllabic words differing in their rhythmic structure, mimicking German words being stressed on the first syllable, e.g., pápa/daddy[13], and French ones being stressed on the second syllable, e.g., papá/daddy. Event-related brain potentials reveal that experience with German and French differentially affects the brain responses of 4-month-old infants, with each language group displaying a processing advantage for the rhythmic structure typical in its native language. These data indicate language-specific neural representations of word forms in the infant brain as early as 4 months of age. PMID:17583508

  12. Brain response to photodynamic therapy and Photofrin, nonsulfonated aluminum phthalocyanine and tin purpurin

    Science.gov (United States)

    Dereski, Mary O.; Madigan, Lara; Chopp, Michael

    1995-03-01

    Photodynamic therapy (PDT) with PhotofrinR, nonsulfonated aluminum phthalocyanine (AlClPc), and tin ethyl etiopurpurin I (SnET2) was investigated on normal and tumored (9L gliosarcoma) rat brain. Rats were injected 48 h prior to PDT (3 - 280 J/cm2, 100 mW/cm2) with PhotofrinR (12.5 mg/kg) and AlClPc (2.0 mg/kg) and 24 h prior with SnET2 (1.0 mg/kg). Substantial lesions were present in normal brain with PhotofrinR and with AlClPc at all energy levels. No lesions were present with SnET2. Tumor response for PhotofrinR and AlClPc did not occur with doses less than 140 J/cm2. Drug concentrations for tumored/contralateral hemisphere for PhotofrinR and AlClPc were 1.86 and 7.86, respectively. These data indicate: (1) normal brain is more sensitive than the tumored brain with PhotofrinR and AlClPc, and (2) normal brain sensitivity to SnET2 is less than that with PhotofrinR and AlClPc.

  13. Methodology to assess response to stereotactic irradiation in lesions of the brain stem

    International Nuclear Information System (INIS)

    Purpose/Objective: Magnetic resonance image changes were measured at various time points after patients were treated with stereotactic irradiation to brain lesions in and around the brain stem. Results were correlated with the dose of ionizing radiation given to the same anatomical region. The methodology was developed to assess its utility in predicting brain stem injury and lesion response to high-dose, single-fraction radiation treatments. Materials and Methods: We developed a computerized system for spatially correlating and analyzing changes in T1 weighted, gadolinium enhanced, 3-D magnetic resonance (MR) image sets at multiple time points after treatment with stereotactic brain irradiation. Using this system, we were able to compare post-treatment with pre-treatment images used for computerized treatment planning. The treatment planning image sets contained the dose-volume information for each treatment. The measured quantities included pixel value, size of enhanced region, and dose point value. Twelve patients, having a minimum follow-up after radiosurgery of 6 months and brain lesions of various types, were selected for review: 1 glioma, 4 juvenile pilocytic astrocytomas, 1 cavernous hemangioma, 1 ependymoma, 1 primitive neuroectodermal tumor, 1 meningioma, and 3 metastases. Patient ages ranged from 3 to 59 years at time of treatment. The prescription doses to the lesions ranged from 12 to 20 Gy. The severity and duration of complications were noted for each. Results: Image intensity changes were measured and correlated with dose on a pixel-by-pixel basis in order to plot the time course of the changes. The estimate of spatial accuracy for locating the dose and voxel of tissue was within 2 mm. The sequelae of radiologic changes to irradiation were mixed. We observed increases as well as decreases in the density of the irradiated region with time after treatment which depended on the patient. One patient had nearly complete disappearance of the enhancing

  14. Transcriptomic profiling of the salt stress response in excised leaves of the halophyte Beta vulgaris ssp. maritima.

    Science.gov (United States)

    Skorupa, Monika; Gołębiewski, Marcin; Domagalski, Krzysztof; Kurnik, Katarzyna; Abu Nahia, Karim; Złoch, Michał; Tretyn, Andrzej; Tyburski, Jarosław

    2016-02-01

    Beta vulgaris ssp. maritima is a halophytic relative of cultivated beets. In the present work a transcriptome response to acute salt stress imposed to excised leaves of sea beet was investigated. Salt treatments consisted of adding NaCl directly to the transpiration stream by immersing the petioles of excised leaves into the salt solutions. Sequencing libraries were generated from leaves subjected to either moderate or strong salt stress. Control libraries were constructed from untreated leaves. Sequencing was performed using the Illumina MiSeq platform. We obtained 32970 unigenes by assembling the pooled reads from all the libraries with Trinity software. Screening the nr database returned 18,362 sequences with functional annotation. Using the reference transcriptome we identified 1,246 genes that were differentially expressed after 48 h of NaCl stress. Genes related to several cellular functions such as membrane transport, osmoprotection, molecular chaperoning, redox metabolism or protein synthesis were differentially expressed in response to salt stress. The response of sea beet leaves to salt treatments was marked out by transcriptomic up-regulation of genes related to photosynthetic carbon fixation, ribosome biogenesis, cell wall-building and cell wall expansion. Furthermore, several novel and undescribed transcripts were responsive to salinity in leaves of sea beet. PMID:26795151

  15. Cannabinoid Signaling and Neuroinflammatory Diseases: A Melting pot for the Regulation of Brain Immune Responses.

    Science.gov (United States)

    Chiurchiù, Valerio; Leuti, Alessandro; Maccarrone, Mauro

    2015-06-01

    The concept of the central nervous system (CNS) as an immune-privileged site, essentially due to the presence of the blood brain barrier, appears to be overly simplistic. Indeed, within healthy CNS immune activities are permitted and are required for neuronal function and host defense, not only due to the presence of the resident innate immune cells of the brain, but also by virtue of a complex cross-talk of the CNS with peripheral immune cells. Nonetheless, long-standing and persisting neuroinflammatory responses are most often detrimental and characterize several neuroinflammatory diseases, including multiple sclerosis, Alzheimer's disease and amyotrophic lateral sclerosis. A growing body of evidence suggests that Cannabis sativa-derived phytocannabinoids, as well as synthetic cannabinoids, are endowed with significant immunoregulatory and anti-inflammatory properties, both in peripheral tissues and in the CNS, through the activation of cannabinoid receptors. In this review, the immunomodulatory effects of cannabinoid signaling on the most relevant brain immune cells will be discussed. In addition, the impact of cannabinoid regulation on the overall integration of the manifold brain immune responses will also be highlighted, along with the implication of these compounds as potential agents for the management of neuroinflammatory disorders. PMID:25601726

  16. Principal component analysis of the cytokine and chemokine response to human traumatic brain injury.

    Directory of Open Access Journals (Sweden)

    Adel Helmy

    Full Text Available There is a growing realisation that neuro-inflammation plays a fundamental role in the pathology of Traumatic Brain Injury (TBI. This has led to the search for biomarkers that reflect these underlying inflammatory processes using techniques such as cerebral microdialysis. The interpretation of such biomarker data has been limited by the statistical methods used. When analysing data of this sort the multiple putative interactions between mediators need to be considered as well as the timing of production and high degree of statistical co-variance in levels of these mediators. Here we present a cytokine and chemokine dataset from human brain following human traumatic brain injury and use principal component analysis and partial least squares discriminant analysis to demonstrate the pattern of production following TBI, distinct phases of the humoral inflammatory response and the differing patterns of response in brain and in peripheral blood. This technique has the added advantage of making no assumptions about the Relative Recovery (RR of microdialysis derived parameters. Taken together these techniques can be used in complex microdialysis datasets to summarise the data succinctly and generate hypotheses for future study.

  17. Day-to-day variation of bronchodilatory response to an inhaled beta-2-stimulant in asthmatics.

    Science.gov (United States)

    Lindgren, S; Bake, B; Larsson, S

    1987-01-01

    The effect of inhaling 0.25 and 2.0 mg of terbutaline sulphate, a beta-2-stimulant, from a metered dose aerosol was studied in five asthmatic patients during two periods of five days each. During the first period, the patients used a good spontaneous inhalation technique; during the second period, the inhalation technique was optimized and controlled. The variation of basal FEV1 and of the increase (delta FEV1) caused by 0.25 mg of inhaled terbutaline was considerable. The effect was only slightly better and the variation only slightly smaller when the controlled inhalation technique was used. The differences were not significant. In individual patients, there was no or negative correlation between delta FEV1 and the corresponding basal FEV1 value. Accordingly, the most commonly used way of expressing delta FEV1 as a percentage of basal FEV1 value was found to be insensitive. Delta FEV1, expressed as a percentage of the maximum available FEV1 increase on the same day after 2.25 mg terbutaline sulphate, was found to be most sensitive. This way of expressing delta FEV1 will increase the possibilities of detecting differences between treatments in clinical trials. PMID:3453755

  18. Insula and inferior frontal triangularis activations distinguish between conditioned brain responses using emotional sounds for basic BCI communication

    OpenAIRE

    van der Heiden, Linda; Liberati, Giulia; Sitaram, Ranganatha; Kim, Sunjung; Jaśkowski, Piotr; Raffone, Antonino; Olivetti Belardinelli, Marta; Birbaumer, Niels; Veit, Ralf

    2014-01-01

    In order to enable communication through a brain-computer interface (BCI), it is necessary to discriminate between distinct brain responses. As a first step, we probed the possibility to discriminate between affirmative (“yes”) and negative (“no”) responses using a semantic classical conditioning paradigm, within an fMRI setting. Subjects were presented with congruent and incongruent word-pairs as conditioned stimuli (CS), respectively eliciting affirmative and negative responses. Incongruent...

  19. Hemodynamic response imaging: a potential tool for the assessment of angiogenesis in brain tumors.

    Directory of Open Access Journals (Sweden)

    Dafna Ben Bashat

    Full Text Available Blood oxygenation level dependence (BOLD imaging under either hypercapnia or hyperoxia has been used to study neuronal activation and for assessment of various brain pathologies. We evaluated the benefit of a combined protocol of BOLD imaging during both hyperoxic and hypercapnic challenges (termed hemodynamic response imaging (HRI. Nineteen healthy controls and seven patients with primary brain tumors were included: six with glioblastoma (two newly diagnosed and four with recurrent tumors and one with atypical-meningioma. Maps of percent signal intensity changes (ΔS during hyperoxia (carbogen; 95%O2+5%CO2 and hypercapnia (95%air+5%CO2 challenges and vascular reactivity mismatch maps (VRM; voxels that responded to carbogen with reduced/absent response to CO2 were calculated. VRM values were measured in white matter (WM and gray matter (GM areas of healthy subjects and used as threshold values in patients. Significantly higher response to carbogen was detected in healthy subjects, compared to hypercapnia, with a GM/WM ratio of 3.8 during both challenges. In patients with newly diagnosed/treatment-naive tumors (n = 3, increased response to carbogen was detected with substantially increased VRM response (compared to threshold values within and around the tumors. In patients with recurrent tumors, reduced/absent response during both challenges was demonstrated. An additional finding in 2 of 4 patients with recurrent glioblastoma was a negative response during carbogen, distant from tumor location, which may indicate steal effect. In conclusion, the HRI method enables the assessment of blood vessel functionality and reactivity. Reference values from healthy subjects are presented and preliminary results demonstrate the potential of this method to complement perfusion imaging for the detection and follow up of angiogenesis in patients with brain tumors.

  20. Long-Term Supplementation with Beta Serum Concentrate (BSC, a Complex of Milk Lipids, during Post-Natal Brain Development Improves Memory in Rats

    Directory of Open Access Journals (Sweden)

    Jian Guan

    2015-06-01

    Full Text Available We have previously reported that the supplementation of ganglioside-enriched complex-milk-lipids improves cognitive function and that a phospholipid-enriched complex-milk-lipid prevents age-related cognitive decline in rats. This current study evaluated the effects of post-natal supplementation of ganglioside- and phospholipid-enriched complex-milk-lipids beta serum concentrate (BSC on cognitive function in young rats. The diet of male rats was supplemented with either gels formulated BSC (n = 16 or blank gels (n = 16 from post-natal day 10 to day 70. Memory and anxiety-like behaviors were evaluated using the Morris water maze, dark–light boxes, and elevated plus maze tests. Neuroplasticity and white matter were measured using immunohistochemical staining. The overall performance in seven-day acquisition trials was similar between the groups. Compared with the control group, BSC supplementation reduced the latency to the platform during day one of the acquisition tests. Supplementation improved memory by showing reduced latency and improved path efficiency to the platform quadrant, and smaller initial heading error from the platform zone. Supplemented rats showed an increase in striatal dopamine terminals and hippocampal glutamate receptors. Thus BSC supplementation during post-natal brain development improved learning and memory, independent from anxiety. The moderately enhanced neuroplasticity in dopamine and glutamate may be biological changes underlying the improved cognitive function.

  1. Effect of oculomotor rehabilitation on vergence responsivity in mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Preethi Thiagarajan, BS Optom, MS, PhD

    2013-12-01

    Full Text Available A range of dynamic and static vergence responses were evaluated in 12 individuals with mild traumatic brain injury (age: 29 +/– 3 yr having near vision symptoms. All measures were performed in a crossover design before and after oculomotor training (OMT and placebo (P training. Following OMT, peak velocity for both convergence and divergence increased significantly. Increased peak velocity was significantly correlated with increased clinically based vergence prism flipper rate. Steady-state response variability for convergence reduced significantly following OMT. The maximum amplitude of convergence, relative fusional amplitudes, and near stereoacuity improved significantly. In addition, symptoms reduced significantly, and visual attention improved markedly. None of the measures were found to change significantly following P training. The significant improvement in most aspects of vergence eye movements following OMT demonstrates considerable residual brain plasticity via oculomotor learning. The improved vergence affected positively on nearwork-related symptoms and visual attention.

  2. DeltaFosB in brain reward circuits mediates resilience to stress and antidepressant responses.

    Science.gov (United States)

    Vialou, Vincent; Robison, Alfred J; Laplant, Quincey C; Covington, Herbert E; Dietz, David M; Ohnishi, Yoshinori N; Mouzon, Ezekiell; Rush, Augustus J; Watts, Emily L; Wallace, Deanna L; Iñiguez, Sergio D; Ohnishi, Yoko H; Steiner, Michel A; Warren, Brandon L; Krishnan, Vaishnav; Bolaños, Carlos A; Neve, Rachael L; Ghose, Subroto; Berton, Olivier; Tamminga, Carol A; Nestler, Eric J

    2010-06-01

    In contrast with the many studies of stress effects on the brain, relatively little is known about the molecular mechanisms of resilience, the ability of some individuals to escape the deleterious effects of stress. We found that the transcription factor DeltaFosB mediates an essential mechanism of resilience in mice. Induction of DeltaFosB in the nucleus accumbens, an important brain reward-associated region, in response to chronic social defeat stress was both necessary and sufficient for resilience. DeltaFosB induction was also required for the standard antidepressant fluoxetine to reverse behavioral pathology induced by social defeat. DeltaFosB produced these effects through induction of the GluR2 AMPA glutamate receptor subunit, which decreased the responsiveness of nucleus accumbens neurons to glutamate, and through other synaptic proteins. Together, these findings establish a previously unknown molecular pathway underlying both resilience and antidepressant action. PMID:20473292

  3. Once-weekly 22microg subcutaneous IFN-beta-1a in secondary progressive MS: a 3-year follow-up study on brain MRI measurements and serum MMP-9 levels

    DEFF Research Database (Denmark)

    Wu, X; Kuusisto, H; Dastidar, P;

    2007-01-01

    OBJECTIVE: To study the effect of weekly injected subcutaneous interferon (IFN)-beta-1a 22 microg on the extent of brain lesions on magnetic resonance imaging (MRI) and the level of serum matrix metalloproteinase (MMP)-9 in patients with secondary progressive multiple sclerosis (SPMS). SUBJECTS AND...... METHODS: All the 28 Finnish patients participating in the Nordic multicentre trial on the clinical efficacy of weekly IFN-beta-1a (Rebif) 22 microg in SPMS were studied neurologically and by volumetric MRI during a 3-year follow-up. The levels of MMP-9 in serum were measured over the 3-year study. RESULTS......: There was no obvious effect on the number of contrast medium-enhancing lesions, the volume of T1 or T2 lesions or level of serum MMP-9, nor was any effect detected on the relapse rate and the Expanded Disability Status Scale (EDSS). Brain atrophy progression was not affected by the treatment. CONCLUSION...

  4. No effect of ethanol ingestion on beta-adrenoceptor-mediated circulatory responses to isoprenaline in man.

    OpenAIRE

    Eisenhofer, G.; Lambie, D G; Johnson, R. H.

    1985-01-01

    The acute effects of ethanol on circulatory responses to isoprenaline and atropine were investigated in 21 and 15 normal male subjects respectively. Each subject acted as his own control by participating twice, once after consumption of ethanol (1.0 ml kg-1, 20% v/v in orange juice) and once after orange juice. Ethanol increased baseline heart rate and forearm blood flow, but had no effect on heart rate and forearm blood flow responses to isoprenaline, or on heart rate responses to atropine. ...

  5. Organotypic vibrosections from whole brain adult Alzheimer mice (overexpressing amyloid-precursor-protein with the Swedish-Dutch-Iowa mutations as a model to study clearance of beta-amyloid plaques

    Directory of Open Access Journals (Sweden)

    Christian eHumpel

    2015-04-01

    Full Text Available Alzheimer´s disease is a severe neurodegenerative disorder of the brain, pathologically characterized by extracellular beta-amyloid plaques, intraneuronal Tau inclusions, inflammation, reactive glial cells, vascular pathology and neuronal cell death. The degradation and clearance of beta-amyloid plaques is an interesting therapeutic approach, and the proteases neprilysin (NEP, insulysin and matrix metalloproteinases (MMP are of particular interest. The aim of this project was to establish and characterize a simple in vitro model to study the degrading effects of these proteases. Organoytpic brain vibrosections (120 µm thick were sectioned from adult (9 month old wildtype and transgenic mice (expressing amyloid precursor protein (APP harboring the Swedish K670N/M671L, Dutch E693Q, and Iowa D694N mutations; APP_SDI and cultured for 2 weeks. Plaques were stained by immunohistochemistry for beta-amyloid and Thioflavin S. Our data show that plaques were evident in 2 week old cultures from 9 month old transgenic mice. These plaques were surrounded by reactive GFAP+ astroglia and Iba1+ microglia. Incubation of fresh slices for 2 weeks with 1-0.1-0.01 µg/ml of NEP, insulysin, MMP-2 or MMP-9 showed that NEP, insulysin and MMP-9 markedly degradeded beta-amyloid plaques but only at the highest concentration. Our data provide for the first time a potent and powerful living brain vibrosection model containing a high number of plaques, which allows to rapidly and simply study the degradation and clearance of beta-amyloid plaques in vitro.

  6. Beta Thalassemia

    Science.gov (United States)

    ... South Asian (Indian, Pakistani, etc.), Southeast Asian and Chinese descent. 1 Beta Thalassemia ßß Normal beta globin ... then there is a 25% chance with each pregnancy that their child will inherit two abnormal beta ...

  7. Carcinoma cells misuse the host tissue damage response to invade the brain

    OpenAIRE

    Chuang, Han-Ning; van Rossum, Denise; Sieger, Dirk; Siam, Laila; Klemm, Florian; Bleckmann, Annalen; Bayerlová, Michaela; Farhat, Katja; Scheffel, Jörg; Schulz, Matthias; Dehghani, Faramarz; Stadelmann, Christine; Hanisch, Uwe-Karsten; Binder, Claudia; Pukrop, Tobias

    2013-01-01

    The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carci...

  8. SSVEP response is related to functional brain network topology entrained by the flickering stimulus.

    Directory of Open Access Journals (Sweden)

    Yangsong Zhang

    Full Text Available Previous studies have shown that the brain network topology correlates with the cognitive function. However, few studies have investigated the relationship between functional brain networks that process sensory inputs and outputs. In this study, we focus on steady-state paradigms using a periodic visual stimulus, which are increasingly being used in both brain-computer interface (BCI and cognitive neuroscience researches. Using the graph theoretical analysis, we investigated the relationship between the topology of functional networks entrained by periodic stimuli and steady state visually evoked potentials (SSVEP using two frequencies and eleven subjects. First, the entire functional network (Network 0 of each frequency for each subject was constructed according to the coherence between electrode pairs. Next, Network 0 was divided into three sub-networks, in which the connection strengths were either significantly (positively for Network 1, negatively for Network 3 or non-significantly (Network 2 correlated with the SSVEP responses. Our results revealed that the SSVEP responses were positively correlated to the mean functional connectivity, clustering coefficient, and global and local efficiencies, while these responses were negatively correlated with the characteristic path length of Networks 0, 1 and 2. Furthermore, the strengths of these connections that significantly correlated with the SSVEP (both positively and negatively were mainly found to be long-range connections between the parietal-occipital and frontal regions. These results indicate that larger SSVEP responses correspond with better functional network topology structures. This study may provide new insights for understanding brain mechanisms when using SSVEPs as frequency tags.

  9. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    OpenAIRE

    Kamila Jankowiak Siuda; Krystyna Rymarczyk; Artur Marchewka

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behaviour. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutiona...

  10. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    OpenAIRE

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional ...

  11. Brain responses to repeated visual experience among low and high sensation seekers: role of boredom susceptibility

    OpenAIRE

    Jiang, Yang; Lianekhammy, Joann; Lawson, Adam; Guo, Chunyan; ynam, Donald; Joseph, Jane E.; Gold, Brian T.; Kelly, Thomas H.

    2009-01-01

    To better understand individual differences in sensation seeking and its components, including boredom susceptibility and experience seeking, we examined brain responses of high and low sensation seekers during repeated visual experience. Individuals scoring in the top and bottom quartiles from a college-aged population on the Brief Sensation-Seeking Scale (BSSS) participated in an event-related potentials (ERPs) experiment. Line drawings of common objects were randomly intermixed and present...

  12. Managing health worker migration: a qualitative study of the Philippine response to nurse brain drain

    Directory of Open Access Journals (Sweden)

    Dimaya Roland M

    2012-12-01

    Full Text Available Abstract Background The emigration of skilled nurses from the Philippines is an ongoing phenomenon that has impacted the quality and quantity of the nursing workforce, while strengthening the domestic economy through remittances. This study examines how the development of brain drain-responsive policies is driven by the effects of nurse migration and how such efforts aim to achieve mind-shifts among nurses, governing and regulatory bodies, and public and private institutions in the Philippines and worldwide. Methods Interviews and focus group discussions were conducted to elicit exploratory perspectives on the policy response to nurse brain drain. Interviews with key informants from the nursing, labour and immigration sectors explored key themes behind the development of policies and programmes that respond to nurse migration. Focus group discussions were held with practising nurses to understand policy recipients’ perspectives on nurse migration and policy. Results Using the qualitative data, a thematic framework was created to conceptualize participants’ perceptions of how nurse migration has driven the policy development process. The framework demonstrates that policymakers have recognised the complexity of the brain drain phenomenon and are crafting dynamic policies and programmes that work to shift domestic and global mindsets on nurse training, employment and recruitment. Conclusions Development of responsive policy to Filipino nurse brain drain offers a glimpse into a domestic response to an increasingly prominent global issue. As a major source of professionals migrating abroad for employment, the Philippines has formalised efforts to manage nurse migration. Accordingly, the Philippine paradigm, summarised by the thematic framework presented in this paper, may act as an example for other countries that are experiencing similar shifts in healthcare worker employment due to migration.

  13. Diet-Induced Weight Loss alters Functional Brain Responses during an Episodic Memory Task

    OpenAIRE

    Boraxbekk, Carl-Johan; Stomby, Andreas; Ryberg, Mats; Lindahl, Bernt; Larsson, Christel; Nyberg, Lars; Olsson, Tommy

    2015-01-01

    Objective: It has been suggested that overweight is negatively associated with cognitive functions. The aim of this study was to investigate whether a reduction in body weight by dietary interventions could improve episodic memory performance and alter associated functional brain responses in overweight and obese women. Methods: 20 overweight postmenopausal women were randomized to either a modified paleolithic diet or a standard diet adhering to the Nordic Nutrition Recommendations for 6 mon...

  14. Brain responses to body image stimuli but not food are altered in women with bulimia nervosa

    OpenAIRE

    Van den Eynde, Frederique; Giampietro, Vincent; Simmons, Andrew; Uher, Rudolf; Andrew, Chris M; Harvey, Philippe-Olivier; Campbell, Iain C.; Schmidt, Ulrike

    2013-01-01

    Background Research into the neural correlates of bulimia nervosa (BN) psychopathology remains limited. Methods In this functional magnetic resonance imaging study, 21 BN patients and 23 healthy controls (HCs) completed two paradigms: 1) processing of visual food stimuli and 2) comparing their own appearance with that of slim women. Participants also rated food craving and anxiety levels. Results Brain activation patterns in response to food cues did not differ between women with and without ...

  15. Violence: heightened brain attentional network response is selectively muted in Down syndrome

    OpenAIRE

    Anderson, Jeffrey S.; Treiman, Scott M.; Ferguson, Michael A.; Nielsen, Jared A.; Edgin, Jamie O.; Dai, Li; Gerig, Guido; Korenberg, Julie R.

    2015-01-01

    Background The ability to recognize and respond appropriately to threat is critical to survival, and the neural substrates subserving attention to threat may be probed using depictions of media violence. Whether neural responses to potential threat differ in Down syndrome is not known. Methods We performed functional MRI scans of 15 adolescent and adult Down syndrome and 14 typically developing individuals, group matched by age and gender, during 50 min of passive cartoon viewing. Brain activ...

  16. Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress

    OpenAIRE

    Carvalho-Netto, Eduardo F.; Myers, Brent; Jones, Kenneth; Solomon, Matia B.; Herman, James P.

    2011-01-01

    Increased stress responsiveness is implicated in the etiology of mood and anxiety disorders, including depression and post-traumatic stress disorder. Additionally, stress-related affective disorders have a higher incidence in women than men. Chronic stress in rodents produces numerous neuromorphological changes in a variety of limbic brain regions. Here, we examined the sex-dependent differences in presynaptic innervation of the paraventricular nucleus of the hypothalamus (PVN), prefrontal co...

  17. Response inhibition in children with and without ADHD after traumatic brain injury

    OpenAIRE

    Ornstein, Tisha J.; Psych, C.; Max, Jeffrey E.; Schachar, Russell; Dennis, Maureen; Barnes, Marcia; Ewing-Cobbs, Linda; Levin, Harvey S.

    2012-01-01

    Children with attention-deficit/hyperactivity disorder (ADHD) and traumatic brain injury (TBI) show deficient response inhibition. ADHD itself is a common consequence of TBI, known as secondary ADHD (S-ADHD). Similarity in inhibitory control in children with TBI, S-ADHD, and ADHD would implicate impaired frontostriatal systems; however, it is first necessary to delineate similarities and differences in inhibitory control in these conditions. We compared performance of children with ADHD and t...

  18. From stimuli to motor responses : Decoding rules and decision mechanisms in the human brain

    OpenAIRE

    Bode, S

    2010-01-01

    In a dynamically changing environment, we are constantly required to flexibly react to stimuli. It is therefore necessary to adapt behaviour to environmental cues, as well as to successfully perceive relevant stimuli. The present work addressed the question of which brain areas form the basis for task preparation and decisions along the processing chain from stimuli to responses. It combined functional magnetic resonance imaging with multivariate pattern classification to search for the encod...

  19. MicroRNA responses to focal cerebral ischemia in male and female mouse brain

    OpenAIRE

    Lusardi, Theresa A; Murphy, Stephanie J.; Phillips, Jay I.; Chen, Yingxin; Catherine M Davis; Young, Jennifer M.; Thompson, Simon J.; Saugstad, Julie A

    2014-01-01

    Stroke occurs with greater frequency in men than in women across diverse ethnic backgrounds and nationalities. Work from our lab and others have revealed a sex-specific sensitivity to cerebral ischemia whereby males exhibit a larger extent of brain damage resulting from an ischemic event compared to females. Previous studies revealed that microRNA (miRNA) expression is regulated by cerebral ischemia in males; however, no studies to date have examined the effect of ischemia on miRNA responses ...

  20. Brain functional near infrared spectroscopy in human infants : cerebral cortical haemodynamics coupled to neuronal activation in response to sensory stimulation

    OpenAIRE

    Bartocci, Marco

    2006-01-01

    The assessment of cortical activation in the neonatal brain is crucial in the study of brain development, as it provides precious information for how the newborn infant processes external or internal stimuli. Thus far functional studies of neonates aimed to assess cortical responses to certain external stimuli are very few, due to the lack of suitable techniques to monitor brain activity of the newborn. Near Infrared Spectroscopy (NIRS) has been found to be suitable for func...

  1. The effect of combined hormonal contraceptives use on brain reactivity during response inhibition.

    Science.gov (United States)

    Gingnell, Malin; Bannbers, Elin; Engman, Jonas; Frick, Andreas; Moby, Lena; Wikström, Johan; Sundström-Poromaa, Inger

    2016-04-01

    Objectives Cognitive control, which can be described as the ability to moderate impulses, has not previously been investigated in users of combined hormonal contraception (CHC). Given the suggested modulatory role of ovarian steroids in prefrontal dopaminergic function, which in turn taps into cognitive control, this randomised, double-blinded, placebo-controlled oral contraceptive trial set out to investigate the brain activity pattern during response inhibition in CHC users. Methods Thirty-four women were randomised to one treatment cycle with a levonorgestrel-containing CHC or placebo. The women performed a Go/NoGo task to measure brain activity during response inhibition by use of event-related functional magnetic resonance imaging (fMRI) prior to and during the CHC/placebo treatment cycle. Results No differences between CHC and placebo users in number of correct inhibitions were found during treatment, but only women on CHC significantly improved their performance between the baseline and treatment assessments. During the treatment cycle CHC users displayed decreased activity in the right middle frontal gyrus in comparison with placebo users. No other significant activations were evident between treatment groups or within groups. Conclusion Overall, CHC use had marginal effects on brain activity during response inhibition. If anything, the findings of the study may suggest reduced effort or increased efficiency in maintaining orbitofrontal cortex inhibitory cognitive control when using a combined oral contraceptive. PMID:26291330

  2. Response-driven imaging biomarkers for predicting radiation necrosis of the brain

    International Nuclear Information System (INIS)

    Radiation necrosis is an uncommon but severe adverse effect of brain radiation therapy (RT). Current predictive models based on radiation dose have limited accuracy. We aimed to identify early individual response biomarkers based upon diffusion tensor (DT) imaging and incorporated them into a response model for prediction of radiation necrosis. Twenty-nine patients with glioblastoma received six weeks of intensity modulated RT and concurrent temozolomide. Patients underwent DT-MRI scans before treatment, at three weeks during RT, and one, three, and six months after RT. Cases with radiation necrosis were classified based on generalized equivalent uniform dose (gEUD) of whole brain and DT index early changes in the corpus callosum and its substructures. Significant covariates were used to develop normal tissue complication probability models using binary logistic regression. Seven patients developed radiation necrosis. Percentage changes of radial diffusivity (RD) in the splenium at three weeks during RT and at six months after RT differed significantly between the patients with and without necrosis (p = 0.05 and p = 0.01). Percentage change of RD at three weeks during RT in the 30 Gy dose–volume of the splenium and brain gEUD combined yielded the best-fit logistic regression model. Our findings indicate that early individual response during the course of RT, assessed by radial diffusivity, has the potential to aid the prediction of delayed radiation necrosis, which could provide guidance in dose-escalation trials. (paper)

  3. Attachment style dimensions are associated with brain activity in response to gaze interaction.

    Science.gov (United States)

    Cecchini, Marco; Iannoni, Maria Elena; Pandolfo, Anna Lucia; Aceto, Paola; Lai, Carlo

    2015-01-01

    Aim of the present study was to investigate the time course of brain processes involved in the visual perception of different gaze interactions in woman-child dyads and the association between attachment dimensions and brain activation during the presentation of gaze interactions. The hypothesis was that the woman avoidance will produce a greater activation of primary somatosensory and limbic areas. The attachment styles dimensions avoidant-related will be associated with fronto-limbic brain intensity during the convergence of gaze. Electroencephalogram (EEG) data were recorded using a 256-channel HydroCel Geodesic Sensor Net in 44 female subjects (age: 24 ± 2 years). Event-related potential (ERP) components and standardized low-resolution electromagnetic tomography (sLORETA) were analyzed. Participants were administered the attachment style questionnaire before EEG task. A lower P350 latency was found in the fronto-central montage in response to woman avoidance. sLORETA analysis showed a greater intensity of limbic and primary somatosensory areas in response to woman avoidance compared to the others gaze interactions. In response to convergence gaze, the confidence attachment dimension was negatively correlated with the intensities of the right temporal and limbic areas, and the relationships as secondary attachment dimension were positively correlated with the intensities of the bilateral frontal areas and of the left parietal area. PMID:25568957

  4. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress.

    Science.gov (United States)

    Hollins, Sharon L; Cairns, Murray J

    2016-08-01

    The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research. PMID:27317386

  5. Homocystinuria due to cystathionine beta-synthase deficiency--the effects of betaine treatment in pyridoxine-responsive patients.

    Science.gov (United States)

    Wilcken, D E; Dudman, N P; Tyrrell, P A

    1985-12-01

    Homocystinuria due to cystathionine beta-synthase deficiency may be responsive to pyridoxine, a precursor of the cofactor pyridoxal phosphate, and the amount of residual enzyme activity present is the probable determinant of this. In six treated pyridoxine-responsive patients whose biochemical control of fasting plasma amino acid levels appeared optimal, we assessed the effects on plasma amino acids of standard oral methionine loads (4g/m2 of body area) before and after adding betaine (trimethylglycine) 6 g/d, to the treatment regimen of pyridoxine and folic acid. Our aim was to define the capacity of these patients to metabolize methionine and to determine whether betaine would effect a reduction in postload homocysteine levels. During the 24 hours after the methionine challenge all patients had higher plasma methionine and homocysteine and lower cysteine than did 17 normal subjects. After betaine these homocysteine responses were reduced to near normal, and there was a trend toward increased methionine. There was a direct correlation between premethionine fasting homocysteine and mean homocysteine responses during the 24 hours following the methionine load, both before (r = 0.79) and after betaine (r = 0.71). Betaine also increased plasma cysteine levels in patients with the more severe biochemical abnormalities. After betaine there were modest increases in plasma serine (mean increase 25%; P less than 0.025). Since the vascular complications of homocystinuria are related to increased plasma homocysteine, betaine therapy may reduce this risk in patients receiving a standard pyridoxine and folic acid regimen in whom there are abnormal homocysteine responses after a standard methionine load. PMID:3934499

  6. Assessing paedophilia based on the haemodynamic brain response to face images

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Van Eimeren, Thilo;

    2016-01-01

    OBJECTIVES: Objective assessment of sexual preferences may be of relevance in the treatment and prognosis of child sexual offenders. Previous research has indicated that this can be achieved by pattern classification of brain responses to sexual child and adult images. Our recent research showed...... misclassified participants (three false positives), corresponding to a specificity of 91% and a sensitivity of 95%. CONCLUSIONS: These results indicate that the functional response to facial stimuli can be reliably used for fMRI-based classification of paedophilia, bypassing the problem of showing child sexual...

  7. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    International Nuclear Information System (INIS)

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of 99mTc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  8. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    International Nuclear Information System (INIS)

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  9. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  10. Spatial and Temporal Brain Responses to Noxious Heat Thermal Stimuli in Burning Mouth Syndrome.

    Science.gov (United States)

    Shinozaki, T; Imamura, Y; Kohashi, R; Dezawa, K; Nakaya, Y; Sato, Y; Watanabe, K; Morimoto, Y; Shizukuishi, T; Abe, O; Haji, T; Tabei, K; Taira, M

    2016-09-01

    Burning mouth syndrome (BMS) is an idiopathic orofacial pain condition. Although the pathophysiology of BMS is not clearly understood, central and peripheral neuropathic mechanisms are thought to be involved. The authors compared brain response to noxious heat stimuli in 16 right-handed women with primary BMS and 15 sex- and age-matched right-handed healthy female controls. A thermal stimulus sequence of 32 °C to 40 °C to 32 °C to 49 °C was repeated 4 times in a cycle. Warm and noxious heat stimuli were delivered with a Peltier thermode placed on the right palm or right lower lip for 32 s each in a session. Functional magnetic resonance imaging data were obtained by recording echoplanar images with a block design. Statistical Parametric Mapping 8 software was used to analyze the data. Patients and controls both reported feeling more pain during palm stimulation than during lip stimulation. Repetition of noxious heat stimulus on the lower lip but not on the palm induced habituation in brain activity in the cingulate cortex without reduction in pain perception. Multiple regression analysis revealed a correlation between perceived pain intensity and suppression of brain activity in the anterior cingulate cortex when the repeated thermal sequence was applied at the lower lip. Furthermore, the response of the parahippocampal area differed in BMS patients and controls when the same repeated thermal sequence was applied at the palm. The authors' findings indicate that BMS patients show specific brain responses due to impaired function of the central and peripheral nervous systems (clinical trial registration: UMIN000015002). PMID:27302878

  11. Uptake of 17{beta}-estradiol and biomarker responses in brown trout (Salmo trutta) exposed to pulses

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, Jacob J.G.; Holbech, Henrik; Madsen, Steffen S. [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark); Bjerregaard, Poul, E-mail: poul@biology.sdu.dk [Institute of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense (Denmark)

    2011-12-15

    In streams, chemicals such as 17{beta}-estradiol (E2) are likely to occur in pulses. We investigated uptake and biomarker responses in juvenile brown trout (Salmo trutta) of 3- or 6-h pulses of concentrations up to 370 ng E2 L{sup -1}. Uptake by the fish was estimated from disappearance of E2 from tank water. A single 6-h pulse of 370 ng E2 L{sup -1} increased the plasma vitellogenin concentration, liver Er{alpha}- and vitellogenin-mRNA. Exposure to 150-160 ng E2 L{sup -1} for 6 h increased vitellogenin in one experiment but not in another. Two 6-h pulses had a larger effect one pulse. Brown trout in the size range 24-74 g took up E2 linearly with time and exposure concentration with a concentration ratio rate of 20.2 h{sup -1}. In conclusion, the threshold for induction of estrogenic effects in juvenile brown trout at short term pulse exposure appears to be in the range 150-200 ng E2 L{sup -1}. - Highlights: > We investigated estrogenic effects of pulse exposure of 17{beta}-estradiol in brown trout. > We used induction of vitellogenin and gene expression as biomarkers. > The threshold for effects after 6 h pulses ranges between 150 and 200 ng E2 L{sup -1}. > E2 is taken up in {approx}50 g fish linearly with time and concentration at 20 h{sup -1}. - The threshold concentration for induction of estrogenic effects in brown trout upon short term (6 h) exposure is in the range 150-200 ng E2 L{sup -1}.

  12. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    DEFF Research Database (Denmark)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas;

    2009-01-01

    -stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression...

  13. Interferon-beta induces distinct gene expression response patterns in human monocytes versus T cells.

    Directory of Open Access Journals (Sweden)

    Noa Henig

    Full Text Available BACKGROUND: Monocytes, which are key players in innate immunity, are outnumbered by neutrophils and lymphocytes among peripheral white blood cells. The cytokine interferon-β (IFN-β is widely used as an immunomodulatory drug for multiple sclerosis and its functional pathways in peripheral blood mononuclear cells (PBMCs have been previously described. The aim of the present study was to identify novel, cell-specific IFN-β functions and pathways in tumor necrosis factor (TNF-α-activated monocytes that may have been missed in studies using PBMCs. METHODOLOGY/PRINCIPAL FINDINGS: Whole genome gene expression profiles of human monocytes and T cells were compared following in vitro priming to TNF-α and overnight exposure to IFN-β. Statistical analyses of the gene expression data revealed a cell-type-specific change of 699 transcripts, 667 monocyte-specific transcripts, 21 T cell-specific transcripts and 11 transcripts with either a difference in the response direction or a difference in the magnitude of response. RT-PCR revealed a set of differentially expressed genes (DEGs, exhibiting responses to IFN-β that are modulated by TNF-α in monocytes, such as RIPK2 and CD83, but not in T cells or PBMCs. Known IFN-β promoter response elements, such as ISRE, were enriched in T cell DEGs but not in monocyte DEGs. The overall directionality of the gene expression regulation by IFN-β was different in T cells and monocytes, with up-regulation more prevalent in T cells, and a similar extent of up and down-regulation recorded in monocytes. CONCLUSIONS: By focusing on the response of distinct cell types and by evaluating the combined effects of two cytokines with pro and anti-inflammatory activities, we were able to present two new findings First, new IFN-β response pathways and genes, some of which were monocytes specific; second, a cell-specific modulation of the IFN-β response transcriptome by TNF-α.

  14. Persistent GABAA/C responses to gabazine, taurine and beta-alanine in rat hypoglossal motoneurons.

    Science.gov (United States)

    Chesnoy-Marchais, D

    2016-08-25

    In hypoglossal motoneurons, a sustained anionic current, sensitive to a blocker of ρ-containing GABA receptors, (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) and insensitive to bicuculline, was previously shown to be activated by gabazine. In order to better characterize the receptors involved, the sensitivity of this atypical response to pentobarbital (30μM), allopregnanolone (0.3μM) and midazolam (0.5μM) was first investigated. Pentobarbital potentiated the response, whereas the steroid and the benzodiazepine were ineffective. The results indicate the involvement of hybrid heteromeric receptors, including at least a GABA receptor ρ subunit and a γ subunit, accounting for the pentobarbital-sensitivity. The effects of the endogenous β amino acids, taurine and β-alanine, which are released under various pathological conditions and show neuroprotective properties, were then studied. In the presence of the glycine receptor blocker strychnine (1μM), both taurine (0.3-1mM) and β-alanine (0.3mM) activated sustained anionic currents, which were partly blocked by TPMPA (100μM). Thus, both β amino acids activated ρ-containing GABA receptors in hypoglossal motoneurons. Bicuculline (20μM) reduced responses to taurine and β-alanine, but small sustained responses persisted in the presence of both strychnine and bicuculline. Responses to β-alanine were slightly increased by allopregnanolone, indicating a contribution of the bicuculline- and neurosteroid-sensitive GABAA receptors underlying tonic inhibition in these motoneurons. Since sustained activation of anionic channels inhibits most mature principal neurons, the ρ-containing GABA receptors permanently activated by taurine and β-alanine might contribute to some of their neuroprotective properties under damaging overexcitatory situations. PMID:27246441

  15. Relations between peripheral and brain serotonin measures and behavioural responses in a novelty test in pigs.

    Science.gov (United States)

    Ursinus, Winanda W; Bolhuis, J Elizabeth; Zonderland, Johan J; Rodenburg, T Bas; de Souza, Adriana S; Koopmanschap, Rudie E; Kemp, Bas; Korte-Bouws, Gerdien A H; Korte, S Mechiel; van Reenen, Cornelis G

    2013-06-13

    Pigs differ in their behavioural responses towards environmental challenges. Individual variation in maladaptive responses such as tail biting, may partly originate from underlying biological characteristics related to (emotional) reactivity to challenges and serotonergic system functioning. Assessing relations between behavioural responses and brain and blood serotonin parameters may help in understanding susceptibility to the development of maladaptive responses. The objective of the current study was, therefore, to assess the relationship between the pigs' serotonergic parameters measured in both blood and brain, and the behaviour of pigs during a novelty test. Pigs (n=31) were subjected to a novelty test at 11weeks of age, consisting of 5-min novel environment exposure after which a novel object (a bucket) was introduced for 5min. Whole blood serotonin, platelet serotonin level, and platelet serotonin uptake were determined at 13weeks of age. Levels of serotonin, its metabolite and serotonin turnover were determined at 19weeks of age in the frontal cortex, hypothalamus and hippocampus. The behaviour of the pigs was different during exposure to a novel object compared to the novel environment only, with more fear-related behaviours exhibited during novel object exposure. Platelet serotonin level and brain serotonergic parameters in the hippocampus were interrelated. Notably, the time spent exploring the test arena was significantly correlated with both platelet serotonin level and right hippocampal serotonin activity (turnover and concentration). In conclusion, the existence of an underlying biological trait - possibly fearfulness - may be involved in the pig's behavioural responses toward environmental challenges, and this is also reflected in serotonergic parameters. PMID:23685231

  16. Transcriptomic responses in mouse brain exposed to chronic excess of the neurotransmitter glutamate

    Directory of Open Access Journals (Sweden)

    Pal Ranu

    2010-06-01

    Full Text Available Abstract Background Increases during aging in extracellular levels of glutamate (Glu, the major excitatory neurotransmitter in the brain, may be linked to chronic neurodegenerative diseases. Little is known about the molecular responses of neurons to chronic, moderate increases in Glu levels. Genome-wide gene expression in brain hippocampus was examined in a unique transgenic (Tg mouse model that exhibits moderate Glu hyperactivity throughout the lifespan, the neuronal Glutamate dehydrogenase (Glud1 mouse, and littermate 9 month-old wild type mice. Results Integrated bioinformatic analyses on transcriptomic data were used to identify bio-functions, pathways and gene networks underlying neuronal responses to increased Glu synaptic release. Bio-functions and pathways up-regulated in Tg mice were those associated with oxidative stress, cell injury, inflammation, nervous system development, neuronal growth, and synaptic transmission. Increased gene expression in these functions and pathways indicated apparent compensatory responses offering protection against stress, promoting growth of neuronal processes (neurites and re-establishment of synapses. The transcription of a key gene in the neurite growth network, the kinase Ptk2b, was significantly up-regulated in Tg mice as was the activated (phosphorylated form of the protein. In addition to genes related to neurite growth and synaptic development, those associated with neuronal vesicle trafficking in the Huntington's disease signalling pathway, were also up-regulated. Conclusions This is the first study attempting to define neuronal gene expression patterns in response to chronic, endogenous Glu hyperactivity at brain synapses. The patterns observed were characterized by a combination of responses to stress and stimulation of nerve growth, intracellular transport and recovery.

  17. Branding and a child's brain: an fMRI study of neural responses to logos.

    Science.gov (United States)

    Bruce, Amanda S; Bruce, Jared M; Black, William R; Lepping, Rebecca J; Henry, Janice M; Cherry, Joseph Bradley C; Martin, Laura E; Papa, Vlad B; Davis, Ann M; Brooks, William M; Savage, Cary R

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children's brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing. PMID:22997054

  18. Assessment of response to beta-blockers by expression of βArr2 and RhoA/ROCK2 in antrum mucosa in cirrhotic patients

    DEFF Research Database (Denmark)

    Trebicka, Jonel; von Heydebrand, Matthias; Lehmann, Jennifer;

    2016-01-01

    BACKGROUND & AIMS: Non-selective beta-blockers (NSBB) are first choice for prevention of variceal bleeding. But possible deleterious effects in refractory ascites and frequent non-response are clinical drawbacks. Since levels of vasoactive proteins in antrum mucosa reflect vascular dysfunction in...... and protein expression of Ras homolog family member A (RhoA), Rho-kinase (ROCK)2, beta-arrestin2 (βArr2), endothelial nitric oxide synthase (eNOS) and the phosphorylation of downstream effectors VASP and moesin were analyzed using PCR and Western blot. Further 21 patients on NSBB were evaluated on...

  19. The translation start signal region of TEM beta-lactamase mRNA is responsible for heat shock-induced repression of amp gene expression in Escherichia coli.

    OpenAIRE

    Kuriki, Y

    1989-01-01

    pBR322 contains the amp gene encoding beta-lactamase. When Escherichia coli carrying this plasmid is exposed to heat shock, beta-lactamase synthesis is repressed transiently at the translational level. To identify the DNA element responsible for this translational repression, DNA segments containing the translation start region of the amp gene were excised from pAT153 and fused in frame with the lacZ reading frame in the open reading frame vector pORF1. These constructs were introduced into E...

  20. Metastatic brain cancer: prediction of response to whole-brain helical tomotherapy with simultaneous intralesional boost for metastatic disease using quantitative MR imaging features

    Science.gov (United States)

    Sharma, Harish; Bauman, Glenn; Rodrigues, George; Bartha, Robert; Ward, Aaron

    2014-03-01

    The sequential application of whole brain radiotherapy (WBRT) and more targeted stereotactic radiosurgery (SRS) is frequently used to treat metastatic brain tumors. However, SRS has side effects related to necrosis and edema, and requires separate and relatively invasive localization procedures. Helical tomotherapy (HT) allows for a SRS-type simultaneous infield boost (SIB) of multiple brain metastases, synchronously with WBRT and without separate stereotactic procedures. However, some patients' tumors may not respond to HT+SIB, and would be more appropriately treated with radiosurgery or conventional surgery despite the additional risks and side effects. As a first step toward a broader objective of developing a means for response prediction to HT+SIB, the goal of this study was to investigate whether quantitative measurements of tumor size and appearance (including first- and second-order texture features) on a magnetic resonance imaging (MRI) scan acquired prior to treatment could be used to differentiate responder and nonresponder patient groups after HT+SIB treatment of metastatic disease of the brain. Our results demonstrated that smaller lesions may respond better to this form of therapy; measures of appearance provided limited added value over measures of size for response prediction. With further validation on a larger data set, this approach may lead to a means for prediction of individual patient response based on pre-treatment MRI, supporting appropriate therapy selection for patients with metastatic brain cancer.

  1. Brain caspase-3 and intestinal FABP responses in preterm and term rats submitted to birth asphyxia

    Directory of Open Access Journals (Sweden)

    R.L. Figueira

    2016-01-01

    Full Text Available Neonatal asphyxia can cause irreversible injury of multiple organs resulting in hypoxic-ischemic encephalopathy and necrotizing enterocolitis (NEC. This injury is dependent on time, severity, and gestational age, once the preterm babies need ventilator support. Our aim was to assess the different brain and intestinal effects of ischemia and reperfusion in neonate rats after birth anoxia and mechanical ventilation. Preterm and term neonates were divided into 8 subgroups (n=12/group: 1 preterm control (PTC, 2 preterm ventilated (PTV, 3 preterm asphyxiated (PTA, 4 preterm asphyxiated and ventilated (PTAV, 5 term control (TC, 6 term ventilated (TV, 7 term asphyxiated (TA, and 8 term asphyxiated and ventilated (TAV. We measured body, brain, and intestine weights and respective ratios [(BW, (BrW, (IW, (BrW/BW and (IW/BW]. Histology analysis and damage grading were performed in the brain (cortex/hippocampus and intestine (jejunum/ileum tissues, as well as immunohistochemistry analysis for caspase-3 and intestinal fatty acid-binding protein (I-FABP. IW was lower in the TA than in the other terms (P<0.05, and the IW/BW ratio was lower in the TA than in the TAV (P<0.005. PTA, PTAV and TA presented high levels of brain damage. In histological intestinal analysis, PTAV and TAV had higher scores than the other groups. Caspase-3 was higher in PTAV (cortex and TA (cortex/hippocampus (P<0.005. I-FABP was higher in PTAV (P<0.005 and TA (ileum (P<0.05. I-FABP expression was increased in PTAV subgroup (P<0.0001. Brain and intestinal responses in neonatal rats caused by neonatal asphyxia, with or without mechanical ventilation, varied with gestational age, with increased expression of caspase-3 and I-FABP biomarkers.

  2. Brain activation for response inhibition under gaming cue distraction in internet gaming disorder.

    Science.gov (United States)

    Liu, Gin-Chung; Yen, Ju-Yu; Chen, Chiao-Yun; Yen, Cheng-Fang; Chen, Cheng-Sheng; Lin, Wei-Chen; Ko, Chih-Hung

    2014-01-01

    We evaluated neural substrates related to the loss of control in college students with internet gaming disorder (IGD). We hypothesized that deficit in response inhibition under gaming cue distraction was the possible mechanism for the loss of control internet use. Eleven cases of IGD and 11 controls performed Go/NoGo tasks with/without gaming distraction in the functional magnetic resonance imaging scanner. When the gaming picture was shown as background while individuals were performing Go/NoGo tasks, the IGD group committed more commission errors. The control group increased their brain activations more over the right dorsolateral prefrontal cortex (DLPFC) and superior parietal lobe under gaming cue distraction in comparison with the IGD group. Furthermore, brain activation of the right DLPFC and superior parietal lobe were negatively associated with performance of response inhibition among the IGD group. The results suggest that the function of response inhibition was impaired under gaming distraction among the IGD group, and individuals with IGD could not activate right DLPFC and superior parietal lobe to keep cognitive control and attention allocation for response inhibition under gaming cue distraction. This mechanism should be addressed in any intervention for IGD. PMID:24388058

  3. Phase lagging model of brain response to external stimuli - modeling of single action potential

    CERN Document Server

    Seetharaman, Karthik; Kulish, Vladimir V

    2012-01-01

    In this paper we detail a phase lagging model of brain response to external stimuli. The model is derived using the basic laws of physics like conservation of energy law. This model eliminates the paradox of instantaneous propagation of the action potential in the brain. The solution of this model is then presented. The model is further applied in the case of a single neuron and is verified by simulating a single action potential. The results of this modeling are useful not only for the fundamental understanding of single action potential generation, but also they can be applied in case of neuronal interactions where the results can be verified against the real EEG signal.

  4. Early changes of auditory brain stem evoked response after radiotherapy for nasopharyngeal carcinoma - a prospective study

    Energy Technology Data Exchange (ETDEWEB)

    Lau, S.K.; Wei, W.I.; Sham, J.S.T.; Choy, D.T.K.; Hui, Y. (Queen Mary Hospital, Hong Kong (Hong Kong))

    1992-10-01

    A prospective study of the effect of radiotherapy for nasopharyngeal carcinoma on hearing was carried out on 49 patients who had pure tone, impedance audiometry and auditory brain stem evoked response (ABR) recordings before, immediately, three, six and 12 months after radiotherapy. Fourteen patients complained of intermittent tinnitus after radiotherapy. We found that 11 initially normal ears of nine patients developed a middle ear effusion, three to six months after radiotherapy. There was mixed sensorineural and conductive hearing impairment after radiotherapy. Persistent impairment of ABR was detected immediately after completion of radiotherapy. The waves I-III and I-V interpeak latency intervals were significantly prolonged one year after radiotherapy. The study shows that radiotherapy for nasopharyngeal carcinoma impairs hearing by acting on the middle ear, the cochlea and the brain stem auditory pathway. (Author).

  5. Responses of different dosemeters in beta dosimetry of {sup 106}Ru/{sup 106}Rh ophthalmic applicators;Respostas de diferentes dosimetros termoluminescentes na dosimetria beta de aplicadores oftalmicos de {sup 106}Ru/{sup 106}Rh

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, D.F.P.; Daros, K.A.C.; Segreto, R.A.; Medeiros, R.B. [Universidade Federal de Sao Paulo (UNIFESP), Sao Paulo, SP (Brazil)

    2009-07-01

    This work presents the TL response of three kinds of dosimeters from different manufacturing characteristics under irradiation of 106 Ru / 106 Rh sealed sources used in ophthalmic brachytherapy. They are: Ca SO{sub 4}:Dy + teflon (D- Ca SO{sub 4}:Dy -0,4), LiF:Mg, Ti (TLD-100) and Ca SO{sub 4}:Dy (TLD-900). Some of reports accepted by scientific community (NCS report 14 e ICRU report 72) as reference in the quality control of beta applicators dosimetry recommend that the absorbed dose standard uncertainties can be kept below 20%. The TLD Ca SO{sub 4}:Dy + teflon presented proper sensibility and high precision comparing with the others. Considering the similar dimensions of ophthalmic tumors and aside critical structures it is relevant to reduce undesirable effects due to the irradiation of these structures. Therefore, the quality control in the beta dosimetry using this kind of source is a constant challenge. (author)

  6. Mapping genetic variants associated with beta-adrenergic responses in inbred mice.

    Directory of Open Access Journals (Sweden)

    Micha Hersch

    Full Text Available β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS addressing the values and susceptibility of cardiovascular-related traits to a selective β(1-blocker, Atenolol (ate, and a β-agonist, Isoproterenol (iso. The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA, a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8. An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6. Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD. Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.

  7. Factors associated with tumor response and survival in radiosurgery for brain metastasis

    International Nuclear Information System (INIS)

    We reviewed our experience with radiosurgery for brain metastasis and focused on factors associated with tumor response and survival. Our study consists of 19 patients with 25 brain metastases who underwent linear accelerator radiosurgery. There was evidence of extra-central nervous system (CNS) tumors in 15 patients. The maximum diameter of the tumors ranged from 3 to 40 mm with a mean of 20 mm. Tumor doses at the isocenter varied from 16 to 25 Gy with a mean of 21 Gy. Eighteen lesions were treated by radiosurgery alone and 7 lesions received combined radiosurgery with fractionated radiotherapy. Of the 11 patients who experienced CNS failure either in or out of the radiosurgery field, 6 patients had salvage radiotherapy. Median survival was 7 months, and the 1-year actuarial survival rate was 40%. Death was due to extra-CNS tumor manifestations in 11 patients. In 3 patients, CNS failure was the cause of death. One died of local progression, and the other 2 died of newly developed metastases. Poor Karnofsky performance scores and the presence of extra-CNS tumors significantly affected 1-year survival in univariate analysis (p<0.05). Local tumor control was achieved in 80% of the lesions. The 1-year actuarial tumor control rate was 51%. Newly developed brain metastases were observed in 7 patients. The tumor diameter was mostly associated with tumor response in multiple regression analysis (p=0.0031). We concluded that radiosurgery is effective in controlling small brain metastases. Survival benefit is expected for those with good performance status and adequately controlled extra-CNS disease. (author)

  8. Dose-response relationships and time course of the response to systemic beta adrenoreceptor agonists in infants with bronchopulmonary disease.

    OpenAIRE

    Kraemer, R; Birrer, P; Schöni, M H

    1988-01-01

    The lung function response to three doses of salbutamol 0.075 mg/kg given at 10 minute intervals by gastric tube was studied in 31 infants aged 2-22 months with bronchopulmonary disease (eight after the respiratory distress syndrome, 15 with wheezy bronchitis, and eight with cystic fibrosis). Lung function was measured by whole body plethysmography. Seven of 31 infants had normal lung function and 10 of the remaining 24 had an increase in thoracic gas volume (TGV), 10 an increase in airway re...

  9. The carbonic anhydrase inhibitor methazolamide prevents amyloid beta-induced mitochondrial dysfunction and caspase activation protecting neuronal and glial cells in vitro and in the mouse brain.

    Science.gov (United States)

    Fossati, Silvia; Giannoni, Patrizia; Solesio, Maria E; Cocklin, Sarah L; Cabrera, Erwin; Ghiso, Jorge; Rostagno, Agueda

    2016-02-01

    Mitochondrial dysfunction has been recognized as an early event in Alzheimer's disease (AD) pathology, preceding and inducing neurodegeneration and memory loss. The presence of cytochrome c (CytC) released from the mitochondria into the cytoplasm is often detected after acute or chronic neurodegenerative insults, including AD. The carbonic anhydrase inhibitor (CAI) methazolamide (MTZ) was identified among a library of drugs as an inhibitor of CytC release and proved to be neuroprotective in Huntington's disease and stroke models. Here, using neuronal and glial cell cultures, in addition to an acute model of amyloid beta (Aβ) toxicity, which replicates by intra-hippocampal injection the consequences of interstitial and cellular accumulation of Aβ, we analyzed the effects of MTZ on neuronal and glial degeneration induced by the Alzheimer's amyloid. MTZ prevented DNA fragmentation, CytC release and activation of caspase 9 and caspase 3 induced by Aβ in neuronal and glial cells in culture through the inhibition of mitochondrial hydrogen peroxide production. Moreover, intraperitoneal administration of MTZ prevented neurodegeneration induced by intra-hippocampal Aβ injection in the mouse brain and was effective at reducing caspase 3 activation in neurons and microglia in the area surrounding the injection site. Our results, delineating the molecular mechanism of action of MTZ against Aβ-mediated mitochondrial dysfunction and caspase activation, and demonstrating its efficiency in a model of acute amyloid-mediated toxicity, provide the first combined in vitro and in vivo evidence supporting the potential of a new therapy employing FDA-approved CAIs in AD. PMID:26581638

  10. Optimized inhibition assays reveal different inhibitory responses of hydroxylamine oxidoreductases from beta- and gamma-proteobacterial ammonium-oxidizing bacteria.

    Science.gov (United States)

    Nishigaya, Yuki; Fujimoto, Zui; Yamazaki, Toshimasa

    2016-07-29

    Ammonia-oxidizing bacteria (AOB), ubiquitous chemoautotrophic bacteria, convert ammonia (NH3) to nitrite (NO2(-)) via hydroxylamine as energy source. Excessive growth of AOB, enhanced by applying large amounts of ammonium-fertilizer to the farmland, leads to nitrogen leaching and nitrous oxide gas emission. To suppress these unfavorable phenomena, nitrification inhibitors, AOB specific bactericides, are widely used in fertilized farmland. However, new nitrification inhibitors are desired because of toxicity and weak-effects of currently used inhibitors. Toward development of novel nitrification inhibitors that target hydroxylamine oxidoreductase (HAO), a key enzyme of nitrification in AOB, we established inhibitor evaluation systems that include simplified HAO purification procedure and high-throughput HAO activity assays for the purified enzymes and for the live AOB cells. The new assay systems allowed us to observe distinct inhibitory responses of HAOs from beta-proteobacterial AOB (βAOB) Nitrosomonas europaea (NeHAO) and gamma-proteobacterial AOB (γAOB) Nitrosococcus oceani (NoHAO) against phenylhydrazine, a well-known suicide inhibitor for NeHAO. Consistently, the live cells of N. europaea, Nitrosomonas sp. JPCCT2 and Nitrosospira multiformis of βAOB displayed higher responses to phenylhydrazine than those of γAOB N. oceani. Our homology modeling studies suggest that different inhibitory responses of βAOB and γAOB are originated from different local environments around the substrate-binding sites of HAOs in these two classes of bacteria due to substitutions of two residues. The results reported herein strongly recommend inhibitor screenings against both NeHAO of βAOB and NoHAO of γAOB to develop HAO-targeting nitrification inhibitors with wide anti-AOB spectra. PMID:27173879

  11. MicroRNA-155 targets SMAD2 and modulates the response of macrophages to transforming growth factor-{beta}.

    Science.gov (United States)

    Louafi, Fethi; Martinez-Nunez, Rocio T; Sanchez-Elsner, Tilman

    2010-12-31

    Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine with important effects on processes such as fibrosis, angiogenesis, and immunosupression. Using bioinformatics, we identified SMAD2, one of the mediators of TGF-β signaling, as a predicted target for a microRNA, microRNA-155 (miR-155). MicroRNAs are a class of small non-coding RNAs that have emerged as an important class of gene expression regulators. miR-155 has been found to be involved in the regulation of the immune response in myeloid cells. Here, we provide direct evidence of binding of miR-155 to a predicted binding site and the ability of miR-155 to repress SMAD2 protein expression. We employed a lentivirally transduced monocyte cell line (THP1-155) containing an inducible miR-155 transgene to show that endogenous levels of SMAD2 protein were decreased after sustained overexpression of miR-155. This decrease in SMAD2 led to a reduction in both TGF-β-induced SMAD-2 phosphorylation and SMAD-2-dependent activation of the expression of the CAGA(12)LUC reporter plasmid. Overexpression of miR-155 altered the cellular responses to TGF-β by changing the expression of a set of genes that is involved in inflammation, fibrosis, and angiogenesis. Our study provides firm evidence of a role for miR-155 in directly repressing SMAD2 expression, and our results demonstrate the relevance of one of the two predicted target sites in SMAD2 3'-UTR. Altogether, our data uncover an important role for miR-155 in modulating the cellular response to TGF-β with possible implications in several human diseases where homeostasis of TGF-β might be altered. PMID:21036908

  12. Multiprotein complex formation at the beta myosin heavy chain distal muscle CAT element correlates with slow muscle expression but not mechanical overload responsiveness.

    Science.gov (United States)

    Vyas, D R; McCarthy, J J; Tsika, G L; Tsika, R W

    2001-01-12

    To examine the role of the beta-myosin heavy chain (betaMyHC) distal muscle CAT (MCAT) element in muscle fiber type-specific expression and mechanical overload (MOV) responsiveness, we conducted transgenic and in vitro experiments. In adult transgenic mice, mutation of the distal MCAT element led to significant reductions in chloramphenicol acetyltransferase (CAT) specific activity measured in control soleus and plantaris muscles when compared with wild type transgene beta293WT but did not abolish MOV-induced CAT specific activity. Electrophoretic mobility shift assay revealed the formation of a specific low migrating nuclear protein complex (LMC) at the betaMyHC MCAT element that was highly enriched only when using either MOV plantaris or control soleus nuclear extract. Scanning mutagenesis of the betaMyHC distal MCAT element revealed that only the nucleotides comprising the core MCAT element were essential for LMC formation. The proteins within the LMC when using either MOV plantaris or control soleus nuclear extracts were antigenically related to nominal transcription enhancer factor 1 (NTEF-1), poly(ADP-ribose) polymerase (PARP), and Max. Only in vitro translated TEF-1 protein bound to the distal MCAT element, suggesting that this multiprotein complex is tethered to the DNA via TEF-1. Protein-protein interaction assays revealed interactions between nominal TEF-1, PARP, and Max. Our studies show that for transgene beta293 the distal MCAT element is not required for MOV responsiveness but suggest that a multiprotein complex likely comprised of nominal TEF-1, PARP, and Max forms at this element to contribute to basal slow fiber expression. PMID:11010974

  13. Neural basis for brain responses to TV commercials: a high-resolution EEG study.

    Science.gov (United States)

    Astolfi, Laura; De Vico Fallani, F; Cincotti, F; Mattia, D; Bianchi, L; Marciani, M G; Salinari, S; Colosimo, A; Tocci, A; Soranzo, R; Babiloni, F

    2008-12-01

    We investigated brain activity during the observation of TV commercials by tracking the cortical activity and the functional connectivity changes in normal subjects. The aim was to elucidate if the TV commercials that were remembered by the subjects several days after their first observation elicited particular brain activity and connectivity compared with those generated during the observation of TV commercials that were quickly forgotten. High-resolution electroencephalogram (EEG) recordings were performed in a group of healthy subjects and the cortical activity during the observation of TV commercials was evaluated in several regions of interest coincident with the Brodmann areas (BAs). The patterns of cortical connectivity were obtained in the four principal frequency bands, Theta (3-7 Hz), Alpha (8-12 Hz), Beta (13-30 Hz), Gamma (30-40 Hz) and the directed influences between any given pair of the estimated cortical signals were evaluated by use of a multivariate spectral technique known as partial directed coherence. The topology of the cortical networks has been identified with tools derived from graph theory. Results suggest that the cortical activity and connectivity elicited by the viewing of the TV commercials that were remembered by the experimental subjects are markedly different from the brain activity elicited during the observation of the TV commercials that were forgotten. In particular, during the observation of the TV commercials that were remembered, the amount of cortical spectral activity from the frontal areas (BA 8 and 9) and from the parietal areas (BA 5, 7, and 40) is higher compared with the activity elicited by the observation of TV commercials that were forgotten. In addition, network analysis suggests a clear role of the parietal areas as a target of the incoming flow of information from all the other parts of the cortex during the observation of TV commercials that have been remembered. The techniques presented here shed new light on

  14. Hormonal contraceptives suppress oxytocin-induced brain reward responses to the partner's face.

    Science.gov (United States)

    Scheele, Dirk; Plota, Jessica; Stoffel-Wagner, Birgit; Maier, Wolfgang; Hurlemann, René

    2016-05-01

    The hypothalamic peptide oxytocin (OXT) has been identified as a key modulator of pair-bonding in men, but its effects in women are still elusive. Moreover, there is substantial evidence that hormonal contraception (HC) influences partner preferences and sexual satisfaction, which constitute core domains of OXT function. We thus hypothesized that OXT effects on partner-related behavioral and neural responses could be significantly altered in women using HC. In this functional magnetic resonance imaging study involving 40 pair-bonded women, 21 of whom were using HC, we investigated whether a 24-IU nasal dose of OXT would modulate brain reward responses evoked by the romantic partner's face relative to the faces of familiar and unfamiliar people. Treatment with OXT increased the perceived attractiveness of the partner relative to other men, which was paralleled by elevated responses in reward-associated regions, including the nucleus accumbens. These effects of OXT were absent in women using HC. Our results confirm and extend previous findings in men that OXT interacts with the brain reward system to reinforce partner value representations, indicating a common OXT-dependent mechanism underlying partner attraction in both sexes. This mechanism may be disturbed in women using HC, suggesting that gonadal steroids could alter partner-specific OXT effects. PMID:26722017

  15. Exploring diazepam's effect on hemodynamic responses of mouse brain tissue by optical spectroscopic imaging.

    Science.gov (United States)

    Abookasis, David; Shochat, Ariel; Nesher, Elimelech; Pinhasov, Albert

    2014-07-01

    In this study, a simple duel-optical spectroscopic imaging apparatus capable of simultaneously determining relative changes in brain oxy-and deoxy-hemoglobin concentrations was used following administration of the anxiolytic compound diazepam in mice with strong dominant (Dom) and submissive (Sub) behavioral traits. Three month old mice (n = 30) were anesthetized and after 10 min of baseline imaging, diazepam (1.5 mg/kg) was administered and measurements were taken for 80 min. The mouse head was illuminated by white light based LED's and diffused reflected light passing through different channels, consisting of a bandpass filter and a CCD camera, respectively, was collected and analyzed to measure the hemodynamic response. This work's major findings are threefold: first, Dom and Sub animals showed statistically significant differences in hemodynamic response to diazepam administration. Secondly, diazepam was found to more strongly affect the Sub group. Thirdly, different time-series profiles were observed post-injection, which can serve as a possible marker for the groups' differentiation. To the best of our knowledge, this is the first report on the effects of an anxiolytic drug on brain hemodynamic responses in mice using diffused light optical imaging. PMID:25071958

  16. Mutation of cysteine 46 in IKK-beta increases inflammatory responses

    Science.gov (United States)

    Jiang, Zhi Hong; Jiang, Shui Ping; Liu, Yan; Wang, Ting Yu; Yao, Xiao Jun; Su, Xiao Hui; Yan, Feng Gen; Liu, Juan; Leung, Elaine Lai-Han; Yi, Xiao Qin; Wong, Yuen Fan; Zhou, Hua; Liu, Liang

    2015-01-01

    Activation of IκB kinase β (IKK-β) and nuclear factor (NF)-κB signaling contributes to cancer pathogenesis and inflammatory disease; therefore, the IKK-β−NF-κB signaling pathway is a potential therapeutic target. Current drug design strategies focus on blocking NF-κB signaling by binding to specific cysteine residues on IKK-β. However, mutations in IKK-β have been found in patients who may eventually develop drug resistance. For these patients, a new generation of IKK-β inhibitors are required to provide novel treatment options. We demonstrate in vitro that cysteine-46 (Cys-46) is an essential residue for IKK-β kinase activity. We then validate the role of Cys-46 in the pathogenesis of inflammation using delayed-type hypersensitivity (DTH) and an IKK-βC46A transgenic mouse model. We show that a novel IKK-β inhibitor, dihydromyricetin (DMY), has anti-inflammatory effects on WT DTH mice but not IKK-βC46A transgenic mice. These findings reveal the role of Cys-46 in the promotion of inflammatory responses, and suggest that Cys-46 is a novel drug-binding site for the inhibition of IKK-β. PMID:26378659

  17. Leptin Is Associated With Exaggerated Brain Reward and Emotion Responses to Food Images in Adolescent Obesity

    OpenAIRE

    Jastreboff, Ania M.; Lacadie, Cheryl; Seo, Dongju; Kubat, Jessica; Van Name, Michelle A.; Giannini, Cosimo; Savoye, Mary; Constable, R. Todd; Sherwin, Robert S.; Caprio, Sonia; Sinha, Rajita

    2014-01-01

    OBJECTIVE In the U.S., an astonishing 12.5 million children and adolescents are now obese, predisposing 17% of our nation’s youth to metabolic complications of obesity, such as type 2 diabetes (T2D). Adolescent obesity has tripled over the last three decades in the setting of food advertising directed at children. Obese adults exhibit increased brain responses to food images in motivation-reward pathways. These neural alterations may be attributed to obesity-related metabolic changes, which p...

  18. Global brain blood-oxygen level responses to autonomic challenges in obstructive sleep apnea.

    Directory of Open Access Journals (Sweden)

    Paul M Macey

    Full Text Available Obstructive sleep apnea (OSA is accompanied by brain injury, perhaps resulting from apnea-related hypoxia or periods of impaired cerebral perfusion. Perfusion changes can be determined indirectly by evaluation of cerebral blood volume and oxygenation alterations, which can be measured rapidly and non-invasively with the global blood oxygen level dependent (BOLD signal, a magnetic resonance imaging procedure. We assessed acute BOLD responses in OSA subjects to pressor challenges that elicit cerebral blood flow changes, using a two-group comparative design with healthy subjects as a reference. We separately assessed female and male patterns, since OSA characteristics and brain injury differ between sexes. We studied 94 subjects, 37 with newly-diagnosed, untreated OSA (6 female (age mean ± std: 52.1±8.1 yrs; apnea/hypopnea index [AHI]: 27.7±15.6 events/hr and 31 male 54.3±8.4 yrs; AHI: 37.4±19.6 events/hr, and 20 female (age 50.5±8.1 yrs and 37 male (age 45.6±9.2 yrs healthy control subjects. We measured brain BOLD responses every 2 s while subjects underwent cold pressor, hand grip, and Valsalva maneuver challenges. The global BOLD signal rapidly changed after the first 2 s of each challenge, and differed in magnitude between groups to two challenges (cold pressor, hand grip, but not to the Valsalva maneuver (repeated measures ANOVA, p<0.05. OSA females showed greater differences from males in response magnitude and pattern, relative to healthy counterparts. Cold pressor BOLD signal increases (mean ± adjusted standard error at the 8 s peak were: OSA 0.14±0.08% vs. Control 0.31±0.06%, and hand grip at 6 s were: OSA 0.08±0.03% vs. Control at 0.30±0.02%. These findings, indicative of reduced cerebral blood flow changes to autonomic challenges in OSA, complement earlier reports of altered resting blood flow and reduced cerebral artery responsiveness. Females are more affected than males, an outcome which may contribute to the sex

  19. Selective alignment of brain responses by task demands during semantic processing.

    Science.gov (United States)

    Baggio, Giosuè

    2012-04-01

    The way the brain binds together words to form sentences may depend on whether and how the arising cognitive representation is to be used in behavior. The amplitude of the N400 effect in event-related brain potentials is inversely correlated with the degree of fit of a word's meaning into a semantic representation of the preceding discourse. This study reports a double dissociation in the latency characteristics of the N400 effect depending on task demands. When participants silently read words in a sentence context, without issuing a relevant overt response, greater temporal alignment over recording sites occurs for N400 onsets than peaks. If however a behavior is produced - here pressing a button in a binary probe selection task - exactly the opposite pattern is observed, with stronger alignment of N400 peaks than onsets. The peak amplitude of the N400 effect correlates best with the latency characteristic showing less temporal dispersion. These findings suggest that meaning construction in the brain is subtly affected by task demands, and that there is complex functional integration between semantic combinatorics and control systems handling behavioral goals. PMID:22245013

  20. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX1

    Science.gov (United States)

    Ruan, Hangjun; Wang, Jingli; Hu, Lily; Lin, Ching-Shwun; Lamborn, Kathleen R; Deen, Dennis F

    1999-01-01

    Abstract The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE), which can be activated through hypoxia-inducible factor-1 (HIF-1). We transfected plasmids containing multiple copies of HRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HRE copy number, and the degree of hypoxia. PMID:10933058

  1. Killing of Brain Tumor Cells by Hypoxia-Responsive Element Mediated Expression of BAX

    Directory of Open Access Journals (Sweden)

    Hangjun Ruan

    1999-11-01

    Full Text Available The presence of radioresistant hypoxic cells in human brain tumors limits the overall effectiveness of conventional fractionated radiation therapy. Tumor-specific therapies that target hypoxic cells are clearly needed. We have investigated the expression of suicide genes under hypoxia by a hypoxia-responsive element (HRE, which can be activated through hypoxia-inducible factor-1 (HIF-1. We transfected plasmids containing multiple copies of HIRE into U-87 MG and U-251 MG-NCI human brain tumor cells and tested their ability to induce LacZ gene expression under anoxia. Gene expression under anoxia versus oxia was increased about 12-fold for U-87 MG cells and about fourfold for U-251 MG-NCI cells. At intermediate hypoxic conditions, increased LacZ gene expression in U-87 MG cells was induced by the plasmid that contained three HREs, but not by the plasmid with two HREs. Lastly, when we placed a suicide gene BAX under the control of HREs, cells transfected with the BAX plasmids were preferentially killed through apoptosis under anoxia. Our studies demonstrate that HRE-regulated gene expression is active in brain tumor cells, and that the amount of increased gene expression obtained is dependent on the cell line, the HIRE copy number, and the degree of hypoxia.

  2. Calcineurin β protects brain after injury by activating the unfolded protein response.

    Science.gov (United States)

    Chen, Yanan; Holstein, Deborah M; Aime, Sofia; Bollo, Mariana; Lechleiter, James D

    2016-10-01

    The Ca(2+)-dependent phosphatase, calcineurin (CN) is thought to play a detrimental role in damaged neurons; however, its role in astrocytes is unclear. In cultured astrocytes, CNβ expression increased after treatment with a sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor, thapsigargin, and with oxygen and glucose deprivation, an in vitro model of ischemia. Similarly, CNβ was induced in astrocytes in vivo in two different mouse models of brain injury - photothrombotic stroke and traumatic brain injury (TBI). Immunoprecipitation and chemical activation dimerization methods pointed to physical interaction of CNβ with the unfolded protein response (UPR) sensor, protein kinase RNA-like endoplasmic reticulum kinase (PERK). In accordance, induction of CNβ resulted in oligomerization and activation of PERK. Strikingly, the presence of a phosphatase inhibitor did not interfere with CNβ-mediated activation of PERK, suggesting a hitherto undiscovered non-enzymatic role for CNβ. Importantly, the cytoprotective function of CNβ was PERK-dependent both in vitro and in vivo. Loss of CNβ in vivo resulted in a significant increase in cerebral damage, and correlated with a decrease in astrocyte size, PERK activity and glial fibrillary acidic protein (GFAP) expression. Taken together, these data reveal a critical role for the CNβ-PERK axis in not only prolonging astrocyte cell survival but also in modulating astrogliosis after brain injury. PMID:27334877

  3. Pre-attentive modulation of brain responses to tones in coloured-hearing synesthetes

    Directory of Open Access Journals (Sweden)

    Jäncke Lutz

    2012-12-01

    Full Text Available Abstract Background Coloured-hearing (CH synesthesia is a perceptual phenomenon in which an acoustic stimulus (the inducer initiates a concurrent colour perception (the concurrent. Individuals with CH synesthesia "see" colours when hearing tones, words, or music; this specific phenomenon suggesting a close relationship between auditory and visual representations. To date, it is still unknown whether the perception of colours is associated with a modulation of brain functions in the inducing brain area, namely in the auditory-related cortex and associated brain areas. In addition, there is an on-going debate as to whether attention to the inducer is necessarily required for eliciting a visual concurrent, or whether the latter can emerge in a pre-attentive fashion. Results By using the EEG technique in the context of a pre-attentive mismatch negativity (MMN paradigm, we show that the binding of tones and colours in CH synesthetes is associated with increased MMN amplitudes in response to deviant tones supposed to induce novel concurrent colour perceptions. Most notably, the increased MMN amplitudes we revealed in the CH synesthetes were associated with stronger intracerebral current densities originating from the auditory cortex, parietal cortex, and ventral visual areas. Conclusions The automatic binding of tones and colours in CH synesthetes is accompanied by an early pre-attentive process recruiting the auditory cortex, inferior and superior parietal lobules, as well as ventral occipital areas.

  4. Brain responses in humans reveal ideal observer-like sensitivity to complex acoustic patterns.

    Science.gov (United States)

    Barascud, Nicolas; Pearce, Marcus T; Griffiths, Timothy D; Friston, Karl J; Chait, Maria

    2016-02-01

    We use behavioral methods, magnetoencephalography, and functional MRI to investigate how human listeners discover temporal patterns and statistical regularities in complex sound sequences. Sensitivity to patterns is fundamental to sensory processing, in particular in the auditory system, because most auditory signals only have meaning as successions over time. Previous evidence suggests that the brain is tuned to the statistics of sensory stimulation. However, the process through which this arises has been elusive. We demonstrate that listeners are remarkably sensitive to the emergence of complex patterns within rapidly evolving sound sequences, performing on par with an ideal observer model. Brain responses reveal online processes of evidence accumulation--dynamic changes in tonic activity precisely correlate with the expected precision or predictability of ongoing auditory input--both in terms of deterministic (first-order) structure and the entropy of random sequences. Source analysis demonstrates an interaction between primary auditory cortex, hippocampus, and inferior frontal gyrus in the process of discovering the regularity within the ongoing sound sequence. The results are consistent with precision based predictive coding accounts of perceptual inference and provide compelling neurophysiological evidence of the brain's capacity to encode high-order temporal structure in sensory signals. PMID:26787854

  5. Effect of skull flexural properties on brain response during dynamic head loading - biomed 2013.

    Science.gov (United States)

    Harrigan, T P; Roberts, J C; Ward, E E; Carneal, C M; Merkle, A C

    2013-01-01

    The skull-brain complex is typically modeled as an integrated structure, similar to a fluid-filled shell. Under dynamic loads, the interaction of the skull and the underlying brain, cerebrospinal fluid, and other tissue produces the pressure and strain histories that are the basis for many theories meant to describe the genesis of traumatic brain injury. In addition, local bone strains are of interest for predicting skull fracture in blunt trauma. However, the role of skull flexure in the intracranial pressure response to blunt trauma is complex. Since the relative time scales for pressure and flexural wave transmission across the skull are not easily separated, it is difficult to separate out the relative roles of the mechanical components in this system. This study uses a finite element model of the head, which is validated for pressure transmission to the brain, to assess the influence of skull table flexural stiffness on pressure in the brain and on strain within the skull. In a Human Head Finite Element Model, the skull component was modified by attaching shell elements to the inner and outer surfaces of the existing solid elements that modeled the skull. The shell elements were given the properties of bone, and the existing solid elements were decreased so that the overall stiffness along the surface of the skull was unchanged, but the skull table bending stiffness increased by a factor of 2.4. Blunt impact loads were applied to the frontal bone centrally, using LS-Dyna. The intracranial pressure predictions and the strain predictions in the skull were compared for models with and without surface shell elements, showing that the pressures in the mid-anterior and mid-posterior of the brain were very similar, but the strains in the skull under the loads and adjacent to the loads were decreased 15% with stiffer flexural properties. Pressure equilibration to nearly hydrostatic distributions occurred, indicating that the important frequency components for typical

  6. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

    Directory of Open Access Journals (Sweden)

    Markus Uhrig

    Full Text Available Alzheimer's disease (AD is characterized by neuronal degeneration and cell loss. Abeta(42, in contrast to Abeta(40, is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Abeta(40 and Abeta(42 levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Abeta(40 and Abeta(42 levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2 and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Abeta(42/Abeta(40 ratio. Importantly however, an increased Abeta(42/Abeta(40 ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Abeta(42/Abeta(40 ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Abeta(42/Abeta(40 ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes.

  7. New Alzheimer amyloid beta responsive genes identified in human neuroblastoma cells by hierarchical clustering.

    Science.gov (United States)

    Uhrig, Markus; Ittrich, Carina; Wiedmann, Verena; Knyazev, Yuri; Weninger, Annette; Riemenschneider, Matthias; Hartmann, Tobias

    2009-01-01

    Alzheimer's disease (AD) is characterized by neuronal degeneration and cell loss. Abeta(42), in contrast to Abeta(40), is thought to be the pathogenic form triggering the pathological cascade in AD. In order to unravel overall gene regulation we monitored the transcriptomic responses to increased or decreased Abeta(40) and Abeta(42) levels, generated and derived from its precursor C99 (C-terminal fragment of APP comprising 99 amino acids) in human neuroblastoma cells. We identified fourteen differentially expressed transcripts by hierarchical clustering and discussed their involvement in AD. These fourteen transcripts were grouped into two main clusters each showing distinct differential expression patterns depending on Abeta(40) and Abeta(42) levels. Among these transcripts we discovered an unexpected inverse and strong differential expression of neurogenin 2 (NEUROG2) and KIAA0125 in all examined cell clones. C99-overexpression had a similar effect on NEUROG2 and KIAA0125 expression as a decreased Abeta(42)/Abeta(40) ratio. Importantly however, an increased Abeta(42)/Abeta(40) ratio, which is typical of AD, had an inverse expression pattern of NEUROG2 and KIAA0125: An increased Abeta(42)/Abeta(40) ratio up-regulated NEUROG2, but down-regulated KIAA0125, whereas the opposite regulation pattern was observed for a decreased Abeta(42)/Abeta(40) ratio. We discuss the possibilities that the so far uncharacterized KIAA0125 might be a counter player of NEUROG2 and that KIAA0125 could be involved in neurogenesis, due to the involvement of NEUROG2 in developmental neural processes. PMID:19707560

  8. Biomarker responses in persian sturgeon (Acipenser persicus exposed to benzo-a-pyrene and beta-naphthoflavone

    Directory of Open Access Journals (Sweden)

    Karimzadeh Katayoon

    2013-01-01

    Full Text Available Biotransformation enzymes of xenobiotics (ethoxyresorufin-O-deethylase, cytochrome P4501A1 content and glutathione-S-transferase were investigated in the liver of Persian Sturgeon (Acipenser persicus after a 96-hour exposure to polycyclic aromatic hydrocarbons (PAHs, premutagenic benzo[a]pyrene (BaP and beta-naphthoflavone (BNF. The fish were injected 10 mg/kg wet-body weight in corn oil for 96 hours every days. Ethoxyresorufin-O-deethylase activity (EROD and glutathione s-transferase activity (GST were measured in the fish liver. Cytochrome P4501A1 (CYP1A1 content was estimated by indirect enzyme-linked immunosorbent assay (ELISA. The response appeared as early as 12 hours post exposure. A time-dependent response was observed in the EROD activity, being significantly higher at 48 hours post exposure to 10 mg/kg of BaP. The greatest induction occurred in the fish treated with 10 mg/kg BaP, in which a 32.1- fold increase in EROD activity was observed. Results showed that EROD activity in A. persicus is significantly increased by BaP and BNF treatments. Both chemicals showed higher values of EROD activity compared to the liver CYP1A content. There was a rise in glutathione-S-transferase activity in fish exposed to BNF, but no increase was observed in fish treated with BaP. The results showed that hepatic CYP1A expression in terms of induction of EROD activity might be suited as a biomarker of organic contamination in aquatic environments and led to lower sensitivity of the second phase in the detoxification enzyme.

  9. CADrx for GBM Brain Tumors: Predicting Treatment Response from Changes in Diffusion-Weighted MRI

    Directory of Open Access Journals (Sweden)

    Matthew S. Brown

    2009-11-01

    Full Text Available The goal of this study was to develop a computer-aided therapeutic response (CADrx system for early prediction of drug treatment response for glioblastoma multiforme (GBM brain tumors with diffusion weighted (DW MR images. In conventional Macdonald assessment, tumor response is assessed nine weeks or more post-treatment. However, we will investigate the ability of DW-MRI to assess response earlier, at five weeks post treatment. The apparent diffusion coefficient (ADC map, calculated from DW images, has been shown to reveal changes in the tumor’s microenvironment preceding morphologic tumor changes. ADC values in treated brain tumors could theoretically both increase due to the cell kill (and thus reduced cell density and decrease due to inhibition of edema. In this study, we investigated the effectiveness of features that quantify changes from pre- and post-treatment tumor ADC histograms to detect treatment response. There are three parts to this study: first, tumor regions were segmented on T1w contrast enhanced images by Otsu’s thresholding method, and mapped from T1w images onto ADC images by a 3D region of interest (ROI mapping tool using DICOM header information; second, ADC histograms of the tumor region were extracted from both pre- and five weeks post-treatment scans, and fitted by a two-component Gaussian mixture model (GMM. The GMM features as well as standard histogram-based features were extracted. Finally, supervised machine learning techniques were applied for classification of responders or non-responders. The approach was evaluated with a dataset of 85 patients with GBM under chemotherapy, in which 39 responded and 46 did not, based on tumor volume reduction. We compared adaBoost, random forest and support vector machine classification algorithms, using ten-fold cross validation, resulting in the best accuracy of 69.41% and the corresponding area under the curve (Az of 0.70.

  10. Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression

    Energy Technology Data Exchange (ETDEWEB)

    Richieri, Raphaelle; Lancon, Christophe [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); Boyer, Laurent [La Timone University, EA 3279 - Self-perceived Health Assessment Research Unit, School of Medicine, Marseille (France); La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Department of Public Health, Marseille (France); Farisse, Jean [Sainte-Marguerite University Hospital, Department of Psychiatry, Marseille (France); Colavolpe, Cecile; Mundler, Olivier [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Guedj, Eric [La Timone University Hospital, Assistance Publique - Hopitaux de Marseille, Service Central de Biophysique et Medecine Nucleaire, Marseille (France); Universite de la Mediterranee, Centre Europeen de Recherche en Imagerie Medicale (CERIMED), Marseille (France); Hopital de la Timone, Service Central de Biophysique et de Medecine Nucleaire, Marseille Cedex 5 (France)

    2011-09-15

    The aim of this study was to determine the predictive value of whole-brain voxel-based regional cerebral blood flow (rCBF) for repetitive transcranial magnetic stimulation (rTMS) response in patients with pharmacoresistant depression. Thirty-three right-handed patients who met DSM-IV criteria for major depressive disorder (unipolar or bipolar depression) were included before rTMS. rTMS response was defined as at least 50% reduction in the baseline Beck Depression Inventory scores. The predictive value of {sup 99m}Tc-ethyl cysteinate dimer (ECD) single photon emission computed tomography (SPECT) for rTMS response was studied before treatment by comparing rTMS responders to non-responders at voxel level using Statistical Parametric Mapping (SPM) (p < 0.001, uncorrected). Of the patients, 18 (54.5%) were responders to rTMS and 15 were non-responders (45.5%). There were no statistically significant differences in demographic and clinical characteristics (p > 0.10). In comparison to responders, non-responders showed significant hypoperfusions (p < 0.001, uncorrected) in the left medial and bilateral superior frontal cortices (BA10), the left uncus/parahippocampal cortex (BA20/BA35) and the right thalamus. The area under the curve for the combination of SPECT clusters to predict rTMS response was 0.89 (p < 0.001). Sensitivity, specificity, positive predictive value and negative predictive value for the combination of clusters were: 94, 73, 81 and 92%, respectively. This study shows that, in pharmacoresistant depression, pretreatment rCBF of specific brain regions is a strong predictor for response to rTMS in patients with homogeneous demographic/clinical features. (orig.)

  11. Deep brain stimulation and responsiveness of the Persian version of Parkinson's disease questionnaire with 39-items.

    Directory of Open Access Journals (Sweden)

    Gholam Ali Shahidi

    2014-12-01

    Full Text Available Assessment of quality-of-life (QOF as an outcome measure after deep brain stimulation (DBS surgery in patients with Parkinson's disease (PD need a valid, reliable and responsive instrument. The aim of the current study was to determine responsiveness of validated Persian version of PD questionnaire with 39-items (PDQ-39 after DBS surgery in patients with PD.Eleven patients with PD, who were candidate for DBS operation between May 2012 and June 2013 were assessed. PDQ-39 and short-form questionnaire with 36-items (SF-36 were used. To assess responsiveness of PDQ-39 standardized response mean (SRM was used.Mean age was 51.8 (8.8 and all of the patients, but just one were male (10 patients. Mean duration of the disease was 8.7 (2.1 years. Eight patients were categorized as moderate using Hoehn and Yahr (H and Y classification. All patients had a better H and Y score compared with the baseline evaluation (3.09 vs. 0.79. The amount of SRM was above 0.70 for all domains means a large responsiveness for PDQ-39.Persian version of PDQ-39 has an acceptable responsiveness and could be used to assess as an outcome measure to evaluate the effect of therapies on PD.

  12. Titanium oxide (TiO2) nanoparticles in induction of apoptosis and inflammatory response in brain

    International Nuclear Information System (INIS)

    The ever increasing applications of engineered nanoparticles in 21st century cause serious concern about its potential health risks on living being. Regulatory health risk assessment of such particles has become mandatory for the safe use of nanomaterials in consumer products and medicines. In order to study the mechanism underlying the effects of nano-TiO2 (TiO2 nanoparticles) on the brain, wistar rats were administrated intravenously with various doses of nano-TiO2 (21 nm) through the caudal vein, once a week for 4 weeks and different parameters such as bioaccumulation of nano-TiO2, oxidative stress-mediated response, level of inflammatory markers such as NF-κB (p65), HSP 60, p38, nitric oxide, IFN-γ and TNF-α, and level of neurochemicals in brain as well as DNA damage and expression of apoptosis markers (p53, Bax, Bcl-2, and cyto c) were evaluated. Results show that the concentration of nano-TiO2 in the brain increased with increasing the doses of nano-TiO2. Oxidative stress and injury of the brain occurred as nano-TiO2 appeared to trigger a cascade of reactions such as inflammation, lipid peroxidation, decreases the activities of antioxidative enzymes and melatonin level, the reduction of glutamic acid, downregulated levels of acetylcholinesterase activities, and the increase in caspase-3 activity (a biomarker of apoptosis), DNA fragmentation, and apoptosis. It may be concluded that nano-TiO2 induces oxidative stress that leads to activation of inflammatory cytokines and an alteration in the level of neurotransmitters resulted in the induction of mitochondrial-mediated apoptosis

  13. Nearly Complete Response of Brain Metastases from HER2 Overexpressing Breast Cancer with Lapatinib and Capecitabine after Whole Brain Irradiation

    Directory of Open Access Journals (Sweden)

    Esin Oktay

    2013-01-01

    Full Text Available Trastuzumab treatment does not prevent intracranial seeding and is largely ineffective for established central nervous system metastasis in HER2 overexpressing breast cancer patients. Combination therapy of lapatinib and capecitabine may be an effective treatment option for brain metastasis of HER2-positive breast cancer. We report a patient with breast cancer overexpressing HER-2 where brain metastases were successfully treated with radiation and a combination of lapatinib and capecitabine.

  14. Activation of human monocytes by live Borrelia burgdorferi generates TLR2-dependent and -independent responses which include induction of IFN-beta.

    Directory of Open Access Journals (Sweden)

    Juan C Salazar

    2009-05-01

    Full Text Available It is widely believed that innate immune responses to Borrelia burgdorferi (Bb are primarily triggered by the spirochete's outer membrane lipoproteins signaling through cell surface TLR1/2. We recently challenged this notion by demonstrating that phagocytosis of live Bb by peripheral blood mononuclear cells (PBMCs elicited greater production of proinflammatory cytokines than did equivalent bacterial lysates. Using whole genome microarrays, we show herein that, compared to lysates, live spirochetes elicited a more intense and much broader transcriptional response involving genes associated with diverse cellular processes; among these were IFN-beta and a number of interferon-stimulated genes (ISGs, which are not known to result from TLR2 signaling. Using isolated monocytes, we demonstrated that cell activation signals elicited by live Bb result from cell surface interactions and uptake and degradation of organisms within phagosomes. As with PBCMs, live Bb induced markedly greater transcription and secretion of TNF-alpha, IL-6, IL-10 and IL-1beta in monocytes than did lysates. Secreted IL-18, which, like IL-1beta, also requires cleavage by activated caspase-1, was generated only in response to live Bb. Pro-inflammatory cytokine production by TLR2-deficient murine macrophages was only moderately diminished in response to live Bb but was drastically impaired against lysates; TLR2 deficiency had no significant effect on uptake and degradation of spirochetes. As with PBMCs, live Bb was a much more potent inducer of IFN-beta and ISGs in isolated monocytes than were lysates or a synthetic TLR2 agonist. Collectively, our results indicate that the enhanced innate immune responses of monocytes following phagocytosis of live Bb have both TLR2-dependent and -independent components and that the latter induce transcription of type I IFNs and ISGs.

  15. Superovulation in the cow: comparison of oestradiol-17 beta and progesterone patterns in plasma and milk of cows induced to superovulate; relationships with ovarian responses.

    Science.gov (United States)

    Saumande, J; Batra, S K

    1985-11-01

    Free oestradiol-17 beta, free + conjugated oestradiol-17 beta (total oestradiol-17 beta) and progesterone in milk, and free oestradiol-17 beta and progesterone in plasma were measured in 16 cyclic cows injected with FSH to induce superovulation during the treatment and periovulatory periods. The patterns of steroid secretion were the same in milk as in plasma but at different concentrations. Among oestrogens, the highest concentrations were measured for total oestradiol-17 beta in milk, followed by free oestradiol in plasma and free oestradiol in milk. Progesterone concentrations in milk were higher than in plasma. The peak concentrations of oestrogens were related to ovulation rate: Spearman Rank Correlation coefficient (r.s.) = 0.87 (P less than 0.001), 0.78 (P less than 0.001) and 0.69 (P less than 0.001) for total oestradiol, free oestradiol in milk and free oestradiol in plasma respectively. The increase in progesterone concentrations in milk between the beginning of treatment and prostaglandin injection was negatively correlated with the percentage of viable embryos among those recovered (r.s. = -0.68; P less than 0.001). This was not observed for progesterone in plasma. These results therefore show that the steroid pattern in milk gives a better indication as to the ovarian response to a superovulatory treatment than does the steroid pattern in plasma. In addition the fact that milk samples are easier to obtain and handle than blood plasma have led us to conclude that, to follow the effect of gonadotrophin stimulation, it would be more informative to assay oestradiol-17 beta and progesterone in milk rather than in plasma. PMID:3934312

  16. Electrical brain responses in language-impaired children reveal grammar-specific deficits.

    Directory of Open Access Journals (Sweden)

    Elisabeth Fonteneau

    Full Text Available BACKGROUND: Scientific and public fascination with human language have included intensive scrutiny of language disorders as a new window onto the biological foundations of language and its evolutionary origins. Specific language impairment (SLI, which affects over 7% of children, is one such disorder. SLI has received robust scientific attention, in part because of its recent linkage to a specific gene and loci on chromosomes and in part because of the prevailing question regarding the scope of its language impairment: Does the disorder impact the general ability to segment and process language or a specific ability to compute grammar? Here we provide novel electrophysiological data showing a domain-specific deficit within the grammar of language that has been hitherto undetectable through behavioural data alone. METHODS AND FINDINGS: We presented participants with Grammatical(G-SLI, age-matched controls, and younger child and adult controls, with questions containing syntactic violations and sentences containing semantic violations. Electrophysiological brain responses revealed a selective impairment to only neural circuitry that is specific to grammatical processing in G-SLI. Furthermore, the participants with G-SLI appeared to be partially compensating for their syntactic deficit by using neural circuitry associated with semantic processing and all non-grammar-specific and low-level auditory neural responses were normal. CONCLUSIONS: The findings indicate that grammatical neural circuitry underlying language is a developmentally unique system in the functional architecture of the brain, and this complex higher cognitive system can be selectively impaired. The findings advance fundamental understanding about how cognitive systems develop and all human language is represented and processed in the brain.

  17. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain

    Directory of Open Access Journals (Sweden)

    Kamila Jankowiak Siuda

    2015-09-01

    Full Text Available Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI, and the anterior cingulate cortex (ACC. High empathy may lead people to undertake pro-social behaviour. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behaviour and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male were studied using fMRI method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioural effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens’ faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain.

  18. Physical attractiveness and sex as modulatory factors of empathic brain responses to pain.

    Science.gov (United States)

    Jankowiak-Siuda, Kamila; Rymarczyk, Krystyna; Żurawski, Łukasz; Jednoróg, Katarzyna; Marchewka, Artur

    2015-01-01

    Empathy is a process that comprises affective sharing, imagining, and understanding the emotions and mental states of others. The brain structures involved in empathy for physical pain include the anterior insula (AI), and the anterior cingulate cortex (ACC). High empathy may lead people to undertake pro-social behavior. It is important to understand how this process can be changed, and what factors these empathic responses depend on. Physical attractiveness is a major social and evolutional cue, playing a role in the formation of interpersonal evaluation. The aim of the study was to determine how attractiveness affects the level of empathy both in relation to self-rated behavior and in terms of activation of specific empathy-related brain regions. Twenty-seven subjects (14 female and 13 male) were studied using functional magnetic resonance imaging (fMRI) method while they were watching short video scenes involving physically more and less attractive men and women who exhibited pain responses. In the absence of behavioral effects in compassion ratings, we observed stronger activation in empathic brain structures (ACC; AI) for less attractive men and for attractive women than for attractive men. Evolutionary psychology studies suggest that beauty is valued more highly in females than males, which might lead observers to empathize more strongly with the attractive woman than the men. Attractive mens' faces are typically associated with enhanced masculine facial characteristics and are considered to possess fewer desirable personality traits compared with feminized faces. This could explain why more empathy was shown to less attractive men. In conclusion, the study showed that the attractiveness and sex of a model are important modulators of empathy for pain. PMID:26441569

  19. Assessment of sexual orientation using the hemodynamic brain response to visual sexual stimuli

    DEFF Research Database (Denmark)

    Ponseti, Jorge; Granert, Oliver; Jansen, Olav;

    2009-01-01

    reliability. AIM: To evaluate whether the spatial response pattern to sexual stimuli as revealed by a change in blood oxygen level-dependent (BOLD) signal can be used for individual classification of sexual orientation. METHODS: We used a preexisting functional MRI (fMRI) data set that had been acquired in a...... nonclinical sample of 12 heterosexual men and 14 homosexual men. During fMRI, participants were briefly exposed to pictures of same-sex and opposite-sex genitals. Data analysis involved four steps: (i) differences in the BOLD response to female and male sexual stimuli were calculated for each subject; (ii......) these contrast images were entered into a group analysis to calculate whole-brain difference maps between homosexual and heterosexual participants; (iii) a single expression value was computed for each subject expressing its correspondence to the group result; and (iv) based on these expression values...

  20. Estimation of brain activation in response to major and minor scales by fMRI

    International Nuclear Information System (INIS)

    We made fMRI measurements of the brain responses to major and minor scales which are the fundamental elements for making melodies in music. In addition, we used an arpeggio of diminished 7th. For a control stimulus, we provided a sequence of repeated single tones. The ascending scales of 12 major and 12 minor keys were made starting from F no.3 to F4. Each scale was 3 s in duration. A 3 s scan was performed 2-3 s (randomized) after a scale has been finished and repeated every 14 s (sparse time scanning). Typically, major scales activated the left inferior frontal gyrus, minor scales the posterior cingulate gyrus and the diminished arpeggio the left auditory cortex. In general, the left hemisphere was more activated than usually seen in responses to music. (author)

  1. The brain response to peripheral insulin declines with age: a contribution of the blood-brain barrier?

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available It is a matter of debate whether impaired insulin action originates from a defect at the neural level or impaired transport of the hormone into the brain. In this study, we aimed to investigate the effect of aging on insulin concentrations in the periphery and the central nervous system as well as its impact on insulin-dependent brain activity.Insulin, glucose and albumin concentrations were determined in 160 paired human serum and cerebrospinal fluid (CSF samples. Additionally, insulin was applied in young and aged mice by subcutaneous injection or intracerebroventricularly to circumvent the blood-brain barrier. Insulin action and cortical activity were assessed by Western blotting and electrocorticography radiotelemetric measurements.In humans, CSF glucose and insulin concentrations were tightly correlated with the respective serum/plasma concentrations. The CSF/serum ratio for insulin was reduced in older subjects while the CSF/serum ratio for albumin increased with age like for most other proteins. Western blot analysis in murine whole brain lysates revealed impaired phosphorylation of AKT (P-AKT in aged mice following peripheral insulin stimulation whereas P-AKT was comparable to levels in young mice after intracerebroventricular insulin application. As readout for insulin action in the brain, insulin-mediated cortical brain activity instantly increased in young mice subcutaneously injected with insulin but was significantly reduced and delayed in aged mice during the treatment period. When insulin was applied intracerebroventricularly into aged animals, brain activity was readily improved.This study discloses age-dependent changes in insulin CSF/serum ratios in humans. In the elderly, cerebral insulin resistance might be partially attributed to an impaired transport of insulin into the central nervous system.

  2. Effects of unexpected chords and of performer's expression on brain responses and electrodermal activity.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available BACKGROUND: There is lack of neuroscientific studies investigating music processing with naturalistic stimuli, and brain responses to real music are, thus, largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: This study investigates event-related brain potentials (ERPs, skin conductance responses (SCRs and heart rate (HR elicited by unexpected chords of piano sonatas as they were originally arranged by composers, and as they were played by professional pianists. From the musical excerpts played by the pianists (with emotional expression, we also created versions without variations in tempo and loudness (without musical expression to investigate effects of musical expression on ERPs and SCRs. Compared to expected chords, unexpected chords elicited an early right anterior negativity (ERAN, reflecting music-syntactic processing and an N5 (reflecting processing of meaning information in the ERPs, as well as clear changes in the SCRs (reflecting that unexpected chords also elicited emotional responses. The ERAN was not influenced by emotional expression, whereas N5 potentials elicited by chords in general (regardless of their chord function differed between the expressive and the non-expressive condition. CONCLUSIONS/SIGNIFICANCE: These results show that the neural mechanisms of music-syntactic processing operate independently of the emotional qualities of a stimulus, justifying the use of stimuli without emotional expression to investigate the cognitive processing of musical structure. Moreover, the data indicate that musical expression affects the neural mechanisms underlying the processing of musical meaning. Our data are the first to reveal influences of musical performance on ERPs and SCRs, and to show physiological responses to unexpected chords in naturalistic music.

  3. Multisensory stimuli elicit altered oscillatory brain responses at gamma frequencies in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    David B. Stone

    2014-11-01

    Full Text Available Deficits in auditory and visual unisensory responses are well documented in patients with schizophrenia; however, potential abnormalities elicited from multisensory audio-visual stimuli are less understood. Further, schizophrenia patients have shown abnormal patterns in task-related and task-independent oscillatory brain activity, particularly in the gamma frequency band. We examined oscillatory responses to basic unisensory and multisensory stimuli in schizophrenia patients (N = 46 and healthy controls (N = 57 using magnetoencephalography (MEG. Time-frequency decomposition was performed to determine regions of significant changes in gamma band power by group in response to unisensory and multisensory stimuli relative to baseline levels. Results showed significant behavioral differences between groups in response to unisensory and multisensory stimuli. In addition, time-frequency analysis revealed significant decreases and increases in gamma-band power in schizophrenia patients relative to healthy controls, which emerged both early and late over both sensory and frontal regions in response to unisensory and multisensory stimuli. Unisensory gamma-band power predicted multisensory gamma-band power differently by group. Furthermore, gamma-band power in these regions predicted performance in select measures of the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS test battery differently by group. These results reveal a unique pattern of task-related gamma-band power in schizophrenia patients relative to controls that may indicate reduced inhibition in combination with impaired oscillatory mechanisms in patients with schizophrenia.

  4. The Acute Inflammatory Response in Trauma/Hemorrhage and Traumatic Brain Injury : Current State and Emerging Prospects

    NARCIS (Netherlands)

    Namas, R.; Ghuma, A.; Hermus, L.; Zamora, R.; Okonkwo, D. O.; Billiar, T. R.; Vodovotz, Y.

    2009-01-01

    Traumatic injury/hemorrhagic shock (T/HS) elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury

  5. The effect of conditional probability of chord progression on brain response: an MEG study.

    Directory of Open Access Journals (Sweden)

    Seung-Goo Kim

    Full Text Available BACKGROUND: Recent electrophysiological and neuroimaging studies have explored how and where musical syntax in Western music is processed in the human brain. An inappropriate chord progression elicits an event-related potential (ERP component called an early right anterior negativity (ERAN or simply an early anterior negativity (EAN in an early stage of processing the musical syntax. Though the possible underlying mechanism of the EAN is assumed to be probabilistic learning, the effect of the probability of chord progressions on the EAN response has not been previously explored explicitly. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the empirical conditional probabilities in a Western music corpus were employed as an approximation of the frequencies in previous exposure of participants. Three types of chord progression were presented to musicians and non-musicians in order to examine the correlation between the probability of chord progression and the neuromagnetic response using magnetoencephalography (MEG. Chord progressions were found to elicit early responses in a negatively correlating fashion with the conditional probability. Observed EANm (as a magnetic counterpart of the EAN component responses were consistent with the previously reported EAN responses in terms of latency and location. The effect of conditional probability interacted with the effect of musical training. In addition, the neural response also correlated with the behavioral measures in the non-musicians. CONCLUSIONS/SIGNIFICANCE: Our study is the first to reveal the correlation between the probability of chord progression and the corresponding neuromagnetic response. The current results suggest that the physiological response is a reflection of the probabilistic representations of the musical syntax. Moreover, the results indicate that the probabilistic representation is related to the musical training as well as the sensitivity of an individual.

  6. Ultrafast optical responses of {beta}-carotene and lycopene probed by sub-20-fs time-resolved coherent spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, M.; Sugisaki, M. [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan); Gall, A.; Robert, B. [CEA, Institut de Biologie et Technologies de Saclay, and CNRS, Gif-sur-Yvette F-91191 (France); Cogdell, R.J. [IBLS, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, Scotland (United Kingdom); Hashimoto, H., E-mail: hassy@sci.osaka-cu.ac.j [CREST-JST and Department of Physics, Osaka City University, Osaka 558-8585 (Japan)

    2009-12-15

    We investigate how structural distortions in carotenoid cause decoherences of its high-frequency vibrational modes by applying the sub-20-fs time-resolved transient grating spectroscopy to {beta}-carotene and lycopene. The results indicate that the C=C central stretching mode shows significant loss of coherence under the effects of the steric hindrance between {beta}-ionone ring and polyene backbone, whereas the other high-frequency modes do not show such dependency on the structural distortions.

  7. Zinc or copper deficiency-induced impaired inflammatory response to brain trauma may be caused by the concomitant metallothionein changes

    DEFF Research Database (Denmark)

    Penkowa, Milena; Giralt, M.; Thomsen, Pernille Sjølin;

    2001-01-01

    The role of zinc- and copper-deficient diets on the inflammatory response to traumatic brain injury (TBI) has been evaluated in adult rats. As expected, zinc deficiency decreased food intake and body weight gain, and the latter effect was higher than that observed in pair-fed rats. In noninjured...... brains, zinc deficiency only affected significantly lectin (increasing) and glial fibrillary acidic protein (GFAP) and Cu,Zn-superoxide dismutase (Cu,Zn-SOD) (decreasing) immunoreactivities (irs). In injured brains, a profound gliosis was observed in the area surrounding the lesion, along with severe...... damage to neurons as indicated by neuron specific enolase (NSE) ir, and the number of cells undergoing apoptosis (measured by TUNEL) was dramatically increased. Zinc deficiency significantly altered brain response to TBI, potentiating the microgliosis and reducing the astrogliosis, while increasing the...

  8. Neuroinflammatory responses to traumatic brain injury: etiology, clinical consequences, and therapeutic opportunities

    Directory of Open Access Journals (Sweden)

    Lozano D

    2015-01-01

    Full Text Available Diego Lozano,* Gabriel S Gonzales-Portillo,* Sandra Acosta, Ike de la Pena, Naoki Tajiri, Yuji Kaneko, Cesar V Borlongan Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA *These authors contributed equally to this work Abstract: Traumatic brain injury (TBI is a serious public health problem accounting for 1.4 million emergency room visits by US citizens each year. Although TBI has been traditionally considered an acute injury, chronic symptoms reminiscent of neurodegenerative disorders have now been recognized. These progressive neurodegenerative-like symptoms manifest as impaired motor and cognitive skills, as well as stress, anxiety, and mood affective behavioral alterations. TBI, characterized by external bumps or blows to the head exceeding the brain’s protective capacity, causes physical damage to the central nervous system with accompanying neurological dysfunctions. The primary impact results in direct neural cell loss predominantly exhibiting necrotic death, which is then followed by a wave of secondary injury cascades including excitotoxicity, oxidative stress, mitochondrial dysfunction, blood–brain barrier disruption, and inflammation. All these processes exacerbate the damage, worsen the clinical outcomes, and persist as an evolving pathological hallmark of what we now describe as chronic TBI. Neuroinflammation in the acute stage of TBI mobilizes immune cells, astrocytes, cytokines, and chemokines toward the site of injury to mount an antiinflammatory response against brain damage; however, in the chronic stage, excess activation of these inflammatory elements contributes to an “inflamed” brain microenvironment that principally contributes to secondary cell death in TBI. Modulating these inflammatory cells by changing their phenotype from proinflammatory to antiinflammatory would likely promote therapeutic effects on TBI. Because neuroinflammation occurs at

  9. STAT1 signaling modulates HIV-1–induced inflammatory responses and leukocyte transmigration across the blood-brain barrier

    OpenAIRE

    Chaudhuri, Anathbandhu; Yang, Bo; Gendelman, Howard E; Persidsky, Yuri; Kanmogne, Georgette D.

    2008-01-01

    The relationship among neuroinflammation, blood-brain barrier (BBB) dysfunction, and progressive HIV-1 infection as they affect the onset and development of neuroAIDS is incompletely understood. One possible link is signal transducers and activators of transcription (STATs) pathways. These respond to proinflammatory and regulatory factors and could affect neuroinflammatory responses induced from infected cells and disease-affected brain tissue. Our previous works demonstrated that HIV-1 activ...

  10. Interferon-Beta Therapy of Multiple Sclerosis Patients Improves the Responsiveness of T Cells for Immune Suppression by Regulatory T Cells

    OpenAIRE

    Bettina Trinschek; Felix Luessi; Catharina C. Gross; Heinz Wiendl; Helmut Jonuleit

    2015-01-01

    Multiple sclerosis (MS) is an inflammatory autoimmune disease characterized by imbalanced immune regulatory networks, and MS patient-derived T effector cells are inefficiently suppressed through regulatory T cells (Treg), a phenomenon known as Treg resistance. In the current study we investigated T cell function in MS patients before and after interferon-beta therapy. We compared cytokine profile, responsiveness for Treg-mediated suppression ex vivo and evaluated reactivity of T cells in vi...

  11. Estrogen receptor beta and truncated variants enhance the expression of transfected MMP-1 promoter constructs in response to specific mechanical loading

    OpenAIRE

    Thaler, John D; Achari, Yamini; Lu, Ting; Shrive, Nigel G; Hart, David A.

    2014-01-01

    Background Joint diseases such as osteoarthritis (OA) predominantly afflict post-menopausal women, suggesting a pertinent role for female hormones. Estrogen receptor beta (ER-β) has been detected in connective tissues of the knee joint suggesting that these tissues are responsive to the hormone estrogen. Matrix metalloproteinase-1 (MMP-1) activity contributes to cartilage degradation, a key factor leading to OA development in synovial joints. Two polymorphic forms of MMP-1 exist due to a dele...

  12. Brain responses to nouns, verbs and class-ambiguous words in context.

    Science.gov (United States)

    Federmeier, K D; Segal, J B; Lombrozo, T; Kutas, M

    2000-12-01

    Recent neuropsychological and imaging data have implicated different brain networks in the processing of different word classes, nouns being linked primarily to posterior, visual object-processing regions and verbs to frontal, motor-processing areas. However, as most of these studies have examined words in isolation, the consequences of such anatomically based representational differences, if any, for the processing of these items in sentences remains unclear. Additionally, in some languages many words (e.g. 'drink') are class-ambiguous, i.e. they can play either role depending on context, and it is not yet known how the brain stores and uses information associated with such lexical items in context. We examined these issues by recording event-related potentials (ERPs) in response to unambiguous nouns (e.g. 'beer'), unambiguous verbs (e. g. 'eat'), class-ambiguous words and pseudowords used as nouns or verbs within two types of minimally contrastive sentence contexts: noun-predicting (e.g. 'John wanted THE [target] but.') and verb-predicting ('John wanted TO [target] but.'). Our results indicate that the nature of neural processing for nouns and verbs is a function of both the type of stimulus and the role it is playing. Even when the context completely specifies their role, word class-ambiguous items differ from unambiguous ones over frontal regions by approximately 150 ms. Moreover, whereas pseudowords elicit larger N400s when used as verbs than when used as nouns, unambiguous nouns and ambiguous words used as nouns elicit more frontocentral negativity than unambiguous verbs and ambiguous words used as verbs, respectively. Additionally, unambiguous verbs elicit a left-lateralized, anterior positivity (approximately 200 ms) not observed for any other stimulus type, though only when these items are used appropriately as verbs (i.e. in verb-predicting contexts). In summary, the pattern of neural activity observed in response to lexical items depends on their general

  13. Biological responses of brushite-forming Zn- and ZnSr- substituted beta-tricalcium phosphate bone cements

    Directory of Open Access Journals (Sweden)

    S Pina

    2010-09-01

    Full Text Available The core aim of this study was to investigate zinc (Zn- and zinc and strontium (ZnSr-containing brushite-forming beta-tricalcium phosphate (TCP cements for their effects on proliferation and differentiation of osteoblastic-like cells (MC3T3-E1 cell line as well as for their in vivo behaviour in trabecular bone cylindrical defects in a pilot study. In vitro proliferation and maturation responses of MC3T3-E1 osteoblastic-like cells to bone cements were studied at the cellular and molecular levels. The Zn- and Sr-containing brushite cements were found to stimulate pre-osteoblastic proliferation and osteoblastic maturation. Indeed, MC3T3-E1 cells exposed to the powdered cements had increased proliferative rates and higher adhesiveness capacity, in comparison to control cells. Furthermore, they exhibited higher alkaline phosphatase (ALP activity and increased Type-I collagen secretion and fibre deposition into the extracellular matrix. Proliferative and collagen deposition properties were more evident for cells grown in cements doped with Sr. The in vivo osteoconductive propertiesof the ZnCPC and ZnSrCPC cements were also pursued. Histological and histomorphometric analyses were performed at 1 and 2 months after implantation, using carbonated apatite cement (Norian SRS® as control. There was no evidence of cement-induced adverse foreign body reactions, and furthermore ZnCPC and ZnSrCPC cements revealed better in vivo performance in comparison to the control apatite cement. Additionally, the presence of both zinc and strontium resulted in the highest rate of new bone formation. These novel results indicate that the investigated ZnCPC and ZnSrCPC cements are both biocompatible and osteoconductive, being good candidate materials to use as bone substitutes.

  14. Abnormal salience signaling in schizophrenia: The role of integrative beta oscillations.

    Science.gov (United States)

    Liddle, Elizabeth B; Price, Darren; Palaniyappan, Lena; Brookes, Matthew J; Robson, Siân E; Hall, Emma L; Morris, Peter G; Liddle, Peter F

    2016-04-01

    Aberrant salience attribution and cerebral dysconnectivity both have strong evidential support as core dysfunctions in schizophrenia. Aberrant salience arising from an excess of dopamine activity has been implicated in delusions and hallucinations, exaggerating the significance of everyday occurrences and thus leading to perceptual distortions and delusional causal inferences. Meanwhile, abnormalities in key nodes of a salience brain network have been implicated in other characteristic symptoms, including the disorganization and impoverishment of mental activity. A substantial body of literature reports disruption to brain network connectivity in schizophrenia. Electrical oscillations likely play a key role in the coordination of brain activity at spatially remote sites, and evidence implicates beta band oscillations in long-range integrative processes. We used magnetoencephalography and a task designed to disambiguate responses to relevant from irrelevant stimuli to investigate beta oscillations in nodes of a network implicated in salience detection and previously shown to be structurally and functionally abnormal in schizophrenia. Healthy participants, as expected, produced an enhanced beta synchronization to behaviorally relevant, as compared to irrelevant, stimuli, while patients with schizophrenia showed the reverse pattern: a greater beta synchronization in response to irrelevant than to relevant stimuli. These findings not only support both the aberrant salience and disconnectivity hypotheses, but indicate a common mechanism that allows us to integrate them into a single framework for understanding schizophrenia in terms of disrupted recruitment of contextually appropriate brain networks. Hum Brain Mapp 37:1361-1374, 2016. © 2016 Wiley Periodicals, Inc. PMID:26853904

  15. [3H] glycogen hydrolysis in brain slices: responses to meurotransmitters and modulation of noradrenaline receptors

    International Nuclear Information System (INIS)

    Different agents have been investigated for their effects on [3H] glycogen synthesized in mouse cortical slices. Of these noradrenaline, serotonin and histamine induced clear concentration-dependent glycogenesis. [3H] glycogen hydrolysis induced by noradrenaline appears to be mediated by beta-adrenergic receptors because it is completely prevented by timolol, while phentolamine is ineffective. It seems to involve cyclic AMP because it is potentiated in the presence of isobutylmethylxanthine; in addition dibutyryl cyclic AMP (but not dibutyryl cyclic GMP) promotes glycogenolysis. Lower concentrations of noradrenaline were necessary for [3H] glycogen hydrolysis (ECsub(50) 0.5μM) than for stimulation of cyclic AMP accumulation (ECsub(50) = 8μM). After subchronic reserpine treatment the concentration-response curve to noradrenaline was significantly shifted to the left (ECsub(50) = 0.09 +- 0.02 μM as compared with 0.49 +- 0.08μM in saline-pretreated mice) without modifications of either the basal [3H] glycogen level, maximal glycogenolytic effect, or the dibutyryl cAMP-induced glycogenolytic response. In addition to noradrenaline, clear concentration-dependent [3H] glycogen hydrolysis was observed in the presence of histamine or serotonin. In contrast to the partial [3H] glycogen hydrolysis elicited by these biogenic amines, depolarization of the slices by 50 mM K+ provoked a nearly total [3H] glycogen hydrolysis. (author)

  16. On the pressure response in the brain due to short duration blunt impacts.

    Directory of Open Access Journals (Sweden)

    Christopher W Pearce

    Full Text Available When the head is subject to non-penetrating (blunt impact, contusion-type injuries are commonly identified beneath the impact site (the coup and, in some instances, at the opposite pole (the contre-coup. This pattern of injury has long eluded satisfactory explanation and blunt head injury mechanisms in general remain poorly understood. There are only a small number of studies in the open literature investigating the head's response to short duration impacts, which can occur in collisions with light projectiles. As such, the head impact literature to date has focussed almost exclusively on impact scenarios which lead to a quasi-static pressure response in the brain. In order to investigate the response of the head to a wide range of impact durations, parametric numerical studies were performed on a highly bio-fidelic finite element model of the human head created from in vivo magnetic resonance imaging (MRI scan data with non-linear tissue material properties. We demonstrate that short duration head impacts can lead to potentially deleterious transients of positive and negative intra-cranial pressure over an order of magnitude larger than those observed in the quasi-static regime despite reduced impact force and energy. The onset of this phenomenon is shown to be effectively predicted by the ratio of impact duration to the period of oscillation of the first ovalling mode of the system. These findings point to dramatically different pressure distributions in the brain and hence different patterns of injury depending on projectile mass, and provide a potential explanation for dual coup/contre-coup injuries observed clinically.

  17. Brain stem adenosine receptors modulate centrally mediated hypotensive responses in conscious rats: A review

    Directory of Open Access Journals (Sweden)

    Noha N. Nassar

    2015-05-01

    Full Text Available Adenosine is implicated in the modulation of cardiovascular responses either at the peripheral or at central level in experimental animals. However, there are no dedicated reviews on the involvement of adenosine in mediating the hypotensive response of centrally administered clonidine in general and specifically in aortically barodenervated rats (ABD. The conscious ABD rat model exhibits surgically induced baroreflex dysfunction and exaggerated hypotensive response, compared with conscious sham-operated (SO rats. The current review focuses on, the role of adenosine receptors in blood pressure (BP regulation and their possible crosstalk with other receptors e.g. imidazoline (I1 and alpha (α2A adrenergic receptor (AR. The former receptor is a molecular target for clonidine, whose hypotensive effect is enhanced approx. 3-fold in conscious ABD rats. We also discussed how the balance between the brain stem adenosine A1 and A2A receptors is regulated by baroreceptors and how such balance influences the centrally mediated hypotensive responses. The use of the ABD rat model yielded insight into the downstream signaling cascades following clonidine-evoked hypotension in a surgical model of baroreflex dysfunction.

  18. Unsupervised feature learning improves prediction of human brain activity in response to natural images.

    Directory of Open Access Journals (Sweden)

    Umut Güçlü

    2014-08-01

    Full Text Available Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making directly testable predictions of single voxel responses to statistically adapted representations of ecologically valid stimuli. These representations are learned from unlabeled data without supervision. Our approach is validated using a parsimonious computational model of (i how early visual cortical representations are adapted to statistical regularities in natural images and (ii how populations of these representations are pooled by single voxels. This computational model is used to predict single voxel responses to natural images and identify natural images from stimulus-evoked multiple voxel responses. We show that statistically adapted low-level sparse and invariant representations of natural images better span the space of early visual cortical representations and can be more effectively exploited in stimulus identification than hand-designed Gabor wavelets. Our results demonstrate the potential of our approach to better probe unknown cortical representations.

  19. Event-related brain responses while listening to entire pieces of music.

    Science.gov (United States)

    Poikonen, H; Alluri, V; Brattico, E; Lartillot, O; Tervaniemi, M; Huotilainen, M

    2016-01-15

    Brain responses to discrete short sounds have been studied intensively using the event-related potential (ERP) method, in which the electroencephalogram (EEG) signal is divided into epochs time-locked to stimuli of interest. Here we introduce and apply a novel technique which enables one to isolate ERPs in human elicited by continuous music. The ERPs were recorded during listening to a Tango Nuevo piece, a deep techno track and an acoustic lullaby. Acoustic features related to timbre, harmony, and dynamics of the audio signal were computationally extracted from the musical pieces. Negative deflation occurring around 100 milliseconds after the stimulus onset (N100) and positive deflation occurring around 200 milliseconds after the stimulus onset (P200) ERP responses to peak changes in the acoustic features were distinguishable and were often largest for Tango Nuevo. In addition to large changes in these musical features, long phases of low values that precede a rapid increase - and that we will call Preceding Low-Feature Phases - followed by a rapid increase enhanced the amplitudes of N100 and P200 responses. These ERP responses resembled those to simpler sounds, making it possible to utilize the tradition of ERP research with naturalistic paradigms. PMID:26550950

  20. The Impact of Reading Intervention on Brain Responses Underlying Language in Children With Autism.

    Science.gov (United States)

    Murdaugh, Donna L; Deshpande, Hrishikesh D; Kana, Rajesh K

    2016-01-01

    Deficits in language comprehension have been widely reported in children with autism spectrum disorders (ASD), with behavioral and neuroimaging studies finding increased reliance on visuospatial processing to aid in language comprehension. However, no study to date, has taken advantage of this strength in visuospatial processing to improve language comprehension difficulties in ASD. This study used a translational neuroimaging approach to test the role of a visual imagery-based reading intervention in improving the brain circuitry underlying language processing in children with ASD. Functional magnetic resonance imaging (MRI), in a longitudinal study design, was used to investigate intervention-related change in sentence comprehension, brain activation, and functional connectivity in three groups of participants (age 8-13 years): an experimental group of ASD children (ASD-EXP), a wait-list control group of ASD children (ASD-WLC), and a group of typically developing control children. After intervention, the ASD-EXP group showed significant increase in activity in visual and language areas and right-hemisphere language area homologues, putamen, and thalamus, suggestive of compensatory routes to increase proficiency in reading comprehension. Additionally, ASD children who had the most improvement in reading comprehension after intervention showed greater functional connectivity between left-hemisphere language areas, the middle temporal gyrus and inferior frontal gyrus while reading high imagery sentences. Thus, the findings of this study, which support the principles of dual coding theory [Paivio 2007], suggest the potential of a strength-based reading intervention in changing brain responses and facilitating better reading comprehension in ASD children. Autism Res 2015. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26016818

  1. Cellular response of the blood-brain barrier to injury: Potential biomarkers and therapeutic targets for brain regeneration.

    Science.gov (United States)

    Tenreiro, M M; Ferreira, R; Bernardino, L; Brito, M A

    2016-07-01

    Endothelial cells are the main component of the blood-brain barrier (BBB), a vital structure for maintaining brain homeostasis that is seriously disrupted in various neurological pathologies. Therefore, vascular-targeted therapies may bring advantages for the prevention and treatment of brain disorders. In this sense, novel methods to identify and evaluate endothelial damage have been developed and include the detection of circulating endothelial cells, endothelial progenitor cells, endothelial microparticles and exosomes. These cells and cellular structures have been documented in numerous diseases, and increasingly in neurodegenerative disorders, which have led many to assume that they can either be possible biomarkers or tools of repair. Therefore, the purpose of this review is to discuss available data on BBB endothelial damage occurring in two pathologies of the central nervous system, Alzheimer's disease and stroke, which exemplify conditions where chronic and acute vascular damage occur, respectively. The ultimate goal is to identify useful biomarkers and/or therapeutic tools in the healthy and diseased brain that can be used for the treatment of neurodegenerative diseases where BBB permeability and integrity are impaired. PMID:26996728

  2. Post-treatment vascular leakage and inflammatory responses around brain cysts in porcine neurocysticercosis.

    Directory of Open Access Journals (Sweden)

    Siddhartha Mahanty

    2015-03-01

    Full Text Available Cysticidal treatment of neurocysticercosis, an infection of humans and pig brains with Taenia solium, results in an early inflammatory response directed to cysts causing seizures and focal neurological manifestations. Treatment-induced pericystic inflammation and its association with blood brain barrier (BBB dysfunction, as determined by Evans blue (EB extravasation, was studied in infected untreated and anthelmintic-treated pigs. We compared the magnitude and extent of the pericystic inflammation, presence of EB-stained capsules, the level of damage to the parasite, expression of genes for proinflammatory and regulatory cytokines, chemokines, and tissue remodeling by quantitative PCR assays between treated and untreated infected pigs and between EB-stained (blue and non stained (clear cysts. Inflammatory scores were higher in pericystic tissues from EB-stained cysts compared to clear cysts from untreated pigs and also from anthelmintic-treated pigs 48 hr and 120 hr after treatment. The degree of inflammation correlated with the severity of cyst wall damage and both increased significantly at 120 hours. Expression levels of the proinflammatory genes for IL-6, IFN-γ, TNF-α were higher in EB-stained cysts compared to clear cysts and unaffected brain tissues, and were generally highest at 120 hr. Additionally, expression of some markers of immunoregulatory activity (IL-10, IL-2Rα were decreased in EB-stained capsules. An increase in other markers for regulatory T cells (CTLA4, FoxP3 was found, as well as significant increases in expression of two metalloproteases, MMP1 and MMP2 at 48 hr and 120 hr post-treatment. We conclude that the increase in severity of the inflammation caused by treatment is accompanied by both a proinflammatory and a complex regulatory response, largely limited to pericystic tissues with compromised vascular integrity. Because treatment induced inflammation occurs in porcine NCC similar to that in human cases, this model

  3. Gene expression profiling in the stress control brain region hypothalamic paraventricular nucleus reveals a novel gene network including Amyloid beta Precursor Protein

    Directory of Open Access Journals (Sweden)

    Deussing Jan M

    2010-10-01

    Full Text Available Abstract Background The pivotal role of stress in the precipitation of psychiatric diseases such as depression is generally accepted. This study aims at the identification of genes that are directly or indirectly responding to stress. Inbred mouse strains that had been evidenced to differ in their stress response as well as in their response to antidepressant treatment were chosen for RNA profiling after stress exposure. Gene expression and regulation was determined by microarray analyses and further evaluated by bioinformatics tools including pathway and cluster analyses. Results Forced swimming as acute stressor was applied to C57BL/6J and DBA/2J mice and resulted in sets of regulated genes in the paraventricular nucleus of the hypothalamus (PVN, 4 h or 8 h after stress. Although the expression changes between the mouse strains were quite different, they unfolded in phases over time in both strains. Our search for connections between the regulated genes resulted in potential novel signalling pathways in stress. In particular, Guanine nucleotide binding protein, alpha inhibiting 2 (GNAi2 and Amyloid β (A4 precursor protein (APP were detected as stress-regulated genes, and together with other genes, seem to be integrated into stress-responsive pathways and gene networks in the PVN. Conclusions This search for stress-regulated genes in the PVN revealed its impact on interesting genes (GNAi2 and APP and a novel gene network. In particular the expression of APP in the PVN that is governing stress hormone balance, is of great interest. The reported neuroprotective role of this molecule in the CNS supports the idea that a short acute stress can elicit positive adaptational effects in the brain.

  4. Interferon-Beta Therapy of Multiple Sclerosis Patients Improves the Responsiveness of T Cells for Immune Suppression by Regulatory T Cells

    Directory of Open Access Journals (Sweden)

    Bettina Trinschek

    2015-07-01

    Full Text Available Multiple sclerosis (MS is an inflammatory autoimmune disease characterized by imbalanced immune regulatory networks, and MS patient-derived T effector cells are inefficiently suppressed through regulatory T cells (Treg, a phenomenon known as Treg resistance. In the current study we investigated T cell function in MS patients before and after interferon-beta therapy. We compared cytokine profile, responsiveness for Treg-mediated suppression ex vivo and evaluated reactivity of T cells in vivo using a humanized mouse model. We found that CD4+ and CD8+ T cells of therapy-naive MS patients were resistant to Treg-mediated suppression. Treg resistance is associated with an augmented IL-6 production, enhanced IL-6 receptor expression, and increased PKB/c-Akt phosphorylation. These parameters as well as responsiveness of T cells to Treg-mediated suppression were restored after interferon-beta therapy of MS patients. Following transfer into immunodeficient mice, MS T cells induced a lethal graft versus host disease (GvHD and in contrast to T cells of healthy volunteers, this aggressive T cell response could not be controlled by Treg, but was abolished by anti-IL-6 receptor antibodies. However, magnitude and lethality of GvHD induced by MS T cells was significantly decreased after interferon-beta therapy and the reaction was prevented by Treg activation in vivo. Our data reveals that interferon-beta therapy improves the immunoregulation of autoaggressive T effector cells in MS patients by changing the IL-6 signal transduction pathway, thus restoring their sensitivity to Treg-mediated suppression.

  5. EGFR mutations are associated with favorable intracranial response and progression-free survival following brain irradiation in non-small cell lung cancer patients with brain metastases

    International Nuclear Information System (INIS)

    The presence of epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC) is associated with increased radiosensitivity in vitro. However, the results from clinical studies regarding the radiosensitivity in NSCLC with mutant EGFR are inconclusive. We retrospectively analyzed our NSCLC patients who had been regularly followed up by imaging studies after irradiation for brain metastases, and investigated the impact of EGFR mutations on radiotherapy (RT). Forty-three patients with brain metastases treated with RT, together with EGFR mutation status, demographics, smoking history, performance status, recursive partitioning analysis (RPA) class, tumor characteristics, and treatment modalities, were included. Radiological images were taken at 1 to 3 months after RT, and 3 to 6 months thereafter. Radiographic response was evaluated by RECIST criteria version 1.1 according to the intracranial images before and after RT. Log-rank test and Cox regression model were used to correlate EGFR mutation status and other clinical features with intracranial radiological progression-free survival (RPFS) and overall survival (OS). The median follow-up duration was 15 months. Patients with mutant EGFR had higher response rates to brain RT than those with wild-type EGFR (80% vs. 46%; p = 0.037). Logistic regression analysis showed that EGFR mutation status is the only predictor for treatment response (p = 0.032). The median intracranial RPFS was 18 months (95% CI = 8.33-27.68 months). In Cox regression analysis, mutant EGFR (p = 0.025) and lower RPA class (p = 0.026) were associated with longer intracranial RPFS. EGFR mutation status (p = 0.061) and performance status (p = 0.076) had a trend to predict OS. Mutant EGFR in NSCLC patients is an independent prognostic factor for better treatment response and longer intracranial RPFS following RT for brain metastases

  6. Characterization of Selenoprotein M and Its Response to Selenium Deficiency in Chicken Brain.

    Science.gov (United States)

    Huang, Jia-Qiang; Ren, Fa-Zheng; Jiang, Yun-Yun; Lei, XinGen

    2016-04-01

    Selenoprotein M (SelM) may function as thiol disulfide oxidoreductase that participates in the formation of disulfide bonds and can be implicated in calcium responses. SelM may have a functional role in catalyzing free radicals and has been associated with Alzheimer's disease (AD). However, studies of SelM in chicken remain very limited. In this study, two groups of day-old broiler chicks (n = 40/group) were fed a corn-soy basal diet (BD, 13 μg Se/kg) and BD supplemented with Se (as sodium selenite) at 0.3 mg/kg. The brain was collected at 14, 21, 28, and 42 days of age. We performed a sequence analysis and predicted the structure and function of SelM. We also investigated the effects of Se deficiency on the expression of Selt, Selw, and Selm and the Se status in the chicken brain. The results show that Se deficiency induced the lower (P chicken, which might shed light on the role of SelM in human neurodegenerative disease. More studies are needed to confirm our conclusion. PMID:26315306

  7. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    International Nuclear Information System (INIS)

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test ≥7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  8. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    Energy Technology Data Exchange (ETDEWEB)

    Hua Chiaho, E-mail: Chia-Ho.Hua@stjude.org [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Wu Shengjie [Department of Biostatistics, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Chemaitilly, Wassim [Division of Endocrinology, Department of Pediatric Medicine, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States); Lukose, Renin C.; Merchant, Thomas E. [Department of Radiological Sciences, St. Jude Children' s Research Hospital, Memphis, Tennessee (United States)

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  9. Fungicidal response of a novel natural photosensitizer (Beta vulgaris) on Candida albicans with low-power laser radiation

    Science.gov (United States)

    Mittal, Subhangi; Roy, Sukhdev; Srivastava, J. N.

    2013-05-01

    We report the efficacy of an aqueous extract of Beta vulgaris as a novel, natural photosensitizer for use in photodynamic therapy against Candidiasis disease. This study evaluates the effect of different laser wavelengths (He-Ne: 633 nm, Nd-YAG: 532 nm), power (17, 27 mW) and duration of exposure (5, 10, 15 min) in combination with the Beta vulgaris natural photosensitizer on the viability of Candida albicans causing Candidiasis disease. Although inhibition was observed in all cases, a maximum of 51.91% inhibition takes place with the combination of Beta vulgaris exposed to 532 nm at 27 mW for 15 min by the Agar well diffusion method. The study is important in optimizing different parameters and designing a low-power, compact, non-invasive and portable device for treatment.

  10. Fungicidal response of a novel natural photosensitizer (Beta vulgaris) on Candida albicans with low-power laser radiation

    International Nuclear Information System (INIS)

    We report the efficacy of an aqueous extract of Beta vulgaris as a novel, natural photosensitizer for use in photodynamic therapy against Candidiasis disease. This study evaluates the effect of different laser wavelengths (He–Ne: 633 nm, Nd-YAG: 532 nm), power (17, 27 mW) and duration of exposure (5, 10, 15 min) in combination with the Beta vulgaris natural photosensitizer on the viability of Candida albicans causing Candidiasis disease. Although inhibition was observed in all cases, a maximum of 51.91% inhibition takes place with the combination of Beta vulgaris exposed to 532 nm at 27 mW for 15 min by the Agar well diffusion method. The study is important in optimizing different parameters and designing a low-power, compact, non-invasive and portable device for treatment. (paper)

  11. Modeling learning in brain stem and cerebellar sites responsible for VOR plasticity

    Science.gov (United States)

    Quinn, K. J.; Didier, A. J.; Baker, J. F.; Peterson, B. W.

    1998-01-01

    A simple model of vestibuloocular reflex (VOR) function was used to analyze several hypotheses currently held concerning the characteristics of VOR plasticity. The network included a direct vestibular pathway and an indirect path via the cerebellum. An optimization analysis of this model suggests that regulation of brain stem sites is critical for the proper modification of VOR gain. A more physiologically plausible learning rule was also applied to this network. Analysis of these simulation results suggests that the preferred error correction signal controlling gain modification of the VOR is the direct output of the accessory optic system (AOS) to the vestibular nuclei vs. a signal relayed through the cerebellum via floccular Purkinje cells. The potential anatomical and physiological basis for this conclusion is discussed, in relation to our current understanding of the latency of the adapted VOR response.

  12. Common biology of craving across legal and illegal drugs - a quantitative meta-analysis of cue-reactivity brain response.

    Science.gov (United States)

    Kühn, Simone; Gallinat, Jürgen

    2011-04-01

    The present quantitative meta-analysis set out to test whether cue-reactivity responses in humans differ across drugs of abuse and whether these responses constitute the biological basis of drug craving as a core psychopathology of addiction. By means of activation likelihood estimation, we investigated the concurrence of brain regions activated by cue-induced craving paradigms across studies on nicotine, alcohol and cocaine addicts. Furthermore, we analysed the concurrence of brain regions positively correlated with self-reported craving in nicotine and alcohol studies. We found direct overlap between nicotine, alcohol and cocaine cue reactivity in the ventral striatum. In addition, regions of close proximity were observed in the anterior cingulate cortex (ACC; nicotine and cocaine) and amygdala (alcohol, nicotine and cocaine). Brain regions of concurrence in drug cue-reactivity paradigms that overlapped with brain regions of concurrence in self-reported craving correlations were found in the ACC, ventral striatum and right pallidum (for alcohol). This first quantitative meta-analysis on drug cue reactivity identifies brain regions underlying nicotine, alcohol and cocaine dependency, i.e. the ventral striatum. The ACC, right pallidum and ventral striatum were related to drug cue reactivity as well as self-reported craving, suggesting that this set of brain regions constitutes the core circuit of drug craving in nicotine and alcohol addiction. PMID:21261758

  13. Human brain EEG indices of emotions: delineating responses to affective vocalizations by measuring frontal theta event-related synchronization.

    Science.gov (United States)

    Bekkedal, Marni Y V; Rossi, John; Panksepp, Jaak

    2011-10-01

    At present there is no direct brain measure of basic emotional dynamics from the human brain. EEG provides non-invasive approaches for monitoring brain electrical activity to emotional stimuli. Event-related desynchronization/synchronization (ERD/ERS) analysis, based on power shifts in specific frequency bands, has some potential as a method for differentiating responses to basic emotions as measured during brief presentations of affective stimuli. Although there appears to be fairly consistent theta ERS in frontal regions of the brain during the earliest phases of processing affective auditory stimuli, the patterns do not readily distinguish between specific emotions. To date it has not been possible to consistently differentiate brain responses to emotion-specific affective states or stimuli, and some evidence to suggests the theta ERS more likely measures general arousal processes rather than yielding veridical indices of specific emotional states. Perhaps cortical EEG patterns will never be able to be used to distinguish discrete emotional states from the surface of the brain. The implications and limitations of such approaches for understanding human emotions are discussed. PMID:21596060

  14. Cannabis Abusers Show Hypofrontality and Blunted Brain Responses to a Stimulant Challenge in Females but not in Males.

    Science.gov (United States)

    Wiers, Corinde E; Shokri-Kojori, Ehsan; Wong, Christopher T; Abi-Dargham, Anissa; Demiral, Şükrü B; Tomasi, Dardo; Wang, Gene-Jack; Volkow, Nora D

    2016-09-01

    The extent to which cannabis is deleterious to the human brain is not well understood. Here, we test whether cannabis abusers (CA) have impaired frontal function and reactivity to dopaminergic signaling, which are fundamental to relapse in addiction. We measured brain glucose metabolism using PET and [(18)F]FDG both at baseline (placebo) and after challenge with methylphenidate (MP), a dopamine-enhancing drug, in 24 active CA (50% female) and 24 controls (HC; 50% female). Results show that (i) CA had lower baseline glucose metabolism than HC in frontal cortex including anterior cingulate, which was associated with negative emotionality. (ii) MP increased whole-brain glucose metabolism in HC but not in CA; and group by challenge effects were most profound in putamen, caudate, midbrain, thalamus, and cerebellum. In CA, MP-induced metabolic increases in putamen correlated negatively with addiction severity. (iii) There were significant gender effects, such that both the group differences at baseline in frontal metabolism and the attenuated regional brain metabolic responses to MP were observed in female CA but not in male CA. As for other drug addictions, reduced baseline frontal metabolism is likely to contribute to relapse in CA. The attenuated responses to MP in midbrain and striatum are consistent with decreased brain reactivity to dopamine stimulation and might contribute to addictive behaviors in CA. The gender differences suggest that females are more sensitive than males to the adverse effects of cannabis in brain. PMID:27156854

  15. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    International Nuclear Information System (INIS)

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting 3H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities

  16. Behavioral responses to and brain distribution of morphine in mature adult and aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Burton, C.K.; Ho, I.K.; Hoskins, B.

    1986-03-01

    Mature adult (3-6 mo old) and aged (2 yr old) male ICR mice were injected with 10 to 100 mg/kg morphine, s.c. The ED50 values for running behavior (as measured using Stoelting activity monitors and having each mouse serve as its own control) representing 5 times control activity was approximately 7.5 mg/kg for aged mice and approximately 17.5 mg/kg for the mature adults. The ED50 values for analgesia 1 hr after morphine administration using the tail-flick method (max. response time = 8 sec) were approx. 70 mg/kg for the aged mice and 15 mg/kg for the mature adults. One hour after injecting /sup 3/H-morphine at doses of 30 and 100 mg/kg, 0.13 and 0.14% of the doses appeared in brains of aged and mature adult mice, respectively. Regional distribution of the morphine was the same for both age groups. Expressed as percent of total brain morphine, it was as follows: cortex, 30%; midbrain, 18%; cerebellum, 17%; medulla, 12%; pons, 9%; striatum, 8% and periaqueductal gray, 6%. Expressed as g morphine/g tissue for the 2 doses, the distribution was; periaqueductal gray, 30 and 80; striatum, 9 and 34; medulla, 6 and 20 pons; 5 and 19; cerebellum, 4 and 13; midbrain 2.5 and 8.5 and cortex, 2 and 8. These results suggest that the differences in response to morphine by the two age groups were due to age-related differences in opioid receptor populations and/or affinities.

  17. Verbal labels selectively bias brain responses to high-energy foods.

    Science.gov (United States)

    Toepel, Ulrike; Ohla, Kathrin; Hudry, Julie; le Coutre, Johannes; Murray, Micah M

    2014-02-15

    The influence of external factors on food preferences and choices is poorly understood. Knowing which and how food-external cues impact the sensory processing and cognitive valuation of food would provide a strong benefit toward a more integrative understanding of food intake behavior and potential means of interfering with deviant eating patterns to avoid detrimental health consequences for individuals in the long run. We investigated whether written labels with positive and negative (as opposed to 'neutral') valence differentially modulate the spatio-temporal brain dynamics in response to the subsequent viewing of high- and low-energetic food images. Electrical neuroimaging analyses were applied to visual evoked potentials (VEPs) from 20 normal-weight participants. VEPs and source estimations in response to high- and low- energy foods were differentially affected by the valence of preceding word labels over the ~260-300 ms post-stimulus period. These effects were only observed when high-energy foods were preceded by labels with positive valence. Neural sources in occipital as well as posterior, frontal, insular and cingulate regions were down-regulated. These findings favor cognitive-affective influences especially on the visual responses to high-energetic food cues, potentially indicating decreases in cognitive control and goal-adaptive behavior. Inverse correlations between insular activity and effectiveness in food classification further indicate that this down-regulation directly impacts food-related behavior. PMID:24185017

  18. The Acute Inflammatory Response in Trauma / Hemorrhage and Traumatic Brain Injury: Current State and Emerging Prospects

    Directory of Open Access Journals (Sweden)

    Y Vodovotz

    2009-01-01

    Full Text Available Traumatic injury/hemorrhagic shock (T/HS elicits an acute inflammatory response that may result in death. Inflammation describes a coordinated series of molecular, cellular, tissue, organ, and systemic responses that drive the pathology of various diseases including T/HS and traumatic brain injury (TBI. Inflammation is a finely tuned, dynamic, highly-regulated process that is not inherentlydetrimental, but rather required for immune surveillance, optimal post-injury tissue repair, and regeneration. The inflammatory response is driven by cytokines and chemokines and is partiallypropagated by damaged tissue-derived products (Damage-associated Molecular Patterns; DAMP’s.DAMPs perpetuate inflammation through the release of pro-inflammatory cytokines, but may also inhibit anti-inflammatory cytokines. Various animal models of T/HS in mice, rats, pigs, dogs, and nonhumanprimates have been utilized in an attempt to move from bench to bedside. Novel approaches, including those from the field of systems biology, may yield therapeutic breakthroughs in T/HS andTBI in the near future.

  19. Outlier responses reflect sensitivity to statistical structure in the human brain.

    Directory of Open Access Journals (Sweden)

    Marta I Garrido

    Full Text Available We constantly look for patterns in the environment that allow us to learn its key regularities. These regularities are fundamental in enabling us to make predictions about what is likely to happen next. The physiological study of regularity extraction has focused primarily on repetitive sequence-based rules within the sensory environment, or on stimulus-outcome associations in the context of reward-based decision-making. Here we ask whether we implicitly encode non-sequential stochastic regularities, and detect violations therein. We addressed this question using a novel experimental design and both behavioural and magnetoencephalographic (MEG metrics associated with responses to pure-tone sounds with frequencies sampled from a Gaussian distribution. We observed that sounds in the tail of the distribution evoked a larger response than those that fell at the centre. This response resembled the mismatch negativity (MMN evoked by surprising or unlikely events in traditional oddball paradigms. Crucially, responses to physically identical outliers were greater when the distribution was narrower. These results show that humans implicitly keep track of the uncertainty induced by apparently random distributions of sensory events. Source reconstruction suggested that the statistical-context-sensitive responses arose in a temporo-parietal network, areas that have been associated with attention orientation to unexpected events. Our results demonstrate a very early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. We suggest that this sensitivity provides a computational basis for our ability to make perceptual inferences in noisy environments and to make decisions in an uncertain world.

  20. Human osteoblasts from younger normal and osteoporotic donors show differences in proliferation and TGF beta-release in response to cyclic strain.

    Science.gov (United States)

    Neidlinger-Wilke, C; Stalla, I; Claes, L; Brand, R; Hoellen, I; Rübenacker, S; Arand, M; Kinzl, L

    1995-12-01

    Mechanical stimulation of bone tissue by physical activity stimulates bone formation in normal bone and may attenuate bone loss of osteoporotic patients. However, altered responsiveness of osteoblasts in osteoporotic bone to mechanical stimuli may contribute to osteoporotic bone involution. The purpose of the present study was to investigate whether osteoblasts from osteoporotic patients and normal donors show differences in proliferation and TGF beta production in responses to cyclic strain. Human osteoblasts isolated from collagenase-treated bone explants of 10 osteoporotic patients (average age 70 +/- 6 yr) and 8 normal donors (average age 54 +/- 10 yr) were plated into elastic rectangular silicone dishes. Subconfluent cultures were stimulated by cyclic strain (1%, 1 Hz) in electromechanical cell stretching apparatus at three consecutive days for each 30 min. The cultures were assayed for proliferation, alkaline phosphatase activity and TGF beta release in each three parallel cultures. In all experiments, osteoblasts grown in the same elastic dishes but without mechanical stimulation served as controls. Significant differences between stimulated cultures and unstimulated controls were determined by a paired two-tailed Wilcoxon test. In comparison to the unstimulated controls, osteoblasts from normal donors significantly increased proliferation (p = 0.025) and TGF beta secretion (p = 0.009) into the conditioned culture medium. In contrast, osteoblasts from osteoporotic donors failed to increase both proliferation (p > 0.05) and TGF beta release (p > 0.05) in response to cyclic strain. Alkaline phosphatase activity was not significantly affected (p > 0.05) in normal as well as osteoporotic bone derived osteoblasts. These findings suggest a different responsiveness to 1% cyclic strain of osteoblasts isolated from normal and osteoporotic bone that could be influenced by both the disease of osteoporosis and the higher average age of the osteoporotic patient group

  1. Energy expenditure, body composition and insulin response to glucose in male twins discordant for the Trp64Arg polymorphism of the beta3-adrenergic receptor gene

    DEFF Research Database (Denmark)

    Højlund, K; Christiansen, C; Bjørnsbo, K S;

    2006-01-01

    secretion could play a role. METHODS: In 10 male twin pairs discordant for the Trp64Arg polymorphism, we examined insulin response to glucose by an oral glucose tolerance test (OGTT), a frequently sampled intravenous glucose tolerance test (FSIGT), body composition by the bioimpedance method, dual-energy X......AIM: The tryptophan to arginine change in position 64 (Trp64Arg) polymorphism of the beta3-adrenergic receptor (beta3AR) gene has been associated with an increased prevalence of obesity, insulin resistance and type 2 diabetes. In this, decreased rates of energy expenditure and impaired insulin......-ray absorptiometry scanning and energy expenditure by indirect and direct calorimetry. RESULTS: Twins heterozygous for the Trp64Arg polymorphism showed significantly lower fat mass independent of the method used, and significantly lower fasting insulin and glucose concentrations compared with their homozygous wild...

  2. Exploring the motivational brain: effects of implicit power motivation on brain activation in response to facial expressions of emotion

    OpenAIRE

    Schultheiss, Oliver C.; Wirth, Michelle M.; WAUGH, CHRISTIAN E.; Stanton, Steven J.; Meier, Elizabeth A.; Reuter-Lorenz, Patricia

    2008-01-01

    This study tested the hypothesis that implicit power motivation (nPower), in interaction with power incentives, influences activation of brain systems mediating motivation. Twelve individuals low (lowest quartile) and 12 individuals high (highest quartile) in nPower, as assessed per content coding of picture stories, were selected from a larger initial participant pool and participated in a functional magnetic resonance imaging study during which they viewed high-dominance (angry faces), low-...

  3. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice

    Science.gov (United States)

    Kofman, Itamar; Abookasis, David

    2015-10-01

    ) monitor brain hemodynamic and metabolic response to neuroprotective drug treatment.

  4. Interferon beta 2/B-cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells.

    OpenAIRE

    Gauldie, J.; C. Richards; Harnish, D; Lansdorp, P.; Baumann, H

    1987-01-01

    One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibrob...

  5. Increased expression of integrin alpha2 and abnormal response to TGF-beta1 in hereditary gingival fibromatosis.

    NARCIS (Netherlands)

    Zhou, J.; Meng, L.; Ye, X.Q.; Hoff, J.W. von den; Bian, Z.

    2009-01-01

    OBJECTIVE: To investigate the possible correlation between integrin alpha1, alpha2, and beta1 expression and excessive collagen synthesis in fibroblasts from 3 unrelated Chinese families with hereditary gingival fibromatosis (HGF). DESIGN: Gingival fibroblasts from three Chinese HGF patients and thr

  6. Metabolome profiling to understand the defense response to sugar beet (Beta vulgaris) to Rhizoctonia solani AG 2-2 IIIB

    Science.gov (United States)

    Rhizoctonia crown and root rot, caused by Rhizoctonia solani Kühn AG 2-2 IIIB, is an important disease of sugar beet (Beta vulgaris L.). The molecular processes that mediate sugar beet resistance to R. solani are largely unknown and identifying the metabolites associated with R. solani infection ma...

  7. Quantitative analysis of the IgG and IgG subclass immune responses to chromosomal Pseudomonas aeruginosa beta-lactamase in serum from patients with cystic fibrosis by western blotting and laser scanning densitometry

    DEFF Research Database (Denmark)

    Petersen, T D; Ciofu, O; Pressler, T; Giwercman, B; Pedersen, S S; Høiby, N

    1996-01-01

    IgG1, 79% had IgG4, 56% IgG2, and only 16% of the patients had IgG3 a beta ab. The IgG1 and IgG4 a beta ab appeared first, and more than 50% of the patients were IgG1 and IgG4 a beta ab positive within 2-3 years of the onset of infection, but IgG2 positivity only appeared after seven years and IgG3...... remained absent from most of the patients. The median a beta ab levels increased during chronic infection: 100-fold for IgG1, 22-fold for IgG2, and 45-fold for IgG4. A 16-fold increase in the IgG3 a beta ab levels was detected in the six patients who developed IgG3 a beta ab. In the first four years of the...... chronic infection the a beta ab titres were higher in patients with good lung function than in those with poor lung function. CONCLUSIONS: The association of a weak IgG3 and a strong IgG4 a beta ab response suggests that the contribution of a beta ab antibodies to lung diseases mediated by immune...

  8. Implantable self-reset CMOS image sensor and its application to hemodynamic response detection in living mouse brain

    Science.gov (United States)

    Yamaguchi, Takahiro; Takehara, Hiroaki; Sunaga, Yoshinori; Haruta, Makito; Motoyama, Mayumi; Ohta, Yasumi; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    A self-reset pixel of 15 × 15 µm2 with high signal-to-noise ratio (effective peak SNR ≃64 dB) for an implantable image sensor has been developed for intrinsic signal detection arising from hemodynamic responses in a living mouse brain. For detecting local conversion between oxyhemoglobin (HbO) and deoxyhemoglobin (HbR) in brain tissues, an implantable imaging device was fabricated with our newly designed self-reset image sensor and orange light-emitting diodes (LEDs; λ = 605 nm). We demonstrated imaging of hemodynamic responses in the sensory cortical area accompanied by forelimb stimulation of a living mouse. The implantable imaging device for intrinsic signal detection is expected to be a powerful tool to measure brain activities in living animals used in behavioral analysis.

  9. 17beta-estradiol inhibits apoptosis in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements present in the coding sequence.

    Science.gov (United States)

    Perillo, B; Sasso, A; Abbondanza, C; Palumbo, G

    2000-04-01

    We have found that 17beta-estradiol induces bcl-2 transcription in human breast cancer MCF-7 cells. To identify cis-acting elements involved in this regulation, we have analyzed hormone responsiveness of transiently transfected reporter constructs containing the bcl-2 major promoter (P(1)). Hormone inducibility was observed only when either of two sequences, located within the bcl-2 coding region and showing one and two mutations with respect to the consensus estrogen-responsive element, were inserted downstream from the P(1) promoter. Both sequences behaved as enhancers exclusively in cells expressing the estrogen receptor and were able to bind this receptor in in vitro assays. Transfections into MCF-7 cells of plasmids carrying a bcl-2 cDNA fragment which included these two elements revealed that their simultaneous presence resulted in an additive effect on reporter gene activity, whose size resembled the increase of endogenous bcl-2 mRNA level observed in untransfected cells after hormone treatment. Moreover, the identified elements were able to mediate up-regulation of bcl-2 expression by 17beta-estradiol, since exogenous bcl-2 mRNA was induced by hormone challenge of MCF-7 cells transiently transfected with a vector containing the bcl-2 coding sequence cloned under the control of a non-estrogen-responsive promoter. Finally, we show that hormone prevention of apoptosis, induced by incubating MCF-7 cells with hydrogen peroxide, was strictly related to bcl-2 up-regulation. Our results indicate that the bcl-2 major promoter does not contain cis-acting elements directly involved in transcriptional control by 17beta-estradiol and that hormone treatment inhibits programmed cell death in MCF-7 cells, inducing bcl-2 expression via two estrogen-responsive elements located within its coding region. PMID:10733592

  10. Permeability and contractile responses of collecting lymphatic vessels elicited by atrial and brain natriuretic peptides.

    Science.gov (United States)

    Scallan, Joshua P; Davis, Michael J; Huxley, Virginia H

    2013-10-15

    Atrial and brain natriuretic peptides (ANP and BNP, respectively) are cardiac hormones released into the bloodstream in response to hypervolaemia or fluid shifts to the central circulation. The actions of both peptides include natriuresis and diuresis, a decrease in systemic blood pressure, and inhibition of the renin-angiotensin-aldosterone system. Further, ANP and BNP elicit increases in blood microvessel permeability sufficient to cause protein and fluid extravasation into the interstitium to reduce the vascular volume. Given the importance of the lymphatic vasculature in maintaining fluid balance, we tested the hypothesis that ANP or BNP (100 nM) would likewise elevate lymphatic permeability (Ps) to serum albumin. Using a microfluorometric technique adapted to in vivo lymphatic vessels, we determined that rat mesenteric collecting lymphatic Ps to rat serum albumin increased by 2.0 ± 0.4-fold (P = 0.01, n = 7) and 2.7 ± 0.8-fold (P = 0.07, n = 7) with ANP and BNP, respectively. In addition to measuring Ps responses, we observed changes in spontaneous contraction amplitude and frequency from the albumin flux tracings in vivo. Notably, ANP abolished spontaneous contraction amplitude (P = 0.005) and frequency (P = 0.006), while BNP augmented both parameters by ∼2-fold (P lymphatic permeability opposes the absorptive function of the lymphatic capillaries, and aids in the retention of protein and fluid in the interstitial space to counteract volume expansion. PMID:23897233

  11. Different Brain Responses to Pain and Its Expectation in the Dental Chair.

    Science.gov (United States)

    Racek, A J; Hu, X; Nascimento, T D; Bender, M C; Khatib, L; Chiego, D; Holland, G R; Bauer, P; McDonald, N; Ellwood, R P; DaSilva, A F

    2015-07-01

    A dental appointment commonly prompts fear of a painful experience, yet we have never fully understood how our brains react to the expectation of imminent tooth pain once in a dental chair. In our study, 21 patients with hypersensitive teeth were tested using nonpainful and painful stimuli in a clinical setting. Subjects were tested in a dental chair using functional near-infrared spectroscopy to measure cortical activity during a stepwise cold stimulation of a hypersensitive tooth, as well as nonpainful control stimulation on the same tooth. Patients' sensory-discriminative and emotional-cognitive cortical regions were studied through the transition of a neutral to a painful stimulation. In the putative somatosensory cortex contralateral to the stimulus, 2 well-defined hemodynamic peaks were detected in the homuncular orofacial region: the first peak during the nonpainful phase and a second peak after the pain threshold was reached. Moreover, in the upper-left and lower-right prefrontal cortices, there was a significant active hemodynamic response in only the first phase, before the pain. Subsequently, the same prefrontal cortical areas deactivated after a painful experience had been reached. Our study indicates for the first time that pain perception and expectation elicit different hemodynamic cortical responses in a dental clinical setting. PMID:25904140

  12. Association between brain natriuretic peptide, markers of inflammation and the objective and subjective response to cardiac resynchronization therapy

    DEFF Research Database (Denmark)

    Brouwers, Corline; Versteeg, Henneke; Meine, Mathias;

    2014-01-01

    Introduction: Studies suggest that cardiac resynchronization therapy (CRT) can induce a decrease in brain natriuretic peptide (BNP) and systemic inflammation, which may be associated with CRT-response. However, the evidence is inconclusive. We examined levels of BNP and inflammatory markers from ...

  13. CMOS Image Sensor and System for Imaging Hemodynamic Changes in Response to Deep Brain Stimulation.

    Science.gov (United States)

    Zhang, Xiao; Noor, Muhammad S; McCracken, Clinton B; Kiss, Zelma H T; Yadid-Pecht, Orly; Murari, Kartikeya

    2016-06-01

    Deep brain stimulation (DBS) is a therapeutic intervention used for a variety of neurological and psychiatric disorders, but its mechanism of action is not well understood. It is known that DBS modulates neural activity which changes metabolic demands and thus the cerebral circulation state. However, it is unclear whether there are correlations between electrophysiological, hemodynamic and behavioral changes and whether they have any implications for clinical benefits. In order to investigate these questions, we present a miniaturized system for spectroscopic imaging of brain hemodynamics. The system consists of a 144 ×144, [Formula: see text] pixel pitch, high-sensitivity, analog-output CMOS imager fabricated in a standard 0.35 μm CMOS process, along with a miniaturized imaging system comprising illumination, focusing, analog-to-digital conversion and μSD card based data storage. This enables stand alone operation without a computer, nor electrical or fiberoptic tethers. To achieve high sensitivity, the pixel uses a capacitive transimpedance amplifier (CTIA). The nMOS transistors are in the pixel while pMOS transistors are column-parallel, resulting in a fill factor (FF) of 26%. Running at 60 fps and exposed to 470 nm light, the CMOS imager has a minimum detectable intensity of 2.3 nW/cm(2) , a maximum signal-to-noise ratio (SNR) of 49 dB at 2.45 μW/cm(2) leading to a dynamic range (DR) of 61 dB while consuming 167 μA from a 3.3 V supply. In anesthetized rats, the system was able to detect temporal, spatial and spectral hemodynamic changes in response to DBS. PMID:26357405

  14. Face the hierarchy: ERP and oscillatory brain responses in social rank processing.

    Directory of Open Access Journals (Sweden)

    Audrey Breton

    Full Text Available Recognition of social hierarchy is a key feature that helps us navigate through our complex social environment. Neuroimaging studies have identified brain structures involved in the processing of hierarchical stimuli but the precise temporal dynamics of brain activity associated with such processing remains largely unknown. Here, we used electroencephalography to examine the effect of social hierarchy on neural responses elicited by faces. In contrast to previous studies, the key manipulation was that a hierarchical context was constructed, not by varying facial expressions, but by presenting neutral-expression faces in a game setting. Once the performance-based hierarchy was established, participants were presented with high-rank, middle-rank and low-rank player faces and had to evaluate the rank of each face with respect to their own position. Both event-related potentials and task-related oscillatory activity were investigated. Three main findings emerge from the study. First, the experimental manipulation had no effect on the early N170 component, which may suggest that hierarchy did not modulate the structural encoding of neutral-expression faces. Second, hierarchy significantly modulated the amplitude of the late positive potential (LPP within a 400-700 ms time-window, with more a prominent LPP occurring when the participants processed the face of the highest-rank player. Third, high-rank faces were associated with the highest reduction of alpha power. Taken together these findings provide novel electrophysiological evidence for enhanced allocation of attentional resource in the presence of high-rank faces. At a broader level, this study brings new insights into the neural processing underlying social categorization.

  15. Using auditory steady state responses to outline the functional connectivity in the tinnitus brain.

    Directory of Open Access Journals (Sweden)

    Winfried Schlee

    Full Text Available BACKGROUND: Tinnitus is an auditory phantom perception that is most likely generated in the central nervous system. Most of the tinnitus research has concentrated on the auditory system. However, it was suggested recently that also non-auditory structures are involved in a global network that encodes subjective tinnitus. We tested this assumption using auditory steady state responses to entrain the tinnitus network and investigated long-range functional connectivity across various non-auditory brain regions. METHODS AND FINDINGS: Using whole-head magnetoencephalography we investigated cortical connectivity by means of phase synchronization in tinnitus subjects and healthy controls. We found evidence for a deviating pattern of long-range functional connectivity in tinnitus that was strongly correlated with individual ratings of the tinnitus percept. Phase couplings between the anterior cingulum and the right frontal lobe and phase couplings between the anterior cingulum and the right parietal lobe showed significant condition x group interactions and were correlated with the individual tinnitus distress ratings only in the tinnitus condition and not in the control conditions. CONCLUSIONS: To the best of our knowledge this is the first study that demonstrates existence of a global tinnitus network of long-range cortical connections outside the central auditory system. This result extends the current knowledge of how tinnitus is generated in the brain. We propose that this global extend of the tinnitus network is crucial for the continuos perception of the tinnitus tone and a therapeutical intervention that is able to change this network should result in relief of tinnitus.

  16. Synchronization by the hand: the sight of gestures modulates low-frequency activity in brain responses to continuous speech

    OpenAIRE

    Biau, Emmanuel, 1985-; Soto-Faraco, Salvador

    2015-01-01

    During social interactions, speakers often produce spontaneous gestures to accompany their speech. These coordinated body movements convey communicative intentions, and modulate how listeners perceive the message in a subtle, but important way. In the present perspective, we put the focus on the role that congruent non-verbal information from beat gestures may play in the neural responses to speech. Whilst delta-theta oscillatory brain responses reflect the time-frequency structure of the spe...

  17. Synchronization by the hand: The sight of gestures modulates low-frequency activity in brain responses to continuous speech

    OpenAIRE

    Emmanuel eBiau; Salvador eSoto-Faraco

    2015-01-01

    During social interactions, speakers often produce spontaneous gestures to accompany their speech. These coordinated body movements convey communicative intentions, and modulate how listeners perceive the message in a subtle, but important way. In the present perspective, we put the focus on the role that congruent non-verbal information from beat gestures may play in the neural responses to speech. Whilst delta-theta oscillatory brain responses reflect the time-frequency structure of the spe...

  18. Gender differences in functional hemispheric asymmetry during processing of vowels as reflected by the human brain magnetic response

    OpenAIRE

    Obleser, Jonas; Eulitz, Carsten; Lahiri, Aditi; Elbert, Thomas

    2001-01-01

    A number of findings indicate gender differences in language-related functional hemispheric brain asymmetry. To test if such gender-specific laterality is already present at the level of vowel-processing, the auditory evoked magnetic field was recorded in healthy right-handed male and female participants in response to the German synthetic vowels [a], [e] and [i]. Female participants exhibited stronger N100m responses than male participants over the left hemisphere. This observation was highl...

  19. An Association Study of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism and Amphetamine Response

    OpenAIRE

    Brody A Flanagin; Cook, Edwin H.; de Wit, Harriet

    2006-01-01

    Although genetic factors are known to be important in addiction, no candidate genes have yet been consistently linked to drug use or abuse. Brain-derived neurotrophic factor (BDNF), which has been implicated in the behavioral response to psychomotor stimulants and potentiates neurotransmitters that are strongly linked to addiction, is a logical candidate gene to study. Using a drug challenge approach, we tested for association between BDNF G196A (val66met) genotype and subjective responses to...

  20. Brain Lactate Concentration Falls in Response to Hypoglycemia in Patients With Type 1 Diabetes and Impaired Awareness of Hypoglycemia.

    Science.gov (United States)

    Wiegers, Evita C; Rooijackers, Hanne M; Tack, Cees J; Heerschap, Arend; de Galan, Bastiaan E; van der Graaf, Marinette

    2016-06-01

    Brain lactate may be involved in the development of impaired awareness of hypoglycemia (IAH), a condition that affects approximately 25% of patients with type 1 diabetes and increases the risk of severe hypoglycemia. The aim of this study was to investigate the effect of acute hypoglycemia on brain lactate concentration in patients with IAH as compared with those with normal awareness of hypoglycemia (NAH) and healthy control subjects (n = 7 per group). After an overnight fast, all subjects underwent a two-step hyperinsulinemic euglycemic (5.0 mmol/L)-hypoglycemic (2.8 mmol/L) glucose clamp. Brain lactate concentrations were measured continuously with (1)H-MRS using a specific lactate detection method. Hypoglycemia generated symptoms in patients with NAH and healthy control subjects but not in patients with IAH. Brain lactate fell significantly by ∼20% in response to hypoglycemia in patients with type 1 diabetes with IAH but remained stable in both healthy control subjects and in patients with NAH. The fall in brain lactate is compatible with increased brain lactate oxidation providing an alternative fuel source during hypoglycemia, which may contribute to the impaired detection of hypoglycemia. PMID:26993070

  1. Attenuation of Acute Phase Injury in Rat Intracranial Hemorrhage by Cerebrolysin that Inhibits Brain Edema and Inflammatory Response.

    Science.gov (United States)

    Yang, Yang; Zhang, Yan; Wang, Zhaotao; Wang, Shanshan; Gao, Mou; Xu, Ruxiang; Liang, Chunyang; Zhang, Hongtian

    2016-04-01

    The outcome of intracerebral hemorrhage (ICH) is mainly determined by the volume of the hemorrhage core and the secondary brain damage to penumbral tissues due to brain swelling, microcirculation disturbance and inflammation. The present study aims to investigate the protective effects of cerebrolysin on brain edema and inhibition of the inflammation response surrounding the hematoma core in the acute stage after ICH. The ICH model was induced by administration of type VII bacterial collagenase into the stratum of adult rats, which were then randomly divided into three groups: ICH + saline; ICH + Cerebrolysin (5 ml/kg) and sham. Cerebrolysin or saline was administered intraperitoneally 1 h post surgery. Neurological scores, extent of brain edema content and Evans blue dye extravasation were recorded. The levels of pro-inflammatory factors (IL-1β, TNF-α and IL-6) were assayed by Real-time PCR and Elisa kits. Aquaporin-4 (AQP4) and tight junction proteins (TJPs; claudin-5, occludin and zonula occluden-1) expression were measured at multiple time points. The morphological and intercellular changes were characterized by Electron microscopy. It is found that cerebrolysin (5 ml/kg) improved the neurological behavior and reduced the ipsilateral brain water content and Evans blue dye extravasation. After cerebrolysin treated, the levels of pro-inflammatory factors and AQP4 in the peri-hematomal areas were markedly reduced and were accompanied with higher expression of TJPs. Electron microscopy showed the astrocytic swelling and concentrated chromatin in the ICH group and confirmed the cell junction changes. Thus, early cerebrolysin treatment ameliorates secondary injury after ICH and promotes behavioral performance during the acute phase by reducing brain edema, inflammatory response, and blood-brain barrier permeability. PMID:26498936

  2. Transforming growth factor beta-1 and interleukin-17 gene transcription in peripheral blood mononuclear cells and the human response to infection.

    LENUS (Irish Health Repository)

    White, Mary

    2012-02-01

    INTRODUCTION: The occurrence of severe sepsis may be associated with deficient pro-inflammatory cytokine production. Transforming growth factor beta-1 (TGFbeta-1) predominantly inhibits inflammation and may simultaneously promote IL-17 production. Interleukin-17 (IL-17) is a recently described pro-inflammatory cytokine, which may be important in auto-immunity and infection. We investigated the hypothesis that the onset of sepsis is related to differential TGFbeta-1 and IL-17 gene expression. METHODS: A prospective observational study in a mixed intensive care unit (ICU) and hospital wards in a university hospital. Patients (59) with severe sepsis; 15 patients with gram-negative bacteraemia but without critical illness and 10 healthy controls were assayed for TGFbeta-1, IL-17a, IL-17f, IL-6 and IL-1beta mRNA in peripheral blood mononuclear cells (PBMC) by quantitative real-time PCR and serum protein levels by ELISA. RESULTS: TGFbeta-1 mRNA levels are reduced in patients with bacteraemia and sepsis compared with controls (p=0.02). IL-6 mRNA levels were reduced in bacteraemic patients compared with septic patients and controls (p=0.008). IL-1beta mRNA levels were similar in all groups, IL-17a and IL-17f mRNA levels are not detectable in peripheral blood mononuclear cells. IL-6 protein levels were greater in patients with sepsis than bacteraemic and control patients (p<0.0001). Activated TGFbeta-1 and IL-17 protein levels were similar in all groups. IL-1beta protein was not detectable in the majority of patients. CONCLUSIONS: Down regulation of TGFbeta-1 gene transcription was related to the occurrence of infection but not the onset of sepsis. Interleukin-17 production in PBMC may not be significant in the human host response to infection.

  3. Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures.

    Directory of Open Access Journals (Sweden)

    Thierry Chaminade

    Full Text Available BACKGROUND: The humanoid robot WE4-RII was designed to express human emotions in order to improve human-robot interaction. We can read the emotions depicted in its gestures, yet might utilize different neural processes than those used for reading the emotions in human agents. METHODOLOGY: Here, fMRI was used to assess how brain areas activated by the perception of human basic emotions (facial expression of Anger, Joy, Disgust and silent speech respond to a humanoid robot impersonating the same emotions, while participants were instructed to attend either to the emotion or to the motion depicted. PRINCIPAL FINDINGS: Increased responses to robot compared to human stimuli in the occipital and posterior temporal cortices suggest additional visual processing when perceiving a mechanical anthropomorphic agent. In contrast, activity in cortical areas endowed with mirror properties, like left Broca's area for the perception of speech, and in the processing of emotions like the left anterior insula for the perception of disgust and the orbitofrontal cortex for the perception of anger, is reduced for robot stimuli, suggesting lesser resonance with the mechanical agent. Finally, instructions to explicitly attend to the emotion significantly increased response to robot, but not human facial expressions in the anterior part of the left inferior frontal gyrus, a neural marker of motor resonance. CONCLUSIONS: Motor resonance towards a humanoid robot, but not a human, display of facial emotion is increased when attention is directed towards judging emotions. SIGNIFICANCE: Artificial agents can be used to assess how factors like anthropomorphism affect neural response to the perception of human actions.

  4. [Physiological responses of sugar beet (Beta vulgaris) to drought stress during vegetative development period under drip irrigation].

    Science.gov (United States)

    Li, Yang-yang; Geng, Qing-yun; Fei, Cong; Fan, Huai

    2016-01-01

    Sugar beet (Beta vulgaris cv. Beta 356) was subjected to drought stress during vegetative development by maintaining the soil water content in the 0-40 cm soil depth at 70%, 50% or 30% of field capacity to study the physiological traits of the leaves. Results showed that the compensation index was the highest in the 50% field capacity treatment. Malonaldehyde (MDA) content, relative conductivity, catalase (CAT) activity, and soluble sugar content began to increase 24 h after rehydration. Proline content began to increase 48 h after rehydration. In contrast, no compensation effect was observed in peroxidase (POD) activity after rehydration. Among the active oxygen scavenging enzymes, CAT was most sensitive to drought stress. Supplemental irrigation should be carried out promptly when the soil water content dropped to 50% of field capacity during vegetative development. Rehydration could promote self-repair functions in leaves, thus reducing the effects of drought on sugar beet yield and sugar content. PMID:27228610

  5. Studies on the effect of grain size on the response of a CaS04:Dy teflon disc dosemeter for monoenergetic electrons and beta rays

    International Nuclear Information System (INIS)

    The attenuation factor d increases slowly with energy as well as with grain size. The absorbed dose ratio increases with energy. At lower energies it varies with cavity size but at higher energies the variation tends to become negligible when Burlin's expression is used and where the production of secondary electrons is not considered. The author shows that the absorbed dose calculated using Almond's expression varied negligibly with cavity size and hence the grain size does not affect the response of CaS04 for electrons or beta particles. (UK)

  6. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF

    OpenAIRE

    Worm, Jesper; Stenvang, Jan; Petri, Andreas; Frederiksen, Klaus Stensgaard; Obad, Susanna; Elmén, Joacim; Hedtjärn, Maj; Straarup, Ellen Marie; Hansen, Jens Bo; Kauppinen, Sakari

    2009-01-01

    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine ...

  7. Proteomic screening of glucose-responsive and glucose non-reponsive MIN-6 beta cells reveals differential expression of protein involved in protein folding, secretion and oxidative stress

    DEFF Research Database (Denmark)

    Dowling, P.; O´Driscoll, L.; O´Sullivan, F.;

    2006-01-01

    The glucose-sensitive insulin-secretion (GSIS) phenotype is relatively unstable in long-term culture of beta cells. The purpose of this study was to investigate relative changes in the proteome between glucose-responsive (low passage) and glucose non-responsive (high passage) murine MIN-6...... pancreatic beta cells. The 2D-DIGE and subsequent DeCyder analysis detected 3351 protein spots in the pH range of 4-7. Comparing MIN-6(H) to MIN-6(L) and using a threshold of 1.2-fold, the number of proteins with a decrease in expression level was 152 (4.5%), similar was 3140 (93.7%) and increased 59 (1...... protein 29 (ERp29); 78-kDa glucose-related protein, (GRP78); 94-kDa glucose-related protein (GRP94); protein disulphide isomerase; carbonyl reductase 3; peroxidoxin 4 and superoxide dismutase 1. These results suggest that non-GSIS MIN-6 cells do not have the same ability/capacity of glucose-responsive MIN...

  8. Nasal administration of amyloid-beta peptide decreases cerebral amyloid burden in a mouse model of Alzheimer's disease

    DEFF Research Database (Denmark)

    Weiner, H L; Lemere, C A; Maron, R;

    2000-01-01

    -Abeta antibodies of the IgG1 and IgG2b classes, and mononuclear cells in the brain expressing the anti-inflammatory cytokines interleukin-4, interleukin-10, and tumor growth factor-beta. Our results demonstrate that chronic nasal administration of Abeta peptide can induce an immune response to Abeta that decreases...

  9. Differential responsiveness of the right parahippocampal region to electrical stimulation in fixed human brains: Implications for historical surgical stimulation studies?

    Science.gov (United States)

    Rouleau, Nicolas; Persinger, Michael A

    2016-07-01

    If structure dictates function within the living human brain, then the persistence of specific responses to weak electric currents in fixed, deceased brains could reflect "hardwired" properties. Different key structures from the left and right hemispheres of brains that had been fixed for over 20years with ethanol-formalin-acetic acid were stimulated with either 1-Hz, 7-Hz, 10-Hz, 20-Hz, or 30-Hz, sine-wave, square-wave, or pulsed currents while needle-recorded quantitative electroencephalographic responses were obtained. Differential responses occurred only within the right hippocampus and parahippocampal gyrus. The right hippocampus displayed frequency-independent increases in gamma power relative to the left hemispheric homologue. The parahippocampal region responded exclusively to 7-Hz pulsed currents with wideband (8-30Hz) power. These profiles are consistent with dynamic connections associated with memory and consciousness and may partially explain the interactions resultant of pulse type and hemisphere for experiential elicitations during the golden age of surgical stimulations. The results also indicate that there may be an essential "hardwiring" within the human brain that is maintained for decades when it is fixed appropriately. PMID:27208828

  10. Beta-Amyloid Deposition and Alzheimer's Type Changes Induced by Borrelia Spirochetes

    Energy Technology Data Exchange (ETDEWEB)

    Miklossy,J.; Kis, A.; Radenovic, A.; Miller, L.; Forro, L.; Martins, R.; Reiss, K.; Darbinian, N.; Darekar, P.; et al.

    2006-01-01

    The pathological hallmarks of Alzheimer's disease (AD) consist of {beta}-amyloid plaques and neurofibrillary tangles in affected brain areas. The processes, which drive this host reaction are unknown. To determine whether an analogous host reaction to that occurring in AD could be induced by infectious agents, we exposed mammalian glial and neuronal cells in vitro to Borrelia burgdorferi spirochetes and to the inflammatory bacterial lipopolysaccharide (LPS). Morphological changes analogous to the amyloid deposits of AD brain were observed following 2-8 weeks of exposure to the spirochetes. Increased levels of {beta}-amyloid presursor protein (A{beta}PP) and hyperphosphorylated tau were also detected by Western blots of extracts of cultured cells that had been treated with spirochetes or LPS. These observations indicate that, by exposure to bacteria or to their toxic products, host responses similar in nature to those observed in AD may be induced.

  11. Gender Influences on Brain Responses to Errors and Post-Error Adjustments

    Science.gov (United States)

    Fischer, Adrian G.; Danielmeier, Claudia; Villringer, Arno; Klein, Tilmann A.; Ullsperger, Markus

    2016-01-01

    Sexual dimorphisms have been observed in many species, including humans, and extend to the prevalence and presentation of important mental disorders associated with performance monitoring malfunctions. However, precisely which underlying differences between genders contribute to the alterations observed in psychiatric diseases is unknown. Here, we compare behavioural and neural correlates of cognitive control functions in 438 female and 436 male participants performing a flanker task while EEG was recorded. We found that males showed stronger performance-monitoring-related EEG amplitude modulations which were employed to predict subjects’ genders with ~72% accuracy. Females showed more post-error slowing, but both samples did not differ in regard to response-conflict processing and coupling between the error-related negativity (ERN) and consecutive behavioural slowing. Furthermore, we found that the ERN predicted consecutive behavioural slowing within subjects, whereas its overall amplitude did not correlate with post-error slowing across participants. These findings elucidate specific gender differences in essential neurocognitive functions with implications for clinical studies. They highlight that within- and between-subject associations for brain potentials cannot be interpreted in the same way. Specifically, despite higher general amplitudes in males, it appears that the dynamics of coupling between ERN and post-error slowing between men and women is comparable. PMID:27075509

  12. Brain response during the M170 time interval is sensitive to socially relevant information.

    Science.gov (United States)

    Arviv, Oshrit; Goldstein, Abraham; Weeting, Janine C; Becker, Eni S; Lange, Wolf-Gero; Gilboa-Schechtman, Eva

    2015-11-01

    Deciphering the social meaning of facial displays is a highly complex neurological process. The M170, an event related field component of MEG recording, like its EEG counterpart N170, was repeatedly shown to be associated with structural encoding of faces. However, the scope of information encoded during the M170 time window is still being debated. We investigated the neuronal origin of facial processing of integrated social rank cues (SRCs) and emotional facial expressions (EFEs) during the M170 time interval. Participants viewed integrated facial displays of emotion (happy, angry, neutral) and SRCs (indicated by upward, downward, or straight head tilts). We found that the activity during the M170 time window is sensitive to both EFEs and SRCs. Specifically, highly prominent activation was observed in response to SRC connoting dominance as compared to submissive or egalitarian head cues. Interestingly, the processing of EFEs and SRCs appeared to rely on different circuitry. Our findings suggest that vertical head tilts are processed not only for their sheer structural variance, but as social information. Exploring the temporal unfolding and brain localization of non-verbal cues processing may assist in understanding the functioning of the social rank biobehavioral system. PMID:26423664

  13. Externalizing proneness and brain response during pre-cuing and viewing of emotional pictures.

    Science.gov (United States)

    Foell, Jens; Brislin, Sarah J; Strickland, Casey M; Seo, Dongju; Sabatinelli, Dean; Patrick, Christopher J

    2016-07-01

    Externalizing proneness, or trait disinhibition, is a concept relevant to multiple high-impact disorders involving impulsive-aggressive behavior. Its mechanisms remain disputed: major models posit hyperresponsive reward circuitry or heightened threat-system reactivity as sources of disinhibitory tendencies. This study evaluated alternative possibilities by examining relations between trait disinhibition and brain reactivity during preparation for and processing of visual affective stimuli. Forty females participated in a functional neuroimaging procedure with stimuli presented in blocks containing either pleasurable or aversive pictures interspersed with neutral, with each picture preceded by a preparation signal. Preparing to view elicited activation in regions including nucleus accumbens, whereas visual regions and bilateral amygdala were activated during viewing of emotional pictures. High disinhibition predicted reduced nucleus accumbens activation during preparation within pleasant/neutral picture blocks, along with enhanced amygdala reactivity during viewing of pleasant and aversive pictures. Follow-up analyses revealed that the augmented amygdala response was related to reduced preparatory activation. Findings indicate that participants high in disinhibition are less able to process implicit cues and mentally prepare for upcoming stimuli, leading to limbic hyperreactivity during processing of actual stimuli. This outcome is helpful for integrating findings from studies suggesting reward-system hyperreactivity and others suggesting threat-system hyperreactivity as mechanisms for externalizing proneness. PMID:26113614

  14. Relationship between evaluation by quantitative fatty acid myocardial scintigraphy and response to {beta}-blockade therapy in patients with dilated cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tatsuo; Hoshida, Shiro; Nishino, Masami; Aoi, Toshiyuki; Egami, Yasuyuki; Takeda, Toshihiro; Kawabata, Masayoshi; Tanouchi, Jun; Yamada, Yoshio; Kamada, Takenobu [Div. of Cardiology, Osaka Rosai Hospital (Japan)

    2001-12-01

    Predicting the effect of {beta}-blockade therapy on the clinical outcome of patients with dilated cardiomyopathy (DCM) is difficult prior to the initiation of therapy. Myocardial fatty acid metabolism has been shown to be impaired in patients with DCM. We examined whether the extent of myocardial injury, as assessed by iodine-123 15-(p-iodophenyl)-3-R,S-methylpentadecanoic acid (BMIPP) myocardial scintigraphy, is related to the response of patients with DCM to {beta}-blockade therapy. Thirty-seven patients with DCM were examined using BMIPP myocardial scintigraphy before and after 6 months of treatment with metoprolol. Myocardial BMIPP uptake (%BM uptake) was estimated quantitatively as a percentage of the total injected count ratio. The left ventricular end-diastolic and end-systolic dimensions (LVDd, LVDs) and ejection fraction (LVEF) were also evaluated. The patients were divided into two groups according to their functional improvement (>10% elevation of LVEF) after 6 months of metoprolol therapy. Twenty-eight patients responded to the therapy, while nine did not. Prior to the therapy, no significant differences in LVDd, LVDs or LVEF were observed between the responders and non-responders. However, the %BM uptake was significantly lower in the non-responders than in the responders (1.0%{+-}0.2% vs 2.1%{+-}0.5%, P<0.001). The %BM uptake could be used to distinguish the responders from the non-responders with a sensitivity of 0.93 and a specificity of 1.00 at a threshold value of 1.4. After the metoprolol therapy, the %BM uptake improved significantly in the responders (2.5%{+-}0.5%, P<0.01) but did not change in the non-responders. These results indicate that myocardial BMIPP uptake could predict the response of DCM patients to {beta}-blockade therapy. (orig.)

  15. Curcumin attenuates inflammatory response in IL-1beta-induced human synovial fibroblasts and collagen-induced arthritis in mouse model.

    Science.gov (United States)

    Moon, Dong-Oh; Kim, Mun-Ok; Choi, Yung Hyun; Park, Yung-Min; Kim, Gi-Young

    2010-05-01

    Curcumin, a major component of turmeric, has been shown to exhibit anti-oxidant and anti-inflammatory activities. The present study was performed to determine whether curcumin is efficacious against both collagen-induced arthritis (CIA) in mice and IL-1beta-induced activation in fibroblast-like synoviocytes (FLSs). DBA/1 mice were immunized with bovine type II collagen (CII) and treated with curcumin every other day for 2weeks after the initial immunization. For arthritis, we evaluated the incidence of disease and used an arthritis index based on paw thickness. In vitro proliferation of CII- or concanavalin A-induced splenic T cells was examined using IFN-gamma production. Pro-inflammatory cytokines TNF-alpha and IL-1beta were examined in the mouse ankle joint and serum IgG1 and IgG2a isotypes were analyzed. The expression levels of prostaglandin E(2) (PGE(2)), cyclooxygenase-2 (COX-2), and matrix metalloproteinases (MMPs) in human FLSs were also determined. The results showed that compared with untreated CIA mice, curcumin-treated mice downregulated clinical arthritis score, the proliferation of splenic T cells, expression levels of TNF-alpha and IL-1beta in the ankle joint, and expression levels of IgG2a in serum. Additionally, by altering nuclear factor (NF)-kappaB transcription activity in FLSs, curcumin inhibited PGE(2) production, COX-2 expression, and MMP secretion. These results suggest that curcumin can effectively suppress inflammatory response by inhibiting pro-inflammatory mediators and regulating humoral and cellular immune responses. PMID:20188213

  16. Stab injury and device implantation within the brain results in inversely multiphasic neuroinflammatory and neurodegenerative responses

    Science.gov (United States)

    Potter, Kelsey A.; Buck, Amy C.; Self, Wade K.; Capadona, Jeffrey R.

    2012-08-01

    An estimated 25 million people in the US alone rely on implanted medical devices, ˜2.5 million implanted within the nervous system. Even though many devices perform adequately for years, the host response to medical devices often severely limits tissue integration and long-term performance. This host response is believed to be particularly limiting in the case of intracortical microelectrodes, where it has been shown that glial cell encapsulation and localized neuronal cell loss accompany intracortical microelectrode implantation. Since neuronal ensembles must be within ˜50 µm of the electrode to obtain neuronal spikes and local field potentials, developing a better understanding of the molecular and cellular environment at the device-tissue interface has been the subject of significant research. Unfortunately, immunohistochemical studies of scar maturation in correlation to device function have been inconclusive. Therefore, here we present a detailed quantitative study of the cellular events and the stability of the blood-brain barrier (BBB) following intracortical microelectrode implantation and cortical stab injury in a chronic survival model. We found two distinctly inverse multiphasic profiles for neuronal survival in device-implanted tissue compared to stab-injured animals. For chronically implanted animals, we observed a biphasic paradigm between blood-derived/trauma-induced and CNS-derived inflammatory markers driving neurodegeneration at the interface. In contrast, stab injured animals demonstrated a CNS-mediated neurodegenerative environment. Collectively these data provide valuable insight to the possibility of multiple roles of chronic neuroinflammatory events on BBB disruption and localized neurodegeneration, while also suggesting the importance to consider multiphasic neuroinflammatory kinetics in the design of therapeutic strategies for stabilizing neural interfaces.

  17. Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects.

    Science.gov (United States)

    Nakamura, S; Sadato, N; Oohashi, T; Nishina, E; Fuwamoto, Y; Yonekura, Y

    1999-11-19

    To elucidate the neural substrates of the receptive aspect of music, we measured regional cerebral blood flow (rCBF) with positron emission tomography (PET) and simultaneously recorded the electroencephalogram (EEG) in eight normal volunteers. Compared with the rest condition, listening to music caused a significant increase in EEG beta power spectrum (13-30 Hz) averaged over the posterior two third of the scalp. The averaged beta power spectrum was positively correlated with rCBF in the premotor cortex and adjacent prefrontal cortices bilaterally, the anterior portion of the precuneus and the anterior cingulate cortex in both the rest and the music conditions. Listening to music newly recruited the posterior portion of the precuneus bilaterally. This may reflect the interaction of the music with the cognitive processes, such as music-evoked memory recall or visual imagery. PMID:10580715

  18. Age-related differences in EEG beta activity during an assessment of ankle proprioception.

    Science.gov (United States)

    Toledo, Diana R; Barela, José A; Manzano, Gilberto M; Kohn, André F

    2016-05-27

    The aim of this work was to compare cortical beta oscillatory activity between young (YA) and older (OA) adults during the assessment of ankle proprioception. We analyzed the response time (RT) to kinesthetic perception and beta event-related desynchronization/synchronization (ERD/ERS) in response to passive ankle movement applied at a slow speed, 0.5°/s. The relationship between ERD/ERS and RT was investigated by classifying the signals into fast-, medium-, and slow-RT. The results showed a temporal relationship between beta oscillation changes and RT for both groups, i.e., earlier ERD and ERS were obtained for trials with faster response time. ERD was larger and delayed in OA compared to the YA, and beta ERS was present only for OA. These findings suggest that a less efficient proprioceptive signaling reaching the brain of OA requires a higher level of brain processing and hence the differences in ERD potentials between YA and OA. Furthermore, the occurrence of ERS in OA might represent a compensatory strategy of active cortical resetting for adequate sensorimotor behavior due to the age-related reduced peripheral input and neuromuscular impairments. Altered balance between excitatory and inhibitory intracortical activity in older adults presumably explains the changes in beta oscillations. PMID:27085535

  19. Messenger RNA-based therapeutics for brain diseases: An animal study for augmenting clearance of beta-amyloid by intracerebral administration of neprilysin mRNA loaded in polyplex nanomicelles.

    Science.gov (United States)

    Lin, Chin-Yu; Perche, Federico; Ikegami, Masaru; Uchida, Satoshi; Kataoka, Kazunori; Itaka, Keiji

    2016-08-10

    Alzheimer's disease (AD) pathogenesis is considered to be the metabolic imbalance between anabolism and clearance of amyloid-beta (Aβ), and the strategy of breaking the equilibrium between soluble and insoluble forms of Aβ is likely to help prevent the progression of AD. Neprilysin (NEP) plays a major role in the clearance of Aβ in the brain, and its supplementation using viral vectors has shown to decrease Aβ deposition and prevent pathogenic changes in the brain. In this study, we developed a new therapeutic strategy by mRNA-based gene introduction. mRNA has the advantages of negligible risk of random integration into genome and not needing to be transcribed precludes the need for nuclear entry. This allows efficient protein expression in slowly-dividing or non-dividing cells, such as neural cells. We constructed mRNA encoding the mouse NEP protein and evaluated its ability degrade Aβ. In vitro transfection of NEP mRNA to primary neurons exhibited Amyloid Precursor Protein (APP) degradation activity superior to that of NEP encoding plasmid DNA. We then evaluated the in vivo activity of NEP mRNA by intracerebroventricular (i.c.v.) infusion using a cationic polymer-based PEGylated nanocarrier to form polyplex nanomicelles, which have been shown to have a high potential to deliver mRNA to various target tissues and organs. Nanomicelles carrying a GFP-NEP fusion mRNA produced efficient protein expression in a diffuse manner surrounding the ventricular space. An ELISA evaluation revealed that the mRNA infusion significantly augmented NEP level and effectively reduced the concentration of Aβ that had been supplemented in the mouse brain. To the best of our knowledge, this is the first study to demonstrate the therapeutic potential of introducing exogenous mRNA for the treatment of brain diseases, opening the new era of mRNA-based therapeutics. PMID:27282413

  20. The adult brain tissue response to hollow fiber membranes of varying surface architecture with or without cotransplanted cells

    Science.gov (United States)

    Zhang, Ning

    A variety of biomaterials have been chronically implanted into the central nervous system (CNS) for repair or therapeutic purposes. Regardless of the application, chronic implantation of materials into the CNS induces injury and elicits a wound healing response, eventually leading to the formation of a dense extracellular matrix (ECM)-rich scar tissue that is associated with the segregation of implanted materials from the surrounding normal tissue. Often this reaction results in impaired performance of indwelling CNS devices. In order to enhance the performance of biomaterial-based implantable devices in the CNS, this thesis investigated whether adult brain tissue response to implanted biomaterials could be manipulated by changing biomaterial surface properties or further by utilizing the biology of co-transplanted cells. Specifically, the adult rat brain tissue response to chronically implanted poly(acrylonitrile-vinylchloride) (PAN-PVC) hollow fiber membranes (HFMs) of varying surface architecture were examined temporally at 2, 4, and 12 weeks postimplantation. Significant differences were discovered in the brain tissue response to the PAN-PVC HFMs of varying surface architecture at 4 and 12 weeks. To extend this work, whether the soluble factors derived from a co-transplanted cellular component further affect the brain tissue response to an implanted HFM in a significant way was critically exploited. The cells used were astrocytes, whose ability to influence scar formation process following CNS injury by physical contact with the host tissue had been documented in the literature. Data indicated for the first time that astrocyte-derived soluble factors ameliorate the adult brain tissue reactivity toward HFM implants in an age-dependent manner. While immature astrocytes secreted soluble factors that suppressed the brain tissue reactivity around the implants, mature astrocytes secreted factors that enhanced the gliotic response. These findings prove the feasibility

  1. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    Science.gov (United States)

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. PMID:24485474

  2. Effects of acute beta-adrenoceptor blockade with metoprolol on the renal response to dopamine in normal humans.

    OpenAIRE

    Olsen, N V; Lang-Jensen, T; Hansen, J M; Plum, I; Thomsen, J. K.; Strandgaard, S; Leyssac, P P

    1994-01-01

    The present study investigated the contribution of adrenergic beta 1-receptor stimulation to the cardiovascular and renal effects of low-dose dopamine in eight normal, water-loaded humans. Metoprolol (100 mg) or placebo was administered orally at 08.00 h in a randomized, double-blind fashion on two different days. Renal clearance studies were performed during a 1 h baseline period, two 1 h periods with dopamine infusion (3 micrograms kg-1 min-1), and a 1 h recovery period. Cardiac output was ...

  3. IL1-and TGF beta-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine 'Bystander senescence'

    Czech Academy of Sciences Publication Activity Database

    Hubáčková, Soňa; Krejčíková, Kateřina; Bartek, Jiří; Hodný, Zdeněk

    2012-01-01

    Roč. 4, č. 12 (2012), 932-951. ISSN 1945-4589 R&D Projects: GA ČR GA204/08/1418; GA ČR GAP301/10/1525 Institutional support: RVO:68378050 Keywords : senescence-associated secretome * DNA damage response * cytokines * JAK/STAT3 * TGF beta * NF kappa B * IL6 * IL beta * Nox4 * autocrine and paracrine signaling * tumor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.696, year: 2012

  4. Effects of quercetin and beta-carotene supplementation on azoxymethane-induced colon carcinogenesis and inflammatory responses in rats fed with high-fat diet rich in omega-6 fatty acids.

    OpenAIRE

    Choi, Soo-Yeon; Park, Jung Han Yoon; Kim, Jong-Sang; Kim, Mi Kyung; Aruoma, Okezie I; Sung, Mi-Kyung

    2006-01-01

    Dietary modulation of cancer & cancer biomarkers. Dietary item or component studied: quercetin; beta-carotene. Outcome studied: aberrant crypt foci in colon; colon tumor incidence; colonic mucosa levels of iNOS and COX-2 proteins and PGE2 levels. Study type: Sprague-Dawley (SD) male rats. Tissue/biological material/sample size: colon; blood. Mode of exposure: dietary. Impact on outcome (including dose-response): Quercetin or beta-carotene supplementation reduced the number of ACF only in an...

  5. Chasing tics in the human brain: development of open, scheduled and closed loop responsive approaches to deep brain stimulation for tourette syndrome.

    Science.gov (United States)

    Almeida, Leonardo; Martinez-Ramirez, Daniel; Rossi, Peter J; Peng, Zhongxing; Gunduz, Aysegul; Okun, Michael S

    2015-04-01

    Tourette syndrome is a childhood-onset disorder characterized by a combination of motor and vocal tics, often associated with psychiatric comorbidities including attention deficit and hyperactivity disorder and obsessive-compulsive disorder. Despite an onset early in life, half of patients may present symptoms in adulthood, with variable degrees of severity. In select cases, the syndrome may lead to significant physical and social impairment, and a worrisome risk for self injury. Evolving research has provided evidence supporting the idea that the pathophysiology of Tourette syndrome is directly related to a disrupted circuit involving the cortex and subcortical structures, including the basal ganglia, nucleus accumbens, and the amygdala. There has also been a notion that a dysfunctional group of neurons in the putamen contributes to an abnormal facilitation of competing motor responses in basal ganglia structures ultimately underpinning the generation of tics. Surgical therapies for Tourette syndrome have been reserved for a small group of patients not responding to behavioral and pharmacological therapies, and these therapies have been directed at modulating the underlying pathophysiology. Lesion therapy as well as deep brain stimulation has been observed to suppress tics in at least some of these cases. In this article, we will review the clinical aspects of Tourette syndrome, as well as the evolution of surgical approaches and we will discuss the evidence and clinical responses to deep brain stimulation in various brain targets. We will also discuss ongoing research and future directions as well as approaches for open, scheduled and closed loop feedback-driven electrical stimulation for the treatment of Tourette syndrome. PMID:25851890

  6. Silencing of microRNA-155 in mice during acute inflammatory response leads to derepression of c/ebp Beta and down-regulation of G-CSF.

    Science.gov (United States)

    Worm, Jesper; Stenvang, Jan; Petri, Andreas; Frederiksen, Klaus Stensgaard; Obad, Susanna; Elmén, Joacim; Hedtjärn, Maj; Straarup, Ellen Marie; Hansen, Jens Bo; Kauppinen, Sakari

    2009-09-01

    microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses. Consistent with these data, we show that silencing of miR-155 in LPS-treated mice by systemically administered LNA-antimiR results in derepression of the c/ebp Beta isoforms and down-regulation of G-CSF expression in mouse splenocytes. Finally, we report for the first time on miR-155 silencing in vivo in a mouse inflammation model, which underscores the potential of miR-155 antagonists in the development of novel therapeutics for treatment of chronic inflammatory diseases. PMID:19596814

  7. The human sexual response cycle : Brain imaging evidence linking sex to other pleasures

    NARCIS (Netherlands)

    Georgiadis, J. R.; Kringelbach, M. L.

    2012-01-01

    Sexual behavior is critical to species survival, yet comparatively little is known about the neural mechanisms in the human brain. Here we systematically review the existing human brain imaging literature on sexual behavior and show that the functional neuroanatomy of sexual behavior is comparable t

  8. Osteopontin Expression in Acute Immune Response Mediates Hippocampal Synaptogenesis and Adaptive Outcome Following Cortical Brain Injury

    OpenAIRE

    Chan, Julie L.; Reeves, Thomas M.; Phillips, Linda L.

    2014-01-01

    Traumatic brain injury (TBI) produces axotomy, deafferentation and reactive synaptogenesis. Inflammation influences synaptic repair, and the novel brain cytokine osteopontin (OPN) has potential to support axon regeneration through exposure of its integrin receptor binding sites. This study explored whether OPN secretion and proteolysis by matrix metalloproteinases (MMPs) mediate the initial degenerative phase of synaptogenesis, targeting reactive neuroglia to affect successful repair. Adult r...

  9. Response assessment criteria for brain metastases : proposal from the RANO group

    NARCIS (Netherlands)

    Lin, Nancy U.; Lee, Eudocia Q.; Aoyama, Hidefumi; Barani, Igor J.; Barboriak, Daniel P.; Baumert, Brigitta G.; Bendszus, Martin; Brown, Paul D.; Camidge, D. Ross; Chang, Susan M.; Dancey, Janet; de Vries, Elisabeth G. E.; Gaspar, Laurie E.; Harris, Gordon J.; Hodi, F. Stephen; Kalkanis, Steven N.; Linskey, Mark E.; Macdonald, David R.; Margolin, Kim; Mehta, Minesh P.; Schiff, David; Soffietti, Riccardo; Suh, John H.; van den Bent, Martin J.; Vogelbaum, Michael A.; Wen, Patrick Y.

    2015-01-01

    CNS metastases are the most common cause of malignant brain tumours in adults. Historically, patients with brain metastases have been excluded from most clinical trials, but their inclusion is now becoming more common. The medical literature is difficult to interpret because of substantial variation

  10. Brain Connectivity Dissociates Responsiveness from Drug Exposure during Propofol-Induced Transitions of Consciousness

    OpenAIRE

    Chennu, Srivas; O? Connor, Stuart; Adapa, Ram; Menon, David K; Bekinschtein, Tristan A.

    2016-01-01

    Accurately measuring the neural correlates of consciousness is a grand challenge for neuroscience. Despite theoretical advances, developing reliable brain measures to track the loss of reportable consciousness during sedation is hampered by significant individual variability in susceptibility to anaesthetics. We addressed this challenge using high-density electroencephalography to characterise changes in brain networks during propofol sedation. Assessments of spectral connectivity networks be...

  11. Assessment of response of brain metastases to radiotherapy by PET imaging of apoptosis with 18F-ML-10

    International Nuclear Information System (INIS)

    Early assessment of tumor response to therapy is vital for treatment optimization for the individual cancer patient. Induction of apoptosis is an early and nearly universal effect of anticancer therapies. The purpose of this study was to assess the performance of 18F-ML-10, a novel PET radiotracer for apoptosis, as a tool for the early detection of response of brain metastases to whole-brain radiation therapy (WBRT). Ten patients with brain metastases treated with WBRT at 30 Gy in ten daily fractions were enrolled in this trial. Each patient underwent two 18F-ML-10 PET scans, one prior to the radiation therapy (baseline scan), and the second after nine or ten fractions of radiotherapy (follow-up scan). MRI was performed at 6-8 weeks following completion of the radiation therapy. Early treatment-induced changes in tumor 18F-ML-10 uptake on the PET scan were measured by voxel-based analysis, and were then evaluated by correlation analysis as predictors of the extent of later changes in tumor anatomical dimensions as seen on MRI scans 6-8 weeks after completion of therapy. In all ten patients, all brain lesions were detected by both MRI and the 18F-ML-10 PET scan. A highly significant correlation was found between early changes on the 18F-ML-10 scan and later changes in tumor anatomical dimensions (r = 0.9). These results support the potential of 18F-ML-10 PET as a novel tool for the early detection of response of brain metastases to WBRT. (orig.)

  12. Neutralizing antibodies explain the poor clinical response to Interferon beta in a small proportion of patients with Multiple Sclerosis: a retrospective study

    Directory of Open Access Journals (Sweden)

    Cefaro Luca

    2009-10-01

    Full Text Available Abstract Background Neutralizing antibodies (NAbs against Interferon beta (IFNβ are reported to be associated with poor clinical response to therapy in multiple sclerosis (MS patients. We aimed to quantify the contribution of NAbs to the sub-optimal response of IFNβ treatment. Methods We studied the prevalence of NAbs in MS patients grouped according to their clinical response to IFNβ during the treatment period. Patients were classified as: group A, developing ≥ 1 relapse after the first 6 months of therapy; group B, exhibiting confirmed disability progression after the first 6 months of therapy, with or without superimposed relapses; group C, presenting a stable disease course during therapy. A cytopathic effect assay tested the presence of NAbs in a cohort of ambulatory MS patients treated with one of the available IFNβ formulations for at least one year. NAbs positivity was defined as NAbs titre ≥ 20 TRU. Results Seventeen patients (12.1% were NAbs positive. NAbs positivity correlated with poorer clinical response (p Conclusion The majority of patients with poor clinical response are NAbs negative suggesting that NAbs explains only partially the sub-optimal response to IFNβ.

  13. Thermoluminescent response of LiF : Mg,Cu,P+PTFE prepared in Mexico to 90Sr/90Y beta particles

    International Nuclear Information System (INIS)

    Results of study of the thermoluminescent response of LiF : Mg,Cu,P+PTFE irradiated with beta particles are presented and compared with results for LiF TLD-100. Both materials exhibited a linear dose response in the range from 4.35 mGy to 2.17519 Gy. The glow curve of LiF : Mg,Cu,P+PTFE exhibited four peaks while TLD-100 showed six. All the peaks studied for the two materials exhibited first order kinetics. The average values of activation energy were: 1.35, 1.58 and 2.51 eV for LiF : Mg,Cu,P+PTFE; and, 2.04, 2.24, 2.51 and 2.89 eV for LiF TLD-100. (author)

  14. Brain response to a rhythm deviant in adolescent cochlear implant users before and after an intensive musical training program

    DEFF Research Database (Denmark)

    Petersen, Bjørn; Weed, Ethan; Hansen, Mads;

    . This study aimed to investigate auditory brain processing of musical sounds relevant to prosody processing in adolescent CI-users who have received their implant in childhood. Furthermore, we aimed to investigate the potential impact of intensive musical training on adolescent CI-users’ discrimination...... making supplemented with daily computer based listening exercises. NH participants received no training. Nine of the CI-users had bilateral implants and two had unilateral implants. The mean implant experience was 9.47 years (range: 1.8-15.2). Ten NH peers (M.age = 16.2 years) formed a reference group...... the CI group at both sessions. Our results suggest that adolescent CI users, who have only experienced sound through the implant, show brain responses to musical stimuli resembling those of NH peers, and that this response can be altered by intensive musical training. The finding points toward...

  15. An imperative role of serum TGF beta 1 and VEGF 165 levels in disease free survival, clinico-pathological response, estrogen and progesterone receptor status in locally advanced breast cancer: a pilot study

    International Nuclear Information System (INIS)

    This study explored the relationship between serum TGF beta 1, VEGF 165 and clinic pathological response to neoadjuvant chemotherapy and radiotherapy in breast cancer patients. It also explored the association between TGF beta 1, VEGF 165 and their disease free survival (DFS), ER, PR status. Thirty patients were studied (Stage IIlA-6, stage IlIB-11 and stage IIlC-1). Serum samples collected before radiotherapy and neoadjuvant chemotherapy were assayed by ELISA for TGF beta 1 and VEGF 165. ER and PR status was determined from the diagnostic tumor biopsy by immunohistochemistry. Taxane/Anthracycline based chemotherapy was used in all the patients. Clinical response was assessed before surgery. Standard response assessment criteria (RECIST version 1.1) were applied. Surgery was either breast conservation surgery or modified radical mastectomy. They were then treated with 50 Gy in 25 by photons plus 16 Gy in 8 by electron boost. Low levels of both TGF Beta 1 (< 20 ng/ml) and VEGF 165 (< 200 pg/ml) were significantly associated with clinical (p=0.015 and p=0.038 for TGF beta 1 and VEGF 165 respectively) and pathological complete response (p=0.003 and p=0.003 respectively). Both ER and PR positivity were associated significantly with higher levels of TGF Beta 1 (>20 ng/ml) (ER: p=0.002, PR: p=0.003) and VEGF 165 (> 200 pg/ml) (ER: p=0.016, PR: p=0.008). Low baseline TGF beta 1 and VEGF 165 levels may be markers of complete pathological response to neoadjuvant chemotherapy, surgery and radiotherapy. Longer follow up and larger number of patient is necessary to establish any correlation with DFS or overall survival. (author)

  16. The RBE of tritium-beta exposure for the induction of the adaptive response and apoptosis; cellular defense mechanisms against the biological effects of ionizing radiation

    International Nuclear Information System (INIS)

    Adaption to radiation is one of a few biological responses that has been demonstrated to occur in mammalian cells exposed to doses of ionizing radiation in the occupational exposure range. The adaptive response has been well characterized in the yeast Saccharomyces cerevisiae, although the doses required to induce the response are higher than in mammalian cells. When yeast cells are primed with sublethal doses of gamma-radiation, they subsequently undergo an adaptive response and develop resistance to radiation, heat the chemical mutagens in a time and dose dependent manner. We have used this model system to assess the relative ability of tritium-beta radiation to induce the adaptive response the examined tritium-induced radiation resistance, thermal tolerance and suppression of mutation. The results show that sublethal priming doses of tritium caused yeast cells to develop resistance to radiation, heat, and a chemical mutagen MNNG. The magnitude and kinetics of the response, per unit dose, were the same for tritium and gamma-radiation. Therefore, the relative biological effectiveness (RBE) of tritium induction of the adaptive response was about 1.0. Apoptosis is a genetically programmed cell death or cell suicide. Cells damaged by radiation can be selectively removed from the population by apoptosis and therefore eliminated as a potential cancer risk to the organism. Since we have previously shown that apoptosis is a sensitive indicator of radiation damage in human lymphocytes exposed to low doses, we have used this endpoint to investigate the potency of tritium-beta radiation. Initially, tritium was compared to X-rays for relative effectiveness at inducing apoptosis. The results showed the lymphocytes irradiated in vitro with X-rays or tritium had similar levels of apoptosis per unit dose. Therefore the relative biology effectiveness of tritium for induction of apoptosis in human lymphocytes was also about 1. In the work presented here, we have demonstrated that

  17. Atorvastatin prevents age-related and amyloid-beta-induced microglial activation by blocking interferon-gamma release from natural killer cells in the brain

    LENUS (Irish Health Repository)

    Lyons, Anthony

    2011-03-31

    Abstract Background Microglial function is modulated by several factors reflecting the numerous receptors expressed on the cell surface, however endogenous factors which contribute to the age-related increase in microglial activation remain largely unknown. One possible factor which may contribute is interferon-γ (IFNγ). IFNγ has been shown to increase in the aged brain and potently activates microglia, although its endogenous cell source in the brain remains unidentified. Methods Male Wistar rats were used to assess the effect of age and amyloid-β (Aβ) on NK cell infiltration into the brain. The effect of the anti-inflammatory compound, atorvastatin was also assessed under these conditions. We measured cytokine and chemokine (IFNγ, IL-2, monocyte chemoattractant protein-1 (MCP-1) and IFNγ-induced protein 10 kDa (IP-10)), expression in the brain by appropriate methods. We also looked at NK cell markers, CD161, NKp30 and NKp46 using flow cytometry and western blot. Results Natural killer (NK) cells are a major source of IFNγ in the periphery and here we report the presence of CD161+ NKp30+ cells and expression of CD161 and NKp46 in the brain of aged and Aβ-treated rats. Furthermore, we demonstrate that isolated CD161+ cells respond to interleukin-2 (IL-2) by releasing IFNγ. Atorvastatin, the HMG-CoA reductase inhibitor, attenuates the increase in CD161 and NKp46 observed in hippocampus of aged and Aβ-treated rats. This was paralleled by a decrease in IFNγ, markers of microglial activation and the chemokines, MCP-1 and IP-10 which are chemotactic for NK cells. Conclusions We propose that NK cells contribute to the age-related and Aβ-induced neuroinflammatory changes and demonstrate that these changes can be modulated by atorvastatin treatment.

  18. Branding and a child’s brain: an fMRI study of neural responses to logos

    OpenAIRE

    Bruce, Amanda S.; Bruce, Jared M.; Black, William R.; Lepping, Rebecca J.; Henry, Janice M.; Cherry, Joseph Bradley C.; Martin, Laura E.; Papa, Vlad B.; Davis, Ann M.; Brooks, William M.; Savage, Cary R.

    2012-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children’s brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to ...

  19. Aberrant brain responses to emotionally valent words is normalised after cognitive behavioural therapy in female depressed adolescents

    OpenAIRE

    Chuang, Jie-Yu; Whitaker, Kirstie; Graham K Murray; Elliott, Rebecca; Hagan, Cindy C.; Julia M.E. Graham; Ooi, Cinly; Tait, Roger; Holt, Rosemary J; van Nieuwenhuizen, Adrienne O.; Reynolds, Shirley; Wilkinson, Paul O.; Bullmore, Edward T; Belinda R. Lennox; Sahakian, Barbara J.

    2016-01-01

    AbstractBackground Depression in adolescence is debilitating with high recurrence in adulthood, yet its pathophysiological mechanism remains enigmatic. To examine the interaction between emotion, cognition and treatment, functional brain responses to sad and happy distractors in an affective go/no-go task were explored before and after Cognitive Behavioural Therapy (CBT) in depressed female adolescents, and healthy participants. Methods Eighty-two Depressed and 24 healthy female adolescents, ...

  20. Brain Response to Primary Blast Wave Using Validated Finite Element Models of Human Head and Advanced Combat Helmet

    OpenAIRE

    Zhang, Liying; Makwana, Rahul; Sharma, Sumit

    2013-01-01

    Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH), a finite element (FE) study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially va...

  1. Susceptibility weighted imaging of stroke brain in response to normobaric oxygen (NBO) therapy

    Science.gov (United States)

    Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.

    2015-03-01

    The neuroprotective effect of oxygen leads to recent interest in normobaric oxygen (NBO) therapy after acute ischemic stroke. However, the mechanism remains unclear and inconsistent outcomes were reported in human studies. Because NBO aims to improve brain tissue oxygenation by enhancing oxygen delivery to ischemic tissue, monitoring the oxygenation level changes in response to NBO becomes necessary to elucidate the mechanism and to assess the efficacy. Susceptibility weighted imaging (SWI) which provides a new MRI contrast by combining the magnitude and phase images is fit for purpose. SWI is sensitive to deoxyhemoglobin level changes and thus can be used to evaluate the cerebral metabolic rate of oxygen. In this study, SWI was used for in vivo monitoring of oxygenation changes in a rat model of permanent middle cerebral artery occlusion (MCAO) before, during and after 30 min of NBO treatment. Regions of interest in ischemic core, penumbra and contralateral normal area were generated based on diffusionweighted imaging and perfusion imaging. Significant differences in SWI indicating different oxygenation levels were generally found: contralateral normal > penumbra > ischemic core. Ischemic core showed insignificant increase in oxygenation during NBO and returned to pre-treatment level after termination of NBO. Meanwhile, the oxygenation levels slightly increased in contralateral normal and penumbra regions during NBO and significantly decreased to a level lower than pre-treatment after termination of NBO, indicating secondary metabolic disruption upon the termination of transient metabolic support from oxygen. Further investigation of NBO effect combined with reperfusion is necessary while SWI can be used to detect hemorrhagic transformation after reperfusion.

  2. Brain Responses to Musical Feature Changes in Adolescent Cochlear Implant Users

    Directory of Open Access Journals (Sweden)

    Bjørn ePetersen

    2015-02-01

    Full Text Available Cochlear implants (CIs are primarily designed to assist deaf individuals in perception of speech, although possibilities for music fruition have also been documented. Previous studies have indicated the existence of neural correlates of residual music skills in postlingually deaf adults and children. However, little is known about the behavioral and neural correlates of music perception in the new generation of prelingually deaf adolescents who grew up with CIs. With electroencephalography (EEG, we recorded the mismatch negativity (MMN of the auditory event-related potential (ERP to changes in musical features in adolescent CI users and in normal-hearing age mates. EEG recordings and behavioral testing were carried out before (T1 and after (T2 a 2-week music training program for the CI users and in two sessions equally separated in time for normal-hearing (NH controls. We found significant MMNs in adolescent CI users for deviations in timbre, intensity and rhythm, indicating residual neural prerequisites for musical feature processing. By contrast, only one of the two pitch deviants elicited an MMN in CI users. This pitch discrimination deficit was supported by behavioral measures, in which CI users scored significantly below the NH level. Overall MMN amplitudes were significantly smaller in CI users than in NH controls, suggesting poorer music discrimination ability. Despite compliance from the CI-participants, we found no effect of the music training, likely resulting from the brevity of the program. This is the first study showing significant brain responses to musical feature changes in prelingually deaf adolescent CI users and their associations with behavioral measures, implying neural predispositions for at least some aspects of music processing. Future studies should test any beneficial effects of a longer lasting music intervention in adolescent CI users.

  3. Brain Responses to Musical Feature Changes in Adolescent Cochlear Implant Users

    Science.gov (United States)

    Petersen, Bjørn; Weed, Ethan; Sandmann, Pascale; Brattico, Elvira; Hansen, Mads; Sørensen, Stine Derdau; Vuust, Peter

    2015-01-01

    Cochlear implants (CIs) are primarily designed to assist deaf individuals in perception of speech, although possibilities for music fruition have also been documented. Previous studies have indicated the existence of neural correlates of residual music skills in postlingually deaf adults and children. However, little is known about the behavioral and neural correlates of music perception in the new generation of prelingually deaf adolescents who grew up with CIs. With electroencephalography (EEG), we recorded the mismatch negativity (MMN) of the auditory event-related potential to changes in musical features in adolescent CI users and in normal-hearing (NH) age mates. EEG recordings and behavioral testing were carried out before (T1) and after (T2) a 2-week music training program for the CI users and in two sessions equally separated in time for NH controls. We found significant MMNs in adolescent CI users for deviations in timbre, intensity, and rhythm, indicating residual neural prerequisites for musical feature processing. By contrast, only one of the two pitch deviants elicited an MMN in CI users. This pitch discrimination deficit was supported by behavioral measures, in which CI users scored significantly below the NH level. Overall, MMN amplitudes were significantly smaller in CI users than in NH controls, suggesting poorer music discrimination ability. Despite compliance from the CI participants, we found no effect of the music training, likely resulting from the brevity of the program. This is the first study showing significant brain responses to musical feature changes in prelingually deaf adolescent CI users and their associations with behavioral measures, implying neural predispositions for at least some aspects of music processing. Future studies should test any beneficial effects of a longer lasting music intervention in adolescent CI users. PMID:25705185

  4. Brain responses to musical feature changes in adolescent cochlear implant users.

    Science.gov (United States)

    Petersen, Bjørn; Weed, Ethan; Sandmann, Pascale; Brattico, Elvira; Hansen, Mads; Sørensen, Stine Derdau; Vuust, Peter

    2015-01-01

    Cochlear implants (CIs) are primarily designed to assist deaf individuals in perception of speech, although possibilities for music fruition have also been documented. Previous studies have indicated the existence of neural correlates of residual music skills in postlingually deaf adults and children. However, little is known about the behavioral and neural correlates of music perception in the new generation of prelingually deaf adolescents who grew up with CIs. With electroencephalography (EEG), we recorded the mismatch negativity (MMN) of the auditory event-related potential to changes in musical features in adolescent CI users and in normal-hearing (NH) age mates. EEG recordings and behavioral testing were carried out before (T1) and after (T2) a 2-week music training program for the CI users and in two sessions equally separated in time for NH controls. We found significant MMNs in adolescent CI users for deviations in timbre, intensity, and rhythm, indicating residual neural prerequisites for musical feature processing. By contrast, only one of the two pitch deviants elicited an MMN in CI users. This pitch discrimination deficit was supported by behavioral measures, in which CI users scored significantly below the NH level. Overall, MMN amplitudes were significantly smaller in CI users than in NH controls, suggesting poorer music discrimination ability. Despite compliance from the CI participants, we found no effect of the music training, likely resulting from the brevity of the program. This is the first study showing significant brain responses to musical feature changes in prelingually deaf adolescent CI users and their associations with behavioral measures, implying neural predispositions for at least some aspects of music processing. Future studies should test any beneficial effects of a longer lasting music intervention in adolescent CI users. PMID:25705185

  5. Brain response to primary blast wave using validated finite element models of human head and advanced combat helmet

    Directory of Open Access Journals (Sweden)

    LiyingZhang

    2013-08-01

    Full Text Available Blast-induced traumatic brain injury has emerged as a “signature injury” in combat casualty care. Present combat helmets are designed primarily to protect against ballistic and blunt impacts, but the current issue with helmets is protection concerning blasts. In order to delineate the blast wave attenuating capability of the Advanced Combat Helmet (ACH, a finite element (FE study was undertaken to evaluate the head response against blast loadings with and without helmet using a partially validated FE model of the human head and ACH. Four levels of overpressures (0.27-0.66 MPa from the Bowen’s lung iso-damage threshold curves were used to simulate blast insults. Effectiveness of the helmet with respect to head orientation was also investigated. The resulting biomechanical responses of the brain to blast threats were compared for human head with and without the helmet. For all Bowen’s cases, the peak intracranial pressures (ICP in the head ranged from 0.68-1.8 MPa in the coup cortical region. ACH was found to mitigate ICP in the head by 10-35%. Helmeted head resulted in 30% lower average peak brain strains and product of strain and strain rate. Among three blast loading directions with ACH, highest reduction in peak ICP (44% was due to backward blasts whereas the lowest reduction in peak ICP and brain strains was due to forward blast (27%. The biomechanical responses of a human head to primary blast insult exhibited directional sensitivity owing to the different geometry contours and coverage of the helmet construction and asymmetric anatomy of the head. Thus, direction-specific tolerances are needed in helmet design in order to offer omni-directional protection for the human head. The blasts of varying peak overpressures and durations that are believed to produce the same level of lung injury produce different levels of mechanical responses in the brain, and hence "iso-damage" curves for brain injury are likely different than the Bowen

  6. Elevation of neuron specific enolase and brain iron deposition on susceptibility-weighted imaging as diagnostic clues for beta-propeller protein-associated neurodegeneration in early childhood: Additional case report and review of the literature.

    Science.gov (United States)

    Takano, Kyoko; Shiba, Naoko; Wakui, Keiko; Yamaguchi, Tomomi; Aida, Noriko; Inaba, Yuji; Fukushima, Yoshimitsu; Kosho, Tomoki

    2016-02-01

    Beta-propeller protein-associated neurodegeneration (BPAN), also known as static encephalopathy of childhood with neurodegeneration in adulthood (SENDA), is a subtype of neurodegeneration with brain iron accumulation (NBIA). BPAN is caused by mutations in an X-linked gene WDR45 that is involved in autophagy. BPAN is characterized by developmental delay or intellectual disability until adolescence or early adulthood, followed by severe dystonia, parkinsonism, and progressive dementia. Brain magnetic resonance imaging (MRI) shows iron deposition in the bilateral globus pallidus (GP) and substantia nigra (SN). Clinical manifestations and laboratory findings in early childhood are limited. We report a 3-year-old girl with BPAN who presented with severe developmental delay and characteristic facial features. In addition to chronic elevation of serum aspartate transaminase, lactate dehydrogenase, creatine kinase, and soluble interleukin-2 receptor, she had persistent elevation of neuron specific enolase (NSE) in serum and cerebrospinal fluid. MRI using susceptibility-weighted imaging (SWI) demonstrated iron accumulation in the GP and SN bilaterally. Targeted next-generation sequencing identified a de novo splice-site mutation, c.831-1G>C in WDR45, which resulted in aberrant splicing evidenced by reverse transcriptase-PCR. Persistent elevation of NSE and iron deposition on SWI may provide clues for diagnosis of BPAN in early childhood. PMID:26481852

  7. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  8. Extracellular signal regulated kinases 1/2 signal pathway and responses of astrocytes after diffuse brain injury

    Institute of Scientific and Technical Information of China (English)

    Jinxing Li; Haimei Zhao; Yu Li; Chong Wang; Jiashan Zhao; Xianli Zhu

    2007-01-01

    BACKGROUND: The treatment of diffuse brain injury during an acute period is focused on relieving degrees of secondary brain injury. Generation and development of pathological changes of secondary brain injury depend on signal conduction, so down-regulating over response of astrocyte through interfering a key link of signal conduction pathway may bring a new thinking for the treatment of diffuse brain injury. OBJECTIVE: To observe the effect of over activity of extracellular signal regulated kinases 1/2 (ERK1/2) signal pathway on the response of astrocyte during an acute period of diffuse brain injury. DESIGN: Completely randomized grouping and controlled animal study.SETTINGS: Department of Neurosurgery, the Third Affiliated Hospital, Nanchang University; Department of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology.MATERIALS: A total of 158 healthy male SD rats, of 11 weeks old, weighing 320 - 370 g, were provided by Experimental Animal Faulty, Tongji Medical College, Huazhong University of Science and Technology. Rabbit-anti-phosphorylated ERK1/2 (pERKl/2) polyclonal antibody was provided by R&D Company; rabbit-anti-glial fibrillary acidic protein (GFAP) polyclonal antibody, SP immunohistochemical kit and horseradish peroxidase (HRP)-labeled goat-anti-rabbit IgG by Santa Cruz Company; specific inhibitor U0126 of ERK1/2 signal pathway by Alexis Company. METHODS: The experiment was carried out in the Laboratory of Neurosurgery, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology from September 2004 to March 2006. ①Detection of pERKl/2 expression: A total of 110 rats were randomly divided into sham operation group (n =5), model group (n =35), high-dosage U0126 group (n =35) and low-dosage U0126 group (n =35). Rats in the sham operation group were only treated with incision of epicranium and fixation of backup plate, but not hit. Rats in the model group

  9. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat.

    Directory of Open Access Journals (Sweden)

    Miklós Sárvári

    Full Text Available The orexigenic gut-brain peptide, ghrelin and its G-protein coupled receptor, the growth hormone secretagogue receptor 1a (GHS-R1A are pivotal regulators of hypothalamic feeding centers and reward processing neuronal circuits of the brain. These systems operate in a cooperative manner and receive a wide array of neuronal hormone/transmitter messages and metabolic signals. Functional magnetic resonance imaging was employed in the current study to map BOLD responses to ghrelin in different brain regions with special reference on homeostatic and hedonic regulatory centers of energy balance. Experimental groups involved male, ovariectomized female and ovariectomized estradiol-replaced rats. Putative modulation of ghrelin signaling by endocannabinoids was also studied. Ghrelin-evoked effects were calculated as mean of the BOLD responses 30 minutes after administration. In the male rat, ghrelin evoked a slowly decreasing BOLD response in all studied regions of interest (ROI within the limbic system. This effect was antagonized by pretreatment with GHS-R1A antagonist JMV2959. The comparison of ghrelin effects in the presence or absence of JMV2959 in individual ROIs revealed significant changes in the prefrontal cortex, nucleus accumbens of the telencephalon, and also within hypothalamic centers like the lateral hypothalamus, ventromedial nucleus, paraventricular nucleus and suprachiasmatic nucleus. In the female rat, the ghrelin effects were almost identical to those observed in males. Ovariectomy and chronic estradiol replacement had no effect on the BOLD response. Inhibition of the endocannabinoid signaling by rimonabant significantly attenuated the response of the nucleus accumbens and septum. In summary, ghrelin can modulate hypothalamic and mesolimbic structures controlling energy balance in both sexes. The endocannabinoid signaling system contributes to the manifestation of ghrelin's BOLD effect in a region specific manner. In females, the

  10. Sleep is not just for the brain: transcriptional responses to sleep in peripheral tissues

    OpenAIRE

    Anafi, Ron C.; Pellegrino, Renata; Shockley, Keith R.; Romer, Micah; Tufik, Sergio; Pack, Allan I.

    2013-01-01

    Background Many have assumed that the primary function of sleep is for the brain. We evaluated the molecular consequences of sleep and sleep deprivation outside the brain, in heart and lung. Using microarrays we compared gene expression in tissue from sleeping and sleep deprived mice euthanized at the same diurnal times. Results In each tissue, nearly two thousand genes demonstrated statistically significant differential expression as a function of sleep/wake behavioral state. To mitigate the...

  11. Duration of exclusive breastfeeding is associated with differences in infants’ brain responses to emotional body expressions

    OpenAIRE

    Kathleen Marie Krol; Purva eRajhans; Manuela eMissana; Tobias eGrossmann

    2015-01-01

    Much research has recognized the general importance of maternal behavior in the early development and programming of the mammalian offspring’s brain. Exclusive breastfeeding duration, the amount of time in which breastfed meals are the only source of sustenance, plays a prominent role in promoting healthy brain and cognitive development in human children. However, surprisingly little is known about the influence of breastfeeding on social and emotional development in infancy. In the current s...

  12. The relation of ongoing brain activity, evoked neural responses, and cognition

    Directory of Open Access Journals (Sweden)

    Sepideh Sadaghiani

    2010-06-01

    Full Text Available Ongoing brain activity has been observed since the earliest neurophysiological recordings and is found over a wide range of temporal and spatial scales. It is characterized by remarkably large spontaneous modulations. Here, we review evidence for the functional role of these ongoing activity fluctuations and argue that they constitute an essential property of the neural architecture underlying cognition. The role of spontaneous activity fluctuations is probably best understood when considering both their spatiotemporal structure and their functional impact on cognition. We first briefly argue against a ‘segregationist’ view on ongoing activity, both in time and space, countering this view with an emphasis on integration within a hierarchical spatiotemporal organization of intrinsic activity. We then highlight the flexibility and context-sensitivity of intrinsic functional connectivity that suggest its involvement in functionally relevant information processing. This role in information processing is pursued by reviewing how ongoing brain activity interacts with afferent and efferent information exchange of the brain with its environment. We focus on the relationship between the variability of ongoing and evoked brain activity, and review recent reports that tie ongoing brain activity fluctuations to variability in human perception and behavior. Finally, these observations are discussed within the framework of the free-energy principle which – applied to human brain function - provides a theoretical account for a non-random, coordinated interaction of ongoing and evoked activity in perception and behaviour.

  13. Optimization of five environmental factors to increase beta-propeller phytase production in Pichia pastoris and impact on the physiological response of the host.

    Science.gov (United States)

    Viader-Salvadó, José M; Castillo-Galván, Miguel; Fuentes-Garibay, José A; Iracheta-Cárdenas, María M; Guerrero-Olazarán, Martha

    2013-01-01

    Recently, we engineered Pichia pastoris Mut(s) strains to produce several beta-propeller phytases, one from Bacillus subtilis and the others designed by a structure-guided consensus approach. Furthermore, we demonstrated the ability of P. pastoris to produce and secrete these phytases in an active form in shake-flask cultures. In the present work, we used a design of experiments strategy (Simplex optimization method) to optimize five environmental factors that define the culture conditions in the induction step to increase beta-propeller phytase production in P. pastoris bioreactor cultures. With the optimization process, up to 347,682 U (82,814 U/L or 6.4 g/L culture medium) of phytase at 68 h of induction was achieved. In addition, the impact of the optimization process on the physiological response of the host was evaluated. The results indicate that the increase in extracellular phytase production through the optimization process was correlated with an increase in metabolic activity of P. pastoris, shown by an increase in oxygen demand and methanol consumption, that increase the specific growth rate. The increase in extracellular phytase production also occurred with a decrease in extracellular protease activity. Moreover, the optimized culture conditions increased the recombinant protein secretion by up to 88%, along with the extracellular phytase production efficiency per cell. PMID:24123973

  14. Brain natriuretic peptide is a potent vasodilator in aged human microcirculation and shows a blunted response in heart failure patients

    DEFF Research Database (Denmark)

    Edvinsson, Marie-Louise; Uddman, Erik; Edvinsson, Lars; Andersson, Sven E

    2014-01-01

    BACKGROUND: Brain natriuretic peptide (BNP) is normally present in low levels in the circulation, but it is elevated in parallel with the degree of congestion in heart failure subjects (CHF). BNP has natriuretic effects and is a potent vasodilator. It is suggested that BNP could be a therapeutic...... vasodilator responses to ACh and to local heating were only somewhat attenuated in CHF patients. Thus, dilator capacity and nitric oxide signalling were not affected to the same extent as BNP-mediated dilation, indicating a specific downregulation of the latter response. CONCLUSIONS: The findings show for the...

  15. Effects of alpha- and beta-hydroxy acids on the edemal response induced in female SKH-1 mice by simulated solar light.

    Science.gov (United States)

    Sams, Reeder L; Couch, Letha H; Miller, Barbara J; Okerberg, Carlin V; Warbritton, Alan R; Wamer, Wayne G; Beer, Janusz Z; Howard, Paul C

    2002-11-01

    alpha- and beta-Hydroxy acids have been used extensively in cosmetic and dermatological formulations. At present, there is an inadequate amount of information with which to assess the safety of topical applications of alpha- and beta-hydroxy acids in conjunction with exposure to ultraviolet light. In the present study, we examined changes in the epidermal basal cell proliferation and the edemal response using skin thickness measurements elicited in SKH-1 mice following exposure to simulated solar light (SSL) with or without topical treatment with creams containing alpha- (glycolic) and beta-hydroxy (salicylic) acids. The dose of SSL light required to induce measurable edema (MED(BIOL)) in nai;ve, free-moving SKH-1 mice was determined to be 90 mJ. CIE/cm(2). Pretreating the mice with daily (5 days/week) exposures of 14 mJ. CIE/cm(2) for 6 weeks resulted in a doubling of the MED(BIOL) to 180 mJ. CIE/cm(2). Topical application of control cream (pH 3.5), or creams containing glycolic acid (10%, pH 3.5) or salicylic acid (4%, pH 3.5) for 6 weeks (5 days/week) increased the MED(BIOL) to 137 mJ. CIE/cm(2). Daily treatments with SSL (14 mJ. CIE/cm(2)) and control cream (pH 3.5), glycolic (10%, pH 3.5) or salicylic (4%, pH 3.5) acid-containing creams for 6 weeks (5 days/week) resulted in an MED(BIOL) value of 180 mJ. CIE/cm(2), which was the same as treatment with light alone for 6 weeks. These data indicate that a 6-week treatment of mouse skin with a representative skin cream, with or without representative alpha- and beta-hydroxy acids (glycolic and salicylic acid, respectively), changes the UV light sensitivity; however, treatment with the cream, with or without the acids, does not contribute to the UV sensitivity of mice cotreated with low doses of UV light. PMID:12460741

  16. The effect of physical therapy on beta-endorphin levels.

    Science.gov (United States)

    Bender, Tamás; Nagy, György; Barna, István; Tefner, Ildikó; Kádas, Eva; Géher, Pál

    2007-07-01

    Beta-endorphin (betaE) is an important reliever of pain. Various stressors and certain modalities of physiotherapy are potent inducers of the release of endogenous betaE to the blood stream. Most forms of exercise also increase blood betaE level, especially when exercise intensity involves reaching the anaerobic threshold and is associated with the elevation of serum lactate level. Age, gender, and mental activity during exercise also may influence betaE levels. Publications on the potential stimulating effect of manual therapy and massage on betaE release are controversial. Sauna, mud bath, and thermal water increase betaE levels through conveying heat to the tissues. The majority of the techniques for electrical stimulation have a similar effect, which is exerted both centrally and--to a lesser extent--peripherally. However, the parameters of electrotherapy have not yet been standardised. The efficacy of analgesia and the improvement of general well-being do not necessarily correlate with betaE level. Although in addition to blood, increased brain and cerebrospinal fluid betaE levels are also associated with pain, the majority of studies have concerned blood betaE levels. In general, various modalities of physical therapy might influence endorphin levels in the serum or in the cerebrospinal fluid--this is usually manifested by elevation with potential mitigation of pain. However, a causal relationship between the elevation of blood, cerebrospinal fluid or brain betaE levels and the onset of the analgesic action cannot be demonstrated with certainty. PMID:17483960

  17. Increased beta rhythm as an indicator of inhibitory mechanisms in tourette syndrome

    DEFF Research Database (Denmark)

    Niccolai, Valentina; van Dijk, Hanneke; Franzkowiak, Stephanie;

    2016-01-01

    BACKGROUND: Inhibitory oscillatory mechanisms subserving tic compensation have been put forward in Tourette syndrome. Modulation of the beta rhythm (15-25 Hz) as the well-established oscillatory movement execution-inhibition indicator was tested during a cognitive-motor task in patients with...... parieto-occipital brain regions contralaterally to the response hand. Average beta power and power gain correlated negatively with tic severity. CONCLUSIONS: Increased motor inhibitory as well as visuomotor attentional processes are likely to subserve tic compensation. Correlational results suggest that...... stronger inhibitory compensation accompanies less tic severity. © 2016 International Parkinson and Movement Disorder Society....

  18. Hippocampus-Sparing Whole-Brain Radiotherapy and Simultaneous Integrated Boost for Multiple Brain Metastases From Lung Adenocarcinoma: Early Response and Dosimetric Evaluation.

    Science.gov (United States)

    Kim, Kyung Hwan; Cho, Byoung Chul; Lee, Chang Geol; Kim, Hye Ryun; Suh, Yang Gun; Kim, Jun Won; Choi, Chihwan; Baek, Jong Geal; Cho, Jaeho

    2016-02-01

    In this study, the volume response and treatment outcome after hippocampus-sparing whole-brain radiotherapy (HS-WBRT) with simultaneous integrated boost (SIB) using tomotherapy were evaluated. Patients with primary lung adenocarcinoma and multiple brain metastases who had a Karnofsky performance status ≥ 70 and exhibited well-controlled extracranial disease were treated. The prescribed dose was administered in 10 to 14 fractions as 25 to 28 Gy to whole-brain parenchyma, as 40 to 48 Gy to the gross metastatic lesion, and as 30 to 42 Gy to a 5-mm margin to the metastatic lesion. Double-dose gadolinium contrast-enhanced magnetic resonance imaging at 1-mm slice thickness was performed before treatment and at 1, 4, and 7 months post-treatment. The tumor volume reduction ratio was calculated for each follow-up. Between July 2011 and September 2012, 11 patients with 70 lesions were included in this analysis. The median number of lesions per patient was 4 (range, 2-15). The median initial tumor volume was 0.235 cm(3) (range, 0.020-10.140 cm(3)). The treatment plans were evaluated regarding conformation number (CN), target coverage (TC), and homogeneity index (HI). The median follow-up duration was 14 months (range, 3-25 months) and the 1-year intracranial control rate was 67%. The tumor volume reduction was most prominent during the first month with a median reduction rate of 0.717 (range, -0.190 to 1.000). Complete remission was seen in 22 (33%) lesions, and 45 (64%) lesions showed more than 65% reduction in tumor volume. The CN, TC, and HI values were comparable to that of previous studies, and the mean hippocampal dose was 13.65 Gy. No treatment breaks or ≥ G3 acute toxicities were observed during or after treatment. The HS-WBRT with SIB in patients with multiple brain metastases was effective and feasible for volume reduction and showed excellent intracranial control. PMID:25601853

  19. Preserved in vivo response to interferon-alpha in multiple sclerosis patients with neutralising antibodies against interferon-beta (REPAIR study)

    DEFF Research Database (Denmark)

    Magyari, Melinda; Bach Søndergaard, Helle; Sellebjerg, Finn;

    2013-01-01

    BACKGROUND: A major problem in the treatment of multiple sclerosis (MS) patients with interferon-beta (IFN-β) is the development of neutralising antibodies (NAbs). High levels of NAbs block the induction of IFN-β-inducible markers, including Myxovirus Resistance Protein A (encoded by the MX1 gene......), resulting in a loss of bioactivity and therapeutic benefit. OBJECTIVE: The primary objective of this study is to investigate the in vivo biological response to interferon-alpha (IFN-α) in MS patients, who have developed neutralising antibodies (NAbs) against IFN-β. DESIGN/METHODS: The study was an open......-label phase II study in 10 patients with relapsing-remitting MS with persisting NAbs against IFN-β and absent in vivo mRNA MxA response. We used in vivo induction of MX1 mRNA and other IFN-inducible genes as measure of the biological response. The primary endpoint was the in vivo mRNA MX1 response after an...

  20. The Effect of the Arg389Gly Beta-1 Adrenoceptor Polymorphism on Plasma Renin Activity and Heart Rate and the Genotype-Dependent Response to Metoprolol Treatment

    DEFF Research Database (Denmark)

    Petersen, Morten; Andersen, Jon T; Jimenez-Solem, Espen;

    2012-01-01

    A gene-drug interaction has been indicated between beta-1 selective beta-blockers and the Arg389Gly polymorphism (rs1801253) in the adrenergic beta-1 receptor gene (ADRB1). We studied the effect of the ADRB1 Arg389Gly polymorphism on plasma renin activity (PRA) and heart rate (HR) and the genotype...

  1. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation.

    Science.gov (United States)

    Wallentin, Mikkel; Skakkebæk, Anne; Bojesen, Anders; Fedder, Jens; Laurberg, Peter; Østergaard, John R; Hertz, Jens Michael; Pedersen, Anders Degn; Gravholt, Claus Højbjerg

    2016-01-01

    Klinefelter syndrome (47, XXY) (KS) is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49) responded to whether the words "GREEN" or "RED" were displayed in green or red (incongruent versus congruent colors). One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying "GREEN" or "RED" had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop) or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system. PMID:26958463

  2. Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation

    Directory of Open Access Journals (Sweden)

    Mikkel Wallentin

    2016-01-01

    Full Text Available Klinefelter syndrome (47, XXY (KS is a genetic syndrome characterized by the presence of an extra X chromosome and low level of testosterone, resulting in a number of neurocognitive abnormalities, yet little is known about brain function. This study investigated the fMRI-BOLD response from KS relative to a group of Controls to basic motor, perceptual, executive and adaptation tasks. Participants (N: KS = 49; Controls = 49 responded to whether the words “GREEN” or “RED” were displayed in green or red (incongruent versus congruent colors. One of the colors was presented three times as often as the other, making it possible to study both congruency and adaptation effects independently. Auditory stimuli saying “GREEN” or “RED” had the same distribution, making it possible to study effects of perceptual modality as well as Frequency effects across modalities. We found that KS had an increased response to motor output in primary motor cortex and an increased response to auditory stimuli in auditory cortices, but no difference in primary visual cortices. KS displayed a diminished response to written visual stimuli in secondary visual regions near the Visual Word Form Area, consistent with the widespread dyslexia in the group. No neural differences were found in inhibitory control (Stroop or in adaptation to differences in stimulus frequencies. Across groups we found a strong positive correlation between age and BOLD response in the brain's motor network with no difference between groups. No effects of testosterone level or brain volume were found. In sum, the present findings suggest that auditory and motor systems in KS are selectively affected, perhaps as a compensatory strategy, and that this is not a systemic effect as it is not seen in the visual system.

  3. Insula and inferior frontal triangularis activations distinguish between conditioned brain responses using emotional sounds for basic BCI communication

    Directory of Open Access Journals (Sweden)

    Linda van der Heiden

    2014-07-01

    Subjects were presented with congruent and incongruent word-pairs as conditioned stimuli (CS, respectively eliciting affirmative and negative responses. Incongruent word-pairs were associated to an unpleasant unconditioned stimulus (scream, US1 and congruent word-pairs were associated to a pleasant unconditioned stimulus (baby-laughter, US2, in order to elicit emotional conditioned responses (CR. The aim was to discriminate between affirmative and negative responses, enabled by their association with the positive and negative affective stimuli. In the late acquisition phase, when the US were not present anymore, there was a strong significant differential activation for incongruent and congruent word-pairs in a cluster comprising the left insula and the inferior frontal triangularis. This association was not found in the habituation phase. These results suggest that the difference in affirmative and negative brain responses was established as an effect of conditioning, allowing to further investigate the possibility of using this paradigm for a binary choice BCI.

  4. Effects of beta-lactam antibiotics imipenem/cilastatin and cefodizime on cellular and humoral immune responses in BALB/c-mice.

    Science.gov (United States)

    Grochla, I; Ko, H L; Beuth, J; Roszkowski, K; Roszkowski, W; Pulverer, G

    1990-11-01

    The effects of a 7-day chemotherapy with two broad-spectrum beta-lactam antibiotics (imipenem/cilastatin and cefodizime) on the humoral and cellular immune responses in BALB/c-mice were investigated. Antibiotic dosages were calculated on a body weight basis from therapeutical dosages in human medicine. Treatment of experimental mice with imipenem/cilastatin and cefodizime did not influence the production of immunoglobulines (IgM and IgG) nor the delayed type hypersensitivity to oxazolone. In vitro, exposure of human granulocytes to imipenem/cilastatin and cefodizime did not interfere with their phagocytic activity as determined by chemiluminescence assay. Subinhibitory concentrations of both antibiotics modified Staphylococcus aureus and made them more susceptible for granulocyte phagocytosis in chemiluminescence assays. PMID:2085374

  5. Sodium tungstate induced neurological alterations in rat brain regions and their response to antioxidants.

    Science.gov (United States)

    Sachdeva, Sherry; Pant, Satish C; Kushwaha, Pramod; Bhargava, Rakesh; Flora, Swaran J S

    2015-08-01

    Tungsten, recognized recently as an environmental contaminant, is being used in arms and ammunitions as substitute to depleted uranium. We studied the effects of sodium tungstate on oxidative stress, few selected neurological variables like acetylcholinesterase, biogenic amines in rat brain regions (cerebral cortex, hippocampus and cerebellum) and their prevention following co-administration of N-acetylcysteine (NAC), naringenin and quercetin. Animals were sub-chronically exposed to sodium tungstate (100 ppm in drinking water) and orally co-supplemented with different antioxidants (0.30 mM) for three months. Sodium tungstate significantly decreased the activity of acetylcholinesterase, dopamine, nor-epinephrine and 5-hydroxytryptamine levels while it increased monoamine oxidase activity in different brain regions. Tungstate exposure produced a significant increase in biochemical variables indicative of oxidative stress while, neurological alterations were more pronounced in the cerebral cortex compared to other regions. Co-administration of NAC and flavonoids with sodium tungstate significantly restored glutathione, prevented changes in the brain biogenic amines, reactive oxygen species (ROS) and TBARS levels in the different brain regions. The protection was more prominent in the animals co-administered with NAC. We can thus conclude that sodium tungstate induced brain oxidative stress and the alterations in some neurological variables can effectively be reduced by co-supplementation of NAC. PMID:25983264

  6. Branding and a child’s brain: an fMRI study of neural responses to logos

    Science.gov (United States)

    Bruce, Jared M.; Black, William R.; Lepping, Rebecca J.; Henry, Janice M.; Cherry, Joseph Bradley C.; Martin, Laura E.; Papa, Vlad B.; Davis, Ann M.; Brooks, William M.; Savage, Cary R.

    2014-01-01

    Branding and advertising have a powerful effect on both familiarity and preference for products, yet no neuroimaging studies have examined neural response to logos in children. Food advertising is particularly pervasive and effective in manipulating choices in children. The purpose of this study was to examine how healthy children’s brains respond to common food and other logos. A pilot validation study was first conducted with 32 children to select the most culturally familiar logos, and to match food and non-food logos on valence and intensity. A new sample of 17 healthy weight children were then scanned using functional magnetic resonance imaging. Food logos compared to baseline were associated with increased activation in orbitofrontal cortex and inferior prefrontal cortex. Compared to non-food logos, food logos elicited increased activation in posterior cingulate cortex. Results confirmed that food logos activate some brain regions in children known to be associated with motivation. This marks the first study in children to examine brain responses to culturally familiar logos. Considering the pervasiveness of advertising, research should further investigate how children respond at the neural level to marketing. PMID:22997054

  7. Changes in regional brain monoaminergic activity and temporary down-regulation in stress response from dietary supplementation with l-tryptophan in Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Basic, D.; Schjolden, J.; Krogdahl, A.;

    2013-01-01

    The brain monoamines serotonin (5-hydroxytryptamine; 5-HT) and dopamine (DA) both play an integrative role in behavioural and neuroendocrine responses to challenges, and comparative models suggest common mechanisms for dietary modulation of transmission by these signal substances in vertebrates...

  8. Inflammatory responses are not sufficient to cause delayed neuronal death in ATP-induced acute brain injury.

    Directory of Open Access Journals (Sweden)

    Hey-Kyeong Jeong

    Full Text Available BACKGROUND: Brain inflammation is accompanied by brain injury. However, it is controversial whether inflammatory responses are harmful or beneficial to neurons. Because many studies have been performed using cultured microglia and neurons, it has not been possible to assess the influence of multiple cell types and diverse factors that dynamically and continuously change in vivo. Furthermore, behavior of microglia and other inflammatory cells could have been overlooked since most studies have focused on neuronal death. Therefore, it is essential to analyze the precise roles of microglia and brain inflammation in the injured brain, and determine their contribution to neuronal damage in vivo from the onset of injury. METHODS AND FINDINGS: Acute neuronal damage was induced by stereotaxic injection of ATP into the substantia nigra pars compacta (SNpc and the cortex of the rat brain. Inflammatory responses and their effects on neuronal damage were investigated by immunohistochemistry, electron microscopy, quantitative RT-PCR, and stereological counting, etc. ATP acutely caused death of microglia as well as neurons in a similar area within 3 h. We defined as the core region the area where both TH(+ and Iba-1(+ cells acutely died, and as the penumbra the area surrounding the core where Iba-1(+ cells showed activated morphology. In the penumbra region, morphologically activated microglia arranged around the injury sites. Monocytes filled the damaged core after neurons and microglia died. Interestingly, neither activated microglia nor monocytes expressed iNOS, a major neurotoxic inflammatory mediator. Monocytes rather expressed CD68, a marker of phagocytic activity. Importantly, the total number of dopaminergic neurons in the SNpc at 3 h (∼80% of that in the contralateral side did not decrease further at 7 d. Similarly, in the cortex, ATP-induced neuron-damage area detected at 3 h did not increase for up to 7 d. CONCLUSIONS: Different cellular

  9. Brain Basics

    Medline Plus

    Full Text Available ... little dopamine or problems using dopamine in the thinking and feeling regions of the brain may play ... axis —A brain-body circuit which plays a critical role in the body's response to stress. impulse — ...

  10. Hyper-beta-alaninemia associated with beta-aminoaciduria and gamma-aminobutyricaciduaia, somnolence and seizures.

    Science.gov (United States)

    Scriver, C R; Pueschel, S; Davies, E

    1966-03-24

    Hyper-beta-alaninemia was found in a somnolent, convulsing infant. Hyper-beta-aminoaciduria (beta-ala, betaAIB and taurine) was also observed, varying directly with plasma beta-alanine concentration. The beta-aminoaciduria is explained by the interaction between beta-alanine and a specific cellular-transport system with preference for beta-amino compounds. Gamma-aminobutyricaciduria was also observed, its excretion being independent of beta-alanine levels. Dietary modifications, pyridoxine, pantothenic acid and antibiotic therapy were not beneficial. Post-mortem tissues had elevated levels of beta-alanine and carnosine; GABA levels in brain were probably elevated for the age of the patient. A proposed block in beta-alanine-alpha-ketoglutarate transaminase would expand the free beta-alanine pool, thus increasing tissue carnosine. beta-Alanine is a central-nervous-system depressant. Associated inhibition of GABA transaminase and displacement of GABA from central-nervous-system binding sites would produce GABAuria and convulsions. PMID:17926374

  11. The multifaceted responses of primary human astrocytes and brain microvascular endothelial cells to the Lyme disease spirochete, Borrelia burgdorferi

    Directory of Open Access Journals (Sweden)

    Catherine A. Brissette

    2013-08-01

    Full Text Available The vector-borne pathogen, Borrelia burgdorferi, causes a multi-system disorder including neurological complications. These neurological disorders, collectively termed neuroborreliosis, can occur in up to 15% of untreated patients. The neurological symptoms are probably a result of a glial-driven, host inflammatory response to the bacterium. However, the specific contributions of individual glial and other support cell types to the pathogenesis of neuroborreliosis are relatively unexplored. The goal of this project was to characterize specific astrocyte and endothelial cell responses to B. burgdorferi. Primary human astrocytes and primary HBMEC (human brain microvascular endothelial cells were incubated with B. burgdorferi over a 72-h period and the transcriptional responses to the bacterium were analyzed by real-time PCR arrays. There was a robust increase in several surveyed chemokine and related genes, including IL (interleukin-8, for both primary astrocytes and HBMEC. Array results were confirmed with individual sets of PCR primers. The production of specific chemokines by both astrocytes and HBMEC in response to B. burgdorferi, including IL-8, CXCL-1, and CXCL-10, were confirmed by ELISA. These results demonstrate that primary astrocytes and HBMEC respond to virulent B. burgdorferi by producing a number of chemokines. These data suggest that infiltrating phagocytic cells, particularly neutrophils, attracted by chemokines expressed at the BBB (blood–brain barrier may be important contributors to the early inflammatory events associated with neuroborreliosis.

  12. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J;

    2000-01-01

    In order to determine the role of the neuropoietic cytokine interleukin-6 (IL-6) during the first 3 weeks after a focal brain injury, we examined the inflammatory response, oxidative stress and neuronal survival in normal and interleukin-6-deficient (knockout, IL-6KO) mice subjected to a cortical...... of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (i...... freeze lesion. In normal mice, the brain injury was followed by reactive astrogliosis and recruitment of macrophages from 1 day postlesion (dpl), peaking at 3-10 dpl, and by 20 dpl the transient immunoreactions were decreased, and a glial scar was present. In IL-6KO mice, the reactive astrogliosis and...

  13. Brain nonapeptide and gonadal steroid responses to deprivation of heterosexual contact in the black molly

    Directory of Open Access Journals (Sweden)

    Ewa Kulczykowska

    2014-12-01

    Full Text Available Fish may respond to different social situations with changes in both physiology and behaviour. A unique feature of fish is that social interactions between males and females strongly affect the sexual characteristics of individuals. Here we provide the first insight into the endocrine background of two phenomena that occur in mono-sex groups of the black molly (Poecilia sphenops: masculinization in females and same-sex sexual behaviour, manifested by gonopodial displays towards same-sex tank mates and copulation attempts in males. In socially controlled situations, brain neurohormones impact phenotypic sex determination and sexual behaviour. Among these hormones are the nonapeptides arginine vasotocin (AVT and isotocin (IT, counterparts of the well-known mammalian arginine vasopressin and oxytocin, respectively. To reveal potential hormone interactions, we measured the concentrations of bioactive AVT and IT in the brain, along with those of the sex steroids 17β-estradiol and 11-ketotestosterone in the gonads, of females, masculinized females, males displaying same-sex sexual behaviour and those who did not. These data were supplemented by morphological and histological analyses of the gonads. Correlations between brain nonapeptides and gonadal steroids strongly suggest a cross talk between hormonal systems. In the black molly, the masculinization process was associated with the production of brain AVT and gonadal steroids, whereas same-sex sexual behaviour involves both brain nonapeptides, but neither of the sex steroids. This study extends current knowledge of endocrine control of phenotypic sex and sexual behaviour in fish and for the first time links brain nonapeptides with the occurrence of male-male sexual behaviour in lower vertebrates.

  14. Effects of silica exposure on the cardiac and renal inflammatory and fibrotic response and the antagonistic role of interleukin-1 beta in C57BL/6 mice.

    Science.gov (United States)

    Guo, Jiali; Shi, Tingming; Cui, Xiuqing; Rong, Yi; Zhou, Ting; Zhang, Zhihong; Liu, Yuewei; Shen, Yan; Chen, Weihong

    2016-02-01

    Current epidemiological studies suggest that crystalline silica exposure is associated with an increased risk of cardiovascular and renal disease; however, the potential pathological damage of the heart and kidney and its underlying mechanisms have not been completely elucidated. This study tried to investigate the silica-induced inflammatory and fibrotic changes in the heart and kidney and evaluate the role of interleukin (IL)-1 beta (β) in silica-induced cardiac and renal damage. In this study, a silica-exposed model was generated by intratracheally instilling silica dust in mice. The anti-IL-1β monoclonal antibody (mAb) was used to neutralise IL-1β in the pulmonary alveolus and serum. The real-time PCR studies showed that (1) inhalational silica induced inflammatory responses in the heart and kidney by elevated mRNA levels of TNF-α, IL-6 and MCP-1; (2) early fibrotic responses in the heart were observed as elevated mRNA levels of collagen I and fibronectin. What is more, fibrosis of the kidney was demonstrated by pathological results and significantly increased mRNA levels of TGF-β, collagen I, collagen III and fibronectin. Further studies showed that usage of anti-IL-1β mAb decreased the inflammatory response of the heart and kidney induced by inhalational silica and also attenuated fibrosis in the mouse kidney. In conclusion, this study found that inhaled silica induced inflammatory and early fibrotic responses in the mouse heart and inflammatory response and fibrosis in the mouse kidney. Neutralisation of IL-1β attenuated the silica-induced inflammatory response of the heart and kidney and decreased fibrosis in the mouse kidney. PMID:25388157

  15. Low tryptophan diet decreases brain serotonin and alters response to apomorphine

    Science.gov (United States)

    Sahakian, B. J.; Wurtman, R. J.; Barr, J. K.; Millington, W. R.; Chiel, H. J.

    1979-01-01

    The role of the serotoninergic system in the regulation of apomorphine-induced behavior, a behavior primarily controlled by dopaminergic neurotransmission, was investigated in rats fed on a low tryptophan diet since weaning. It was found that reductions in brain seritonin (5-HT) produced by diet result in decreased stereotypy after apomorphine administration. This indicates that although stereotyped behavior is primarily mediated by dopaminergic mechanisms, it can also be modulated by other neurotransmitter including 5-HT. It was also shown that changes in brain seritonin levels can affect psychomotor stimulant-induced hypothermia.

  16. Dose-response relationship for late functional changes in the rat brain after radiosurgery evaluated by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Purpose: Only few quantitative data are available on late effects in the healthy brain after radiosurgery. An animal model can contribute to systematically investigate such late effects. Therefore, a model applying radiosurgery at the rat brain was established. A long-term (19 months) follow up study with 66 animals after radiosurgery was carried out. Methods and Materials: In 60 animals, an area in the frontal lobe of the brain was irradiated stereotactically with a 15 MV linac. Different doses of 20, 30, 40, 50, and 100 Gy with two field sizes (3.9 and 5.9 mm collimator) were selected, using the integrated logistic formula with input parameters from human brain. The induced alteration of the blood-brain barrier permeability was investigated by means of contrast enhanced magnetic resonance imaging. Results: A first intracranial signal enhancement was observed in one animal 160 days after irradiation with 100 Gy. Beginning at 5 months all animals in the two 100 Gy groups homogeneously showed contrast enhancement, but none of the other groups. This remained until 13 months after irradiation. The volume of contrast enhancement as well as the increase of signal intensity were different between the two 100 Gy groups. After 19 months, the animals irradiated with lower doses also showed contrast enhancements, although not uniformly throughout one group. A maximum likelihood fit of the logistic formula P(D) = 1/[1 + (D50/D)k] to the incidence of late effects for the 5.9 mm collimator at 19 months after irradiation results in the parameters D50 = 37.4+6.1-5.2 Gy and k = 4.7 ± 2.4. Conclusions: An animal model was established to study late normal brain tissue response. The observed late effects appeared very similar to the estimation of the integrated logistic formula for human brain. Based on these radiosurgery techniques, future experiments will focus on modifications in the irradiation modalities, i.e., irregular volumes, radiation quality or fractionation

  17. Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain's source space.

    Directory of Open Access Journals (Sweden)

    Gernot G Supp

    Full Text Available The increase of induced gamma-band responses (iGBRs; oscillations >30 Hz elicited by familiar (meaningful objects is well established in electroencephalogram (EEG research. This frequency-specific change at distinct locations is thought to indicate the dynamic formation of local neuronal assemblies during the activation of cortical object representations. As analytically power increase is just a property of a single location, phase-synchrony was introduced to investigate the formation of large-scale networks between spatially distant brain sites. However, classical phase-synchrony reveals symmetric, pair-wise correlations and is not suited to uncover the directionality of interactions. Here, we investigated the neural mechanism of visual object processing by means of directional coupling analysis going beyond recording sites, but rather assessing the directionality of oscillatory interactions between brain areas directly. This study is the first to identify the directionality of oscillatory brain interactions in source space during human object recognition and suggests that familiar, but not unfamiliar, objects engage widespread reciprocal information flow. Directionality of cortical information-flow was calculated based upon an established Granger-Causality coupling-measure (partial-directed coherence; PDC using autoregressive modeling. To enable comparison with previous coupling studies lacking directional information, phase-locking analysis was applied, using wavelet-based signal decompositions. Both, autoregressive modeling and wavelet analysis, revealed an augmentation of iGBRs during the presentation of familiar objects relative to unfamiliar controls, which was localized to inferior-temporal, superior-parietal and frontal brain areas by means of distributed source reconstruction. The multivariate analysis of PDC evaluated each possible direction of brain interaction and revealed widespread reciprocal information-transfer during familiar

  18. Stress-responsive heme oxygenase-1 isoenzyme participates in Toll-like receptor 4-induced inflammation during brain ischemia.

    Science.gov (United States)

    Wang, Rui; Wang, Shu-Ting; Wang, Yu-Di; Wu, Gang; Du, Yan; Qian, Man-Qing; Liang, Xing-Guang; Elbatreek, Mahmoud H; Yang, Hong-Yu; Liu, Zhi-Rong; Fukunaga, Kohji; Liu, Jian-Xiang; Lu, Ying-Mei

    2016-04-13

    Toll-like receptors (TLRs) are involved in the progression of ischemic brain injury and hence vascular dementia; however, the underlying mechanisms are largely unknown. Here, we have investigated the interrelationship between stress-responsive heme oxygenase (HO)-1 isoenzyme and TLR4 during chronic brain hypoperfusion. The right unilateral common carotid artery occlusion was performed by ligation of the right common carotid artery in C57BL/6J mice. The brain cortex or hippocampus was removed for western blotting and confocal immunofluorescence analysis. The link between HO-1 and TLR4 was further examined by silencing TLR4 and pharmacological inhibition of HO-1 in primary cultured cortical neurons. Cognitive dysfunction and decrease in cerebral blood flow in mice were observed 4 weeks after the occlusion. Our data further show that common carotid artery occlusion induced an increase in TLR4 and HO-1 protein levels. Although the administration of CoPP (10 mg/kg), HO-1 agonist, improved the cognitive dysfunction in a mice model of occlusion, western blot analysis in primary cultured cortical neurons showed that HO-1 was upregulated after lipopolysaccharide treatment; this was partially abolished by the TLR4 siRNA interference. The flow cytometry analysis showed that pharmacological inhibition of HO-1 by ZnPP (100 μM) further exaggerated lipopolysaccharide-induced neuronal cell death. Hence, stress-responsive HO-1 isoenzyme participates in TLR4-induced inflammation during chronic brain ischemia. The pharmacological manipulation of TLR4 or the HO-1 antioxidant defense pathway may represent a novel treatment strategy for neuronal protection in vascular dementia. PMID:26966782

  19. Brain injury expands the numbers of neural stem cells and progenitors in the SVZ by enhancing their responsiveness to EGF

    Directory of Open Access Journals (Sweden)

    Deborah A Lazzarino

    2009-05-01

    Full Text Available There is an increase in the numbers of neural precursors in the SVZ (subventricular zone after moderate ischaemic injuries, but the extent of stem cell expansion and the resultant cell regeneration is modest. Therefore our studies have focused on understanding the signals that regulate these processes towards achieving a more robust amplification of the stem/progenitor cell pool. The goal of the present study was to evaluate the role of the EGFR [EGF (epidermal growth factor receptor] in the regenerative response of the neonatal SVZ to hypoxic/ischaemic injury. We show that injury recruits quiescent cells in the SVZ to proliferate, that they divide more rapidly and that there is increased EGFR expression on both putative stem cells and progenitors. With the amplification of the precursors in the SVZ after injury there is enhanced sensitivity to EGF, but not to FGF (fibroblast growth factor-2. EGF-dependent SVZ precursor expansion, as measured using the neurosphere assay, is lost when the EGFR is pharmacologically inhibited, and forced expression of a constitutively active EGFR is sufficient to recapitulate the exaggerated proliferation of the neural stem/progenitors that is induced by hypoxic/ischaemic brain injury. Cumulatively, our results reveal that increased EGFR signalling precedes that increase in the abundance of the putative neural stem cells and our studies implicate the EGFR as a key regulator of the expansion of SVZ precursors in response to brain injury. Thus modulating EGFR signalling represents a potential target for therapies to enhance brain repair from endogenous neural precursors following hypoxic/ischaemic and other brain injuries.

  20. The luteinizing hormone beta-subunit exon 3 (Gly102Ser) gene mutation and ovarian responses to controlled ovarian hyperstimulation

    OpenAIRE

    Robab Davar; Nasim Tabibnejad; Seyed Mehdi Kalantar; Mohammad Hasan Sheikhha

    2014-01-01

    Background: Despite extensive progress in IVF techniques, one of the most difficult problems is the variability in the response to controlled ovarian hyperstimulation (COH). Recent studies show the effects of individual genetic variability on COH outcome. Objective: To evaluate the correlation between LHβ G1502A polymorphisms in exon 3 of the LH gene and ovarian response to COH. Materials and Methods: A total of 220 women treated with a long protocol for ovarian stimulation were studied. Thre...