WorldWideScience

Sample records for beryllium carbides

  1. Beryllium 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Roskill report on beryllium gives information on the occurrence and reserves, production technology, geographic distribution, consumption and end-uses, stocks, prices and beryllium and health. There is an appendix on international trade statistics. (author).

  2. Beryllium Toxicity

    Science.gov (United States)

    ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Beryllium Toxicity Patient Education Care Instruction Sheet ... Favorites Del.icio.us Digg Facebook Google Bookmarks Yahoo MyWeb Page last reviewed: May 23, 2008 Page ...

  3. Beryllium facilities in India

    International Nuclear Information System (INIS)

    Due to its unique combination of physical, mechanical, thermal and nuclear properties, beryllium is indispensable for many applications in the fields of nuclear and space sciences. Beryllia and copper beryllium alloys have also found extensive applications in the electrical and electronic industries. Beryllium facilities at Bhabha Atomic Research Centre (BARC) have been set up to meet indigenous requirements for these materials. Besides developing beryllium technology, the project team has also designed and developed a number of special purpose equipment. (Author)

  4. Beryllium chemistry and processing

    CERN Document Server

    Walsh, Kenneth A

    2009-01-01

    This book introduces beryllium; its history, its chemical, mechanical, and physical properties including nuclear properties. The 29 chapters include the mineralogy of beryllium and the preferred global sources of ore bodies. The identification and specifics of the industrial metallurgical processes used to form oxide from the ore and then metal from the oxide are thoroughly described. The special features of beryllium chemistry are introduced, including analytical chemical practices. Beryllium compounds of industrial interest are identified and discussed. Alloying, casting, powder processing, forming, metal removal, joining and other manufacturing processes are covered. The effect of composition and process on the mechanical and physical properties of beryllium alloys assists the reader in material selection. The physical metallurgy chapter brings conformity between chemical and physical metallurgical processing of beryllium, metal, alloys, and compounds. The environmental degradation of beryllium and its all...

  5. Beryllium Desorption from Sediments

    Science.gov (United States)

    Boschi, V.; Willenbring, J. K.

    2015-12-01

    Beryllium isotopes have provided a useful tool in the field of geochronology and geomorphology over the last 25 years. The amount of cosmogenic meteoric 10Be and native 9Be absorbed to soils often scales with the residence time and chemical weathering of sediments in a landscape, respectively. Thus, the concentrations in river sediment may be used to quantify the denudation of specific watersheds. When deposited in ocean sediment, these concentrations are thought to record the history of denudation on Earth over the last ~10 Ma. The use of both isotopes often relies on the premise of beryllium retention to sediment surfaces in order to preserve a landscape's erosion and weathering signature. Changes in setting, en route from the soil to fluvial system to the ocean, can cause beryllium desorption and may preclude some applications of the 10Be/9Be system. Four mechanisms were tested to determine the desorption potential of beryllium including a reduction in pH, an increase in ionic strength and complexation with soluble organic and inorganic species. These processes have the potential to mobilize beryllium into solution. For example, by both reducing the pH and increasing the ionic strength, competition for adsorption sites increases, potentially liberating beryllium from the sediment surface. In addition, organic and inorganic ligands can complex beryllium causing it to become mobilized. To determine which of these alterations influence beryllium desorption and to quantify the effect, we prepared separate solutions of beryllium bound to minerals and organic compounds and measured beryllium concentrations in solution before and after adjusting the pH, ionic strength, and changing inorganic and organic ligand concentrations. We conclude from our observations that overall, beryllium sorbed to organic compounds was more resistant to desorption relative to mineral-associated beryllium. Among the methods tested, a reduction in pH resulted in the greatest amount of

  6. Beryllium Manufacturing Processes

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-06-30

    This report is one of a number of reports that will be combined into a handbook on beryllium. Each report covers a specific topic. To-date, the following reports have been published: (1) Consolidation and Grades of Beryllium; (2) Mechanical Properties of Beryllium and the Factors Affecting these Properties; (3) Corrosion and Corrosion Protection of Beryllium; (4) Joining of Beryllium; (5) Atomic, Crystal, Elastic, Thermal, Nuclear, and other Properties of Beryllium; and (6) Beryllium Coating (Deposition) Processes and the Influence of Processing Parameters on Properties and Microstructure. The conventional method of using ingot-cast material is unsuitable for manufacturing a beryllium product. Beryllium is a highly reactive metal with a high melting point, making it susceptible to react with mold-wall materials forming beryllium compounds (BeO, etc.) that become entrapped in the solidified metal. In addition, the grain size is excessively large, being 50 to 100 {micro}m in diameter, while grain sizes of 15 {micro}m or less are required to meet acceptable strength and ductility requirements. Attempts at refining the as-cast-grain size have been unsuccessful. Because of the large grain size and limited slip systems, the casting will invariably crack during a hot-working step, which is an important step in the microstructural-refining process. The high reactivity of beryllium together with its high viscosity (even with substantial superheat) also makes it an unsuitable candidate for precision casting. In order to overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority of these methods involve the use of beryllium powders. The powders are consolidated under pressure in vacuum at an elevated temperature to produce vacuum hot-pressed (VHP) blocks and vacuum hot-isostatic-pressed (HIP) forms and billets. The blocks (typically cylindrical), which are produced over a wide range of sizes (up to 183 cm dia. by 61

  7. Beryllium development programme in India

    International Nuclear Information System (INIS)

    India has fairly large deposits of beryl. The requirement of beryllium and copper-beryllium alloys in space and electronic industries has provided the incentive for the setting up of an indigenous base for the development of beryllium process metallurgy. The paper presents the developmental work carried out, in the Metallurgy Division of the Bhabha Atomic Research Centre, on the preparation of beryllium metal and its alloys starting from Indian beryl. A laboratory facility incorporating essential precautionary measures has been set up for the safe handling of beryllium and its compounds. Based on the laboratory investigations a flow-sheet suitable to Indian conditions has been developed. The flow-sheet involves preparation of anhydrous beryllium fluoride from beryl through the silico-fluoride route, magnesiothermic reduction of beryllium fluoride for the production of beryllium metal or its master alloy with copper or aluminium, and fabrication of beryllium metal. (author)

  8. Investigations of the ternary system beryllium-carbon-tungsten and analyses of beryllium on carbon surfaces; Untersuchung des ternaeren Systems Beryllium-Kohlenstoff-Wolfram und Betrachtungen von Beryllium auf Kohlenstoffoberflaechen

    Energy Technology Data Exchange (ETDEWEB)

    Kost, Florian

    2009-05-25

    Beryllium, carbon and tungsten are planned to be used as first wall materials in the future fusion reactor ITER. The aim of this work is a characterization of mixed material formation induced by thermal load. To this end, model systems (layers) were prepared and investigated, which give insight into the basic physical and chemical concepts. Before investigating ternary systems, the first step was to analyze the binary systems Be/C and Be/W (bottom-up approach), where the differences between the substrates PG (pyrolytic graphite) and HOPG (highly oriented pyrolytic graphite) were of special interest. Particularly X-ray photoelectron spectroscopy (XPS), low energy ion scattering (ISS) and Rutherford backscattering spectroscopy (RBS) were used as analysis methods. Beryllium evaporated on carbon shows an island growth mode, whereas a closed layer can be assumed for layer thicknesses above 0.7 nm. Annealing of the Be/C system induces Be{sub 2}C island formation for T{>=}770 K. At high temperatures (T{>=}1170 K), beryllium carbide dissociates, resulting in (metallic) beryllium desorption. For HOPG, carbide formation starts at higher temperatures compared to PG. Activation energies for the diffusion processes were determined by analyzing the decreasing beryllium amount versus annealing time. Surface morphologies were characterized using angle-resolved XPS (ARXPS) and atomic force microscopy (AFM). Experiments were performed to study processes in the Be/W system in the temperature range from 570 to 1270 K. Be{sub 2}W formation starts at 670 K, a complete loss of Be{sub 2}W is observed at 1170 K due to dissociation (and subsequent beryllium desorption). Regarding ternary systems, particularly Be/C/W and C/Be/W were investigated, attaching importance to layer thickness (reservoir) variations. At room temperature, Be{sub 2}C, W{sub 2}C, WC and Be{sub 2}W formation at the respective interfaces was observed. Further Be{sub 2}C is forming with increasing annealing temperatures

  9. Reprocessing technology development for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H.; Sakamoto, N. [Oarai Research Establishment, Ibaraki-ken (Japan); Tatenuma, K. [KAKEN Co., Ibaraki-ken (Japan)] [and others

    1995-09-01

    At present, beryllium is under consideration as a main candidate material for neutron multiplier and plasma facing material in a fusion reactor. Therefore, it is necessary to develop the beryllium reprocessing technology for effective resource use. And, we have proposed reprocessing technology development on irradiated beryllium used in a fusion reactor. The preliminary reprocessing tests were performed using un-irradiated and irradiated beryllium. At first, we performed beryllium separation tests using un-irradiated beryllium specimens. Un-irradiated beryllium with beryllium oxide which is a main impurity and some other impurities were heat-treated under chlorine gas flow diluted with Ar gas. As the results high purity beryllium chloride was obtained in high yield. And it appeared that beryllium oxide and some other impurities were removed as the unreactive matter, and the other chloride impurities were separated by the difference of sublimation temperature on beryllium chloride. Next, we performed some kinds of beryllium purification tests from beryllium chloride. And, metallic beryllium could be recovered from beryllium chloride by the reduction with dry process. In addition, as the results of separation and purification tests using irradiated beryllium specimens, it appeared that separation efficiency of Co-60 from beryllium was above 96%. It is considered that about 4% Co-60 was carried from irradiated beryllium specimen in the form of cobalt chloride. And removal efficiency of tritium from irradiated beryllium was above 95%.

  10. Aerosols generated during beryllium machining.

    Science.gov (United States)

    Martyny, J W; Hoover, M D; Mroz, M M; Ellis, K; Maier, L A; Sheff, K L; Newman, L S

    2000-01-01

    Some beryllium processes, especially machining, are associated with an increased risk of beryllium sensitization and disease. Little is known about exposure characteristics contributing to risk, such as particle size. This study examined the characteristics of beryllium machining exposures under actual working conditions. Stationary samples, using eight-stage Lovelace Multijet Cascade Impactors, were taken at the process point of operation and at the closest point that the worker would routinely approach. Paired samples were collected at the operator's breathing zone by using a Marple Personal Cascade Impactor and a 35-mm closed-faced cassette. More than 50% of the beryllium machining particles in the breathing zone were less than 10 microns in aerodynamic diameter. This small particle size may result in beryllium deposition into the deepest portion of the lung and may explain elevated rates of sensitization among beryllium machinists.

  11. Beryllium. Its minerals. Pt. 1

    International Nuclear Information System (INIS)

    With this work a series of reports begins, under the generic name 'Beryllium', related to several aspects of beryllium technology. The target is to update, with critical sense, current bibliographic material in order to be used in further applications. Some of the most important beryllium ores, the Argentine emplacement of their deposits and world occurrence are described. Argentine and world production, resources and reserves are indicated here as well. (Author)

  12. Joining of Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, A

    2006-02-01

    A handbook dealing with the many aspects of beryllium that would be important for the users of this metal is currently being prepared. With an introduction on the applications, advantages and limitations in the use of this metal the following topics will be discussed in this handbook: physical, thermal, and nuclear properties; extraction from the ores; purification and casting of ingots; production and types of beryllium powders; consolidation methods, grades, and properties; mechanical properties with emphasis on the various factors affecting these properties; forming and mechanical working; welding, brazing, bonding, and fastening; machining; powder deposition; corrosion; health aspects; and examples of production of components. This report consists of ''Section X--Joining'' from the handbook. The prefix X is maintained here for the figures, tables and references. In this section the different methods used for joining beryllium and the advantages, disadvantages and limitations of each are presented. The methods discussed are fusion welding, brazing, solid state bonding (diffusion bonding and deformation bonding), soldering, and mechanical fastening. Since beryllium has a high affinity for oxygen and nitrogen with the formation of oxides and nitrides, considerable care must be taken on heating the metal, to protect it from the ambient atmosphere. In addition, mating surfaces must be cleaned and joints must be designed to minimize residual stresses as well as locations for stress concentration (notch effects). In joining any two metals the danger exists of having galvanic corrosion if the part is subjected to moisture or to any type of corroding environment. This becomes a problem if the less noble (anodic) metal has a significantly smaller area than the more noble (cathodic) metal since the ions (positive charges) from the anodic (corroding) metal must correspond to the number of electrons (negative charges) involved at the cathode. Beryllium

  13. Beryllium. Beryllium oxide, obtention and properties. Pt.4

    International Nuclear Information System (INIS)

    As a continuation of the 'Beryllium' series this work reviews several methods of high purity beryllia production. Diverse methods of obtention and purification from different beryllium compounds are described. Some chemical, mechanical and electrical properties related with beryllia obtention methods are summarized. (Author)

  14. Technical Basis for PNNL Beryllium Inventory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michelle Lynn

    2014-07-09

    The Department of Energy (DOE) issued Title 10 of the Code of Federal Regulations Part 850, “Chronic Beryllium Disease Prevention Program” (the Beryllium Rule) in 1999 and required full compliance by no later than January 7, 2002. The Beryllium Rule requires the development of a baseline beryllium inventory of the locations of beryllium operations and other locations of potential beryllium contamination at DOE facilities. The baseline beryllium inventory is also required to identify workers exposed or potentially exposed to beryllium at those locations. Prior to DOE issuing 10 CFR 850, Pacific Northwest Nuclear Laboratory (PNNL) had documented the beryllium characterization and worker exposure potential for multiple facilities in compliance with DOE’s 1997 Notice 440.1, “Interim Chronic Beryllium Disease.” After DOE’s issuance of 10 CFR 850, PNNL developed an implementation plan to be compliant by 2002. In 2014, an internal self-assessment (ITS #E-00748) of PNNL’s Chronic Beryllium Disease Prevention Program (CBDPP) identified several deficiencies. One deficiency is that the technical basis for establishing the baseline beryllium inventory when the Beryllium Rule was implemented was either not documented or not retrievable. In addition, the beryllium inventory itself had not been adequately documented and maintained since PNNL established its own CBDPP, separate from Hanford Site’s program. This document reconstructs PNNL’s baseline beryllium inventory as it would have existed when it achieved compliance with the Beryllium Rule in 2001 and provides the technical basis for the baseline beryllium inventory.

  15. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  16. Beryllium usage in fusion blankets and beryllium data needs

    International Nuclear Information System (INIS)

    Increasing numbers of designers are choosing beryllium for fusion reactor blankets because it, among all nonfissile materials, produces the highest number (2.5 neutron in an infinite media) of neutrons per 14-MeV incident neutron. In amounts of about 20 cm of equivalent solid density, it can be used to produce fissile material, to breed all the tritium consumed in ITER from outboard blankets only, and in designs to produce Co-60. The problem is that predictions of neutron multiplication in beryllium are off by some 10 to 20% and appear to be on the high side, which means that better multiplication measurements and numerical methods are needed. The n,2n reactions result in two helium atoms, which cause radiation damage in the form of hardening at low temperatures (300/degree/C). The usual way beryllium parts are made is by hot pressing the powder. A lower cost method is to cold press and then sinter. There is no radiation damage data on this form of beryllium. The issues of corrosion, safety relative to the release of the tritium built-up inside beryllium, and recycle of used beryllium are also discussed. 10 figs

  17. Beryllium technology workshop, Clearwater Beach, Florida, November 20, 1991

    International Nuclear Information System (INIS)

    This report discusses the following topics: beryllium in the ITER blanket; mechanical testing of irradiated beryllium; tritium release measurements on irradiated beryllium; beryllium needs for plasma-facing components; thermal conductivity of plasma sprayed beryllium; beryllium research at the INEL; Japanese beryllium research activities for in-pile mockup tests on ITER; a study of beryllium bonding of copper alloy; new production technologies; thermophysical properties of a new ingot metallurgy beryllium product line; implications of beryllium:steam interactions in fusion reactors; and a test program for irradiation embrittlement of beryllium at JET

  18. Beryllium Related Matter

    Energy Technology Data Exchange (ETDEWEB)

    Gaylord, R F

    2008-12-23

    In recent months, LLNL has identified, commenced, and implemented a series of interim controls, compensatory measures, and initiatives to ensure worker safety, and improve safety processes with regards to potential worker exposure to beryllium. Many of these actions have been undertaken in response to the NNSA Independent Review (COR-TS-5/15/2008-8550) received by LLNL in November of 2008. Others are the result of recent discoveries, events or incidents, and lessons learned, or were scheduled corrective actions from earlier commitments. Many of these actions are very recent in nature, or are still in progress, and vary in the formality of implementation. Actions are being reviewed for effectiveness as they progress. The documentation of implementation, and review of effectiveness, when appropriate, of these actions will be addressed as part of the formal Corrective Action Plan addressing the Independent Review. The mitigating actions taken fall into the following categories: (1) Responses to specific events/concerns; (2) Development of interim controls; (3) Review of ongoing activities; and (4) Performance improvement measures.

  19. Processing Irradiated Beryllium For Disposal

    Energy Technology Data Exchange (ETDEWEB)

    T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

    2005-11-01

    The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

  20. Parametric studies of carbon erosion mitigation dynamics in beryllium seeded deuterium plasmas

    International Nuclear Information System (INIS)

    The characteristic time of protective beryllium layer formation on a graphite target, τBe/C, has been investigated as a function of surface temperature, Ts, ion energy, Ei, ion flux, Γi, and beryllium ion concentration, cBe, in beryllium seeded deuterium plasma. τBe/C is found to be strongly decreased with increasing Ts in the range of 550-970K. This is thought to be associated with the more efficient formation of beryllium carbide (Be2C). By scanning the parameters, a scaling expression for τBe/C has been derived as τBe/C[s]=1.0x10-7cBe-1.9+/-0.1Ei0.9+/-0.3Γi-0.6+/-0.3exp ((4.8+/-0.5)x103/Ts) where cBe is dimensionless, Ei in eV, Γi in 1022m-2s-1 and Ts in K. Should this scaling extend to an ITER scenario, carbon erosion of the divertor strike point region may be reduced with characteristic time of ∼6ms. This is much shorter than the time between predicted ITER type I ELMs (∼1s), and suggests that protective beryllium layers can be formed in between ELMs, and mitigate carbon erosion.

  1. Status of beryllium materials for fusion application

    International Nuclear Information System (INIS)

    The possible use of beryllium as a material for fusion reactors is discussed. Based on the results of recent Russian elaborations, which were not covered previously in the scientific literature, an attempt of complex analysis of the techniques of using beryllium is made. The specific requirements on beryllium as a protective material for first wall and divertor are considered. Also the possibility of creating a fusion grade of beryllium is discussed and an optimum strategy is suggested. (orig.)

  2. Neutron irradiation of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.; Ermi, R.M. [Pacific Northwest National Lab., Richland, WA (United States); Tsai, H. [Argonne National Lab., IL (United States)

    1998-03-01

    Seven subcapsules from the FFTF/MOTA 2B irradiation experiment containing 97 or 100% dense sintered beryllium cylindrical specimens in depleted lithium have been opened and the specimens retrieved for postirradiation examination. Irradiation conditions included 370 C to 1.6 {times} 10{sup 22} n/cm{sup 2}, 425 C to 4.8 {times} 10{sup 22} n/cm{sup 2}, and 550 C to 5.0 {times} 10{sup 22} n/cm{sup 2}. TEM specimens contained in these capsules were also retrieved, but many were broken. Density measurements of the cylindrical specimens showed as much as 1.59% swelling following irradiation at 500 C in 100% dense beryllium. Beryllium at 97% density generally gave slightly lower swelling values.

  3. Defense programs beryllium good practice guide

    International Nuclear Information System (INIS)

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D ampersand D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is

  4. Reactivity test between beryllium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  5. Worker Environment Beryllium Characterization Study

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environment, Safety, Health & Quality

    2009-12-28

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, “Minnema Report.”

  6. Worker Environment Beryllium Characterization Study

    International Nuclear Information System (INIS)

    This report summarizes the conclusion of regular monitoring of occupied buildings at the Nevada Test Site and North Las Vegas facility to determine the extent of beryllium (Be) contamination in accordance with Judgment of Needs 6 of the August 14, 2003, 'Minnema Report.'

  7. OVERVIEW OF BERYLLIUM SAMPLING AND ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, M

    2009-04-01

    Because of its unique properties as a lightweight metal with high tensile strength, beryllium is widely used in applications including cell phones, golf clubs, aerospace, and nuclear weapons. Beryllium is also encountered in industries such as aluminium manufacturing, and in environmental remediation projects. Workplace exposure to beryllium particulates is a growing concern, as exposure to minute quantities of anthropogenic forms of beryllium may lead to sensitization and to chronic beryllium disease, which can be fatal and for which no cure is currently known. Furthermore, there is no known exposure-response relationship with which to establish a 'safe' maximum level of beryllium exposure. As a result, the current trend is toward ever lower occupational exposure limits, which in turn make exposure assessment, both in terms of sampling and analysis, more challenging. The problems are exacerbated by difficulties in sample preparation for refractory forms of beryllium, such as beryllium oxide, and by indications that some beryllium forms may be more toxic than others. This chapter provides an overview of sources and uses of beryllium, health risks, and occupational exposure limits. It also provides a general overview of sampling, analysis, and data evaluation issues that will be explored in greater depth in the remaining chapters. The goal of this book is to provide a comprehensive resource to aid personnel in a wide variety of disciplines in selecting sampling and analysis methods that will facilitate informed decision-making in workplace and environmental settings.

  8. Beryllium - A Unique Material in Nuclear Applications

    International Nuclear Information System (INIS)

    Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a ''window'' for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in ''windows'' for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed

  9. Defense programs beryllium good practice guide

    Energy Technology Data Exchange (ETDEWEB)

    Herr, M.

    1997-07-01

    Within the DOE, it has recently become apparent that some contractor employees who have worked (or are currently working) with and around beryllium have developed chronic beryllium disease (CBD), an occupational granulomatous lung disorder. Respiratory exposure to aerosolized beryllium, in susceptible individuals, causes an immunological reaction that can result in granulomatous scarring of the lung parenchyma, shortness of breath, cough, fatigue, weight loss, and, ultimately, respiratory failure. Beryllium disease was originally identified in the 1940s, largely in the fluorescent light industry. In 1950, the Atomic Energy Commission (AEC) introduced strict exposure standards that generally curtailed both the acute and chronic forms of the disease. Beginning in 1984, with the identification of a CBD case in a DOE contractor worker, there was increased scrutiny of both industrial hygiene practices and individuals in this workforce. To date, over 100 additional cases of beryllium-specific sensitization and/or CBD have been identified. Thus, a disease previously thought to be largely eliminated by the adoption of permissible exposure standards 45 years ago is still a health risk in certain workforces. This good practice guide forms the basis of an acceptable program for controlling workplace exposure to beryllium. It provides (1) Guidance for minimizing worker exposure to beryllium in Defense Programs facilities during all phases of beryllium-related work, including the decontamination and decommissioning (D&D) of facilities. (2) Recommended controls to be applied to the handling of metallic beryllium and beryllium alloys, beryllium oxide, and other beryllium compounds. (3) Recommendations for medical monitoring and surveillance of workers exposed (or potentially exposed) to beryllium, based on the best current understanding of beryllium disease and medical diagnostic tests available. (4) Site-specific safety procedures for all processes of beryllium that is likely to

  10. Mutagenicity, carcinogenicity and teratogenicity of beryllium.

    Science.gov (United States)

    Léonard, A; Lauwerys, R

    1987-07-01

    The carcinogenicity of a number of beryllium compounds has been confirmed in experiments on laboratory animals and this metal has to be treated as a possible carcinogenic threat to man. These carcinogenic properties are associated with mutagenic activity as shown by the results of short-term tests performed in vitro with beryllium chloride and beryllium sulfate. These soluble beryllium compounds can produce some infidelity of in vitro synthesis, forward gene mutations in microorganisms and in mammalian cells. They are also able to induce cell transformation. In addition to the positive results obtained in several short-term assays beryllium compounds have been found to bind to nucleoproteins, to inhibit certain enzymes needed for DNA synthesis, to bind nucleic acids to cell membranes and to inhibit microtubule polymerization. The teratogenicity of beryllium salts is relatively unknown and needs additional investigation.

  11. Inhibited solid propellant composition containing beryllium hydride

    Science.gov (United States)

    Thompson, W. W. (Inventor)

    1978-01-01

    An object of this invention is to provide a composition of beryllium hydride and carboxy-terminated polybutadiene which is stable. Another object of this invention is to provide a method for inhibiting the reactivity of beryllium hydride toward carboxy-terminated polybutadiene. It was found that a small amount of lecithin inhibits the reaction of beryllium hydride with the acid groups in carboxy terminated polybutadiene.

  12. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined form the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing(HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  13. Manufacture of sintered bricks of high density from beryllium oxide

    International Nuclear Information System (INIS)

    Beryllium oxide bricks of nuclear purity 100 x 100 x 50 and 100 x 100 x 100 mm of very high density (between 2.85 and 3.00) are manufactured by sintering under pressure in graphite moulds at temperatures between 1,750 and 1,850 deg. C, and under a pressure of 150 kg/cm2. The physico-chemical state of the saw material is of considerable importance with regard to the success of the sintering operation. In addition, a study of the sintering of a BeO mixture with 3 to 5 per cent of boron introduced in the form of boric acid, boron carbide or elementary boron shows that high densities can only be obtained by sintering under pressure. For technical reasons of manufacture, only the mixture based on boron carbide is used. The sintering is carried out in graphite moulds at 1500 deg. C under 150 kg/cm2 pressure, and bricks can be obtained with density between 2,85 and 2,90. Laboratory studies and the industrial manufacture of various sinters are described in detail. (author)

  14. Investigation of beryllium/steam interaction

    Energy Technology Data Exchange (ETDEWEB)

    Chekhonadskikh, A.M.; Vurim, A.D.; Vasilyev, Yu.S.; Pivovarov, O.S. [Inst. of Atomic Energy National Nuclear Center of the Republic of Kazakstan Semipalatinsk (Kazakhstan); Shestakov, V.P.; Tazhibayeva, I.L.

    1998-01-01

    In this report program on investigations of beryllium emissivity and transient processes on overheated beryllium surface attacked by water steam to be carried out in IAE NNC RK within Task S81 TT 2096-07-16 FR. The experimental facility design is elaborated in this Report. (author)

  15. Modeling of hydrogen interactions with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States)

    1998-01-01

    In this paper, improved mathematical models are developed for hydrogen interactions with beryllium. This includes the saturation effect observed for high-flux implantation of ions from plasmas and retention of tritium produced from neutronic transmutations in beryllium. Use of the models developed is justified by showing how they can replicated experimental data using the TMAP4 tritium transport code. (author)

  16. Assessment of LANL beryllium waste management documentation

    International Nuclear Information System (INIS)

    The objective of this report is to determine present status of the preparation and implementation of the various high priority documents required to properly manage the beryllium waste generated at the Laboratory. The documents being assessed are: Waste Acceptance Criteria, Waste Characterization Plan, Waste Certification Plan, Waste Acceptance Procedures, Waste Characterization Procedures, Waste Certification Procedures, Waste Training Procedures and Waste Recordkeeping Procedures. Beryllium is regulated (as a dust) under 40 CFR 261.33 as ''Discarded commercial chemical products, off specification species, container residues and spill residues thereof.'' Beryllium is also identified in the 3rd thirds ruling of June 1, 1990 as being restricted from land disposal (as a dust). The beryllium waste generated at the Laboratory is handled separately because beryllium has been identified as a highly toxic carcinogenic material

  17. BERYLLIUM MEASUREMENT IN COMMERCIALLY AVAILABLE WET WIPES

    Energy Technology Data Exchange (ETDEWEB)

    Youmans-Mcdonald, L.

    2011-02-18

    Analysis for beryllium by fluorescence is now an established method which is used in many government-run laboratories and commercial facilities. This study investigates the use of this technique using commercially available wet wipes. The fluorescence method is widely documented and has been approved as a standard test method by ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The procedure involves dissolution of samples in aqueous ammonium bifluoride solution and then adding a small aliquot to a basic hydroxybenzoquinoline sulfonate fluorescent dye (Berylliant{trademark} Inc. Detection Solution Part No. CH-2) , and measuring the fluorescence. This method is specific to beryllium. This work explores the use of three different commercial wipes spiked with beryllium, as beryllium acetate or as beryllium oxide and subsequent analysis by optical fluorescence. The effect of possible interfering metals such as Fe, Ti and Pu in the wipe medium is also examined.

  18. Beryllium for fusion application - recent results

    Science.gov (United States)

    Khomutov, A.; Barabash, V.; Chakin, V.; Chernov, V.; Davydov, D.; Gorokhov, V.; Kawamura, H.; Kolbasov, B.; Kupriyanov, I.; Longhurst, G.; Scaffidi-Argentina, F.; Shestakov, V.

    2002-12-01

    The main issues for the application of beryllium in fusion reactors are analyzed taking into account the latest results since the ICFRM-9 (Colorado, USA, October 1999) and presented at 5th IEA Be Workshop (10-12 October 2001, Moscow Russia). Considerable progress has been made recently in understanding the problems connected with the selection of the beryllium grades for different applications, characterization of the beryllium at relevant operational conditions (irradiation effects, thermal fatigue, etc.), and development of required manufacturing technologies. The key remaining problems related to the application of beryllium as an armour in near-term fusion reactors (e.g. ITER) are discussed. The features of the application of beryllium and beryllides as a neutron multiplier in the breeder blanket for power reactors (e.g. DEMO) in pebble-bed form are described.

  19. Postirradiation examination of beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Postirradiation examinations of COBRA-1A beryllium pebbles irradiated in the EBR-II fast reactor at neutron fluences which generated 2700--3700 appm helium have been performed. Measurements included density change, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The major change in microstructure is development of unusually shaped helium bubbles forming as highly non-equiaxed thin platelet-like cavities on the basal plane. Measurement of the swelling due to cavity formation was in good agreement with density change measurements.

  20. Technical issues for beryllium use in fusion blanket applications

    International Nuclear Information System (INIS)

    Beryllium is an excellent non-fissioning neutron multiplier for fusion breeder and fusion electric blanket applications. This report is a compilation of information related to the use of beryllium with primary emphasis on the fusion breeder application. Beryllium resources, production, fabrication, properties, radiation damage and activation are discussed. A new theoretical model for beryllium swelling is presented

  1. Fluorimetric method for determination of Beryllium

    International Nuclear Information System (INIS)

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure

  2. Preliminary proposal for a beryllium technology program for fusion applications

    International Nuclear Information System (INIS)

    The program was designed to provide the answers to the critical issues of beryllium technology needed in fusion blanket designs. The four tasks are as follows: (1) Beryllium property measurements needed for fusion data base. (2) Beryllium stress relaxation and creep measurements for lifetime modelling calculations. (3) Simplified recycle technique development for irradiated beryllium. (4) Beryllium neutron multiplier measurements using manganese bath absolute calibration techniques

  3. Recommended design correlations for S-65 beryllium

    International Nuclear Information System (INIS)

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified

  4. Recommended design correlations for S-65 beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States)

    1995-09-01

    The properties of tritium and helium behavior in irradiated beryllium are reviewed, along with the thermal-mechanical properties needed for ITER design analysis. Correlations are developed to describe the performance of beryllium in a fusion reactor environment. While this paper focuses on the use of beryllium as a plasma-facing component (PFC) material, the correlations presented here can also be used to describe the performance of beryllium as a neutron multiplier for a tritium breeding blanket. The performance properties for beryllium are subdivided into two categories: properties which do not change with irradiation damage to the bulk of the material; and properties which are degraded by neutron irradiation. The irradiation-independent properties described within are: thermal conductivity, specific heat capacity, thermal expansion, and elastic constants. Irradiation-dependent properties include: yield strength, ultimate tensile strength, plastic tangent modulus, uniform and total tensile elongation, thermal and irradiation-induced creep strength, He-induced swelling and tritium retention/release. The approach taken in developing properties correlations is to describe the behavior of dense, pressed S-65 beryllium -- the material chosen for ITER PFC application -- as a function of temperature. As there are essentially no data on the performance of porous and/or irradiated S-65 beryllium, the degradation of properties with as-fabricated porosity and irradiation are determined from the broad data base on S-200F, as well as other types and grades, and applied to S-65 beryllium by scaling factors. The resulting correlations can be used for Be produced by vacuum hot pressing (VHP) and cold-pressing (CP)/sintering(S)/hot-isostatic-pressing (HIP). The performance of plasma-sprayed beryllium is discussed but not quantified.

  5. Chronic Beryllium Disease Prevention Program Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S

    2012-03-29

    This document describes how Lawrence Livermore National Laboratory (LLNL) meets the requirements and management practices of federal regulation 10 CFR 850, 'Chronic Beryllium Disease Prevention Program (CBDPP).' This revision of the LLNL CBDPP incorporates clarification and editorial changes based on lessons learned from employee discussions, observations and reviews of Department of Energy (DOE) Complex and commercial industry beryllium (Be) safety programs. The information is used to strengthen beryllium safety practices at LLNL, particularly in the areas of: (1) Management of small parts and components; and (2) Communication of program status to employees. Future changes to LLNL beryllium activities and on-going operating experience will be incorporated into the program as described in Section S, 'Performance Feedback.'

  6. Lithium-Beryllium-Boron : Origin and Evolution

    OpenAIRE

    Vangioni-Flam, Elisabeth; Casse, Michel; Audouze, Jean

    1999-01-01

    The origin and evolution of Lithium-Beryllium-Boron is a crossing point between different astrophysical fields : optical and gamma spectroscopy, non thermal nucleosynthesis, Big Bang and stellar nucleosynthesis and finally galactic evolution. We describe the production and the evolution of Lithium-Beryllium-Boron from Big Bang up to now through the interaction of the Standard Galactic Cosmic Rays with the interstellar medium, supernova neutrino spallation and a low energy component related to...

  7. Tritium release from neutron irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik

    1998-01-01

    One of the most important open issues related to beryllium for fusion applications refers to the kinetics of the tritium release as a function of neutron fluence and temperature. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating the beryllium response under neutron irradiation. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from the above mentioned irradiation experiments, trying to elucidate the tritium release controlling processes. In agreement with previous studies it has been found that release starts at about 500-550degC and achieves a maximum at about 700-750degC. The observed release at about 500-550degC is probably due to tritium escaping from chemical traps, while the maximum release at about 700-750degC is due to tritium escaping from physical traps. The consequences of a direct contact between beryllium and ceramics during irradiation, causing tritium implanting in a surface layer of beryllium up to a depth of about 40 mm and leading to an additional inventory which is usually several times larger than the neutron-produced one, are also presented and the effects on the tritium release are discussed. (author)

  8. Sanitary-hygienic and ecological aspects of beryllium production

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Sidorov, V.L.; Slobodin, D.B.; Tuzov, Y.V. [Ulba Metallurgical Plant, Ust-Kamenogorsk (Kazakhstan)

    1998-01-01

    The Report describes An organization of sanitary-hygienic and ecological control of beryllium production at Ulba metallurgical plant. It involves: (1) the consideration of main methods for protection of beryllium production personnel from unhealthy effect of beryllium, (2) main kinds of filters, used in gas purification systems at different process areas, (3) data on beryllium monitoring in water, soil, on equipment. This Report also outlines problems connected with designing devices for a rapid analysis of beryllium in air as well as problems of beryllium production on ecological situation in the town. (author)

  9. Silicon carbide thyristor

    Science.gov (United States)

    Edmond, John A. (Inventor); Palmour, John W. (Inventor)

    1996-01-01

    The SiC thyristor has a substrate, an anode, a drift region, a gate, and a cathode. The substrate, the anode, the drift region, the gate, and the cathode are each preferably formed of silicon carbide. The substrate is formed of silicon carbide having one conductivity type and the anode or the cathode, depending on the embodiment, is formed adjacent the substrate and has the same conductivity type as the substrate. A drift region of silicon carbide is formed adjacent the anode or cathode and has an opposite conductivity type as the anode or cathode. A gate is formed adjacent the drift region or the cathode, also depending on the embodiment, and has an opposite conductivity type as the drift region or the cathode. An anode or cathode, again depending on the embodiment, is formed adjacent the gate or drift region and has an opposite conductivity type than the gate.

  10. Beryllium. Health hazards and their control. Pt. 2

    International Nuclear Information System (INIS)

    In this work (continuation of 'Beryllium' series) health hazards, toxic effects, limits of permissible atmospheric contamination and safe exposure to beryllium are described. Guidelines to the design, control operations and hygienic precautions of the working facilities are given. (Author)

  11. Composition Comprising Silicon Carbide

    Science.gov (United States)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2012-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  12. Mechanical performance of irradiated beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Dalle-Donne, M.; Werle, H. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reaktortechnik

    1998-01-01

    For the Helium Cooled Pebble Bed (HCPB) Blanket, which is one of the two reference concepts studied within the European Fusion Technology Programme, the neutron multiplier consists of a mixed bed of about 2 and 0.1-0.2 mm diameter beryllium pebbles. Beryllium has no structural function in the blanket, however microstructural and mechanical properties are important, as they might influence the material behavior under neutron irradiation. The EXOTIC-7 as well as the `Beryllium` experiments carried out in the HFR reactor in Petten are considered as the most detailed and significant tests for investigating it. This paper reviews the present status of beryllium post-irradiation examinations performed at the Forschungszentrum Karlsruhe with samples from these irradiation experiments, emphasizing the effects of irradiation of essential material properties and trying to elucidate the processes controlling the property changes. The microstructure, the porosity distribution, the impurity content, the behavior under compression loads and the compatibility of the beryllium pebbles with lithium orthosilicate (Li{sub 4}SiO{sub 4}) during the in-pile irradiation are presented and critically discussed. Qualitative information on ductility and creep obtained by hardness-type measurements are also supplied. (author)

  13. Occupational and non-occupational allergic contact dermatitis from beryllium.

    Science.gov (United States)

    Vilaplana, J; Romaguera, C; Grimalt, F

    1992-05-01

    There are various references to sensitization to beryllium in the literature. Since introducing a patch testing series for patients with suspected sensitization to metals, we have found 3 cases of sensitization to beryllium. Of these 3 cases, we regard the first 2 as having relevant sensitization. Beryllium chloride (1% pet.) was positive in 3 patients and negative in 150 controls.

  14. 75 FR 80734 - Chronic Beryllium Disease Prevention Program

    Science.gov (United States)

    2010-12-23

    ... Beryllium Disease Prevention Program (CBDPP) (63 FR 66940). After considering the comments received, DOE... CFR Part 850 RIN 1992-AA39 Chronic Beryllium Disease Prevention Program AGENCY: Office of Health... beryllium disease prevention program. The Department solicits comment and information on the...

  15. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga2O3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author)

  16. [Effects of beryllium chloride on cultured cells].

    Science.gov (United States)

    Sakaguchi, T; Sakaguchi, S; Nakamura, I; Kagami, M

    1984-05-01

    The effects of beryllium on cultured cells were investigated. Three cell-lines (HeLa-S3, Vero, HEL-R66) were used in these experiments and they were cultured in Eagle's MEM plus 5 or 10% FBS (Fetal Bovine Serum) containing beryllium in various concentrations. HeLa cells or Vero cells were able to grow in the medium with 10 micrograms Be/ml (1.1 mM). On the other hand, the growth of HEL cells were strongly inhibited, even when cultured in the medium with 1 microgram Be/ml (1.1 X 10(-1) mM) and the number of living cells showed markedly low level as compared to that of the control samples cultured in the medium without beryllium. The cytotoxic effects of beryllium on these cells, which were cultured for three days in the medium with beryllium, were observed. None of cytotoxic effects were found on HeLa cells cultured with 0.5 micrograms/ml (5.5 X 10(-2) mM) and on Vero cells cultured with 0.05 micrograms Be/ml (5.5 X 10(-3) mM), while HEL cells received cytotoxic effects even when cultured in the medium containing 0.05 micrograms Be/ml (5.5 X 10(-3) mM), and these effects on the cells appeared strong when cultured in the medium without FBS. It was revealed from these experiments that HEL cells are very sensitive in terms of toxic effects of beryllium. Therefore, there cells can be used for the toxicological study on low level concentrations of the metal.

  17. Mineral resource of the month: beryllium

    Science.gov (United States)

    Shedd, Kim B.

    2006-01-01

    Beryllium metal is lighter than aluminum and stiffer than steel. These and other properties, including its strength, dimensional stability, thermal properties and reflectivity, make it useful for aerospace and defense applications, such as satellite and space-vehicle structural components. Beryllium’s nuclear properties, combined with its low density, make it useful as a neutron reflector and moderator in nuclear reactors. Because it is transparent to most X rays, beryllium is used as X-ray windows in medical, industrial and analytical equipment.

  18. Preliminary results for explosion bonding of beryllium to copper

    Energy Technology Data Exchange (ETDEWEB)

    Butler, D.J. [Northwest Technical Industries, Inc., Sequim, WA (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)

    1995-09-01

    This program was undertaken to determine if explosive bonding is a viable technique for joining beryllium to copper substrates. The effort was a cursory attempt at trying to solve some of the problems associated with explosive bonding beryllium and should not be considered a comprehensive research effort. There are two issues that this program addressed. Can beryllium be explosive bonded to copper substrates and can the bonding take place without shattering the beryllium? Thirteen different explosive bonding iterations were completed using various thicknesses of beryllium that were manufactured with three different techniques.

  19. Sintered silicon carbide

    International Nuclear Information System (INIS)

    A sintered silicon carbide body having a predominantly equiaxed microstructure consists of 91 to 99.85% by weight of silicon carbide at least 95% of which is the alpha phase, up to 5.0% by weight carbonized organic material, 0.15 to 3.0% of boron, and up to 1.0% by weight additional carbon. A mixture of 91 to 99.85 parts by weight silicon carbide having a surface area of 1 to 100 m2/g, 0.67 to 20 parts of a carbonizable organic binder with a carbon content of at least 33% by weight, 0.15 to 5 parts of a boron source containing 0.15 to 3.0 parts by weight boron and up to 15 parts by weight of a temporary binder is mixed with a solvent, the mixture is then dried, shaped to give a body with a density of at least 1.60 g/cc and fired at 1900 to 22500C to obtain an equiaxed microstructure. (author)

  20. Status of beryllium development for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Billone, M.C. [Argonne National Lab., IL (United States); Donne, M.D. [Kernforschungszentrum Karlsruhe GmbH (Germany). Institut fuer Neutronphysik and Reaktortechnik; Macaulay-Newcombe, R.G. [McMaster Univ., Ontario, CA (United States). Dept. of Engineering Physics

    1994-05-01

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma facing component of first wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold isostatic pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.

  1. Potential exposures and risks from beryllium-containing products.

    Science.gov (United States)

    Willis, Henry H; Florig, H Keith

    2002-10-01

    Beryllium is the strongest of the lightweight metals. Used primarily in military applications prior to the end of the Cold War, beryllium is finding new applications in many commercial products, including computers, telecommunication equipment, and consumer and automotive electronics. The use of beryllium in nondefense consumer applications is of concern because beryllium is toxic. Inhalation of beryllium dust or vapor causes a chronic lung disease in some individuals at concentrations as low as 0.01 microg/m3 in air. As beryllium enters wider commerce, it is prudent to ask what risks this might present to the general public and to workers downstream of the beryllium materials industry. We address this question by evaluating the potential for beryllium exposure from the manufacturing, use, recycle, and disposal of beryllium-containing products. Combining a market study with a qualitative exposure analysis, we determine which beryllium applications and life cycle phases have the largest exposure potential. Our analysis suggests that use and maintenance of the most common types of beryllium-containing products do not result in any obvious exposures of concern, and that maintenance activities result in greater exposures than product use. Product disposal has potential to present significant individual risks, but uncertainties concerning current and future routes of product disposal make it difficult to be definitive. Overall, additional exposure and dose-response data are needed to evaluate both the health significance of many exposure scenarios, and the adequacy of existing regulations to protect workers and the public. Although public exposures to beryllium and public awareness and concern regarding beryllium risks are currently low, beryllium risks have psychometric qualities that may lead to rapidly heightened public concern. PMID:12442995

  2. Status of beryllium development for fusion applications

    International Nuclear Information System (INIS)

    Beryllium is a leading candidate material for the neutron multiplier of tritium breeding blankets and the plasma-facing component of first-wall and divertor systems. Depending on the application, the fabrication methods proposed include hot-pressing, hot-isostatic-pressing, cold-isostatic-pressing/sintering, rotary electrode processing and plasma spraying. Product forms include blocks, tubes, pebbles, tiles and coatings. While, in general, beryllium is not a leading structural material candidate, its mechanical performance, as well as its performance with regard to sputtering, heat transport, tritium retention/release, helium-induced swelling and chemical compatibility, is an important consideration in first-wall/blanket design. Differential expansion within the beryllium causes internal stresses which may result in cracking, thereby affecting the heat transport and barrier performance of the material. Overall deformation can result in loading of neighboring structural material. Thus, in assessing the performance of beryllium for fusion applications, it is important to have a good database in all of these performance areas, as well as a set of properties correlations and models for the purpose of interpolation/extrapolation.In this current work, the range of anticipated fusion operating conditions is reviewed. The thermal, mechanical, chemical compatibility, tritium retention/release, and helium retention/swelling databases are then reviewed for fabrication methods and fusion operating conditions of interest. Properties correlations and uncertainty ranges are also discussed. In the case of the more complex phenomena of tritium retention/release and helium-induced swelling, fundamental mechanisms and models are reviewed in more detail. Areas in which additional data are needed are highlighted, along with some trends which suggest ways of optimizing the performance of beryllium for fusion applications. (orig.)

  3. Chemical Analysis Methods for Silicon Carbide

    Institute of Scientific and Technical Information of China (English)

    Shen Keyin

    2006-01-01

    @@ 1 General and Scope This Standard specifies the determination method of silicon dioxide, free silicon, free carbon, total carbon, silicon carbide, ferric sesquioxide in silicon carbide abrasive material.

  4. Safety handling of beryllium for fusion technology R and D

    International Nuclear Information System (INIS)

    Feasibility of beryllium use as a blanket neutron multiplier, first wall and plasma facing material has been studied for the D-T burning experiment reactors such as ITER. Various experimental work of beryllium and its compounds will be performed under the conditions of high temperature and high energy particle exposure simulating fusion reactor conditions. Beryllium is known as a hazardous substance and its handling has been carefully controlled by various health and safe guidances and/or regulations in many countries. Japanese regulations for hazardous substance provide various guidelines on beryllium for the protection of industrial workers and environment. This report was prepared for the safe handling of beryllium in a laboratory scale experiments for fusion technology R and D such as blanket development. Major items in this report are; (1) Brief review of guidances and regulations in USA, UK and Japan. (2) Safe handling and administration manuals at beryllium facilities in INEL, LANL and JET. (3) Conceptual design study of beryllium handling facility for small to mid-scale blanket R and D. (4) Data on beryllium toxicity, example of clinical diagnosis of beryllium disease, and environmental occurence of beryllium. (5) Personnel protection tools of Japanese Industrial Standard for hazardous substance. (author) 61 refs

  5. Control of beryllium powder at a DOE facility

    International Nuclear Information System (INIS)

    Beryllium is contained in a number of domestic and national defense items. Although many items might contain beryllium in some manner, few people need worry about the adverse effects caused by exposure to beryllium because it is the inhalable form of beryllium that is most toxic. Chronic beryllium disease (CBD), a granulomas and fibrotic lung disease with long latency, can be developed after inhalation exposures to beryllium. It is a progressive, debilitating lung disease. Its occurrence in those exposed to beryllium has been difficult to predict because some people seem to react to low concentration exposures whereas others do not react to high concentration exposures. Onset of the disease frequently occurs between 15 to 20 years after exposure begins. Some people develop the disease after many years of low concentration exposures but others do not develop CBD even though beryllium is shown to be present in lungs and urine. Conclusions based on these experiences are that their is some immunological dependence of developing CBD in about 3--4% of the exposed population, but the exact mechanism involved has not yet been identified. Acute beryllium disease can occur after a single exposure to a concentration of greater than 0.100 mg/m3 (inhalation exposure); it is characterized by the development of chemical pneumoconiosis, a respiratory disease. The acute effect of skin contact is a dermatitis characterized by itching and reddened, elevated, or fluid-accumulated lesions which appear particularly on the exposed surfaces of the body, especially the face, neck, arms, and hands. Small particles of beryllium that enter breaks in the skin can lead to the development of granulomas and/or open sores that do not heal until the beryllium has been removed. Our interest is only airborne beryllium, which is found in areas that machine or produce beryllium

  6. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  7. Study on neutron irradiation behavior of beryllium as neutron multiplier

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1998-03-01

    More than 300 tons beryllium is expected to be used as a neutron multiplier in ITER, and study on the neutron irradiation behavior of beryllium as the neutron multiplier with Japan Materials Testing Reactor (JMTR) were performed to get the engineering data for fusion blanket design. This study started as the study on the tritium behavior in beryllium neutron reflector in order to make clear the generation mechanism on tritium of JMTR primary coolant since 1985. These experiences were handed over to beryllium studies for fusion study, and overall studies such as production technology of beryllium pebbles, irradiation behavior evaluation and reprocessing technology have been started since 1990. In this presentation, study on the neutron irradiation behavior of beryllium as the neutron multiplier with JMTR was reviewed from the point of tritium release, thermal properties, mechanical properties and reprocessing technology. (author)

  8. Status of material development for lifetime expansion of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Materion Brush Beryllium and Composites (former, Brush Wellman Inc.). As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has carried out the cooperation experiments to extend the operating lifetime of the beryllium reflector elements. It will first be necessary to determine which of the material's physical, mechanical and chemical properties will be the most influential on that choice. The irradiation testing plans to evaluate the various beryllium grades are also briefly considered and prepared. In this paper, material selection, irradiation test plan and PEI development for lifetime expansion of beryllium are described for material testing reactors. (author)

  9. Mechanisms of hydrogen retention in metallic beryllium and beryllium oxide and properties of ion-induced beryllium nitride; Rueckhaltemechanismen fuer Wasserstoff in metallischem Beryllium und Berylliumoxid sowie Eigenschaften von ioneninduziertem Berylliumnitrid

    Energy Technology Data Exchange (ETDEWEB)

    Oberkofler, Martin

    2011-09-22

    In the framework of this thesis laboratory experiments on atomically clean beryllium surfaces were performed. They aim at a basic understanding of the mechanisms occurring upon interaction of a fusion plasma with a beryllium first wall. The retention and the temperature dependent release of implanted deuterium ions are investigated. An atomistic description is developed through simulations and through the comparison with calculations based on density functional theory. The results of these investigations are compared to the behaviour of hydrogen upon implantation into thermally grown beryllium oxide layers. Furthermore, beryllium nitride is produced by implantation of nitrogen into metallic beryllium and its properties are investigated. The results are interpreted with regard to the use of beryllium in a fusion reactor. (orig.)

  10. Characterization of plasma sprayed beryllium ITER first wall mockups

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Vaidya, R.U.; Hollis, K.J. [Los Alamos National Lab., NM (United States). Material Science and Technology Div.

    1998-01-01

    ITER first wall beryllium mockups, which were fabricated by vacuum plasma spraying the beryllium armor, have survived 3000 thermal fatigue cycles at 1 MW/m{sup 2} without damage during high heat flux testing at the Plasma Materials Test Facility at Sandia National Laboratory in New Mexico. The thermal and mechanical properties of the plasma sprayed beryllium armor have been characterized. Results are reported on the chemical composition of the beryllium armor in the as-deposited condition, the through thickness and normal to the through thickness thermal conductivity and thermal expansion, the four-point bend flexure strength and edge-notch fracture toughness of the beryllium armor, the bond strength between the beryllium armor and the underlying heat sink material, and ultrasonic C-scans of the Be/heat sink interface. (author)

  11. Boron carbide neutron screen for GRR-1 neutron spectrum tailoring

    International Nuclear Information System (INIS)

    The presence of fast neutron spectra in new reactor concepts (such as Gas Cooled Fast Reactor, new generation Sodium Cooled Fast Reactor, Lead Fast Reactor, Accelerator Driven System and nuclear Fusion Reactors) is expected to induce a strong impact on the contained materials, including structural materials (e.g. steels), nuclear fuels, neutron reflecting materials (e.g. beryllium) and tritium breeding materials (for fusion reactors). Therefore, effective operation of these reactors will require extensive testing of their components, which must be performed under neutronic conditions representative of those expected to prevail inside the reactor cores when in operation. Depending on the material, the requirements of a test irradiation can vary. In this work preliminary studies were performed to observe the behavior of the neutron spectrum within a boron carbide neutron screen inserted in a hypothetical reflector test hole of the Greek Research Reactor. Four different screen configurations were simulated with Monte Carlo code TRIPOLI-4. The obtained data showed that the insertion of boron carbide caused not only elimination of the thermal (E < 1 eV) component of the neutron energy spectrum but also absorption of a considerable proportion of the intermediate energy neutrons (1x10-6 MeV < E < 1 MeV). (author)

  12. Plasma cleaning of beryllium coated mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Newman, M.; Widdowson, A.; Ivanova, D.; Likonen, J.; Petersson, P.; Pintsuk, G.; Rubel, M.; Meyer, E.; Contributors, JET

    2016-02-01

    Cleaning systems of metallic first mirrors are needed in more than 20 optical diagnostic systems from ITER to avoid reflectivity losses. Currently, plasma sputtering is considered as one of the most promising techniques to remove deposits coming from the main wall (mainly beryllium and tungsten). This work presents the results of plasma cleaning of rhodium and molybdenum mirrors exposed in JET-ILW and contaminated with typical tokamak elements (including beryllium and tungsten). Using radio frequency (13.56 MHz) argon or helium plasma, the removal of mixed layers was demonstrated and mirror reflectivity improved towards initial values. The cleaning was evaluated by performing reflectivity measurements, scanning electron microscopy, x-ray photoelectron spectroscopy and ion beam analysis.

  13. Neutron counter based on beryllium activation

    Energy Technology Data Exchange (ETDEWEB)

    Bienkowska, B.; Prokopowicz, R.; Kaczmarczyk, J.; Paducha, M. [Institute of Plasma Physics and Laser Microfusion (IPPLM), Hery 23, 01-497 Warsaw (Poland); Scholz, M.; Igielski, A. [Institute of Nuclear Physics PAS (IFJPAN), Radzikowskiego 152, 31-342 Krakow (Poland); Karpinski, L. [Faculty of Electrical Engineering, Rzeszow University of Technology, Pola 2, 35-959 Rzeszow (Poland); Pytel, K. [National Centre for Nuclear Research (NCBJ), Soltana 7, 05-400 Otwock - Swierk (Poland)

    2014-08-21

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction {sup 9}Be(n, α){sup 6}He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, {sup 6}He, decays with half-life T{sub 1/2} = 0.807 s emitting β{sup −} particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β–particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β–source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5–the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β{sup −} particles emitted from radioactive {sup 6}He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  14. Neutron counter based on beryllium activation

    Science.gov (United States)

    Bienkowska, B.; Prokopowicz, R.; Scholz, M.; Kaczmarczyk, J.; Igielski, A.; Karpinski, L.; Paducha, M.; Pytel, K.

    2014-08-01

    The fusion reaction occurring in DD plasma is followed by emission of 2.45 MeV neutrons, which carry out information about fusion reaction rate and plasma parameters and properties as well. Neutron activation of beryllium has been chosen for detection of DD fusion neutrons. The cross-section for reaction 9Be(n, α)6He has a useful threshold near 1 MeV, which means that undesirable multiple-scattered neutrons do not undergo that reaction and therefore are not recorded. The product of the reaction, 6He, decays with half-life T1/2 = 0.807 s emitting β- particles which are easy to detect. Large area gas sealed proportional detector has been chosen as a counter of β-particles leaving activated beryllium plate. The plate with optimized dimensions adjoins the proportional counter entrance window. Such set-up is also equipped with appropriate electronic components and forms beryllium neutron activation counter. The neutron flux density on beryllium plate can be determined from the number of counts. The proper calibration procedure needs to be performed, therefore, to establish such relation. The measurements with the use of known β-source have been done. In order to determine the detector response function such experiment have been modeled by means of MCNP5-the Monte Carlo transport code. It allowed proper application of the results of transport calculations of β- particles emitted from radioactive 6He and reaching proportional detector active volume. In order to test the counter system and measuring procedure a number of experiments have been performed on PF devices. The experimental conditions have been simulated by means of MCNP5. The correctness of simulation outcome have been proved by measurements with known radioactive neutron source. The results of the DD fusion neutron measurements have been compared with other neutron diagnostics.

  15. Methods of producing continuous boron carbide fibers

    Energy Technology Data Exchange (ETDEWEB)

    Garnier, John E.; Griffith, George W.

    2015-12-01

    Methods of producing continuous boron carbide fibers. The method comprises reacting a continuous carbon fiber material and a boron oxide gas within a temperature range of from approximately 1400.degree. C. to approximately 2200.degree. C. Continuous boron carbide fibers, continuous fibers comprising boron carbide, and articles including at least a boron carbide coating are also disclosed.

  16. Behavior of beryllium pebbles under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Dalle-Donne, M.; Scaffidi-Argentina, F. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Neutronenphysik und Reactortechnik; Baldwin, D.L.; Gelles, D.S.; Greenwood, L.R.; Kawamura, H.; Oliver, B.M.

    1998-01-01

    Beryllium pebbles are being considered in fusion reactor blanket designs as neutron multiplier. An example is the European `Helium Cooled Pebble Bed Blanket.` Several forms of beryllium pebbles are commercially available but little is known about these forms in response to fast neutron irradiation. Commercially available beryllium pebbles have been irradiated to approximately 1.3 x 10{sup 22} n/cm{sup 2} (E>1 MeV) at 390degC. Pebbles 1-mm in diameter manufactured by Brush Wellman, USA and by Nippon Gaishi Company, Japan, and 3-mm pebbles manufactured by Brush Wellman were included. All were irradiated in the below-core area of the Experimental Breeder Reactor-II in Idaho Falls, USA, in molybdenum alloy capsules containing helium. Post-irradiation results are presented on density change measurements, tritium release by assay, stepped-temperature anneal, and thermal ramp desorption tests, and helium release by assay and stepped-temperature anneal measurements, for Be pebbles from two manufacturing methods, and with two specimen diameters. The experimental results on density change and tritium and helium release are compared with the predictions of the code ANFIBE. (author)

  17. Dynamic behaviour of S200F beryllium

    International Nuclear Information System (INIS)

    Compression tests have been made on a large scale of strain, strain rate (up to 2000 s-1) and temperature (between 20 C and 300 C). From these experiences, we have calculated a constitutive model for beryllium S200F, which can be used by computer codes. Its formulation is not far from Steinberg, Cochran and Guinan's. But in our case, the influences of temperature and strain rate appear clearly within the expression. To validate our equation, we have used it in a computer code. Its extrapolation for higher strain rates is in good agreement with experiments such as Taylor impact tests or plate impact tests (strain rates greater than 104 s-1). With micrography, we could settle a link between the main strain mode within the material, and the variation of one parameter of the model. Beside the constitutive model, we have shown that shock loaded beryllium behaves in two different ways. If the strain rate is lower than 5.106 s-1, then it is proportional to the squared shock pressure. Beyond, it is a linear function of shock pressure to the power of four. By a spall study on beryllium, we have confirmed that it is excessively fragile. Its fracture is sudden, at a strength near 1 GPa. (author)

  18. Interaction of nitrogen ions with beryllium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dobes, Katharina [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria); Köppen, Martin [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Oberkofler, Martin [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Lungu, Cristian P.; Porosnicu, Corneliu [National Institute for Laser, Plasma, and Radiation Physics, Bucharest (Romania); Höschen, Till; Meisl, Gerd [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching (Germany); Linsmeier, Christian [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Aumayr, Friedrich, E-mail: aumayr@iap.tuwien.ac.at [Institute of Applied Physics, TU Wien, Association EURATOM ÖAW, Vienna (Austria)

    2014-12-01

    The interaction of energetic nitrogen projectiles with a beryllium surface is studied using a highly sensitive quartz crystal microbalance technique. The overall mass change rate of the beryllium sample under N{sub 2}{sup +} ion impact at an ion energy of 5000 eV (i.e. 2500 eV per N) is investigated in situ and in real-time. A strong dependency of the observed mass change rate on the nitrogen fluence (at constant flux) is found and can be attributed to the formation of a nitrogen-containing mixed material layer within the ion penetration depth. The presented data elucidate the dynamics of the interaction process and the surface saturation with increasing nitrogen fluence in a unique way. Basically, distinct interaction regimes can be discriminated, which can be linked to the evolution of the surface composition upon nitrogen impact. Steady state surface conditions are obtained at a total cumulative nitrogen fluence of ∼80 × 10{sup 16} N atoms per cm{sup 2}. In dynamic equilibrium, the interaction is marked by continuous surface erosion. In this case, the observed total sputtering yield becomes independent from the applied nitrogen fluence and is of the order of 0.4 beryllium atoms per impinging nitrogen atom.

  19. Beryllium-10 in Australasian tektites - Evidence for a sedimentary precursor

    Science.gov (United States)

    Pal, D. K.; Moniot, R. K.; Kruse, T. H.; Herzog, G. F.; Tuniz, C.

    1982-01-01

    Each of seven Australasian tektites contains about 100 micron atoms of beryllium-10 (half-life, 1.53 million years) per gram. Cosmic-ray bombardment of the australites cannot have produced the measured amounts of beryllium-10 either at the earth's surface or in space. The beryllium-10 contents of these australites are consistent with a sedimentary precursor that adsorbed from precipitation beryllium-10 produced in the atmosphere. The sediments must have spent several thousand years at the earth's surface within a few million years of the tektite-producing event.

  20. Fivefold twinned boron carbide nanowires.

    Science.gov (United States)

    Fu, Xin; Jiang, Jun; Liu, Chao; Yuan, Jun

    2009-09-01

    Chemical composition and crystal structure of fivefold twinned boron carbide nanowires have been determined by electron energy-loss spectroscopy and electron diffraction. The fivefold cyclic twinning relationship is confirmed by systematic axial rotation electron diffraction. Detailed chemical analysis reveals a carbon-rich boron carbide phase. Such boron carbide nanowires are potentially interesting because of their intrinsic hardness and high temperature thermoelectric property. Together with other boron-rich compounds, they may form a set of multiply twinned nanowire systems where the misfit strain could be continuously tuned to influence their mechanical properties.

  1. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  2. Experiments on studying beryllium - steam interaction, determination of oxidated beryllium emissivity factor

    International Nuclear Information System (INIS)

    The report presents results of beryllium emissivity factor measurements within 700-1300 K temperature range. The tests were conducted at Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan to receive experimental data for verification of calculation programs describing an accident involving water coolant discharge into ITER reactor vacuum cavity. (author)

  3. Beryllium toxicity testing in the suspension culture of mouse fibroblasts.

    Science.gov (United States)

    Rössner, P; Bencko, V

    1980-01-01

    Suspension culture of mouse fibroblast cell line L-A 115 was used to test beryllium toxicity in the presence of magnesium ions. Beryllium added to the MEM cultivation medium was bound in a complex with sulphosalicylic acid BeSSA complex, because the use of beryllium chloride turned out to yield ineffective beryllium phosphate that formed macroscopically detectable insoluble opacities. The BeSSA complex was used in the concentration range: 10(-3)--10(-9)M, magnesium was used in 3 concentrations: 10(-1)M, 5 x 10(-2)M and 10(-2)M. Growth curve analysis revealed pronounced beryllium toxicity at the concentration of 10(-3)M, magnesium-produced toxic changes were observed only at the concentration of 10(-1)M. No competition between the beryllium and magnesium ions was recorded. It is assumed that the possible beryllium-magnesium competition was significantly modified by the use of BeSSA complex-bound beryllium.

  4. Ionization energies of beryllium in strong magnetic fields

    Institute of Scientific and Technical Information of China (English)

    GUANXiao-xu; ZHANGYue-xia

    2004-01-01

    We have develop an effective frozen core approximation to calculate energy levels and ionization enegies of the beryllium atom in magnetic field strengths up to 2.35 × 105T. Systematic improvement over the Hartree-Fock results for the beryllium low-lying states has been accomplished.

  5. Joining of beryllium by braze welding technique: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Banaim, P.; Abramov, E. [Ben-Gurion Univ. of the Negev, Beersheba (Israel); Zalkind, S.; Eden, S.

    1998-01-01

    Within the framework of some applications, there is a need to join beryllium parts to each other. Gas Tungsten Arc Braze Welds were made in beryllium using 0.3 mm commercially Aluminum (1100) shim preplaced at the joint. The welds exhibited a tendency to form microcracks in the Fusion Zone and Heat Affected Zone. All the microcracks were backfilled with Aluminum. (author)

  6. Protection of air in premises and environment against beryllium aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bitkolov, N.Z.; Vishnevsky, E.P.; Krupkin, A.V. [Research Inst. of Industrial and Marine Medicine, St. Petersburg (Russian Federation)

    1998-01-01

    First and foremost, the danger of beryllium aerosols concerns a possibility of their inhalation. The situation is aggravated with high biological activity of the beryllium in a human lung. The small allowable beryllium aerosols` concentration in air poses a rather complex and expensive problem of the pollution prevention and clearing up of air. The delivery and transportation of beryllium aerosols from sites of their formation are defined by the circuit of ventilation, that forms aerodynamics of air flows in premises, and aerodynamic links between premises. The causes of aerosols release in air of premises from hoods, isolated and hermetically sealed vessels can be vibrations, as well as pulses of temperature and pressure. Furthermore, it is possible the redispersion of aerosols from dirty surfaces. The effective protection of air against beryllium aerosols at industrial plants is provided by a complex of hygienic measures: from individual means of breath protection up to collective means of the prevention of air pollution. (J.P.N.)

  7. Preparation and characterization of beryllium doped organic plasma polymer coatings

    International Nuclear Information System (INIS)

    We report the formation of beryllium doped plasma polymerized coatings derived from a helical resonator deposition apparatus, using diethylberyllium as the organometaric source. These coatings had an appearance not unlike plain plasma polymer and were relatively stable to ambient exposure. The coatings were characterized by Inductively Coupled Plasma Mass Spectrometry and X-Ray Photoelectron Spectroscopy. Coating rates approaching 0.7 μm hr-1 were obtained with a beryllium-to-carbon ratio of 1:1.3. There is also a significant oxygen presence in the coating as well which is attributed to oxidation upon exposure of the coating to air. The XPS data show only one peak for beryllium with the preponderance of the XPS data suggesting that the beryllium exists as BeO. Diethylberyllium was found to be inadequate as a source for beryllium doped plasma polymer, due to thermal decomposition and low vapor recovery rates

  8. Spectrofluorimetric Determination of Beryllium by Mean Centering of Ratio Spectra.

    Science.gov (United States)

    Chamsaz, Mahmoud; Samghani, Kobra; Arbab-Zavar, Mohammad Hossein; Heidari, Tahereh

    2016-07-01

    Trace amounts of beryllium has been determined by spectrofluorimetric method that used morin as fluorimetric reagent. Beryllium gives a highly fluorescent complex with morin. The excitation wavelength of morin and Be-morin complex were 410 and 430. The fluorescence spectra of morin and Be-morin complex were overlaped in excitation wavelength of 430 nm. A method based on mean centering of ratio spectra has been performed to remove the interference caused by morin as it overlaps with the Be-morin spectra. The linear range of beryllium concentration is in 0.2-200 ppb range. The parameters of detection limit and RSD were 0.18 ppb and 4.6 % respectively. This method was used for determination of beryllium in copper-beryllium alloy as a real sample. In determination of Be(II), the interference by Cu(II) was very serious, which was eliminated by adding triethanolamine. PMID:27265354

  9. Studies of silicon carbide and silicon carbide nitride thin films

    Science.gov (United States)

    Alizadeh, Zhila

    Silicon carbide semiconductor technology is continuing to advance rapidly. The excellent physical and electronic properties of silicon carbide recently take itself to be the main focused power device material for high temperature, high power, and high frequency electronic devices because of its large band gap, high thermal conductivity, and high electron saturation drift velocity. SiC is more stable than Si because of its high melting point and mechanical strength. Also the understanding of the structure and properties of semiconducting thin film alloys is one of the fundamental steps toward their successful application in technologies requiring materials with tunable energy gaps, such as solar cells, flat panel displays, optical memories and anti-reflecting coatings. Silicon carbide and silicon nitrides are promising materials for novel semiconductor applications because of their band gaps. In addition, they are "hard" materials in the sense of having high elastic constants and large cohesive energies and are generally resistant to harsh environment, including radiation. In this research, thin films of silicon carbide and silicon carbide nitride were deposited in a r.f magnetron sputtering system using a SiC target. A detailed analysis of the surface chemistry of the deposited films was performed using x-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR) and Raman spectroscopy whereas structure and morphology was studied atomic force microscopy (AFM), and nonoindentation.

  10. Palladium interaction with silicon carbide

    International Nuclear Information System (INIS)

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation

  11. Palladium interaction with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Gentile, M., E-mail: Marialuisa.Gentile@manchester.ac.uk [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, The University of Manchester, Manchester M13 9PL (United Kingdom); Abram, T. [Centre for Nuclear Energy Technology (C-NET), School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom)

    2015-07-15

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC–5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd{sub 3}Si and SiO{sub 2} phases, while the second peak and the third peak are correlated with the formation of Pd{sub 2}Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO{sub 2} phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiC{sub x}O{sub y} phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  12. Palladium interaction with silicon carbide

    Science.gov (United States)

    Gentile, M.; Xiao, P.; Abram, T.

    2015-07-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide reaction. Thermoscans of α-SiC pellets containing 5 at.%Pd show that during differential calorimetry scans three exothermic peaks occurred at 773 K, 1144 K and 1615 K, while thermoscans of β-SiC pellets containing 3 at.%Pd and 5 at.%Pd do not show peaks. For the pellet α-SiC-5 at.%Pd XRD spectra reveal that the first peak is associated with the formation of Pd3Si and SiO2 phases, while the second peak and the third peak are correlated with the formation of Pd2Si phase and the active oxidation of silicon carbide respectively. Thermogravimetry scans show weight gain and weight loss peaks due to the SiO2 phase formation and the active oxidation. Additionally XPS fittings reveal the development of SiCxOy phase during the first exothermic peak up to the temperature of 873 K. The experimental data reveals that alpha silicon carbide is attacked by palladium at lower temperatures than beta silicon carbide and the reaction mechanism between silicon carbide and palladium is strongly affected by silicon carbide oxidation.

  13. Laser melting of uranium carbides

    Science.gov (United States)

    Utton, C. A.; De Bruycker, F.; Boboridis, K.; Jardin, R.; Noel, H.; Guéneau, C.; Manara, D.

    2009-03-01

    In the context of the material research aimed at supporting the development of nuclear plants of the fourth Generation, renewed interest has recently arisen in carbide fuels. A profound understanding of the behaviour of nuclear materials in extreme conditions is of prime importance for the analysis of the operation limits of nuclear fuels, and prediction of possible nuclear reactor accidents. In this context, the main goal of the present paper is to demonstrate the feasibility of laser induced melting experiments on stoichiometric uranium carbides; UC, UC1.5 and UC2. Measurements were performed, at temperatures around 3000 K, under a few bars of inert gas in order to minimise vaporisation and oxidation effects, which may occur at these temperatures. Moreover, a recently developed investigation method has been employed, based on in situ analysis of the sample surface reflectivity evolution during melting. Current results, 2781 K for the melting point of UC, 2665 K for the solidus and 2681 K for the liquidus of U2C3, 2754 K for the solidus and 2770 K for the liquidus of UC2, are in fair agreement with early publications where the melting behaviour of uranium carbides was investigated by traditional furnace melting methods. Further information has been obtained in the current research about the non-congruent (solidus-liquidus) melting of certain carbides, which suggest that a solidus-liquidus scheme is followed by higher ratio carbides, possibly even for UC2.

  14. Fluorimetric method for determination of Beryllium; Determinazione fluorimetrica del berillio

    Energy Technology Data Exchange (ETDEWEB)

    Sparacino, N.; Sabbioneda, S. [ENEA, Centro Ricerche Saluggia, Vercelli (Italy). Dip. Energia

    1996-10-01

    The old fluorimetric method for the determination of Beryllium, based essentially on the fluorescence of the Beryllium-Morine complex in a strongly alkaline solution, is still competitive and stands the comparison with more modern methods or at least three reasons: in the presence of solid or gaseous samples (powders), the times necessary to finalize an analytic determination are comparable since the stage of the process which lasts the longest is the mineralization of the solid particles containing Beryllium, the cost of a good fluorimeter is by far Inferior to the cost, e. g., of an Emission Spectrophotometer provided with ICP torch and magnets for exploiting the Zeeman effect and of an Atomic absorption Spectrophotometer provided with Graphite furnace; it is possible to determine, fluorimetrically, rather small Beryllium levels (about 30 ng of Beryllium/sample), this potentiality is more than sufficient to guarantee the respect of all the work safety and hygiene rules now in force. The study which is the subject of this publication is designed to the analysis procedure which allows one to reach good results in the determination of Beryllium, chiefly through the control and measurement of the interference effect due to the presence of some metals which might accompany the environmental samples of workshops and laboratories where Beryllium is handled, either at the pure state or in its alloys. The results obtained satisfactorily point out the merits and limits of this analytic procedure.

  15. Silicon carbide as platform for energy applications

    DEFF Research Database (Denmark)

    Syväjärvi, Mikael; Jokubavicius, Valdas; Sun, Jianwu;

    Silicon carbide is emerging as a novel material for a range of energy and environmental technologies. Previously, silicon carbide was considered as a material mainly for transistor applications. We have initiated the use of silicon carbide material towards optoelectronics in general lighting...

  16. Inhibitory effects of beryllium chloride on rat liver microsomal enzymes.

    Science.gov (United States)

    Teixeira, C F; Yasaka, W J; Silva, L F; Oshiro, T T; Oga, S

    1990-04-30

    A single i.v. dose (0.1 mmol Be2+/kg) of beryllium chloride prolonged the duration of pentobarbital-induced sleep and zoxazolamine-induced paralysis, in rats. The effects are correlated with changes of the pharmacokinetic parameters and with the in vitro inhibition of both aliphatic and aromatic hydroxylation of pentobarbital and zoxazolamine. In vitro N-demethylation of meperidine and aminopyrine was partially inhibited while O-demethylation of quinidine was unaffected by liver microsomes of rats pretreated with beryllium salt. The findings give clues that beryllium chloride inhibits some forms of cytochrome P-450, especially those responsible for hydroxylation of substrates, like pentobarbital and zoxazolamine.

  17. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    An effort has been made to document the types of contamination which form on beryllium windows surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined. (orig.)

  18. Beryllium Health and Safety Committee Data Reporting Task Force

    Energy Technology Data Exchange (ETDEWEB)

    MacQueen, D H

    2007-02-21

    On December 8, 1999, the Department of Energy (DOE) published Title 10 CFR 850 (hereafter referred to as the Rule) to establish a chronic beryllium disease prevention program (CBDPP) to: {sm_bullet} reduce the number of workers currently exposed to beryllium in the course of their work at DOE facilities managed by DOE or its contractors, {sm_bullet} minimize the levels of, and potential for, expos exposure to beryllium, and {sm_bullet} establish medical surveillance requirements to ensure early detection of the disease.

  19. Development of Beryllium Vacuum Chamber Technology for the LHC

    CERN Document Server

    Veness, R; Dorn, C

    2011-01-01

    Beryllium is the material of choice for the beam vacuum chambers around collision points in particle colliders due to a combination of transparency to particles, high specific stiffness and compatibility with ultra-high vacuum. New requirements for these chambers in the LHC experiments have driven the development of new methods for the manufacture of beryllium chambers. This paper reviews the requirements for experimental vacuum chambers. It describes the new beryllium technology adopted for the LHC and experience gained in the manufacture and installation.

  20. Thermal conductivity of boron carbides

    Science.gov (United States)

    Wood, C.; Emin, D.; Gray, P. E.

    1985-01-01

    Knowledge of the thermal conductivity of boron carbide is necessary to evaluate its potential for high-temperature thermoelectric energy conversion applications. Measurements have been conducted of the thermal diffusivity of hot-pressed boron carbide BxC samples as a function of composition (x in the range from 4 to 9), temperature (300-1700 K), and temperature cycling. These data, in concert with density and specific-heat data, yield the thermal conductivities of these materials. The results are discussed in terms of a structural model that has been previously advanced to explain the electronic transport data. Some novel mechanisms for thermal conduction are briefly discussed.

  1. Palladium interaction with silicon carbide

    OpenAIRE

    M. Gentile, P. Xiao, T. Abram

    2015-01-01

    In this work the palladium interaction with silicon carbide is investigated by means of complementary analytical techniques such as thermogravimetry (TG), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Thermoscans were carried out on pellets of palladium, α-SiC and β-SiC high purity powders in the temperature range comprised between 293 K and 1773 K, in order to study the effect of temperature on the palladium-silicon carbide...

  2. Cosmis Lithium-Beryllium-Boron Story

    Science.gov (United States)

    Vangioni-Flam, E.; Cassé, M.

    Light element nucleosynthesis is an important chapter of nuclear astrophysics. Specifically, the rare and fragile light nuclei Lithium, Beryllium and Boron (LiBeB) are not generated in the normal course of stellar nucleosynthesis (except Lithium-7) and are, in fact, destroyed in stellar interiors. This characteristic is reflected in the low abundance of these simple species. Up to recently, the most plausible interpretation was that galactic cosmic rays (GCR) interact with interstellar CNO to form LiBeB. Other origins have been also identified, primordial and stellar (Lithium-7) and supernova neutrino spallation (Lithium-7 and Boron-11). In contrast, Beryllium-9, Boron-10 and Lithium-6 are pure spallative products. This last isotope presents a special interest since the Lithium-7/Lithium-6 ratio has been measured in a few halo stars offering a new constraint on the early galactic evolution. However, in the nineties, new observations prompted astrophysicists to reassess the question. Optical measurements of the beryllium and boron abundances in halo stars have been achieved by the 10 meters KECK telescope and the Hubble Space Telescope. These observations indicate a quasi linear correlation between Be and B vs Fe, at least at low metallicity, unexpected on the basis of GCR scenario, predicting a quadratic relationship. As a consequence, the origin and the evolution of the LiBeB nuclei has been revisited. This linearity implies the acceleration of C and O nuclei freshly synthesized and their fragmentation on the the interstellar Hydrogen and Helium. Wolf-Rayet stars and supernovae via the shock waves induced, are the best candidates to the acceleration of their own material enriched into C and O; so LiBeB is produced independently of the Interstellar Medium chemical composition. Moreover, neutrinos emitted by the newly born neutron stars interacting with the C layer of the supernova could produce specifically Lithium-7 and Boron-11. This process is supported by the

  3. Extraction of beryllium from refractory beryllium oxide with dilute ammonium bifluoride and determination by fluorescence: a multiparameter performance evaluation.

    Science.gov (United States)

    Goldcamp, Michael J; Goldcamp, Diane M; Ashley, Kevin; Fernback, Joseph E; Agrawal, Anoop; Millson, Mark; Marlow, David; Harrison, Kenneth

    2009-12-01

    Beryllium exposure can cause a number of deleterious health effects, including beryllium sensitization and the potentially fatal chronic beryllium disease. Efficient methods for monitoring beryllium contamination in workplaces are valuable to help prevent dangerous exposures to this element. In this work, performance data on the extraction of beryllium from various size fractions of high-fired beryllium oxide (BeO) particles (from bifluoride (ABF) solution were obtained under various conditions. Beryllium concentrations were determined by fluorescence using a hydroxybenzoquinoline fluorophore. The effects of ABF concentration and volume, extraction temperature, sample tube types, and presence of filter or wipe media were examined. Three percent ABF extracts beryllium nearly twice as quickly as 1% ABF; extraction solution volume has minimal influence. Elevated temperatures increase the rate of extraction dramatically compared with room temperature extraction. Sample tubes with constricted tips yield poor extraction rates owing to the inability of the extraction medium to access the undissolved particles. The relative rates of extraction of Be from BeO of varying particle sizes were examined. Beryllium from BeO particles in fractions ranging from less than 32 microm up to 212 microm were subjected to various extraction schemes. The smallest BeO particles are extracted more quickly than the largest particles, although at 90 degrees C even the largest BeO particles reach nearly quantitative extraction within 4 hr in 3% ABF. Extraction from mixed cellulosic-ester filters, cellulosic surface-sampling filters, wetted cellulosic dust wipes, and cotton gloves yielded 90% or greater recoveries. Scanning electron microscopy of BeO particles, including partially dissolved particles, shows that dissolution in dilute ABF occurs not just on the exterior surface but also via accessing particles' interiors due to porosity of the BeO material. Comparison of dissolution kinetics data

  4. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-01

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed.

  5. Reinforcement of tungsten carbide grains by nanoprecipitates in cemented carbides.

    Science.gov (United States)

    Liu, Xingwei; Song, Xiaoyan; Wang, Haibin; Hou, Chao; Liu, Xuemei; Wang, Xilong

    2016-10-14

    In contrast to the conventional method that obtains a high fracture strength of tungsten carbide-cobalt (WC-Co) cemented carbides by reducing WC grain size to near-nano or nanoscale, a new approach has been developed to achieve ultrahigh fracture strength by strengthening the WC grains through precipitate reinforcement. The cemented carbides were prepared by liquid-state sintering the in situ synthesized WC-Co composite powders with a little excess carbon and pre-milled Cr3C2 particles having different size scales. It was found that the nanoscale dispersed particles precipitate in the WC grains, which mainly have a coherent or semi-coherent interface with the matrix. The pinning effect of the nanoparticles on the motion of dislocations within the WC grains was observed. The mechanisms for the precipitation of nanoparticles in the WC grains were discussed, based on which a new method to enhance the resistance against the transgranular fracture of cemented carbides was proposed. PMID:27609195

  6. Investigation of the ion beryllium surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Guseva, M.I.; Birukov, A.Yu.; Gureev, V.M. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others

    1995-09-01

    The self -sputtering yield of the Be was measured. The energy dependence of the Be self-sputtering yield agrees well with that calculated by W. Eckstein et. al. Below 770 K the self-sputtering yield is temperature independent; at T{sub irr}.> 870 K it increases sharply. Hot-pressed samples at 370 K were implanted with monoenergetic 5 keV hydrogen ions and with a stationary plasma (flux power {approximately} 5 MW/m{sup 2}). The investigation of hydrogen behavior in beryllium shows that at low doses hydrogen is solved, but at doses {ge} 5x10{sup 22} m{sup -2} the bubbles and channels are formed. It results in hydrogen profile shift to the surface and decrease of its concentration. The sputtering results in further concentration decrease at doses > 10{sup 25}m{sup -2}.

  7. Stellar abundances of beryllium and CUBES

    CERN Document Server

    Smiljanic, R

    2014-01-01

    Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.

  8. Geochemistry of beryllium in Bulgarian coals

    Energy Technology Data Exchange (ETDEWEB)

    Eskenazy, Greta M. [Geology Department, University of Sofia ' St. Kl. Ohridski' , Tzar Osvoboditel 15, Sofia 1504 (Bulgaria)

    2006-04-03

    The beryllium content of about 3000 samples (coal, coaly shales, partings, coal lithotypes, and isolated coalified woods) from 16 Bulgarian coal deposits was determined by atomic emission spectrography. Mean Be concentrations in coal show great variability: from 0.9 to 35 ppm for the deposits studied. There was no clear-cut relationship between Be content and rank. The following mean and confidence interval Be values were measured: lignites, 2.6+/-0.8 ppm; sub-bituminous coals, 8.2+/-3.3 ppm; bituminous coals, 3.0+/-1.2 ppm; and anthracites, 19+/-9.0 ppm. The Be contents in coal and coaly shales for all deposits correlated positively suggesting a common source of the element. Many samples of the coal lithotypes vitrain and xylain proved to be richer in Be than the hosting whole coal samples as compared on ash basis. Up to tenfold increase in Be levels was routinely recorded in fusain. The ash of all isolated coalified woods was found to contain 1.1 to 50 times higher Be content relative to its global median value for coal inclusions. Indirect evidence shows that Be occurs in both organic and inorganic forms. Beryllium is predominantly organically bound in deposits with enhanced Be content, whereas the inorganic form prevails in deposits whose Be concentration approximates Clarke values. The enrichment in Be exceeding the coal Clarke value 2.4 to 14.5 times in some of the Bulgarian deposits is attributed to subsynchronous at the time of coal deposition hydrothermal and volcanic activity. (author)

  9. New facility for post irradiation examination of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, Etsuo; Kawamura, Hiroshi [Oarai Research Establishment, Ibaraki-Ken (Japan)

    1995-09-01

    Beryllium is expected as a neutron multiplier and plasma facing materials in the fusion reactor, and the neutron irradiation data on properties of beryllium up to 800{degrees}C need for the engineering design. The acquisition of data on the tritium behavior, swelling, thermal and mechanical properties are first priority in ITER design. Facility for the post irradiation examination of neutron irradiated beryllium was constructed in the hot laboratory of Japan Materials Testing Reactor to get the engineering design data mentioned above. This facility consist of the four glove boxes, dry air supplier, tritium monitoring and removal system, storage box of neutron irradiated samples. Beryllium handling are restricted by the amount of tritium;7.4 GBq/day and {sup 60}Co;7.4 MBq/day.

  10. Development of Biomarkers for Chronic Beryllium Disease in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Terry

    2013-01-25

    Beryllium is a strategic metal, indispensable for national defense programs in aerospace, telecommunications, electronics, and weaponry. Exposure to beryllium is an extensively documented occupational hazard that causes irreversible, debilitating granulomatous lung disease in as much as 3 - 5% of exposed workers. Mechanistic research on beryllium exposure-disease relationships has been severely limited by a general lack of a sufficient CBD animal model. We have now developed and tested an animal model which can be used for dissecting dose-response relationships and pathogenic mechanisms and for testing new diagnostic and treatment paradigms. We have created 3 strains of transgenic mice in which the human antigen-presenting moiety, HLA-DP, was inserted into the mouse genome. Each mouse strain contains HLA-DPB1 alleles that confer different magnitude of risk for chronic beryllium disease (CBD): HLA-DPB1*0401 (odds ratio = 0.2), HLA-DPB1*0201 (odds ratio = 15), HLA-DPB1*1701 (odds ratio = 240). Our preliminary work has demonstrated that the *1701 allele, as predicted by human studies, results in the greatest degree of sensitization in a mouse ear swelling test. We have also completed dose-response experiments examining beryllium-induced lung granulomas and identified susceptible and resistant inbred strains of mice (without the human transgenes) as well as quantitative trait loci that may contain gene(s) that modify the immune response to beryllium. In this grant application, we propose to use the transgenic and normal inbred strains of mice to identify biomarkers for the progression of beryllium sensitization and CBD. To achieve this goal, we propose to compare the sensitivity and accuracy of the lymphocyte proliferation test (blood and bronchoalveolar lavage fluid) with the ELISPOT test in the three HLA-DP transgenic mice strains throughout a 6 month treatment with beryllium particles. Because of the availability of high-throughput proteomics, we will also identify

  11. The beryllium production at Ulba metallurgical plant (Ust-Kamenogrsk, Kazakhstan)

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskykh, E.M.; Savchuk, V.V.; Tuzov, Y.V. [Ulba Metallurgical Plant (Zavod), Ust-Kamenogorsk, Abay prospect 102 (Kazakhstan)

    1998-01-01

    The Report includes data on beryllium production of Ulba metallurgical plant, located in Ust-Kamenogorsk (Kazakhstan). Beryllium production is showed to have extended technological opportunities in manufacturing semi-products (beryllium ingots, master alloys, metallic beryllium powders, beryllium oxide) and in production of structural beryllium and its parts. Ulba metallurgical plant owns a unique technology of beryllium vacuum distillation, which allows to produce reactor grades of beryllium with a low content of metallic impurities. At present Ulba plant does not depend on raw materials suppliers. The quantity of stored raw materials and semi-products will allow to provide a 25-years work of beryllium production at a full capacity. The plant has a satisfactory experience in solving ecological problems, which could be useful in ITER program. (author)

  12. Beryllium nitride thin film grown by reactive laser ablation

    OpenAIRE

    G. Soto; Diaz, J.A.; Machorro, R.; Reyes-Serrato, A.; de la Cruz, W.

    2001-01-01

    Beryllium nitride thin films were grown on silicon substrates by laser ablating a beryllium foil in molecular nitrogen ambient. The composition and chemical state were determined with Auger (AES), X-Ray photoelectron (XPS) and energy loss (EELS) spectroscopies. A low absorption coefficient in the visible region, and an optical bandgap of 3.8 eV, determined by reflectance ellipsometry, were obtained for films grown at nitrogen pressures higher than 25 mTorr. The results show that the reaction ...

  13. Determination of beryllium by using X-ray fluorescence spectrometry.

    Science.gov (United States)

    Zawisza, Beata

    2008-03-01

    X-ray fluorescence spectrometry method is subject to certain difficulties and inconveniences for the elements having the atomic number 9 or less. These difficulties become progressively more severe as the atomic number decreases, and are quite serious for beryllium, which is practically indeterminable directly by XRF. Therefore, an indirect determination of beryllium that is based on the evaluation of cobalt in the precipitate is taken into consideration. In the thesis below, there is a description of a new, simple, and precise method by selective precipitation using hexamminecobalt(III) chloride and ammonium carbonate-EDTA solution as a complexing agent for the determining of a trace amount of beryllium using X-ray fluorescence spectrometry. The optimum conditions for [Co(NH(3))(6)][Be(2)(OH)(3)(CO(3))(2)(H(2)O)(2)].(3)H(2)O complex formation were studied. The complex was collected on the membrane filter, and the Co Kalpha line was measured by XRF. The method presents the advantages of the sample preparation and the elimination of the matrix effects due to the thin film obtained. The detection limit of the proposed method is 0.2 mg of beryllium. The method was successfully applied to beryllium determination in copper/ beryllium/cobalt alloys.

  14. Beryllium pressure vessels for creep tests in magnetic fusion energy

    International Nuclear Information System (INIS)

    Beryllium has interesting applications in magnetic fusion experimental machines and future power-producing fusion reactors. Chief among the properties of beryllium that make these applications possible is its ability to act as a neutron multiplier, thereby increasing the tritium breeding ability of energy conversion blankets. Another property, the behavior of beryllium in a 14-MeV neutron environment, has not been fully investigated, nor has the creep behavior of beryllium been studied in an energetic neutron flux at thermodynamically interesting temperatures. This small beryllium pressure vessel could be charged with gas to test pressures around 3, 000 psi to produce stress in the metal of 15,000 to 20,000 psi. Such stress levels are typical of those that might be reached in fusion blanket applications of beryllium. After contacting R. Powell at HEDL about including some of the pressure vessels in future test programs, we sent one sample pressure vessel with a pressurizing tube attached (Fig. 1) for burst tests so the quality of the diffusion bond joints could be evaluated. The gas used was helium. Unfortunately, budget restrictions did not permit us to proceed in the creep test program. The purpose of this engineering note is to document the lessons learned to date, including photographs of the test pressure vessel that show the tooling necessary to satisfactorily produce the diffusion bonds. This document can serve as a starting point for those engineers who resume this task when funds become available

  15. Impurities effect on the swelling of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Donne, M.D.; Scaffidi-Argentina, F. [Institut fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany)

    1995-09-01

    An important factor controlling the swelling behaviour of fast neutron irradiated beryllium is the impurity content which can strongly affect both the surface tension and the creep strength of this material. Being the volume swelling of the old beryllium (early sixties) systematically higher than that of the more modem one (end of the seventies), a sensitivity analysis with the aid of the computer code ANFIBE (ANalysis of Fusion Irradiated BEryllium) to investigate the effect of these material properties on the swelling behaviour of neutron irradiated beryllium has been performed. Two sets of experimental data have been selected: the first one named Western refers to quite recently produced Western beryllium, whilst the second one, named Russian refers to relatively old (early sixties) Russian beryllium containing a higher impurity rate than the Western one. The results obtained with the ANFIBE Code were assessed by comparison with experimental data and the used material properties were compared with the data available in the literature. Good agreement between calculated and measured values has been found.

  16. Silicon carbide as a basis for spaceflight optical systems

    Science.gov (United States)

    Curcio, Michael E.

    1994-09-01

    New advances in the areas of microelectronics and micro-mechanical devices have created a momentum in the development of lightweight, miniaturized, electro-optical space subsystems. The performance improvements achieved and new observational techniques developed as a result, have provided a basis for a new range of Small Explorer, Discovery-class and other low-cost mission concepts for space exploration. However, the ultimate objective of low-mass, inexpensive space science missions will only be achieved with a companion development in the areas of flight optical systems and sensor instrument benches. Silicon carbide (SiC) is currently emerging as an attractive technology to fill this need. As a material basis for reflective, flight telescopes and optical benches, SiC offers: the lightweight and stiffness characteristics of beryllium; glass-like inherent stability consistent with performance to levels of diffraction-limited visible resolution; superior thermal properties down to cryogenic temperatures; and an existing, commercially-based material and processing infrastructure like aluminum. This paper will describe the current status and results of on-going technology developments to utilize these material properties in the creation of lightweight, high- performing, thermally robust, flight optical assemblies. System concepts to be discussed range from an 18 cm aperture, 4-mirror, off-axis system weighing less than 2 kg to a 0.5 m, 15 kg reimager. In addition, results in the development of a thermally-stable, `GOES-like' scan mirror will be presented.

  17. MAGNESIUM PRECIPITATION AND DIFUSSION IN Mg+ ION IMPLANTED SILICON CARBIDE

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang Y.; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-02

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. Calculations by Sawan et al. predict that at a dose of ~100 dpa (displacements per atom), there is ~0.5 at.% Mg generated in SiC. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the <100> axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4E-19 m2/s.

  18. Beryllium data base for in-pile mockup test on blanket of fusion reactor, (1)

    International Nuclear Information System (INIS)

    Beryllium has been used in the fusion blanket designs with ceramic breeder as a neutron multiplier to increase the net tritium breeding ratio (TBR). The properties of beryllium, that is physical properties, chemical properties, thermal properties, mechanical properties, nuclear properties, radiation effects, etc. are necessary for the fusion blanket design. However, the properties of beryllium have not been arranged for the fusion blanket design. Therefore, it is indispensable to check and examine the material data of beryllium reported previously. This paper is the first one of the series of papers on beryllium data base, which summarizes the reported material data of beryllium. (author)

  19. Testing Boron Carbide and Silicon Carbide under Triaxial Compression

    Science.gov (United States)

    Anderson, Charles; Chocron, Sidney; Nicholls, Arthur

    2011-06-01

    Boron Carbide (B4C) and silicon carbide (SiC-N) are extensively used as armor materials. The strength of these ceramics depends mainly on surface defects, hydrostatic pressure and strain rate. This article focuses on the pressure dependence and summarizes the characterization work conducted on intact and predamaged specimens by using compression under confinement in a pressure vessel and in a thick steel sleeve. The techniques used for the characterization will be described briefly. The failure curves obtained for the two materials will be presented, although the data are limited for SiC. The data will also be compared to experimental data from Wilkins (1969), and Meyer and Faber (1997). Additionally, the results will be compared with plate-impact data.

  20. Proton irradiation effects on beryllium - A macroscopic assessment

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  1. [Calcium carbide of different crystal formation synthesized by calcium carbide residue].

    Science.gov (United States)

    Lu, Zhong-yuan; Kang, Ming; Jiang, Cai-rong; Tu, Ming-jing

    2006-04-01

    To recycle calcium carbide residue effectively, calcium carbide of different crystal form, including global aragonite, calcite and acicular calcium carbide was synthesized. Both the influence of pretreatment in the purity of calcium carbide, and the influence of temperatures of carbonization reaction, release velocity of carbon dioxide in the apparition of calcium carbide of different crystal form were studied with DTA-TG and SEM. The result shows that calcium carbide residue can take place chemistry reaction with ammonia chlorinate straight. Under the condition that pH was above 7, the purity of calcium carbide was above 97%, and the whiteness was above 98. Once provided the different temperatures of carbonization reaction and the proper release velocity of carbon dioxide, global aragonite, calcite and acicular calcium carbide were obtained.

  2. Conduction mechanism in boron carbide

    Science.gov (United States)

    Wood, C.; Emin, D.

    1984-01-01

    Electrical conductivity, Seebeck-coefficient, and Hall-effect measurements have been made on single-phase boron carbides, B(1-x)C(x), in the compositional range from 0.1 to 0.2 X, and between room temperature and 1273 K. The results indicate that the predominant conduction mechanism is small-polaron hopping between carbon atoms at geometrically inequivalent sites.

  3. Thermally Sprayed Silicon Carbide Coating

    OpenAIRE

    Mubarok, Fahmi

    2014-01-01

    Thermal spraying of silicon carbide (SiC) material is a challenging task since SiC tends to decompose during elevated temperature atmospheric spraying process. The addition of metal or ceramic binders as a matrix phase is necessary to facilitate the bonding of SiC particles, allowing SiC coatings to be deposited. In the conventional procedure, the matrix phase is added through mechanical mixing or mechanical alloying of the powder constituents, making it difficult to achieve homogeneous distr...

  4. Development of Interatomic Potentials for Beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Bjorkas, C.; Juslin, N.; Nordlund, K. [Accelerator Laboratory, University of Helsinki, P.O. Box 43, FIN-00014 Helsinki (Finland); Erhart, P. [Lawrence Livermore National Laboratory, Livermore, AK (United States); Henriksson, K. [Royal Institute of Technology, Stockholm (Sweden)

    2007-07-01

    Full text of publication follows: To be able to benefit from fusion as a clean and safe power source, we need a comprehensive understanding of the dynamic region of a fusion reactor. Knowing the interplay between the fuel plasma and the reactor components, such as the first wall and the divertor, one can minimize the resulting degradation. The atom-level mechanisms behind the reactions, (e.g. erosion and redeposition) are, however, not accessible to experiments. Hence, computational methods, including molecular dynamics (MD) simulations, are needed. The interactions in a system of particles are within MD described by an interatomic potential. The study of reactor processes requires models for the mixed interaction between the first wall and divertor materials beryllium, carbon and tungsten, as well as for the interaction of these with hydrogen. The absence of proper models for the Be system motivated us to develop potentials for pure Be, Be-C, Be-W and Be-H. We present a Tersoff-like bond order potential for pure Be and the same formalism applied to Be-C and Be-H. The performance of the potentials is discussed and an outlook for the remaining potential is also given. (authors)

  5. Beryllium abundances in stars hosting giant planets

    CERN Document Server

    Santos, N C; Israelian, G; Mayor, M; Rebolo, R; García-Gíl, A; Pérez de Taoro, M R; Randich, S

    2002-01-01

    We have derived beryllium abundances in a wide sample of stars hosting planets, with spectral types in the range F7V-K0V, aimed at studying in detail the effects of the presence of planets on the structure and evolution of the associated stars. Predictions from current models are compared with the derived abundances and suggestions are provided to explain the observed inconsistencies. We show that while still not clear, the results suggest that theoretical models may have to be revised for stars with Teff<5500K. On the other hand, a comparison between planet host and non-planet host stars shows no clear difference between both populations. Although preliminary, this result favors a ``primordial'' origin for the metallicity ``excess'' observed for the planetary host stars. Under this assumption, i.e. that there would be no differences between stars with and without giant planets, the light element depletion pattern of our sample of stars may also be used to further investigate and constraint Li and Be deple...

  6. Electronic band structure of beryllium oxide

    CERN Document Server

    Sashin, V A; Kheifets, A S; Ford, M J

    2003-01-01

    The energy-momentum resolved valence band structure of beryllium oxide has been measured by electron momentum spectroscopy (EMS). Band dispersions, bandwidths and intervalence bandgap, electron momentum density (EMD) and density of occupied states have been extracted from the EMS data. The experimental results are compared with band structure calculations performed within the full potential linear muffin-tin orbital approximation. Our experimental bandwidths of 2.1 +- 0.2 and 4.8 +- 0.3 eV for the oxygen s and p bands, respectively, are in accord with theoretical predictions, as is the s-band EMD after background subtraction. Contrary to the calculations, however, the measured p-band EMD shows large intensity at the GAMMA point. The measured full valence bandwidth of 19.4 +- 0.3 eV is at least 1.4 eV larger than the theory. The experiment also finds a significantly higher value for the p-to-s-band EMD ratio in a broad momentum range compared to the theory.

  7. Interaction of beryllium and hydrogen isotopes

    International Nuclear Information System (INIS)

    It has been considered that in the plasma nuclear fusion experimental devices of magnetic field confinement type, in order to reduce the energy loss due to bremsstrahlung, the use of the plasma-facing materials (PFM) of low atomic number like carbon is indispensable at present. Attention is paid to beryllium which is one of the PFMs, and its effectiveness was rocognized by the practical use in JET. When Be is considered as a PFM, it is necessary to accumulate many data on the diffusion, dissolution, permeation and surface recoupling of hydrogen isotopes, which regulate the recycling and inventory of deuterium and tritium fuel, and the relation of these factors with the physical and chemical states of Be. In this research, as the first phase of understanding the characteristics of Be as a PFM, the change of the surface condition by heating Be was investigated by X-ray photoelectron spectroscopy, and the chemical form of the Be-related substances emitted from the surface by argon or deuterium ion sputtering and their thermal behavior were measured by secondary ion mass spectrometry. The sample, the measurement and the results are reported. The diversified secondary ions of Be, Be cluster, Be oxide, hydroxide, hydride and deuteride were observed by the measurement, and their features are shown. (K.I.)

  8. Steam-chemical reactivity for irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; McCarthy, K.A.; Oates, M.A.; Petti, D.A.; Pawelko, R.J.; Smolik, G.R. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental investigation to determine the influence of neutron irradiation effects and annealing on the chemical reactivity of beryllium exposed to steam. The work entailed measurements of the H{sub 2} generation rates for unirradiated and irradiated Be and for irradiated Be that had been previously annealed at different temperatures ranging from 450degC to 1200degC. H{sub 2} generation rates were similar for irradiated and unirradiated Be in steam-chemical reactivity experiments at temperatures between 450degC and 600degC. For irradiated Be exposed to steam at 700degC, the chemical reactivity accelerated rapidly and the specimen experienced a temperature excursion. Enhanced chemical reactivity at temperatures between 400degC and 600degC was observed for irradiated Be annealed at temperatures of 700degC and higher. This reactivity enhancement could be accounted for by the increased specific surface area resulting from development of a surface-connected porosity in the irradiated-annealed Be. (author)

  9. Advanced microstructure of boron carbide.

    Science.gov (United States)

    Werheit, Helmut; Shalamberidze, Sulkhan

    2012-09-26

    The rhombohedral elementary cell of the complex boron carbide structure is composed of B(12) or B(11)C icosahedra and CBC, CBB or B□B (□, vacancy) linear arrangements, whose shares vary depending on the actual chemical compound. The evaluation of the IR phonon spectra of isotopically pure boron carbide yields the quantitative concentrations of these components within the homogeneity range. The structure formula of B(4.3)C at the carbon-rich limit of the homogeneity range is (B(11)C) (CBC)(0.91) (B□B)(0.09) (□, vacancy); and the actual structure formula of B(13)C(2) is (B(12))(0.5)(B(11)C)(0.5)(CBC)(0.65)(CBB)(0.16) (B□B)(0.19), and deviates fundamentally from (B(12))CBC, predicted by theory to be the energetically most favourable structure of boron carbide. In reality, it is the most distorted structure in the homogeneity range. The spectra of (nat)B(x)C make it evident that boron isotopes are not randomly distributed in the structure. However, doping with 2% silicon brings about a random distribution.

  10. Method to manufacture tungsten carbide

    International Nuclear Information System (INIS)

    The patent deals with an improved method of manufacturing tungsten carbide. An oxide is preferably used as initial product whose particle size and effective surface approximately corresponds to that of the endproduct. The known methods for preparing the oxide are briefly given. Carbon monoxide is passed over the thus obtained oxide particles whereby the reaction mixture is heated to a temperature at which tungsten oxide and carbon monoxide react and tungsten carbide is formed, however, below that temperature at which the tungsten-containing materials are caked or sintered together. According to the method the reaction temperature is about below 9000C. The tungsten carbide produced has a particle size of under approximately 100 A and an active surface of about 20 m2/g. It has sofar not been possible with the usual methods to obtain such finely divided material with such a large surface. These particles may be converted back to the oxide by heating in air at low temperature without changing particle size and effective surface. One thus obtains a tungsten oxide with smaller particle size and larger effective surface than the initial product. (IHOE)

  11. The structure, properties and performance of plasma-sprayed beryllium for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Stanek, P.W.; Elliott, K.E. [and others

    1995-09-01

    Plasma-spray technology is under investigation as a method for producing high thermal conductivity beryllium coatings for use in magnetic fusion applications. Recent investigations have focused on optimizing the plasma-spray process for depositing beryllium coatings on damaged beryllium surfaces. Of particular interest has been optimizing the processing parameters to maximize the through-thickness thermal conductivity of the beryllium coatings. Experimental results will be reported on the use of secondary H{sub 2} gas additions to improve the melting of the beryllium powder and transferred-arc cleaning to improve the bonding between the beryllium coatings and the underlying surface. Information will also be presented on thermal fatigue tests which were done on beryllium coated ISX-B beryllium limiter tiles using 10 sec cycle times with 60 sec cooldowns and an International Thermonuclear Experimental Reactor (ITER) relevant divertor heat flux slightly in excess of 5 MW/m{sup 2}.

  12. Controlling Beryllium Contaminated Material And Equipment For The Building 9201-5 Legacy Material Disposition Project

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, T. D.; Easterling, S. D.

    2010-10-01

    This position paper addresses the management of beryllium contamination on legacy waste. The goal of the beryllium management program is to protect human health and the environment by preventing the release of beryllium through controlling surface contamination. Studies have shown by controlling beryllium surface contamination, potential airborne contamination is reduced or eliminated. Although there are areas in Building 9201-5 that are contaminated with radioactive materials and mercury, only beryllium contamination is addressed in this management plan. The overall goal of this initiative is the compliant packaging and disposal of beryllium waste from the 9201-5 Legacy Material Removal (LMR) Project to ensure that beryllium surface contamination and any potential airborne release of beryllium is controlled to levels as low as practicable in accordance with 10 CFR 850.25.

  13. Validation of cleaning method for various parts fabricated at a Beryllium facility

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Cynthia M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-15

    This study evaluated and documented a cleaning process that is used to clean parts that are fabricated at a beryllium facility at Los Alamos National Laboratory. The purpose of evaluating this cleaning process was to validate and approve it for future use to assure beryllium surface levels are below the Department of Energy’s release limits without the need to sample all parts leaving the facility. Inhaling or coming in contact with beryllium can cause an immune response that can result in an individual becoming sensitized to beryllium, which can then lead to a disease of the lungs called chronic beryllium disease, and possibly lung cancer. Thirty aluminum and thirty stainless steel parts were fabricated on a lathe in the beryllium facility, as well as thirty-two beryllium parts, for the purpose of testing a parts cleaning method that involved the use of ultrasonic cleaners. A cleaning method was created, documented, validated, and approved, to reduce beryllium contamination.

  14. Beryllium processing technology review for applications in plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Jacobson, L.A.; Stanek, P.W.

    1993-07-01

    Materials research and development activities for the International Thermonuclear Experimental Reactor (ITER), i.e., the next generation fusion reactor, are investigating beryllium as the first-wall containment material for the reactor. Important in the selection of beryllium is the ability to process, fabricate and repair beryllium first-wall components using existing technologies. Two issues that will need to be addressed during the engineering design activity will be the bonding of beryllium tiles in high-heat-flux areas of the reactor, and the in situ repair of damaged beryllium tiles. The following review summarizes the current technology associated with welding and joining of beryllium to itself and other materials, and the state-of-the-art in plasma-spray technology as an in situ repair technique for damaged beryllium tiles. In addition, a review of the current status of beryllium technology in the former Soviet Union is also included.

  15. Erosion of beryllium under ITER – Relevant transient plasma loads

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B., E-mail: igkupr@gmail.com [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Nikolaev, G.N.; Kurbatova, L.A.; Porezanov, N.P. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Rogova St. 5a, 123060 Moscow (Russian Federation); Podkovyrov, V.L.; Muzichenko, A.D.; Zhitlukhin, A.M. [TRINITI, Troitsk, Moscow reg. (Russian Federation); Gervash, A.A. [Efremov Research Institute, S-Peterburg (Russian Federation); Safronov, V.M. [Project Center of ITER, Moscow (Russian Federation)

    2015-08-15

    Highlights: • We study the erosion, mass loss/gain and surface structure evolution of Be/CuCrZr mock-ups, armored with beryllium of TGP-56FW grade after irradiation by deuterium plasma heat load of 0.5 MJ/m{sup 2} at 250 °C and 500 °C. • Beryllium mass loss/erosion under plasma heat load at 250 °C is rather small (no more than 0.2 g/m{sup 2} shot and 0.11 μm/shot, correspondingly, after 40 shots) and tends to decrease with increasing number of shots. • Beryllium mass loss/erosion under plasma heat load at 500 °C is much higher (∼2.3 g/m{sup 2} shot and 1.2 μm/shot, correspondingly, after 10 shot) and tends to decrease with increasing the number of shots (∼0.26 g/m{sup 2} pulse and 0.14 μm/shot, correspondingly, after 100 shot). • Beryllium erosion value derived from the measurements of profile of irradiated surface is much higher than erosion value derived from mass loss data. - Abstract: Beryllium will be used as a armor material for the ITER first wall. It is expected that erosion of beryllium under transient plasma loads such as the edge-localized modes (ELMs) and disruptions will mainly determine a lifetime of the ITER first wall. This paper presents the results of recent experiments with the Russian beryllium of TGP-56FW ITER grade on QSPA-Be plasma gun facility. The Be/CuCrZr mock-ups were exposed to up to 100 shots by deuterium plasma streams (5 cm in diameter) with pulse duration of 0.5 ms and heat loads range of 0.2–0.5 MJ/m{sup 2} at different temperature of beryllium tiles. The temperature of Be tiles has been maintained about 250 and 500 °C during the experiments. After 10, 40 and 100 shots, the beryllium mass loss/gain under erosion process were investigated as well as evolution of surface microstructure and cracks morphology.

  16. A Report on the Validation of Beryllium Strength Models

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Derek Elswick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-05

    This report discusses work on validating beryllium strength models with flyer plate and Taylor rod experimental data. Strength models are calibrated with Hopkinson bar and quasi-static data. The Hopkinson bar data for beryllium provides strain rates up to about 4000 per second. A limitation of the Hopkinson bar data for beryllium is that it only provides information on strain up to about 0.15. The lack of high strain data at high strain rates makes it difficult to distinguish between various strength model settings. The PTW model has been calibrated many different times over the last 12 years. The lack of high strain data for high strain rates has resulted in these calibrated PTW models for beryllium exhibiting significantly different behavior when extrapolated to high strain. For beryllium, the α parameter of PTW has recently been calibrated to high precision shear modulus data. In the past the α value for beryllium was set based on expert judgment. The new α value for beryllium was used in a calibration of the beryllium PTW model by Sky Sjue. The calibration by Sjue used EOS table information to model the temperature dependence of the heat capacity. Also, the calibration by Sjue used EOS table information to model the density changes of the beryllium sample during the Hopkinson bar and quasi-static experiments. In this paper, the calibrated PTW model by Sjue is compared against experimental data and other strength models. The other strength models being considered are a PTW model calibrated by Shuh- Rong Chen and a Steinberg-Guinan type model by John Pedicini. The three strength models are used in a comparison against flyer plate and Taylor rod data. The results show that the Chen PTW model provides better agreement to this data. The Chen PTW model settings have been previously adjusted to provide a better fit to flyer plate data, whereas the Sjue PTW model has not been changed based on flyer plate data. However, the Sjue model provides a reasonable fit to

  17. The results of medical surveillance of beryllium production personnel

    International Nuclear Information System (INIS)

    The report presents results of surveillance of 1836 workers of beryllium production of Ulba Metallurgical Plant JSC with the acute and chronic forms of occupation diseases for 52 years of its operation. The dependence of acute and chronic occupation lesions on the protection degree is shown. It has been found out that, the risk of getting an occupation disease increases sharply at the moments of experimental works and at the time of reconstruction and some other extreme conditions in the production, that is supported by fixed lesions of eye mucous coat, skin and lung lesions. In this case, the readiness of people for their work in deleterious conditions and their personal responsibility for following the regulations of safety occupational standards plays a definite role. Therefore, the issues of protection are of paramount importance in prophylaxis both of acute and chronic exposure to beryllium. An influence of duration of service and occupation on chronic beryllium diseases is shown. A parallel between the lung beryllium disease and skin lesions by insoluble beryllium compounds is drawn for the first time. (author)

  18. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    International Nuclear Information System (INIS)

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers

  19. Report of a technical evaluation panel on the use of beryllium for ITER plasma facing material and blanket breeder material

    Energy Technology Data Exchange (ETDEWEB)

    Ulrickson, M.A. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Manly, W.D. [Oak Ridge National Lab., TN (United States); Dombrowski, D.E. [Brush Wellman, Inc., Cleveland, OH (United States)] [and others

    1995-08-01

    Beryllium because of its low atomic number and high thermal conductivity, is a candidate for both ITER first wall and divertor surfaces. This study addresses the following: why beryllium; design requirements for the ITER divertor; beryllium supply and unirradiated physical/mechanical property database; effects of irradiation on beryllium properties; tritium issues; beryllium health and safety; beryllium-coolant interactions and safety; thermal and mechanical tests; plasma erosion of beryllium; recommended beryllium grades for ITER plasma facing components; proposed manufacturing methods to produce beryllium parts for ITER; emerging beryllium materials; proposed inspection and maintenance techniques for beryllium components and coatings; time table and costs; and the importance of integrating materials and manufacturing personnel with designers.

  20. Structural prediction for scandium carbide monolayer sheet

    Science.gov (United States)

    Ma, Hong-Man; Wang, Jing; Zhao, Hui-Yan; Zhang, Dong-Bo; Liu, Ying

    2016-09-01

    A two-dimensional tetragonal scandium carbide monolayer sheet has been constructed and studied using density functional theory. The results show that the scandium carbide sheet is stable and exhibits a novel tetracoordinated quasiplanar structure, as favored by the hybridization between Sc-3d orbitals and C-2p orbitals. Calculations of the phonon dispersion as well as molecular dynamics simulations also demonstrate the structural stability of this scandium carbide monolayer sheet. Electronic properties show that the scandium carbide monolayer sheet is metallic and non-magnetic.

  1. Methods for producing silicon carbide fibers

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  2. Silicon carbide fibers and articles including same

    Science.gov (United States)

    Garnier, John E; Griffith, George W

    2015-01-27

    Methods of producing silicon carbide fibers. The method comprises reacting a continuous carbon fiber material and a silicon-containing gas in a reaction chamber at a temperature ranging from approximately 1500.degree. C. to approximately 2000.degree. C. A partial pressure of oxygen in the reaction chamber is maintained at less than approximately 1.01.times.10.sup.2 Pascal to produce continuous alpha silicon carbide fibers. Continuous alpha silicon carbide fibers and articles formed from the continuous alpha silicon carbide fibers are also disclosed.

  3. Polytype distribution in circumstellar silicon carbide.

    Science.gov (United States)

    Daulton, T L; Bernatowicz, T J; Lewis, R S; Messenger, S; Stadermann, F J; Amari, S

    2002-06-01

    The inferred crystallographic class of circumstellar silicon carbide based on astronomical infrared spectra is controversial. We have directly determined the polytype distribution of circumstellar SiC from transmission electron microscopy of presolar silicon carbide from the Murchison carbonaceous meteorite. Only two polytypes (of a possible several hundred) were observed: cubic 3C and hexagonal 2H silicon carbide and their intergrowths. We conclude that this structural simplicity is a direct consequence of the low pressures in circumstellar outflows and the corresponding low silicon carbide condensation temperatures. PMID:12052956

  4. Experimental studies and modeling of processes of hydrogen isotopes interaction with beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Tazhibaeva, I.L.; Chikhray, Y.V.; Romanenko, O.G.; Klepikov, A.Kh.; Shestakov, V.P.; Kulsartov, T.V. [Science Research Inst. of Experimental and Theoretical Physics of Kazakh State Univ., Almaty (Kazakhstan); Kenzhin, E.A.

    1998-01-01

    The objective of this work was to clarify the surface beryllium oxide influence on hydrogen-beryllium interaction characteristics. Analysis of experimental data and modeling of processes of hydrogen isotopes accumulation, diffusion and release from neutron irradiated beryllium was used to achieve this purpose as well as the investigations of the changes of beryllium surface element composition being treated by H{sup +} and Ar{sup +} plasma glowing discharge. (author)

  5. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    This report on the control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is functioning effectively

  6. Estimation of beryllium ground state energy by Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Kabir, K. M. Ariful [Department of Physical Sciences, School of Engineering and Computer Science, Independent University, Bangladesh (IUB) Dhaka (Bangladesh); Halder, Amal [Department of Mathematics, University of Dhaka Dhaka (Bangladesh)

    2015-05-15

    Quantum Monte Carlo method represent a powerful and broadly applicable computational tool for finding very accurate solution of the stationary Schrödinger equation for atoms, molecules, solids and a variety of model systems. Using variational Monte Carlo method we have calculated the ground state energy of the Beryllium atom. Our calculation are based on using a modified four parameters trial wave function which leads to good result comparing with the few parameters trial wave functions presented before. Based on random Numbers we can generate a large sample of electron locations to estimate the ground state energy of Beryllium. Our calculation gives good estimation for the ground state energy of the Beryllium atom comparing with the corresponding exact data.

  7. Photochemical Behavior of Beryllium Complexes with Subporphyrazines and Subphthalocyanines.

    Science.gov (United States)

    Montero-Campillo, M Merced; Lamsabhi, Al Mokhtar; Mó, Otilia; Yáñez, Manuel

    2016-07-14

    Structures of beryllium subphthalocyanines and beryllium subporphyrazines complexes with different substituents are explored for the first time. Their photochemical properties are studied using time-dependent density functional theory calculations and compared to boron-related compounds for which their photochemical activity is already known. These beryllium compounds were found to be thermodynamically stable in a vacuum and present features similar to those of boron-containing analogues, although the nature of bonding between the cation and the macrocycle presents subtle differences. Most important contributions to the main peak in the Q-band region arise from HOMO to LUMO transitions in the case of subphthalocyanines and alkyl subporphyrazine complexes, whereas a mixture of that contribution and a HOMO-2 to LUMO contribution are present in the case of thioalkyl subporphyrazines. The absorption in the visible region could make these candidates suitable for photochemical devices if combined with appropriate donor groups. PMID:26812068

  8. Measurement of the ultracold neutron loss coefficient in beryllium powder

    International Nuclear Information System (INIS)

    The ultracold neutron (UCN) reflection from beryllium powder at different slab thicknesses and different packing densities is measured. The reduced UCN loss coefficient η=(1.75±0.35)x10-4 for thermally untreated beryllium is extracted from experimental data. The formerly obtained experimental results on UCN reflection from beryllium after high temperature annealing are reconsidered. The loss coefficient η at room temperature in this case is obtained to be (6.4±2.5)x10-5, which is an order of magnitude higher than the theoretical one. The extraction of the loss coefficient from the experimental data is based on the modified diffusion theory where albedo reflection depends on packing density

  9. Field-emission spectroscopy of beryllium atoms adsorbed on tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Czyzewski, J.J.; Grzesiak, W.; Krajniak, J. (Politechnika Wroclawska (Poland))

    1981-01-01

    Field emission energy distributions (FEED) have been measured for the beryllium-tungsten (023) adsorption system over the 78-450 K temperature range. A temperature dependence of the normalized half-width, ..delta../d, of FEED peaks changed significantly due to beryllium adsorption; and the curve, ..delta../d vs p, for the Be/W adsorption system was identical in character to the calculated curve based on the free electron model in contrast to the curve for the clean tungsten surface. In the last part of this paper Gadzuk's theory of the resonance-tunneling effect is applied to the beryllium atom on tungsten. Experimental and theoretical curves of the enhancement factor as a function of energy have been discussed.

  10. Force-field parameters for beryllium complexes in amorphous layers.

    Science.gov (United States)

    Emelyanova, Svetlana; Chashchikhin, Vladimir; Bagaturyants, Alexander

    2016-09-01

    Unknown force-field parameters for metal organic beryllium complexes used in emitting and electron transporting layers of OLED structures are determined. These parameters can be used for the predictive atomistic simulations of the structure and properties of amorphous organic layers containing beryllium complexes. The parameters are found for the AMBER force field using a relaxed scan procedure and quantum-mechanical DFT calculations of potential energy curves for specific internal (angular) coordinates in a series of three Be complexes (Bebq2; Be(4-mpp)2; Bepp2). The obtained parameters are verified in calculations of some molecular and crystal structures available from either quantum-mechanical DFT calculations or experimental data. Graphical Abstract Beryllium complexes in amorphous layersᅟ. PMID:27550375

  11. Monte Carlo uncertainty analyses for integral beryllium experiments

    CERN Document Server

    Fischer, U; Tsige-Tamirat, H

    2000-01-01

    The novel Monte Carlo technique for calculating point detector sensitivities has been applied to two representative beryllium transmission experiments with the objective to investigate the sensitivity of important responses such as the neutron multiplication and to assess the related uncertainties due to the underlying cross-section data uncertainties. As an important result, it has been revealed that the neutron multiplication power of beryllium can be predicted with good accuracy using state-of-the-art nuclear data evaluations. Severe discrepancies do exist for the spectral neutron flux distribution that would transmit into significant uncertainties of the calculated neutron spectra and of the nuclear blanket performance in blanket design calculations. With regard to this, it is suggested to re-analyse the secondary energy and angle distribution data of beryllium by means of Monte Carlo based sensitivity and uncertainty calculations. Related code development work is underway.

  12. Neutron irradiation behavior of ITER candidate beryllium grades

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [A.A.Bochvar All-Russia Scientific Research Inst. of Inorganic Materials (VNIINM), Moscow (Russian Federation); Melder, R.R.; Ostrovsky, Z.E.

    1998-01-01

    Beryllium is one of the main candidate materials both for the neutron multiplier in a solid breeding blanket and for the plasma facing components. That is why its behaviour under the typical for fusion reactor loading, in particular, under the neutron irradiation is of a great importance. This paper presents mechanical properties, swelling and microstructure of six beryllium grades (DshG-200, TR-30, TshG-56, TRR, TE-30, TIP-30) fabricated by VNIINM, Russia and also one - (S-65) fabricated by Brush Wellman, USA. The average grain size of the beryllium grades varied from 8 to 25 {mu}m, beryllium oxide content was 0.8-3.2 wt. %, initial tensile strength was 250-680 MPa. All the samples were irradiated in active zone of SM-3 reactor up to the fast neutron fluence (5.5-6.2) {center_dot} 10{sup 21} cm{sup -2} (2.7-3.0 dpa, helium content up to 1150 appm), E > 0.1 MeV at two temperature ranges: T{sub 1} = 130-180degC and T{sub 2} = 650-700degC. After irradiation at 130-180degC no changes in samples dimensions were revealed. After irradiation at 650-700degC swelling of the materials was found to be in the range 0.1-2.1 %. Beryllium grades TR-30 and TRR, having the smallest grain size and highest beryllium oxide content, demonstrated minimal swelling, which was no more than 0.1 % at 650-700degC and fluence 5.5 {center_dot} 10{sup 21} cm{sup -2}. Tensile and compression test results and microstructure parameters measured before and after irradiation are also presented. (author)

  13. Dispersion of boron carbide in a tungsten carbide/cobalt matrix

    International Nuclear Information System (INIS)

    Particles of boron carbide (105-125 microns) were coated with a layer (10-12 microns) of titanium carbide in a fluidized bed. These coated particles have been successfully incorporated in a tungsten carbide--cobalt matrix by hot pressing at 1 tonf/in2, (15.44 MN/m2) at 13500C. Attempts to produce a similar material by a cold pressing and sintering technique were unsuccessful because of penetration of the titanium carbide layer by liquid cobalt. Hot-pressed material containing boron carbide had a static strength in bend of approximately 175,000 lbf/in2, (1206MN/m2) which compares favorably with the strength of conventionally produced tungsten carbide/cobalt. The impact strength of the material containing boron carbide was however considerably lower than tungsten carbide/cobalt. In rock drilling tests on Darley Dale sandstone at low speeds and low loads, the material containing boron carbide drilled almost ten times as far without seizure as tungsten carbide/cobalt. In higher speed and higher load rotary drilling tests conducted by the National Coal Board, the material containing boron carbide chipped badly compared with normal NCB hardgrade material

  14. CHAPTER 7. BERYLLIUM ANALYSIS BY NON-PLASMA BASED METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Ekechukwu, A

    2009-04-20

    The most common method of analysis for beryllium is inductively coupled plasma atomic emission spectrometry (ICP-AES). This method, along with inductively coupled plasma mass spectrometry (ICP-MS), is discussed in Chapter 6. However, other methods exist and have been used for different applications. These methods include spectroscopic, chromatographic, colorimetric, and electrochemical. This chapter provides an overview of beryllium analysis methods other than plasma spectrometry (inductively coupled plasma atomic emission spectrometry or mass spectrometry). The basic methods, detection limits and interferences are described. Specific applications from the literature are also presented.

  15. Boron carbide whiskers produced by vapor deposition

    Science.gov (United States)

    1965-01-01

    Boron carbide whiskers have an excellent combination of properties for use as a reinforcement material. They are produced by vaporizing boron carbide powder and condensing the vapors on a substrate. Certain catalysts promote the growth rate and size of the whiskers.

  16. Hydroxide catalysis bonding of silicon carbide

    NARCIS (Netherlands)

    Veggel, A.A. van; Ende, D.A. van den; Bogenstahl, J.; Rowan, S.; Cunningham, W.; Gubbels, G.H.M.; Nijmeijer, H.

    2008-01-01

    For bonding silicon carbide optics, which require extreme stability, hydroxide catalysis bonding is considered [Rowan, S., Hough, J. and Elliffe, E., Silicon carbide bonding. UK Patent 040 7953.9, 2004. Please contact Mr. D. Whiteford for further information: D.Whiteford@admin.gla.ac.uk]. This techn

  17. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.;

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  18. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    Science.gov (United States)

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks. PMID:26327570

  19. An investigation on gamma attenuation behaviour of titanium diboride reinforced boron carbide-silicon carbide composites

    Science.gov (United States)

    Buyuk, Bulent; Beril Tugrul, A.

    2014-04-01

    In this study, titanium diboride (TiB2) reinforced boron carbide-silicon carbide composites were investigated against Cs-137 and Co-60 gamma radioisotope sources. The composite materials include 70% boron carbide (B4C) and 30% silicon carbide (SiC) by volume. Titanium diboride was reinforced to boron carbide-silicon carbide composites as additive 2% and 4% by volume. Average particle sizes were 3.851 µm and 170 nm for titanium diboride which were reinforced to the boron carbide silicon carbide composites. In the experiments the gamma transmission technique was used to investigate the gamma attenuation properties of the composite materials. Linear and mass attenuation coefficients of the samples were determined. Theoretical mass attenuation coefficients were calculated from XCOM computer code. The experimental results and theoretical results were compared and evaluated with each other. It could be said that increasing the titanium diboride ratio causes higher linear attenuation values against Cs-137 and Co-60 gamma radioisotope sources. In addition decreasing the titanium diboride particle size also increases the linear and mass attenuation properties of the titanium diboride reinforced boron carbide-silicon carbide composites.

  20. Some features of beryllium corrosion behavior in Be-liquid Li-V-4Ti-4Cr alloy system

    International Nuclear Information System (INIS)

    Recent experimental results on beryllium corrosion behavior in a V-4Ti-4Cr alloy, liquid lithium static system during testing for 200-500 h at temperatures from 600 to 800 deg. C are presented. The influence of test conditions (temperature, duration and lithium purity) and beryllium characteristics (microstructure, grain size and chemical composition) on weight loss of beryllium and penetration of lithium into beryllium are discussed. Results of compressive tests for beryllium specimens before and after corrosion testing are also introduced

  1. TEM study of impurity segregations in beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Klimenkov, M., E-mail: michael.klimenkov@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Chakin, V.; Moeslang, A. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2014-12-15

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  2. Beryllium Wipe Sampling (differing methods - differing exposure potentials)

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, Kent

    2005-03-09

    This research compared three wipe sampling techniques currently used to test for beryllium contamination on room and equipment surfaces in Department of Energy facilities. Efficiencies of removal of beryllium contamination from typical painted surfaces were tested by wipe sampling without a wetting agent, with water-moistened wipe materials, and by methanol-moistened wipes. Analysis indicated that methanol-moistened wipe sampling removed about twice as much beryllium/oil-film surface contamination as water-moistened wipes, which removed about twice as much residue as dry wipes. Criteria at 10 CFR 850.30 and .31 were established on unspecified wipe sampling method(s). The results of this study reveal a need to identify criteria-setting method and equivalency factors. As facilities change wipe sampling methods among the three compared in this study, these results may be useful for approximate correlations. Accurate decontamination decision-making depends on the selection of appropriate wetting agents for the types of residues and surfaces. Evidence for beryllium sensitization via skin exposure argues in favor of wipe sampling with wetting agents that provide enhanced removal efficiency such as methanol when surface contamination includes oil mist residue.

  3. TEM study of impurity segregations in beryllium pebbles

    Science.gov (United States)

    Klimenkov, M.; Chakin, V.; Moeslang, A.; Rolli, R.

    2014-12-01

    Beryllium is planned to be used as a neutron multiplier in the Helium-cooled Pebble Bed European concept of a breeding blanket of demonstration power reactor DEMO. In order to evaluate the irradiation performance, individual pebbles and constrained pebble beds were neutron-irradiated at temperatures typical of fusion blankets. Beryllium pebbles 1 mm in diameter produced by the rotating electrode method were subjected to a TEM study before and after irradiation at High Flux Reactor, Petten, Netherlands at 861 K. The grain size varied in a wide range from sub-micron size up to several tens of micrometers, which indicated formation bimodal grain size distribution. Based on the application of combined electron energy loss spectroscopy and energy dispersive X-ray spectroscopy methods, we suggest that impurity precipitates play an important role in controlling the mechanical properties of beryllium. The impurity elements were present in beryllium at a sub-percent concentration form beryllide particles of a complex (Fe/Al/Mn/Cr)B composition. These particles are often ordered along dislocations lines, forming several micron-long chains. It can be suggested that fracture surfaces often extended along these chains in irradiated material.

  4. Codeposition of deuterium ions with beryllium oxide at elevated temperatures

    CERN Document Server

    Markin, A V; Gorodetsky, A E; Negodaev, M A; Rozhanskii, N V; Scaffidi-Argentina, F; Werle, H; Wu, C H; Zalavutdinov, R K; Zakharov, A P

    2000-01-01

    Deuterium-loaded BeO films were produced by sputtering the beryllium target with 10 keV Ne ions in D sub 2 gas at a pressure of approximately 1 Pa. The sputtered beryllium reacts - on the substrate surface - with the residual oxygen, thus forming a beryllium oxide layer. Biasing the substrate negatively with respect to the target provides the simultaneous bombardment of the growing film surface with D ions formed by Ne-D sub 2 collisions. Substrate potential governs the maximum energy of ions striking the growing film surface while its size governs the flux density. According to X-ray photoelectron spectroscopy (XPS), electron probe microanalysis (EPMA) and reflection high energy electron diffraction (RHEED) data, the beryllium is deposited in the form of polycrystalline hcp-BeO layers with negligible (about 1 at.%) carbon and neon retention. Thermal desorption spectroscopy (TDS) data shows a strong deuterium bonding, with a desorption peak at 950 K, in the films deposited at -50 and -400 V substrate potentia...

  5. Beryllium abundances in stars with planets:Extending the sample

    CERN Document Server

    Gálvez-Ortiz, M C; Hernández, J I González; Israelian, G; Santos, N C; Rebolo, R; Ecuvillon, A

    2011-01-01

    Context: Chemical abundances of light elements as beryllium in planet-host stars allow us to study the planet formation scenarios and/or investigate possible surface pollution processes. Aims: We present here an extension of previous beryllium abundance studies. The complete sample consists of 70 stars hosting planets and 30 stars without known planetary companions. The aim of this paper is to further assess the trends found in previous studies with less number of objects. This will provide more information on the processes of depletion and mixing of light elements in the interior of late type stars, and will provide possible explanations for the abundance differences between stars that host planets and "single" stars. Methods: Using high resolution UVES spectra, we measure beryllium abundances of 26 stars that host planets and 1 "single" star mainly using the \\lambda 3131.065 A Be II line, by fitting synthetic spectra to the observational data. We also compile beryllium abundance measurements of 44 stars hos...

  6. Fluorometric determination of beryllium with 2-(o-hydroxylphenyl)benzoxazole

    Energy Technology Data Exchange (ETDEWEB)

    Gladilovich, D.B.; Stolyarov, K.P.

    1985-09-01

    According to the authors, of great interest for the fluorometric determination of small quantities of beryllium is 2-(o-hydroxyphenyl)benzthiazole (HPBT). In this work, 2-(o-hydroxyphenyl)benzoaxzole (HPBO), which is an analog of HPBT and differs from it in that the sulfur atom in the heterocyclic portion of the molecule is replaced by an oxygen atom, is proposed as a reagent for the fluorometric determination of beryllium. The fluorescent reaction of HPBO with beryllium is studied in this paper, in addition to the selection of the optimum conditions for the determination and the development of a procedure for the analysis of complex objects on this basis. The reaction proceeds in aqueous ethanol medium at pH 7.2-7.5. The limit of detection is 0.6 ng/ml. Methods have been developed for the determination of 10/sup -2/% beryllium in alloys based on copper and 10/sup -3/-10/sup -4/% in standard samples of silicate rocks.

  7. The uses and adverse effects of beryllium on health

    DEFF Research Database (Denmark)

    Cooper, Ross G.; Harrison, Adrian Paul

    2009-01-01

    in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were...

  8. The uses and adverse effects of beryllium on health

    Directory of Open Access Journals (Sweden)

    Cooper Ross

    2009-01-01

    Full Text Available Context: This review describes the health effects of beryllium exposure in the workplace and the environment. Aim: To collate information on the consequences of occupational and environmental exposure to beryllium on physiological function and well being. Materials and Methods: The criteria used in the current review for selecting articles were adopted from proposed criteria in The International Classification of Functioning, Disability, and Health. Articles were classified based on acute and chronic exposure and toxicity of beryllium. Results: The proportions of utilized and nonutilized articles were tabulated. Years 2001-10 gave the greatest match (45.9% for methodological parameters, followed by 27.71% for 1991-2000. Years 1971-80 and 1981-90 were not significantly different in the information published and available whereas years 1951-1960 showed a lack of suitable articles. Some articles were published in sources unobtainable through requests at the British Library, and some had no impact factor and were excluded. Conclusion: Beryllium has some useful but undoubtedly harmful effects on health and well-being. Measures need to be taken to prevent hazardous exposure to this element, making its biological monitoring in the workplace essential.

  9. Extraction of lead and beryllium from a firing site soil

    International Nuclear Information System (INIS)

    The Dual Axis Radiographic Hydrodynamic Test (DARHT) program is being implemented at LANL to conduct tests for evaluating the stability of the nation's aging nuclear stockpile. In order to reduce impact on the environment, containment of the non-fissile explosives tests is being phased in. The resulting shot debris can contain a mix of depleted uranium, lead, and beryllium. We are developing a treatment scheme to separate the radioactive and RCRA-hazardous components in order to recover the uranium, re-use some materials in future shots, and minimize waste for disposal. Our experience using a proprietary water soluble polymer to extract lead from contaminated soil to below TCLP levels has been extended to a surrogate soil from an open-air firing site that contains both lead and beryllium. Results for lead removal from this soil by dendrimers and molecular chelators will also be shown. Because of the potentially severe inhalation hazard associated with beryllium, the fate of this metal in our treatment scheme has been investigated, as well as extraction of beryllium using a variety of chemical agents

  10. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  11. Hanford Site Beryllium Program: Past, Present, and Future - 12428

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE) has a long history of beryllium use because of the element's broad application to many nuclear operations and processes. At the Hanford Site beryllium alloy was used to fabricate parts for reactors, including fuel rods for the N-Reactor during plutonium production. Because of continued confirmed cases of chronic beryllium disease (CBD), and data suggesting CBD occurs at exposures to low-level concentrations, the DOE decided to issue a rule to further protect federal and contractor workers from hazards associated with exposure to beryllium. When the beryllium rule was issued in 1999, each of the Hanford Site contractors developed a Chronic Beryllium Disease Prevention Program (CBDPP) and initial site wide beryllium inventories. A new site-wide CBDPP, applicable to all Hanford contractors, was issued in May, 2009. In the spring of 2010 the DOE Headquarters Office of Health, Safety, and Security (HSS) conducted an independent inspection to evaluate the status of implementation of the Hanford Site Chronic Beryllium Disease Prevention Program (CBDPP). The report identified four Findings and 12 cross-cutting Opportunities for Improvement (OFIs). A corrective action plan (CAP) was developed to address the Findings and crosscutting OFIs. The DOE directed affected site contractors to identify dedicated resources to participate in development of the CAP, along with involving stakeholders. The CAP included general and contractor-specific recommendations. Following initiation of actions to implement the approved CAP, it became apparent that additional definition of product deliverables was necessary to assure that expectations were adequately addressed and CAP actions could be closed. Consequently, a supplement to the original CAP was prepared and transmitted to DOE-HQ for approval. Development of the supplemental CAP was an eight month effort. From the onset a core group of CAP development members were identified to develop a mechanism for

  12. Hydrothermal synthesis of xonotlite from carbide slag

    Institute of Scientific and Technical Information of China (English)

    Jianxin Cao; Fei Liu; Qian Lin; Yu Zhang

    2008-01-01

    Carbide slag was used as the calcareous materials for the first time to prepare xonotlite via dynamic hydrothermal synthesis.The effects of influential factors including different calcination temperatures,pretreatment methods of the carbide slag and process param-eters of hydrothermal synthesis on the microstructure and morphology of xonotlite were explored using XRD and SEM techniques.The results indicate that the carbide slag after proper calcination could be used to prepare pure xonotlite;and different calcination tern-peratures have little effect on the crystallinity of synthesized xonotlitc,but have great impact on the morphology of secondary particles.The different pretreatment methods of the carbide slag pose great impact on the crystallinity and morphology of secondary particles of xonotlite.Xonotlite was also synthesized from pure CaO under the salne experimental conditions as that prepared from calcined carbide slag for comparison.Little amount of impurities in carbide slag has no effect on the mechanism of hydrothermal synthesizing xonotlite from carbide slag.

  13. Precipitating Mechanism of Carbide in Cold-Welding Surfacing Metals

    Institute of Scientific and Technical Information of China (English)

    Yuanbin ZHANG; Dengyi REN

    2004-01-01

    Carbides in a series of cold-welding weld metals were studied by means of SEM, TEM and EPMA, and the forming mechanism of carbide was proposed according to their distribution and morphology. Due to their different carbide-forming tendency, Nb and Ti could combine with C to form particulate carbide in liquid weld metal and depleted the carbon content in matrix, while V induced the carbide precipitated along grain boundary. But too much Nb or Ti alone resulted in coarse carbide and poor strengthened matrix. When suitable amount of Nb, Ti and V coexisted in weld metal, both uniformly distributed particulate carbide and well strengthened matrix could be achieved. It was proposed that the carbide nucleated on the oxide which dispersed in liquid weld metal, and then grew into multi-layer complex carbide particles by epitaxial growth. At different sites, carbide particles may present as different morphologies.

  14. Thermal Expansion of Hafnium Carbide

    Science.gov (United States)

    Grisaffe, Salvatore J.

    1960-01-01

    Since hafnium carbide (HfC) has a melting point of 7029 deg. F, it may have many high-temperature applications. A literature search uncovered very little information about the properties of HfC, and so a program was initiated at the Lewis Research Center to determine some of the physical properties of this material. This note presents the results of the thermal expansion investigation. The thermal-expansion measurements were made with a Gaertner dilatation interferometer calibrated to an accuracy of +/- 1 deg. F. This device indicates expansion by the movement of fringes produced by the cancellation and reinforcement of fixed wave-length light rays which are reflected from the surfaces of two parallel quartz glass disks. The test specimens which separate these disks are three small cones, each approximately 0.20 in. high.

  15. Fallout beryllium-7 as a soil and sediment tracer in river basins: current status and needs

    Science.gov (United States)

    Taylor, Alex; Blake, Will H.; Smith, Hugh G.; Mabit, Lionel; Keith-Roach, Miranda J.

    2013-04-01

    Beryllium-7 is a cosmogenic radionuclide formed in the upper atmosphere by cosmic ray spallation of nitrogen and oxygen. Its constant natural production and fallout via precipitation coupled with its ability to bind to soil particles have underpinned its application as a sediment tracer. The short half-life of beryllium-7 (53.3 days) lends itself to tracing sediment dynamics over short time periods, thus, enabling assessment of the effect of land use change upon soil redistribution. Although beryllium-7 has been widely applied as a tracer to date, there remain crucial gaps in understanding relating to the assumptions for its use. To further support the application of beryllium-7 as a tracer across a range of environments requires consideration of both the current strengths and shortcomings of the technique to direct research needs. Here we review research surrounding the assumptions underpinning beryllium-7 use as a tracer and identify key knowledge gaps relating to i) the effects of rain shadowing and vegetation interception upon beryllium-7 fallout uniformity at the hillslope-scale; ii) the effect of preferential flow pathways upon beryllium-7 depth distribution in soil and overland flow upon beryllium-7 inventory uniformity and iii) the potential for beryllium-7 desorption in saline and reducing environments. To provide continued support for the use of beryllium-7 as a hillslope and catchment-scale tracer, there is an urgent need to undertake further research to quantify the effect of these factors upon tracer estimates.

  16. Structural diversity in lithium carbides

    Science.gov (United States)

    Lin, Yangzheng; Strobel, Timothy A.; Cohen, R. E.

    2015-12-01

    The lithium-carbon binary system possesses a broad range of chemical compounds, which exhibit fascinating chemical bonding characteristics, which give rise to diverse and technologically important properties. While lithium carbides with various compositions have been studied or suggested previously, the crystal structures of these compounds are far from well understood. In this work, we present the first comprehensive survey of all ground state (GS) structures of lithium carbides over a broad range of thermodynamic conditions, using ab initio density functional theory (DFT) crystal structure searching methods. Thorough searches were performed for 29 stoichiometries ranging from Li12C to LiC12 at 0 and 40 GPa. Based on formation enthalpies from optimized van der Waals density functional calculations, three thermodynamically stable phases (Li4C3 , Li2C2 , and LiC12) were identified at 0 GPa, and seven thermodynamically stable phases (Li8C , Li6C , Li4C , Li8C3 , Li2C , Li3C4 , and Li2C3 ) were predicted at 40 GPa. A rich diversity of carbon bonding, including monomers, dimers, trimers, nanoribbons, sheets, and frameworks, was found within these structures, and the dimensionality of carbon connectivity existing within each phase increases with increasing carbon concentration. We find that the well-known composition LiC6 is actually a metastable one. We also find a unique coexistence of carbon monomers and dimers within the predicted thermodynamically stable phase Li8C3 , and different widths of carbon nanoribbons coexist in a metastable phase of Li2C2 (Imm2). Interesting mixed sp2-sp3 carbon frameworks are predicted in metastable phases with composition LiC6.

  17. Stabilization of boron carbide via silicon doping.

    Science.gov (United States)

    Proctor, J E; Bhakhri, V; Hao, R; Prior, T J; Scheler, T; Gregoryanz, E; Chhowalla, M; Giulani, F

    2015-01-14

    Boron carbide is one of the lightest and hardest ceramics, but its applications are limited by its poor stability against a partial phase separation into separate boron and carbon. Phase separation is observed under high non-hydrostatic stress (both static and dynamic), resulting in amorphization. The phase separation is thought to occur in just one of the many naturally occurring polytypes in the material, and this raises the possibility of doping the boron carbide to eliminate this polytype. In this work, we have synthesized boron carbide doped with silicon. We have conducted a series of characterizations (transmission electron microscopy, scanning electron microscopy, Raman spectroscopy and x-ray diffraction) on pure and silicon-doped boron carbide following static compression to 50 GPa non-hydrostatic pressure. We find that the level of amorphization under static non-hydrostatic pressure is drastically reduced by the silicon doping.

  18. Electroextraction of boron from boron carbide scrap

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ashish [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Anthonysamy, S., E-mail: sas@igcar.gov.in [Chemistry Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ghosh, C. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Ravindran, T.R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); Divakar, R.; Mohandas, E. [Physical Metallurgy Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India)

    2013-10-15

    Studies were carried out to extract elemental boron from boron carbide scrap. The physicochemical nature of boron obtained through this process was examined by characterizing its chemical purity, specific surface area, size distribution of particles and X-ray crystallite size. The microstructural characteristics of the extracted boron powder were analyzed by using scanning electron microscopy and transmission electron microscopy. Raman spectroscopic examination of boron powder was also carried out to determine its crystalline form. Oxygen and carbon were found to be the major impurities in boron. Boron powder of purity ∼ 92 wt. % could be produced by the electroextraction process developed in this study. Optimized method could be used for the recovery of enriched boron ({sup 10}B > 20 at. %) from boron carbide scrap generated during the production of boron carbide. - Highlights: • Recovery of {sup 10}B from nuclear grade boron carbide scrap • Development of process flow sheet • Physicochemical characterization of electroextracted boron • Microscopic examination of electroextracted boron.

  19. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 oC. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  20. High temperature thermoelectric properties of boron carbide

    International Nuclear Information System (INIS)

    Boron carbides are refractory solids with potential for application as very high temperature p-type thermoelectrics in power conversion applications. The thermoelectric properties of boron carbides are unconventional. In particular, the electrical conductivity is consistent with the thermally activated hopping of a high density (∼1021/cm3) of bipolarons; the Seebeck coefficient is anomalously large and increases with increasing temperature; and the thermal conductivity is surprisingly low. In this paper, these unusual properties and their relationship to the unusual structure and bonding present in boron carbides are reviewed. Finally, the potential for utilization of boron carbides at very high temperatures (up to 2200 degrees C) and for preparing n-type materials is discussed

  1. Calcium carbide poisoning via food in childhood.

    Science.gov (United States)

    Per, Hüseyin; Kurtoğlu, Selim; Yağmur, Fatih; Gümüş, Hakan; Kumandaş, Sefer; Poyrazoğlu, M Hakan

    2007-02-01

    The fast ripening of fruits means they may contain various harmful properties. A commonly used agent in the ripening process is calcium carbide, a material most commonly used for welding purposes. Calcium carbide treatment of food is extremely hazardous because it contains traces of arsenic and phosphorous. Once dissolved in water, the carbide produces acetylene gas. Acetylene gas may affect the neurological system by inducing prolonged hypoxia. The findings are headache, dizziness, mood disturbances, sleepiness, mental confusion, memory loss, cerebral edema and seizures. We report the case of a previously healthy 5 year-old girl with no chronic disease history who was transferred to our Emergency Department with an 8-h history of coma and delirium. A careful history from her father revealed that the patient ate unripe dates treated with calcium carbide.

  2. Ultrarapid microwave synthesis of superconducting refractory carbides

    International Nuclear Information System (INIS)

    Nb1-xTaxC Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; Tc correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  3. Selective etching of silicon carbide films

    Science.gov (United States)

    Gao, Di; Howe, Roger T.; Maboudian, Roya

    2006-12-19

    A method of etching silicon carbide using a nonmetallic mask layer. The method includes providing a silicon carbide substrate; forming a non-metallic mask layer by applying a layer of material on the substrate; patterning the mask layer to expose underlying areas of the substrate; and etching the underlying areas of the substrate with a plasma at a first rate, while etching the mask layer at a rate lower than the first rate.

  4. Beryllium coating produced by evaporation-condensation method and some their properties

    Energy Technology Data Exchange (ETDEWEB)

    Pepekin, G.I.; Anisimov, A.B.; Chernikov, A.S.; Mozherinn, S.I.; Pirogov, A.A. [SRI SIA Lutch., Podolsk (Russian Federation)

    1998-01-01

    The method of vacuum evaporation-condensation for deposition of beryllium coatings on metal substrates, considered in the paper, side by side with a plasma-spray method is attractive fon ITER application. In particular this technique may be useful for repair the surface of eroded tiles which is operated in a strong magnetic field. The possibility of deposition of beryllium coatings with the rate of layer growth 0.1-0.2 mm/h is shown. The compatibility of beryllium coating with copper or stainless steel substrate is provided due to intermediate barrier. The results of examination of microstructure, microhardness, porosity, thermal and physical properties and stability under thermal cycling of beryllium materials are presented. The value of thermal expansion coefficient and thermal conductivity of condensed beryllium are approximately the same as for industrial grade material produced by powder mettalurgy technique. However, the condensed beryllium has higher purity (up to 99.9-99.99 % wt.). (author)

  5. 5. IEA International workshop on beryllium technology for fusion. Book of abstracts

    International Nuclear Information System (INIS)

    The collection includes the abstracts of reports presented to the 5-th IEA international workshop on beryllium technology for fusion. The themes of reports are as follows: status of beryllium technology for fusion in Russia; manufacturing and testing of Be armoured first wall mock-up for ITER; development of the process of diffusion welding of metals stainless steel-copper-beryllium into a single composite; some features of beryllium-laser beam interaction; the effect of irradiation dose on tritium and helium release from neutron irradiated beryllium; thermal properties of neutron irradiated Be12Ti. The results of investigating the mechanical properties variation and swelling of beryllium under high temperature neutron irradiation are presented

  6. JET-ISX-B beryllium limiter experiment safety analysis report and operational safety requirements

    International Nuclear Information System (INIS)

    An experiment to evaluate the suitability of beryllium as a limiter material has been completed on the ISX-B tokamak. The experiment consisted of two phases: (1) the initial operation and characterization in the ISX experiment, and a period of continued operation to the specified surface fluence (1022 atoms/cm2) of hydrogen ions; and (2) the disassembly, decontamination, or disposal of the ISX facility. During these two phases of the project, the possibility existed for beryllium and/or beryllium oxide powder to be produced inside the vacuum vessel. Beryllium dust is a highly toxic material, and extensive precautions are required to prevent the release of the beryllium into the experimental work area and to prevent the contamination of personnel working on the device. Details of the health hazards associated with beryllium and the appropriate precautions are presented. Also described in appendixes to this report are the various operational safety requirements for the project

  7. Proceedings of the 8th specialist meeting on recycling of irradiated Beryllium

    International Nuclear Information System (INIS)

    This report summarizes the documents presented in the 8th Specialist Meeting on Recycling of Irradiated Beryllium, which was held on October 28, 2013, in Bariloche, Río Negro, Argentina, hosted by INVAP and CNEA (Comision Nacional de Energia Atomica). The objective of the meeting is to exchange the information of current status and future plan for beryllium study in the Research/Testing reactors, and to make a discussion of “How to cooperate”. There were 20 participants from USA, Japan, Korea, Austria and Argentina. In this meeting, information exchange of current status and future plan for beryllium study was carried out for the Research/Testing reactor fields, and evaluation results of beryllium materials were discussed based on new irradiated beryllium data such as swelling, deformation, gas release and so on. The subject of the used beryllium recycling was also discussed for the enforcement of demonstration recycling tests. (author)

  8. Effects of beryllium-compounds on the hen. 2. Comm

    International Nuclear Information System (INIS)

    After oral application of 7Be2+ this cation is relative slowly absorbed from the intestine. The highest proportion of 7Be appeared in the feces. The absorbed 7Be has been found in the feathers, the bones and in the muscles as well as in the mucosa of the stomach and the intestine. Relative low is the accumulation in the liver and the kidneys as well as in the brain and the spinal cord. After i.v. application a high proportion of 7Be has been observed in the eggs. The rest of the applied radio-beryllium has been accumulated 7Be in the metabolically active tissues is removed very slowly. In contrast to this observation radio-beryllium disappeared relatively rapidly from the blood. (orig.)

  9. Quantum-chemical approach to cohesive properties of metallic beryllium

    International Nuclear Information System (INIS)

    Calculations based upon the incremental approach, i.e. an expansion of the correlation energy in terms of one-body, two-body, and higher-order contributions from localized orbital groups, have been performed for metallic beryllium. We apply an embedding scheme which has been successfully applied recently to ground-state properties of magnesium and group 12 elements. This scheme forces localization in metallic-like model systems and allows for a gradual delocalization within the incremental approach. Quantum-chemical methods of the coupled-cluster and multi-reference configuration interaction type are used for evaluating individual increments. Results are given for the cohesive energy and lattice constants of beryllium, and it is shown that further development of the approach is needed for this difficult case

  10. Studies on extraction of beryllium from thiocyanate solutions by quaternary ammonium halides.

    Science.gov (United States)

    El-Yamani, I S; El-Messieh, E N

    A 0.4M tricaprylmethylammonium chloride solution in n-hexane was used for the quantitative extraction of beryllium from hydrochloric acid (pH 3) and 5M potassium thiocyanate. Beryllium was stripped from the organic phase with 1M sodium hydroxide, then determined volumetrically with bismuthyl perchlorate and bromocresol green indicator. Beryllium was extracted in presence of a large number of elements which are usually associated with it in beryl and in fission products of nuclear fuel.

  11. Dose Rates from Plutonium Metal and Beryllium Metal in a 9975 Shipping Container

    International Nuclear Information System (INIS)

    A parametric study was performed of the radiation dose rates that might be produced if plutonium metal and beryllium metal were shipped in the 9975 shipping package. These materials consist of heterogeneous combinations plutonium metal and beryllium. The plutonium metal content varies up to 4.4 kilograms while the beryllium metal varies up to 4 kilograms. This paper presents the results of that study

  12. Low-energy electronic stopping for boron in beryllium

    International Nuclear Information System (INIS)

    The range distribution for 50-keV boron bombarding beryllium was measured by an energetic ion-beam backscattering technique using helium ions. This distribution was compared with the range calculated with computer code EDEP1, with the result k 0.101 ± 0.013 for the electronic-stopping k-value. This value is compared with the results of recent interpolations from measurements of other elements. (author)

  13. Impact of HFIR LEU Conversion on Beryllium Reflector Degradation Factors

    Energy Technology Data Exchange (ETDEWEB)

    Ilas, Dan [ORNL

    2013-10-01

    An assessment of the impact of low enriched uranium (LEU) conversion on the factors that may cause the degradation of the beryllium reflector is performed for the High Flux Isotope Reactor (HFIR). The computational methods, models, and tools, comparisons with previous work, along with the results obtained are documented and discussed in this report. The report documents the results for the gas and neutronic poison production, and the heating in the beryllium reflector for both the highly enriched uranium (HEU) and LEU HFIR configurations, and discusses the impact that the conversion to LEU may have on these quantities. A time-averaging procedure was developed to calculate the isotopic (gas and poisons) production in reflector. The sensitivity of this approach to different approximations is gauged and documented. The results show that the gas is produced in the beryllium reflector at a total rate of 0.304 g/cycle for the HEU configuration; this rate increases by ~12% for the LEU case. The total tritium production rate in reflector is 0.098 g/cycle for the HEU core and approximately 11% higher for the LEU core. A significant increase (up to ~25%) in the neutronic poisons production in the reflector during the operation cycles is observed for the LEU core, compared to the HEU case, for regions close to the core s horizontal midplane. The poisoning level of the reflector may increase by more than two orders of magnitude during long periods of downtime. The heating rate in the reflector is estimated to be approximately 20% lower for the LEU core than for the HEU core. The decrease is due to a significantly lower contribution of the heating produced by the gamma radiation for the LEU core. Both the isotopic (gas and neutronic poisons) production and the heating rates are spatially non-uniform throughout the beryllium reflector volume. The maximum values typically occur in the removable reflector and close to the midplane.

  14. Presence of Beryllium (Be) in urban soils: human health risk

    Energy Technology Data Exchange (ETDEWEB)

    Pena, A.; Gonzalez, M. J.; Lobo, M. C.

    2009-07-01

    Berylium (Be) is, together with As, Cd, Hg, Pb and Ti, one of the trace elements more toxic for human being (Vaessen) and Szteke, 2000; Yaman and Avci, 2006), but in spite of the exponential increment of its applications during the last decades, surprisingly there isn't hardly information about its presence and environmental distribution. The aim of this work is to evaluate the presence of Beryllium in urban soils in Alcala de Henares, (Madrid Spain).

  15. Analysis of features of the deformation of auxetic beryllium

    OpenAIRE

    Гунько, Михаил Николаевич; Олейнич-Лысюк, Алла Васильевна; Раранский, Николай Дмитриевич; Тащук, Александр Юрьевич

    2015-01-01

    In the framework of the linear elasticity theory using the experimentally obtained elastic stiffness modules, temperature dependences of the elastic compliance modules and tensor components of Poisson's ratios    of beryllium in a wide range of temperatures and directions in the crystal lattice were calculated, and it was shown that with increasing temperature, the value and signs of Poisson's ratios  change differently in various temperature intervals. In the interval 0-300K,  become negativ...

  16. Beryllium, Lithium and Oxygen Abundances in F-type Stars

    CERN Document Server

    García-López, R J; Pérez de Taoro, M R; Casares, C; Rasilla, J L; Rebolo, R; Allende-Prieto, C

    1997-01-01

    Beryllium and oxygen abundances have been derived in a sample of F-type field stars for which lithium abundances had been measured previously, with the aim of obtaining observational constraints to discriminate between the different mixing mechanisms proposed. Mixing associated with the transport of angular momentum in the stellar interior and internal gravity waves within the framework of rotating evolutionary models, appear to be promising ways to explain the observations.

  17. Detail analysis of fusion neutronics benchmark experiment on beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Konno, Chikara, E-mail: konno.chikara@jaea.go.j [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Ochiai, Kentaro; Takakura, Kosuke; Ohnishi, Seiki; Kondo, Keitaro [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan); Wada, Masayuki [Japan Computer System, Mito-shi, Ibaraki-ken 310-0805 (Japan); Sato, Satoshi [Fusion Research and Development Directorate, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki-ken 319-1195 (Japan)

    2010-12-15

    Our previous analysis of the integral experiments (in situ and TOF experiments) on beryllium with DT neutrons at JAEA/FNS pointed out two problems by using MCNP4C and the latest nuclear data libraries; one was a strange larger neutron peak around 12 MeV appearing in the TOF experiment analysis with JEFF-3.1 and the other was an overestimation on law energy neutrons in the in situ experiment analyses with all the nuclear data libraries. We investigated reasons for these problems in detail. It was found out that the official ACE file MCJEFF3.1 of JEFF-3.1 had an inconsistency with the original JEFF-3.1, which caused the strange larger neutron peak around 12 MeV in the TOF experiment analysis. We also found out that the calculated thermal neutron peak was probably too large in the in situ experiment. On trial we examined influence of the thermal neutron scattering law data of beryllium metal in ENDF/B-VI. The result pointed out that the coherent elastic scattering cross-section data in the thermal neutron scattering law data of beryllium metal were probably too large.

  18. Electron microscope study of thin beryllium lamellae (1963)

    International Nuclear Information System (INIS)

    Thin SR beryllium lamellae are examined by electron microscopy after various treatments, together with other samples made up of Be - Fe at 1 per cent and 0.2 per cent iron. The SR beryllium is examined after annealing at 750 deg C and 900 deg C, strongly cold-worked and quenched at 900 deg C. At 950 deg C the metal is perfectly annealed; at 750 deg C the polygonisation is almost complete, the dislocations are arranged either is dislocation walls in the prismatic planes, or in hexagonal lattices with non-dissociated nodes suggesting a high stacking defect energy. The cold-worked structure has a high dislocation density and already existing crystal walls. In the quenched state, the few dislocations are very straight and are aligned in the crystallographic directions. Iron-precipitation is studied in two alloys during tempering at 660 deg after quenching in salt water. The precipitate appears at the grain boundaries and then spreads through the matrix leaving a depleted zone in the neighbourhood of the joints. These precipitates, in the form of platelets parallel to the base planes of the beryllium lattice have been identified as the inter metallic phase Be11 Fe oriented in relation to the matrix (0 0 0 1)//(0 0 0 1) (1 0 1-bar 0)//(1 1 2-bar 0). (authors)

  19. Elastic, micro- and macroplastic properties of polycrystalline beryllium

    Science.gov (United States)

    Kardashev, B. K.; Kupriyanov, I. B.

    2011-12-01

    The Young's modulus and the internal friction of beryllium polycrystals (size grain from 6 to 60 μm) prepared by the powder metallurgy method have been studied as functions of the amplitude and temperature in the range from 100 to 873 K. The measurements have been performed using the composite piezoelectric vibrator method for longitudinal vibrations at frequencies about 100 kHz. Based on the acoustic measurements, the data have been obtained on the elastic and inelastic (microplastic) properties as functions of vibration stress amplitudes within the limits from 0.2 to 30-60 MPa. The microplastic deformation diagram is shown to become nonlinear at the amplitudes higher than 5 MPa. The beryllium mechanical characteristics (the yield strength σ 0.2, the ultimate strength σ u , and the conventional microscopic yield strength σ y ) obtained with various grain sizes are compared. At room temperature, all the parameters satisfactorily obey the Hall-Petch relationship, although there is no complete similarity. The temperature dependences are quite different, namely: σ 0.2( T) and σ u ( T) decrease monotonically during heating from room temperature to higher temperatures; however, σ y ( T) behaves unusually, and it has a minimum near 400 K. The different levels of stresses and the absence of similarity indicate that the scattering of the ultrasound energy and the formation of a level of the macroscopic flow stresses in beryllium occur on dislocation motion obstacles of different origins.

  20. A diethylhydroxylaminate based mixed lithium/beryllium aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Raphael J.F. [Paris-Lodron Universitaet Salzburg (Austria). Fachbereich fuer Materialwissenschaften und Physik; Jana, Surajit [Asansol Girls College, West-Bengal (India). Dept. of Chemistry; Froehlich, Roland [Muenster Univ. (Germany). Organisch-Chemisches Inst.; Mitzel, Norbert W. [Bielefeld Univ. (Germany). Anorganische Chemie und Strukturchemie

    2015-07-01

    A mixed lithium/beryllium diethylhydroxylaminate compound containing {sup n}butyl beryllium units of total molecular composition {sup n}Be(ONEt{sub 2}){sub 2} [(LiONEt{sub 2}){sup 2} {sup n}BuBeONEt{sub 2}]{sub 2} (1) was isolated from a reaction mixture of {sup n}butyl lithium, N,N-diethylhydroxylamine and BeCl{sub 2} in diethylether/thf. The crystal structure of 1 has been determined by X-ray diffraction. The aggregate is composed of two ladder-type subunits connected in a beryllium-centered distorted tetrahedron of four oxygen atoms. Only the lithium atoms are engaged in coordination with the nitrogen donor atoms. The DFT calculations support the positional occupation determined for Li and Be in the crystal structure. The DFT and the solid-state structure are in excellent agreement, indicating only weak intermolecular interactions in the solid state. Structural details of metal atom coordination are discussed.

  1. New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels

    Science.gov (United States)

    Sarma, K. H.; Fourcade, J.; Lee, S.-G.; Solomon, A. A.

    2006-06-01

    For inert matrix fuels, SiC and BeO represent two possible matrix phase compounds that exhibit very high thermal conductivity, high melting points, low neutron absorption, and reasonably high radiation stability. BeO is chemically compatible with UO2, PuO2 and Zircaloy to very high temperatures, but SiC reacts with all three at somewhat lower temperatures. We have developed the Polymer Impregnation and Pyrolysis or PIP method, making use of a commercial SiC polymeric precursor, to consolidate both particulate fuels like 'TRISO' microsphere fuels, and to impregnate UO2 fuels with pure stoichiometric SiC to improve their thermal conductivity. This method was employed to fabricate Enhanced Conductivity Oxide fuels, or ECO fuels with 5-10 vol.% of the high conductivity phase, and with 50 vol.% for TRISO dispersion fuels. For ECO fuels, a new 'slug/bisque' method of fabricating the UO2 fuel granules was necessary to produce sintered fuel with open pore structures, allowing almost complete impregnation of the continuous SiC phase. The advantages of the PIP process are that it is a non-damaging consolidation process for particulates (TRU, UC or TRISO microspheres), forms a continuous, pure β-SiC phase at temperatures as low as 1573 K, and allows the maximum in fissile atom density. However, several PIP impregnation cycles and high crystallization temperatures are necessary to obtain high thermal conductivity SiC. For producing IMF fuels using the PIP process, the fissile PuC and/or TRU actinides can be added in small concentrations along with SiC 'filler particles' and consolidated with the SiC precursor for either open or closed fuel cycles. For BeO, a second approach was developed for ECO fuels that involves a 'co-sintering' route to produce high density fuels with a continuous BeO phase of 5-10 vol.%. Special granulation and mixing techniques were developed, but only one normal sintering cycle is required. For BeO matrix IMF fuels, PuO2 granules and TRU actinides or YSZ granules containing actinides could be simply dry-mixed with BeO powder and co-sintered to produce a dispersed fuel form. Alternatively, the BeO could be granulated, and the PuO2 and/or TRU oxides would fill the interstices forming a continuous minor phase that could be recycled in closed fuel cycles. Some advantages and disadvantages of these matrices are discussed.

  2. New processing methods to produce silicon carbide and beryllium oxide inert matrix and enhanced thermal conductivity oxide fuels

    International Nuclear Information System (INIS)

    For inert matrix fuels, SiC and BeO represent two possible matrix phase compounds that exhibit very high thermal conductivity, high melting points, low neutron absorption, and reasonably high radiation stability. BeO is chemically compatible with UO2, PuO2 and Zircaloy to very high temperatures, but SiC reacts with all three at somewhat lower temperatures. We have developed the Polymer Impregnation and Pyrolysis or PIP method, making use of a commercial SiC polymeric precursor, to consolidate both particulate fuels like 'TRISO' microsphere fuels, and to impregnate UO2 fuels with pure stoichiometric SiC to improve their thermal conductivity. This method was employed to fabricate Enhanced Conductivity Oxide fuels, or ECO fuels with 5-10 vol.% of the high conductivity phase, and with 50 vol.% for TRISO dispersion fuels. For ECO fuels, a new 'slug/bisque' method of fabricating the UO2 fuel granules was necessary to produce sintered fuel with open pore structures, allowing almost complete impregnation of the continuous SiC phase. The advantages of the PIP process are that it is a non-damaging consolidation process for particulates (TRU, UC or TRISO microspheres), forms a continuous, pure β-SiC phase at temperatures as low as 1573 K, and allows the maximum in fissile atom density. However, several PIP impregnation cycles and high crystallization temperatures are necessary to obtain high thermal conductivity SiC. For producing IMF fuels using the PIP process, the fissile PuC and/or TRU actinides can be added in small concentrations along with SiC 'filler particles' and consolidated with the SiC precursor for either open or closed fuel cycles. For BeO, a second approach was developed for ECO fuels that involves a 'co-sintering' route to produce high density fuels with a continuous BeO phase of 5-10 vol.%. Special granulation and mixing techniques were developed, but only one normal sintering cycle is required. For BeO matrix IMF fuels, PuO2 granules and TRU actinides or YSZ granules containing actinides could be simply dry-mixed with BeO powder and co-sintered to produce a dispersed fuel form. Alternatively, the BeO could be granulated, and the PuO2 and/or TRU oxides would fill the interstices forming a continuous minor phase that could be recycled in closed fuel cycles. Some advantages and disadvantages of these matrices are discussed

  3. Influence of Rare Earth on Carbide in Weld Metal

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-Bin; REN Deng-Yi

    2003-01-01

    The influence of rare earths (RE) on carbides in high carbon steel weld metal was studied by transmission electron microscope (TEM) and energy dispersive X-ray microanalysis (EDX). It is found that rare earth markedly affects the quantity, morphology and distribution of carbides. The precipitating mechanism of carbides was proposed in which rare earth compounds with high surface energy serve as the nucleation sites for carbides in superheated liquid metal and the induced carbides are precipitated extensively and distributed evenly. The preferential precipitation of carbides decreases the carbon content in matrix, which is transformed into low carbon lath martensite after welds are chilled to room temperature.

  4. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    Energy Technology Data Exchange (ETDEWEB)

    Hanafee, J.E. (ed.)

    1988-02-19

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers. (DLC)

  5. Problems and future plan on material development of beryllium in materials testing reactors

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in a number of material testing reactors. The attractive nuclear properties of beryllium are its low atomic number, low atomic weight, low parasitic capture cross section for thermal neutrons, readiness to part with one of its own neutrons, and good neutron elastic scattering characteristics. However, it is difficult to reprocess irradiated beryllium because of high induced radioactivity. Disposal has also been difficult because of toxicity issues and special nuclear material controls. In this paper, problems and future plans of beryllium technology are introduced for nuclear reactors. (author)

  6. The impact of beryllium chloride and oxide on sexual function and offspring development in female rats

    International Nuclear Information System (INIS)

    The comparative study of the action of soluble chloride and difficultly soluble beryllium oxide on sexual cycle in female rats and their conception capability, revealing of embryotoxic and teratogenic effect of these compounds and determination of significance of terms of their impact on pregnant female as well as beryllium capability to penetrate through the placenta and accumulate in the offspring organism have been performed. A great potential danger of impact on animal reproductive function of soluble (chloride) beryllium compounds as compared with low soluble ones (oxide). In the genesis of embryotoxic teratonic effect probably along with beryllium impact on progeny through the maternal organism there occurs its direct impact on the offspring

  7. The beryllium quandary: will the lower exposure limits spur new developments in sampling and analysis?

    Energy Technology Data Exchange (ETDEWEB)

    Brisson, Michael

    2013-06-03

    At the time this article was written, new rulemakings were under consideration at OSHA and the U.S. Department of Energy (DOE) that would propose changes to occupational exposure limits for beryllium. Given these developments, it’s a good time to review the tools and methods available to IHs for assessing beryllium air and surface contamination in the workplace—what’s new and different, and what’s tried and true. The article discusses limit values and action levels for beryllium, problematic aspects of beryllium air sampling, sample preparation, sample analysis, and data evaluation.

  8. Vacuum Brazing of Beryllium Copper Components for the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tyhurst, C.C.; Cunningham, M.A.

    2002-06-04

    A process for vacuum brazing beryllium copper anode assemblies was required for the Plasma Electrode Pockels Cell System, or PEPC, a component for the National Ignition Facility (NIF). Initial problems with the joint design and wettability of the beryllium copper drove some minor design changes. Brazing was facilitated by plating the joint surface of the beryllium copper rod with silver 0.0006 inch thick. Individual air sampling during processing and swipe tests of the furnace interior after brazing revealed no traceable levels of beryllium.

  9. Beryllium Science: US-UK agreement on the use of Atomic Energy for mutual defense

    International Nuclear Information System (INIS)

    Twenty-seven papers are presented on beryllium supply, production, fabrication, safe handling, analysis, powder technology, and coatings. Separate abstracts have been prepared for the individual papers

  10. Release of beryllium from mineral ores in artificial lung and skin surface fluids.

    Science.gov (United States)

    Duling, Matthew G; Stefaniak, Aleksandr B; Lawrence, Robert B; Chipera, Steve J; Virji, M Abbas

    2012-06-01

    Exposure to some manufactured beryllium compounds via skin contact or inhalation can cause sensitization. A portion of sensitized persons who inhale beryllium may develop chronic beryllium disease (CBD). Little is understood about exposures to naturally occurring beryllium minerals. The purpose of this study was to assess the bioaccessibility of beryllium from bertrandite ore. Dissolution of bertrandite from two mine pits (Monitor and Blue Chalk) was evaluated for both the dermal and inhalation exposure pathways by determining bioaccessibility in artificial sweat (pH 5.3 and pH 6.5), airway lining fluid (SUF, pH 7.3), and alveolar macrophage phagolysosomal fluid (PSF, pH 4.5). Significantly more beryllium was released from Monitor pit ore than Blue Chalk pit ore in artificial sweat buffered to pH 5.3 (0.88 ± 0.01% vs. 0.36 ± 0.00%) and pH 6.5 (0.09 ± 0.00% vs. 0.03 ± 0.01%). Rates of beryllium released from the ores in artificial sweat were faster than previously measured for manufactured forms of beryllium (e.g., beryllium oxide), known to induce sensitization in mice. In SUF, levels of beryllium were below the analytical limit of detection. In PSF, beryllium dissolution was biphasic (initial rapid diffusion followed by latter slower surface reactions). During the latter phase, dissolution half-times were 1,400 to 2,000 days, and rate constants were ~7 × 10(-10) g/(cm(2)·day), indicating that bertrandite is persistent in the lung. These data indicate that it is prudent to control skin and inhalation exposures to bertrandite dusts. PMID:21866318

  11. Beryllium metal I. experimental results on acute oral toxicity, local skin and eye effects, and genotoxicity.

    Science.gov (United States)

    Strupp, Christian

    2011-01-01

    The toxicity of soluble metal compounds is often different from that of the parent metal. Since no reliable data on acute toxicity, local effects, and mutagenicity of beryllium metal have ever been generated, beryllium metal powder was tested according to the respective Organisation for Economical Co-Operation and Development (OECD) guidelines. Acute oral toxicity of beryllium metal was investigated in rats and local effects on skin and eye in rabbits. Skin-sensitizing properties were investigated in guinea pigs (maximization method). Basic knowledge about systemic bioavailability is important for the design of genotoxicity tests on poorly soluble substances. Therefore, it was necessary to experimentally compare the capacities of beryllium chloride and beryllium metal to form ions under simulated human lung conditions. Solubility of beryllium metal in artificial lung fluid was low, while solubility in artificial lysosomal fluid was moderate. Beryllium chloride dissolution kinetics were largely different, and thus, metal extracts were used in the in vitro genotoxicity tests. Genotoxicity was investigated in vitro in a bacterial reverse mutagenicity assay, a mammalian cell gene mutation assay, a mammalian cell chromosome aberration assay, and an unscheduled DNA synthesis (UDS) assay. In addition, cell transformation was tested in a Syrian hamster embryo cell assay, and potential inhibition of DNA repair was tested by modification of the UDS assay. Beryllium metal was found not to be mutagenic or clastogenic based on the experimental in vitro results. Furthermore, treatment with beryllium metal extracts did not induce DNA repair synthesis, indicative of no DNA-damaging potential of beryllium metal. A cell-transforming potential and a tendency to inhibit DNA repair when the cell is severely damaged by an external stimulus were observed. Beryllium metal was also found not to be a skin or eye irritant, not to be a skin sensitizer, and not to have relevant acute oral

  12. Silicon Carbide Solar Cells Investigated

    Science.gov (United States)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  13. CALPHAD study of cubic carbide systems with Cr

    OpenAIRE

    He, Zhangting

    2015-01-01

    Cubic carbides (titanium, tantalum, niobium, and zirconium carbides) can constitute a significant proportion of so-called cubic and cermet grades, where it is added to substitute a portion of tungsten carbide. It is thus critical to understand and be able to thermodynamically model the cubic carbide systems. In order to do this, the thermodynamic descriptions of lower order systems, such as the Ti-Cr-C system, need to be well studied. To approach this goal, an extensive literature survey of t...

  14. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    1991-01-01

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  15. Silicon carbide, an emerging high temperature semiconductor

    Science.gov (United States)

    Matus, Lawrence G.; Powell, J. Anthony

    In recent years, the aerospace propulsion and space power communities have expressed a growing need for electronic devices that are capable of sustained high temperature operation. Applications for high temperature electronic devices include development instrumentation within engines, engine control, and condition monitoring systems, and power conditioning and control systems for space platforms and satellites. Other earth-based applications include deep-well drilling instrumentation, nuclear reactor instrumentation and control, and automotive sensors. To meet the needs of these applications, the High Temperature Electronics Program at the Lewis Research Center is developing silicon carbide (SiC) as a high temperature semiconductor material. Research is focussed on developing the crystal growth, characterization, and device fabrication technologies necessary to produce a family of silicon carbide electronic devices and integrated sensors. The progress made in developing silicon carbide is presented, and the challenges that lie ahead are discussed.

  16. Carbides composite surface layers produced by (PTA)

    Energy Technology Data Exchange (ETDEWEB)

    Tajoure, Meloud, E-mail: Tajoore2000@yahoo.com [MechanicalEng.,HIHM,Gharian (Libya); Tajouri, Ali, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com; Abuzriba, Mokhtar, E-mail: Tajouri-am@yahoo.com, E-mail: dr.mokhtarphd@yahoo.com [Materials and Metallurgical Eng., UOT, Tripoli (Libya); Akreem, Mosbah, E-mail: makreem@yahoo.com [Industrial Research Centre,Tripoli (Libya)

    2013-12-16

    The plasma transferred arc technique was applied to deposit a composite layer of nickel base with tungsten carbide in powder form on to surface of low alloy steel 18G2A type according to polish standard. Results showed that, plasma transferred arc hard facing process was successfully conducted by using Deloro alloy 22 plus tungsten carbide powders. Maximum hardness of 1489 HV and minimum dilution of 8.4 % were achieved by using an arc current of 60 A. However, when the current was further increased to 120 A and the dilution increases with current increase while the hardness decreases. Microstructure of the nickel base deposit with tungsten carbide features uniform distribution of reinforcement particles with regular grain shape half - dissolved in the matrix.

  17. Analysis of the KANT experiment on beryllium using TRIPOLI-4 Monte Carlo code

    International Nuclear Information System (INIS)

    Beryllium is an important material in fusion technology for multiplying neutrons in blankets. However, beryllium nuclear data are differently presented in modern nuclear data evaluations. Recent investigations with the TRIPOLI-4 Monte Carlo simulation of the tritium breeding ratio (TBR) demonstrated that beryllium reaction data are the main source of the calculation uncertainties between ENDF/B-VII.0 and JEFF-3.1. To clarify the calculation uncertainties from data libraries on beryllium, in this study TRIPOLI-4 calculations of the Karlsruhe Neutron Transmission (KANT) experiment have been performed by using ENDF/B-VII.0 and new JEFF-3.1.1 data libraries. The KANT Experiment on beryllium has been used to validate neutron transport codes and nuclear data libraries. An elaborated KANT experiment benchmark has been compiled and published in the NEA/SINBAD database and it has been used as reference in the present work. The neutron multiplication in bulk beryllium assemblies was considered with a central D-T neutron source. Neutron leakage spectra through the 5, 10, and 17 cm thick spherical beryllium shells were calculated and five-group partial leakage multiplications were reported and discussed. In general, improved C/E ratios on neutron leakage multiplications have been obtained. Both ENDF/B-VII.0 and JEFF-3.1.1 beryllium data libraries of TRIPOLI-4 are acceptable now for fusion neutronics calculations.

  18. Proceedings of the third IEA international workshop on beryllium technology for fusion

    International Nuclear Information System (INIS)

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  19. Proceedings of the third IEA international workshop on beryllium technology for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroshi; Okamoto, Makoto [eds.

    1998-01-01

    This report is the Proceedings of the Third International Energy Agency International Workshop on Beryllium Technology for Fusion. The workshop was held on October 22-24, 1997, at the Sangyou Kaikan in Mito City with 68 participants who attended from the Europe, the Russian Federation, the Kazakstan, the United States and Japan. The topics for papers were arranged into 9 sessions; beryllium applications for ITER, production and characterization, chemical compatibility and corrosion, forming and joining, plasma/tritium interactions, beryllium coating, first wall applications, neutron irradiation effects, health and safety. To utilize beryllium in the pebble type blanket, a series of discussions were intensified in multiple view points such as the swelling, He/T release from beryllium pebble irradiated up to high He content, effective thermal conductivity, tritium permeation and coating, and fabrication cost, and so on. As the plasma facing material, life time of beryllium and coated beryllium, dust and particle production, joining, waste treatment, mechanical properties and deformation by swelling were discussed as important issues. Especially, it was recognized throughout the discussions that the comparative study by the different researchers should be carried out to establish the reliability of the data reported in the workshop and in others. To enhance the comparative study, the world wide collaboration for the relative evaluation of the beryllium was proposed by the International Organization Committee and the proposal was approved by all of the participants. The 45 of the presented papers are indexed individually. (J.P.N.)

  20. Tritium release from highly neutron irradiated constrained and unconstrained beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu; Rolli, R.; Vladimirov, P.; Moeslang, A.

    2015-06-15

    Highlights: • For the irradiated constrained beryllium pebbles, the tritium release occurs easier than for the unconstrained ones. • Tritium retention in the irradiated constrained and unconstrained beryllium pebbles decreases with increasing irradiation temperature. • Formation of sub-grains in the constrained beryllium pebbles facilitate the open porosity network formation. - Abstract: Beryllium is the reference neutron multiplier material in the Helium Cooled Pebble Bed (HCPB) breeding blanket of fusion power plants. Significant tritium inventory accumulated in beryllium as a result of neutron-induced transmutations could become a safety issue for the operation of such blankets as well as for the nuclear waste utilization. To provide a related materials database, a neutron irradiation campaign of beryllium pebbles with diameters of 0.5 and 1 mm at 686–1006 K, the HIDOBE-01 experiment, has been performed in the HFR in Petten, the Netherlands, producing up to 3020 appm helium and 298 appm tritium. Thermal desorption tests of irradiated unconstrained and constrained beryllium pebbles were performed in a purge gas flow using a quadrupole mass-spectrometer (QMS) and an ionization chamber. Compared to unconstrained pebbles, constrained beryllium pebbles have an enhanced tritium release at all temperatures investigated. Small elongated sub-grains formed under irradiation in the constrained pebbles promote formation of numerous channels for facilitated tritium release.

  1. Reduction evaporation of BeO to provide a beryllium metal sample for accelerator radiometric dating

    International Nuclear Information System (INIS)

    A technique is described for preparing beryllium metal samples from beryllium oxide for use in accelerator ion sources. These samples are used to measure minute 10Be/9Be ratios for radiometric dating at the University of Washington tandem Van de Graaff accelerator. (orig.)

  2. Protection of beryllium metal against microbial influenced corrosion using silane self-assembled monolayers

    Science.gov (United States)

    Vaidya, Rajendra U.; Deshpande, Alina; Hersman, Larry; Brozik, Susan M.; Butt, Darryl

    1999-08-01

    The effectiveness of a self-assembled silane monolayer as protection for beryllium against microbiologically influenced corrosion (MIC) was demonstrated. Four-point bend tests on coated and uncoated beryllium samples were conducted after microbiological exposures, and the effectiveness of these coatings as MIC protection was reported through mechanical property evaluations. Application of the silane monolayer to the beryllium surfaces was found to prevent degradation of the failure strength and displacement-to-failure of beryllium in bending. In contrast, the uncoated beryllium samples exhibited a severe reduction in these mechanical properties in the presence of the marine Pseudomonas bacteria. The potentiodynamic measurements showed that both the uncoated and coated samples pitted at the open-circuit potential. However, the size and distribution of the corrosion pits formed on the surface of the beryllium samples were significantly different for the various cases (coated vs uncoated samples exposed to control vs inoculated medium). This study demonstrates the following: (1) the deleterious effects of MIC on the mechanical properties of beryllium and (2) the potential for developing fast, easy, and cost-effective MIC protection for beryllium metal using silane self-assemblies.

  3. 10 CFR 71.23 - General license: Plutonium-beryllium special form material.

    Science.gov (United States)

    2010-01-01

    ... requirements of 49 CFR 173.417(a). (b) The general license applies only to a licensee who has a quality... 10 Energy 2 2010-01-01 2010-01-01 false General license: Plutonium-beryllium special form material... RADIOACTIVE MATERIAL General Licenses § 71.23 General license: Plutonium-beryllium special form material....

  4. Ultrarapid microwave synthesis of superconducting refractory carbides

    Energy Technology Data Exchange (ETDEWEB)

    Vallance, Simon R. [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); School of Chemistry, University Nottingham (United Kingdom); Round, David M. [School of Chemistry, University Nottingham (United Kingdom); Ritter, Clemens [Institut Laue-Langevin, Grenoble (France); Cussen, Edmund J. [WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow (United Kingdom); Kingman, Sam [Department of Chemical and Environmental Engineering, University of Nottingham (United Kingdom); Gregory, Duncan H. [WestCHEM, Department of Chemistry, University of Glasgow (United Kingdom)

    2009-11-26

    Nb{sub 1-x}Ta{sub x}C Carbides can be synthesized by high power MW methods in less than 30 s. In situ and ex situ techniques probing changes in temperature and dielectric properties with time demonstrate that the reactions self-terminate as the loss tangent of the materials decreases. The resulting carbides are carbon deficient and superconducting; T{sub c} correlates linearly to unit cell volume, reaching a maximum at NbC. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  5. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  6. Deformation behaviour of fine grained high purity beryllium - influence of fabrication parameters, temperature and copper additions

    International Nuclear Information System (INIS)

    The deformation behaviour of high-purity beryllium was tested on hot isostatically pressed samples of different initial grain size and compared with material manufactured commercially from pure beryllium and with beryllium-copper alloys containing 0.44, 1.1 and 2.1 at.% copper. Initial grain size of these high purity material was 0C. Grain structure of the samples was subsequently analysed by light, rastor and transmission electron microscopy. The influence of copper additions on deformation of high-purity beryllium was analysed. A further aim of this study was to investigate, by suitable methods, the mode of action of relevant impurities and to throw light on their influence on grain formation. This should enable reliable information to be provided for the manufacture of high-purity beryllium which, in turn, will lead to an improvement in ductility. (orig./IHOE)

  7. Preliminary irradiation test for new material selection on lifetime extension of beryllium reflector

    International Nuclear Information System (INIS)

    Beryllium has been utilized as a moderator and/or reflector in Japan Materials Testing Reactor (JMTR), because of nuclear properties of beryllium, low neutron capture and high neutron scattering cross sections. At present, the amount of irradiated beryllium frames in JMTR is about 2 tons in the JMTR canal. In this study, preliminary irradiation test was performed from 162nd to 165th operation cycles of JMTR as irradiation and PIE technique development for lifetime expansion of beryllium frames. The design study of irradiation capsule, development of dismount device of irradiation capsule and the high accuracy size measurement device were carried out. The PIEs such as tensile tests, metallurgical observation, and size change measurement were also carried out with two kinds of irradiated beryllium metals (S-200F and S-65C). (author)

  8. Detection of beryllium treatment of natural sapphires by NRA

    Science.gov (United States)

    Gutiérrez, P. C.; Ynsa, M.-D.; Climent-Font, A.; Calligaro, T.

    2010-06-01

    Since the 1990's, artificial treatment of natural sapphires (Al 2O 3 crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of μg/g of beryllium in Al 2O 3 crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-μm diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction 9Be(α, nγ) 12C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt γ-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt γ-ray produced during irradiation by the aluminium of the sapphire matrix through the 27Al(α, pγ) 30Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required μg/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 μC, beryllium concentrations from 5 to 16 μg/g have been measured in the samples, with a detection limit of 1 μg/g.

  9. Detection of beryllium treatment of natural sapphires by NRA

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, P.C., E-mail: carolina.gutierrez@uam.e [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Ynsa, M.-D.; Climent-Font, A. [Centro de Micro-Analisis de Materiales (CMAM), Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Dpto. Fisica Aplicada C-12, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Calligaro, T. [Centre de Recherche et de Restauration des musees de France C2RMF, CNRS-UMR171, 14 quai Francois Mitterrand, 75001 Paris (France)

    2010-06-15

    Since the 1990's, artificial treatment of natural sapphires (Al{sub 2}O{sub 3} crystals coloured by impurities) by diffusion of beryllium at high temperature has become a growing practice. This process permits to enhance the colour of these gemstones, and thus to increase their value. Detection of such a treatment - diffusion of tens of {mu}g/g of beryllium in Al{sub 2}O{sub 3} crystals - is usually achieved using high sensitivity techniques like laser-ablation inductively coupled plasma mass spectrometry (LA-ICP/MS) or laser-induced breakdown spectrometry (LIBS) which are unfortunately micro-destructive (leaving 50-100-{mu}m diameter craters on the gems). The simple and non-destructive alternative method proposed in this work is based on the nuclear reaction {sup 9}Be({alpha}, n{gamma}){sup 12}C with an external helium ion beam impinging on the gem directly placed in air. The 4439 keV prompt {gamma}-ray tagging Be atoms are detected with a high efficiency bismuth germanate scintillator. Beam dose is monitored using the 2235 keV prompt {gamma}-ray produced during irradiation by the aluminium of the sapphire matrix through the {sup 27}Al({alpha}, p{gamma}){sup 30}Si nuclear reaction. The method is tested on a series of Be-treated sapphires previously analyzed by LA-ICP/MS to determine the optimal conditions to obtain a peak to background appropriate to reach the required {mu}g/g sensitivity. Using a 2.8-MeV external He beam and a beam dose of 200 {mu}C, beryllium concentrations from 5 to 16 {mu}g/g have been measured in the samples, with a detection limit of 1 {mu}g/g.

  10. Model study in chemisorption: atomic hydrogen on beryllium clusters

    Energy Technology Data Exchange (ETDEWEB)

    Bauschlicher, C.W. Jr.

    1976-08-01

    The interaction between atomic hydrogen and the (0001) surface of Be metal has been studied by ab initio electronic structure theory. Self-consistent-field (SCF) calculations have been performed using minimum, optimized minimum, double zeta and mixed basis sets for clusters as large as 22 Be atoms. The binding energy and equilibrium geometry (the distance to the surface) were determined for 4 sites. Both spatially restricted (the wavefunction was constrained to transform as one of the irreducible representations of the molecular point group) and unrestricted SCF calculations were performed. Using only the optimized minimum basis set, clusters containing as many as 22 beryllium atoms have been investigated. From a variety of considerations, this cluster is seen to be nearly converged within the model used, providing the most reliable results for chemisorption. The site dependence of the frequency is shown to be a geometrical effect depending on the number and angle of the bonds. The diffusion of atomic hydrogen through a perfect beryllium crystal is predicted to be energetically unfavorable. The cohesive energy, the ionization energy and the singlet-triplet separation were computed for the clusters without hydrogen. These quantities can be seen as a measure of the total amount of edge effects. The chemisorptive properties are not related to the total amount of edge effects, but rather the edge effects felt by the adsorbate bonding berylliums. This lack of correlation with the total edge effects illustrates the local nature of the bonding, further strengthening the cluster model for chemisorption. A detailed discussion of the bonding and electronic structure is included. The remaining edge effects for the Be/sub 22/ cluster are discussed.

  11. Use of notched beams to establish fracture criteria for beryllium

    International Nuclear Information System (INIS)

    The fracture of an improved form of pure beryllium was studied under triaxial tensile stresses. This state of stress was produced by testing notched beams, which were thick enough to be in a state of plane strain at the center. A plane strain, elastic-incremental plasticity finite element program was then used to determine the stress and strain distributions at fracture. A four-point bend fixture was used to load the specimens. It was carefully designed and manufactured to eliminate virtually all of the shear stresses at the reduced section of the notched beams. The unixial properties were obtained

  12. Beryllium ignition target design for indirect drive NIF experiments

    Science.gov (United States)

    Simakov, A. N.; Wilson, D. C.; Yi, S. A.; Kline, J. L.; Salmonson, J. D.; Clark, D. S.; Milovich, J. L.; Marinak, M. M.

    2016-03-01

    Beryllium (Be) ablator offers multiple advantages over carbon based ablators for indirectly driven NIF ICF ignition targets. These are higher mass ablation rate, ablation pressure and ablation velocity, lower capsule albedo, and higher thermal conductivity at cryogenic temperatures. Such advantages can be used to improve the target robustness and performance. While previous NIF Be target designs exist, they were obtained a long time ago and do not incorporate the latest improved physical understanding and models based upon NIF experiments. Herein, we propose a new NIF Be ignition target design at 1.45 MJ, 430 TW that takes all this knowledge into account.

  13. Dosage of boron traces in graphite, uranium and beryllium oxide

    International Nuclear Information System (INIS)

    The problem of the dosage of the boron in the materials serving to the construction of nuclear reactors arises of the following way: to determine to about 0,1 ppm close to the quantities of boron of the order of tenth ppm. We have chosen the colorimetric analysis with curcumin as method of dosage. To reach the indicated contents, it is necessary to do a previous separation of the boron and the materials of basis, either by extraction of tetraphenylarsonium fluoborate in the case of the boron dosage in uranium and the beryllium oxide, either by the use of a cations exchanger resin of in the case of graphite. (M.B.)

  14. Technique of beryllium determination using an (α,n) reaction

    International Nuclear Information System (INIS)

    The possibility of detecting small amounts of 9Be using the (α, n) reaction has been investigated. It is shown that at a 210Po α-particle source intensity of 3x108 s-1 for limit of the detectable amount of beryllium is equal to 0.1 μg in the case of recording neutron-gamma (>= 3.6 MeV) coincidences. Other light elements (B, F, Al, Mg, Si etc.) do not produce a noticeable background under such conditions

  15. Double K-shell photoionization of atomic beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Yip, F. L. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Martin, F. [Departamento de Quimica, Modulo 13, Universidad Autonoma de Madrid, E-28049 Madrid (Spain); Instituto Madrilen(tilde sign)o de Estudios Avanzados en Nanociencia, Cantoblanco, E-28049 Madrid (Spain); McCurdy, C. W. [Department of Chemistry, University of California, Davis, California 95616 (United States); Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States); Rescigno, T. N. [Lawrence Berkeley National Laboratory, Chemical Sciences, and Ultrafast X-ray Science Laboratory, Berkeley, California 94720 (United States)

    2011-11-15

    Double photoionization of the core 1s electrons in atomic beryllium is theoretically studied using a hybrid approach that combines orbital and grid-based representations of the Hamiltonian. The {sup 1} S ground state and {sup 1} P final state contain a double occupancy of the 2s valence shell in all configurations used to represent the correlated wave function. Triply differential cross sections are evaluated, with particular attention focused on a comparison of the effects of scattering the ejected electrons through the spherically symmetric valence shell with similar cross sections for helium, representing a purely two-electron target with an analogous initial-state configuration.

  16. Accumulation of tritium in beryllium material under neutron irradiation

    International Nuclear Information System (INIS)

    In the present work the programming code is created on the basis of which the accumulation kinetics of tritium and isotope of He4 in the Be9 sample is analyzed depending on the time. The program is written in C++ programming language and for the calculations Monte Carlo method was applied. This program scoped on the calculation of concentration of helium and tritium in beryllium samples depending on the spectrum of the neutron flux in different experimental reactors such as JMTR, JOYO and IPEN/MB. The processes of accumulation of helium and tritium for each neutron energy spectrum of these reactors were analyzed. (author)

  17. Tritium analyses of COBRA-1A2 beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Selected tritium measurements have been completed for the COBRA-1A2 experiment C03 and D03 beryllium pebbles. The completed results, shown in Tables 1, 2, and 3, include the tritium assay results for the 1-mm and 3-mm C03 pebbles, and the 1-mm D03 pebbles, stepped anneal test results for both types of 1-mm pebbles, and the residual analyses for the stepped-anneal specimens. All results have been reported with date-of-count and are not corrected for decay. Stepped-anneal tritium release response is provided in addenda.

  18. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    OpenAIRE

    Hammer H.-W.; Phillips D.R.

    2010-01-01

    We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1) strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accurac...

  19. Microstructure and mechanical properties of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Ishitsuka, E.; Kawamura, H. [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Terai, T.; Tanaka, S.

    1998-01-01

    Microstructure and mechanical properties of the neutron irradiated beryllium with total fast neutron fluences of 1.3 - 4.3 x 10{sup 21} n/cm{sup 2} (E>1 MeV) at 327 - 616degC were studied. Swelling increased by high irradiation temperature, high fluence, and by the small grain size and high impurity. Obvious decreasing of the fracture stress was observed in the bending test and in small grain specimens which had many helium bubbles on the grain boundary. Decreasing of the fracture stress for small grain specimens was presumably caused by crack propagation on the grain boundaries which weekend by helium bubbles. (author)

  20. Ultra-rapid processing of refractory carbides; 20 s synthesis of molybdenum carbide, Mo2C.

    Science.gov (United States)

    Vallance, Simon R; Kingman, Sam; Gregory, Duncan H

    2007-02-21

    The microwave synthesis of molybdenum carbide, Mo(2)C, from carbon and either molybdenum metal or the trioxide has been achieved on unprecedented timescales; Ex- and in-situ characterisation reveals key information as to how the reaction proceeds.

  1. Synthesis and properties of low-carbon boron carbides

    International Nuclear Information System (INIS)

    This paper reports on the production of boron carbides of low carbon content (3 and CCl4 at 1273-1673 K in a chemical vapor deposition (CVD) reactor. Transmission electron microscopy (TEM) revealed that phase separation had occurred, and tetragonal boron carbide was formed along with β-boron or α-boron carbide under carbon-depleted gas-phase conditions. At temperatures greater than 1390 degrees C, graphite substrates served as a carbon source, affecting the phases present. A microstructure typical of CVD-produced α-boron carbide was observed. Plan view TEM of tetragonal boron carbide revealed a blocklike structure

  2. Boron carbide morphology changing under purification

    Science.gov (United States)

    Rahmatullin, I. A.; Sivkov, A. A.

    2015-10-01

    Boron carbide synthesized by using coaxial magnetoplasma accelerator with graphite electrodes was purified by two different ways. XRD-investigations showed content changing and respectively powder purification. Moreover TEM-investigations demonstrated morphology changing of product under purification that was discussed in the work.

  3. Ceramic Fabric Coated With Silicon Carbide

    Science.gov (United States)

    Riccitiello, S. R.; Smith, M.; Goldstein, H.; Zimmerman, N.

    1988-01-01

    Material used as high-temperature shell. Ceramic fabric coated with silicon carbide (SiC) serves as tough, heat-resistant covering for other refractory materials. Developed to protect reusable insulating tiles on advanced space transportation systems. New covering makes protective glaze unnecessary. Used on furnace bricks or on insulation for engines.

  4. Direct plasmadynamic synthesis of ultradisperse silicon carbide

    Science.gov (United States)

    Sivkov, A. A.; Nikitin, D. S.; Pak, A. Ya.; Rakhmatullin, I. A.

    2013-01-01

    Ultradisperse cubic silicon carbide (β-SiC) has been obtained by direct plasmadynamic synthesis in pulsed supersonic carbon-silicon plasma jet incident on a copper obstacle in argon atmosphere. The powdered product has a high content of β-SiC in the form of single crystals with average size of about 100 nm and nearly perfect crystallographic habit.

  5. Casimir forces from conductive silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi Ghozotkhar, Mehdi; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-01-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of fr

  6. Casimir force measurements from silicon carbide surfaces

    NARCIS (Netherlands)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-01-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold-coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was mea

  7. High-temperature carbidization of carboniferous rocks

    Science.gov (United States)

    Goldin, B. A.; Grass, V. E.; Nadutkin, A. V.; Nazarova, L. Yu.

    2009-08-01

    Processes of thermal metamorphism of carboniferous rocks have been studied experimentally. The conditions of high-temperature interaction of shungite carbon with components of the contained rocks, leading to formation of carbide compounds, have been determined. The results of this investigation contribute to the works on searching for new raw material for prospective material production.

  8. Bioactivation of biomorphous silicon carbide bone implants.

    Science.gov (United States)

    Will, Julia; Hoppe, Alexander; Müller, Frank A; Raya, Carmen T; Fernández, Julián M; Greil, Peter

    2010-12-01

    Wood-derived silicon carbide (SiC) offers a specific biomorphous microstructure similar to the cellular pore microstructure of bone. Compared with bioactive ceramics such as calcium phosphate, however, silicon carbide is considered not to induce spontaneous interface bonding to living bone. Bioactivation by chemical treatment of biomorphous silicon carbide was investigated in order to accelerate osseointegration and improve bone bonding ability. Biomorphous SiC was processed from sipo (Entrandrophragma utile) wood by heating in an inert atmosphere and infiltrating the resulting carbon replica with liquid silicon melt at 1450°C. After removing excess silicon by leaching in HF/HNO₃ the biomorphous preform consisted of β-SiC with a small amount (approximately 6wt.%) of unreacted carbon. The preform was again leached in HCl/HNO₃ and finally exposed to CaCl₂ solution. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared analyses proved that oxidation of the residual carbon at the surface induced formation of carboxyl [COO⁻] groups, which triggered adsorption of Ca(2+), as confirmed by XPS and inductively coupled plasma optical emission spectroscopy measurements. A local increase in Ca(2+) concentration stimulated in vitro precipitation of Ca₅(PO₄)₃OH (HAP) on the silicon carbide preform surface during exposure to simulated body fluid, which indicates a significantly increased bone bonding activity compared with SiC.

  9. The mechanism for production of beryllium fluoride from the product of ammonium fluoride processing of beryllium- containing raw material

    Science.gov (United States)

    Kraydenko, R. I.; Dyachenko, A. N.; Malyutin, L. N.; Petlin, I. V.

    2016-06-01

    The technique of fluorite-phenacite-bertrandite ores from Russian Ermakovskoe deposit processing by ammonium bifluoride is described. To determine the temperature mode and the thermal dissociation mechanism of ammonium tetrafluoroberyllate (the product of ammonium-fluoride leaching of the ore) the TG/DTA have been carried out. By IR spectroscopy and XRD the semi-products of ammonium tetrafluoroberyllate thermal dissociation have been identified. The hygroscopic low-temperature beryllium fluoride forms higher than 380°C. The less hydroscopic form of BeF2 have been produced at 600°C.

  10. Influence of neutron irradiation on the tritium retention in beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Rolli, R.; Ruebel, S.; Werle, H. [Forschungszentrum Karlsruhe, Inst. fuer Neutronenphysik und Reaktortechnik, Karlsruhe (Germany); Wu, C.H.

    1998-01-01

    Carbon-based materials and beryllium are the candidates for protective layers on the components of fusion reactors facing plasma. In contact with D-T plasma, these materials absorb tritium, and it is anticipated that tritium retention increases with the neutron damage due to neutron-induced traps. Because of the poor data base for beryllium, the work was concentrated on it. Tritium was loaded into the samples from stagnant T{sub 2}/H{sub 2} atmosphere, and afterwards, the quantity of the loaded tritium was determined by purged thermal annealing. The specification of the samples is shown. The samples were analyzed by SEM before and after irradiation. The loading and the annealing equipments are contained in two different glove boxes with N{sub 2} inert atmosphere. The methods of loading and annealing are explained. The separation of neutron-produced and loaded tritium and the determination of loaded tritium in irradiated samples are reported. Also the determination of loaded tritium in unirradiated samples is reported. It is evident that irradiated samples contained much more loaded tritium than unirradiated samples. The main results of this investigation are summarized in the table. (K.I.)

  11. Remarkable Hydrogen Storage on Beryllium Oxide Clusters: First Principles Calculations

    CERN Document Server

    Shinde, Ravindra

    2016-01-01

    Since the current transportation sector is the largest consumer of oil, and subsequently responsible for major air pollutants, it is inevitable to use alternative renewable sources of energies for vehicular applications. The hydrogen energy seems to be a promising candidate. To explore the possibility of achieving a solid-state high-capacity storage of hydrogen for onboard applications, we have performed first principles density functional theoretical calculations of hydrogen storage properties of beryllium oxide clusters (BeO)$_{n}$ (n=2 -- 8). We observed that polar BeO bond is responsible for H$_{2}$ adsorption. The problem of cohesion of beryllium atoms does not arise, as they are an integral part of BeO clusters. The (BeO)$_{n}$ (n=2 -- 8) adsorbs 8--12 H$_{2}$ molecules with an adsorption energy in the desirable range of reversible hydrogen storage. The gravimetric density of H$_{2}$ adsorbed on BeO clusters meets the ultimate 7.5 wt% limit, recommended for onboard practical applications. In conclusion,...

  12. Microstructural Characterization of Beryllium Treated Al-Si Alloys

    Directory of Open Access Journals (Sweden)

    M. F. Ibrahim

    2015-01-01

    Full Text Available The present study was carried out on B356 and B357 alloys using the thermal analysis technique. Metallographic samples prepared from these castings were examined using optical microscopy and FESEM. Results revealed that beryllium causes partial modification of the eutectic Si, similar to that reported for magnesium additions. Addition of 0.8 wt.% Mg reduces the eutectic temperature by ~10°C. During solidification of alloys containing high levels of Fe and Mg, but no Sr, formation of a Be-Fe phase was detected at 611°C, close to that of α-Al. The Be-Fe phase precipitates in script-like form at or close to the β-Al5SiFe platelets. A new reaction, composed of fine particles of Si and π-Fe phase, was observed to occur near the end of solidification in high Mg-, high Fe-, and Be-containing alloys. The amount of this reaction decreased with the addition of Sr. Occasionally, Be-containing phase particles were observed as part of the reaction. Addition of Be has a noticeable effect on decreasing the β-Al5FeSi platelet length; this effect may be enhanced by addition of Sr. Beryllium addition also results in precipitation of the β-Al5FeSi phase in nodular form, which lowers its harmful effects on the alloy mechanical properties.

  13. United Kingdom Beryllium Registry: mortality and autopsy study.

    Science.gov (United States)

    Williams, W J

    1996-01-01

    This report is based on 30 deaths from chronic beryllium disease (CBD) in the United Kingdom with details of 19 autopsies. The majority were fluorescent lamp workers and machinists who died from respiratory failure. There were no cases of lung cancer. The survival times ranged from less than 1 to 29 years and was longest in machinists. All of the workers showed interstitial pulmonary fibrosis with varying degrees of cystic change. The majority showed hyalinized, and a few active sarcoid-type, granulomas. Extrathoracic granulomas, as in a U.K. sarcoid autopsy series, were rare. A notable difference was the absence of myocardial involvement in CBD compared to an incidence of 20% in the sarcoid autopsies. The detection of beryllium in the criteria for diagnosis is emphasized and the cases classified as definite include 12 of 19 positive analysis, 6 of 19, negative or unavailable analysis. The remaining case was classified as dubious because, despite a positive analysis, granulomas were absent. The main differential diagnosis is sarcoidosis. Images Figure 1. Figure 2. Figure 3. PMID:8933040

  14. A non-chemical spectroscopic determination of atmospheric beryllium

    International Nuclear Information System (INIS)

    Beryllium in the atmosphere is determined by emission spectroscopy using a non-chemical method of analysis. Long term effects of beryllium poisoning result in respiratory and skin disease, and this is partly reflected by the low threshold limits (0.002 mg/m3). In comparison the threshhold values for lead and cadmium are 0.2 and 0.16 mg/m3 respectively. Air samples are collected at 2 litres/ minute using cellulose filters, and sampling time is dependent on the individual process being monitored, but can be as short as five minutes, eg. dental laboratories. The filters are initially divided in two parts, and one portion is carefully pelletised using a steel press. The pellet is placed in an electrode cup and 'wetted' using isopropanol and ethylene glycol. Wetting is necessary because the pellets tended to explode out of the arcing zone. Calibration graphs were produced using an internal cobalt standard, and the 234.8 nm, 313.0 nm emission lines were used. No spectral and inter-element effects were observed, and the minimum detection limit was one nanogram. Under normal working conditions a 25% precision was obtained. (author)

  15. Calculations for electron-impact excitation and ionization of beryllium

    CERN Document Server

    Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor

    2016-01-01

    The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...

  16. Steam chemical reactivity of plasma-sprayed beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Pawelko, R.J.; Smolik, G.R. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Castro, R.G. [Los Alamos National Lab., NM (United States)

    1998-07-01

    Plasma-spraying with the potential for in-situ repair makes beryllium a primary candidate for plasma facing and structural components in experimental magnetic fusion machines. Deposits with good thermal conductivity and resistance to thermal cycling have been produced with low pressure plasma-spraying (LPPS). A concern during a potential accident with steam ingress is the amount of hydrogen produced by the reactions of steam with hot components. In this study the authors measure the reaction rates of various deposits produced by LPPS with steam from 350 C to above 1,000 C. They correlate these reaction rates with measurements of density, open porosity and BET surface areas. They find the reactivity to be largely dependent upon effective surface area. Promising results were obtained below 600 C from a 94% theoretical dense (TD) deposit with a BET specific surface area of 0.085 m{sup 2}/g. Although reaction rates were higher than those for dense consolidated beryllium they were substantially lower, i.e., about two orders of magnitude, than those obtained from previously tested lower density plasma-sprayed deposits.

  17. Benchmark Evaluation of Fuel Effect and Material Worth Measurements for a Beryllium-Reflected Space Reactor Mockup

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States). Center for Space Nuclear Research; Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    The critical configuration of the small, compact critical assembly (SCCA) experiments performed at the Oak Ridge Critical Experiments Facility (ORCEF) in 1962-1965 have been evaluated as acceptable benchmark experiments for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The initial intent of these experiments was to support the design of the Medium Power Reactor Experiment (MPRE) program, whose purpose was to study “power plants for the production of electrical power in space vehicles.” The third configuration in this series of experiments was a beryllium-reflected assembly of stainless-steel-clad, highly enriched uranium (HEU)-O2 fuel mockup of a potassium-cooled space power reactor. Reactivity measurements cadmium ratio spectral measurements and fission rate measurements were measured through the core and top reflector. Fuel effect worth measurements and neutron moderating and absorbing material worths were also measured in the assembly fuel region. The cadmium ratios, fission rate, and worth measurements were evaluated for inclusion in the International Handbook of Evaluated Criticality Safety Benchmark Experiments. The fuel tube effect and neutron moderating and absorbing material worth measurements are the focus of this paper. Additionally, a measurement of the worth of potassium filling the core region was performed but has not yet been evaluated Pellets of 93.15 wt.% enriched uranium dioxide (UO2) were stacked in 30.48 cm tall stainless steel fuel tubes (0.3 cm tall end caps). Each fuel tube had 26 pellets with a total mass of 295.8 g UO2 per tube. 253 tubes were arranged in 1.506-cm triangular lattice. An additional 7-tube cluster critical configuration was also measured but not used for any physics measurements. The core was surrounded on all side by a beryllium reflector. The fuel effect worths were measured by removing fuel tubes at various radius. An accident scenario

  18. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring; FINAL

    International Nuclear Information System (INIS)

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features

  19. Development of radiation resistant grades of beryllium for nuclear and fusion facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, I.B.; Gorokhov, V.A.; Nikolaev, G.N. [Russia Research Institute of Inorganic Materials, Moscow (Russian Federation)

    1995-09-01

    R&D results on beryllium with high radiation resistance obtained recently are described in this report. The data are presented on nine different grades of isotropic beryllium manufactured by VNIINM and distinguished by both initial powder characteristics and properties of billets, made of these powders. The average grain size of the investigated beryllium grades varied from 8 to 26 {mu}m, the content of beryllium oxide was 0.9 - 3.9 wt.%, the dispersity of beryllium oxide - 0.04 - 0.5 {mu}m, tensile strength -- 250 - 650 MPa. All materials were irradiated in SM - 2 reactor over the temperature range 550 - 780{degrees}C. The results of the investigation showed, that HIP beryllium grades are less susceptible to swelling at higher temperatures in comparison with hot pressed and extruded grades. Beryllium samples, having the smallest grain size, demonstrated minimal swelling, which was less than 0.8 % at 750{degrees}C and Fs = 3.7 {center_dot}10{sup 21} cm{sup -2} (E>0.1 MeV). The mechanical properties, creep and microstructure parameters, measured before and after irradiation, are presented.

  20. The development and advantages of beryllium capsules for the National Ignition Facility

    International Nuclear Information System (INIS)

    Capsules with beryllium ablators have long been considered as alternatives to plastic for the National Ignition Facility laser; now the superior performance of beryllium is becoming well substantiated. Beryllium capsules have the advantages of relative insensitivity to instability growth, low opacity, high tensile strength, and high thermal conductivity. 3-D calculation with the HYDRA code NTIS Document No. DE-96004569 (M. M. Marinak et.al. in UCRL-LR-105821-95-3) confirm 2-D LASNEX U. B. Zimmerman and W. L. Kruer, Comments Plasmas Phys. Controlled Thermonucl. Fusion, 2, 51(2975) results that particular beryllium capsule designs are several times less sensitive than the CH point design to instability growth from DT ice roughness. These capsule designs contain more ablator mass and leave some beryllium unablated at ignition. By adjusting the level of copper dopant, the unablated mass can increase or decrease, with a corresponding decrease or increase in sensitivity to perturbations. A plastic capsule with the same ablator mass as the beryllium and leaving the same unablated mass also shows this reduced perturbation sensitivity. Beryllium's low opacity permits the creation of 250 eV capsule designs. Its high tensile strength allows it to contain DT fuel at room temperature. Its high thermal conductivity simplifies cryogenic fielding

  1. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  2. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jung, Hee Joon [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kovarik, Libor [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Zhaoying [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roosendaal, Timothy J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhu, Zihua [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Edwards, Danny J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hu, Shenyang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Henager, Charles H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kurtz, Richard J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Yongqiang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-01

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state suggests that there are preferred Si <100> interstitial splits. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C-SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C-SiC single crystal at 1573 K has been determined to be 3.8±0.4×10e-19 m2/sec.

  3. Magnesium behavior and structural defects in Mg{sup +} ion implanted silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Weilin, E-mail: weilin.jiang@pnnl.gov [Pacific Northwest National Laboratory (United States); Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang; Henager, Charles H.; Kurtz, Richard J. [Pacific Northwest National Laboratory (United States); Wang, Yongqiang [Los Alamos National Laboratory (United States)

    2015-03-15

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the 〈1 0 0〉 axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C–SiC prefers to substitute for Si and it forms precipitates of cubic Mg{sub 2}Si and tetragonal MgC{sub 2}. The diffusion coefficient of Mg in 3C–SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4 × 10{sup −19} m{sup 2}/s.

  4. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide

    Science.gov (United States)

    Jiang, Weilin; Jung, Hee Joon; Kovarik, Libor; Wang, Zhaoying; Roosendaal, Timothy J.; Zhu, Zihua; Edwards, Danny J.; Hu, Shenyang; Henager, Charles H.; Kurtz, Richard J.; Wang, Yongqiang

    2015-03-01

    As a candidate material for fusion reactor applications, silicon carbide (SiC) undergoes transmutation reactions under high-energy neutron irradiation with magnesium as the major metallic transmutant; the others include aluminum, beryllium and phosphorus in addition to helium and hydrogen gaseous species. The impact of these transmutants on SiC structural stability is currently unknown. This study uses ion implantation to introduce Mg into SiC. Multiaxial ion-channeling analysis of the as-produced damage state indicates a lower dechanneling yield observed along the axis. The microstructure of the annealed sample was examined using high-resolution scanning transmission electron microscopy. The results show a high concentration of likely non-faulted tetrahedral voids and possible stacking fault tetrahedra near the damage peak. In addition to lattice distortion, dislocations and intrinsic and extrinsic stacking faults are also observed. Magnesium in 3C-SiC prefers to substitute for Si and it forms precipitates of cubic Mg2Si and tetragonal MgC2. The diffusion coefficient of Mg in 3C-SiC single crystal at 1573 K has been determined to be 3.8 ± 0.4 × 10-19 m2/s.

  5. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    Science.gov (United States)

    Gaballa, Osama Gaballa Bahig

    Carbides, nitrides, and borides ceramics are of interest for many applications because of their high melting temperatures and good mechanical properties. Wear-resistant coatings are among the most important applications for these materials. Materials with high wear resistance and high melting temperatures have the potential to produce coatings that resist degradation when subjected to high temperatures and high contact stresses. Among the carbides, Al4SiC4 is a low density (3.03 g/cm3), high melting temperature (>2000°C) compound, characterized by superior oxidation resistance, and high compressive strength. These desirable properties motivated this investigation to (1) obtain high-density Al4SiC4 at lower sintering temperatures by hot pressing, and (2) to enhance its mechanical properties by adding WC and TiC to the Al4SiC4. Also among the carbides, tantalum carbide and hafnium carbide have outstanding hardness; high melting points (3880°C and 3890°C respectively); good resistance to chemical attack, thermal shock, and oxidation; and excellent electronic conductivity. Tantalum hafnium carbide (Ta4HfC 5) is a 4-to-1 ratio of TaC to HfC with an extremely high melting point of 4215 K (3942°C), which is the highest melting point of all currently known compounds. Due to the properties of these carbides, they are considered candidates for extremely high-temperature applications such as rocket nozzles and scramjet components, where the operating temperatures can exceed 3000°C. Sintering bulk components comprised of these carbides is difficult, since sintering typically occurs above 50% of the melting point. Thus, Ta4 HfC5 is difficult to sinter in conventional furnaces or hot presses; furnaces designed for very high temperatures are expensive to purchase and operate. Our research attempted to sinter Ta4HfC5 in a hot press at relatively low temperature by reducing powder particle size and optimizing the powder-handling atmosphere, milling conditions, sintering

  6. The structure and the Raman vibrational spectrum of the beryllium aquacation.

    Science.gov (United States)

    Rozmanov, Dmitry A; Sizova, Olga V; Skripkin, Mikhail Yu; Burkov, Kim A

    2005-11-01

    The experimental Raman vibrational spectrum of the 5.94 m water solution of the beryllium(II) chloride has been acquired. Theoretical frequencies, infrared and Raman intensities of the vibrational spectrum of the beryllium cation tetrahydrate have been calculated by means of quantum chemical approach. The peaks of the experimental spectrum have been assigned on the basis of the results of the quantum-chemical calculations. It has been shown that the hydrating surrounding of the aquacation increases effectively the frequency of the beryllium-oxygen stretching vibration by 16% in comparison with the free complex.

  7. Conditions for preparation of ultrapure beryllium by electrolytic refining in molten alkali-metal chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Wohlfarth, Hagen

    1982-02-01

    Electrolytic refining is regarded as the most suitable process for the production of beryllium with impurity contents below 1 at.-ppM. Several parameters are important for electrolytic refining of beryllium in a BeCl/sub 2/-containing LiCl-KCl melt: current density, BeCl/sub 2/ content, electrolyte temperature, composition of the unpurified beryllium and impurity-ion concentrations in the melt, as well as apparatus characteristics such as rotation speed of the cathode and condition of the crucible material. These factors were studied and optimized such that extensive removal of the maximum number of accompanying and alloying elements was achieved.

  8. Study of beryllium redeposition under bombardment by high intensity -low energy- hydrogen ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gureev, V.M.; Guseva, M.I.; Danelyan, L.S. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)] [and others

    1998-01-01

    The results of studying the erosion of beryllium under an effect of intense ion fluxes with the energy of 250 eV, at the fluences {approx}10{sup 2}1 cm{sup -2}, at the MAGRAS-stand are given. The operating conditions under which a practically-complete redeposition of the sputtered beryllium upon the target surface were experimentally-realized. A change in the microstructure of a beryllium target under sputtering and redeposition is analyzed. Some technological applications are considered. (author)

  9. Photoluminescence enhancement from GaN by beryllium doping

    Science.gov (United States)

    García-Gutiérrez, R.; Ramos-Carrazco, A.; Berman-Mendoza, D.; Hirata, G. A.; Contreras, O. E.; Barboza-Flores, M.

    2016-10-01

    High quality Be-doped (Be = 0.19 at.%) GaN powder has been grown by reacting high purity Ga diluted alloys (Be-Ga) with ultra high purity ammonia in a horizontal quartz tube reactor at 1200 °C. An initial low-temperature treatment to dissolve ammonia into the Ga melt produced GaN powders with 100% reaction efficiency. Doping was achieved by dissolving beryllium into the gallium metal. The powders synthesized by this method regularly consist of two particle size distributions: large hollow columns with lengths between 5 and 10 μm and small platelets in a range of diameters among 1 and 3 μm. The GaN:Be powders present a high quality polycrystalline profile with preferential growth on the [10 1 bar 1] plane, observed by means of X-ray diffraction. The three characteristics growth planes of the GaN crystalline phase were found by using high resolution TEM microscopy. The optical enhancing of the emission in the GaN powder is attributed to defects created with the beryllium doping. The room temperature photoluminescence emission spectra of GaN:Be powders, revealed the presence of beryllium on a shoulder peak at 3.39 eV and an unusual Y6 emission at 3.32eV related to surface donor-acceptor pairs. Also, a donor-acceptor-pair transition at 3.17 eV and a phonon replica transition at 3.1 eV were observed at low temperature (10 K). The well-known yellow luminescence band coming from defects was observed in both spectra at room and low temperature. Cathodoluminescence emission from GaN:Be powders presents two main peaks associated with an ultraviolet band emission and the yellow emission known from defects. To study the trapping levels related with the defects formed in the GaN:Be, thermoluminescence glow curves were obtained using UV and β radiation in the range of 50 and 150 °C.

  10. Failure prediction of thin beryllium sheets used in spacecraft structures

    Science.gov (United States)

    Roschke, Paul N.; Mascorro, Edward; Papados, Photios; Serna, Oscar R.

    1991-01-01

    The primary objective of this study is to develop a method for prediction of failure of thin beryllium sheets that undergo complex states of stress. Major components of the research include experimental evaluation of strength parameters for cross-rolled beryllium sheet, application of the Tsai-Wu failure criterion to plate bending problems, development of a high order failure criterion, application of the new criterion to a variety of structures, and incorporation of both failure criteria into a finite element code. A Tsai-Wu failure model for SR-200 sheet material is developed from available tensile data, experiments carried out by NASA on two circular plates, and compression and off-axis experiments performed in this study. The failure surface obtained from the resulting criterion forms an ellipsoid. By supplementing experimental data used in the the two-dimensional criterion and modifying previously suggested failure criteria, a multi-dimensional failure surface is proposed for thin beryllium structures. The new criterion for orthotropic material is represented by a failure surface in six-dimensional stress space. In order to determine coefficients of the governing equation, a number of uniaxial, biaxial, and triaxial experiments are required. Details of these experiments and a complementary ultrasonic investigation are described in detail. Finally, validity of the criterion and newly determined mechanical properties is established through experiments on structures composed of SR200 sheet material. These experiments include a plate-plug arrangement under a complex state of stress and a series of plates with an out-of-plane central point load. Both criteria have been incorporated into a general purpose finite element analysis code. Numerical simulation incrementally applied loads to a structural component that is being designed and checks each nodal point in the model for exceedance of a failure criterion. If stresses at all locations do not exceed the failure

  11. Probing Field Emission from Boron Carbide Nanowires

    Institute of Scientific and Technical Information of China (English)

    TIAN Ji-Fa; GAO Hong-Jun; BAO Li-Hong; WANG Xing-Jun; HUI Chao; LIU Fei; LI Chen; SHEN Cheng-Min; WANG Zong-Li; GU Chang-Zhi

    2008-01-01

    High density boron carbide nanowires are grown by an improved carbon thermal reduction technique. Transmission electron microscopy and electron energy lose spectroscopy of the sample show that the synthesized nanowires are B4 C with good crystallization. The field emission measurement for an individual boron nanowire is performed by using a Pt tip installed in the focused ion beam system. A field emission current with enhancement factor of 106 is observed and the evolution process during emission is also carefully studied. Furthermore, a two-step field emission with stable emission current density is found from the high-density nanowire film. Our results together suggest that boron carbide nanowires are promising candidates for electron emission nanodevices.

  12. Behavior of disordered boron carbide under stress.

    Science.gov (United States)

    Fanchini, Giovanni; McCauley, James W; Chhowalla, Manish

    2006-07-21

    Gibbs free-energy calculations based on density functional theory have been used to determine the possible source of failure of boron carbide just above the Hugoniot elastic limit (HEL). A range of B4C polytypes is found to be stable at room pressure. The energetic barrier for shock amorphization of boron carbide is by far the lowest for the B12(CCC) polytype, requiring only 6 GPa approximately = P(HEL) for collapse under hydrostatic conditions. The results clearly demonstrate that the collapse of the B12(CCC) phase leads to segregation of B12 and amorphous carbon in the form of 2-3 nm bands along the (113) lattice direction, in excellent agreement with recent transmission electron microscopy results.

  13. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author)

  14. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH3)2Si][CH3Si]. The polysilane contains from 0 to 60 mole percent (CH3)2Si units and from 40 to 100 mole percent CH3Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 1500C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  15. Reliable Breakdown Obtained in Silicon Carbide Rectifiers

    Science.gov (United States)

    Neudeck, Philip G.

    1997-01-01

    The High Temperature Integrated Electronics and Sensor (HTIES) Program at the NASA Lewis Research Center is currently developing silicon carbide (SiC) for use in harsh conditions where silicon, the semiconductor used in nearly all of today's electronics, cannot function. Silicon carbide's demonstrated ability to function under extreme high-temperature, high-power, and/or high-radiation conditions will enable significant improvements to a far-ranging variety of applications and systems. These range from improved high-voltage switching for energy savings in public electric power distribution and electric vehicles, to more powerful microwave electronics for radar and cellular communications, to sensor and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines.

  16. Modes of Occurrence and Geological Origin of Beryllium in Coals from the Pu'an Coalfield, Guizhou, Southwest China

    Institute of Scientific and Technical Information of China (English)

    YANG Jianye

    2007-01-01

    The concentration, modes of occurrence and geological origin of beryllium in five workable coal beds from the Pu'an Coalfield of Guizbou were studied using the inductively coupled-plasma mass spectrometry (ICP-MS), floating and sinking experiments (FSE) and sequential chemical extraction procedures (SCEP). The results show that the average concentration of beryllium in coals from the Pu'an Coalfield is 1.54 μg/g, much lower than that in most Chinese and worldwide coals.Beryllium in the Pu'an coals was not significantly enriched. However, it should be noted that the No. 8 coal bed from the study area has a high concentration of beryllium, 6.89 μg/g, three times higher than the background value of beryllium in coal. Beryllium in coal mainly occurs as organic association and has predominantly originated from coal-forming plants when its concentration is relatively low. The concentration of beryllium occurring as organic association is close to that distributed in inorganic matter when beryllium concentration of coal is similar to its background value, and in addition to coal-forming plants, beryllium is mainly derived from detrital materials of terrigenous origin. When beryllium is anomalously enriched in coal, it mainly occurs as organic association and is derived from volcanic tonsteins leached for a long geological time and then adsorbed by organic matter in peat mire.

  17. Thermal desorption analysis of beryllium tile pieces from JET

    International Nuclear Information System (INIS)

    Pieces of beryllium tile exposed to a D-D plasma in JET have been studied by thermal desorption spectroscopy. These tiles have a thick layer of redeposited Be-C-O with considerable hydrogen and deuterium present. The samples were heated at a constant rate of 2 C/min. from 100 C to 900 C. Desorption peaks occurred in the range of 140-480 C. There was no significant desorption at temperatures above 600 C. The amount of deuterium detected varied from a low of 8 x 1021/m2 to a high of 2.1 x 1023/m2. In one case, the amount of deuterium in a tile piece was seven times greater than the amount in a neighboring tile piece. Some of the tile pieces in the plasma-exposed region showed surface melting. Despite this, the deuterium yield from one of these pices is >1023/m2. (orig.)

  18. Thermal Induced Processes in Laminar System of Stainless Steel - Beryllium

    International Nuclear Information System (INIS)

    The paper reports on investigation of the laminar system 'stainless steel 12Cr18Ni10Ti - Be' at thermal treatment. There have been determined sequences of phase transformations along with relative amount of iron-containing phases in the samples subjected to thermal beryllization. It has been revealed that thermal beryllization of stainless steel thin foils results in γ→α transformation and formation of the beryllides NiBe and FeBe2. It has also been revealed that direct γ→α- and reverse α→γ-transformations are accompanied by, correspondingly, formation and decomposition of the beryllide NiBe. It is shown that distribution of the formed phases within sample bulk is defined by local concentration of beryllium. Based on obtained experimental data there is proposed a physical model of phase transformations in stainless steel at thermal beryllization.

  19. Nuclear charge radius measurements of radioactive beryllium isotopes

    CERN Multimedia

    2002-01-01

    We propose to measure the nuclear charge radii of the beryllium isotopes $^{7,9,10}$Be and the one-neutron halo isotope $^{11}$Be using laser spectroscopy of trapped ions. Ions produced at ISOLDE and ionized with the laser ion source will be cooled and bunched in the radio-frequency buncher of the ISOLTRAP experiment and then transferred into a specially designed Paul trap. Here, they will be cooled to temperatures in the mK range employing sympathetic and direct laser cooling. Precision laser spectroscopy of the isotope shift on the cooled ensemble in combination with accurate atomic structure calculations will provide nuclear charge radii with a precision of better than 3%. This will be the first model-independent determination of a one-neutron halo nuclear charge radius.

  20. Optical properties and structure of beryllium lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, I. S., E-mail: i.s.zhidkov@urfu.ru [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002, Russia and Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A. [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002 (Russian Federation)

    2014-10-21

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  1. Optical properties and structure of beryllium lead silicate glasses

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.

    2014-10-01

    Luminescence and optical properties and structural features of (BeO)x(PbOṡSiO2)1-x glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  2. Specification for nuclear-grade beryllium oxide powder

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification defines the physical and chemical requirements of nuclear-grade beryllium oxide (BeO) powder to be used in fabricating nuclear components. 1.2 This specification does not include requirements for health and safety. , , It recognizes the material as a Class B poison and suggests that producers and users become thoroughly familiar with and comply to applicable federal, state, and local regulations and handling guidelines. 1.3 Special tests and procedures are given in Annex A1 and Annex A2. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

  3. Stress distribution and fracture behavior of beryllium compact tension specimens

    International Nuclear Information System (INIS)

    Compact tension specimens of beryllium (Be) were designed to study fracture behavior and mechanical properties. The local stress distribution near a notch in a compact tension specimen was measured in situ by the combination of an X-ray stress analysis and a custom-designed load device. The fracture morphology was observed by scanning electron microscopy. The result showed that the local stresses near the notch tip are much higher than in other areas, and cracking occurs first in that area. The load-crack opening displacement curve of the Be compact tension specimen was obtained, and used to calculate the fracture toughness as 15.7 MPa√m. The compact tension specimen fracture surfaces were mainly characterized by cleavage fracture over three different areas. Cleavage micro-cracks along the basal slip plane were formed at the crack tip, and their growth was controlled by the primary stress after reaching a critical length

  4. Modelling of radiation impact on ITER Beryllium wall

    International Nuclear Information System (INIS)

    In the ITER H-Mode confinement regime, edge localized instabilities (ELMs) will perturb the discharge. Plasma lost after each ELM moves along magnetic field lines and impacts on divertor armour, causing plasma contamination by back propagating eroded carbon or tungsten. These impurities produce enhanced radiation flux distributed mainly over the beryllium main chamber wall. The simulation of the complicated processes involved are subject of the integrated tokamak code TOKES that is currently under development. This work describes the new TOKES model for radiation transport through confined plasma. Equations for level populations of the multi-fluid plasma species and the propagation of different kinds of radiation (resonance, recombination and bremsstrahlung photons) are implemented. First simulation results without account of resonance lines are presented.

  5. Electron microscope observation of single - crystalline beryllium thin foils

    International Nuclear Information System (INIS)

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3. (authors)

  6. Electromagnetic properties of the Beryllium-11 nucleus in Halo EFT

    Directory of Open Access Journals (Sweden)

    Hammer H.-W.

    2010-04-01

    Full Text Available We compute electromagnetic properties of the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the parameters of the EFT from measured data on levels and scattering lengths in the 10Be plus neutron system. We then obtain predictions for the B(E1 strength of the 1/2+ to 1/2− transition in the 11Be nucleus. We also compute the charge radius of the ground state of 11Be. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also indicate how higher-order corrections that affect both s-wave and p-wave 10 Be-neutron interactions will affect our results.

  7. Tensile and fracture toughness test results of neutron irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R.; Moons, F.; Puzzolante, J.L. [Centre d`Etude de l`Energie Nucleaire, Mol (Belgium)

    1998-01-01

    Tensile and fracture toughness test results of four Beryllium grades are reported here. The flow and fracture properties are investigated by using small size tensile and round compact tension specimens. Irradiation was performed at the BR2 material testing reactor which allows various temperature and irradiation conditions. The fast neutron fluence (>1 MeV) ranges between 0.65 and 2.45 10{sup 21} n/cm{sup 2}. In the meantime, un-irradiated specimens were aged at the irradiation temperatures to separate if any the effect of temperature from irradiation damage. Test results are analyzed and discussed, in particular in terms of the effects of material grade, test temperature, thermal ageing and neutron irradiation. (author)

  8. Electron-Spin Resonance in Boron Carbide

    Science.gov (United States)

    Wood, Charles; Venturini, Eugene L.; Azevedo, Larry J.; Emin, David

    1987-01-01

    Samples exhibit Curie-law behavior in temperature range of 2 to 100 K. Technical paper presents studies of electron-spin resonance of samples of hot pressed B9 C, B15 C2, B13 C2, and B4 C. Boron carbide ceramics are refractory solids with high melting temperatures, low thermal conductives, and extreme hardnesses. They show promise as semiconductors at high temperatures and have unusually large figures of merit for use in thermoelectric generators.

  9. Magnetism of hydrogen-irradiated silicon carbide

    International Nuclear Information System (INIS)

    Spin-polarized density functional theory is used to study two-hydrogen defect complexes in silicon carbide. We find that the magnetism depends on the distances of the two hydrogen atoms. Magnetism appears when the two hydrogen defects are distant from each other, and magnetism cancels out if they are close to each other. The critical distance between the two hydrogen defects is determined.

  10. Interaction of energetic tritium with silicon carbide

    International Nuclear Information System (INIS)

    In order to investigate the physical and chemical interactions of energetic hydrogen isotope species with silicon carbide, recoil tritium from the 3He(n,p)T reaction has been allowed to react with K-T silicon carbide and silicon carbide powder. The results show that if the silicon carbide has been degassed and annealed at 14000C prior to tritium bombardment, a considerable fraction of the tritium (ca. 40%) is released as HTO from the SiC upon heating to 13500C under vacuum conditions. Most of the remaining tritium is retained in SiC, e.g., the retention of the tritium in the K-T SiC was found to be 62 and 22% upon heating to 600 and 13500C, respectively. This is in direct contrast to graphite samples in which the tritium is not released to any significant extent even when heated to 13500C. Samples which were exposed to H2O and H2 prior to tritium bombardment were heated to 6000C after the irradiation. The results obtained indicate that a total of 38.7 and 2.49% of the tritium is released in the form of HT and CH3T in the case of H2 or H2O exposure, respectively. Treatment of degassed samples after tritium bombardment with H2O and H2 at temperatures up to 10000C leads to the release of up to 44.9% of the tritium as HT and CH3T. 42 references, 2 figures, 2 tables

  11. Diamond-silicon carbide composite and method

    Science.gov (United States)

    Zhao, Yusheng

    2011-06-14

    Uniformly dense, diamond-silicon carbide composites having high hardness, high fracture toughness, and high thermal stability are prepared by consolidating a powder mixture of diamond and amorphous silicon. A composite made at 5 GPa/1673K had a measured fracture toughness of 12 MPam.sup.1/2. By contrast, liquid infiltration of silicon into diamond powder at 5 GPa/1673K produces a composite with higher hardness but lower fracture toughness.

  12. Cutting Performance and Mechanism of RE Carbide Tools

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The research of rare earth elements (RE), added into cemented carbide tools, is one of the recent developments of new types of tool materials in China. Systematic experiments about RE carbides YG8R (K30), YT14R (P20) and YW1R (M10) were made to study on the cutting performance in comparison with non-RE carbides YG8, YT14 and YW1. The cutting experiments were as follows: tool life, cutting force, tool-chip friction coefficient and interrupted machining. The action of RE on the carbide materials and the cutting mechanism of the RE carbide tools in the cutting process were verified with the aid of SEM and energy spectrum analysis. Experimental results show that the RE carbide tools have a good overall performance.

  13. Nonlinear optical imaging of defects in cubic silicon carbide epilayers.

    Science.gov (United States)

    Hristu, Radu; Stanciu, Stefan G; Tranca, Denis E; Matei, Alecs; Stanciu, George A

    2014-06-11

    Silicon carbide is one of the most promising materials for power electronic devices capable of operating at extreme conditions. The widespread application of silicon carbide power devices is however limited by the presence of structural defects in silicon carbide epilayers. Our experiment demonstrates that optical second harmonic generation imaging represents a viable solution for characterizing structural defects such as stacking faults, dislocations and double positioning boundaries in cubic silicon carbide layers. X-ray diffraction and optical second harmonic rotational anisotropy were used to confirm the growth of the cubic polytype, atomic force microscopy was used to support the identification of silicon carbide defects based on their distinct shape, while second harmonic generation microscopy revealed the detailed structure of the defects. Our results show that this fast and noninvasive investigation method can identify defects which appear during the crystal growth and can be used to certify areas within the silicon carbide epilayer that have optimal quality.

  14. First beryllium capsule implosions on the National Ignition Facility

    Science.gov (United States)

    Kline, J. L.; Yi, S. A.; Simakov, A. N.; Olson, R. E.; Wilson, D. C.; Kyrala, G. A.; Perry, T. S.; Batha, S. H.; Zylstra, A. B.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Strozzi, D. J.; MacPhee, A. G.; Callahan, D. A.; Hinkel, D. E.; Hurricane, O. A.; Milovich, J. L.; Rygg, J. R.; Khan, S. F.; Haan, S. W.; Celliers, P. M.; Clark, D. S.; Hammel, B. A.; Kozioziemski, B.; Schneider, M. B.; Marinak, M. M.; Rinderknecht, H. G.; Robey, H. F.; Salmonson, J. D.; Patel, P. K.; Ma, T.; Edwards, M. J.; Stadermann, M.; Baxamusa, S.; Alford, C.; Wang, M.; Nikroo, A.; Rice, N.; Hoover, D.; Youngblood, K. P.; Xu, H.; Huang, H.; Sio, H.

    2016-05-01

    The first indirect drive implosion experiments using Beryllium (Be) capsules at the National Ignition Facility confirm the superior ablation properties and elucidate possible Be-ablator issues such as hohlraum filling by ablator material. Since the 1990s, Be has been the preferred Inertial Confinement Fusion (ICF) ablator because of its higher mass ablation rate compared to that of carbon-based ablators. This enables ICF target designs with higher implosion velocities at lower radiation temperatures and improved hydrodynamic stability through greater ablative stabilization. Recent experiments to demonstrate the viability of Be ablator target designs measured the backscattered laser energy, capsule implosion velocity, core implosion shape from self-emission, and in-flight capsule shape from backlit imaging. The laser backscatter is similar to that from comparable plastic (CH) targets under the same hohlraum conditions. Implosion velocity measurements from backlit streaked radiography show that laser energy coupling to the hohlraum wall is comparable to plastic ablators. The measured implosion shape indicates no significant reduction of laser energy from the inner laser cone beams reaching the hohlraum wall as compared with plastic and high-density carbon ablators. These results indicate that the high mass ablation rate for beryllium capsules does not significantly alter hohlraum energetics. In addition, these data, together with data for low fill-density hohlraum performance, indicate that laser power multipliers, required to reconcile simulations with experimental observations, are likely due to our limited understanding of the hohlraum rather than the capsule physics since similar multipliers are needed for both Be and CH capsules as seen in experiments.

  15. Cost effective aluminum beryllium mirrors for critical optics applications

    Science.gov (United States)

    Say, Carissa; Duich, Jack; Huskamp, Chris; White, Ray

    2013-09-01

    The unique performance of aluminum-beryllium frequently makes it an ideal material for manufacturing precision optical-grade metal mirrors. Traditional methods of manufacture utilize hot-pressed powder block in billet form which is subsequently machined to final dimensions. Complex component geometries such as lightweighted, non-plano mirrors require extensive tool path programming, fixturing, and CNC machining time and result in a high buy-to-fly ratio (the ratio of the mass of raw material purchased to the mass of the finished part). This increases the cost of the mirror structure as a significant percentage of the procurement cost is consumed in the form of machining, tooling, and scrap material that do not add value to the final part. Inrad Optics, Inc. and IBC Advanced Alloys Corp. undertook a joint study to evaluate the suitability of investment-cast Beralcast® 191 and 363 aluminum-beryllium as a precision mirror substrate material. Net shape investment castings of the desired geometry minimizes machining to just cleanup stock, thereby reducing the recurring procurement cost while still maintaining performance. The thermal stability of two mirrors, (one each of Beralcast® 191 and Beralcast® 363), was characterized from -40°F to +150°F. A representative pocketed mirror was developed, including the creation of a relevant geometry and production of a cast component to validate the approach. Information from the demonstration unit was used as a basis for a comparative cost study of the representative mirror produced in Beralcast® and one machined from a billet of AlBeMet® 162 (AlBeMet® is a registered trademark of Materion Corporation). The technical and financial results of these studies will be discussed in detail.

  16. Assessment of beryllium Faraday screens of the JET ICRF antennas

    International Nuclear Information System (INIS)

    The JET ICRF antennas, equipped with beryllium (Be) Faraday screens (FS), can be operated in such a way that the RF specific effects on the plasma boundary, by the impurity influx originating at the screens, are reduced to a negligible level. In dipole phasing, k parallel = 7 m-1, the influx is for all purposes negligible. In monopole phasing (kparallel = 0 m-1) the beryllium influx does not exceed ΦFSBe = 1 x 1019 atoms·MW-1·s-1 and the corresponding δZeff/PRF is -1. The observed dependences of ΦFSBe (in monopole phasing) on plasma density, antenna voltage, antenna phasing, and the angle between FS elements and the magnetic field in the boundary, B-vector(a) = B-vectorθ(a) + B-vectorT(a), confirm that the release mechanism is sputtering by ions accelerated in the RF enhanced Bohm-Debye sheaths forming at the front face of the FS. When the angle between FS and B-vector(a) is approx. 22 deg. C, the fraction of the RF power radiated by the antenna, dissipated at the screen, can reach 40%. At high antenna voltage, arcing across the FS can occur. With dipole phasing the heating efficiency is not degraded, even with the large angle, and all the power coupled by the antenna is absorbed at the resonance position near the plasma centre. The open screen design did not introduce any disadvantages. The experience from JET operation at powers of up to 22 MW shows that, if the necessary conditions are met, i.e. if RF rectification is minimized, antennas are phased as dipoles and material with low sputtering coefficients at energies of 0.5-1 keV is used, then the influx from the FS is, for all practical purposes, eliminated. (author). 19 refs, 6 figs

  17. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  18. REMOVAL OF BERYLLIUM FROM DRINKING WATER BY CHEMICAL COAGULATION AND LIME SOFTENING

    Science.gov (United States)

    The effectiveness of conventional drinking water treatment and lime softening was evaluated for beryllium removal from two drinking water sources. ar test studies were conducted to determine how common coagulants (aluminum sulfate and ferric chloride and lime softening performed ...

  19. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    International Nuclear Information System (INIS)

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab

  20. Analysis of beryllium and depleted uranium: An overview of detection methods in aerosols and soils

    Energy Technology Data Exchange (ETDEWEB)

    Camins, I.; Shinn, J.H.

    1988-06-01

    We conducted a survey of commercially available methods for analysis of beryllium and depleted uranium in aerosols and soils to find a reliable, cost-effective, and sufficiently precise method for researchers involved in environmental testing at the Yuma Proving Ground, Yuma, Arizona. Criteria used for evaluation include cost, method of analysis, specificity, sensitivity, reproducibility, applicability, and commercial availability. We found that atomic absorption spectrometry with graphite furnace meets these criteria for testing samples for beryllium. We found that this method can also be used to test samples for depleted uranium. However, atomic absorption with graphite furnace is not as sensitive a measurement method for depleted uranium as it is for beryllium, so we recommend that quality control of depleted uranium analysis be maintained by testing 10 of every 1000 samples by neutron activation analysis. We also evaluated 45 companies and institutions that provide analyses of beryllium and depleted uranium. 5 refs., 1 tab.

  1. Estimations of neutron yield from beryllium target irradiated by SPring-8 hard synchrotron radiation

    CERN Document Server

    Gryaznykh, D A; Plokhoi, V V

    2000-01-01

    The possibility of creating a neutron source based on ''SPring-8'' synchrotron radiation interaction with beryllium targets is discussed. The possible neutron yield is estimated to be of order 10 sup 1 sup 2 s sup - sup 1 .

  2. Off the Beaten Track-A Hitchhiker's Guide to Beryllium Chemistry.

    Science.gov (United States)

    Naglav, Dominik; Buchner, Magnus R; Bendt, Georg; Kraus, Florian; Schulz, Stephan

    2016-08-26

    This Minireview aims to give an introduction to beryllium chemistry for all less-experienced scientists in this field of research. Up to date information on the toxicity of beryllium and its compounds are reviewed and several basic and necessary guidelines for a safe and proper handling in modern chemical research laboratories are presented. Interesting phenomenological observations are described that are related directly to the uniqueness of this element, which are also put into historical context. Herein we combine the contributions and experiences of many scientist that work passionately in this field. We want to encourage fellow scientists to reconcile the long-standing reservations about beryllium and its compounds and motivate intense research on this spurned element. Who on earth should be able to deal with beryllium and its compounds if not chemists? PMID:27364901

  3. Stereology of carbide phase in modified hypereutectic chromium cast iron

    Directory of Open Access Journals (Sweden)

    J. Suchoń

    2010-04-01

    Full Text Available In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C, ferroniobium (FeNb and mixture of ferroniobium and rare-earth (RE. The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  4. Characterization of boron carbide with an electron microprobe

    Science.gov (United States)

    Matteudi, G.; Ruste, J.

    1983-01-01

    Within the framework of a study of heterogeneous materials (Matteudi et al., 1971: Matteudi and Verchery, 1972) thin deposits of boron carbide were characterized. Experiments using an electronic probe microanalyzer to analyze solid boron carbide or boron carbide in the form of thick deposits are described. Quantitative results on boron and carbon are very close to those obtained when applying the Monte Carlo-type correction calculations.

  5. Microstructural and Mechanical characterization of WC-Co cemented carbides

    OpenAIRE

    Zakia, Rizki

    2013-01-01

    WC-Co cemented carbides are ceramic-metal composite materials made of carbides embedded in a metal phase that acts as a binder. They exhibit an exceptional combination of strength, toughness and wear resistance as a result of the extremely different properties of their two constitutive phases. Consequently, cemented carbides have been positioned as suitable options when selecting materials for tribomechanical applications, and their implementation continues to gain a place in t...

  6. Stereology of carbide phase in modified hypereutectic chromium cast iron

    OpenAIRE

    J. Suchoń; A. Studnicki; M. Przybył

    2010-01-01

    In paper are presented results of studies of carbide phase stereology modified hypereutectic wear resistance chromium cast iron which contains carbon about 3,5% and chromium about 25%. Three substances were applied to the modification: boron carbide (B4C), ferroniobium (FeNb) and mixture of ferroniobium and rare-earth (RE). The measurements of geometrical features of carbides were conducted on microsection taken from castings wich were cooled with various velocities.

  7. Delivering carbide ligands to sulfide-rich clusters.

    Science.gov (United States)

    Reinholdt, Anders; Herbst, Konrad; Bendix, Jesper

    2016-02-01

    The propensity of the terminal ruthenium carbide Ru(C)Cl2(PCy3)2 (RuC) to form carbide bridges to electron-rich transition metals enables synthetic routes to metal clusters with coexisting carbide and sulfide ligands. Electrochemical experiments show the Ru≡C ligand to exert a relatively large electron-withdrawing effect compared with PPh3, effectively shifting redox potentials.

  8. Sintering of nano crystalline silicon carbide by doping with boron carbide

    Indian Academy of Sciences (India)

    M S Datta; A K Bandyopadhyay; B Chaudhuri

    2002-06-01

    Sinterable nano silicon carbide powders of mean particle size (37 nm) were prepared by attrition milling and chemical processing of an acheson type alpha silicon carbide having mean particle size of 0.39 m (390 nm). Pressureless sintering of these powders was achieved by addition of boron carbide of 0.5 wt% together with carbon of 1 wt% at 2050°C at vacuum (3 mbar) for 15 min. Nearly 99% sintered density was obtained. The mechanism of sintering was studied by scanning electron microscopy and transmission electron microscopy. This study shows that the mechanism is a solid-state sintering process. Polytype transformation from 6H to 4H was observed.

  9. Tungsten carbide platelet-containing cemented carbide with yttrium containing dispersed phase

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; CHEN Shu; WANG Yuan-jie; YU Xian-wang; XIONG Xiang-jun

    2008-01-01

    A fine and platelet tungsten carbide patterned structure with fine yttrium containing dispersed phase was observed in liquid phase sintered WC-20%Co-1%Y2O3 cemented carbide with ultrafine tungsten carbide and nano yttrium oxide as starting materials. By comparing the microstructures of the alloy prepared by hot-press at the temperature below the eutectic melting temperature and by conventional liquid phase sintering, it is shown that hexagonal and truncated trigonal plate-like WC grains are formed through the mechanism of dissolution-precipitation (recrystallization) at the stage of liquid phase sintering. Yttrium in the addition form of oxide exhibits good ability in inhibiting the discontinuous or inhomogeneous WC grain growth in the alloy at the stage of solid phase sintering.

  10. Silicon carbide sintered body manufactured from silicon carbide powder containing boron, silicon and carbonaceous additive

    Science.gov (United States)

    Tanaka, Hidehiko

    1987-01-01

    A silicon carbide powder of a 5-micron grain size is mixed with 0.15 to 0.60 wt% mixture of a boron compound, i.e., boric acid, boron carbide (B4C), silicon boride (SiB4 or SiB6), aluminum boride, etc., and an aluminum compound, i.e., aluminum, aluminum oxide, aluminum hydroxide, aluminum carbide, etc., or aluminum boride (AlB2) alone, in such a proportion that the boron/aluminum atomic ratio in the sintered body becomes 0.05 to 0.25 wt% and 0.05 to 0.40 wt%, respectively, together with a carbonaceous additive to supply enough carbon to convert oxygen accompanying raw materials and additives into carbon monoxide.

  11. Characterization of phagolysosomal simulant fluid for study of beryllium aerosol particle dissolution.

    Science.gov (United States)

    Stefaniak, A B; Guilmette, R A; Day, G A; Hoover, M D; Breysse, P N; Scripsick, R C

    2005-02-01

    A simulant of phagolysosomal fluid is needed for beryllium particle dissolution research because intraphagolysosomal dissolution is believed to be a necessary step in the cellular immune response associated with development of chronic beryllium disease. Thus, we refined and characterized a potassium hydrogen phthalate (KHP) buffered solution with pH 4.55, termed phagolysosomal simulant fluid (PSF), for use in a static dissolution technique. To characterize the simulant, beryllium dissolution in PSF was compared to dissolution in the J774A.1 murine cell line. The effects of ionic composition, buffer strength, and the presence of the antifungal agent alkylbenzyldimethylammonium chloride (ABDC) on beryllium dissolution in PSF were evaluated. Beryllium dissolution in PSF was not different from dissolution in the J774A.1 murine cell line (p = 0.78) or from dissolution in another simulant having the same pH but different ionic composition (p = 0.73). A buffer concentration of 0.01-M KHP did not appear adequate to maintain pH under all conditions. There was no difference between dissolution in PSF with 0.01-M KHP and 0.02-M KHP (p = 0.12). At 0.04-M KHP, beryllium dissolution was increased relative to 0.02-M KHP (p = 0.02). Use of a 0.02-M KHP buffer concentration in the standard formulation for PSF provided stability in pH without alteration of the dissolution rate. The presence of ABDC did not influence beryllium dissolution in PSF (p = 0.35). PSF appears to be a useful and appropriate model of in vitro beryllium dissolution when using a static dissolution technique. In addition, the critical approach used to evaluate and adjust the composition of PSF may serve as a framework for characterizing PSF to study dissolution of other metal and oxide particles.

  12. Impact of beryllium reflector ageing on Safari–1 reactor core parameters / L.E. Moloko

    OpenAIRE

    Moloko, Lesego Ernest

    2011-01-01

    The build–up of 6Li and 3He, that is, the strong thermal neutron absorbers or the so called "neutron poisons", in the beryllium reflector changes the physical characteristics of the reactor, such as reactivity, neutron spectra, neutron flux level, power distribution, etc.; furthermore,gaseous isotopes such as 3H and 4He induce swelling and embrittlement of the reflector. The SAFARI–1 research reactor, operated by Necsa at Pelindaba in South Africa, uses a beryllium reflector on...

  13. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  14. Thermodynamic and kinetic study of uranium carbide pyrophoricity

    International Nuclear Information System (INIS)

    This research thesis concerns the development of nuclear reactors of fourth generation, and more particularly the use of carbide fuels instead of oxide fuels. An experimental part allows the investigation of mechanisms resulting in the pyrophoric reaction of a powder of uranium carbide, and addresses the determination of kinetic parameters intrinsic to the oxidation of powdered uranium carbide. Experimental results are then used to develop models of oxidation of powders of carbide uranium which are applied to a simplified mono-dispersed powder, and then introduced in a computation code. Simulation results are compared with experimental results

  15. Silicon Carbide Corrugated Mirrors for Space Telescopes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  16. Characterization of silicon-silicon carbide ceramic derived from carbon-carbon silicon carbide composites

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Vijay K. [Indian Institute of Technology, Varanasi (India). Dept. of Mechanical Engineering; Krenkel, Walter [Univ. of Bayreuth (Germany). Dept. of Ceramic Materials Engineering

    2013-04-15

    The main objective of the present work is to process porous silicon - silicon carbide (Si - SiC) ceramic by the oxidation of carboncarbon silicon carbide (C/C - SiC) composites. Phase studies are performed on the oxidized porous composite to examine the changes due to the high temperature oxidation. Further, various characterization techniques are performed on Si- SiC ceramics in order to study the material's microstructure. The effects of various parameters such as fiber alignment (twill weave and short/chopped fiber) and phenolic resin type (resol and novolak) are characterized.

  17. The Status of Beryllium Research for Fusion in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Glen R. Longhurst

    2003-12-01

    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling.

  18. Sensitive detection of beryllium using a fiber optic liquid waveguide cell.

    Science.gov (United States)

    Deng, Gang; Wei, Lily; Collins, Greg E

    2003-05-28

    The metallochromic chelating agent, Chromazurol S, has been utilized in conjunction with a fiber optic liquid waveguide capillary cell to enable the sensitive detection of beryllium in solution (30 ng l(-1) detection limit) and following extraction from a contaminated plexiglas surface (0.5 ng cm(-2) detection limit). The addition of a cationic surfactant, cetylpyridinium chloride, to Chromazurol S at pH 10 in Tris-HCl buffer results in the formation of two bathochromic peaks in the visible spectrum following metal chelation by beryllium. The first absorbance band, at 515 nm, is intermediate in nature, permitting maximal sensitivity for low beryllium concentrations, but diminishing in intensity at concentrations above 100 mug l(-1). The second absorbance band, centered at 610 nm, dominates for beryllium concentrations of 100 mug l(-1) and above. Experimental conditions including pH, buffer type, additive surfactants, masking agents, and dye concentration were investigated in order to optimize detection sensitivity and selectivity. A fiber optic spectrometer is used with both a liquid waveguide capillary cell and 1 cm cuvette cell, to give a sensitive and broad dynamic range for beryllium detection that capitalizes on both beryllium metal chelate absorbance bands formed under these conditions.

  19. Preconcentration and separation of ultra-trace beryllium using quinalizarine-modified magnetic microparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ashtari, Parviz, E-mail: pashtari@aeoi.org.ir [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of); Wang Kemin; Yang Xiaohai [State Key Laboratory of Chemo/Biosensing and Chemometrics, Biomedical Engineering Center, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Ahmadi, Seyed Javad [NFCS, Nuclear Science and Technology Research Institute, PO Box 11365-8486, Tehran (Iran, Islamic Republic of)

    2009-07-30

    Magnetically-assisted chemical separation/preconcentration method for the analysis of beryllium from aqueous solutions was developed. According to this method several extractants were coated on certain magnetic microparticles to assist the extraction of beryllium from the aqueous solutions. The influence of different parameters (type and amount of extractant, pH, equilibrium time and ionic strength) was investigated. Also, the interfering effect of various cationic and anionic species on the percent recovery of beryllium was studied. The applied spectrophotometric method showed good linearity and precision at a given wavelength (605.0 nm). Among the extractants used, quinalizarine resulted in almost a full recovery of beryllium at pH 7.4, which was the optimum extraction pH. The equilibrium time of the extraction was 10.0 min. The quantitative re-extraction was carried out by 0.5 M nitric acid. Also, the stability of the extractant-coated magnetic microparticles was 4 cycles (extraction and re-extraction) and the used magnetic microparticles showed good selectivity for beryllium against other cations and anions. Finally, the developed method was applicable for the preconcentration and separation of beryllium from spring water, tap water and certified reference waters. The obtained detection limit was 30 ng L{sup -1}.

  20. Characterization of beryllium deformation using in-situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Magnuson, Eric Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Brown, Donald William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Clausen, Bjorn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sisneros, Thomas A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Park, Jun-Sang [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-08-24

    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advanced Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.

  1. Extraction and optical fluorescence method for the measurement of trace beryllium in soils.

    Science.gov (United States)

    Agrawal, Anoop; Cronin, John P; Agrawal, Akshay; Tonazzi, Juan C L; Adams, Lori; Ashley, Kevin; Brisson, Michael J; Duran, Brandy; Whitney, Gary; Burrell, Anthony K; McCleskey, T Mark; Robbins, James; White, Kenneth T

    2008-03-15

    Beryllium metal and beryllium oxide are important industrial materials used in a variety of applications in the electronics, nuclear energy, and aerospace industries. These materials are highly toxic, they must be disposed of with care, and exposed workers need to be protected. Recently, a new analytical method was developed that uses dilute ammonium bifluoride for extraction of beryllium and a high quantum yield optical fluorescence reagent to determine trace amounts of beryllium in airborne and surface samples. The sample preparation and analysis procedure was published by both ASTM International and the National Institute for Occupational Safety and Health (NIOSH). The main advantages of this method are its sensitivity, simplicity, use of lower toxicity materials, and low capital costs. Use of the technique for analyzing soils has been initiated to help meet a need at several of the U.S. Department of Energy legacy sites. So far this work has mainly concentrated on developing a dissolution protocol for effectively extracting beryllium from a variety of soils and sediments so that these can be analyzed by optical fluorescence. Certified reference materials (CRM) of crushed rock and soils were analyzed for beryllium content using fluorescence, and results agree quantitatively with reference values.

  2. Investigation of the mechanism of interaction of Lithium 6 ions on Beryllium 9

    International Nuclear Information System (INIS)

    The objective of this research on the interaction of Lithium 6 and Beryllium 9 ions is to obtain new indications on the mode of interaction of these heavy ions, and on the configuration of target nuclei and projectile nuclei. In a first part, the author presents and describes the experimental conditions which comprise a Van de Graaff accelerator, a source, a stripper, and a target. He reports the study of α particles emitted by the reaction between the Lithium and Beryllium ions: description of the experimental installation (irradiation chamber and method), presentation and interpretation of experimental results. In the next part, he reports the study of Lithium 7 and Beryllium 10 nuclides emitted by disintegration of Beryllium 11: description of experimental conditions, variations of cross sections, variation of the cross section rate, and interpretation. The author then addresses the study of the intervention of the mode of interaction by 15N compound nucleus in the reactions between lithium and beryllium ions: study of intensities of the different spectrum lines, measurement of the Doppler effect produced of the 479 keV line, interpretation of results. In conclusion, the author analyses the mechanism of interaction between lithium and beryllium ions, and discusses different theories: the Newns and Glendenning theories, and the Leigh theory

  3. Tritium release of Li4SiO4, Li2O and beryllium and chemical compatibility of beryllium with Li4SiO4, Li2O and steel (SIBELIUS irradiation)

    International Nuclear Information System (INIS)

    The objective of the SIBELIUS irradiation, a joint EC-US project performed at CEN Grenoble, was to investigate the oxidation kinetics of beryllium in contact with ceramic and the nature and extent of beryllium in contact with ceramic and the nature and extent of beryllium interaction with (316 L and 1.4914) steel in a neutron environment. In this work post irradiation examinations of SIBELIUS specimens performed at KfK are described. Tritium release of Li4SiO4, Li2O and beryllium was studied by out-of-pile annealing and chemical compatibility of beryllium with Li4SiO4, Li2O and steel by microscopic examinations. Tritium release of the ceramics was found to be consistent with SIBELIUS inpile observations and previous tests. Release of tritium generated in beryllium was found to be very slow, in accordance with previous work. For beryllium which was in contact with ceramic during irradiation, a second type of tritium, caused by injection of 2.7 MeV tritons generated in the ceramic, is observed. Release of injected tritium is faster than that of generated. Evidence for injected tritium in beryllium was also found in the microscopic studies. The observed minor chemical reactions of beryllium with steel and probably also those with breeder materials under neutron irradiation are consistent with the results of laboratory annealing tests. (orig.)

  4. 含铍碳化硅陶瓷先驱体聚铍碳硅烷的合成%Synthesis of Precursor of SiC ceramic containing beryllium

    Institute of Scientific and Technical Information of China (English)

    段曦东; 李文芳; 周珊; 杜作娟; 王超英; 黄小忠

    2012-01-01

    Beryllium acetylacetonate [Be(acac)2] was synthesized using beryllium hydroxide, sulfuric acid and acetylacetone as raw material. Beryllium acetylacetonate [Be(acac)2] reacted with polycarbosilane (PCS) with heating,resionoid product was produced. In the reaction, the beryllium acetylacetonate was consumed, the melting point was rised comparing to the onset polycarbosilane. The clement analysis shows there are some beryllium in the product, the gel permeation chromatography GPC ana-lysis shows the molecular of the product rised comparing to the onset polycarbosilane. Fourier transform infrared spectroscopy (FT- IR) analysis shows there are such chemical structures in PBeCS:Si(CH3 )2- CH2 -,-Si(CH3 ) · (H)-CH2-.1H-NMR shows the Si-H bond in the reagent was consumed. The reaction mechanism is inferred on the basis of analysis result, and the Si-H bond played a crucial role in the formation of the product. The experiment and theory analysis shows the product is a kind of polycarbosilane containing beryllium, which can be called polyberylliumocar-bosilane (PBeCS). After treated under 1200℃ the product PBeCS can be converted into the silicon carbide containing Beryllium.%以氢氧化铍、硫酸和乙酰丙酮为原料合成了乙酰丙酮铍(Be(acac)2).用乙酰丙酮铍和聚碳硅烷在加热的条件下反应一定时间,生成了树脂状的产物.反应中乙酰丙酮铍被消耗,生成产物熔点相对起始聚碳硅烷熔点升高.元素分析表明产物中含有铍元素,凝胶渗透色谱分析表明产物分子量相对起始聚碳硅烷向增大的方向发生变化.傅立叶红外光谱分析表明产物中主要存在如下结构:Si(CH3)2—CH2—,—Si(CH3)·(H)—CH2—.核磁共振1H-NMR分析表明反应物中Si—H键被消耗.根据分析结果推测了反应机理,Si—H键的消耗在产物的形成中起了重要作用.实验与理论分析表明先驱体产物是一种含铍聚碳硅烷,可以命名为聚铍碳硅烷(PBeCS).在1200℃的高

  5. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P.; Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Rolli, R. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Applied Materials - Materials Biomechanics (IAM-WBM); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, Barcelona (Spain)

    2013-07-01

    Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the main concept of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by company NGK, Japan. It is notable that beryllium pebbles of other types are commercially available at the market. Presented work is dedicated to a study of characteristics of microstructure, packaging density and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Company Materion, USA. (orig.).

  6. Derivation of beryllium guidelines for use in establishing cleanup levels at the Peek Street and Sacandaga sites, New York

    International Nuclear Information System (INIS)

    Guideline levels are derived for beryllium in soil and on indoor surfaces at the Peek Street and Sacandaga sites in the state of New York. On the basis of highly conservative assumptions, the soil beryllium concentration that corresponds to a 10-4 carcinogenic risk level is estimated to be 13 mg/kg at both sites. Calculations indicate that the proposed US Department of Energy guideline of 2 μg/ft2 for beryllium in dust on indoor surfaces would be sufficiently protective of human health. For occupational protection of workers during cleanup operations, Office of Safety and Health Administration standards for beryllium are referenced and restated

  7. Development and characterization of solid solution tri-carbides

    Science.gov (United States)

    Knight, Travis; Anghaie, Samim

    2001-02-01

    Solid-solution, binary uranium/refractory metal carbide fuels have been shown to be capable of performing at high temperatures for nuclear thermal propulsion applications. More recently, tri-carbide fuels such as (U, Zr, Nb)C1+x with less than 10% metal mole fraction uranium have been studied for their application in ultra-high temperature, high performance space nuclear power systems. These tri-carbide fuels require high processing temperatures greater than 2600 K owing to their high melting points in excess of 3600 K. This paper presents the results of recent studies involving hypostoichiometric, single-phase tri-carbide fuels. Processing techniques of cold uniaxial pressing and sintering were investigated to optimize the processing parameters necessary to produce high density (low porosity), single phase, solid solution mixed carbide nuclear fuels for testing. Scanning electron microscopy and xray diffraction were used to analyze samples. Liquid phase sintering with UC1+x at temperatures near 2700 K was shown to be instrumental in achieving good densification in hyper- and near-stoichiometric mixed carbides. Hypostoichiometric carbides require even higher processing temperatures greater than 2800 K in order to achieve liquid phase sintering with a UC liquid phase and good densification of the final solid solution, tri-carbide fuel. .

  8. Critically coupled surface phonon-polariton excitation in silicon carbide.

    Science.gov (United States)

    Neuner, Burton; Korobkin, Dmitriy; Fietz, Chris; Carole, Davy; Ferro, Gabriel; Shvets, Gennady

    2009-09-01

    We observe critical coupling to surface phonon-polaritons in silicon carbide by attenuated total reflection of mid-IR radiation. Reflectance measurements demonstrate critical coupling by a double scan of wavelength and incidence angle. Critical coupling occurs when prism coupling loss is equal to losses in silicon carbide and the substrate, resulting in maximal electric field enhancement. PMID:19724526

  9. Preparation and Electrocatalytic Activity of Tungsten Carbide Nanorod Arrays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High density tungsten carbide nanorod arrays have been prepared by magnetron sputtering (MS) using the aluminum lattice membrane (ALM) as template. Electrocatalytic properties of nitromethane electroreduction on the tungsten carbide nanorod arrays electrode were investigated by electrochemical method, and their electrocatalytic activity is approached to that of the Pt foil electrode.

  10. Silicon Carbide Tiles for Sidewall Lining in Aluminium Electrolysis Cells

    Institute of Scientific and Technical Information of China (English)

    RUANBo; ZHAOJunguo; 等

    1999-01-01

    The paper introduces the nitride bonded silicon carbide used for sidewall lining in aluminium eletrolysis cells ,including technical process,main properties and application results.Comparison tests on various physical properties of silicon carbide products made by LIRR and other producers worldwide have also been conducted in an independent laboratory.

  11. Mechanical properties of Silicon Carbide Nanowires

    Science.gov (United States)

    Alkhateeb, Abdullah; Zhang, Daqing; McIlroy, David; Aston, David Eric

    2004-05-01

    Silicon carbide nanowires could be potentially useful for high strength materials which lead to the interest in understanding their mechanical properties. In this report we use the digital pulse force microscopy to analyze the mechanical properties of SiC nanowires .Stiffness and adhesion images of SiC nanowires on silicon grating were obtained and calibrated force-distance curves were plotted along the wire which spans on a 1.5 micron trench. Moreover, spring constant and Young's modules have been calculated from the linear part of the force-distance curves.

  12. Novel Polymer Nanocomposite With Silicon Carbide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Alyona I. Wozniak

    2015-09-01

    Full Text Available Polyimides are ranked among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresistors, nonlinear optical materials, membrane materials for gasseparation, and Langmuir–Blodgett (LB films, among others. While there is a variety of high temperature stable polyimides, there is a growing demand for utilizing these materials at higher temperatures in oxidizing and aggressive environments. Therefore, we sought to use oxidation-resistant materials to enhance properties of the polyimide composition maintaining polyimide weights and processing advantages. In this paper we introduced results of utilizing inorganic nanostructured silicon carbide particles to produce an inorganic particle filled polyimide materials.

  13. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 16000C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH3)2Si units and from 40 to 100 mole percent of CH3Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  14. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    S Mandal; A Seal; S K Dalui; A K Dey; S Ghatak; A K Mukhopadhyay

    2001-04-01

    The present work deals with the sintering of SiC with a low melting additive by microwave technique. The mechanical characteristics of the products were compared with that of conventionally sintered products. The failure stress of the microwave sintered products, in biaxial flexure, was superior to that of the products made by conventional sintering route in ambient condition. In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  15. Monitoring beryllium during site cleanup and closure using a real-time analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Schlager, R.J.; Sappey, A.D.; French, P.D. [ADA Technologies, Inc., Englewood, CO (United States)

    1998-12-31

    Beryllium metal has a number of unique properties that have been exploited for use in commercial and government applications. Airborne beryllium particles can represent a significant human health hazard if deposited in the lungs. These particles can cause immunologically-mediated chronic granulomatous lung disease (chronic beryllium disease). Traditional methods of monitoring airborne beryllium involve collecting samples of air within the work area using a filter. The filter then undergoes chemical analysis to determine the amount of beryllium collected during the sampling period. These methods are time-consuming and results are known only after a potential exposure has occurred. The need for monitoring exposures in real time has prompted government and commercial companies to develop instrumentation that will allow for the real time assessment of short-term exposures so that adequate protection for workers in contaminated environments can be provided. Such an analyzer provides a tool that will allow government and commercial sites to be cleaned up in a more safe and effective manner since exposure assessments can be made instantaneously. This paper describes the development and initial testing of an analyzer for monitoring airborne beryllium using a technique known as Laser-Induced Breakdown Spectroscopy (LIBS). Energy from a focused, pulsed laser is used to vaporize a sample and create an intense plasma. The light emitted from the plasma is analyzed to determine the quantity of beryllium in the sampled air. A commercial prototype analyzer has been fabricated and tested in a program conducted by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Lovelace Respiratory Research Institute, and ADA Technologies, Inc. Design features of the analyzer and preliminary test results are presented.

  16. In-pile thermocycling testing and post-test analysis of beryllium divertor mockups

    Energy Technology Data Exchange (ETDEWEB)

    Giniatulin, R.; Mazul, I. [Efremov Inst., St. Petersburg (Russian Federation); Melder, R.; Pokrovsky, A.; Sandakov, V.; Shiuchkin, A.

    1998-01-01

    The main damaging factors which impact the ITER divertor components are neutron irradiation, cyclic surface heat loads and hydrogen environment. One of the important questions in divertor mockups development is the reliability of beryllium/copper joints and the beryllium resistance under neutron irradiation and thermal cycling. This work presents the experiment, where neutron irradiation and thermocyclic heat loads were applied simultaneously for two beryllium/copper divertor mockups in a nuclear reactor channel to simulate divertor operational conditions. Two mockups with different beryllium grades were mounted facing each other with the tantalum heater placed between them. This device was installed in the active zone of the nuclear reactor SM-2 (Dimitrovgrad, Russia) and the tantalum block was heated by neutron irradiation up to a high temperature. The main part of the heat flux from the tantalum surface was transported to the beryllium surface through hydrogen, as a result the heat flux loaded two mockups simultaneously. The mockups were cooled by reactor water. The device was lowered to the active zone so as to obtain the heating regime and to provide cooling lifted. This experiment was performed under the following conditions: tantalum heater temperature - 1950degC; hydrogen environment -1000 Pa; surface heat flux density -3.2 MW/m{sup 2}; number of thermal cycles (lowering and lifting) -101; load time in each cycle - 200-5000 s; dwell time (no heat flux, no neutrons) - 300-2000 s; cooling water parameters: v - 1 m/s, Tin - 50degC, Pin - 5 MPa; neutron fluence -2.5 x 10{sup 20} cm{sup -2} ({approx}8 years of ITER divertor operation from the start up). The metallographic analysis was performed after experiment to investigate the beryllium and beryllium/copper joint structures, the results are presented in the paper. (author)

  17. Sub-micro level monitoring of beryllium ions with a novel beryllium sensor based on 2,6-diphenyl-4-benzo-9-crown-3-pyridine.

    Science.gov (United States)

    Ganjali, Mohammad Reza; Rahimi-Nasrabadi, Mehdi; Maddah, Bozorgmehr; Moghimi, Abolghasem; Faal-Rastegar, Madjid; Borhany, Shahin; Namazian, Mansour

    2004-07-01

    The 2,6-diphenyl-4-benzo-9-crown-3-pyridine (DPCP) was used as an excellent ionophore in construction of a coated graphite poly(vinyl chloride) (PVC)-based membrane sensor. The best performance was obtained with a membrane composition of 30% poly(vinyl chloride), 60% o-nitrophenyloctyl ether (NPOE), 5% 2,6-diphenyl-4-benzo-9-crown-3-pyridine and 5% sodium tetraphenyl borate (TBP). This sensor shows very good selectivity and sensitivity towards beryllium ion over a wide variety of cations, including alkali, alkaline earth, transition and heavy metal ions. The sensor revealed a great enhancement in selectivity coefficients and sensitivity for beryllium, in comparison with the previously reported beryllium electrodes. The electrode exhibits a Nernstian behavior (with slope of 29.6mV per decade) over a very wide concentration range (1.0x10(-7) to 1.0x10(-1)) with a detection limit of 4.0x10(-8)M (360pgml(-1)). It shows relatively fast response time, in whole concentration range (beryllium in mineral ore.

  18. Synthesis and photoluminescence property of boron carbide nanowires

    Institute of Scientific and Technical Information of China (English)

    Bao Li-Hong; Li Chen; Tian Yuan; Tian Ji-Fa; Hui Chao; Wang Xing-Jun; Shen Cheng-Min; Gao Hong-Jun

    2008-01-01

    Large scale, high density boron carbide nanowires have been synthesized by using an improved carbothermal reduction method with B/B2O3/C powder precursors under an argon flow at 1100~C. The boron carbide nanowires are 5-10 μm in length and 80-100 nm in diameter. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) characterizations show that the boron carbide nanowire has a B4C rhombohedral structure with good crystallization. The Raman spectrum of the as-grown boron carbide nanowires is consistent with that of a B4C structure consisting of B11C icosahedra and C-B-C chains. The room temperature photoluminescence spectrum of the boron carbide nanowires exhibits a visible range of emission centred at 638 nm.

  19. Electrocatalysis using transition metal carbide and oxide nanocrystals

    Science.gov (United States)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  20. Modification of σ-Donor Properties of Terminal Carbide Ligands Investigated Through Carbide-Iodine Adduct Formation.

    Science.gov (United States)

    Reinholdt, Anders; Vosch, Tom; Bendix, Jesper

    2016-09-26

    The terminal carbide ligands in [(Cy3 P)2 X2 Ru≡C] complexes (X=halide or pseudohalide) coordinate molecular iodine, affording charge-transfer complexes rather than oxidation products. Crystallographic and vibrational spectroscopic data show the perturbations of iodine to vary with the auxiliary ligand sphere on ruthenium, demonstrating the σ-donor properties of carbide complexes to be tunable.

  1. Investigation of the glide modes of single crystals of beryllium

    International Nuclear Information System (INIS)

    The flow characteristics of single crystals of beryllium specially oriented for slip along a single plane and a single direction have been thoroughly investigated. The elastic limit and the strain hardening in basal glide have been investigated in the temperature range (-195 deg. C, 400 deg. C) in tension as well as in compression. Observation of the slip lines and of the dislocation configurations have also been made in addition to the mechanical tests. The prismatic slip has been studied in greater detail: tensile tests have been performed on specimens carefully oriented at different temperatures, strain rates and with varying orientations of the basal and of the prism planes. Tests have also been made in the micro-strain range; the slip lines and the dislocation arrangements were observed in detail. The very unusual variation of the elastic limit with temperature is not due to impurities but to a cross slip mechanism. A model of dislocation locking is proposed to account for the experimental results. This mechanism assumes that the a-bar dislocations may also dissociate on the prism planes [101-bar 0]. Various possible dissociations are suggested, the most probable of which corresponds to the phase transformation: Hexagonal close packed to body centered cubic. This proposal can be extended to account for the relative ease of glide on the different systems in the hexagonal close packed metals. (author)

  2. Design of the beryllium window for Brookhaven Linac Isotope Producer

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Mapes, M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Raparia, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-11-01

    In the Brookhaven Linac Isotope Producer (BLIP) beam line, there were two Beryllium (Be) windows with an air gap to separate the high vacuum upstream side from low vacuum downstream side. There had been frequent window failures in the past which affected the machine productivity and increased the radiation dose received by workers due to unplanned maintenance. To improve the window life, design of Be window is reexamined. Detailed structural and thermal simulations are carried out on Be window for different design parameters and loading conditions to come up with better design to improve the window life. The new design removed the air gap and connect the both beam lines with a Be window in-between. The new design has multiple advantages such as 1) reduces the beam energy loss (because of one window with no air gap), 2) reduces air activation due to nuclear radiation and 3) increased the machine reliability as there is no direct pressure load during operation. For quick replacement of this window, an aluminum bellow coupled with load binder was designed. There hasn’t been a single window failure since the new design was implemented in 2012.

  3. Erosion of beryllium under high-flux plasma impact

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, R.P., E-mail: rdoerner@ucsd.edu [Center for Energy Research, UCSD, La Jolla, CA 92093-0417 (United States); Björkas, C. [EURATOM-Tekes, Department of Physics, University of Helsinki, P.O.B. 64, 00014 Helsinki (Finland); Institute for Energy Research-Plasma Physics, Forchungszentrun Jülich GmbH, 52425 Jülich (Germany); Nishijima, D. [Center for Energy Research, UCSD, La Jolla, CA 92093-0417 (United States); Schwarz-Selinger, T. [Max-Planck Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2013-07-15

    Be sputtering yields, measured by weight loss, in PISCES-B are a factor of 5–10 less than that predicted by binary collision approximations. Measurements show the BeO surface is removed early in the plasma bombardment. Modeling of molecular ions (D{sub 2}{sup +} and D{sub 3}{sup +}) species and redeposition cannot explain the difference. Surface morphology that evolves during the exposure reduces the sputtering yield by a factor of 2–3. Plasma fuel atoms retained in the surface decrease the sputtering yield compared to calculations of a pure Be surface. These effects may explain the measured erosion rates in the absence of Be impurities within the plasma. By introducing Be impurity ions into the plasma, it is possible to simulate a controllable amount of redeposition. The weight loss from eroding Be targets, with Be seeding, is unchanged until the concentration of Be ions in the plasma greatly exceeds the sputtering yield in the non-beryllium seeded exposure.

  4. Beryllium-induced immune response in C3H mice

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Bice, D.E.; Nikula, K.J. [and others

    1995-12-01

    Studies conducted at ITRI over the past several years have investigated whether Beagle dogs, monkeys, and mice are suitable models for human chronic beryllium-induced lung disease (CBD). Recent studies have focused on the histopathological and immunopathological changes occurring in A/J and C3H/HeJ mice acutely exposed by inhalation to Be metal. Lung lesions in both strains of mice included focal lymphocyte aggregates comprised primarily of B lymphocytes and lesser amounts of T-helper lymphocytes and microgranulomas consisting chiefly of macrophages and T-helper lymphocytes. The distribution of proliferating cells within the microgranulomas was similar to the distribution of T-helper cells. These results strongly suggested that A/J and C3H/HeJ mice responded to inhaled Be metal in a fashion similar to humans in terms of pulmonary lesions and the apparent in situ proliferation of T-helper cells. Results of these studies confirm lymphocyte involvement in the pulmonary response to inhaled Be metal.

  5. Beryllium abundance in turn-off stars of NGC 6752

    CERN Document Server

    Pasquini, L; Randich, S; Galli, D; Gratton, R G; Wolff, B; Pasquini, Luca; Bonifacio, Piercarlo; Randich, Sofia; Galli, Daniele; Gratton, Raffaele G.

    2006-01-01

    Aims: To measure the beryllium abundance in two TO stars of the Globular Cluster NGC 6752, one oxygen rich and sodium poor, the other presumably oxygen poor and sodium rich. Be abundances in these stars are used to put on firmer grounds the hypothesis of Be as cosmochronometer and to investigate the formation of Globular Clusters. Method:We present near UV spectra with resolution R$\\sim 45000$ obtained with the UVES spectrograph on the 8.2m VLT Kueyen telescope, analysed with spectrum synthesis based on plane parallel LTE model atmospheres. Results:Be is detected in the O rich star with log(Be/H)=-12.04 $\\pm$0.15, while Be is not detected in the other star for which we obtain the upper limit log(Be/H)$<$-12.2. A large difference in nitrogen abundance (1.6 dex) is found between the two stars. Conclusions:The Be measurement is compatible with what found in field stars with the same [Fe/H] and [O/H]. The 'Be age' of the cluster is found to be 13.3 Gyrs, in excellent agreement with the results from main sequen...

  6. Project SAPPHIRE uranium-beryllium dose rate analysis

    International Nuclear Information System (INIS)

    During a six-week period in the fall of 1994 a team of 31 US government and Y-12 personnel packaged and removed several thousand kilograms of material containing highly enriched uranium from the (former Soviet Union) Republic of Kazakhstan for interim storage at the Y-12 Plant in Oak Ridge, Tennessee. This classified mission, known as PROJECT SAPPHIRE, had been initiated at the request of the Kazakhstan government in order to rid itself of possible security problems. Planning for the mission included assurance of the health and safety of the team members, as well as compliance with all local, IAEA, and US government regulations regarding the handling, packaging, transportation, and storage of radioactive and fissile material. The mission classification restrictions were relaxed following the return of the team and material to the United States. The material to be removed, in the form of small billets and rods of uranium metal and uranium-beryllium alloy and oxide powder, was sealed by team members on site into two-liter steel cans. Two or three cans each were loaded into more than 400 IAEA certified fissile material shipping container, and each container was packed into a large steel drum for transport by US Air Force cargo planes to the United States

  7. Waterlike structural and excess entropy anomalies in liquid beryllium fluoride.

    Science.gov (United States)

    Agarwal, Manish; Chakravarty, Charusita

    2007-11-22

    The relationship between structural order metrics and the excess entropy is studied using the transferable rigid ion model (TRIM) of beryllium fluoride melt, which is known to display waterlike thermodynamic anomalies. The order map for liquid BeF2, plotted between translational and tetrahedral order metrics, shows a structurally anomalous regime, similar to that seen in water and silica melt, corresponding to a band of state points for which average tetrahedral (q(tet)) and translational (tau) order are strongly correlated. The tetrahedral order parameter distributions further substantiate the analogous structural properties of BeF2, SiO2, and H2O. A region of excess entropy anomaly can be defined within which the pair correlation contribution to the excess entropy (S2) shows an anomalous rise with isothermal compression. Within this region of anomalous entropy behavior, q(tet) and S2 display a strong negative correlation, indicating the connection between the thermodynamic and the structural anomalies. The existence of this region of excess entropy anomaly must play an important role in determining the existence of diffusional and mobility anomalies, given the excess entropy scaling of transport properties observed in many liquids. PMID:17963376

  8. Electric properties of the Beryllium-11 system in Halo EFT

    International Nuclear Information System (INIS)

    We compute E1 transitions and electric radii in the Beryllium-11 nucleus using an effective field theory that exploits the separation of scales in this halo system. We fix the leading-order parameters of the EFT from measured data on the 1/2+ and 1/2- levels in 11Be and the B(E1) strength for the transition between them. We then obtain predictions for the B(E1) strength for Coulomb dissociation of the 11Be nucleus to the continuum. We also compute the charge radii of the 1/2+ and 1/2- states. Agreement with experiment within the expected accuracy of a leading-order computation in this EFT is obtained. We also discuss how next-to-leading-order (NLO) corrections involving both s-wave and p-wave 10Be-neutron interactions affect our results, and display the NLO predictions for quantities which are free of additional short-distance operators at this order. Information on neutron-10Be scattering in the relevant channels is inferred.

  9. Electron microscope observation of single - crystalline beryllium thin foils; Observation de lames minces monocristallines de beryllium en microscopie electronique

    Energy Technology Data Exchange (ETDEWEB)

    Antolin, J.; Poirier, J.P.; Dupouy, J.M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    Thin foils prepared from single crystalline beryllium simples deformed at room temperature, have been observed by transmission electron microscopy. The various deformation modes have been investigated separately, from their early stages and their characteristic dislocation configurations have been observed. Basal slip is characterized at is outset by the presence of numerous dipoles and elongated prismatic loops. More pronounced cold work leads to the formation of dislocation tangles and bundles which eventually give a cellular structure. Prismatic slip begins by the cross-slip of dislocations from the basal plane into the prismatic plane. A cellular structure is equally observed in heavily deformed samples. Sessile dislocations have been observed in twin boundaries; they are produced by reactions between slip dislocations and twin dislocations. Finally, the study of samples quenched from 1100 deg. C and annealed at 200 deg. C has shown that the observed loops lie in prismatic planes and have a Burgers vector b 1/3<1 1 2-bar 0>. (authors) [French] On a observe en microscopie electronique par transmission des lames minces tirees d'eprouvettes monocristallines de beryllium deformees a l'ambiante. On a etudie separement les differents modes de deformation a partir de leur stade elementaire en observant les configurations de dislocations caracteristiques. Le glissement basal est caracterise a son debut par la presence de nombreux dipoles et de boucles prismatiques allongees. Des ecrouissages plus forts conduisent a la formation d'echeveaux et de gerbes qui finissent par donner une structure cellulaire. Le glissement prismatique debute par le glissement des dislocations hors du plan de base dans les plans prismatiques. On trouve egalement une structure cellulaire pour de forts ecrouissages. Dans les joints de macle, on a observe des dislocations sessiles formees par la reaction entre dislocations de macle et dislocations de glissement. Enfin l

  10. Ultrasmall Carbide Nanospheres - Formation and Electronic Properties

    Science.gov (United States)

    Reinke, Petra; Monazami, Ehsan; McClimon, John

    2015-03-01

    Metallic nanoparticles are highly coveted but are subject to rapid Ostwald ripening even at moderate temperatures limiting study of their properties. Ultrasmall transition metal carbide ``nanospheres'' are synthesized by a solid-state reaction between fullerene as carbon scaffold, and a W surface. This produces nanospheres with a narrow size distribution below 2.5 nm diameter. The nanosphere shape is defined by the scaffold and densely packed arrays can be achieved. The metal-fullerene reaction is temperature driven and progresses through an intermediate semiconducting phase until the fully metallic nanospheres are created at about 350 C. The reaction sequence is observed with STM, and STS maps yield the local density of states. The reaction presumably progresses by stepwise introduction of W-atoms in the carbon scaffold. The results of high resolution STM/STS in combination with DFT calculations are used to unravel the reaction mechanism. We will discuss the transfer of this specific reaction mechanism to other transition metal carbides. The nanospheres are an excellent testbed for the physics and chemistry of highly curved surfaces.

  11. Radiation Damage Effects in Uranium Carbide

    International Nuclear Information System (INIS)

    This paper deals with the results of research into the irradiation behaviour of cast uranium carbide following that reported in another paper by Childs et al. The main conclusions are as follows: 1. The saturation resistivity and lattice parameter increases for hypostoichiometric specimens irradiated at 80oC vary systematically with the excess concentration of uranium present in solution in the UC phase. 2. The temperature coefficient of resistivity (measured over the range 77 - 293oK), unlike the resistivity itself, is not significantly affected by irradiation. 3. A small resistivity annealing stage, additional to those at 150 and 510oC, occurs between 1000 and 1200oC. The annealing-out of the lattice parameter change also occurs in two main stages at 150 and 510oC (5-h anneals). A careful survey of the range 400 - 800oC has failed to reveal the stage postulated by other workers to occur at about 710oC. The significance of the results in determining the defect structure of irradiated uranium carbide is discussed. (author)

  12. Sol–gel processing of carbidic glasses

    Indian Academy of Sciences (India)

    L M Manocha; E Yasuda; Y Tanabe; S Manocha; D Vashistha

    2000-02-01

    Carbon incorporation into the silicate network results in the formation of rigid carbidic glasses with improved physical, mechanical and thermal properties. This generated great interest in the development of these heteroatom structured materials through different processing routes. In the present studies, sol–gel processing has been used to prepare silicon based glasses, especially oxycarbides through organic–inorganic hybrid gels by hydrolysis–condensation reactions in silicon alkoxides, 1,4-butanediol and furfuryl alcohol with an aim to introduce Si–C linkages in the precursors at sol level. The incorporation of these linkages has been studied using IR and NMR spectroscopy. These bonds, so introduced, are maintained throughout the processing, especially during pyrolysis to high temperatures. In FFA–TEOS system, copolymerization with optimized mol ratio of the two results in resinous mass. This precursor on pyrolysis to 1000°C results in Si–O–C type amorphous solid black mass. XRD studies on the materials heated to 1400°C exhibit presence of crystalline Si–C and cristobalites in amorphous Si–O–C mass. In organic–inorganic gel system, the pyrolysed mass exhibits phase stability up to much higher temperatures. The carbidic materials so produced have been found to exhibit good resistance against oxidation at 1000°C.

  13. Pressureless sintering of beta silicon carbide nanoparticles

    International Nuclear Information System (INIS)

    This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 degrees C) and the pressureless sintering studied between 1900 and 2100 degrees C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 degrees C. The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 degrees C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation. TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism. (authors)

  14. ELECTROCHEMICAL MACHINING OF CARBIDES AND BORIDES

    Energy Technology Data Exchange (ETDEWEB)

    Dissaux, Bernard Antoine; Muller, Rolf H.; Tobias, Charles W.

    1978-07-01

    The use of high rate anodic dissolution (electrochemical machining) for shaping titanium carbide, zirconium carbide, titanium boride and zirconium boride has been investigated in 2N potassium nitrate and 3N sodium chloride under current densities ranging from 20 to 120 A/cm{sup 2} (corresponding to cutting rates of 0.3 to 1.8 mm/min). The dissolution stoichiometry for all these materials is independent of the current density in the range 20 to 120 A/cm{sup 2}. Both titanium and zirconium appear to dissolve in the +4 state, boron in the +3 state and the weight loss measurements indicate that carbon is oxidized to CO and CO{sub 2}. The current voltage curves permit to establish that, over the entire current density and flow range investigated, dissolution occurs in the transpassive state. The surface roughness obtained on TiC and ZrC is within 3-5 {micro}m and is independent of current density, applied voltage or flow rate.

  15. Dynamic compaction of tungsten carbide powder.

    Energy Technology Data Exchange (ETDEWEB)

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  16. Production process for boron carbide coated carbon material and boron carbide coated carbon material obtained by the production process

    International Nuclear Information System (INIS)

    A boron carbide coated carbon material is used for a plasma facing material of a thermonuclear reactor. The surface of a carbon material is chemically reacted with boron oxide to convert it into boron carbide. Then, it is subjected to heat treatment at a temperature of not lower than 1600degC in highly evacuated or inactive atmosphere to attain a boron carbide coated carbon material. The carbon material used is an artificial graphite or a carbon fiber reinforced carbon composite material. In the heat treatment, when the atmosphere is in vacuum, it is highly evacuated to less than 10Pa. Alternatively, in a case of inactive atmosphere, argon or helium gas each having oxygen and nitrogen content of not more than 20ppm is used. With such procedures, there can be obtained a boron carbide-coated carbon material with low content of oxygen and nitrogen impurities contained in the boron carbide coating membrane thereby hardly releasing gases. (I.N.)

  17. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities.

    Science.gov (United States)

    Armstrong, Jenna L; Day, Gregory A; Park, Ji Young; Stefaniak, Aleksandr B; Stanton, Marcia L; Deubner, David C; Kent, Michael S; Schuler, Christine R; Virji, M Abbas

    2014-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  18. Inherent structure features of beryllium and their influence on the performance polycrystalline metal under different conditions

    International Nuclear Information System (INIS)

    The anisotropy of physical properties of beryllium single crystals resulting from covalent bonds in crystal lattice leads to significant residual thermal microstresses (RTM) in the polycrystalline metal. It is demonstrated experimentally that there is a simple linear dependence between the magnitude of RTM and the ultimate tensile strength. The factors controlling RTM are analysed and in the framework of powder metallurgy process the technological methods of producing beryllium with the needed properties are recommended. Primarily it is necessary to control the quantity and extent of dispersity of intergranular oxide inclusions and mean grain size in combination with the high degree of macro- and microhomogenity of the structure. The requirements to beryllium microstructure for different operating conditions including neutron fluxes and transient temperature fields are formulated. In the framework of the concept under development one can explain formerly not fully understandable effects, which are characteristic of polycrystalline beryllium such as unexpected Petch-Stro curve, the role of twinning etc., and predict new ones. In particular, it can be possible to expect the growth of ductility of high strength beryllium grades as neutron irradiated. (author)

  19. Solid state bonding of beryllium-copper for an ITER first wall application

    International Nuclear Information System (INIS)

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. All diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 μm thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency. (author)

  20. Clinical approach to chronic beryllium disease and other nonpneumoconiotic interstitial lung diseases.

    Science.gov (United States)

    Maier, Lisa A

    2002-10-01

    Exposures in the workplace result in a diverse set of diseases ranging from the pneumoconiosis to other interstitial lung diseases to acute lung injury. Physician awareness of the potential disease manifestations associated with specific exposures is important in defining these diseases and in preventing additional disease. Most occupational diseases mimic other forms of lung disease, including pulmonary fibrosis, sarcoidosis, adult respiratory distress syndrome (ARDS), and bronchiolitis. A "sarcoidosis"-like syndrome, usually limited to the lungs, may result from exposure to bioaerosols and a number of metals. Exposure to beryllium in the workplace produces a granulomatous lung disease clinically indistinguishable from sarcoidosis, chronic beryllium disease (CBD). Beryllium's ability to produce a beryllium-specific immune response is used in the beryllium lymphocyte proliferation tests to confirm a diagnosis of CBD and exclude sarcoidosis. Exposure to other metals must also be considered in the differential diagnosis of sarcoidosis. When an individual presents acutely with ARDS or acute lung injury, an acute inhalational exposure must be considered. Exposure to a number of irritant substances at high levels may cause a "chemical pneumonitis" or acute lung injury, depending on the solubility and physicochemical properties of the substance. Some of the most notable agents include nitrogen and sulfur oxides, phosgene, and smoke breakdown products. Ingestion of paraquat may also result in an ARDS syndrome, with pulmonary fibrosis eventually resulting. Bronchiolitis is a rare manifestation of inhalational exposures but must also be considered in the clinical evaluation of inhalational exposure. PMID:12362066

  1. Inherent structure features of beryllium and their influence on the performance polycrystalline metal under different conditions

    Energy Technology Data Exchange (ETDEWEB)

    Khomutov, A.M.; Mikhailov, V.S.; Pronin, V.N.; Pakhomov, Ya.D. [State Scientific Center of Russian Federation `A.A. Bochvar All-Russia Research Inst. of Inorganic Materials (VNIINM)`, Moscow (Russian Federation)

    1998-01-01

    The anisotropy of physical properties of beryllium single crystals resulting from covalent bonds in crystal lattice leads to significant residual thermal microstresses (RTM) in the polycrystalline metal. It is demonstrated experimentally that there is a simple linear dependence between the magnitude of RTM and the ultimate tensile strength. The factors controlling RTM are analysed and in the framework of powder metallurgy process the technological methods of producing beryllium with the needed properties are recommended. Primarily it is necessary to control the quantity and extent of dispersity of intergranular oxide inclusions and mean grain size in combination with the high degree of macro- and microhomogenity of the structure. The requirements to beryllium microstructure for different operating conditions including neutron fluxes and transient temperature fields are formulated. In the framework of the concept under development one can explain formerly not fully understandable effects, which are characteristic of polycrystalline beryllium such as unexpected Petch-Stro curve, the role of twinning etc., and predict new ones. In particular, it can be possible to expect the growth of ductility of high strength beryllium grades as neutron irradiated. (author)

  2. X-ray drive of beryllium capsule implosions at the National Ignition Facility

    Science.gov (United States)

    Wilson, D. C.; Yi, S. A.; Simakov, A. N.; Kline, J. L.; Kyrala, G. A.; Dewald, E. L.; Tommasini, R.; Ralph, J. E.; Olson, R. E.; Strozzi, D. J.; Celliers, P. M.; Schneider, M. B.; MacPhee, A. G.; Zylstra, A. B.; Callahan, D. A.; Hurricane, O. A.; Milovich, J. L.; Hinkel, D. E.; Rygg, J. R.; Rinderknecht, H. G.; Sio, H.; Perry, T. S.; Batha, S.

    2016-05-01

    National Ignition Facility experiments with beryllium capsules have followed a path begun with “high-foot” plastic capsule implosions. Three shock timing keyhole targets, one symmetry capsule, a streaked backlit capsule, and a 2D backlit capsule were fielded before the DT layered shot. After backscatter subtraction, laser drive degradation is needed to match observed X-ray drives. VISAR measurements determined drive degradation for the picket, trough, and second pulse. Time dependence of the total Dante flux reflects degradation of the of the third laser pulse. The same drive degradation that matches Dante data for three beryllium shots matches Dante and bangtimes for plastic shots N130501 and N130812. In the picket of both Be and CH hohlraums, calculations over-estimate the x-ray flux > 1.8 keV by ∼100X, while calculating the total flux correctly. In beryllium calculations these X-rays cause an early expansion of the beryllium/fuel interface at ∼3 km/s. VISAR measurements gave only ∼0.3 km/s. The X-ray drive on the Be DT capsule was further degraded by an unplanned decrease of 9% in the total picket flux. This small change caused the fuel adiabat to rise from 1.8 to 2.3. The first NIF beryllium DT implosion achieved 29% of calculated yield, compared to CH capsules with 68% and 21%.

  3. Long-term follow-up of beryllium sensitized workers from a single employer

    Directory of Open Access Journals (Sweden)

    Curtis Anne M

    2010-01-01

    Full Text Available Abstract Background Up to 12% of beryllium-exposed American workers would test positive on beryllium lymphocyte proliferation test (BeLPT screening, but the implications of sensitization remain uncertain. Methods Seventy two current and former employees of a beryllium manufacturer, including 22 with pathologic changes of chronic beryllium disease (CBD, and 50 without, with a confirmed positive test were followed-up for 7.4 +/-3.1 years. Results Beyond predicted effects of aging, flow rates and lung volumes changed little from baseline, while DLCO dropped 17.4% of predicted on average. Despite this group decline, only 8 subjects (11.1% demonstrated physiologic or radiologic abnormalities typical of CBD. Other than baseline status, no clinical or laboratory feature distinguished those who clinically manifested CBD at follow-up from those who did not. Conclusions The clinical outlook remains favorable for beryllium-sensitized individuals over the first 5-12 years. However, declines in DLCO may presage further and more serious clinical manifestations in the future. These conclusions are tempered by the possibility of selection bias and other study limitations.

  4. Material selection for extended life of the beryllium reflectors in the JMTR

    International Nuclear Information System (INIS)

    The Japan Materials Test Reactor (JMTR) has been one of the most significant high-energy test reactors in the world since achieving its first criticality in 1968. Beryllium has been used as the reflector element material in the reactor, specifically S-200F structural grade beryllium manufactured by Brush Wellman Inc. The JMTR is currently in the process of being refurbished, and the upgraded reactor will return to service in 2011. As a part of the reactor upgrade, the Japan Atomic Energy Agency (JAEA) also has plans to extend the operating lifetime of the beryllium reflector elements. In order to do that, it will first be necessary to determine which of the material's physical and mechanical properties will be the most influential on that choice. Selecting a different grade of beryllium material for the reflector elements to extend operational lifetime under neutron irradiation is discussed in detail. A new plan for irradiation testing to evaluate the various beryllium grades under consideration is also briefly described. (author)

  5. Manufacturing and thermomechanical testing of actively cooled all beryllium high heat flux test pieces

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, N.N.; Sokolov, Yu.A.; Shatalov, G.E. [and others

    1995-09-01

    One of the problems affiliated to ITER high heat flux elements development is a problem of interface of beryllium protection with heat sink routinely made of copper alloys. To get rid of this problem all beryllium elements could be used as heat receivers in places of enhanced thermal loads. In accordance with this objectives four beryllium test pieces of two types have been manufactured in {open_quotes}Institute of Beryllium{close_quotes} for succeeding thermomechanical testing. Two of them were manufactured in accordance with JET team design; they are round {open_quotes}hypervapotron type{close_quotes} test pieces. Another two ones are rectangular test sections with a twisted tape installed inside of the circular channel. Preliminary stress-strain analysis have been performed for both type of the test pieces. Hypervapotrons have been shipped to JET where they were tested on JET test bed. Thermomechanical testing of pieces of the type of {open_quotes}swirl tape inside of tube{close_quotes} have been performed on Kurchatov Institute test bed. Chosen beryllium grade properties, some details of manufacturing, results of preliminary stress-strain analysis and thermomechanical testing of the test pieces {open_quotes}swirl tape inside of tube{close_quotes} type are given in this report.

  6. Beryllium and lithium resource requirements for solid blanket designs for fusion reactors

    International Nuclear Information System (INIS)

    The lithium and beryllium requirements are analyzed for an economy of 106 MW(e) CTR3 capacity using solid blanket fusion reactors. The total lithium inventory in fusion reactors is only approximately 0.2 percent of projected U. S. resources. The lithium inventory in the fusion reactors is almost entirely 6Li, which must be extracted from natural lithium. Approximately 5 percent of natural lithium can be extracted as 6Li. Thus the total feed of natural lithium required is approximately 20 times that actually used in fusion reactors, or approximately 4 percent of U. S. resources. Almost all of this feed is returned to the U. S. resource base after 6Li is extracted, however. The beryllium requirements are on the order of 10 percent of projected U. S. resources. Further, the present cost of lithium and the cost of beryllium extraction could both be increased tenfold with only minor effects on CTR capital cost. Such an increase should substantially multiply the economically recoverable resources of lithium and beryllium. It is concluded that there are no lithium or beryllium resource limitations preventing large-scale implementation of solid blanket fusion reactors. (U.S.)

  7. Solid state bonding of beryllium-copper for an ITER first wall application

    Energy Technology Data Exchange (ETDEWEB)

    Odegard, B.C. Jr.; Cadden, C.H. [Sandia National Labs., Livermore, CA (United States)

    1998-01-01

    Several different joint assemblies were evaluated in support of a manufacturing technology for diffusion bonding a beryllium armor tile to a copper alloy heat sink for fusion reactor applications. Because beryllium reacts with all but a few elements to form intermetallic compounds, this study considered several different surface treatments as a means of both inhibiting these reactions and promoting a good diffusion bond between the two substrates. All diffusion bonded assemblies used aluminum or an aluminum-beryllium composite (AlBeMet-150) as the interfacial material in contact with beryllium. In most cases, explosive bonding was utilized as a technique for joining the copper alloy heat sink to an aluminum or AlBeMet-150 substrate, which was subsequently diffusion bonded to an aluminum coated beryllium tile. In this approach, a 250 {mu}m thick titanium foil was used as a diffusion barrier between the copper and aluminum to prevent the formation of Cu-Al intermetallic phases. In all cases, a hot isostatic pressing (HIP) furnace was used in conjunction with canned assemblies in order to minimize oxidation and apply sufficient pressure on the assembly for excellent metal-to-metal contact and subsequent bonding. Several different processing schedules were evaluated during the course of this study; bonded assemblies were produced that failed outside the bond area indicating a 100% joint efficiency. (author)

  8. Silicon Carbide Optics for Space Situational Awareness and Responsive Space Needs

    Science.gov (United States)

    Robichaud, J.; Green, J.; Catropa, D.; Rider, B.; Ullathorne, C.

    Over the past 10 years the application of Silicon Carbide (SiC) materials to space based imaging systems has expanded. The aerospace community has long recognized the technical, cost, and schedule benefits associated with the material, and adoption of the technology is facilitated as more successful flight systems are demonstrated. SiC provides a number of technical advantages, as a result of superior material properties. The material can also be manufactured using near-net-shape fabrication processes which provide significant cost and schedule advantages compared with competing material technologies. These technical and manufacturing advantages make SiC uniquely well suited to address the needs associated with Space Situational Awareness (SSA) and Responsive Space (RS) applications. The material has a low coefficient of thermal expansion, and a high thermal conductivity, allowing visible quality imaging in the presence of stressing, and changing, thermal loads. The material's specific stiffness is high, approximately 70% of Beryllium, allowing stiff, lightweight optical systems to be produced. Passively athermal systems have been produced, demonstrating the ability of the material to provide visible quality imaging, without the need for actively controlled focus adjust mechanisms. In addition, SiC structural elements do not outgas, and have no issues with moisture absorption, allowing rapid on-orbit data acquisition. From the manufacturing perspective the material offers dramatic schedule benefits, these come primarily from L-3 SSG's near-net-shape manufacturing process which allows complex, lightweighted optical and structural elements to be produced without the need for costly/time-consuming machining processes. These schedule advantages become more dramatic as the aperture of the system increases, and/or as the number of units increases. In this paper we provide an overview of the technical and manufacturing advantages associated with SiC, provide background

  9. Beryllium chloride-induced oxidative DNA damage and alteration in the expression patterns of DNA repair-related genes.

    Science.gov (United States)

    Attia, Sabry M; Harisa, Gamaleldin I; Hassan, Memy H; Bakheet, Saleh A

    2013-09-01

    Beryllium metal has physical properties that make its use essential for very specific applications, such as medical diagnostics, nuclear/fusion reactors and aerospace applications. Because of the widespread human exposure to beryllium metals and the discrepancy of the genotoxic results in the reported literature, detail assessments of the genetic damage of beryllium are warranted. Mice exposed to beryllium chloride at an oral dose of 23mg/kg for seven consecutive days exhibited a significant increase in the level of DNA-strand breaking and micronuclei formation as detected by a bone marrow standard comet assay and micronucleus test. Whereas slight beryllium chloride-induced oxidative DNA damage was detected following formamidopyrimidine DNA glycosylase digestion, digestion with endonuclease III resulted in considerable increases in oxidative DNA damage after the 11.5 and 23mg/kg/day treatment as detected by enzyme-modified comet assays. Increased 8-hydroxydeoxyguanosine was also directly correlated with increased bone marrow micronuclei formation and DNA strand breaks, which further confirm the involvement of oxidative stress in the induction of bone marrow genetic damage after exposure to beryllium chloride. Gene expression analysis on the bone marrow cells from beryllium chloride-exposed mice showed significant alterations in genes associated with DNA damage repair. Therefore, beryllium chloride may cause genetic damage to bone marrow cells due to the oxidative stress and the induced unrepaired DNA damage is probably due to the down-regulation in the expression of DNA repair genes, which may lead to genotoxicity and eventually cause carcinogenicity.

  10. Characterization of constrained beryllium pebble beds after neutron irradiation at HFR at high temperatures up to helium production of 3000 appm

    Energy Technology Data Exchange (ETDEWEB)

    Chakin, V., E-mail: vladimir.chakin@kit.edu [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Plarz 1, 76344 Eggenstein-Leopoldshafen (Germany); Rolli, R. [Institute for Applied Materials – Materials and Biomechanics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Plarz 1, 76344 Eggenstein-Leopoldshafen (Germany); Moeslang, A.; Vladimirov, P.; Kurinskiy, P. [Institute for Applied Materials – Applied Materials Physics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Plarz 1, 76344 Eggenstein-Leopoldshafen (Germany); Til, S. van; Magielsen, A.J. [Nuclear Research and Consultancy Group, Westerduinweg 3, Postbus 25, 1755 ZG Petten (Netherlands); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/ Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    Highlights: • Defragmentation of beryllium pebbles at irradiation temperatures of 873 and 948 K was detected. • Formation of brittle beryllium oxide layers on neutron irradiated beryllium pebbles was detected. • Strong interaction between beryllium pebbles and platinum foil under neutron irradiation was detected. • Strong interaction between beryllium pebbles and austenitic stainless steel under neutron irradiation was detected. -- Abstract: Small constrained beryllium pebble beds as well as unconstrained beryllium pebbles have been irradiated within HIDOBE-01 experiment at HFR, Petten, the Netherlands. Beryllium pebbles with 1 mm diameter produced by Rotating Electrode Method (REM) were investigated after irradiation at 630, 740, 873, and 948 K up to helium production of 3000 appm. Intensive pore and bubble formation occurs in beryllium after 873 K irradiation. In the contact zones of the pebbles enhanced pore formation takes place. Oxidation of beryllium pebble external surfaces is accompanied by partial destruction of oxide layers owing to their high brittleness. Strong interactions between beryllium pebbles and platinum foil, as well as between beryllium and stainless steel at contact zones occur at 873 and 948 K.

  11. Effect of strong carbide forming elements in hardfacing weld metal

    Institute of Scientific and Technical Information of China (English)

    Yuanbin Zhang; Dengyi Ren

    2004-01-01

    To achieve high carbon hard-facing weld metals with both high hardness and crack resistance, strong carbide forming elements Ti, Nb and V were alloyed into the weld metals, and their effect on the formation of carbides and the matrix microstructure were studied. Electron Probe Microanalysis (EPMA), Energy Dispersive Spectroscopy(EDS) and Transmission Electron Microscopy(TEM) were adopted to investigate the microstructure, then thermodynamics of the formation of carbides was calculated and their effect on the matrix was further discussed. It is revealed that Nb, Ti and V influence strongly the distribution and existing state of carbon, inducing precipitation of carbides accompanying with the depletion of carbon in matrix. But when only V are alloyed as carbide forming element, the carbides are scarce and distributed along grain boundaries, and the hard-facing alloy is too hard, while the using of only Nb or Ti could not reinforce the weld metals effectively. The hard-facing alloy reinforced with Nb, V and Ti can form dispersive fine carbides and low carbon martensite matrix.

  12. Salt flux synthesis of single and bimetallic carbide nanowires

    Science.gov (United States)

    Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng

    2016-07-01

    Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.

  13. Computational Studies of Physical Properties of Boron Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Lizhi Ouyang

    2011-09-30

    The overall goal is to provide valuable insight in to the mechanisms and processes that could lead to better engineering the widely used boron carbide which could play an important role in current plight towards greener energy. Carbon distribution in boron carbide, which has been difficult to retrieve from experimental methods, is critical to our understanding of its structure-properties relation. For modeling disorders in boron carbide, we implemented a first principles method based on supercell approach within our G(P,T) package. The supercell approach was applied to boron carbide to determine its carbon distribution. Our results reveal that carbon prefers to occupy the end sites of the 3-atom chain in boron carbide and further carbon atoms will distribute mainly on the equatorial sites with a small percentage on the 3-atom chains and the apex sites. Supercell approach was also applied to study mechanical properties of boron carbide under uniaxial load. We found that uniaxial load can lead to amorphization. Other physical properties of boron carbide were calculated using the G(P,T) package.

  14. A role for cell adhesion in beryllium-mediated lung disease

    Energy Technology Data Exchange (ETDEWEB)

    Hong-geller, Elizabeth [Los Alamos National Laboratory

    2008-01-01

    Chronic beryllium disease (CBD) is a debilitating lung disorder in which exposure to the lightweight metal beryllium (Be) causes the accumulation of beryllium-specific CD4+ T cells in the lung and formation of noncaseating pulmonary granulomas. Treatment for CBD patients who exhibit progressive pulmonary decline is limited to systemic corticosteroids, which suppress the severe host inflammatory response. Studies in the past several years have begun to highlight cell-cell adhesion interactions in the development of Be hypersensitivity and CBD. In particular, the high binding affinity between intercellular adhesion molecule 1 (I-CAM1) on lung epithelial cells and the {beta}{sub 2} integrin LFA-1 on migrating lymphocytes and macrophages regulates the concerted rolling of immune cells to sites of inflammation in the lung. In this review, we discuss the evidence that implicates cell adhesion processes in onset of Be disease and the potential of cell adhesion as an intervention point for development of novel therapies.

  15. Time-lapse cinematographic analysis of beryllium--lung fibroblast interactions.

    Science.gov (United States)

    Absher, M; Sylwester, D; Hart, B A

    1983-02-01

    The proliferative response to beryllium chloride of cells in a population of human lung fibroblasts was quantitatively assessed using time-lapse cinematography. A dose of 0.02 microgram Be/ml, known to decrease the growth rate of fibroblasts, affects an estimated 75% of the cells in the population, increasing their interdivision time (IDT) by approximately 5 hr. The differences in mean 1n(IDT) between treated and control cells were essentially constant for comparable culture sizes ranging from 25 to 250 cells. There was no correlation between mother and daughter cell IDTs in control or treated culture at any culture size. IDTs of sister pairs were highly correlated in control cultures at selected culture sizes while sister pair IDTs of treated cultures were not. The data suggest that while beryllium alters the IDT of fibroblasts, an effect not related to culture size, any given cell affected by beryllium does not impart effects of the mineral to its progeny.

  16. Tribological behavior of improved chemically vapor-deposited boron on beryllium

    International Nuclear Information System (INIS)

    Earlier chemical vapor deposition (CVD) experiments with diborane as the boron source gave well-bonded boron films up to 10 μm thick on beryllium, with layered intermetallic compounds below a top layer of boron. The films were nonuniform in thickness and cracked badly when given diffusion heat treatments to produce desired intermetallic compounds. By rotating the beryllium samples during the CVD, films of uniform thickness have now been produced. A variety of compounds of beryllium and boron have been produced on the outer surface of the CVD film by varying the concentration of diborane in the CVD gas. Wear and friction tests performed on various CVD surfaces using sapphire and diamond pins showed remarkable differences in that the CVD boron surface appeared to be substantially more compatible with diamond than with sapphire. The results of these tests are discussed. (Auth.)

  17. A comparison between beryllium and graphite as materials for JET limiters and wall surfaces

    International Nuclear Information System (INIS)

    JET has always been operated with graphite limiters. Carbonisation has been performed from time to time resulting in a temporary reduction of Zeff. However, the latest results at high power (up to 30 MW) indicate that in most cases the impurity content in the plasma is too large to reach near reactor conditions. To reduce the impurity content to a level acceptable in a reactor, it is proposed to use beryllium as a material for the limiters and wall surfaces in JET. This proposal was first made four years ago on the basis of a report comparing the relative merits of beryllium and carbon. This report is now updated in the present paper, which contains three parts, covering the effects of impurities on the plasma performance, the physical and chemical properties of graphite and beryllium and a simple model for the impurity production at the plasma edge. (author)

  18. Measurement of the ultracold-neutron loss coefficient for beryllium powder

    International Nuclear Information System (INIS)

    Reflections of ultracold neutrons (UCN) from beryllium powder have been measured for various layer thickness and various packing densities. On the basis of the experimental data, the reduced UCN loss coefficient for the UCN reflected from the thermally untreated beryllium, η, is found to be η = (1.75 ± 0.35) x 10-4. The previously obtained data on the reflection of UCN from beryllium powder annealed at high temperature are reconsidered. the value obtained for η at room temperature is (6.4 ± 2.5) x 10-5, which exceeds the theoretical value by an order of magnitude. The analysis of the experimental data was carried out by using a modified diffusion theory in which the albedo reflection depends on the packing density

  19. Diamond-turning HP-21 beryllium to achieve an optical surface

    International Nuclear Information System (INIS)

    Investigation of diamond turning on beryllium was made in anticipation of obtaining an optical finish. Although results of past experiences were poor, it was decided to continue diamond turning on beryllium beyond initial failures. By changing speed and using coolant, partial success was achieved. Tool wear was the major problem. Tests were made to establish and plot wear as a function of cutting speed and time. Slower speeds did cause lower wear rates, but at no time did wear reach an acceptable level. The machine, tools, and procedure used were chosen based on the results of preliminary attempts and on previous experience. It was unnecessary to use an air-bearing spindle because tool failure governed the best finish that could be expected. All tools of diamond composition, whether single crystal or polycrystalline, wore at unacceptable rates. Based on present technology, it must be concluded that beryllium cannot be feasibly diamond turned to achieve an optical finish. (22 fig.)

  20. Examination of Beryllium Under Intense High Energy Proton Beam at CERN's HiRadMat Facility

    CERN Document Server

    Ammigan, K; Hurh, P; Zwaska, R; Atherton, A; Caretta, O; Davenne, t; Densham, C; Fitton, M; Loveridge, P; O'Dell, J; Roberts, S; Kuksenko, v; Butcher, M; Calviani, M; Guinchard, M; Losito, R

    2015-01-01

    Beryllium is extensively used in various accelerator beam lines and target facilities as material for beam win- dows, and to a lesser extent, as secondary particle produc- tion targets. With increasing beam intensities of future ac- celerator facilities, it is critical to understand the response of beryllium under extreme conditions to avoid compro- mising particle production efficiency by limiting beam pa- rameters. As a result, the planned experiment at CERN’s HiRadMat facility will take advantage of the test facility’s tunable high intensity proton beam to probe and investigate the damage mechanisms of several grades of beryllium. The test matrix will consist of multiple arrays of thin discs of varying thicknesses as well as cylinders, each exposed to increasing beam intensities. Online instrumentations will acquire real time temperature, strain, and vibration data of the cylinders, while Post-Irradiation-Examination (PIE) of the discs will exploit advanced microstructural characteri- zation and imagin...

  1. The unique bonding characteristics of beryllium and the Group IIA metals

    Science.gov (United States)

    Heaven, Michael C.; Bondybey, Vladimir E.; Merritt, Jeremy M.; Kaledin, Alexey L.

    2011-04-01

    Having closed valence sub-shells, the alkaline earth atoms participate in covalent bonding via orbital hybridization and exchange interactions, with additional contributions from dispersion interactions. Starting from a closed ns2 configuration imparts different characteristics to the chemistry of this group, as compared to metals that have open-shell atomic ground states. Theoretical studies of the bonding of the Group IIA metals have been pursued for many years, and they are known to be challenging for ab initio electronic structure methods. The bonding motifs have been examined, and the differences between beryllium and the remainder of the group explored. Experimental studies that probe the bonding, particularly for beryllium, have lagged behind the theoretical work. In the present Letter we describe our recent spectroscopic and theoretical investigations of simple beryllium compounds, and discuss these results in terms of their relationship to the properties of the heavier Group IIA elements.

  2. Conditions for obtaining extremely pure beryllium by electrolytic refining in alkali chloride fusions

    International Nuclear Information System (INIS)

    Electrorefining is considered a suitable method for producing beryllium with levels of impurity below 1 At.-ppm. Beryllium was electrorefined in a BeCl2-containing LiCl-KCl melt and the key parameters current density, BeCl2 content, electrolyte temperature, composition of crude beryllium, and foreign ion concentration in the melt, together with adjustment of apparatus settings for rotation speed of the cathode, and constitution of crucible material were studied and optimized to achieve a depletion of as many accompanying and alloyed elements as possible. The trace elements were analysed chiefly by means of instrumental neutron activation analysis and atomic absorption spectrometry with electrothermal atomisation, and oxygen and nitrogen determined by vacuum melt extraction or the micro-Kjehldahl method. (orig./IHOE)

  3. The use of a beryllium Hopkinson bar to characterize a piezoresistive accelerometer in shock environments

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1996-03-01

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer, in two mechanical configurations, in the high frequency, high shock environments where measurements are being made. In this paper, the beryllium Hopkinson bar configuration with a laser doppler vibrometer as the reference measurement is described. The in-axis performance of the piezoresistive accelerometer for frequencies of dc-50 kHz and shock magnitudes of up to 70,000 g as determined from measurements with a beryllium Hopkinson bar are presented. Preliminary results of characterizations of the accelerometers subjected to cross-axis shocks in a split beryllium Hopkinson bar configuration are presented.

  4. Microstructure and Properties of Plasma Spraying Boron Carbide Coating

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical,mechanical and electrical properties were measured. The results showed that high microhardness,modulus and Iow porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young′s modulus, comparing with that of the bulk materials, is explained by porosity. The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.

  5. Hugoniot equation of state and dynamic strength of boron carbide

    Science.gov (United States)

    Grady, Dennis E.

    2015-04-01

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20-60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable mechanistic

  6. Hugoniot equation of state and dynamic strength of boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Grady, Dennis E. [Applied Research Associates, Southwest Division, 4300 San Mateo Blvd NE, A-220, Albuquerque, New Mexico 87110-129 (United States)

    2015-04-28

    Boron carbide ceramics have been particularly problematic in attempts to develop adequate constitutive model descriptions for purposes of analysis of dynamic response in the shock and impact environment. Dynamic strength properties of boron carbide ceramic differ uniquely from comparable ceramics. Furthermore, boron carbide is suspected, but not definitely shown, to undergoing polymorphic phase transformation under shock compression. In the present paper, shock-wave compression measurements conducted over the past 40 years are assessed for the purpose of achieving improved understanding of the dynamic equation of state and strength of boron carbide. In particular, attention is focused on the often ignored Los Alamos National Laboratory (LANL) Hugoniot measurements performed on porous sintered boron carbide ceramic. The LANL data are shown to exhibit two compression anomalies on the shock Hugoniot within the range of 20–60 GPa that may relate to crystallographic structure transitions. More recent molecular dynamics simulations on the compressibility of the boron carbide crystal lattice reveal compression transitions that bear similarities to the LANL Hugoniot results. The same Hugoniot data are complemented with dynamic isentropic compression data for boron carbide extracted from Hugoniot measurements on boron carbide and copper granular mixtures. Other Hugoniot measurements, however, performed on near-full-density boron carbide ceramic differ markedly from the LANL Hugoniot data. These later data exhibit markedly less compressibility and tend not to show comparable anomalies in compressibility. Alternative Hugoniot anomalies, however, are exhibited by the near-full-density data. Experimental uncertainty, Hugoniot strength, and phase transformation physics are all possible explanations for the observed discrepancies. It is reasoned that experimental uncertainty and Hugoniot strength are not likely explanations for the observed differences. The notable

  7. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  8. Plasma metallurgical production of nanocrystalline borides and carbides

    Science.gov (United States)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  9. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  10. Material properties of silicon and silicon carbide foams

    Science.gov (United States)

    Jacoby, Marc T.; Goodman, William A.

    2005-08-01

    Silicon and silicon carbide foams provide the lightweighting element for Schafer Corporation's silicon and silicon carbide lightweight mirror systems (SLMSTM and SiC-SLMSTM). SLMSTM and SiC-SLMSTM provide the enabling technology for manufacturing lightweight, athermal optical sub-assemblies and instruments. Silicon and silicon carbide foam samples were manufactured and tested under a Schafer-funded Internal Research and Development program in various configurations to obtain mechanical and thermal property data. The results of the mechanical tests that are reported in this paper include Young's modulus, compression strength, tensile strength, Poisson's ratio and vibrational damping. The results of the thermal tests include thermal conductivity and coefficient of thermal expansion.

  11. Analysis of carbides and inclusions in high speed tool steels

    DEFF Research Database (Denmark)

    Therkildsen, K.T.; Dahl, K.V.

    2002-01-01

    The fracture surfaces of fatigued specimens were investigated using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS). The aim was to quantify the distribution of cracked carbides and non-metallic inclusions on the fracturesurfaces as well as on polished cross......-metallic inclusions and the crack initiation. Surprisingly, no differences were found between the carbide size distributions of the micro-clean and conventional grades.Also, the distribution of the fractured carbides was found to be the same regardless of steel type, manufacturing method or location on the specimen....

  12. Tritium and helium retention and release from irradiated beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Anderl, R.A.; Longhurst, G.R.; Oates, M.A.; Pawelko, R.J. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1998-01-01

    This paper reports the results of an experimental effort to anneal irradiated beryllium specimens and characterize them for steam-chemical reactivity experiments. Fully-dense, consolidated powder metallurgy Be cylinders, irradiated in the EBR-II to a fast neutron (>0.1 MeV) fluence of {approx}6 x 10{sup 22} n/cm{sup 2}, were annealed at temperatures from 450degC to 1200degC. The releases of tritium and helium were measured during the heat-up phase and during the high-temperature anneals. These experiments revealed that, at 600degC and below, there was insignificant gas release. Tritium release at 700degC exhibited a delayed increase in the release rate, while the specimen was at 700degC. For anneal temperatures of 800degC and higher, tritium and helium release was concurrent and the release behavior was characterized by gas-burst peaks. Essentially all of the tritium and helium was released at temperatures of 1000degC and higher, whereas about 1/10 of the tritium was released during the anneals at 700degC and 800degC. Measurements were made to determine the bulk density, porosity and specific surface area for each specimen before and after annealing. These measurements indicated that annealing caused the irradiated Be to swell, by as much as 14% at 700degC and 56% at 1200degC. Kr gas adsorption measurements for samples annealed at 1000degC and 1200degC determined specific surface areas between 0.04 m{sup 2}/g and 0.1 m{sup 2}/g for these annealed specimens. The tritium and helium gas release measurements and the specific surface area measurements indicated that annealing of irradiated Be caused a porosity network to evolve and become surface-connected to relieve internal gas pressure. (author)

  13. Fundamental hydrogen interactions with beryllium : a magnetic fusion perspective.

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. (Sandia National Laboratories, Albuquerque, NM); Felter, Thomas E.; Whaley, Josh A.; Kolasinski, Robert D.; Bartelt, Norman Charles

    2012-03-01

    Increasingly, basic models such as density functional theory and molecular dynamics are being used to simulate different aspects of hydrogen recycling from plasma facing materials. These models provide valuable insight into hydrogen diffusion, trapping, and recombination from surfaces, but their validation relies on knowledge of the detailed behavior of hydrogen at an atomic scale. Despite being the first wall material for ITER, basic single crystal beryllium surfaces have been studied only sparsely from an experimental standpoint. In prior cases researchers used electron spectroscopy to examine surface reconstruction or adsorption kinetics during exposure to a hydrogen atmosphere. While valuable, these approaches lack the ability to directly detect the positioning of hydrogen on the surface. Ion beam techniques, such as low energy ion scattering (LEIS) and direct recoil spectroscopy (DRS), are two of the only experimental approaches capable of providing this information. In this study, we applied both LEIS and DRS to examine how hydrogen binds to the Be(0001) surface. Our measurements were performed using an angle-resolved ion energy spectrometer (ARIES) to probe the surface with low energy ions (500 eV - 3 keV He{sup +} and Ne{sup +}). We were able to obtain a 'scattering maps' of the crystal surface, providing insight on how low energy ions are focused along open surface channels. Once we completed a characterization of the clean surface, we dosed the sample with atomic hydrogen using a heated tungsten capillary. A distinct signal associated with adsorbed hydrogen emerged that was consistent with hydrogen residing between atom rows. To aid in the interpretation of the experimental results, we developed a computational model to simulate ion scattering at grazing incidence. For this purpose, we incorporated a simplified surface model into the Kalypso molecular dynamics code. This approach allowed us to understand how the incident ions interacted with the

  14. Structure of beryllium isotopes in fermionic molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Bahram Ramin

    2009-02-16

    Modern theoretical nuclear physics faces two major challenges. The first is finding a suitable interaction, which describes the forces between nucleons. The second challenge is the solution of the nuclear many-body problem for a given nucleus while applying a realistic potential. The potential used in the framework of this thesis is based on the Argonne AV18 potential. It was transformed by means of the Unitary Correlation Operator Method (UCOM) to optimize convergence. The usual phenomenological corrections were applied to improve the potential for the Hilbert space used in Fermionic Molecular Dynamics (FMD). FMD is an approach to solve the nuclear many-body problem. It uses a single-particle basis which is a superposition of Gaussian distributions in phase-space. The most simple many-body state is the antisymmetric product of the singleparticle states: a Slater determinant, the so called intrinsic state. This intrinsic state is projected on parity, total angular momentum and a center of mass momentum zero. The Hilbert space is spanned by several of these projected states. The states are obtained by minimizing their energy while demanding certain constraints. The expectation values of Slater determinants, parity projected and additionally total angular momentum projected Slater determinants are used. The states that are relevant in the low energy regime are obtained by diagonalization. The lowest moments of the mass-, proton- or neutron-distribution and the excitation in proton- and neutron-shells of a harmonic oscillator are some of the used constraints. The low energy regime of the Beryllium isotopes with masses 7 to 14 is calculated by using these states. Energies, radii, electromagnetic transitions, magnetic moments and point density distributions of the low lying states are calculated and are presented in this thesis. (orig.)

  15. Electron impact ionization cross sections of beryllium-tungsten clusters*

    Science.gov (United States)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  16. Structure of beryllium isotopes in fermionic molecular dynamics

    International Nuclear Information System (INIS)

    Modern theoretical nuclear physics faces two major challenges. The first is finding a suitable interaction, which describes the forces between nucleons. The second challenge is the solution of the nuclear many-body problem for a given nucleus while applying a realistic potential. The potential used in the framework of this thesis is based on the Argonne AV18 potential. It was transformed by means of the Unitary Correlation Operator Method (UCOM) to optimize convergence. The usual phenomenological corrections were applied to improve the potential for the Hilbert space used in Fermionic Molecular Dynamics (FMD). FMD is an approach to solve the nuclear many-body problem. It uses a single-particle basis which is a superposition of Gaussian distributions in phase-space. The most simple many-body state is the antisymmetric product of the singleparticle states: a Slater determinant, the so called intrinsic state. This intrinsic state is projected on parity, total angular momentum and a center of mass momentum zero. The Hilbert space is spanned by several of these projected states. The states are obtained by minimizing their energy while demanding certain constraints. The expectation values of Slater determinants, parity projected and additionally total angular momentum projected Slater determinants are used. The states that are relevant in the low energy regime are obtained by diagonalization. The lowest moments of the mass-, proton- or neutron-distribution and the excitation in proton- and neutron-shells of a harmonic oscillator are some of the used constraints. The low energy regime of the Beryllium isotopes with masses 7 to 14 is calculated by using these states. Energies, radii, electromagnetic transitions, magnetic moments and point density distributions of the low lying states are calculated and are presented in this thesis. (orig.)

  17. Retention and release mechanisms of deuterium implanted into beryllium

    Science.gov (United States)

    Oberkofler, M.; Reinelt, M.; Linsmeier, Ch.

    2011-06-01

    The fraction of deuterium (D) that is retained upon irradiation of beryllium (Be) as well as the temperatures at which implanted D is released are of importance for the international fusion experiment ITER, where Be will be used as an armor material. The influence of single parameters on retention and release is investigated in laboratory experiments performed under well defined conditions with the aim to identify dominant underlying mechanisms and thus be able to predict the behavior of the Be wall in ITER. Recent progress in the quantification of retained fractions and release temperatures as well as in the understanding of the governing mechanisms is presented. The retained fraction upon implantation of D at 1 keV into Be(1 1 2¯ 0) to fluences far below the saturation threshold of 10 21 m -2 is almost 95%, the remaining 5% being attributed to reflection at the surface. At these low fluences, no dependence of the retained fractions on implantation energy is observed. At fluences of the order of 10 21 m -2 and higher, saturation of the irradiated material affects the retention, leading to lower retained fractions. Furthermore, at these fluences the retained fractions decrease with decreasing implantation energies. Differences in the retained fractions from implanted Be(1 1 2¯ 0) and polycrystalline Be are explained by anisotropic diffusion of interstitials during implantation, leading to an amount of surviving D-trap complexes that depends on surface-orientation. Temperature-programmed desorption (TPD) spectra are recorded after implantation of fluences of the order of 10 19 m -2 at various energies and simulated by means of a newly developed code based on coupled reaction-diffusion systems (CRDS). The asymmetric shape of the TPD peaks is reproduced by introducing a local D accumulation process into the model.

  18. Oxide segregation and melting behavior of transient heat load exposed beryllium

    Science.gov (United States)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-10-01

    In the experimental fusion reactor ITER, beryllium will be applied as first wall armor material. However, the ITER-like wall project at JET already experienced that the relatively low melting temperature of beryllium can easily be exceeded during plasma operation. Therefore, a detailed study was carried out on S-65 beryllium under various transient, ITER-relevant heat loads that were simulated in the electron beam facility JUDITH 1. Hereby, the absorbed power densities were in the range of 0.15-1.0 GW m-2 in combination with pulse durations of 1-10 ms and pulse numbers of 1-1000. In metallographic cross sections, the emergence of a transition region in a depth of ~70-120 µm was revealed. This transition region was characterized by a strong segregation of oxygen at the grain boundaries, determined with energy dispersive x-ray spectroscopy element mappings. The oxide segregation strongly depended on the maximum temperature reached at the end of the transient heat pulse in combination with the pulse duration. A threshold for this process was found at 936 °C for a pulse duration of 10 ms. Further transient heat pulses applied to specimens that had already formed this transition region resulted in the overheating and melting of the material. The latter occurred between the surface and the transition region and was associated with a strong decrease of the thermal conductivity due to the weakly bound grains across the transition region. Additionally, the transition region caused a partial separation of the melt layer from the bulk material, which could ultimately result in a full detachment of the solidified beryllium layers from the bulk armor. Furthermore, solidified beryllium filaments evolved in several locations of the loaded area and are related to the thermally induced crack formation. However, these filaments are not expected to account for an increase of the beryllium net erosion.

  19. Silicon Carbide Nanotube Oxidation at High Temperatures

    Science.gov (United States)

    Ahlborg, Nadia; Zhu, Dongming

    2012-01-01

    Silicon Carbide Nanotubes (SiCNTs) have high mechanical strength and also have many potential functional applications. In this study, SiCNTs were investigated for use in strengthening high temperature silicate and oxide materials for high performance ceramic nanocomposites and environmental barrier coating bond coats. The high · temperature oxidation behavior of the nanotubes was of particular interest. The SiCNTs were synthesized by a direct reactive conversion process of multiwall carbon nanotubes and silicon at high temperature. Thermogravimetric analysis (TGA) was used to study the oxidation kinetics of SiCNTs at temperatures ranging from 800degC to1300degC. The specific oxidation mechanisms were also investigated.

  20. Reaction Kinetics of Nanostructured Silicon Carbide

    Science.gov (United States)

    Wallis, Kendra; Zerda, T. W.

    2006-10-01

    Nanostructured silicon carbide (SiC) is of interest particularly for use in nanocomposites that demonstrate high hardness as well as for use in semiconductor applications. Reaction kinetics studies of solid-solid reactions are relatively recent and present a method of determining the reaction mechanism and activation energy by measuring reaction rates. We have used induction heating to heat quickly, thus reducing the error in reaction time measurements. Data will be presented for reactions using silicon nanopowder (melting point of silicon. Using the well-known Avrami-Erofeev model, a two-parameter chi- square fit of the data provided a rate constant (k) and parameter (n), related to the reaction mechanism, for each temperature. From these data, an activation energy of 138 kJ/mol was calculated. In addition, the parameter n suggests the reaction mechanism, which will also be discussed. Experiments are continuing at higher temperatures to consider the liquid- solid reaction as well.

  1. Thermal Conductivity of Uranium Nitride and Carbide

    Directory of Open Access Journals (Sweden)

    B. Szpunar

    2014-01-01

    Full Text Available We investigate the electronic thermal conductivity of alternative fuels like uranium nitride and uranium carbide. We evaluate the electronic contribution to the thermal conductivity, by combining first-principles quantum-mechanical calculations with semiclassical correlations. The electronic structure of UN and UC was calculated using Quantum Espresso code. The spin polarized calculations were performed for a ferromagnetic and antiferromagnetic ordering of magnetic moments on uranium lattice and magnetic moment in UC was lower than in UN due to stronger hybridization between 2p electrons of carbon and 5f electrons of uranium. The nonmagnetic electronic structure calculations were used as an input to BolzTrap code that was used to evaluate the electronic thermal conductivity. It is predicted that the thermal conductivity should increase with the temperature increase, but to get a quantitative agreement with the experiment at higher temperatures the interaction of electrons with phonons (and electron-electron scattering needs to be included.

  2. Radiation damage of transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, G.

    1991-01-01

    In this grant period we have investigated electrical properties of transition metal carbides and radiation-induced defects produced by low-temperature electron irradiation in them. Special attention has been given to the composition VC[sub 0.88] in which the vacancies on the carbon sublattice of this fcc crystal order to produce a V[sub 8]C[sub 7] superlattice. The existence of this superlattice structure was found to make the crystal somewhat resistant to radiation damage at low doses and/or at ambient temperature. At larger doses significant changes in the resistivity are produced. Annealing effects were observed which we believe to be connected with the reconstitution of the superlattice structure.

  3. Carboloy grade 370 (sintered cemented carbide)

    International Nuclear Information System (INIS)

    Carboloy Grade 370 containing 72.0 WC, 8.0 TiC, 11.5 TaC, 8.5 Co is a tough, wear-resistant grade of cemented carbide for heavy duty roughing cuts of steels, ferrous castings, stainless steels, and some high-temperature alloys. It successfully withstands those high temperatures encountered in heavy duty machining. It is used as the as-sintered condition, without further heat treatment. It cannot be machined, but can be ground to final size by use of SiC and diamonds as abrasives. Carbology 370 is rarely applied where corrosive environments exist. Safety note is given to ensure protection for personnel and equipment from flying fragments and sharp edges when working with these materials, and an adequate ventilation in grinding operation to avoid pulmonary problems. Microstructure and hardness vs. temperature curves for Carboloy 370 are presented and its physical and mechanical properties are tabulated

  4. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  5. Gas emission from ultradispersed carbide powders

    International Nuclear Information System (INIS)

    The process of gas emission from the ultra-dispersed carbides (B4C, SiC, TiC) powders formed by pulsed plasma synthesis technology (condensator discharge) in the environment of corresponding chlorides and methan with the additions of H2 and Ar was investigated. The emitted gases consisted of CH4, H2O, Co(N2), CO2. Calculated heats of gas emission processes (less than 200 kJ/mol) for different components show their adsorption nature up to 700 deg C. The emission of components having mass numbers 28 and 44 raises at higher temperatures that can be considered as a consequence of high temperature reactions between oxygen and carbon containing phases in synthesized powders

  6. Microwave hybrid synthesis of silicon carbide nanopowders

    International Nuclear Information System (INIS)

    Nanosized silicon carbide powders were synthesised from a mixture of silica gel and carbon through both the conventional and microwave heating methods. Reaction kinetics of SiC formation were found to exhibit notable differences for the samples heated in microwave field and furnace. In the conventional method SiC nanopowders can be synthesised after 105 min heating at 1500 deg. C in a coke-bed using an electrical tube furnace. Electron microscopy studies of these powders showed the existence of equiaxed SiC nanopowders with an average particle size of 8.2 nm. In the microwave heating process, SiC powders formed after 60 min; the powder consisted of a mixture of SiC nanopowders (with two average particle sizes of 13.6 and 58.2 nm) and particles in the shape of long strands (with an average diameter of 330 nm)

  7. Thermal Oxidation of Silicon Carbide Substrates

    Institute of Scientific and Technical Information of China (English)

    Xiufang Chen; Li'na Ning; Yingmin Wang; Juan Li; Xiangang Xu; Xiaobo Hu; Minhua Jiang

    2009-01-01

    Thermal oxidation was used to remove the subsurface damage of silicon carbide (SiC) surfaces. The anisotrow of oxidation and the composition of oxide layers on Si and C faces were analyzed. Regular pits were observed on the surface after the removal of the oxide layers, which were detrimental to the growth of high quality epitaxial layers. The thickness and composition of the oxide layers were characterized by Rutherford backscat-tering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS), respectively. Epitaxial growth was performed in a metal organic chemical vapor deposition (MOCVD) system. The substrate surface morphol-ogy after removing the oxide layer and gallium nitride (GaN) epilayer surface were observed by atomic force microscopy (AFM). The results showed that the GaN epilayer grown on the oxidized substrates was superior to that on the unoxidized substrates.

  8. Preparation of Silicon Carbide with High Properties

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to prepare silicon carbide with high properties, three kinds of SiC powders A, B, and C with different composition and two kinds of additives, which were Y2O3-Al2O3 system and Y2O3-La2O3 system, were used in this experiment. The properties of hot-pressed SiC ceramics were measured. With the same additives, different SiC powder resulted in different properties. On the other hand, with the same SiC powder, increasing the amount of the additive Y2O3-Al2O3 improved properties of SiC ceramics at room temperature, and increasing the amount of the additive Y2O3-La2O3 improved property SiC ceramics at elevated temperature. In addition, the microstructure of SiC ceramics was studied by scanning electron microscopy.

  9. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 1025 n/m2. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  10. Neutron irradiation induced amorphization of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Hay, J.C. [Oak Ridge National Lab., TN (United States)

    1998-09-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 {times} 10{sup 25} n/m{sup 2}. Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density ({minus}10.8%), elastic modulus as measured using a nanoindentation technique ({minus}45%), hardness as measured by nanoindentation ({minus}45%), and standard Vickers hardness ({minus}24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C.

  11. Chemical Mechanical Polishing of Silicon Carbide

    Science.gov (United States)

    Powell, J. Anthony; Pirouz

    1999-01-01

    The High Temperature Integrated Electronics and Sensors (HTIES) team at the NASA Lewis Research Center is developing silicon carbide (SiC) as an enabling electronic technology for many aerospace applications. The Lewis team is focusing on the chemical vapor deposition of the thin, single-crystal SiC films from which devices are fabricated. These films, which are deposited (i.e., epitaxially "grown") on commercial wafers, must consist of a single crystal with very few structural defects so that the derived devices perform satisfactorily and reliably. Working in collaboration (NASA grant) with Professor Pirouz of Case Western Reserve University, we developed a chemical-mechanical polishing (CMP) technique for removing the subsurface polishing damage prior to epitaxial growth of the single-crystal SiC films.

  12. Chronology of the beryllium replacement shutdown at the High Flux Isotope Reactor (HFIR), 1983

    International Nuclear Information System (INIS)

    In addition to the permanent beryllium reflector, several other components were replaced. The outer shroud and lower tracks were replaced. The new control rod access plugs and the upper tracks were installed. Replacement of collimator tubes for HB-1 and -2 are tentatively slated for the next permanent beryllium changeout. Inspection of the reactor vessel, the vessel-to-nozzle welds, core support structure, and vessel internal cladding showed them to be in acceptable condition. The highest, accumulative radiation doses received by Reactor Operations personnel during the shutdown, in mrem, were 665, 606, and 560; the highest for P and E personnel were 520, 505, and 475

  13. Structural Basis of Chronic Beryllium Disease: Linking Allergic Hypersensitivity and Autoimmunity

    OpenAIRE

    Clayton, Gina M.; Wang, Yang; Crawford, Frances; Novikov, Andrey; Wimberly, Brian T.; Kieft, Jeffrey S.; Falta, Michael T.; Bowerman, Natalie A.; Marrack, Philippa; Fontenot, Andrew P.; Dai, Shaodong; John W Kappler

    2014-01-01

    T cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium. We show here that the T cell ligand is created when a Be2+ cation becomes bu...

  14. Efficacy of surface sampling methods for different types of beryllium compounds.

    Science.gov (United States)

    Dufresne, A; Mocanu, T; Viau, S; Perrault, G; Dion, C

    2011-01-01

    The objective of the research work was to evaluate the efficiency of three different sampling methods (Ghost Wipe™, micro-vacuum, and ChemTest®) in the recovery of Be dust by assessing: (1) four Be compounds (beryllium acetate, beryllium chloride, beryllium oxide and beryllium aluminium), (2) three different surfaces (polystyrene, glass and aluminium) and (3) inter-operator variation. The three sampling methods were also tested on site in a laboratory of a dental school for validation purposes. The Ghost Wipe™ method showed recovery ranging from 43.3% to 85.8% for all four Be compounds and for all three quantities of Be spiked on Petri dishes, while recovery with the micro-vacuum method ranged from 0.1% to 12.4%. On polystyrene dishes with 0.4 µg Be, the recovery ranged from 48.3% to 81.7%, with an average recovery of 59.4% for Operator 1 and 68.4% for Operator 2. The ChemTest® wipe method with beryllium acetate, beryllium chloride, and AlBeMet® showed analogous results that are in line with the manufacturer's manual, but collection of beryllium oxide was negative. In the dental laboratory, Ghost Wipe™ samplings showed better recovery than the micro-vacuum method. The ratios between the recovered quantities of Be in each location where the Ghost Wipe™ was tested differed substantially, ranging from 1.45 to 64. In the dental laboratory, a faint blue color indicating the presence of Be was observed on the ChemTest® wipes used in two locations out of six. In summary, the Ghost Wipe™ method was more efficient than micro-vacuuming in collecting the Be dust from smooth, non-porous surfaces such as Petri dishes by a factor of approximately 18. The results obtained on site in a dental laboratory also showed better recovery with Ghost Wipes™. However, the ratio of Be recovered by Ghost Wipes™ versus micro-vacuuming was much lower for surfaces where a large amount of dust was present. Wet wiping is preferred over micro-vacuuming for beryllium forms, but

  15. Isothermal compression and phase transition in beryllium to 28.3 GPa

    International Nuclear Information System (INIS)

    In situ high-pressure x-ray diffraction data for polycrystalline beryllium to 28.3 GPa at ambient temperature show that beryllium is transformed from the HCP phase (I) into a slightly distorted HCP phase (II) at pressures between 8.6 and 14.5 GPa. The volume change for the transition is extremely small (approx. 0.4%); the effect of pressure on the c/a ratio for both the Be(I) and Be(II) phases is also very small. (author)

  16. Measurement of neutron yield by 62 MeV proton beam on a thick Beryllium target

    CERN Document Server

    Alba, R; Boccaccio, P; Celentano, A; Colonna, N; Cosentino, G; Del Zoppo, A; Di Pietro, A; Esposito, J; Figuera, P; Finocchiaro, P; Kostyukov, A; Maiolino, C; Osipenko, M; Ricco, G; Ripani, M; Viberti, C M; Santonocito, D; Schillaci, M

    2012-01-01

    In the framework of research on IVth generation reactors and high intensity neutron sources a low-power prototype neutron amplifier was recently proposed by INFN. It is based on a low-energy, high current proton cyclotron, whose beam, impinging on a thick Beryllium converter, produces a fast neutron spectrum. The world database on the neutron yield from thick Beryllium target in the 70 MeV proton energy domain is rather scarce. The new measurement was performed at LNS, covering a wide angular range from 0 to 150 degrees and an almost complete neutron energy interval. In this contribution the preliminary data are discussed together with the proposed ADS facility.

  17. Micromechanical properties of beryllium and other instrument materials, end-of-year-report

    International Nuclear Information System (INIS)

    The objective of the program is to evaluate and understand the micromechanical properties of beryllium and other instrument materials for use in gyroscopes, so that dimensional instability can be improved. Improved dimensional stability is expected to lessen the need to periodically align gyroscopes in service. Drift in alignment has been attributed in part to mass shifts of 0.000001 inches in critical components of gyroscopes. This report consists of two major parts. Part A - Micromechanical properties of instrument grade beryllium. (description of the materials problem, instrumentation to make strain measurements in the range of 10 to the -7 power, and initial results.) Part B - 10 to the -8 power creep measurement system

  18. Migration of Beryllium via Multiple Exposure Pathways among Work Processes in Four Different Facilities

    Science.gov (United States)

    Armstrong, Jenna L.; Day, Gregory A.; Park, Ji Young; Stefaniak, Aleksandr B.; Stanton, Marcia L.; Deubner, David C.; Kent, Michael S.; Schuler, Christine R.; Virji, M. Abbas

    2016-01-01

    Inhalation of beryllium is associated with the development of sensitization; however, dermal exposure may also be important. The primary aim of this study was to elucidate relationships among exposure pathways in four different manufacturing and finishing facilities. Secondary aims were to identify jobs with increased levels of beryllium in air, on skin, and on surfaces; identify potential discrepancies in exposure pathways, and determine if these are related to jobs with previously identified risk. Beryllium was measured in air, on cotton gloves, and on work surfaces. Summary statistics were calculated and correlations among all three measurement types were examined at the facility and job level. Exposure ranking strategies were used to identify jobs with higher exposures. The highest air, glove, and surface measurements were observed in beryllium metal production and beryllium oxide ceramics manufacturing jobs that involved hot processes and handling powders. Two finishing and distribution facilities that handle solid alloy products had lower exposures than the primary production facilities, and there were differences observed among jobs. For all facilities combined, strong correlations were found between air-surface (rp ≥ 0.77), glove-surface (rp ≥ 0.76), and air-glove measurements (rp ≥ 0.69). In jobs where higher risk of beryllium sensitization or disease has been reported, exposure levels for all three measurement types were higher than in jobs with lower risk, though they were not the highest. Some jobs with low air concentrations had higher levels of beryllium on glove and surface wipe samples, suggesting a need to further evaluate the causes of the discrepant levels. Although such correlations provide insight on where beryllium is located throughout the workplace, they cannot identify the direction of the pathways between air, surface, or skin. Ranking strategies helped to identify jobs with the highest combined air, glove, and/or surface exposures

  19. Wavefunction and energy of the 1s22sns configuration in a beryllium atom

    Institute of Scientific and Technical Information of China (English)

    Huang Shi-Zhong; Ma Kun; Yu Jia-Ming; Liu Fen

    2008-01-01

    A new set of trial functions for 1s22sns configurations in a beryllium atom is suggested.A Mathematica program baaed on the variational method is developed to calculate the wavefunctions and energies of 1s22sns (n=3-6)configurations in a beryllium atom.Non-relativistic energy,polarization correction and relativistic correction which include mass correction,one- and two-body Darwin corrections,spin-spin contact interaction and orbit-orbit interaction,are calculated respectively.The results are in good agreement with experimental data.

  20. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  1. Status of advanced carbide fuels: Past, present, and future

    Science.gov (United States)

    Anghaie, Samim; Knight, Travis

    2002-01-01

    Solid solution, mixed uranium/refractory metal carbide fuels such as (U, Zr, Nb)C, so called ternary carbide or tri-carbide fuels have great potential for applications in next generation advanced nuclear power reactors. Because of their high melting points, high thermal conductivity, improved resistance to hot hydrogen corrosion, and good fission product retention, these advanced nuclear fuels have great potential for high performance reactors with increased safety margins. Despite these many benefits, some concerns regarding carbide fuels include compatibility issues with coolant and/or cladding materials and their endurance under the extreme conditions associated with nuclear thermal propulsion. The status of these fuels is reviewed to characterize their performance for space nuclear power applications. Results of current investigations are presented and as well as future directions of study for these advanced nuclear fuels. .

  2. Radial furnace shows promise for growing straight boron carbide whiskers

    Science.gov (United States)

    Feingold, E.

    1967-01-01

    Radial furnace, with a long graphite vaporization tube, maintains a uniform thermal gradient, favoring the growth of straight boron carbide whiskers. This concept seems to offer potential for both the quality and yield of whiskers.

  3. On surface Raman scattering and luminescence radiation in boron carbide.

    Science.gov (United States)

    Werheit, H; Filipov, V; Schwarz, U; Armbrüster, M; Leithe-Jasper, A; Tanaka, T; Shalamberidze, S O

    2010-02-01

    The discrepancy between Raman spectra of boron carbide obtained by Fourier transform Raman and conventional Raman spectrometry is systematically investigated. While at photon energies below the exciton energy (1.560 eV), Raman scattering of bulk phonons of boron carbide occurs, photon energies exceeding the fundamental absorption edge (2.09 eV) evoke additional patterns, which may essentially be attributed to luminescence or to the excitation of Raman-active processes in the surface region. The reason for this is the very high fundamental absorption in boron carbide inducing a very small penetration depth of the exciting laser radiation. Raman excitations essentially restricted to the boron carbide surface region yield spectra which considerably differ from bulk phonon ones, thus indicating structural modifications.

  4. Microwave synthesis of phase-pure, fine silicon carbide powder

    International Nuclear Information System (INIS)

    Fine, monophasic silicon carbide powder has been synthesized by direct solid-state reaction of its constituents namely silicon and carbon in a 2.45 GHz microwave field. Optimum parameters for the silicon carbide phase formation have been determined by varying reaction time and reaction temperature. The powders have been characterized for their particle size, surface area, phase composition (X-ray diffraction) and morphology (scanning electron microscope). Formation of phase-pure silicon carbide can be achieved at 1300 deg. C in less than 5 min of microwave exposure, resulting in sub-micron-sized particles. The free energy values for Si + C → SiC reaction were calculated for different temperatures and by comparing them with the experimental results, it was determined that phase-pure silicon carbide can be achieved at around 1135 deg. C

  5. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca;

    2013-01-01

    supported molybdenum carbide are significantly higher compared to the bulk carbide. The CO conversion reaches a maximum, when about 20wt% Mo2C is loaded on active carbon. The selectivity to higher alcohols increases with increasing Mo2C loading on active carbon and reaches a maximum over bulk molybdenum...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... clusters. Unpromoted, active carbon supported Mo2C exhibits a high activity for CO conversion with hydrocarbons as the dominant products. The K2CO3 promoter plays an essential role in directing the selectivity to alcohols rather than to hydrocarbons. The optimum selectivity toward higher alcohols and total...

  6. Novel Manufacturing Process for Unique Mixed Carbide Refractory Composites Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This STTR Phase I project will establish the feasibility of an innovative manufacturing process to fabricate a range of unique hafnium/silicon based carbide...

  7. Process for preparing fine grain silicon carbide powder

    Science.gov (United States)

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  8. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  9. A NEAR REAL-TIME BERYLLIUM MONITOR WITH CAM AND WIPE ANALYSIS CAPABILITIES

    Energy Technology Data Exchange (ETDEWEB)

    D.T. Kendrick; Steven Saggese

    2002-12-01

    Science & Engineering Associates, Inc. (SEA), under contract No. DE-AC26-00NT40768, was tasked by the US Department of Energy--National Energy Technology Laboratory to develop and test a near real-time beryllium monitor for airborne and surface measurements. Recent public awareness of the health risks associated with exposure to beryllium has underscored the need for better, faster beryllium monitoring capabilities within the DOE. A near real-time beryllium monitor will offer significant improvements over the baseline monitoring technology currently in use. Whereas the baseline technology relies upon collecting an air sample on a filter and the subsequent analysis of the filter by an analytical laboratory, this effort developed a monitor that offers near real-time measurement results while work is in progress. Since the baseline typically only offers after-the-fact documentation of exposure levels, the near real-time capability provides a significant increase in worker protection. The beryllium monitor developed utilizes laser induced breakdown spectroscopy, or LIBS as the fundamental measurement technology. LIBS has been used in a variety of laboratory and field based instrumentation to provide real-time, and near-real-time elemental analysis capabilities. LIBS is an analytical technique where a pulsed high energy laser beam is focused to a point on the sample to be interrogated. The high energy density produces a small high temperature plasma plume, sometimes called a spark. The conditions within this plasma plume result in the constituent atoms becoming excited and emitting their characteristic optical emissions. The emission light is collected and routed to an optical spectrometer for quantitative spectral analysis. Each element has optical emissions, or lines, of a specific wavelength that can be used to uniquely identify that element. In this application, the intensity of the beryllium emission is used to provide a quantitative measure of the abundance of the

  10. Dynamic compaction of boron carbide by a shock wave

    Science.gov (United States)

    Buzyurkin, Andrey E.; Kraus, Eugeny I.; Lukyanov, Yaroslav L.

    2016-10-01

    This paper presents experiments on explosive compaction of boron carbide powder and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the boron carbide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  11. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanovskii, Alexander L [Institute of Solid State Chemistry, Urals Branch of the Russian Academy of Sciences, Ekaterinburg (Russian Federation)

    2009-04-30

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  12. Impact of pressure on Sintering of Cemented Carbides

    OpenAIRE

    Owais, Tariq Muhammad

    2013-01-01

    In this Master Thesis work, the effect of pressure on sintering of cemented carbides is investigated. Special focus hasbeen given to the residual porosity after sintering. It is well known that sintering shrinkage depends on binder phasecontent, grain size, temperature and pressure. Thus 4 different cemented carbides grades were selected. The gradeswere pressed into standard products and TRS (Tensile Rupture Strength) rods with two different shrinkage factors.These were then sintered at diffe...

  13. ADHERENCE AND PROPERTIES OF SILICON CARBIDE BASED FILMS ON STEEL

    OpenAIRE

    Lelogeais, M.; Ducarroir, M.; Berjoan, R.

    1991-01-01

    Coatings of silicon carbide with various compositions have been obtained in a r.f plasma assisted process using tetramethylsilane and argon as input gases. Some properties against mechanical applications of such deposits on steel have been investigated. Residual stresses and hardness are reported and discussed in relation with plasma parameters and deposit composition. By scratch testing, it was shown that the silicon carbide films on steel denote a good adherence when compared with previous ...

  14. Rapid Wolff–Kishner reductions in a silicon carbide microreactor

    OpenAIRE

    Newman, Stephen G.; Gu, Lei; Lesniak, Christoph; Victor, Georg; Meschke, Frank; Abahmane, Lahbib; Jensen, Klavs F.

    2013-01-01

    Wolff–Kishner reductions are performed in a novel silicon carbide microreactor. Greatly reduced reaction times and safer operation are achieved, giving high yields without requiring a large excess of hydrazine. The corrosion resistance of silicon carbide avoids the problematic reactor compatibility issues that arise when Wolff–Kishner reductions are done in glass or stainless steel reactors. With only nitrogen gas and water as by-products, this opens the possibility of performing selective, l...

  15. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  16. Process for preparing fine-grain metal carbide powder

    Science.gov (United States)

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  17. Synthesis of carbides of metals by electrodischarge method

    OpenAIRE

    Tsolin, Pavlo L.; Terekhov, Anatolii Yu.; Kuskova, Nataliia I.

    2014-01-01

    Initiation by electric discharge of plasma-chemical reaction which is accompanied by the erosion of electrodes material and by synthesis corresponding carbides is discussed. The object of the research is to establish possibility of synthesis of metal carbides during electrodischarge treatment of hydrocarbon liquid. Electrical discharge in the liquid hydrocarbons is studied experimentally using various materials of electrodes (titanium, aluminum, copper, niobium) as a method of synthesis of me...

  18. Superplastic behavior and cavitation for WC-Co cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, H.; Shimojima, K. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology (AIST) (Japan); Kawakami, M.; Terada, O. [Fuji Die Co. Ltd., Hadano, Kanagawa (Japan); Sano, S. [Fuji Die Co. Ltd., Tokyo (Japan); Mabuchi, M. [Dept. of Energy Science and Technology, Kyoto Univ. (Japan)

    2005-07-01

    Superplastic behavior and cavitation were investigated for WC-15 mass% Co cemented carbides with the WC grain sizes of 0.7 {mu}m (A) and 5.2 {mu}m (B), WC-10 mass% Co cemented carbide with the WC grain size of 1.5 {mu}m (C) and WC-5 mass% Co cemented carbides with the WC grain sizes of 0.5 {mu}m (D) and 2.5 {mu}m (E) by tensile tests at 1473 K. WC contiguity were 0.51, 0.31, 0.27, 0.56 and 0.49, respectively. The large elongations about 200% were obtained for the B and the C having smaller values of WC contiguity compared to the other cemented carbides. The values of cavity volume fraction for them were less for the other cemented carbides, furthermore, cavities formed at WC/WC interfaces. Therefore, it is noted that the distribution of the Co phase is important for superplasticity of the cemented carbides. (orig.)

  19. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    A control blade design, incorporating boron-carbide (B4C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author)

  20. Synthesis of Be–Ti–V ternary beryllium intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hwan, E-mail: kim.jaehwan@jaea.go.jp; Nakamichi, Masaru

    2015-08-15

    Highlights: • Preliminary synthesis of ternary Be–Ti–V beryllides was investigated. • An area fraction of Be phase increased with increase of V amount in the beryllide because of increasing melting temperature. • The increase of Be phase fraction resulted in increase of weight gain as well as H{sub 2} generation. • The beryllides with lower V contents indicated to better phase stability at high temperature. - Abstract: Beryllium intermetallic compounds (beryllides) such as Be{sub 12}Ti and Be{sub 12}V are the most promising advanced neutron multipliers in demonstration power reactors. Advanced neutron multipliers are being developed by Japan and the EU as part of their Broader Approach activities. It has been previously shown, however, that beryllides are too brittle to fabricate into pebble- or rod-like shapes using conventional methods such as arc melting and hot isostatic pressing. To overcome this issue, we developed a new combined plasma sintering and rotating electrode method for the fabrication of beryllide rods and pebbles. Previously, we prepared a beryllide pebble with a Be–7.7 at.% Ti composition as the stoichiometric value of the Be{sub 12}Ti phase; however, Be{sub 17}Ti{sub 2} and Be phases were present along with the Be{sub 12}Ti phase that formed as the result of a peritectic reaction due to re-melting during granulation using the rotating electrode method. This Be phase was found to be highly reactive with oxygen and water vapor. Accordingly, to investigate the Be phase reduction and applicability for fabrication of electrodes prior to granulation using the rotating electrode method, Be–Ti–V ternary beryllides were synthesized using the plasma sintering method. Surface observation results indicated that increasing plasma sintering time and V addition led to an increase in the intermetallic compound phases compared with plasma-sintered beryllide with a Be–7.7 at.% Ti composition. Additionally, evaluation of the reactivity of

  1. OCCURRENCE OF ARSENIC, LEAD, THALLIUM AND BERYLLIUM IN GROUNDWATER

    Directory of Open Access Journals (Sweden)

    Abdul A.J. Mohamed

    2014-01-01

    Full Text Available The occurrence of carcinogenic and heavy metals in groundwater sources in Urban-west region of Zanzibar Island is an issue that is not very well known. This could be also coupled with the absence of drinking water treatment plants. This study for the first time reports on the occurrence and the levels of three carcinogenic metals-Arsenic (As, Beryllium (Be and lead (Pb in thirty groundwater samples collected from Zanzibar’s Urban/West region. The levels of alkalinity, Magnesium (Mg and Thallium (Tl were also determined. The concentrations of As, Be, TI and Pb in the water samples were determined by the Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES. Palintest photometry procedures were used to determine the levels of total alkalinity and magnesium. Be, As, Tl and Pb were not detected (nd in some water samples. The ranges of concentrations of Be, As, TI and Pb in the samples were; nd to 6100 ng L-1, nd to 6600 ng L-1, nd to 11600 ng L-1 and nd to 31400 ng L-1 respectively. The levels of total alkalinity varied from 38 to 380 (mg L-1 as CaCO3. The proportions of water samples contaminated with Be, Tl, As and Pb were 43.3, 66.7, 70 and 96.7% respectively. About 23% of the water samples had Pb concentrations beyond WHO limits for safe drinking water, while 30 and 56.67% of the samples had Be and Tl concentrations beyond the US EPA’s maximum limits. The concentration of arsenic in each water sample was within WHO limits. The occurrence and the levels of carcinogenic metals in water sources could be a potential cause of cancer cases in Zanzibar. Therefore, prompt action is required to control the levels of these hazardous metals, and other possible contaminants in Zanzibar’s domestic water systems.

  2. Development and Evaluation of Mixed Uranium-Refractory Carbide/Refractory Carbide Cer-Cer Fuels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal a new carbide-based fuel is introduced with outstanding potential to eliminate the loss of uranium, minimizes the loss of uranium, and retains...

  3. Aerosol resuspension from fabric: implications for personal monitoring in the beryllium industry.

    Science.gov (United States)

    Bohne, J E; Cohen, B S

    1985-02-01

    The fabric used for work clothing at an industrial site can significantly influence personal monitor (PM) exposure estimates because dust resuspension from clothing can increase the concentration at the sampler inlet. The magnitude of the effect depends on removal forces and on the interaction of the contaminant particles with work garments. Aerosol deposition and resuspension on cotton and Nomex aramid fabrics was evaluated at a beryllium refinery. Electrostatically charged cotton backdrops collected more beryllium than neutral controls, but electronegative Nomex backdrops did not. Moving fabrics collected more beryllium than did stationary controls. When contaminated fabrics were agitated, PMs mounted 2.5 cm in front of the fabric collected more beryllium than monitors above the fabric, positioned to simulate the nose or mouth. The difference between the air concentrations measured by these PMs increased with Be loading and tended to level off for highly contaminated fabric. Cotton resuspended a larger fraction of its contaminant load than Nomex. These results are consistent with current knowledge of the behavior of particles on fabric fibers. Aerosol resuspension from garments is an important consideration in assessing inhalation exposure to toxic dusts. A garment may attract and retain toxic particles. This contamination is then available for later resuspension. PMID:3976498

  4. The relationship between gross and net erosion of beryllium at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Doerner, R.P., E-mail: rdoerner@ucsd.edu [Center for Energy Research, University of California in San Diego, La Jolla, CA 92093-0417 (United States); Jepu, I. [National Institute for Lasers, Plasma and Radiation Physics, NILPRP, Magurele, Bucharest 077125 (Romania); Nishijima, D. [Center for Energy Research, University of California in San Diego, La Jolla, CA 92093-0417 (United States); Safi, E.; Bukonte, L.; Lasa, A.; Nordlund, K. [Association EURATOM-Tekes, University of Helsinki, PO Box 43, 00014 University of Helsinki (Finland); Schwarz-Selinger, T. [Max-Planck Institut für Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2015-08-15

    Surface temperature is a critical variable governing plasma–material interactions. PISCES-B injects controllable amounts of Be impurities into the plasma to balance, or exceed, the erosion rate of beryllium from samples in un-seeded plasma exposures. At low temperature, an order of magnitude more beryllium, than the beryllium mass loss measured in un-seeded discharges, needs to be seeded into the plasma to achieve no mass loss from a sample. At elevated temperature, no mass loss is achieved when the beryllium-seeding rate equals the mass loss rate in un-seeded discharges. Molecular dynamics simulations show that below 500 K, Be adatoms have difficulty surmounting the Ehrlich–Schwoebel barrier at the edge of a terrace. Above this temperature, an Arrhenius behavior is observed with an activation energy of 0.32 eV. Qualitatively, this indicates that at low surface temperature the deposited atoms may be more easily re-eroded, accounting for the increased seeding needed to balance the erosion.

  5. (n,p) emission channeling measurements on ion-implanted beryllium

    CERN Multimedia

    Jakubek, J; Uher, J

    2007-01-01

    We propose to perform emission-channeling measurements using thermal neutron induced proton emission from ion-implanted $^{7}$Be. The physics questions addressed concern the beryllium doping of III-V and II-VI semiconductors and the host dependence of the electron capture half-life of $^{7}$Be.

  6. Apparatus for fabrication of americium- beryllium neutron sources prevents capsule contamination

    Science.gov (United States)

    Mohr, W. C.; Van Loom, J. A.

    1967-01-01

    Modified gloved enclosure is used to fill a capsule with a mixture of americium and beryllium radioactive powders to seal weld the opening, and to test it for leaks. It contains a horizontal partition, vortex mixer, mounting press, welder, test vessel, and radiation shielding to prevent surface contamination.

  7. Use of a Paraffin Based Grout to Stabilize Buried Beryllium and Other Wastes

    International Nuclear Information System (INIS)

    The long term durability of WAXFIXi, a paraffin based grout, was evaluated for in situ grouting of activated beryllium wastes in the Subsurface Disposal Area (SDA), a radioactive landfill at the Radioactive Waste Management Complex, part of the Idaho National Laboratory (INL). The evaluation considered radiological and biological mechanisms that could degrade the grout using data from an extensive literature search and previous tests of in situ grouting at the INL. Conservative radioactive doses for WAXFIX were calculated from the ''hottest'' (i.e., highest-activity) Advanced Test Reactor beryllium block in the SDA.. These results indicate that WAXFIX would not experience extensive radiation damage for many hundreds of years. Calculation of radiation induced hydrogen generation in WAXFIX indicated that grout physical performance should not be reduced beyond the effects of radiation dose on the molecular structure. Degradation of a paraffin-based grout by microorganisms in the SDA is possible and perhaps likely, but the rate of degradation will be at a slower rate than found in the literature reviewed. The calculations showed the outer 0.46 m (18 in.) layer of each monolith, which represents the minimum expected distance to the beryllium block, was calculated to require 1,000 to 3,600 years to be consumed. The existing data and estimations of biodegradation and radiolysis rates for WAXFIX/paraffin do not indicate any immediate problems with the use of WAXFIX for grouting beryllium or other wastes in the SDA

  8. Lifetime Measurements for Electric-Dipole △ n = 0 Transitions in the Beryllium-Like Sulfur

    Institute of Scientific and Technical Information of China (English)

    DU Shu-Bin; YANG Zhi-Hu; CHANG Hong-Wei; SU Hong

    2005-01-01

    @@ We have measured lifetimes of △n = 0 allowed transitions in beryllium-like sulfur using beam foil spectroscopic techniques. The measured values, derived from analysis of arbitrarily normalized decay curves, are presented and compared with theoretical calculations and previous measurements. Accurate probabilities have been determined by the well-known relationship.

  9. Beryllium-steam interaction experiments and self-sustained reaction studies (integral validation testing)

    International Nuclear Information System (INIS)

    In accordance with the Task Agreement G 81 TT 02 FR, Be-steam interaction experiments were performed in order to obtain experimental data for validation of calculation codes analyzing accident situation involving water coolant ingress into the vacuum chamber of International Thermonuclear Experimental Reactor (ITER). The report describes the experimental facility, specimens used for oxidized beryllium emissivity factor determination and the ITER first wall mock-up used in the experiments on its interaction with steam. Experimental results on Be-emissivity factor after beryllium oxidation versus temperature are given. Four experimental runs of the ITER first wall mock-up interaction with steam were carried out for initial conditions when internal (beryllium) mock-up layer was heated to temperatures of 680, 880 and 1273 K and steam temperature was of 413-423 K. The plots of temperature evolution for beryllium, bronze and stainless steel layers versus time were obtained. Temperature records with 5 s interval are presented. Hydrogen gain in these four experimental runs was measured. The data may be used for computer code validation. No self-sustained Be-steam chemical reaction at temperatures used in the experiments was observed

  10. The credit analysis of recycling beryllium and uranium in BeO-UO2 nuclear fuel

    International Nuclear Information System (INIS)

    This study quantifies the credits of beryllium and uranium which are used as the raw materials for BeO-UO2 nuclear fuel by analyzing the influence of their credits on the nuclear fuel cycle cost was analyzed, where the credit was defined as the value of raw materials recovered from spent fuel and the raw materials that were re-cycled. The credits of beryllium and uranium at 60 MWD/kg burn-up were -0.22 Mills/kWh and -0.14 Mills/kWh, respectively. These findings were based on the assumption that the optimal mixing proportion of beryllium in the BeO-UO2 nuclear fuel is 4.8 wt%. In sum, the present study verified that the credits of beryllium and uranium in relation to BeO-UO2 nuclear fuel are significant cost drivers in the cost of the nuclear fuel cycle and in estimating the nuclear fuel cycle of the reprocessing option for spent nuclear fuels. (author)

  11. Beryllium abundances in parent stars of extrasolar planets 16 Cyg A & B and $\\rho^{1}$ Cnc$^{*}$

    CERN Document Server

    García-López, R J

    1998-01-01

    The Be II 3131 A doublet has been observed in the solar-type stars 16 Cyg A & B and in the late G-type star rho 1 Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar (solar) beryllium abundances while 16 Cyg B, which has been proposed to have a planetary companion of ~2 M_Jup, is known to be depleted in lithium by a factor larger than 6 with respect to 16 Cyg A. Differences in their rotational histories which could induce different rates of internal mixing of material, and the ingestion of a similar planet by 16 Cyg A are discussed as potential explanations. The existence of two other solar-type stars which are candidates to harbour planetary-mass companions and which show lithium and beryllium abundances close to those of 16 Cyg A, requires a more detailed inspection of the peculiarities of the 16 Cyg system. For rho 1 Cnc, which is the coolest known object candidate to harbour a planetary-mass companion (M > 0.85 M_Jup), we establish a precise upper limit for its beryllium abundance...

  12. An investigation of process sensitivity for electron beam evaporation of beryllium

    International Nuclear Information System (INIS)

    This paper reports on the process sensitivity of a beryllium coating process investigated using a statistical design of experiments approach. Process sensitivity is a measure of the variation in a given quality characteristic of the coating as a function of the evaporation process parameters. Manufacturing processes which maximize quality while simultaneously minimizing variability are most desirable. Three evaporation process parameters were included in this study: deposition rate, substrate temperature, and run time. A central composite experimental design employing a total of 18 coating runs was used to produce beryllium coatings on aluminum, silicon, fused silica, and beryllium substrates. The quality of the resulting coatings was characterized by scanning electron microscopy, IR spectrophotometry, stylus profilometry, and weight gain (thickness). Analysis of these results allowed the development of functional relationship between the quality characteristics (thickness, reflectance, etc.) and the evaporation process parameters. Process sensitivity for each response was then determined by calculating the gradient of each quality characteristic with respect to all three process parameters. Three dimensional plots were developed of the quality characteristic and its process sensitivity as a function of process parameters. Both quality characteristic and process sensitivity plots will be presented and discussed. For many of the quality characteristics, temperature during deposition was found to be the most sensitive process parameter for the beryllium c-beam evaporation process

  13. Thermal ramp tritium release in COBRA-1A2 C03 beryllium pebbles

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, D.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Tritium release kinetics, using the method of thermal ramp heating at three linear ramp rates, were measured on the COBRA-1A2 C03 1-mm beryllium pebbles. This report includes a brief discussion of the test, and the test data in graph format.

  14. Preparation, characterization and thermal behaviour study of double selenates of lanthanides, yttrium and beryllium

    International Nuclear Information System (INIS)

    The lanthanides (III) and yttrium (III) double selenates were studied using common analytical methods, atomic absorption, X-ray diffraction infra-red absorption, thermogravimetry and differential thermal analysis. These compounds were prepared from the mixture of lanthanides (III) and yttrium (III) selenates aqueous solution and basic beryllium selenates aqueous solution, obeying equimolar relation (1:1) to the cation

  15. Beryllium assessment and recommendation for application in ITER plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Barabash, V.; Tanaka, S.; Matera, R. [ITER Joint Central Team, Muenchen (Germany)

    1998-01-01

    The design status of the ITER Plasma Facing Components (PFC) is presented. The operational conditions of the armour material for the different components are summarized. Beryllium is the reference armour material for the Primary Wall, Baffle and Limiter and the back-up material for the Divertor Dome. The activities on the selection of the Be grades and the joining technologies are reviewed. (author)

  16. Experimental bremsstrahlung yields for MeV proton bombardment of beryllium and carbon

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David D. [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)], E-mail: dcz@ansto.gov.au; Stelcer, Eduard; Siegele, Rainer; Ionescu, Mihail; Prior, Michael [Institute for Environmental Research, Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai, NSW 2234 (Australia)

    2008-04-15

    Experimental bremsstrahlung yields for 2, 3 and 4 MeV protons on thin beryllium and carbon targets have been measured. The yields have been corrected for detector efficiency, self-absorption in the target and fitted to 9th order polynomials over the X-ray energy range 1-10 keV for easy comparison with theoretical calculations.

  17. Understanding the Irradiation Behavior of Zirconium Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., University Park, PA (United States); Sridharan, Kumar [Univ. of Wisconsin, Madison, WI (United States); Morgan, Dane [Univ. of Wisconsin, Madison, WI (United States); Szlufarska, Izabela [Univ. of Wisconsin, Madison, WI (United States)

    2013-10-11

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  18. Physical properties of beryllium oxide - Irradiation effects; Proprietes physiques et caracteristiques mecaniques de l'oxyde de beryllium fritte - Effet de l'irradiation et guerison

    Energy Technology Data Exchange (ETDEWEB)

    Elston, J.; Caillat, R. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This work has been carried out in view of determining several physical properties of hot-pressed beryllium oxide under various conditions and the change of these properties after irradiation. Special attention has been paid on to the measurement of the thermal conductivity coefficient and thermal diffusivity coefficient. Several designs for the measurement of the thermal conductivity coefficient have been achieved. They permit its determination between 50 and 300 deg. C, between 400 and 800 deg. C. Some measurements have been made above 1000 deg. C. In order to measure the thermal diffusivity coefficient, we heat a perfectly flat surface of a sample in such a way that the heat flux is modulated (amplitude and frequency being adjustable). The thermal diffusivity coefficient is deduced from the variations of temperature observed on several spots. Tensile strength; compressive strength; expansion coefficient; sound velocity and crystal parameters have been also measured. Some of the measurements have been carried out after neutron irradiation. Some data have been obtained on the change of the properties of beryllium oxide depending on the integrated neutron flux. (author)Fren. [French] L'objet de cette etude est la determination de plusieurs proprietes physiques de l'oxyde de beryllium fritte sous charge dans differentes conditions et l'evolution de ces proprietes apres irradiation. Une attention particuliere a ete portee sur la mesure de la conductibilite et de la diffusivite thermiques. Differents montages ont ete realises pour mesurer la conductibilite thermique. Ils permettent la determination entre 50 et 300 deg. C, entre 400 et 800 deg. C; quelques mesures ont ete faites au-dessus de 1000 deg. C. Pour la mesure du coefficient de diffusivite thermique, on realise une attaque thermique, de frequence et d'amplitude reglables d'une face parfaitement plane d'un echantillon d'oxyde de beryllium. Les variations de temperature sont

  19. Tritium release from neutron irradiated beryllium: Kinetics, long-time annealing and effect or crack formation

    Energy Technology Data Exchange (ETDEWEB)

    Scaffidi-Argentina, F.; Werle, H. [Forschungszentrum Karlsruhe, (Germany)

    1995-09-01

    Since beryllium is considered as one of the best neutron multiplier materials in the blanket of the next generation fusion reactors, several studies have been started to evaluate its behaviour under irradiation during both operating and accidental conditions. Based on safety considerations, tritium produced in beryllium during neutron irradiation represents one important issue, therefore it is necessary to investigate tritium transport processes by using a comprehensive mathematical model and comparing its predictions with well characterized experimental tests. Because of the difficulties in extrapolating the short-time tritium release tests to a longer time scale, also long-time annealing experiments with beryllium samples from the SIBELIUS irradiation. have been carried out at the Forschungszentrum Karlsruhe. Samples were annealed up to 12 months at temperatures up to 650{degrees}C. The inventory after annealing was determined by heating the samples up to 1050{degrees}C with a He+0.1 vo1% H{sub 2} purge gas. Furthermore, in order to investigate the likely effects of cracks formation eventually causing a faster tritium release from beryllium, the behaviour of samples irradiated at low temperature (40-50{degrees}C) but up to very high fast neutron fluences (0.8-3.9{center_dot}10{sup 22} cm{sup -2}, E{sub n}{ge}1 MeV) in the BR2 reactor has been investigated. Tritium was released by heating the beryllium samples up to 1050{degrees}C and purging them with He+0.1 vo1% H{sub 2}. Tritium release from high-irradiated beryllium samples showed a much faster kinetics than from the low-irradiated ones, probably because of crack formation caused by thermal stresses in the brittle material and/or by helium bubbles migration. The obtained experimental data have been compared with predictions of the code ANFIBE with the goal to better understand the physical mechanisms governing tritium behaviour in beryllium and to assess the prediction capabilities of the code.

  20. The analysis of beryllium-copper diffusion joint after HHF test

    Energy Technology Data Exchange (ETDEWEB)

    Guiniatouline, R.N.; Mazul, I.V. [Efremov Research Institute, St. Petersburg (Russian Federation); Rubkin, S.Y. [Institute of Physical Chemistry, Moscow (Russian Federation)] [and others

    1995-09-01

    The development of beryllium-copper joints which can withstand to relevant ITER divertor conditions is one of the important tasks at present time. One of the main problem for beryllium-copperjoints, is the inter-metallic layers, the strength and life time of joints significantly depends from the width and contents of the intermetallic layers. The objective of this work is to study the diffusion joint of TGP-56 beryllium to OFHC copper after thermal response and thermocyclic tests with beryllium-copper mockup. The BEY test were performed at e-beam facility (EBTS, SNLA). The following methods were used for analyses: the roentgenographic analysis; X-ray spectrum analysis; the fracture graphic analysis. During the investigation the followed studies were done: the analysis of diffusion boundary Be-Cu, which was obtained at the crossection of one of the tiles, the analysis of the debonded surfaces of a few beryllium tiles and corresponding copper parts; the analysis of upper surface of one of the tiles after HHF tests. The results of this work have showed that: the joint roentgenographic and elements analyses indicated the following phases in the diffusion zone: Cu{sub 2}Be ({approximately}170 {mu}m), CuBe ({approximately}30{mu}m), CuBe{sub 2} ({approximately}1 {mu}m) and solid solution of copper in beryllium. The phases Cu{sub 2}Be, CuBe and solid solution of copper in beryllium were indicated using quantitative microanalysis and phases CuBe, CuBe{sub 2}, Cu, Be - by roentgenographic analysis; the source of fracture (initial crack) is located in the central part of the tiles, the crack caused by the influence of residual stresses during cooling of a mock-up after fabrication and developed under the conditions of slow elastic-plastic growing during the process of thermal fatigue testing. The analysis gives the important data about joint`s quality and also may be used for any type of joints and its comparison for ITER applications.

  1. Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors

    Science.gov (United States)

    Leroy, W. P.; Detavernier, C.; van Meirhaeghe, R. L.; Kellock, A. J.; Lavoie, C.

    2006-03-01

    Metal carbides are good candidates to contact carbon-based semiconductors (SiC, diamond, and carbon nanotubes). Here, we report on an in situ study of carbide formation during the solid-state reaction between thin Ti or Mo films and C substrates. Titanium carbide (TiC) was previously reported as a contact material to diamond and carbon nanotubes. However, the present study shows two disadvantages for the solid-state reaction of Ti and C. First, because Ti reacts readily with oxygen, a capping layer should be included to enable carbide formation. Second, the TiC phase can exist over a wide range of composition (about 10%, i.e., from Ti0.5C0.5 to Ti0.6C0.4), leading to significant variations in the properties of the material formed. The study of the Mo-C system suggests that molybdenum carbide (Mo2C) is a promising alternative, since the phase shows a lower resistivity (about 45% lower than for TiC), the carbide forms below 900 °C, and its formation is less sensitive to oxidation as compared with the Ti-C system. The measured resistivity for Mo2C is ρ=59 μΩ cm, and from kinetic studies an activation energy for Mo2C formation of Ea=3.15+/-0.15 eV was obtained.

  2. Production and characterization of nanostructured silicon carbide

    Science.gov (United States)

    Wallis, Kendra Lee

    Nanostructured materials continue to attract attention because of their new and interesting properties, which are very different from their macrostructured equivalents. Since the size of grain and surface differs, a better understanding of the microstructure, the mechanism of formation, and methods of controlling surface properties is necessary. In this study, nanostructured silicon carbide has been produced from the solid-solid reaction of a mixture of silicon nanopowder and carbon multiwalled nanotubes (MWNT) sintered by induction. A study of the reaction rate at different temperatures has yielded a value for the activation energy of 254 +/- 36 kJ/mol, and has led to the conclusion that the reaction is diffusion-controlled. A second method produced pure silicon carbide nanowires using a procedure which kept the solid reactants, silicon powder and MWNT, separated while sintering at a constant temperature of 1200°C. Silicon in the vapor-phase reacted at the surface of the MWNTs followed by diffusion of both precursors through the product phase boundary. The reaction time was varied, and a morphological study has been done describing changes in shape and size as a function of time. The initial reaction produced a layer of SiC providing the outer shell of coaxial structures with carbon nanotubes inside. As Si and C diffused through the product phase to react at the interface, the tube became filled with SiC to form solid SiC nanowires, and the outer diameter of the nanowires grew continuously as reaction time increased. After long sintering times, growth continued in two dimensions, fusing nanowires together into planar structures. In addition, the precursor form of carbon was varied, and nanowires produced by two different types of nanotubes have been studied. The produced SiC nanowires show cubic crystal structure. After a few hours of sintering, stacking faults began to occur inside the wires, and the frequency of occurrence of the stacking faults increased as

  3. Nanostructured carbide catalysts for the hydrogen economy

    Energy Technology Data Exchange (ETDEWEB)

    Ram Seshadri, Susannah Scott, Juergen Eckert

    2008-07-21

    The above quote, taken from the executive summary of the Report from the US DOE Basic Energy Sciences Workshop held August 6–8, 2007,[1] places in context the research carried out at the University of California, Santa Barbara, which is reported in this document. The enormous impact of heterogeneous catalysis is exemplified by the Haber process for the synthesis of ammonia, which consumes a few % of the world’s energy supply and natural gas, and feeds as many as a third of the world’s population. While there have been numerous advances in understanding the process,[2] culminating in the awarding of the Nobel Prize to Gerhard Ertl in 2007, it is interesting to note that the catalysts themselves have changed very little since they were discovered heuristically in the the early part of the 20th century. The thesis of this report is that modern materials chemistry, with all the empirical knowledge of solid state chemistry, combined with cutting edge structural tools, can help develop and better heterogeneous catalysis. The first part of this report describes research in the area of early transition metal carbides (notably of Mo and W), potentially useful catalysts for water gas shift (WGS) and related reactions of use to the hydrogen economy. Although these carbides have been known to be catalytically useful since the 1970s,[3] further use of these relatively inexpensive materials have been plagued by issues of low surface areas and ill-defined, and often unreactive surfaces, in conjunction with deactivation. We have employed for the first time, a combination of constant-wavelength and time-of-flight neutron scattering, including a total scattering analysis of the latter data, to better understand what happens in these materials, in a manner that for the first time, reveals surface graphitic carbon in these materials in a quantitative manner. Problems of preparation, surface stability, and irreversible reactivity have become manifest in this class of materials

  4. Silicon Carbide Technology for Grid Integrated Photovoltaic Applications: Dynamic Characterization of Silicon Carbide Transistors.

    OpenAIRE

    Tiwari, Subhadra

    2011-01-01

    For the endorsement of the study of potential utilization of the emerging silicon carbide (SiC) devices, three SiC active switches, namely SJEP120R063 (1200V, 63 mohm) SiC JFET manufactured by Semisouth, BT1206AC-P1 (1200V, 125 mohm) SiC BJT by TranSiC and CMF20120 (1200V, 80 mohm, 33A) SiC MOSFET by Cree have been investigated systematically in this thesis work.The four layer PCB board with the smart layouts like the drain and gate traces are either perpendicular to each other or run into di...

  5. Thermal properties of wood-derived silicon carbide and copper-silicon carbide composites

    Science.gov (United States)

    Pappecena, Kristen E.

    Wood-derived ceramics and composites have been of interest in recent years due to their unique microstructures, which lead to tailorable properties. The porosity and pore size distribution of each wood type is different, which yields variations in properties in the resultant materials. The thermal properties of silicon carbide ceramics and copper-silicon carbide composites derived from wood were studied as a function of their pore structures. Wood was pyrolyzed at temperatures ranging from 300-2400°C to yield porous carbon. The progression toward long-range order was studied as a function of pyrolyzation temperature. Biomorphic silicon carbide (bioSiC) is a porous ceramic material resulting from silicon melt infiltration of these porous carbon materials. BioSiC has potential applicability in many high temperature environments, particularly those in which rapid temperature changes occur. To understand the behavior of bioSiC at elevated temperatures, the thermal and thermo-mechanical properties were studied. The thermal conductivity of bioSiC from five precursors was determined using flash diffusivity at temperatures up to 1100°C. Thermal conductivity results varied with porosity, temperature and orientation, and decreased from 42-13 W/mK for porosities of 43-69%, respectively, at room temperature. The results were compared with to object-oriented finite-element analysis (OOF). OOF was also used to model and understand the heat-flow paths through the complex bioSiC microstructures. The thermal shock resistance of bioSiC was also studied, and no bioSiC sample was found to fail catastrophically after up to five thermal shock cycles from 1400°C to room temperature oil. Copper-silicon carbide composites have potential uses in thermal management applications due to the high thermal conductivity of each phase. Cu-bioSiC composites were created by electrodeposition of copper into bioSiC pores. The detrimental Cu-SiC reaction was avoided by using this room temperature

  6. Crystal structural and diffusion property in titanium carbides: A molecular dynamics study

    Science.gov (United States)

    Lv, Yanan; Gao, Weimin

    2016-09-01

    Titanium carbides were studied via molecular dynamics simulation to characterize TiCx structures with respect to the carbon diffusion properties in this study. The effect of carbon concentration on atomic structures of titanium carbides was investigated through discussing the structure variation and the radial distribution functions of carbon atoms in titanium carbides. The carbon diffusion in titanium carbides was also analyzed, focusing on the dependence on carbon concentration and carbide structure. Carbon diffusivity with different carbon concentrations was determined by molecular dynamics (MD) calculations and compared with the available experimental data. The simulation results showed an atomic exchange mechanism for carbon diffusion in titanium carbide.

  7. Beryllium-10 in the Taylor Dome ice core: Applications to Antarctic glaciology and paleoclimatology

    Energy Technology Data Exchange (ETDEWEB)

    Steig, E.J.

    1996-12-31

    An ice core was drilled at Taylor dome, East Antarctica, reaching to bedrock at 554 meters. Oxygen-isotope measurements reveal climatic fluctuations through the last interglacial period. To facilitate comparison of the Taylor Dome paleoclimate record with geologic data and results from other deep ice cores, several glaciological issues need to be addressed. In particular, accumulation data are necessary as input for numerical ice-flow-models, for determining the flux of chemical constituents from measured concentrations, and for calculation of the offset in age between ice and trapped air in the core. The analysis of cosmogenic beryllium-10 provides a geochemical method for constraining the accumulation-rate history at Taylor Dome. High-resolution measurements were made in shallow firn cores and snow pits to determine the relationship among beryllium-10 concentrations, wet and dry deposition mechanisms, and snow-accumulation rates. Comparison between theoretical and measured variations in deposition over the last 75 years constrains the relationship between beryllium-10 deposition and global average production rates. The results indicate that variations in geomagnetically-modulated production-rate do not strongly influence beryllium-10 deposition at Taylor Dome. Although solar modulation of production rate is important for time scales of years to centuries, snow-accumulation rate is the dominant control on ice-core beryllium-10 concentrations for longer periods. Results show that the Taylor Dome core can be used to provide new constraints on regional climate over the last 130,000 years, complementing the terrestrial and marine geological record from the Dry Valley, Transantarctic Mountains and western Ross Sea.

  8. Helium analyses of 1-mm beryllium microspheres from COBRA-1A2

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, B.M. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    Multiple helium analyses on four beryllium microspheres irradiated in the Experimental Breeder Reactor-II (EBR-II) at Argonne National Laboratory-West (ANL-W), are reported. The purpose of the analyses was to determine the total helium content of the beryllium, and to determine the helium release characteristics of the beryllium as a function of time and temperature. For the helium release measurements, sequential helium analyses were conducted on two of the samples over a temperature range from 500 C to 1100 C in 100 C increments. Total helium measurements were conducted separately using the normal analysis method of vaporizing the material in a single analysis run. Observed helium release in the two beryllium samples was nonlinear with time at each temperature interval, with each step being characterized by a rather rapid initial release rate, followed by a gradual slowing of the rate over time. Sample Be-C03-1 released virtually all of its helium after approximately 30 minutes at 1000 C, reaching a final value of 2722 appm. Sample Be-D03-1, on the other hand, released only about 62% of its helium after about 1 hour at 1100 c, reaching a final value of 1519 appm. Combining these results with subsequent vaporization runs on the two samples, yielded total helium concentrations of 2724 and 2459 appm. Corresponding helium concentrations measured in the two other C03 and D03 samples, by vaporization alone, were 2941 and 2574 appm. Both sets of concentrations are in reasonable agreement with predicted values of 2723 and 2662 appm. Helium-3 levels measured during the latter two vaporization runs were 2.80 appm for Be-C03-2, and 2.62 appm for Be-D03-2. Calculated {sup 3}He values are slightly lower at 2.55 and 2.50 appm, respectively, suggesting somewhat higher tritium levels in the beryllium than predicted.

  9. Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

    2002-07-01

    In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

  10. Yarlongite:A New Metallic Carbide Mineral

    Institute of Scientific and Technical Information of China (English)

    SHI Nicheng; BAI Wenji; LI Guowu; XIONG Ming; FANG Qingsong; YANG Jingsui; MA Zhesheng; RONG He

    2009-01-01

    Yarlongite occurs in ophiolitic chromitite at the Luobusha mine(29°5'N 92°,5'E,about 200 km ESE of Lhasa),Qusum County,Shannan Prefecture,Tibet Autonomous Region,People'S Republic of China.Associated minerals are:diamond,moissanite,wiistite,iridium("osmiridium"), osmium("iridosmine"),periclase,chromite,native irun,native nickel,native chromium,forsterite. Cr-rich diopside,intermetallic compounds Ni-Fe-Cr,Ni-Cr,Cr-C,etc.Yariongite and its associated minerals were handpicked from a large heavy mineral sample of chromitite.The metallic carbides associated with yarlongite are cohenite,tongbaite,khamrabaevite and qusongite(IMA2007.034). Yarlongite occurs as irregular grains,with a size between 0.02 and 0.06 mm,steel-grey colour,H Mohs:5 1/2-6.Tenacity:brittle.Cleavage:{0 0 1}perfect.Fracture:conchoidal.Chemical formula: (Cr4Fe4Ni)∑9C4,or(Cr,Fe,Ni)∑9C4,Crystal system:Hexagonal,Space Group:P63/mc,a=18.839(2)A,C =4.4960(9)A,V=745.7(2)A3,Z=6,Density(calc.)=7.19 g/cm3(with simplified formula).Yarlongite has been approved as a new mineral by the CNMNC(IMA2007-035).Holotype material is deposited at the Geological Museum of China(No.M11650).

  11. Bright Single Photon Emitter in Silicon Carbide

    Science.gov (United States)

    Lienhard, Benjamin; Schroeder, Tim; Mouradian, Sara; Dolde, Florian; Trong Tran, Toan; Aharonovich, Igor; Englund, Dirk

    Efficient, on-demand, and robust single photon emitters are of central importance to many areas of quantum information processing. Over the past 10 years, color centers in solids have emerged as excellent single photon emitters. Color centers in diamond are among the most intensively studied single photon emitters, but recently silicon carbide (SiC) has also been demonstrated to be an excellent host material. In contrast to diamond, SiC is a technologically important material that is widely used in optoelectronics, high power electronics, and microelectromechanical systems. It is commercially available in sizes up to 6 inches and processes for device engineering are well developed. We report on a visible-spectrum single photon emitter in 4H-SiC. The emitter is photostable at both room and low temperatures, and it enables 2 million photons/second from unpatterned bulk SiC. We observe two classes of orthogonally polarized emitters, each of which has parallel absorption and emission dipole orientations. Low temperature measurements reveal a narrow zero phonon line with linewidth < 0.1 nm that accounts for more than 30% of the total photoluminescence spectrum. To our knowledge, this SiC color emitter is the brightest stable room-temperature single photon emitter ever observed.

  12. Palladium Implanted Silicon Carbide for Hydrogen Sensing

    Science.gov (United States)

    Muntele, C. I.; Ila, D.; Zimmerman, R. L.; Muntele, L.; Poker, D. B.; Hensley, D. K.; Larkin, David (Technical Monitor)

    2001-01-01

    Silicon carbide is intended for use in fabrication of high-temperature, efficient hydrogen sensors. Traditionally, when a palladium coating is applied on the exposed surface of SiC, the chemical reaction between palladium and hydrogen produces a detectable change in the surface chemical potential. We have produced both a palladium coated SiC as well as a palladium, ion implanted SiC sensor. The palladium implantation was done at 500 C into the Si face of 6H, N-type SiC at various energies, and at various fluences. Then, we measured the hydrogen sensitivity response of each fabricated sensor by exposing them to hydrogen while monitoring the current flow across the p-n junction(s), with respect to time. The sensitivity of each sensor was measured at temperatures between 27 and 300 C. The response of the SiC sensors produced by Pd implantation has revealed a completely different behaviour than the SiC sensors produced by Pd deposition. In the Pd-deposited SiC sensors as well as in the ones reported in the literature, the current rises in the presence of hydrogen at room temperature as well as at elevated temperatures. In the case of Pd-implanted SiC sensors, the current decreases in the presence of hydrogen whenever the temperature is raised above 100 C. We will present the details and conclusions from the results obtained during this meeting.

  13. Oxidation of vanadium carbide in air

    International Nuclear Information System (INIS)

    It was studied the samples oxidation of vanadium carbide (V8C7), synterized and in powder, in order to know the temperature influence and the aggregation state in the kinetics and the oxidation products. The assays were realized in static air, at temperature between 600 y 750 Centigrade, between 6 and 24 hours periods. The gaseous products were analyzed through gas chromatography while the condensates ones were analyzed through optical microscopy and scanning electron microscopy, X-ray diffraction and chemical analysis by X-ray fluorescence analysis. It was found that in the V8C7 oxidation occurs two basic processes: the gaseous oxides production which results of the carbon oxidation, fundamentally CO2, and the vanadium condensate oxides production, fundamentally V2O5. In the synterized samples assayed under 650 Centigrade, the kinetics is lineal with loss of mass, suggesting a control by the formation of gaseous products in the sample surface, while in the synterized samples assayed over 650 Centigrade, it occurs a neat gain of mass, which is attributed to vanadium pentoxide fusion. These processes produce stratified layers of V2O5 although at higher temperatures also it was detected V2O4. The superficial area effect is revealed in what the powder samples always experiment a mass neat increase in all essay temperatures, being the condensate oxidation products, fundamentally V2O5 and V6O13. (Author)

  14. Improved silicon carbide for advanced heat engines

    Science.gov (United States)

    Whalen, Thomas J.

    1989-01-01

    The development of high strength, high reliability silicon carbide parts with complex shapes suitable for use in advanced heat engines is studied. Injection molding was the forming method selected for the program because it is capable of forming complex parts adaptable for mass production on an economically sound basis. The goals were to reach a Weibull characteristic strength of 550 MPa (80 ksi) and a Weibull modulus of 16 for bars tested in four-point loading. Statistically designed experiments were performed throughout the program and a fluid mixing process employing an attritor mixer was developed. Compositional improvements in the amounts and sources of boron and carbon used and a pressureless sintering cycle were developed which provided samples of about 99 percent of theoretical density. Strengths were found to improve significantly by annealing in air. Strengths in excess of 550 MPa (80 ksi) with Weibull modulus of about 9 were obtained. Further improvements in Weibull modulus to about 16 were realized by proof testing. This is an increase of 86 percent in strength and 100 percent in Weibull modulus over the baseline data generated at the beginning of the program. Molding yields were improved and flaw distributions were observed to follow a Poisson process. Magic angle spinning nuclear magnetic resonance spectra were found to be useful in characterizing the SiC powder and the sintered samples. Turbocharger rotors were molded and examined as an indication of the moldability of the mixes which were developed in this program.

  15. Casimir forces from conductive silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Broer, W. H.; Palasantzas, G.

    2014-05-01

    Samples of conductive silicon carbide (SiC), which is a promising material due to its excellent properties for devices operating in severe environments, were characterized with the atomic force microscope for roughness, and the optical properties were measured with ellipsometry in a wide range of frequencies. The samples show significant far-infrared absorption due to concentration of charge carriers and a sharp surface phonon-polariton peak. The Casimir interaction of SiC with different materials is calculated and discussed. As a result of the infrared structure and beyond to low frequencies, the Casimir force for SiC-SiC and SiC-Au approaches very slowly the limit of ideal metals, while it saturates significantly below this limit if interaction with insulators takes place (SiC-SiO2). At short separations (<10 nm) analysis of the van der Waals force yielded Hamaker constants for SiC-SiC interactions lower but comparable to those of metals, which is of significance to adhesion and surface assembly processes. Finally, bifurcation analysis of microelectromechanical system actuation indicated that SiC can enhance the regime of stable equilibria against stiction.

  16. Casimir force measurements from silicon carbide surfaces

    Science.gov (United States)

    Sedighi, M.; Svetovoy, V. B.; Palasantzas, G.

    2016-02-01

    Using an atomic force microscope we performed measurements of the Casimir force between a gold- coated (Au) microsphere and doped silicon carbide (SiC) samples. The last of these is a promising material for devices operating under severe environments. The roughness of the interacting surfaces was measured to obtain information for the minimum separation distance upon contact. Ellipsometry data for both systems were used to extract optical properties needed for the calculation of the Casimir force via the Lifshitz theory and for comparison to the experiment. Special attention is devoted to the separation of the electrostatic contribution to the measured total force. Our measurements demonstrate large contact potential V0(≈0.67 V ) , and a relatively small density of charges trapped in SiC. Knowledge of both Casimir and electrostatic forces between interacting materials is not only important from the fundamental point of view, but also for device applications involving actuating components at separations of less than 200 nm where surface forces play dominant role.

  17. Thermal equation of state of silicon carbide

    Science.gov (United States)

    Wang, Yuejian; Liu, Zhi T. Y.; Khare, Sanjay V.; Collins, Sean Andrew; Zhang, Jianzhong; Wang, Liping; Zhao, Yusheng

    2016-02-01

    A large volume press coupled with in-situ energy-dispersive synchrotron X-ray was used to probe the change of silicon carbide (SiC) under high pressure and temperature (P-T) up to 8.1 GPa and 1100 K. The obtained pressure-volume-temperature data were fitted to a modified high-T Birch-Murnaghan equation of state, yielding values of a series of thermo-elastic parameters, such as the ambient bulk modulus KTo = 237(2) GPa, temperature derivative of the bulk modulus at a constant pressure (∂K/∂T)P = -0.037(4) GPa K-1, volumetric thermal expansivity α(0, T) = a + bT with a = 5.77(1) × 10-6 K-1 and b = 1.36(2) × 10-8 K-2, and pressure derivative of the thermal expansion at a constant temperature (∂α/∂P)T = 6.53 ± 0.64 × 10-7 K-1 GPa-1. Furthermore, we found the temperature derivative of the bulk modulus at a constant volume, (∂KT/∂T)V, equal to -0.028(4) GPa K-1 by using a thermal pressure approach. In addition, the elastic properties of SiC were determined by density functional theory through the calculation of Helmholtz free energy. The computed results generally agree well with the experimentally determined values.

  18. In situ ion irradiation of zirconium carbide

    Science.gov (United States)

    Ulmer, Christopher J.; Motta, Arthur T.; Kirk, Mark A.

    2015-11-01

    Zirconium carbide (ZrC) is a candidate material for use in one of the layers of TRISO coated fuel particles to be used in the Generation IV high-temperature, gas-cooled reactor, and thus it is necessary to study the effects of radiation damage on its structure. The microstructural evolution of ZrCx under irradiation was studied in situ using the Intermediate Voltage Electron Microscope (IVEM) at Argonne National Laboratory. Samples of nominal stoichiometries ZrC0.8 and ZrC0.9 were irradiated in situ using 1 MeV Kr2+ ions at various irradiation temperatures (T = 20 K-1073 K). In situ experiments made it possible to continuously follow the evolution of the microstructure during irradiation using diffraction contrast imaging. Images and diffraction patterns were systematically recorded at selected dose points. After a threshold dose during irradiations conducted at room temperature and below, black-dot defects were observed which accumulated until saturation. Once created, the defect clusters did not move or get destroyed during irradiation so that at the final dose the low temperature microstructure consisted only of a saturation density of small defect clusters. No long-range migration of the visible defects or dynamic defect creation and elimination were observed during irradiation, but some coarsening of the microstructure with the formation of dislocation loops was observed at higher temperatures. The irradiated microstructure was found to be only weakly dependent on the stoichiometry.

  19. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics. PMID:26394207

  20. Analysis of boron carbides' electronic structure

    Science.gov (United States)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  1. Predicting Two-Dimensional Silicon Carbide Monolayers.

    Science.gov (United States)

    Shi, Zhiming; Zhang, Zhuhua; Kutana, Alex; Yakobson, Boris I

    2015-10-27

    Intrinsic semimetallicity of graphene and silicene largely limits their applications in functional devices. Mixing carbon and silicon atoms to form two-dimensional (2D) silicon carbide (SixC1-x) sheets is promising to overcome this issue. Using first-principles calculations combined with the cluster expansion method, we perform a comprehensive study on the thermodynamic stability and electronic properties of 2D SixC1-x monolayers with 0 ≤ x ≤ 1. Upon varying the silicon concentration, the 2D SixC1-x presents two distinct structural phases, a homogeneous phase with well dispersed Si (or C) atoms and an in-plane hybrid phase rich in SiC domains. While the in-plane hybrid structure shows uniform semiconducting properties with widely tunable band gap from 0 to 2.87 eV due to quantum confinement effect imposed by the SiC domains, the homogeneous structures can be semiconducting or remain semimetallic depending on a superlattice vector which dictates whether the sublattice symmetry is topologically broken. Moreover, we reveal a universal rule for describing the electronic properties of the homogeneous SixC1-x structures. These findings suggest that the 2D SixC1-x monolayers may present a new "family" of 2D materials, with a rich variety of properties for applications in electronics and optoelectronics.

  2. Structural Evolution of Molybdenum Carbides in Hot Aqueous Environments and Impact on Low-Temperature Hydroprocessing of Acetic Acid

    OpenAIRE

    Jae-Soon Choi; Viviane Schwartz; Eduardo Santillan-Jimenez; Mark Crocker; Samuel A. Lewis; Michael J. Lance; Meyer, Harry M.; More, Karren L.

    2015-01-01

    We investigated the structural evolution of molybdenum carbides subjected to hot aqueous environments and their catalytic performance in low-temperature hydroprocessing of acetic acid. While bulk structures of Mo carbides were maintained after aging in hot liquid water, a portion of carbidic Mo sites were converted to oxidic sites. Water aging also induced changes to the non-carbidic carbon deposited during carbide synthesis and increased surface roughness, which in turn affected carbide pore...

  3. Dissolution of FB-Line Residues Containing Beryllium Metal

    Energy Technology Data Exchange (ETDEWEB)

    RUDISILL, TRACY S.; CROWDER, MARK L.

    2005-09-06

    Scrap materials containing plutonium (Pu) metal were dissolved at the Savannah River Site (SRS) as part of a program to disposition nuclear materials during the deactivation of the FB-Line facility. Some of these items contained both Pu and beryllium (Be) metal as a composite material. The Pu and Be metals were physically separated to minimize the amount of Be associated with the Pu; however, a dissolution flowsheet was required to dissolve small amounts of Be combined with the Pu metal using a dissolving solution containing nitric acid (HNO{sub 3}) and potassium fluoride (KF). Since the dissolution of Pu metal in HNO{sub 3}/fluoride (F{sup -}) solutions was well understood, the primary focus of the flowsheet development was the dissolution of Be metal. Initially, small-scale experiments were used to measure the dissolution rate of Be metal foils using conditions effective for the dissolution of Pu metal. The experiments demonstrated that the dissolution rate was nearly independent of the HNO{sub 3} concentration over the limited range of investigation and only a moderate to weak function of the F{sup -} concentration. The effect of temperature was more pronounced, significantly increasing the dissolution rate between 40 and 105 C. The offgas analysis from three Be metal foil dissolutions demonstrated that the production of hydrogen (H{sub 2}) was sensitive to the HNO{sub 3} concentration, decreasing by a factor of approximately two when the concentration was increased from 4 to 8 M. In subsequent experiments, complete dissolution of Be samples from a Pu/Be composite material was achieved in a 4 M HNO{sub 3} solution containing 0.1-0.2 M KF. Gas samples collected during each experiment showed that the maximum H{sub 2} generation rate occurred at temperatures below 70-80 C. A Pu metal dissolution experiment was performed using a 4 M HNO{sub 3}/0.1 M KF solution at 80 C to demonstrate flowsheet conditions developed for the dissolution of Be metal. As the reaction

  4. Effect of high temperature corrosion tests in be-liquid Li-V4Ti4Cr alloy system on mechanical properties of beryllium

    International Nuclear Information System (INIS)

    Full text of publication follows: Self-cooled lithium blanket is one of the promising concepts of breeding blanket for future fusion reactor. Beryllium proposed to be used in this design of blanket as a neutron multiplier and moderator for providing the required tritium breeding efficiency. Corrosion behavior of beryllium in liquid Li is important and at the same time not clearly understood aspect of beryllium application in fusion. Recent experimental results on beryllium corrosion behavior of two modem RF beryllium grades (DIP, TE-56) after testing in Be- liquid lithium - V4Ti4Cr alloy static system for 200-500 hours at temperatures from 600 to 800 deg. C are presented. The influences of test conditions (temperature, duration, lithium purity), beryllium characteristics (microstructure, grain size and chemical composition) and penetration of lithium into beryllium on compressive properties of beryllium are discussed. Compressive properties can be considered as an integral characteristic of grain boundaries weakening that is caused by penetration of lithium into beryllium during corrosion tests. The data obtained show that the stability of modem beryllium grades in lithium is much higher than that for the 'old' grades. (authors)

  5. Diffusion Bonding Beryllium to Reduced Activation Ferritic Martensitic Steel: Development of Processes and Techniques

    Science.gov (United States)

    Hunt, Ryan Matthew

    Only a few materials are suitable to act as armor layers against the thermal and particle loads produced by magnetically confined fusion. These candidates include beryllium, tungsten, and carbon fiber composites. The armor layers must be joined to the plasma facing components with high strength bonds that can withstand the thermal stresses resulting from differential thermal expansion. While specific joints have been developed for use in ITER (an experimental reactor in France), including beryllium to CuCrZr as well as tungsten to stainless steel interfaces, joints specific to commercially relevant fusion reactors are not as well established. Commercial first wall components will likely be constructed front Reduced Activation Ferritic Martensitic (RAFM) steel, which will need to be coating with one of the three candidate materials. Of the candidates, beryllium is particularly difficult to bond, because it reacts during bonding with most elements to form brittle intermetallic compounds. This brittleness is unacceptable, as it can lead to interface crack propagation and delamination of the armor layer. I have attempted to overcome the brittle behavior of beryllium bonds by developing a diffusion bonding process of beryllium to RAFM steel that achieves a higher degree of ductility. This process utilized two bonding aids to achieve a robust bond: a. copper interlayer to add ductility to the joint, and a titanium interlayer to prevent beryllium from forming unwanted Be-Cu intermetallics. In addition, I conducted a series of numerical simulations to predict the effect of these bonding aids on the residual stress in the interface. Lastly, I fabricated and characterized beryllium to ferritic steel diffusion bonds using various bonding parameters and bonding aids. Through the above research, I developed a process to diffusion bond beryllium to ferritic steel with a 150 M Pa tensile strength and 168 M Pa shear strength. This strength was achieved using a Hot Isostatic

  6. Converting a carbon preform object to a silicon carbide object

    Science.gov (United States)

    Levin, Harry (Inventor)

    1990-01-01

    A process for converting in depth a carbon or graphite preform object to a silicon carbide object, silicon carbide/silicon object, silicon carbide/carbon-core object, or a silicon carbide/silicon/carbon-core object, by contacting it with silicon liquid and vapor over various lengths of contact time in a reaction chamber. In the process, a stream comprised of a silicon-containing precursor material in gaseous phase below the decomposition temperature of said gas and a coreactant, carrier or diluent gas such as hydrogen is passed through a hole within a high emissivity, thin, insulating septum into the reaction chamber above the melting point of silicon. The thin septum has one face below the decomposition temperature of the gas and an opposite face exposed to the reaction chamber. Thus, the precursor gas is decomposed directly to silicon in the reaction chamber. Any stream of decomposition gas and any unreacted precursor gas from the reaction chamber is removed. A carbon or graphite preform object placed in the reaction chamber is contacted with the silicon. The carbon or graphite preform object is recovered from the reactor chamber after it has been converted to a desired silicon carbide, silicon and carbon composition.

  7. RF surface resistance of copper-on-beryllium at cryogenic temperatures measured by a 22-GHZ demountable cavity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jianfei; Krawczyk, F. L. (Frank L.); Kurennoy, S. (Sergey); Schrage, D. L. (Dale L.); Shapiro, A. H. (Alan H.); Tajima, T. (Tsuyoshi); Wood R. L. (Richard L.)

    2003-01-01

    A 22-GHz demountable cavity on the cold head of a compact refrigerator system was used to measure the RF performance of several coppt:r-plated Beryllium samples. The cavity inner surfce was treated by chemical polishing and heat treatment., as well as an OFE copper coupon to provide a baseline for comparison. The measured surhce resistance was reasonable and repeatable during either cooling or warming. Materials tested included four grades of Beryllium, OFE copper, alumina-dispersion strengthened copper (Glidcop), and Cu-plated versions of all of the above. Two coupons, Cuplated on Beryllium 0-30 and 1-70, offered comparable surface resistance to pure OFE copper or Cu-plated Glidcop. The RF surface resistance of Cu-on-Beryllium samples at cryogenic temperatures is reported together with that of other reference materials.

  8. Reproducibility and correctness of the procedure of photometric determination of beryllium with 2-(o-hydroxyphenyl)benzoxazole

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonova, N.B.; Charykov, A.K.; Gladilovich, D.B.

    1985-09-01

    This paper discusses two methods of evaluation of correctness on the example of the fluorometric determination of beryllium by 2-(o-hydroxyphenyl) benzoxazole (HPBO), as well as an evaluation of the reproducibility of this procedure for the level of beryllium concentration 10-36 ng/ml. The traditional method of detection and evaluation of systematic errors in chemical analysis is comparison of the average result of repeated analysis of a standard sample with specified content of the component to be determined. The second method discussed is based on an experimental estimation of the constant and proportional components of the systematic error by a combination of the methods of doubling and additives. It is shown that the fluorometric method of determining beryllium with HPBO at an absolute beryllium content of 0.25-1.0 micrograms is satisfactorily reproducible and does not contain systematic errors at the level of significance beta=0.05.

  9. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  10. Investigation on the Effects of Titanium Diboride Particle Size on Radiation Shielding Properties of Titanium Diboride Reinforced Boron Carbide-Silicon Carbide Composites

    Directory of Open Access Journals (Sweden)

    A.O. Addemir

    2012-03-01

    Full Text Available Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion power plants. Titanium diboride reinforced boron carbide-silicon carbide composites which were produced from different titanium diboride particle sizes and ratios were studied for searching of the behaviour against the gamma ray. Cs-137 gamma radioisotope was used as gamma source in the experiments which has a single gamma-peak at 0.662 MeV. Gamma transmission technique was used for the measurements. The effects of titanium diboride particle size on radiation attenuation of titanium diboride reinforced boron carbide-silicon carbide composites were evaluated in related with gamma transmission and the results of the experiments were interpreted and compared with each other. Composite materials have wide application areas in industry. Boron Carbide is an important material for nuclear technology. Silicon carbide is a candidate material in the first wall and blankets of fusion

  11. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt;

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures....... spectroscopy were applied for determining the carburization temperature and evaluating the composition of the carbide clusters of different samples through determinations of the Mo-C and Mo-Mo coordination numbers....

  12. Analysis of powdered tungsten carbide hard-metal precursors and cemented compact tungsten carbides using laser-induced breakdown spectroscopy

    Science.gov (United States)

    Novotný, K.; Staňková, A.; Häkkänen, H.; Korppi-Tommola, J.; Otruba, V.; Kanický, V.

    2007-12-01

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the direct analysis of powdered tungsten carbide hard-metal precursors and cemented tungsten carbides. The aim of this work was to examine the possibility of quantitative determination of the niobium, titanium, tantalum and cobalt. The investigated samples were in the form of pellets, pressed with and without binder (powdered silver) and in the form of cemented tungsten carbides. The pellets were prepared by pressing the powdered material in a hydraulic press. Cemented tungsten carbides were embedded in resin for easier manipulation. Several lasers and detection systems were utilized. The Nd:YAG laser working at a basic wavelength of 1064 nm and fourth-harmonic frequency of 266 nm with a gated photomultiplier or ICCD detector HORIBA JY was used for the determination of niobium which was chosen as a model element. Different types of surrounding gases (air, He, Ar) were investigated for analysis. The ICCD detector DICAM PRO with Mechelle 7500 spectrometer with ArF laser (193 nm) and KrF laser (248 nm) were employed for the determination of niobium, titanium, tantalum and cobalt in samples under air atmosphere. Good calibration curves were obtained for Nb, Ti, and Ta (coefficients of determination r2 > 0.96). Acceptable calibration curves were acquired for the determination of cobalt (coefficient of determination r2 = 0.7994) but only for the cemented samples. In the case of powdered carbide precursors, the calibration for cobalt was found to be problematic.

  13. Characteristics of microstructure and tritium release properties of different kinds of beryllium pebbles for application in tritium breeding modules

    Energy Technology Data Exchange (ETDEWEB)

    Kurinskiy, P., E-mail: petr.kurinskiy@kit.edu [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Vladimirov, P.; Moeslang, A. [Karlsruhe Institute of Technology, Institute for Applied Materials – Applied Materials Physics (IAM-AWP), P.O. Box 3640, Karlsruhe 76021 (Germany); Rolli, R. [Karlsruhe Institute of Technology, Institute for Applied Materials – Materials and Biomechanics (IAM-WBM), P.O. Box 3640, Karlsruhe 76021 (Germany); Zmitko, M. [The European Joint Undertaking for ITER and the Development of Fusion Energy, c/Josep Pla, no. 2, Torres Diagonal Litoral, Edificio B3, Barcelona 08019 (Spain)

    2014-10-15

    Highlights: • Tritium release properties and characteristics of microstructure of beryllium pebbles having different sizes of grains were studied. • Fine-grained beryllium pebbles showed the best ability to release tritium compared to pebbles from another charges. • Be pebbles with the grain sizes exceeding 100 μm contain a great number of small pores and inclusions presumably referring to the history of material fabrication. • The sizes of grains are one of a key characteristic of microstructure which influences the parameters of tritium release. - Abstract: Beryllium pebbles with diameters of 1 mm are considered to be perspective material for the use as neutron multiplier in tritium breeding modules of fusion reactors. Up to now, the design of helium-cooled breeding blanket in ITER project foresees the use of 1 mm beryllium pebbles fabricated by NGK Insulators Ltd., Japan. It is notable that beryllium pebbles from Russian Federation and USA are also available and the possibility of their large-scale fabrication is under study. Presented work is dedicated to a study of characteristics of microstructure and parameters of tritium release of beryllium pebbles produced by Bochvar Institute, Russian Federation, and Materion Corporation, USA.

  14. Vacuum hot-pressed beryllium and TiC dispersion strengthened tungsten alloy developments for ITER and future fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiang, E-mail: xliu@swip.ac.cn [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Chen, Jiming; Lian, Youyun; Wu, Jihong; Xu, Zengyu; Zhang, Nianman; Wang, Quanming; Duan, Xuro [Southwestern Institute of Physics, P.O. Box 432, Chengdu 610041, Sichuan (China); Wang, Zhanhong; Zhong, Jinming [Northwest Rare Metal Material Research Institute, CNMC, Ningxia Orient Group Co. Ltd.,No.119 Yejin Road, Shizuishan City, Ningxia,753000 (China)

    2013-11-15

    Beryllium and tungsten have been selected as the plasma facing materials of the ITER first wall (FW) and divertor chamber, respectively. China, as a participant in ITER, will share the manufacturing tasks of ITER first-wall mockups with the European Union and Russia. Therefore ITER-grade beryllium has been developed in China and a kind of vacuum hot-pressed (VHP) beryllium, CN-G01, was characterized for both physical, and thermo-mechanical properties and high heat flux performance, which indicated an equivalent performance to U.S. grade S-65C beryllium, a reference grade beryllium of ITER. Consequently CN-G01 beryllium has been accepted as the armor material of ITER-FW blankets. In addition, a modification of tungsten by TiC dispersion strengthening was investigated and a W–TiC alloy with TiC content of 0.1 wt.% has been developed. Both surface hardness and recrystallization measurements indicate its re-crystallization temperature approximately at 1773 K. Deuterium retention and thermal desorption behaviors of pure tungsten and the TiC alloy were also measured by deuterium ion irradiation of 1.7 keV energy to the fluence of 0.5–5 × 10{sup 18} D/cm{sup 2}; a main desorption peak at around 573 K was found and no significant difference was observed between pure tungsten and the tungsten alloy. Further characterization of the tungsten alloy is in progress.

  15. Atomic structure of amorphous shear bands in boron carbide.

    Science.gov (United States)

    Reddy, K Madhav; Liu, P; Hirata, A; Fujita, T; Chen, M W

    2013-01-01

    Amorphous shear bands are the main deformation and failure mode of super-hard boron carbide subjected to shock loading and high pressures at room temperature. Nevertheless, the formation mechanisms of the amorphous shear bands remain a long-standing scientific curiosity mainly because of the lack of experimental structure information of the disordered shear bands, comprising light elements of carbon and boron only. Here we report the atomic structure of the amorphous shear bands in boron carbide characterized by state-of-the-art aberration-corrected transmission electron microscopy. Distorted icosahedra, displaced from the crystalline matrix, were observed in nano-sized amorphous bands that produce dislocation-like local shear strains. These experimental results provide direct experimental evidence that the formation of amorphous shear bands in boron carbide results from the disassembly of the icosahedra, driven by shear stresses.

  16. APT analysis of WC-Co based cemented carbides

    Energy Technology Data Exchange (ETDEWEB)

    Weidow, Jonathan, E-mail: jonathan.weidow@chalmers.se [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Andren, Hans-Olof [Department of Applied Physics, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden)

    2011-05-15

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: {yields} We develop a method for producing specimens from WC-Co based cemented carbides. {yields} Measure segregated atoms to an interface between phases with different field evaporation field. {yields} The interface chemistry in cemented carbides. {yields} The transition metal solubility in WC.

  17. APT analysis of WC-Co based cemented carbides

    International Nuclear Information System (INIS)

    A method for quickly producing sharp and site-specific atom probe specimens from WC-Co based cemented carbides was developed using a combination of electropolishing, controlled back-polishing and FIB milling. Also, a method for measuring the amount of segregated atoms to an interface between two phases with a big difference in field needed for field evaporation was developed. Using atom probe tomography, the interface chemistry of WC/WC grain boundaries, WC/(M,W)C phase boundaries and WC/binder phase boundaries was analysed. In addition, the transition metal solubility in WC was determined. -- Research highlights: → We develop a method for producing specimens from WC-Co based cemented carbides. → Measure segregated atoms to an interface between phases with different field evaporation field. → The interface chemistry in cemented carbides. → The transition metal solubility in WC.

  18. Optimum Design of Lightweight Silicon Carbide Mirror Assembly

    Institute of Scientific and Technical Information of China (English)

    HAN Yuanyuan; ZHANG Yumin; HAN Jiecai; ZHANG Jianhan; YAO Wang; ZHOU Yufeng

    2008-01-01

    According to the design requirement and on the basis of the principle that the thermal expansion coefficient of the support structure should match with that of the mirror, a lightweight silicon carbide primary mirror assembly was designed. Finite element analysis combined with the parameter-optimized method was used during the design. Lightweight cell and rigid rib structure were used for the mirror assembly. The static, dynamic and thermal properties of the primary mirror assembly were analyzed. It is shown that after optimization, the lightweight ratio of the silicon carbide mirror is 52.5%, and the rigidity of the silicon carbide structure is high enough to support the required mirror. When temperature changes, the deformation of the mirror surface is in proportion to the temperature difference.

  19. Fabrication of Tungsten Carbide Nanoparticles from Refluxing Derived Precursor

    Institute of Scientific and Technical Information of China (English)

    WEN Jiqiu; LI Yongdi; MENG Xiaopeng; YIN Guangfu; YAO Yadong

    2015-01-01

    Tungsten carbide (WC) nanoparticles were fabricated from a novel refluxing-derived precursor. The precursor was prepared by acid hydrolysis of Na2WO4 with concentrated HCl in water followed by refluxing with ethanol and n-Dedocane, respectively. Then it was heat-treated to 1 200℃for 2 h in vacuum to obtain WC nanoparticles. X-ray studies reveal the formation of hexagonal tungsten carbide and the grain size of 24.3 nm. SEM image shows WC nanoparticles with particle size of 20-60 nm. Long time refluxing results in alkane dehydrogenation and coke formation. The coke is the carbon source in the carbothermal reduction reaction. The novel route of two-stage refluxing is quite general and can be applied in the synthesis of similar carbides.

  20. Structure-Property Relationship in Metal Carbides and Bimetallic Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jingguan [University of Delaware

    2014-03-04

    The primary objective of our DOE/BES sponsored research is to use carbide and bimetallic catalysts as model systems to demonstrate the feasibility of tuning the catalytic activity, selectivity and stability. Our efforts involve three parallel approaches, with the aim at studying single crystal model surfaces and bridging the “materials gap” and “pressure gap” between fundamental surface science studies and real world catalysis. The utilization of the three parallel approaches has led to the discovery of many intriguing catalytic properties of carbide and bimetallic surfaces and catalysts. During the past funding period we have utilized these combined research approaches to explore the possibility of predicting and verifying bimetallic and carbide combinations with enhanced catalytic activity, selectivity and stability.