WorldWideScience

Sample records for bernstein wave ebw

  1. Electron Bernstein waves emission in the TJ-II stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Regana, J M; Cappa, A; Castejon, F; Ros, A [Laboratorio Nacional de Fusion, CIEMAT, 28040, Madrid (Spain); Caughman, J B O; Rasmussen, D A; Wilgen, J B [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Tereshchenko, M, E-mail: josemanuel.garcia@ciemat.es [Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2011-06-15

    Taking advantage of the electron Bernstein waves heating system of the TJ-II stellarator, an electron Bernstein emission (EBE) diagnostic was installed. Its purpose is to investigate the B-X-O radiation properties in the zone where optimum theoretical electron Bernstein wave (EBW) coupling is predicted. An internal movable mirror shared by both systems allows us to collect the EBE radiation along the same line of sight that is used for EBW heating. The theoretical EBE has been calculated for different orientations of the internal mirror using the TRUBA code as the ray tracer. A comparison with experimental data obtained in NBI discharges is carried out. The results provide valuable information regarding the experimental O-X-mode conversion window expected in the EBW heating experiments. Furthermore, the characterization of the radiation polarization shows evidence of the underlying B-X-O conversion process.

  2. Electron Bernstein waves emission in the TJ--II Stellarator

    CERN Document Server

    García-Regaña, J M; Castejón, F; Caughman, J B O; Tereshchenko, M; Ros, A; Rasmussen, D A; Wilgen, J B

    2010-01-01

    Taking advantage of the electron Bernstein waves heating (EBWH) system of the TJ--II stellarator, an electron Bernstein emission (EBE) diagnostic was installed. Its purpose is to investigate the B--X--O radiation properties in the zone where optimum theoretical EBW coupling is predicted. An internal movable mirror shared by both systems allows us to collect the EBE radiation along the same line of sight that is used for EBW heating. The theoretical EBE has been calculated for different orientations of the internal mirror using the TRUBA code as ray tracer. A comparison with experimental data obtained in NBI discharges is carried out. The results provide a valuable information regarding the experimental O--X mode conversion window expected in the EBW heating experiments. Furthermore, the characterization of the radiation polarization shows evidence of the underlying B--X--O conversion process.

  3. EBW PHYSICS OF ECE IN NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Linda Vahala

    2012-06-26

    Topics covered include: ray tracing and Fokker-Planck coupling; relativistic and electromagnetic effects in EBW damping (ray-tracing); O-X-EBW mode conversion efficiency limit due to finite beam divergence; general prospects for electron Bernstein wave heating and current drive in spherical tokamaks; sensitivity of EBW H&CD; collisional effects on EBW coupling; and EBW propagation in a high-temperature plasma.

  4. Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode

    Directory of Open Access Journals (Sweden)

    A. Parvazian

    2008-03-01

    Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.

  5. Observations of Obliquely Propagating Electron Bernstein Waves

    DEFF Research Database (Denmark)

    Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.;

    1981-01-01

    Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....

  6. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G.; Di Giugno, R.; Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F. P. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Celona, L.; Gammino, S.; Lanaia, D.; Ciavola, G. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Di Bartolo, F. [Universita di Messina, Ctr. da Papardo-Sperone, 98100 Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S. Sofia 62, 95123 Catania (Italy); Universita degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S. Sofia 64, 95123 Catania (Italy); IET-Institute of Energy Technology, LEC-Laboratory for Energy Conversion, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electrons will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.

  7. A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks

    CERN Document Server

    Urban, Jakub; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George

    2011-01-01

    The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-beta regimes, in which the usual EC O- and X- modes are cut-off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves---controllable localized H&CD that can be utilized for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled...

  8. Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap Measurement of The Magnetic Field in a Spherical Torus Plasma via Electron Bernstein Wave Emission Harmonic Overlap

    Energy Technology Data Exchange (ETDEWEB)

    B. Jones; G. Taylor; P.C. Efthimion; T. Munsat

    2004-01-28

    Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic.

  9. Measurement of the Electron Bernstein Wave Emission with One of the Power Transmission Lines for ECH in LHD%Measurement of the Electron Bernstein Wave Emission with One of the Power Transmission Lines for ECH in LHD

    Institute of Scientific and Technical Information of China (English)

    Hiroe IGAMI; Hiroshi IDEI; Shin KUBO; Yasuo YOSHIMURA; Takashi SHIMOZUMA; Hiromi TAKAHASHI

    2011-01-01

    Possibility of the measurement of radiated waves derived from the thermally emitted electron Bernstein wave (EBW) is numerically investigated based on the assumption of the super dense core (SDC) plasma generated in LHD. EBW that is thermally emitted in the electron cyclotron resonance (ECR) layer may couple with the electromagnetic wave and be emitted to the vacuum via the EBW-extraordinary-ordinary (B-X-O) mode conversion process. We consider the use of one of the transmission lines for electron cyclotron heating (ECH) in LHD as a receiving system of the emission. It is derived that the waves in the fundamental cyclotron frequency range are emitted as the EBW near their upper hybrid resonance (UHR) layer outside the last close flux surface (LCFS). On the other hand, waves in the second harmonics cyclotron frequency range are emitted in the core region. It means that successful measurement of waves of the second harmonic frequency range emitted from extremely high dense core plasma with setting an aim angle for receiving indicates a possibility of the second harmonic ECH by EBW in the core region with setting the same aim angle and the same polarization for launching.

  10. Enhancement of mode-converted electron Bernstein wave emission during National Spherical Torus Experiment H-mode plasmas

    International Nuclear Information System (INIS)

    A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs

  11. Electron-Bernstein Waves in Inhomogeneous Magnetic Fields

    DEFF Research Database (Denmark)

    Armstrong, R. J.; Frederiksen, Å.; Pécseli, Hans;

    1984-01-01

    The propagation of small amplitude electron-Bernstein waves in different inhomogeneous magnetic field geometries is investigated experimentally. Wave propagation towards both cut-offs and resonances are considered. The experimental results are supported by a numerical ray-tracing analysis. Spatial...... enhancements of the wave amplitude are interpreted as a result of caustic formation....

  12. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma.

    Science.gov (United States)

    Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi

    2009-02-01

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic. PMID:19256646

  13. Radio-frequency electromagnetic field measurements for direct detection of electron Bernstein waves in a torus plasma

    International Nuclear Information System (INIS)

    To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.

  14. Lower hybrid and Electron Bernstein Wave current drive experiments in MST

    International Nuclear Information System (INIS)

    Inductive current profile modification in MST has been successful in reducing fluctuations and transport but is transient and radially non-localized. Current profile control with rf waves offers steady and more precise control. Studies of lower hybrid (LH) wave and electron Bernstein wave (EBW) injection are underway. This first application of LH waves to the high dielectric RFP presents challenges in rf physics, e.g., limited wave accessibility. The novel interdigital line antenna, chosen because of stringent vacuum vessel constraints, operates at 800 MHz and nparallel ∼ 7.5 parameters chosen to drive current in the edge (r/a ∼ 0.8) with strong single-pass absorption. Extensive antenna loading studies have been performed to validate the design up to the present source power limit of 225 kW with up to 125 kW being coupled to the plasma. Hard-x-ray emission with energies as high as 50 keV has been observed. The emission is spatially localized to the antenna location with a toroidal spread of about 60 degrees. This interesting toroidal localization of the emission that occurs in the dominantly poloidal magnetic field of the RFP could result from the formation of a localized current structure. Presently, a 250 kW system designed to heat electrons and drive current via the electron Bernstein wave is in operation on the MST reversed field pinch. The antenna is a grill of four half-height S-band waveguides with each arm powered by a separate, phase controlled traveling wave tube amplifier at 3.6 GHz. The X-mode polarization is being used to launch electromagnetic waves that mode convert to EBWs in the edge plasma. Coupling to the plasma (as measured by the reflected power ratio) is dependent on the relative phasing between adjacent waveguides. The total reflected power can be maintained near the 10% level. The antenna face is outfitted with a pair of triple Langmuir probes to measure local electron density; the density gradient at the upper hybrid resonance

  15. First results from EBW emission diagnostics on COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Zajac, J.; Preinhaelter, J.; Aftanas, M.; Bilkova, P.; Boehm, P.; Fuchs, V.; Weinzettl, V.; Zacek, F. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Prague (Czech Republic); Urban, J. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Prague (Czech Republic); CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Nanobashvili, S. [Andronikashvili Institute of Physics, Tamarashvili St. 6, 0177 Tbilisi (Georgia)

    2012-10-15

    COMPASS tokamak shots at low magnetic field feature overdense plasmas during the extended current flat-top phase. The first harmonic of the electron cyclotron emission is completely cutoff for O and X modes and so the emission caused by electron Bernstein waves (EBWs) propagating obliquely with respect to the magnetic field and undergoing so called EBW-X-O conversion process can be observed. We perform an angular scan of the EBW emission during a set of comparable shots in order to determine the optimum antenna direction. A weak dependence of the radiative temperature on the antenna angles indicates an influence of multiple reflections from the vessel wall. The low temperature at the mode conversion region is responsible for the collisional damping of EBW, which can explain several times lower measured radiative temperature than the electron temperature measured by the Thomson scattering system.

  16. Ion Bernstein wave experiments on the Alcator C tokamak

    International Nuclear Information System (INIS)

    Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave excitation, propagation, absorption, and plasma heating due to wave power absorption. It is shown that ion Bernstein wave power is coupled into the plasma and follows the expected dispersion relation. The antenna loading is maximized when the hydrogen second harmonic layer is positioned just behind the antenna. Plasma heating results at three values of the toroidal magnetic field are presented. Central ion temperature increases of ΔT/sub i//Ti /approx lt/ 0.1 and density increases Δn/n 6s/sup /minus/1/ for plasmas within the density range 0.6 /times/ 1020m/sup /minus/3/ ≤ /bar n//sub e/ ≤ 4 /times/ 1020m/sup /minus/3/ and magnetic fields 2.4 ≥ ω/Ω/sub H/ ≥ 1.1. The density increases is usually accompanied by an improvement in the global particle confinement time relative to the Ohmic value. The ion heating rate is measured to be ΔT/sub i//P/sub rf/ ≅ 2-4.5 eV/kW at low densities. At higher densities /bar n//sub e/ ≤ 1.5 /times/ 1020m/sup /minus/3/ the ion heating rate dramatically decreases. It is shown that the decrease in the ion heating rate can be explained by the combined effects of wave scattering through the edge turbulence and the decreasing on energy confinement of these discharges with density. The effect of observed edge turbulence is shown to cause a broadening of the rf power deposition profile with increasing density. It is shown that the inferred value of the Ohmic ion thermal conduction, when compared to the Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing plasma density

  17. Generation of magnetospheric radiation by decay of Bernstein waves

    International Nuclear Information System (INIS)

    Recent observations show that extremely narrow emission lines are present in the spectrum of the terrestrial myriametric radiation, which on the basis of earlier observations has been characterized as nonthermal contiunuum radiation. The occurance of these monochromatic emissions is not predicted by previoiusly published theories for the generation of the radiaiton. A linear instability, exciting low frequency electrostatic turbulence, is required by theories invoking a nonlinear coalescence to produce the radiation, but there are no conclusive observations associating low frequency electrostatic waves with the sources of myriametric radiation. In this study, the possibility that the radiation is produced by a nonlinear decay of electrostatic Bernstein waves with frequency near the upper hybrid frequency is considered. This mechanism can explain the narrow spectral lines, and does not require a linear instability at low frequencies. (Author)

  18. Long pulse EBW start-up experiments in MAST

    International Nuclear Information System (INIS)

    Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario

  19. Long Pulse EBW Start-up Experiments in MAST

    Directory of Open Access Journals (Sweden)

    Shevchenko V.F.

    2015-01-01

    Full Text Available Start-up technique reported here relies on a double mode conversion (MC for electron Bernstein wave (EBW excitation. It consists of MC of the ordinary (O mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR. Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.

  20. Long Pulse EBW Start-up Experiments in MAST

    CERN Document Server

    Shevchenko, V F; Caughman, J B; Diem, S; Mailloux, J; Brien, M R O; Peng, M; Saveliev, A N; Takase, Y; Tanaka, H; Taylor, G

    2015-01-01

    The non-solenoid start-up technique reported here relies on a double mode conversion for electron Bernstein wave (EBW) excitation. It consists of the mode conversion of the ordinary mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance and experiences a subsequent X to EBW mode conversion near the upper hybrid resonance. Finally the excited EBW mode is totally absorbed at the Doppler shifted electron cyclotron resonance. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [V. Shevchenko et al, Nuclear Fusion 50, 022004 (2010)]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results ...

  1. Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, R. W. [CompX, Del Mar, CA (United States)

    2009-11-12

    This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over

  2. Design of an novel antenna for EBW heating in FLIPS

    Energy Technology Data Exchange (ETDEWEB)

    Rudischhauser, Lukas; Rumiantcev, Kirill; Kasparek, Walter [Institut fuer Grenzflaechenverfahrenstechnik und Plasmatechnologie, Universitaet Stuttgart (Germany)

    2015-05-01

    Electron Bernstein waves (EBW) are electrostatic waves which do not have an O-wave cutoff. This enables them to penetrate into overdense plasmas and be absorbed at multiples of the electron cyclotron resonance frequency. These waves cannot propagate in free space, necessitating generation of EBW within the plasma volume through O-X-B or X-B conversion processes only possible for certain plasma parameters and injection angles. The aim of this work is to design a high directivity antenna which can excite EBW in FLIPS (Flexible Linear Plasma Experiment Stuttgart). We use commercial and scientific software such as CST MS and PROFUSION to produce two designs, a Vlasov-type cut waveguide and a circular slotted waveguide antenna. This second design is to line the inside of the vessel with rotational symmetry, simplifying comparison to numerical results. To find optimal injection angles and polarisations extensive use is made of simulations using a FD3D code and previous work on the plasma configuration in FLIPS. In a first step radiation pattern measurements outside of the plasma will be performed, the antenna will then be installed and generation of EBW indirectly shown by increased heating in the overdense plasma region.

  3. Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, M.; Ono, M.

    1985-11-01

    Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced.

  4. Preliminary Observation on Coordination of Pellet Injection and Ion Bernstein Wave on a HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    杨愚; 赵燕平; 李建刚; 万宝年; 罗家融; 辜学茂

    2002-01-01

    A pellet injection (PI) experiment was performed during the application of the ion Bernstein wave on a HT-7tokamak. A preliminary coordination effect was observed. With a lower wave power, shortly after PI, the couplingof the wave was enhanced, and the particle confinement was improved. With higher power, off-axis heating for 15% at about a/3 in the low field side was observed.

  5. Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering

    DEFF Research Database (Denmark)

    Korsholm, Søren Bang; Stejner Pedersen, Morten; Bindslev, Henrik;

    2011-01-01

    In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density...

  6. Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves

    International Nuclear Information System (INIS)

    The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs

  7. X-ray Imaging and preliminary studies of the X-ray self-emission from an innovative plasma-trap based on the Bernstein waves heating mechanism

    Science.gov (United States)

    Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.

    2013-10-01

    Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.

  8. Excitation of electrostatic waves in the electron cyclotron frequency range during magnetic reconnection in laboratory overdense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-10-15

    We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.

  9. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Jianyuan; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Yu, Zhi; Xiang, Nong [Theory and Simulation Division, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2015-09-15

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.

  10. Variational symplectic particle-in-cell simulation of nonlinear mode conversion from extraordinary waves to Bernstein waves

    International Nuclear Information System (INIS)

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments

  11. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    CERN Document Server

    Xiao, Jianyuan; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and cur...

  12. Power Deposition of Ion Bernstein Wave Heating on the HT-7 Tokamak

    Institute of Scientific and Technical Information of China (English)

    BAO Yi; LI Jian-Gang; ZHAO Yan-Ping; CUI Ning-Zhuo

    2001-01-01

    Effcient direct heating of electrons by ion Bernstein waves has been obtained on the HT-7 tokamak. Off-axis heating, which is considered to be the result of electron Landau damping, was observed and studied by means of soft x-ray imaging. The measured power deposition was found to be independent of magnetic field through scanning the toroidal field from 1.5 to 1.7 T, in contrast to the ion heating results. It is suggested that the electron Landau damping is dominant in this heating regime.

  13. Observation of Bernstein Waves Excited by Newborn Interstellar Pickup Ions in the Solar Wind

    Science.gov (United States)

    Joyce, Colin J.; Smith, Charles W.; Isenberg, Philip A.; Gary, S. Peter; Murphy, Neil; Gray, Perry C.; Burlaga, Leonard F.

    2012-01-01

    A recent examination of 1.9 s magnetic field data recorded by the Voyager 2 spacecraft in transit to Jupiter revealed several instances of strongly aliased spectra suggestive of unresolved high-frequency magnetic fluctuations at 4.4 AU. A closer examination of these intervals using the highest resolution data available revealed one clear instance of wave activity at spacecraft frame frequencies from 0.2 to 1 Hz. Using various analysis techniques, we have characterized these fluctuations as Bernstein mode waves excited by newborn interstellar pickup ions. We can find no other interpretation or source consistent with the observations, but this interpretation is not without questions. In this paper, we report a detailed analysis of the waves, including their frequency and polarization, that supports our interpretation.

  14. Interpreting ~1 Hz magnetic compressional waves in Mercury's inner magnetosphere in terms of propagating ion-Bernstein waves

    Science.gov (United States)

    Boardsen, S. A.; Kim, E.-H.; Raines, J. M.; Slavin, J. A.; Gershman, D. J.; Anderson, B. J.; Korth, H.; Sundberg, T.; Schriver, D.; Travnicek, P.

    2015-06-01

    We show that ~1 Hz magnetic compressional waves observed in Mercury's inner magnetosphere could be interpreted as ion-Bernstein waves in a moderate proton beta ~0.1 plasma. An observation of a proton distribution with a large planetary loss cone is presented, and we show that this type of distribution is highly unstable to the generation of ion-Bernstein waves with low magnetic compression. Ray tracing shows that as these waves propagate back and forth about the magnetic equator; they cycle between a state of low and high magnetic compression. The group velocity decreases during the high-compression state leading to a pileup of compressional wave energy, which could explain the observed dominance of the highly compressional waves. This bimodal nature is due to the complexity of the index of refraction surface in a warm plasma whose upper branch has high growth rate with low compression, and its lower branch has low growth/damping rate with strong compression. Two different cycles are found: one where the compression maximum occurs at the magnetic equator and one where the compression maximum straddles the magnetic equator. The later cycle could explain observations where the maximum in compression straddles the equator. Ray tracing shows that this mode is confined within ±12° magnetic latitude which can account for the bulk of the observations. We show that the Doppler shift can account for the difference between the observed and model wave frequency, if the wave vector direction is in opposition to the plasma flow direction. We note that the Wentzel-Kramers-Brillouin approximation breaks down during the pileup of compressional energy and that a study involving full wave solutions is required.

  15. A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurements

    International Nuclear Information System (INIS)

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  16. A Spinning Mirror for Fast Angular Scans of EBW Emission for Magnetic Pitch Profile Measurement

    CERN Document Server

    Volpe, Francesco

    2010-01-01

    A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12,000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.

  17. Ion Bernstein wave heating experiment on JIPPT-II-U device

    International Nuclear Information System (INIS)

    Ion Bernstein wave heating is investigated in the JIPPT-II-U tokamak plasma, n-bar sub(o) asymptoticaly equals 1.5 x 1013 cm-3, Tsub(eo) asymptoticaly equals 700 eV, and Tsub(io) = 300 eV for Psub(rf) 1-- 100 kW. In a two-ion-species helium-hydrogen plasma, the third harmonics of helium minority cyclotron resonance (deuterium-like) is heated. The background hydrogen ion temperature monitored by charge-exchange shows a significant rise, ΔTsub(i) 1-- 600 eV, when the helium harmonic resonance layer is placed near the center of the plasma. Typical observed hydrogen ion heating quality factor, ΔTsub(i)/Psub(rf)/n-barsub(o), is 1-- 10 eV/kW/1013cm-3. The dependence of ion heating efficiency on rf power, magnetic field and ion concentration is presented. (author)

  18. Antenna system analysis and design for automatic detection and real-time tracking of electron Bernstein waves in FTU

    Science.gov (United States)

    Bin, W.; Alessi, E.; Bruschi, A.; D'Arcangelo, O.; Figini, L.; Galperti, C.; Garavaglia, S.; Granucci, G.; Moro, A.

    2014-05-01

    The algorithm for the automatic control of the new front steering antenna of the Frascati Tokamak Upgrade device has been improved, in view of forthcoming experiments aimed at testing the mode conversion of electron cyclotron waves at a frequency of 140 GHz. The existing antenna system has been prepared to provide two-point real-time measurements of electron Bernstein waves and to allow real-time tracking of the optimal conversion region. This required an accurate analysis of the antenna to minimize the risk of a mechanical damage of the movable launching mirrors, when accessing the high toroidal launching angles needed for this kind of experiment. A detailed description is presented of the work carried out to safely reach and validate the desired range of steering angles, which include the region of interest, and a technique is proposed to track and chase the correct line of sight for electron Bernstein waves detection during the shot.

  19. Electron heating by mode-converted ion-Bernstein waves in ICRF heating of tokamak plasmas

    International Nuclear Information System (INIS)

    In a tokamak plasma, ion-Bernstein waves (IBW) can be excited by mode-conversion of the externally launched fast wave for ICRF heating. This conversion process is known to be efficient for low k/sub parallel/'s which carry substantial power from a single loop antenna. A detailed numerical analysis of the propagation of the IBW shows that the initial small k/sub parallel/ are significantly enhanced along the rays due to toroidal effects. The upshift can occur for short radial distances of propagation and is large enough so that the IBW can Landau damp onto the electrons. This could help explain the observed strong electron heating by ICRF waves in tokamak plasmas. The numerical ray trajectory analysis is done in toroidal geometry for a hot Maxwellian plasma with gradients in temperature, density, toroidal and poloidal magnetic fields included in a WKB sense. A simple analytical model is derived which explains the upshift in k/sub parallel/ and gives results very close to the numerically obtained values. Approximate analytical conditions for appreciable electron Landau damping of the IBW are also given

  20. Electron heating via mode converted ion Bernstein waves in the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bonoli, P.T.; OShea, P.; Brambilla, M.; Golovato, S.N.; Hubbard, A.E.; Porkolab, M.; Takase, Y.; Boivin, R.L.; Bombarda, F.; Christensen, C.; Fiore, C.L.; Garnier, D.; Goetz, J.; Granetz, R.; Greenwald, M.; Horne, S.F.; Hutchinson, I.H.; Irby, J.; Jablonski, D.; LaBombard, B.; Lipschultz, B.; Marmar, E.; May, M.; Mazurenko, A.; McCracken, G.; Nachtrieb, R.; Niemczewski, A.; Ohkawa, H.; Pappas, D.A.; Reardon, J.; Rice, J.; Rost, C.; Schachter, J.; Snipes, J.A.; Stek, P.; Takase, K.; Terry, J.; Wang, Y.; Watterson, R.L.; Welch, B.; Wolfe, S.M. [Plasma Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    1997-05-01

    Highly localized direct electron heating [full width at half-maximum (FWHM){congruent}0.2a] via mode converted ion Bernstein waves has been observed in the Alcator C-Mod Tokamak [I. H. Hutchinson {ital et al.}, Phys. Plasmas {bold 1}, 1511 (1994)]. Electron heating at or near the plasma center (r/a{ge}0.3) has been observed in H({sup 3}He) discharges at B{sub 0}=(6.0{endash}6.5)T and n{sub e}(0){congruent}1.8{times}10{sup 20}m{sup {minus}3}. [Here, the minority ion species is indicated parenthetically.] Off-axis heating (r/a{ge}0.5) has also been observed in D({sup 3}He) plasmas at B{sub 0}=7.9T. The concentration of {sup 3}He in these experiments was in the range of n{sub 3{sub He}}/n{sub e}{congruent}(0.2{endash}0.3) and the locations of the mode conversion layer and electron heating peak could be controlled by changing the {sup 3}He concentration or toroidal magnetic field (B{sub 0}). The electron heating profiles were deduced using a rf modulation technique. Detailed comparisons with one-dimensional and toroidal full-wave models in the ion cyclotron range of frequencies have been carried out. One-dimensional full-wave code predictions were found to be in qualitative agreement with the experimental results. Toroidal full-wave calculations indicated the importance of volumetric and wave focusing effects in the interpretation of the experimental results. {copyright} {ital 1997 American Institute of Physics.}

  1. Ion Bernstein wave antenna loading measurements on the DIII-D tokamak

    Science.gov (United States)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Porkolab, M.; Chiu, S. C.; Cary, W. P.; Prater, R.

    1993-04-01

    Antenna loading measurements carried out during high power ion Bernstein wave (IBW) heating experiments on the DIII-D tokamak indicate that efficient, direct coupling to the IBW at ω lesssim 2ωci as predicted by linear coupling theory did not occur. Whereas strong peaking in the loading resistance near cyclotron harmonics is predicted for high edge densities (ω front of the antenna, thus allowing coupling to the cold plasma lower hybrid wave (LHW). A linear LHW coupling code including the modified density profile due to the ponderomotive force reproduces the measured dependence of antenna loading on toroidal magnetic field, edge density, antenna frequency and antenna phasing. Further evidence for the ponderomotive force is obtained from reactive loading measurements which indicate that the plasma is pushed away from the antenna as the radiofrequency power level is increased. The results indicate that the lack of central ion heating observed during DIII-D IBW experiments may be due to a lack of efficient mode transformation from the coupled LHW to a centrally propagating IBW, possibly as a result of nonlinear mechanism(s)

  2. Unstable whistlers and Bernstein waves within the front of supercritical perpendicular shocks

    Science.gov (United States)

    Muschietti, Laurent; Lembege, Bertrand

    2016-04-01

    In supercritical shocks a significant fraction of ions is reflected at the steep shock ramp and carries a considerable amount of energy. The existence of reflected ions enables streaming instabilities to develop which are excited by the relative drifts between the populations of incoming ions, reflected ions, and electrons. The processes are fundamental to the transformation of directed kinetic energy into thermal energy, a tenet of shock physics. We model the particle distributions as a broad electron population and two ion populations, namely a core and a beam (representing the reflected ions) in order to investigate the kinetic instabilities possible under various wave propagation angles. Recently, assuming the ion beam is directed along the shock normal at 90° to the magnetic field Bo, we analyzed the linear dispersion properties by computing the full electromagnetic dielectric tensor [Muschietti and Lembege, AGU Fall meeting 2015]. Three types of waves were shown to be unstable: (1) Oblique whistlers with wavelengths about the ion inertia length which propagate toward upstream at angles about 50° to the magnetic field. Frequencies are a few times the lower-hybrid. The waves share many similarities to the obliquely propagating whistlers measured in detail by Polar [Hull et al., JGR 117, 2012]. (2) Quasi-perpendicular whistlers with wavelength covering a fraction of the electron inertia length which propagate toward downstream at angles larger than 80° to Bo. Frequencies are close to the lower-hybrid. (3) Bernstein waves with wavelengths close to the electron gyroradius which propagate toward upstream at angles within 5° of perpendicular to the magnetic field. Frequencies are close to the electron cyclotron. The waves have similarities to those reported by Wind and Stereo [Breneman et al., JGR 118, 2013; Wilson et al., JGR 115, 2010]. We will present electromagnetic 1D3V PIC simulations with predetermined propagation angles which illustrate the three types

  3. Variational Symplectic Particle-in-cell Simulation of Nonlinear Mode Conversion from Extraordinary waves to Bernstein Waves

    OpenAIRE

    Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong

    2015-01-01

    In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonli...

  4. ITER Plasma at Ion Cyclotron Frequency Domain: The Fusion Alpha Particles Diagnostics Based on the Stimulated Raman Scattering of Fast Magnetosonic Wave off High Harmonic Ion Bernstein Modes

    Science.gov (United States)

    Stefan, V. Alexander

    2014-10-01

    A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.

  5. Bernstein functions theory and applications

    CERN Document Server

    Schilling, René L; Vondracek, Zoran

    2010-01-01

    This text is a self-contained and unified approach to Bernstein functions and their subclasses, bringing together old and establishing new connections. Applications of Bernstein functions in different fields of mathematics are given, with special attention to interpretations in probability theory. An extensive list of complete Bernstein functions with their representations is provided.

  6. A Common Initiation Criterion for CL-20 EBW Detonators

    Science.gov (United States)

    Valancius, Cole; Garasi, Christopher; O'Malley, Patrick

    2014-11-01

    In an effort to better understand the initiation mechanisms of hexanitrohexaazaisowurtzitane (CL-20) based Exploding Bridgewire (EBW) detonators, a series of studies were performed comparing electrical input parameters and detonator performance. Traditional methods of analysis, such as burst current and action, do not allow performance to be compared across multiple firesets. A new metric, electrical burst energy density (Eρ) , allows an explosive train to be characterized across all possible electrical configurations (different firesets, different sized gold bridges, different cables and cable lengths); by testing one electrical configuration, performance across all others is understood. This discovery has implications for design and surveillance, and for the first time, presents a link between modeling of electrical circuits (such as in ALEGRA) and explosive performance.

  7. CONVERGENCE ARTE FOR INTERATES OF q-BERNSTEIN POLYNOMIALS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Recently, q-Bernstein polynomials have been intensively investigated by a number of authors. Their results show that for q ≠ 1, q-Bernstein polynomials possess of many interesting properties. In this paper, the convergence rate for iterates of both q-Bernstein when n →∞ and convergence rate of Bn(f,q;x) when f ∈ Cn-1[0, 1], q →∞ are also presented.

  8. Patriotism, Peace and Poverty : Reply to Bernstein and Varden

    NARCIS (Netherlands)

    Kleingeld, Pauline

    2014-01-01

    In this essay I reply to Alyssa Bernstein and Helga Varden’s comments on my book, Kant and Cosmopolitanism. In response to Bernstein, I argue that Kant’s opposition to the coercive incorporation of states into an international federation should be interpreted as permitting no exceptions. In response

  9. MULTIVARIATE WEIGHTED BERNSTEIN-TYPE INEQUALITY AND ITS APPLICATIONS

    Institute of Scientific and Technical Information of China (English)

    Cao Feilong; Lin Shaobo

    2012-01-01

    Bernstein inequality played an important role in approximation theory and Fourier analysis.This article first introduces a general system of functions and the socalled multivariate weighted Bernstein,Nikol'skiǐ,and Ul'yanov-type inequalities.Then,the relations among these three inequalities are discussed.Namely,it is proved that a family of functions equipped with Bernstein-type inequality satisfies Nikol'skiǐ-type and Ul'yanov-type inequality.Finally,as applications,some classical inequalities are deduced from the obtained results.

  10. The dynamic financial distress prediction method of EBW-VSTW-SVM

    Science.gov (United States)

    Sun, Jie; Li, Hui; Chang, Pei-Chann; He, Kai-Yu

    2016-07-01

    Financial distress prediction (FDP) takes important role in corporate financial risk management. Most of former researches in this field tried to construct effective static FDP (SFDP) models that are difficult to be embedded into enterprise information systems, because they are based on horizontal data-sets collected outside the modelling enterprise by defining the financial distress as the absolute conditions such as bankruptcy or insolvency. This paper attempts to propose an approach for dynamic evaluation and prediction of financial distress based on the entropy-based weighting (EBW), the support vector machine (SVM) and an enterprise's vertical sliding time window (VSTW). The dynamic FDP (DFDP) method is named EBW-VSTW-SVM, which keeps updating the FDP model dynamically with time goes on and only needs the historic financial data of the modelling enterprise itself and thus is easier to be embedded into enterprise information systems. The DFDP method of EBW-VSTW-SVM consists of four steps, namely evaluation of vertical relative financial distress (VRFD) based on EBW, construction of training data-set for DFDP modelling according to VSTW, training of DFDP model based on SVM and DFDP for the future time point. We carry out case studies for two listed pharmaceutical companies and experimental analysis for some other companies to simulate the sliding of enterprise vertical time window. The results indicated that the proposed approach was feasible and efficient to help managers improve corporate financial management.

  11. Generalized -Bernstein-Schurer Operators and Some Approximation Theorems

    Directory of Open Access Journals (Sweden)

    M. Mursaleen

    2013-01-01

    Full Text Available We study statistical approximation properties of -Bernstein-Shurer operators and establish some direct theorems. Furthermore, we compute error estimation and show graphically the convergence for a function by operators and give its algorithm.

  12. Interpolation and Convergence of Bernstein-Bézier Coefficients

    Institute of Scientific and Technical Information of China (English)

    Feng Jun LI

    2011-01-01

    In this paper,two ways of the proof are given for the fact that the Berustein-Bézier coefficients (BB-coefficients) of a multivariate polynomial converge uniformly to the polynomial under repeated degree elevation over the simplex.We show that the partial derivatives of the inverse Bernstein polynomial An(g) converge uniformly to the corresponding partial derivatives of g at the rate 1/n.We also consider multivariate interpolation for the BB-coefficients,and provide effective interpolation formulas by using Bernstein polynomials with ridge form which essentially possess the nature of univariate polynomials in computation,and show that Bernstein polynomials with ridge form with least degree can be constructed for interpolation purpose,and thus a computational algorithm is provided correspondingly.

  13. Proofs of the Cantor-Bernstein theorem a mathematical excursion

    CERN Document Server

    Hinkis, Arie

    2013-01-01

    This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly an...

  14. 77 FR 75200 - AllianceBernstein Active ETFs, Inc., et al.; Notice of Application

    Science.gov (United States)

    2012-12-19

    ... COMMISSION AllianceBernstein Active ETFs, Inc., et al.; Notice of Application December 13, 2012. AGENCY...Bernstein Active ETFs, Inc. (``Corporation''), AllianceBernstein L.P. (``Adviser''), and ALPS Distributors... Business Day's NAV and the market closing price or mid-point of the bid/ask spread at the time...

  15. Stimulated Brillouin scatter and stimulated ion Bernstein scatter during electron gyroharmonic heating experiments

    Science.gov (United States)

    Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.

    2013-09-01

    Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.

  16. Pointwise Approximation for the Iterated Boolean Sums of Bernstein Operators

    Institute of Scientific and Technical Information of China (English)

    HUO Xiao-yan; LI Cui-xiang; YAO Qiu-mei

    2013-01-01

    In this paper,with the help of modulus of smoothness ω2r(4)(f,t),we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator Bnn and obtain direct and inverse theorems when 1-1/r ≤ λ ≤ 1,r ∈ N.

  17. Pointwise Approximation Theorems for Combinations and Derivatives of Bernstein Polynomials

    Institute of Scientific and Technical Information of China (English)

    Lin Sen XIE

    2005-01-01

    We establish the pointwise approximation theorems for the combinations of Bernstein polynomials by the rth Ditzian-Totik modulus of smoothness ωγφ(f, t) where φ is an admissible step-weight function. An equivalence relation between the derivatives of these polynomials and the smoothness of functions is also obtained.

  18. On -Euler Numbers Related to the Modified -Bernstein Polynomials

    OpenAIRE

    Min-Soo Kim; Daeyeoul Kim; Taekyun Kim

    2010-01-01

    We consider q-Euler numbers, polynomials, and q-Stirling numbers of first and second kinds. Finally, we investigate some interesting properties of the modified q-Bernstein polynomials related to q-Euler numbers and q-Stirling numbers by using fermionic p-adic integrals on ℤp.

  19. Semiparametric Bernstein-von Mises for the error standard deviation

    NARCIS (Netherlands)

    R. de Jonge; H. van Zanten

    2013-01-01

    We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein-von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a h

  20. Precipitated phases and corrosion behavior in the dissimilar alloy 690-SUS 304L joints formed by EBW and GTAW

    International Nuclear Information System (INIS)

    This study investigates the correlation between the microstructure and the corrosion resistance properties of the fusion zone of Alloy 690-SUS 304L stainless steel dissimilar weldments formed by electron beam welding (EBW). The effects of the EBW process are evaluated by comparing the microstructure and corrosion resistance properties of the EBW weldment with those of Alloy 690-SUS 304L weldment formed by gas tungsten arc welding (GTAW). The experimental results reveal that the interdendritic region of the fusion zone of the EBW weldment contains fine TiN precipitates and Cr-Ni rich phases. The TiN precipitates are originated from the Alloy 690 base metal, while the Cr-Ni rich phases, a new formation of precipitates, is precipitated in the region around TiN during solidification. Microscopic analysis of the samples following a modified Huey test indicates that the matrix around TiN precipitate and the Cr-Ni rich phase precipitate provide the preferred sites for corrosion pit initiation. Due to the rapid cooling in the EBW process, relatively fewer and smaller TiN precipitates and Cr-Ni rich phases are formed in the weldment. Consequently, only limited corrosive pitting is observed which indicates better interdendritic corrosion resistance properties in comparison to joints with GTAW process. Furthermore, rapid solidification in the fusion zone results not only the suppression of chromium carbide precipitation but also the chromium depletion at the grain boundaries. As a result, the intergranular corrosion resistance and interdendritic corrosion resistance of the EBW weldment are significantly higher than that of the GTAW weldment. (author)

  1. The nonlinear Bernstein-Schr\\"odinger equation in Economics

    OpenAIRE

    Galichon, Alfred; Kominers, Scott; WEBER, Simon

    2015-01-01

    In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the "nonlinear Bernstein-Schr\\"odinger system", which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.

  2. The nonlinear Bernstein-Schr\\"odinger equation in Economics

    OpenAIRE

    Alfred Galichon; Scott Kominers; Simon Weber

    2015-01-01

    In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the "nonlinear Bernstein-Schr\\"odinger system", which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.

  3. A multivariate Bernstein copula model for permeability stochastic simulation

    OpenAIRE

    Victor Hernández-Maldonado; Martín Díaz-Viera; Arturo Erdely

    2014-01-01

    This paper introduces a general nonparametric method for joint stochastic simulation of petrophysical properties using the Bernstein copula. This method consists basically in generating stochastic simulations of a given petrophysical property (primary variable) modeling the underlying empirical dependence with other petrophysical properties (secondary variables) while reproducing the spatial dependence of the first one. This multivariate approach provides a very flexible tool to model the com...

  4. The Schroder-Bernstein property for a-saturated models

    CERN Document Server

    Goodrick, John

    2012-01-01

    A first-order theory T has the Schr\\"oder-Bernstein (SB) property if any pair of elementarily bi-embeddable models are isomorphic. We prove that T has an expansion by constants that has the SB property if and only if T is superstable and non-multidimensional. We also prove that among superstable theories T, the class of a-saturated models of T has the SB property if and only if T has no nomadic types.

  5. Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation

    KAUST Repository

    Ait-Haddou, Rachid

    2016-03-18

    On a closed bounded interval, consider a nested sequence of Extended Chebyshev spaces possessing Bernstein bases. This situation automatically generates an infinite dimension elevation algorithm transforming control polygons of any given level into control polygons of the next level. The convergence of these infinite sequences of polygons towards the corresponding curves is a classical issue in computer-aided geometric design. Moreover, according to recent work proving the existence of Bernstein-type operators in such Extended Chebyshev spaces, this nested sequence is automatically associated with an infinite sequence of Bernstein operators which all reproduce the same two-dimensional space. Whether or not this sequence of operators converges towards the identity on the space of all continuous functions is a natural issue in approximation theory. In the present article, we prove that the two issues are actually equivalent. Not only is this result interesting on the theoretical side, but it also has practical implications. For instance, it provides us with a Korovkin-type theorem of convergence of any infinite dimension elevation algorithm. It also enables us to tackle the question of convergence of the dimension elevation algorithm for any nested sequence obtained by repeated integration of the kernel of a given linear differential operator with constant coefficients. © 2016 Springer Science+Business Media New York

  6. Solutions of differential equations in a Bernstein polynomial basis

    Science.gov (United States)

    Idrees Bhatti, M.; Bracken, P.

    2007-08-01

    An algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.

  7. Manufacturing and fabricating status of ASTM A533 GrB C12 steel plates for EBW for PWR-steam generator

    International Nuclear Information System (INIS)

    There are plans to install or replace many PWR-steam generators. The welding period must be reduced because of its length. The use of electron beam welding (EBW) can greatly reduce the welding period compared to conventional welding methods (narrow-gap GMAW and SAW). The problem in applying EBW is to improve the toughness of the weld metal. The authors investigated the factors that deteriorate weld metal toughness of EBW and made clear the manufacturing process which utilizes a new secondary refining process and a high-torque mill in actual mass production. The actual fabrication was evaluated and approved by an EBW quality assurance committee including neutral members. As a result, application of EBW to PWR-steam generators has become possible and large amounts of ASTM A533 GrB C12 (JIS SQV2B) steel plates for EBW have come to be produced. The authors evaluated EBW base metal and weld joints including fracture toughness, and also reported on the status of fabricating steam generators

  8. Bernstein, Dukheim e a sociologia da educação na Inglaterra Bernstein, Durkheim, and the Britsh sociology of education

    OpenAIRE

    Brian Davies

    2003-01-01

    Neste texto o autor procura elucidar o modo pelo qual Basil Bernstein utilizou e enriqueceu a contribuição de Durkheim para a análise de questões abordadas pela sociologia da educação.The author attempts to elucidate how Basil Bernstein used and enhanced Durkheim's contribution to the analysis of issues addressed by the sociology of education.

  9. Characterisation of nuclear fuel element welds of stainless steel and zircaloy made by GTAW, EBW and LBW techniques

    International Nuclear Information System (INIS)

    Fuel elements are fabricated by welding the end plugs to the fuel tubes. GTAW is widely practiced in view of its simplicity and low cost. EBW and LBW techniques are being developed because of better process control and flexibility. In this paper we have studied the welds made by these techniques. The study includes optical and scanning electron microscopy, microhardness measurements and EPMA of these welds

  10. Numerical and Analytical Calculation of Bernstein Mode Resonances in a Non-Uniform Cylindrical Plasma

    Science.gov (United States)

    Walsh, Daniel K.; Dubin, Daniel H. E.

    2015-11-01

    This poster presents theory and numerical calculations of electrostatic Bernstein modes in an inhomogeneous cylindrical plasma column. These modes rely on FLR effects to propagate radially across the column until they are reflected when their frequency matches the local upper hybrid frequency, setting up an internal normal mode on the column, and also mode-coupling to the electrostatic surface cyclotron wave (which allows the normal mode to be excited and observed using external electrodes). Numerical results predicting the mode spectra, using a novel linear Vlasov code on a cylindrical grid, will be presented and compared to an analytic WKB theory. A previous version of the theory expanded the plasma response in powers of 1/B, approximating the local upper hybrid frequency, and consequently its frequency predictions are shifted with respect to the numerical results. A new version of the WKB theory uses the exact cold fluid plasma response and does a better job of reproducing the numerical frequency spectrum. The eventual goal is to compare the theory to recent experiments that have observed these waves in pure electron and pure ion plasmas. Supported by National Science Foundation Grant PHY-1414570.

  11. State of the art of the welding method for sealing spent nuclear fuel canister made of copper. Part 2 - EBW

    International Nuclear Information System (INIS)

    This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based

  12. On the Fermionic -adic Integral Representation of Bernstein Polynomials Associated with Euler Numbers and Polynomials

    Directory of Open Access Journals (Sweden)

    Ryoo CS

    2010-01-01

    Full Text Available The purpose of this paper is to give some properties of several Bernstein type polynomials to represent the fermionic -adic integral on . From these properties, we derive some interesting identities on the Euler numbers and polynomials.

  13. Bernstein dual-Petrov-Galerkin method: application to 2D time fractional diffusion equation

    CERN Document Server

    Jani, Mostafa; Babolian, Esmail

    2016-01-01

    In this paper, we develop a dual-Petrov-Galerkin method using Bernstein polynomials. The method is then implemented for the numerical simulation of the two-dimensional subdiffusion equation. The method is based on a finite difference discretization in time and a spectral method in space utilizing a suitable compact combinations of dual Bernstein basis as the test functions and the Bernstein polynomials as the trial ones. We derive the exact sparse operational matrix of differentiation for the dual Bernstein basis which provides a matrix-based approach for spatial discretization of the problem. It is also shown that the proposed method leads to banded linear systems. Finally some numerical examples are provided to show the efficiency and accuracy of the method.

  14. MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation

    Directory of Open Access Journals (Sweden)

    Howard Daniel

    2006-01-01

    Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .

  15. Bernstein-Kantorovich算子的迭代布尔和的逼近性质%APPROXIMATION QUALITIES FOR THE ITERATED BOOLEAN SUMS OF BERNSTEIN-KANTOROVICH OPERATORS

    Institute of Scientific and Technical Information of China (English)

    李翠香; 任孟霞

    2007-01-01

    本文利用光滑模及最佳逼近多项式的性质,研究了Bernstein-Kantorovich算子的迭代布尔和对Lp[0,1]中的函数的逼近性质,得到了逼近正定理,弱逆不等式及等价定理.

  16. Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials

    OpenAIRE

    Saito, Morihiko

    2015-01-01

    We show that there is a pair of homogeneous polynomials such that the sets of roots of their Bernstein-Sato polynomials which are strictly supported at the origin are different although the sets of roots which are not strictly supported at the origin are the same and moreover their graded Milnor algebras have the same Hilbert series. This shows that the roots of the Bernstein-Sato polynomials strictly supported at the origin cannot be determined uniquely by the Hilbert series of the Milnor al...

  17. A New Subdivision Algorithm for the Bernstein Polynomial Approach to Global Optimization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, an improved algorithm is proposed for unconstrained global optimization to tackle non-convex nonlinear multivariate polynomial programming problems. The proposed algorithm is based on the Bernstein polynomial approach. Novel features of the proposed algorithm are that it uses a new rule for the selection of the subdivision point, modified rules for the selection of the subdivision direction, and a new acceleration device to avoid some unnecessary subdivisions. The performance of the proposed algorithm is numerically tested on a collection of 16 test problems. The results of the tests show the proposed algorithm to be superior to the existing Bernstein algorithm in terms of the chosen performance metrics.

  18. A critique of Bernstein's beyond objectivism and relativism: science, hermeneutics, and praxis.

    Science.gov (United States)

    Matusitz, Jonathan; Kramer, Eric

    2011-06-01

    This analysis comments on Bernstein's lack of clear understanding of subjectivity, based on his book, Beyond Objectivism and Relativism: Science, Hermeneutics, and Praxis. Bernstein limits his interpretation of subjectivity to thinkers such as Gadamer and Habermas. The authors analyze the ideas of classic scholars such as Edmund Husserl and Friedrich Nietzsche. Husserl put forward his notion of transcendental subjectivity and phenomenological ramifications of the relationship between subjectivity and objectivity. Nietzsche referred to subjectivity as "perspectivism," the inescapable fact that any and all consciousnesses exist in space and time. Consciousness is fundamentally constituted of cultural, linguistic, and historical dimensions.

  19. APPLICATIONS OF THE BERNSTEIN-DURRMEYER OPERATORS IN ESTIMATING THE NORM OF MERCER KERNEL MATRICES

    Institute of Scientific and Technical Information of China (English)

    Chunping Zhang; Baohuai Sheng; Zhixiang Chen

    2008-01-01

    The paper is related to the norm estimate of Mercer kernel matrices.The lower and upper bound estimates of Rayleigh entropy numbers for some Mercer kernel matrices on[0,1]×[0,1]based on the Bernstein-Durrmeyer operator kernel ale obtained,with which and the approximation property of the Bernstein-Durrmeyer operator the lower and upper bounds of the Rayleigh entropy number and the l2-norm for general Mercer kernel matrices on[0,1]×[0,1]are provided.

  20. Approximation and Shape Preserving Properties of the Bernstein Operator of Max-Product Kind

    Directory of Open Access Journals (Sweden)

    Barnabás Bede

    2009-01-01

    question of improving the order of approximation 1√(;1/ is raised. The first aim of this note is to obtain this order of approximation but by a simpler method, which in addition presents, at least, two advantages: it produces an explicit constant in front of 1√(;1/ and it can easily be extended to other max-prod operators of Bernstein type. However, for subclasses of functions including, for example, that of concave functions, we find the order of approximation 1(;1/, which for many functions is essentially better than the order of approximation obtained by the linear Bernstein operators. Finally, some shape-preserving properties are obtained.

  1. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    Science.gov (United States)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  2. Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers

    Energy Technology Data Exchange (ETDEWEB)

    Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com

    2009-05-11

    A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.

  3. Code Switching and Sexual Orientation: A Test of Bernstein's Sociolinguistic Theory

    Science.gov (United States)

    Lumby, Malcolm E.

    1976-01-01

    Bernstein's theory was tested in the homosexual's "closed" community to determine code-switching ability and its relationship to jargon. Subjects told a story based on homoerotic photographs where knowledge of sexual orientation was varied. Results suggest that homosexual homophyly encouraged elaboration. (Author)

  4. Iterates of Bernstein Type Operators on a Triangle with All Curved Sides

    Directory of Open Access Journals (Sweden)

    Teodora Cătinaş

    2014-01-01

    Full Text Available We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.

  5. Iterates of Bernstein Type Operators on a Triangle with All Curved Sides

    OpenAIRE

    Teodora Cătinaş

    2014-01-01

    We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.

  6. Generalized neurofuzzy network modeling algorithms using Bézier-Bernstein polynomial functions and additive decomposition.

    Science.gov (United States)

    Hong, X; Harris, C J

    2000-01-01

    This paper introduces a new neurofuzzy model construction algorithm for nonlinear dynamic systems based upon basis functions that are Bézier-Bernstein polynomial functions. This paper is generalized in that it copes with n-dimensional inputs by utilising an additive decomposition construction to overcome the curse of dimensionality associated with high n. This new construction algorithm also introduces univariate Bézier-Bernstein polynomial functions for the completeness of the generalized procedure. Like the B-spline expansion based neurofuzzy systems, Bézier-Bernstein polynomial function based neurofuzzy networks hold desirable properties such as nonnegativity of the basis functions, unity of support, and interpretability of basis function as fuzzy membership functions, moreover with the additional advantages of structural parsimony and Delaunay input space partition, essentially overcoming the curse of dimensionality associated with conventional fuzzy and RBF networks. This new modeling network is based on additive decomposition approach together with two separate basis function formation approaches for both univariate and bivariate Bézier-Bernstein polynomial functions used in model construction. The overall network weights are then learnt using conventional least squares methods. Numerical examples are included to demonstrate the effectiveness of this new data based modeling approach.

  7. Bernstein Revisited: The Recontextualisation of Equity in Contemporary Australian School Education

    Science.gov (United States)

    Loughland, Tony; Sriprakash, Arathi

    2016-01-01

    This article draws on the sociology of Basil Bernstein to show how his detailed theories of "recontextualisation" and the "pedagogic device" provide useful analytic levers to examine the politics of educational change. We focus on recent policy developments that have significantly impacted Australian school education: the…

  8. The Importance of Voice in Supervision: A Response to Ellis and Robbins (1993) and Bernstein (1993).

    Science.gov (United States)

    Twohey, Denise

    1993-01-01

    Comments two responses to author's article "Listening for the Voices of Care and Justice in Counselor Supervision" (Twohey and Volker, 1993). Responds to Ellis and Robbins (1993) by clarifying perspective on relationship between moral decision making and supervision. Takes issue with Bernstein's (1993) comments about superiority of instrumental…

  9. Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval

    Science.gov (United States)

    Alford, John A., II

    2012-01-01

    We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.

  10. Solving Bernstein's Problem: A Proposal for the Development of Coordinated Movement by Selection.

    Science.gov (United States)

    Sporns, Olaf; Edelman, Gerald M.

    1993-01-01

    In the 1930s, Bernstein pointed out that more than one motor signal can trigger the same physical movement and that identical motor signals can lead to different movements, a dilemma that continues to puzzle scientists. Based on results from computer simulations, posits that these motor signals can be grouped into categories that correspond to…

  11. Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    We establish Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces. These inequalities can be applied to some important operators in Fourier analysis, such as the Bochner-Riesz multiplier over the critical index, the generalized Bochner-Riesz mean and the generalized Able-Poisson operator.

  12. Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces

    Institute of Scientific and Technical Information of China (English)

    XIE LinSen; LAN JiaCheng; LAN SenHua; YAN DunYan

    2009-01-01

    We establish Jackson-type and Bernstein-type inequalities for multipliers on Herz-type Hardy spaces.These inequalities can be applied to some important operators in Fourier analysis,such as the Bochner-Riesz multiplier over the critical index,the generalized Bochner-Riesz mean and the generalized Able-Poisson operator.

  13. Effects of beam offset on mechanical properties and corrosion resistance of Alloy 690-SUS 304L EBW joints for nuclear power plant

    Science.gov (United States)

    Lin, Yong-Ding; Lee, Hwa-Teng; Kuo, Tsung-Yuan; Jeng, Sheng-Long; Wu, Jia-Lin

    2010-06-01

    The current study investigates the effect of the beam offset (BOF) on the microstructure, mechanical properties, and the corrosion resistance of the fusion zone (FZ) of Alloy 690-SUS 304L stainless steel (SS) dissimilar metal butt joints formed by electron beam welding (EBW). The experimental results showed that as the value of the BOF increased from 0 to 0.30 mm, i.e. the electron beam shifted progressively toward the Alloy 690 base metal (BM), the tensile strength of the FZ fell from 582.1 to 541.2 MPa. However, the modified Huey test results indicated that the interdendritic corrosion resistance of the FZ was significantly enhanced. Pit nucleation potential value ( Enp) was raised from 385 to 1050 mV. An offset of 0.30 mm appears to be the optimal BOF setting when fabricating Alloy 690-SUS 304L SS dissimilar metal butt joints using the EBW technique.

  14. Nonlinear Landau damping and formation of Bernstein-Greene-Kruskal structures for plasmas with q-nonextensive velocity distributions

    Energy Technology Data Exchange (ETDEWEB)

    Raghunathan, M. [Indian Institute of Science Education and Research (IISER), Pune 411021 (India); Ganesh, R. [Institute for Plasma Research, Gandhinagar 382428 (India)

    2013-03-15

    In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t=1600{omega}{sub p}{sup -1}. The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as 'BGK structures'). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times, up to t=3000{omega}{sub p}{sup -1}. We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q<1 where velocity distributions have long tails, strong Landau damping inhibits the formation of BGK structures. On the other hand, for q>1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.

  15. Wave

    DEFF Research Database (Denmark)

    Ibsen, Lars Bo

    2008-01-01

    Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....

  16. Mechanical properties of Ti6.5Al2Zr1Mo1V titanium alloy with EBW under different temperatures

    International Nuclear Information System (INIS)

    With the development of welding technology, electron beam welding (EBW) is manufacturing the aero parts with heavy thickness. To improve welding quality and mechanical property, we employed EBW with beam oscillation on Ti6.5Al2Zr1Mo1V alloy with 60 mm thickness, and observed the weld microstructures after X-ray NDT, and conducted the tensile and impact tests under different temperatures. The results showed the crystals of the welds were fringe, and the microstructures of the welds were acicular α′ martensite. The acicular and isometric crystals existed in HAZ, which were α′ martensite mixed with α+β structure. With the increase of the temperatures, tensile properties of the top and bottom joints gradually lowered, and the strengths were almost equal to base metal, and the percentage elongations after fracture were lower than those of base metals. The strength overmatching of the joints resulted in the inhomogeneous elastic–plastic deformations, and tensile specimens of the joints ruptured in base metal. The impact toughnesses of top welds were equal to the bottoms under different temperatures, which were lower than those of base metals. Electron beam oscillation improved the uniformity of the microstructures, which contributed to the homogeneity of mechanical properties from the top to bottom joints

  17. Corrosion resistance of GTAW and EBW welded joints of DIN W. Nr. 1.4462 (UNS S31803): Effect of post-weld-heat-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brandi, S.D.; Padilha, A.F.; Wolynec, S. [Univ. of Sao Paulo (Brazil). Metallurgical and Materials Engineering Dept.

    1996-12-01

    The duplex stainless steels present better corrosion behavior than the conventional stainless steels. This is due to their chemical composition (Cr, Ni, Mo, N) and a balanced microstructure (50% ferrite). It might be an increase on the volumetric fraction of ferrite, depending on the cooling rate after welding. In the same way the chemical composition can be altered by a loss of the alloying elements during welding, such as N. Both phenomena will decrease the corrosion resistance of the weldment. Autogenous GTAW and EBW were used to join the plates. Several corrosion tests were used to evaluate the behavior of the joints in as-welded (AW) and post-welded-heat-treated (PWHT) conditions. The results were analyzed and correlated to the microstructure of the welded joints. The main conclusion of this work is that corrosion resistance of both joint processes (EBW and GTAW) in as-welded condition is inadequate. PWHT (post-weld-heat-treatment) dissolved the chromium-rich precipitates, restored the equilibrium amount of austenite in the joints and recovered their corrosion resistance.

  18. On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution.

    Science.gov (United States)

    Stark, Alan; Seneta, Eugene

    2012-04-01

    Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed. PMID:22888285

  19. On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution

    Directory of Open Access Journals (Sweden)

    Alan Stark

    2012-01-01

    Full Text Available Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed.

  20. Bernstein Series Solution of a Class of Lane-Emden Type Equations

    Directory of Open Access Journals (Sweden)

    Osman Rasit Isik

    2013-01-01

    Full Text Available The purpose of this study is to present an approximate solution that depends on collocation points and Bernstein polynomials for a class of Lane-Emden type equations with mixed conditions. The method is given with some priori error estimate. Even the exact solution is unknown, an upper bound based on the regularity of the exact solution will be obtained. By using the residual correction procedure, the absolute error can be estimated. Also, one can specify the optimal truncation limit n which gives a better result in any norm. Finally, the effectiveness of the method is illustrated by some numerical experiments. Numerical results are consistent with the theoretical results.

  1. Transfinite diameter of Bernstein sets in

    OpenAIRE

    Bialas-Cież Leokadia; Jedrzejowski Mieczysław

    2002-01-01

    Let be a compact set in satisfying the following generalized Bernstein inequality: for each such that , for each polynomial of degree where is a constant independent of and , is an infinite set of natural numbers that is also independent of and . We give an estimate for the transfinite diameter of the set : For satisfying the usual Bernstein inequality (i.e., ), we prove that

  2. 13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    C. BARNES

    2000-07-01

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG, {approx} 10{sup 13} cm{sup -3} and T{sub e} {approx} 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be {le} T{sub e} and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below T{sub e}. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where {omega}{sub pe} >> {Omega}{sub ce}.

  3. 13. TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM

    International Nuclear Information System (INIS)

    Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. ωpe >> (Omega)ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large Ki. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B0 ∼ 2 kG, e> ∼ 1013 cm-3 and Te ∼ 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤ Te and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below Te. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ωpe >> (Omega)ce

  4. Study of a condition for the mode conversion from purely perpendicular electrostatic waves to electromagnetic waves

    Science.gov (United States)

    Kalaee, Mohammad Javad; Katoh, Yuto

    2016-07-01

    One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.

  5. Nonlinear particle simulation of ion cyclotron waves in toroidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kuley, A., E-mail: akuley@uci.edu; Lin, Z. [Department of Physics and Astronomy, University of California Irvine, CA-92697 (United States); Bao, J. [Fusion Simulation Center, Peking University, Beijing (China); Department of Physics and Astronomy, University of California Irvine, CA-92697 (United States); Wei, X. S.; Xiao, Y. [Institute of Fusion Theory and Simulation, Zhejiang University, Hangzhou (China)

    2015-12-10

    Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.

  6. Erstnachweis von Taiwania, Cryptomeria und Liquidambar aus dem Bitterfelder und Baltischen Bernstein

    Directory of Open Access Journals (Sweden)

    H. Jähnichen

    1998-01-01

    Full Text Available Aus dem untermiozänen Bernstein von Bitterfeld (Sachsen-Anhalt werden erstmalig ein strukturzeigender Zweig von Taiwania schaeferi, ein isoliertes Nadel-Fragment von Cryptomeria sp. sowie ein Fruchtstand von Liquidambar europaea beschrieben. Außerdem muß “Widdringtonites oblongifolius” (Goeppert & Menge Caspary & Klebs 1906/07 pro parte aus dem obereozänen Baltischen Bernstein nach morphologisch-anatomischen Merkmalskomplexen ebenfalls zu Taiwania schaeferi gestellt werden. “Enormicutis eoconferta” — aff. Cryptomeria spec. (Schneider 1986 aus der obereozänen Braunkohle von Nordwestsachsen muß nach morphologisch-anatomischen Details zu Athrotaxis couttsiae (Heer Gardner revidiert werden. First record of Taiwania, Cryptomeria and Liquidambar from Bitterfeld and Baltic amber A structure-bearing twig of Taiwania schaeferi, an isolated needle-fragment of Cryptomeria spec. as also an aggregate fruit of Liquidambar europaea are firstly described from the Lower Miocene amber of Bitterfeld (Saxony-Anhalt. Moreover “Widdringtonites oblongifolius” (Goeppert & Menge Caspary & Klebs 1906/07 p.p. from the Upper Eocene Baltic amber after morphological-anatomical features must be also assigned to Taiwania schaeferi. “Enormicutis eoconferta” — aff. Cryptomeria sp. (Schneider 1986 from the Upper Eocene brown-coal of North Western Saxony after morphological-anatomical details must be revised to Athrotaxis couttsiae (Heer Gardner. doi:10.1002/mmng.19980010112

  7. Extracting the QCD Cutoff Parameter Using the Bernstein Polynomials and the Truncated Moments

    Directory of Open Access Journals (Sweden)

    A. Mirjalili

    2014-01-01

    Full Text Available Since there are not experimental data over the whole range of x-Bjorken variable, that is, 0Bernstein polynomials. As a result, Bernstein averages which are related to different orders of the truncated Mellin moment are obtained. These averaged quantities can be considered as the constructed experimental data. By accessing the sufficient experimental data we can do the fitting more precisely. We do the fitting at leading order and next-to-leading order approximations to extract the QCD cutoff parameter. The results are in good agreement with what is being expected.

  8. The Use and Value of Bernstein's Work in Studying (In)Equalities in Undergraduate Social Science Education

    Science.gov (United States)

    McLean, Monica; Abbas, Andrea; Ashwin, Paul

    2013-01-01

    This paper illustrates how critical use of Basil Bernstein's theory illuminates the mechanisms by which university knowledge, curriculum and pedagogy both reproduce and interrupt social inequalities. To this end, empirical examples are selected from the findings of the ESRC-funded project "Pedagogic Quality and Inequality in University First…

  9. "Spectral Implementation" for creating pseudo-pure states and a three-qubit Bernstein-Vazirani's algorithm in NMR

    CERN Document Server

    Peng, X; Fang, X; Feng, M; Liu, M; Gao, K; Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin

    2002-01-01

    Based on ''spectral implementation'' proposed by Madi et al. (J. Chem. Phys. 109, 10603, 1998), we have experimentally realized a pseudo-pure state by the line-selective excitation and a three-qubit Bernstein-Vazirani's algorithm using a carbon-13 analine sample in NMR. The superiority of quantum computation to classical counterpart is well displayed.

  10. 关于Bernstein-Kantorovich算子的Steckin-Marchaud型不等式%Steckin-Marchaud-type Inequalities in Connection with Bernstein-Kantorovich Polynomials

    Institute of Scientific and Technical Information of China (English)

    郭顺生; 刘丽霞; 宋占杰

    2000-01-01

    The purpose of this paper is to introduce ω2(x)3(f, t)z,β, and use it to prove the Steckin-Marchaud-type inequalities for Bernstein-Kantorovich Polynomials:ω2(x)3{f,(ψ)1-2(x)/√n}α1β≤C1/0#(x)∑3-2≤│B:f-f│0 where 0≤λ≤1, 0≤α≤2, 0≤β≤2, n∈N.(ψ)(x)=√x(1-x),│f │0=SUP r∈(0,1)││(ψ)(x)x(2-3)-θf(x)││,B(x)n(f,x)=n∑2-0Pn,n(x)(n+1)x-1√x+1 (x)/(n+1)f(t)dt,P0,i(x)={n k}xk(1-x)n-k,ω23(ψ)(f,t)α,β=SUP α<4≤1││(ψ)(2-α)(1-x)-θ(x)△kx1f(x)│,x,x ±h(ψ)2∈[0,1]│,and △2h(ψ)2f(x)=f(x+h(ψ)2)-2f(x)+f(x-h(ψ)2).

  11. Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks

    DEFF Research Database (Denmark)

    Wright, J.C.; Bonoli, P.T.; Brambilla, M.;

    2004-01-01

    Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k(perpendi......Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......(perpendicular to)rho(i)similar to1 which leads to a scaling of the maximum poloidal mode number, M-max, proportional to 1/rho(*) (rho(*)equivalent torho(i)/L). The computational resources needed scale with the number of radial (N-r), poloidal (N-theta), and toroidal (N-phi) elements as N-r * N-phi * N-theta(3...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994...

  12. Integration of posture and movement: contributions of Sherrington, Hess, and Bernstein.

    Science.gov (United States)

    Stuart, Douglas G

    2005-01-01

    Neural mechanisms that integrate posture with movement are widespread throughout the central nervous system (CNS), and they are recruited in patterns that are both task- and context-dependent. Scientists from several countries who were born in the 19th century provided essential groundwork for these modern-day concepts. Here, the focus is on three of this group with each selected for a somewhat different reason. Charles Sherrington (1857-1952) had innumerable contributions that were certainly needed in the subsequent study of posture and movement: inhibition as an active coordinative mechanism, the functional anatomy of spinal cord-muscle connectivity, and helping set the stage for modern work on the sensorimotor cortex and the corticospinal tract. Sadly, however, by not championing the work of his trainee and collaborator, Thomas Graham Brown (1882-1965), he delayed progress on two key motor control mechanisms: central programming and pattern generation. Walter Hess (1881-1973), a self-taught experimentalist, is now best known for his work on CNS coordination of autonomic (visceral) and emotional behavior. His contributions to posture and movement, however, were also far-reaching: the coordination of eye movements and integration of goal-directed and "framework" (anticipatory set) motor behavior. Nikolai Bernstein (1896-1966), the quintessence of an interdisciplinary, self-taught movement neuroscientist, made far-reaching contributions that were barely recognized by Western workers prior to the 1960s. Today, he is widely praised for showing that the CNS's hierarchy of control mechanisms for posture and movement is organized hand-in-hand with distributed and parallel processing, with all three subject to evolutionary pressures. He also made important observations, like those of several previous workers, on the goal focus of voluntary movements. The contributions of Sherrington, Hess, and Bernstein are enduring. They prompt thought on the philosophical axioms that

  13. Global ion cyclotron waves in a perpendicularly stratified, one-dimensional warm plasma

    International Nuclear Information System (INIS)

    The sixth-order wave equation which results from a finite temperature expansion of the Vlasov equation is solved globally in a perpendicularly stratified, one-dimensional slab plasma. The diamagnetic drift and associated anisotropy are included in the unperturbed distribution function to ensure a self-adjoint system. All x-dependence in the plasma pressure and magnetic field is retained along with the electric field parallel to vector B. Thus, Landau damping of the ion Bernstein wave is included as well. Because the wave equation is solved implicitly as a two-point boundary value problem, the evanescent short-wavelength Bernstein waves do not grow exponentially as in shooting methods. Solutions to the complete sixth-order partial differential equation are compared to those from an approximate second-order equation based on local dispersion theory. Strong variations occur in the absorption and in the structure of the wave fields as resonance topology is varied

  14. Langmuir wave filamentation in the kinetic regime

    CERN Document Server

    Silantyev, Denis A; Rose, Harvey A

    2016-01-01

    Nonlinear Langmuir wave in the kinetic regime $k\\lambda_D\\gtrsim0.2$ has a transverse instability, where $k$ is the wavenumber and $\\lambda_D$ is the Debye length. The nonlinear stage of that instability development leads to the filamentation of Langmuir waves. Here we study the linear stage of transverse instability of both Bernstein-Greene-Kruskal (BGK) modes and dynamically prepared BGK-like initial conditions to find the same instability growth rate suggesting the universal mechanism for the kinetic saturation of stimulated Raman scatter in laser-plasma interaction experiments. Multidimensional Vlasov simulations results are compared to the theoretical predictions.

  15. Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

    Directory of Open Access Journals (Sweden)

    Mahmoud Paripour

    2014-08-01

    Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out

  16. Steckin-Marchaud-type Inequalities in Connection with Bernstein-Kantorovich Polynomials

    Institute of Scientific and Technical Information of China (English)

    郭顺生; 刘丽霞; 宋占杰

    2000-01-01

    The purpose of this paper is to introduce ω2φλ(f, t )α.β, and use it to prove the Steckin-Marchaud-type inequalities for Bernstein-Kantorovich Polynomials: ω2φλ(f,φ1-λ(x)/√n)α,β≤C1/n∑k=1n‖Bk*f-f‖0. where 0≤λ≤1,0<a<a,0≤β≤2,n∈N, φ(x)=√x(1-x),‖f‖0=sup x∈(0,1){|φ(x)α(λ-1)-βf(x)|},Bn*(f,x)=∑k=0n Pn,k(x)(n+1)∫k/n-1k+1/n+1f(t)dt, Pn,k(x)=(n k)xk(1-x)n-k, ω2φλ(f,t)α,β=sup0<h≤t{|φ(2-α)(1-λ)-β(x)△hφ2λf(x)|,x,x±hφλ∈[0,1]},and △hφ2λf(x)=f(x+hφλ)-2f(x)+f(x-hφλ).

  17. On the Effects of Social Class on Language Use: A Fresh Look at Bernstein's Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Aliakbari

    2014-06-01

    Full Text Available Basil Bernstein (1971 introduced the notion of the Restricted and the Elaborated code, claiming that working-class speakers have access only to the former but middle-class members to both. In an attempt to test this theory in the Iranian context and to investigate the effect of social class on the quality of students language use, we examined the use of six grammatical categories including noun, pronoun, adjective, adverb, preposition and conjunction by 20 working-class and 20 middle-class elementary students. The results of Chi-square operations at p<.05 corroborated Bernstein’s theory and showed that working- class students were different from middle-class ones in their language use. Being consistent with Bernstein’s theory, the results obtained for the use of personal pronouns indicated that middle-class students were more person-oriented and working-class ones more position-oriented. Findings, thus, call for teachers' deliberate attention to learners’ sociocultural variation to enhance mutual understanding and pragmatic success.

  18. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kuley, A., E-mail: akuley@uci.edu; Lin, Z. [Department of Physics and Astronomy, University of California Irvine, California 92697 (United States); Bao, J. [Department of Physics and Astronomy, University of California Irvine, California 92697 (United States); Fusion Simulation Center, Peking University, Beijing 100871 (China); Wei, X. S.; Xiao, Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Zhang, W. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, G. Y. [Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2015-10-15

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.

  19. Verification of nonlinear particle simulation of radio frequency waves in tokamak

    International Nuclear Information System (INIS)

    Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity

  20. The Bernstein Operational Matrices for Solving the Fractional Quadratic Riccati Differential Equations with the Riemann-Liouville Derivative

    Directory of Open Access Journals (Sweden)

    Dumitru Baleanu

    2013-01-01

    Full Text Available We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the proposed method are illustrated by several examples.

  1. Excitation of parametric instabilities by radio waves in the ionosphere.

    Science.gov (United States)

    Fejer, J. A.; Leer, E.

    1972-01-01

    The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.

  2. Bernstein's theory of pedagogic discourse as a theoretical framework for educators studying student radiographers' interpretation of normality vs. abnormality

    International Nuclear Information System (INIS)

    Purpose: To acknowledge the tacit rules underpinning academic practice of undergraduate radiographers in determining normality vs. abnormality when appraising skeletal images. Methodology: Twelve students were interviewed (individually) using in-depth semi-structured questions. Interviews were mediated through a PowerPoint presentation containing two digital X-ray images. Each image was based on a level of expertise; the elementary (Case 1) and the complicated (Case 2). The questions were based on regular ‘frames’ created from observing tutor–student contact in class, and then validated through a group interview. Bernstein's theory of pedagogic discourse was then utilised as a data analysis instrument to determine how third year diagnostic radiography students interpreted X-ray images, in relation to the ‘recognition’ and ‘realisation’ rules of the Educational Theoretical Framework. Conclusion: Bernstein's framework has made it possible to specify, in detail, how issues and difficulties are formed at the level of the acquirer during interpretation. The recognition rules enabled students to meaningfully recognise what trauma characteristics can be associated with the image and the demands of a detailed scrutiny so as to enact a competent interpretation. Realisation rules, made it possible for students to establish their own systematic approach and realise legitimate meanings of normality and abnormality. Whereas obvious or visible trauma generated realisation rules (represented via homogenous terminology), latent trauma authorised students to deviate from legitimate meanings. The latter rule, in this context, has directed attention to the student issue of visioning abnormality when images are normal

  3. Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime

    Energy Technology Data Exchange (ETDEWEB)

    Ali Asgarian, M., E-mail: maliasgarian@ph.iut.ac.ir, E-mail: maa@msu.edu [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States); Parvazian, A.; Abbasi, M. [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Verboncoeur, J. P. [Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States)

    2014-09-15

    Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0} = 15 GHz, and maximum amplitude E{sub 0} = 10{sup 5 }V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling} = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ∼36% and 17%, respectively.

  4. Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime

    International Nuclear Information System (INIS)

    Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f0 = 15 GHz, and maximum amplitude E0 = 105 V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, Cmodelling = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around 36% and 17%, respectively

  5. MORA DEBITORIS AND THE PRINCIPLE OF STRICT LIABILITY: SCOIN TRADING (PTY LTD V BERNSTEIN 2011 2 SA 118 (SCA

    Directory of Open Access Journals (Sweden)

    SJ Cornelius

    2012-12-01

    Full Text Available Parties generally enter into contractual relations with the sincere intention to fulfil all the obligations created in terms of their contract. However, for various reasons, parties sometimes do not comply with the terms of their contract. Where a party fails to perform at the agreed date and time or after receiving a demand from the creditor, the debtor commits breach of contract in the form of mora debitoris. The question then arises whether or not a debtor would also commit breach in the form of mora debitoris if the delay in performance cannot be attributed to wilful disregard of the contract or a negligent failure to perform on time. This was the question which the court had to determine in Scoin Trading (Pty Ltd v Bernstein.

  6. Effective action approach to wave propagation in scalar QED plasmas

    CERN Document Server

    Shi, Yuan; Qin, Hong

    2016-01-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...

  7. Wave-particle resonance condition test for ion-kinetic waves in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Narita, Y. [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.; Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Marsch, E. [Kiel Univ. (Germany). Inst fuer Experimentelle und Angewandte Physik; Perschke, C. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Glassmeier, K.H. [Technische Univ. Braunschweig (Germany). Inst. fuer Geophysik und extraterrestrische Physik; Max-Planck-Institut fuer Sonnensystemforschung, Goettingen (Germany); Motschmann, U. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Deutsches Zentrum fuer Luft- und Raumfahrt, Berlin (Germany). Inst. fuer Planetenforschung; Comisel, H. [Technische Univ. Braunschweig (Germany). Inst. fuer Theoretische Physik; Institute for Space Sciences, Bucharest-Magurele (Romania)

    2016-08-01

    Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ionkinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1AU (astronomical unit).

  8. "Spectral Implementation" for creating a labeled pseudo-pure state and the Bernstein-Vazirani's algorithm in a four-qubit nuclear magnetic resonance quantum processor

    OpenAIRE

    Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin

    2002-01-01

    A quantum circuit is introducted to describe the preparation of a labeled pseudo-pure state by mutiplet-component excitation scheme which has been experimentally implemented on a 4-qubit nuclear magnetic resonance quantum processor. Meanwhile, we theoretically analyze and numerically inverstigate the low-power selective single-pulse implementation of a controlled-rotation gate, which manifests its validity in our experiment. Based on the labeled pseudo-pure state prepared, a 3-qubit Bernstein...

  9. Physical design of MW-class steady-state spherical tokamak, QUEST

    International Nuclear Information System (INIS)

    QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, Ip=20-30 kA on open divertor configuration and phase II: steady state operation with Ip = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)

  10. Recontextualização da simulação clínica em enfermagem baseada em Basil Bernstein: semiologia da prática pedagógica Recontextualización de la simulación de enfermería clínica basada en Basil Bernstein: la semiología de la práctica pedagógica Recontextualization of Nursing clinical simulation based on Basil Bernstein: semiology of pedagogical practice

    Directory of Open Access Journals (Sweden)

    Mateus Casanova dos Santos

    2010-12-01

    Full Text Available O presente artigo é um estudo de caso investigativo de caráter participante e descritivo, a partir da vivência pedagógica no disparador de aprendizagem Simulação em Enfermagem, do segundo semestre do primeiro ciclo da graduação da Faculdade de Enfermagem (FEn da Universidade Federal de Pelotas (UFPel, onde se desenvolve a simulação clínica de semiologia e semiotécnica em Enfermagem. O objetivo é estudar a recontextualização da prática pedagógica da Simulação com base em teorizações do sociólogo da educação Basil Bernstein, contribuindo para o processo de aperfeiçoamento do planejamento de ensino e, especialmente, da avaliação deste disparador de aprendizagem. A partir das reflexões deste estudo, observa-se a teorização de Bernstein como uma potente ferramenta semiológica das práticas pedagógicas, a qual contribui para o planejamento e análise do dispositivo pedagógico curricular.Este artículo es un caso de estudio de carácter descriptivo y de investigación participante, desde la experiencia educativa de aprendizaje en el gatillo Simulación en Enfermería, de la segunda mitad del primer ciclo de la Escuela Enfermería (FEN de la Universidade Federal de Pelotas (UFPel donde se desarrolla la simulación de la semiología clínica y la semiótica en Enfermería. El objetivo es estudiar la recontextualización de la práctica pedagógica de teorías basadas en la simulación del sociólogo de la educación Basil Bernstein, contribuyendo al proceso de mejora de la educación, planificación y aprendizaje, especialmente la evaluación de gatillo. De las reflexiones de este estudio, existe la teoría de Bernstein como una poderosa herramienta de semiótica prácticas pedagógicas, lo que contribuye a la planificación y el análisis de dispositivos educativos curriculares.This article is a case study of investigative and descriptive participant character, from the educational experience of learning in the trigger

  11. Harmonics Effect on Ion-Bulk Waves in CH Plasmas

    CERN Document Server

    Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T

    2016-01-01

    The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $kBernstein-Greene-Kruskal-like waves with harmonics superposition. Only when the wave number $k$ of IBk waves satisfies $k_{lor}/2\\lesssim k\\leq k_{lor}$, can a large-amplitude and mono-frequency IBk wave be excited. These results give a guidance for a novel scattering mechanism related to IBk waves in the field of laser plasma interaction.

  12. On a New Family of Trigonometric Summation Polynomials of Bernstein Type%关于一类新的Bernstein型三角求和多项式

    Institute of Scientific and Technical Information of China (English)

    袁学刚; 何甲兴

    2006-01-01

    A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others.It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞, +∞) as n →∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n2r+4.

  13. PIC Simulations of the Ion Flow Induced by Radio Frequency Waves in Ion Cyclotron Frequency Range

    International Nuclear Information System (INIS)

    Full text: PIC simulations have been conducted to study the nonlinear interactions of plasmas and radio frequency wave in the ion cyclotron frequency range. It is found that in the presence of the mode conversion from an electromagnetic wave into an electrostatic wave (ion Bernstein wave), the ions near the lower hybrid resonance can be heated by nonlinear Landau damping via the parametric decay. As a result, the ion velocity distribution in the poloidal direction becomes asymmetric near the lower hybrid resonance and an ion poloidal flow is thus produced. The flow directions are opposite on both sides of the lower hybrid resonance. The poloidal flow is mainly produced by the nonlinear Reynolds stress and the electromagnetic force of the incident wave in the radial direction rather than poloidal direction predicted by the existing theories. (author)

  14. Uvidet heruvima / Boris Bernstein

    Index Scriptorium Estoniae

    Bernštein, Boriss, 1924-

    2006-01-01

    Inglite kujundi loomisest euroopalike traditsioonide baasil. Inglite kujutamine Euroopa kunstis. Vaadeldud Jean Fouquet, Benozzo Gozzoli, Raffaeli, Luigi Bernini, Aleksandr Ivanovi, Alek Rapoporti töid

  15. Verification of particle simulation of radio frequency waves in fusion plasmas

    International Nuclear Information System (INIS)

    Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions

  16. Wave turbulence

    Science.gov (United States)

    Nazarenko, Sergey

    2015-07-01

    Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.

  17. Stimulated Electromagnetic Emission Indicator of Glow Plasma Discharges from Ionospheric HF Wave Transmissions with HAARP

    Science.gov (United States)

    Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.

    2012-12-01

    High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.

  18. Effective-action approach to wave propagation in scalar QED plasmas

    Science.gov (United States)

    Shi, Yuan; Fisch, Nathaniel J.; Qin, Hong

    2016-07-01

    A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we give two examples: a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasmas are cold. These waves account for cyclotron absorption features observed in spectra of x-ray pulsars. Moreover, cutoff frequencies of the two nondegenerate electromagnetic waves are red-shifted by different amounts. These corrections need to be taken into account in order to correctly interpret diagnostic results in laser plasma experiments.

  19. Plasma waves

    CERN Document Server

    Swanson, DG

    1989-01-01

    Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th

  20. Nonlinear phenomena in RF wave propagation in magnetized plasma: A review

    International Nuclear Information System (INIS)

    Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7

  1. Nonlinear phenomena in RF wave propagation in magnetized plasma: A review

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, Miklos

    2015-12-10

    Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].

  2. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....

  4. Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.;

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....

  5. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  6. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Knapp, W.;

    2006-01-01

    Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during...

  7. Wave phenomena

    CERN Document Server

    Towne, Dudley H

    1988-01-01

    This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.

  8. Wave turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.

    2011-07-01

    Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)

  9. Bayesian semiparametric power spectral density estimation in gravitational wave data analysis

    CERN Document Server

    Edwards, Matthew C; Christensen, Nelson

    2015-01-01

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.

  10. Bayesian semiparametric power spectral density estimation with applications in gravitational wave data analysis

    Science.gov (United States)

    Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson

    2015-09-01

    The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.

  11. Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik;

    2008-01-01

    Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...

  12. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Brorsen, Michael; Frigaard, Peter

    Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....

  13. Microfluidic waves.

    Science.gov (United States)

    Utz, Marcel; Begley, Matthew R; Haj-Hariri, Hossein

    2011-11-21

    The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s(-1) result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667

  14. Wave Solutions

    CERN Document Server

    Christov, Ivan C

    2012-01-01

    In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...

  15. Observations of purely compressional waves in the upper ULF band observed by the Van Allen Probes

    Science.gov (United States)

    Posch, J. L.; Engebretson, M. J.; Johnson, J.; Kim, E. H.; Thaller, S. A.; Wygant, J. R.; Kletzing, C.; Smith, C. W.; Reeves, G. D.

    2014-12-01

    Purely compressional electromagnetic waves, also denoted fast magnetosonic waves, equatorial noise, and ion Bernstein modes, can both heat thermal protons and accelerate electrons up to relativistic energies. These waves have been observed both in the near-equatorial region in the inner magnetosphere and in the plasma sheet boundary layer. Although these waves have been observed by various types of satellite instruments (DC and AC magnetometers and electric field sensors), most recent studies have used data from AC sensors, and many have been restricted to frequencies above ~50 Hz. We report here on a survey of ~200 of these waves, based on DC electric and magnetic field data from the EFW double probe and EMFISIS fluxgate magnetometer instruments, respectively, on the Van Allen Probes spacecraft during its first two years of operation. The high sampling rate of these instruments makes it possible to extend observational studies of the lower frequency population of such waves to lower L shells than any previous study. These waves, often with multiple harmonics of the local proton gyrofrequency, were observed both inside and outside the plasmapause, in regions with plasma number densities ranging from 10 to >1000 cm-3. Wave occurrence was sharply peaked near the magnetic equator and occurred at L shells from below 2 to ~6 (the spacecraft apogee). Waves appeared at all local times but were more common from noon to dusk. Outside the plasmapause, occurrence maximized broadly across noon. Inside the plasmapause, occurrence maximized in the dusk sector, in an extended plasmasphere. Every event occurred in association with a positive gradient in the HOPE omnidirectional proton flux in the range between 2 keV and 10 keV. The Poynting vector, determined for 8 events, was in all cases directed transverse to B, but with variable azimuth, consistent with earlier models and observations.

  16. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaokang, E-mail: xyang@trialphaenergy.com; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, CA 92688 (United States); Koehn, Alf [IGVP, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Petrov, Yuri [CompX, P.O. Box 2672, Del Mar, CA 92014 (United States)

    2015-12-10

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.

  17. A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary

    2014-04-01

    The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.

  18. Feasibility study of microwave electron heating on the C-2 field-reversed configuration device

    International Nuclear Information System (INIS)

    Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition

  19. Efficient Wave Energy Amplification with Wave Reflectors

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Frigaard, Peter Bak

    2002-01-01

    Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130...... for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....

  20. Janus Waves

    CERN Document Server

    Papazoglou, Dimitris G; Tzortzakis, Stelios

    2016-01-01

    We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.

  1. Alfven wave

    International Nuclear Information System (INIS)

    Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7

  2. Wave Measurements

    OpenAIRE

    Bazzi, Tomaso; Di Memmo, Alberico; Palini, Massimo; Sellini, Massimiliano; Fabbri, Luigi

    2011-01-01

    Purpose of the present report is the summary of the experimental campaign performed at INSEAN facilities. This campaign has been oriented to analyze the classical wave measurement systems and, furthermore, to validate the results of the numerical models. A devoted paragraph describes the main features of a new innovative and non intrusive methodology for the wave measurements aimed to perform both model and ship scale trials.

  3. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....

  4. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Andersen, Thomas Lykke

    Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....

  5. Blast Waves

    CERN Document Server

    Needham, Charles E

    2010-01-01

    The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...

  6. Nonlinear wave-wave interactions and wedge waves

    Institute of Scientific and Technical Information of China (English)

    Ray Q.Lin; Will Perrie

    2005-01-01

    A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.

  7. Wave Generation Theory

    DEFF Research Database (Denmark)

    Frigaard, Peter; Høgedal, Michael; Christensen, Morten

    The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....

  8. Shallow Water Waves and Solitary Waves

    CERN Document Server

    Hereman, Willy

    2013-01-01

    Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.

  9. Wave Dragon

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter

    På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...

  10. Observations of Electrostatic and Electromagnetic Waves in the Earth's Magnetosphere.

    Science.gov (United States)

    Filbert, Paul Charles

    Using data from the University of Minnesota Plasma Wave Experiment aboard the IMP-6 (Explorer 43) satellite, three topics are addressed. The first concerns the wave lengths of certain electrostatic waves in the earth's magnetosphere. Using the fact that the X and Y dipole antennas on IMP-6 are of unequal length, the antenna response to electrostatic waves is calculated as a function of wavelength. This result is used to experimentally determine the wavelengths of Bernstein mode waves observed just beyond the plasmapause. These wavelengths are then used in conjunction with present theoretical models to determine the energy of the electrons driving these waves and a range of energies between (TURN) several tens to (TURN) several hundreds of electron volts is found. This procedure is also applied to Langmuir waves observed upstream of the earth's bow shock and the results are in good agreement with theoretical predictions. Second it is demonstrated that enhanced levels of the so-called continuum radiation are correlated with AE enhancements. In addition, a source region of continuum radiation is directly observed and movement of the source region is seen which is consistent with a cloud of electrons having been injected into the night side magnetosphere and undergoing gradient drifts in an eastward direction towards local dawn. This drift movement is then used to estimate the energy of the electrons which produce the observed continuum enhancement and a range between 10 kev to 50 kev is found. Spectral properties of the directly observed source are also presented, and indicate a high frequency spectral index of (TURN)f('-5.5). A new type of continuum radiation which correlates with TKR on a time scale of (TURN)1 minute is also observed and is found to have a source region distinct from that mentioned above. Third, a correlation between TKR and VLF auroral hiss has been observed for several high latitude passes of IMP-6 through the midnight auroral zone. This

  11. ECRH/EBWH system for NSTX-U

    Directory of Open Access Journals (Sweden)

    Hosea J.C.

    2012-09-01

    Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at an axial toroidal field of up to 1 T, about twice the field available on NSTX. A 28 GHz electron cylotron resonance heating (ECRH system is currently being planned for NSTX-U. A 1 MW 28 GHz gyrotron will be employed. Intially the system will use short, 10-50 ms, 1 MW pulses for ECRH-assisted discharge start-up. Later the pulse length will be extended to 1-5 s to study electron Bernstein wave heating (EBWH during the plasma current flat top. A mirror launcher will be used to couple microwave power to the plasma via O-mode to the slow X-mode to EBW (O-X-B double mode conversion. This paper presents a pre-conceptual design for the ECRH/EBWH system proposed for NSTX-U and includes ray tracing and Fokker-Planck modeling results for 28 GHz ECRH during plasma start-up and EBW heating and current drive during the plasma current flattop of a NSTX-U advanced H-mode plasma scenario.

  12. A maximum entropy based Abel inversion for bolometer measurements on WEGA

    International Nuclear Information System (INIS)

    Maximum-entropy based Abel inversion is applied for reconstructing the radial radiation profiles in the WEGA stellarator, where a multi-channel bolometer system is installed. The inversion procedure has been tested by forward calculations of presumed radiation profiles, taking the realistic geometries of the individual view channels into account. After exact reproduction of the input profiles, Gaussian-noise is added to the line-integrated signals of each channel, in order to check the sensitivity of the inverse results to errors in the raw signals. The contribution presents detailed results of this analysis. The inversion method has been used for data processing of the WEGA bolometer system, which has become a standard diagnostic tool for measuring the radiation distributions. As, in the WEGA plasmas, the radiation is mainly contributed by the working gas itself, the radiation distribution reflects the profiles of the plasma parameters. Thus, the bolometer has the potential of providing additional information on the plasma pressure profile reflecting the power deposition of the ECR-heating. Recently, strongly peaked radiation profiles were observed in over-dense plasmas heated by electron Bernstein waves (EBWs). This is believed to be attributed to a centrally peaked power deposition of the EBWs heating. Results in this regard are discussed.

  13. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  14. Wave Star

    DEFF Research Database (Denmark)

    Kramer, Morten; Frigaard, Peter; Brorsen, Michael

    Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....

  15. Gravitational waves

    CERN Document Server

    Ciufolini, I; Moschella, U; Fre, P

    2001-01-01

    Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.

  16. Shock Waves

    CERN Document Server

    Jiang, Z

    2005-01-01

    The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.

  17. Wave Propagation

    CERN Document Server

    Ferrarese, Giorgio

    2011-01-01

    Lectures: A. Jeffrey: Lectures on nonlinear wave propagation.- Y. Choquet-Bruhat: Ondes asymptotiques.- G. Boillat: Urti.- Seminars: D. Graffi: Sulla teoria dell'ottica non-lineare.- G. Grioli: Sulla propagazione del calore nei mezzi continui.- T. Manacorda: Onde nei solidi con vincoli interni.- T. Ruggeri: "Entropy principle" and main field for a non linear covariant system.- B. Straughan: Singular surfaces in dipolar materials and possible consequences for continuum mechanics

  18. Impact of Wave Dragon on Wave Climate

    OpenAIRE

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten; Kofoed, Jens Peter

    2006-01-01

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator.

  19. Impact of Wave Dragon on Wave Climate

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Tedd, James; Kramer, Morten;

    This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....

  20. Making Waves: Seismic Waves Activities and Demonstrations

    Science.gov (United States)

    Braile, S. J.; Braile, L. W.

    2011-12-01

    The nature and propagation of seismic waves are fundamental concepts necessary for understanding the exploration of Earth's interior structure and properties, plate tectonics, earthquakes, and seismic hazards. Investigating seismic waves is also an engaging approach to learning basic principles of the physics of waves and wave propagation. Several effective educational activities and demonstrations are available for teaching about seismic waves, including the stretching of a spring to demonstrate elasticity; slinky wave propagation activities for compressional, shear, Rayleigh and Love waves; the human wave activity to demonstrate P- and S- waves in solids and liquids; waves in water in a simple wave tank; seismic wave computer animations; simple shake table demonstrations of model building responses to seismic waves to illustrate earthquake damage to structures; processing and analysis of seismograms using free and easy to use software; and seismic wave simulation software for viewing wave propagation in a spherical Earth. The use of multiple methods for teaching about seismic waves is useful because it provides reinforcement of the fundamental concepts, is adaptable to variable classroom situations and diverse learning styles, and allows one or more methods to be used for authentic assessment. The methods described here have been used effectively with a broad range of audiences, including K-12 students and teachers, undergraduate students in introductory geosciences courses, and geosciences majors.

  1. Geometrical vs wave optics under gravitational waves

    CERN Document Server

    Angélil, Raymond

    2015-01-01

    We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...

  2. Response to “Comment on ‘Generalized dispersion relation for electron Bernstein waves in a non-Maxwellian magnetized anisotropic plasma’” [Phys. Plasmas 22, 024701 (2015)

    International Nuclear Information System (INIS)

    Sharifi and Parvazian have presented comments on our paper by questioning the validity of the results. The plots of different curves of kappa and (r, q) distributions produced by them are incorrect. They pretended as if we have made claim that our results are valid for large arguments of product of Bessel Function, whereas Neumann's series expansion is valid only for small arguments. In our paper, no claim is made that the results are valid for all values of b. Our results are valid only for b ≪ 1. The results plotted by the commenters are incorrect and in this response we are presenting correct plots of dispersion curves

  3. Full-wave feasibility study of anti-radar diagnostic of magnetic field based on O-X mode conversion and oblique reflectometry imaging

    Science.gov (United States)

    Meneghini, Orso; Volpe, Francesco A.

    2016-11-01

    An innovative millimeter wave diagnostic is proposed to measure the local magnetic field and edge current as a function of the minor radius in the tokamak pedestal region. The idea is to identify the direction of minimum reflectivity at the O-mode cutoff layer. Correspondingly, the transmissivity due to O-X mode conversion is maximum. That direction, and the angular map of reflectivity around it, contains information on the magnetic field vector B at the cutoff layer. Probing the plasma with different wave frequencies provides the radial profile of B. Full-wave finite-element simulations are presented here in 2D slab geometry. Modeling confirms the existence of a minimum in reflectivity that depends on the magnetic field at the cutoff, as expected from mode conversion physics, giving confidence in the feasibility of the diagnostic. The proposed reflectometric approach is expected to yield superior signal-to-noise ratio and to access wider ranges of density and magnetic field, compared with related radiometric techniques that require the plasma to emit electron Bernstein waves. Due to computational limitations, frequencies of 10-20 GHz were considered in this initial study. Frequencies above the edge electron-cyclotron frequency (f > 28 GHz here) would be preferable for the experiment, because the upper hybrid resonance and right cutoff would lie in the plasma, and would help separate the O-mode of interest from spurious X-waves.

  4. Full-wave Feasibility Study of Magnetic Diagnostic based on O-X Mode Conversion and Oblique Reflectometry Imaging

    Science.gov (United States)

    Volpe, F. A.; Choi, M.; Patel, Y.; Meneghini, O.

    2013-10-01

    We present initial two-dimensional full-wave modeling of an innovative diagnostic of the magnetic field vector as a function of the minor radius in the pedestal region. An angularly broad millimeter-wave beam of ordinary (O) polarization is obliquely injected in the magnetized plasma; part of it converts in the extraordinary (X) mode at the O-mode cutoff, the rest is reflected. The reflected beam pattern, measured with an array of receivers, contains information on the angular-dependent mode conversion, which contains information on the magnetic pitch angle at the cutoff. Measurements at various frequencies provide radially resolved measurements of pitch angle. The new technique proposed does not require the plasma to be an overdense emitter of Electron Bernstein Waves and is applicable whenever reflectometry is applicable. Simulations performed with the finite-element COMSOL Multiphysics code in ``DIII-D-like'' plasma slabs confirmed the presence of a minimum in reflectivity of an externally injected O-mode beam. The dependence of such reflectivity ``hole'' upon magnetic field is under study. Future inclusion of toroidal ripple, density and magnetic fluctuation effects, as well as possible extensions to a fully three-dimensional diagnostic of the magnetic field will be discussed. Current address: Imsol-X.

  5. Watching Gravitational Waves

    OpenAIRE

    Moortgat, Joachim

    2001-01-01

    In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. ...

  6. Coronal Waves and Oscillations

    OpenAIRE

    Nakariakov Valery M.; Verwichte Erwin

    2005-01-01

    Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD) wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves), theoretical modelling of interactio...

  7. 约束、具象、引用:查尔斯·伯恩斯坦的《影子时代》对历史的重构%Constraint,Concrete,Citation:Refiguring History in CHARLES Bernstein's Shadowtime

    Institute of Scientific and Technical Information of China (English)

    查尔斯·伯恩斯坦

    2008-01-01

    In recent years, the abstraction and non-referentiality of Language Poetry has given way to a more intertextual and intellectual poetry-a poetry that interrogates history and the literature of the past so as to come to a better understanding of the present. In his "thought opera" about the great critic Walter Benjamin, Charles Bernstein uses elaborate language games, literary echoes, citations, constraints, and "found text" to rethink the life and aesthetic of the deeply conflicted German intellectual, whose career was framed by the two World Wars. The libretto Shadowtime, which can be read independently of the music, presents both a loving but also ironic portrait of Benjamin-a character as deeply flawed as he is sympathetic. Bernstein's language, often drawn directly from specific Benjamin texts, like "Hashish at Marseilles," is elaborately deconstructed so as to produce a complex network of puns, paragrams, and aphorisms. But this "poem including history" is also very funny-full of wit and comedy so that it has broad audience appeal. It provides a paradigm for what is happening in avant-garde American poetry today: the use of intermedia, sound play, and semantically charged language that inherits many of the features of the Language movement but is more meditative and thought-provoking.%近年来,语言诗的抽象性与非指示性已经让位于一种更具有互文性和智性的诗歌,这种诗歌通过考问历史和历史上的文学以求对当下获得更好的理解.在关于两战期间德国伟大的批评家瓦尔特·本雅明的"思想歌剧"中,查尔斯·伯恩斯坦运用了精心制作的语言游戏、文学回声、引用、约束以及"发现的文本"来重新评论这位充满矛盾的德国学者的生平和美学观.即便独立于音乐之外进行阅读,该歌剧剧本深情而又不乏反讽地刻画出本雅明既有瑕疵又感人至深的人物性格.伯恩斯坦常常直接从本雅明的"马赛的麻药"等具体文本中提取

  8. Edge Ion Heating by Launched High Harmonic Fast Waves in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    T.M. Biewer; R.E. Bell; S.J. Diem; C.K. Phillips; J.R. Wilson; P.M. Ryan

    2004-12-01

    A new spectroscopic diagnostic on the National Spherical Torus Experiment (NSTX) measures the velocity distribution of ions in the plasma edge simultaneously along both poloidal and toroidal views. An anisotropic ion temperature is measured during high-power high harmonic fast wave (HHFW) radio-frequency (rf) heating in helium plasmas, with the poloidal ion temperature roughly twice the toroidal ion temperature. Moreover, the measured spectral distribution suggests that two populations of ions are present and have temperatures of typically 500 eV and 50 eV with rotation velocities of -50 km/s and -10 km/s, respectively (predominantly perpendicular to the local magnetic field). This bi-modal distribution is observed in both the toroidal and poloidal views (for both He{sup +} and C{sup 2+} ions), and is well correlated with the period of rf power application to the plasma. The temperature of the hot component is observed to increase with the applied rf power, which was scanned between 0 and 4.3 MW . The 30 MHz HHFW launched by the NSTX antenna is expected and observed to heat core electrons, but plasma ions do not resonate with the launched wave, which is typically at >10th harmonic of the ion cyclotron frequency in the region of observation. A likely ion heating mechanism is parametric decay of the launched HHFW into an Ion Bernstein Wave (IBW). The presence of the IBW in NSTX plasmas during HHFW application has been directly confirmed with probe measurements. IBW heating occurs in the perpendicular ion distribution, consistent with the toroidal and poloidal observations. Calculations of IBW propagation indicate that multiple waves could be created in the parametric decay process, and that most of the IBW power would be absorbed in the outer 10 to 20 cm of the plasma, predominantly on fully stripped ions. These predictions are in qualitative agreement with the observations, and must be accounted for when calculating the energy budget of the plasma.

  9. The Wave Energy Device:Wave Dragon

    OpenAIRE

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period from 1998 to 2001 extensive testing on a scale 1:50 model was carried at Aalborg University. During the last two years, testing has started on a prototype of the Wave Dragon in Nissum Bredni...

  10. Inner Magnetosphere Simulations: Exploring Magnetosonic Wave Generation Conditions

    Science.gov (United States)

    Zaharia, S. G.; Jordanova, V. K.; MacDonald, E.; Thomsen, M. F.

    2012-12-01

    We investigate the conditions for magnetosonic wave generation in the near-Earth magnetosphere by performing numerical simulations with our newly improved self-consistent model, RAM-SCB. The magnetosonic (ion Bernstein) instability, a potential electron acceleration mechanism in the outer radiation belt, is driven by a positive slope in the ion distribution function perpendicular to the magnetic field, a so-called "velocity ring" distribution at energies above 1 keV. The formation of such distributions is dependent on the interplay of magnetic and electric drifts, as well as ring current losses, and therefore its study requires a realistic treatment of both plasma and field dynamics. The RAM-SCB model represents a 2-way coupling of the kinetic ring current-atmosphere interactions model (RAM) with a 3D plasma equilibrium code. In RAM-SCB the magnetic field is computed in force balance with the RAM anisotropic pressures and then returned to RAM to guide the particle dynamics. RAM-SCB thus properly treats both the kinetic drift physics crucial in the inner magnetosphere and the self-consistent interaction between plasma and magnetic field (required due to the strong field depressions during storms, depressions that strongly affect particle drifts). In order to provide output at geosynchronous locations, recently the RAM-SCB boundary has been expanded to 9 RE from Earth, with plasma pressure and magnetic field boundary conditions prescribed there from empirical models. This presentation will analyze, using event simulations with the improved model and comparisons with LANL MPA geosynchronous observations, the occurrence and location of magnetosonic unstable regions in the inner magnetosphere and their dependence on the following factors: 1). geomagnetic activity level (including quiet time, storm main phase and recovery); 2). magnetic field self-consistency (stretched vs. dipole fields). We will also discuss the physical mechanism for the occurrence of the velocity

  11. Waves in the seas

    Digital Repository Service at National Institute of Oceanography (India)

    Varkey, M.J.

    Not all sea waves look alike in form. Scientists, in fact, classify all waves into definite groups, which can be simulated on a computer using specific models. Thus there are many types of wave forms on the sea surface like regular sinusoidal waves...

  12. Financial Rogue Waves

    International Nuclear Information System (INIS)

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  13. Financial Rogue Waves

    Science.gov (United States)

    Yan, Zhen-Ya

    2010-11-01

    We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black—Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.

  14. Waves in inhomogeneous media

    NARCIS (Netherlands)

    Gerritsen, S.

    2007-01-01

    In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity

  15. Studies on seismic waves

    Institute of Scientific and Technical Information of China (English)

    张海明; 陈晓非

    2003-01-01

    The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.

  16. Wave Data Analysis

    DEFF Research Database (Denmark)

    Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.

    1998-01-01

    The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....

  17. A Comparison of Nature Waves and Model Waves with Special Reference to Wave Grouping

    DEFF Research Database (Denmark)

    Burcharth, Hans F.

    This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution.......This paper represents a comparative analyses of the occurrence of wave grouping in field storm waves and laboratory waves with similar power spectra and wave height distribution....

  18. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  19. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  20. Gravity wave transmission diagram

    Science.gov (United States)

    Tomikawa, Yoshihiro

    2016-07-01

    A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.

  1. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428

  2. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  3. Instability of Wave Trains and Wave Probabilities

    Science.gov (United States)

    Babanin, Alexander

    2013-04-01

    Centre for Ocean Engineering, Science and Technology, Swinburne University of Technology, Melbourne, Australia, ababanin@swin.edu.au Design criteria in ocean engineering, whether this is one in 50 years or one in 5000 years event, are hardly ever based on measurements, and rather on statistical distributions of relevant metocean properties. Of utmost interest is the tail of distribution, that is rare events such as the highest waves with low probability. Engineers have long since realised that the superposition of linear waves with narrow-banded spectrum as depicted by the Rayleigh distribution underestimates the probability of extreme wave heights and crests, which is a critical shortcoming as far as the engineering design is concerned. Ongoing theoretical and experimental efforts have been under way for decades to address this issue. Typical approach is the treating all possible waves in the ocean or at a particular location as a single ensemble for which some comprehensive solution can be obtained. The oceanographic knowledge, however, now indicates that no single and united comprehensive solution is available. We would expect the probability distributions of wave height to depend on a) whether the waves are at the spectral peak or at the tail; b) on wave spectrum and mean steepness in the wave field; c) on the directional distribution of the peak waves; d) on whether the waves are in deep water, in intermediate depth or in shallow water; e) on wave breaking; f) on the wind, particularly if it is very strong, and on the currents if they have suitable horizontal gradients. Probability distributions in the different circumstances according to these groups of conditions should be different, and by combining them together the inevitable scatter is introduced. The scatter and the accuracy will not improve by increasing the bulk data quality and quantity, and it hides the actual distribution of extremes. The groups have to be separated and their probability

  4. Long Waves Associated with Bichromatic Waves

    Institute of Scientific and Technical Information of China (English)

    DONG Guohai(董国海); YE Wenya(叶文亚); Nicholas Dodd

    2001-01-01

    A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method withTime-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number ofcomputational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave)energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The modeldescribed in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromaticwaves.

  5. Study of wave-particle interaction from the linear regime to dynamical chaos in a magnetized plasma

    International Nuclear Information System (INIS)

    Deterministic chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The target plasma is created by a barium Q-source, guaranteeing low fluctuation levels and a high degree of uniformity over an extended plasma volume. Characteristics of the background plasma are investigated by a variety of diagnostic techniques, including laser induced fluorescence (LIF) and optical tagging (OT). Particular tagging schemes and specific theoretical approaches to data interpretation (both for LIF and OT) have been developed during this work. As part of these background plasma studies, special attention has been devoted to an investigation of test-ion cross-field transport under different conditions. Test-ions are created and followed in their motion across the magnetic field lines via spin state tagging. In the unperturbed plasma this motion is found to be a diffusive process, supported by classical mechanisms, even in the presence of relatively high pressures of non-reactive neutral gases injected into the plasma volume. Electrostatic waves are excited using a ring antenna structure encircling the plasma column and electrically isolated from it. This system has been chosen on the basis of a comparative analysis of different ion wave launching methods, including the use of grids, inductive coils coupled electromagnetically to the plasma and modulated high frequency electron waves. Two modes propagating parallel to the magnetic field, one of which has two perpendicular components (ion Bernstein and ion acoustic-like waves), characterize the spectrum excited by the electrostatic ring antenna for a single frequency, f, chosen in the range fcici. (author) figs., tabs., 134 refs

  6. NEW WIND WAVE GROWTH RELATIONS

    Institute of Scientific and Technical Information of China (English)

    WU Shu-ping; HOU Yi-jun; YIN Bao-shu

    2004-01-01

    In the present paper combining the relationship between wave steepness and wave age with the significant wave energy balance equation for wind wave,a new wind wave growth relation is presented.Comparisons with the other existing wind wave growth relations show that the results in present paper accord better with the wind wave growth process.

  7. Of Winds and Waves

    CERN Document Server

    Kirk, John G

    2011-01-01

    Recent work on the properties of superluminal waves in pulsar winds is summarized. It is speculated that these waves play an important role in the termination shock that divides the wind from the surrounding nebula.

  8. Viscothermal wave propagation

    NARCIS (Netherlands)

    Nijhof, Marten Jozef Johannes

    2010-01-01

    In this work, the accuracy, efficiency and range of applicability of various (approximate) models for viscothermal wave propagation are investigated. Models for viscothermal wave propagation describe thewave behavior of fluids including viscous and thermal effects. Cases where viscothermal effects a

  9. Cold wave lotion poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...

  10. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  11. Detonation Wave Profile

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  12. Coronal Waves and Oscillations

    Directory of Open Access Journals (Sweden)

    Nakariakov Valery M.

    2005-07-01

    Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.

  13. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  14. Controlling spiral wave with target wave in oscillatory systems

    Institute of Scientific and Technical Information of China (English)

    Liu Fu-Cheng; Wang Xiao-Fei; Li Xue-Chen; Dong Li-Fang

    2007-01-01

    Spiral waves have been controlled by generating target waves with a localized inhomogeneity in the oscillatory medium. The competition between the spiral waves and target waves is discussed. The effect of the localized inhomogeneity size has also been studied.

  15. WAVE ENERGY CONVERSION SYSTEMS

    OpenAIRE

    Güney, Mükrimin Şevket

    2015-01-01

    It is a consensus to widespread use of renewable sources for disposal of environmental impact caused by fossil fuel consumption, and moreover to remedy of fossil fuels depletion. Wave power is a renewable kind of energy. Worldwide potential for wave power is enormous. Ocean appears to be an important source of wave energy. Various systems are developed and some new projects are implemented on this subject. Therefore, in this study has been presented the wave energy conversion systems in detai...

  16. Gravity-wave astronomy

    International Nuclear Information System (INIS)

    The theoretical basis for gravity-wave astronomy is described, along with the energy and momentum of gravitational fields. Other topics discussed include:- burst and periodic sources of gravitational waves, the cosmological stochastic background, and the detection of gravitational waves. (U.K.)

  17. Waves in unmagnetized plasma

    International Nuclear Information System (INIS)

    A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)

  18. Bragg grating rogue wave

    CERN Document Server

    Degasperis, Antonio; Aceves, Alejandro B

    2015-01-01

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.

  19. Wave and plasma heating

    International Nuclear Information System (INIS)

    In the field of wave heating absorption studies of plasma magnetic waves in the theta pinch are extended to axially inhomogeneous waves. In the Plasmaus 4 experiment direct plasma production has been accomplished for overcritical densities and high magnetic fields. The numerical methods developed at IPF for plasma simulation studies have been applied successfully to further problems. (orig./GG)

  20. Wave Dragon MW

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter

    Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...

  1. Solitary Wave and Wavelet

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Da; FU Zun-Tao; LIU Shi-Kuo; XIN Guo-Jun; LIANG Fu-Ming

    2004-01-01

    In this paper, it is shown that the homoclinic orbits exist in iterated functional systems, so do the solitary wave structures. Moreover, Harr father wavelet, Mexican Cap wavelet, and other closed form wavelets have this solitary wave structure, too. So wavelet is a certain kind of solitary wave.

  2. Noncommutative radial waves

    CERN Document Server

    Acatrinei, C S

    2001-01-01

    We study radial waves in (2+1)-dimensional noncommutative scalar field theory, using operatorial methods. The waves propagate along a discrete radial coordinate and are described by finite series deformations of Bessel-type functions. At large radius with respect to the noncomutativity scale $\\theta$, the waves behave like the usual commutative ones.

  3. Bragg grating rogue wave

    Energy Technology Data Exchange (ETDEWEB)

    Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)

    2015-06-12

    We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.

  4. Wave turbulence in annular wave tank

    Science.gov (United States)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  5. Fast wave current drive

    Energy Technology Data Exchange (ETDEWEB)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.

  6. Physics of waves

    CERN Document Server

    Elmore, William C

    1985-01-01

    Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam

  7. The Wave Dragon

    DEFF Research Database (Denmark)

    Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.;

    2000-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....

  8. Pulsars and Gravitational Waves

    CERN Document Server

    Lee, K J; Qiao, G J

    2011-01-01

    The relationship between pulsar-like compact stars and gravitational waves is briefly reviewed. Due to regular spins, pulsars could be useful tools for us to detect ~nano-Hz low-frequency gravitational waves by pulsar-timing array technique; besides, they would also be ~kilo-Hz high-frequency gravitational wave radiators because of their compactness. The wave strain of an isolate pulsar depends on the equation state of cold matter at supra-nuclear densities. Therefore, a real detection of gravitational wave should be very meaningful in gravity physics, micro-theory of elementary strong interaction, and astronomy.

  9. Questions about elastic waves

    CERN Document Server

    Engelbrecht, Jüri

    2015-01-01

    This book addresses the modelling of mechanical waves by asking the right questions about them and trying to find suitable answers. The questions follow the analytical sequence from elementary understandings to complicated cases, following a step-by-step path towards increased knowledge. The focus is on waves in elastic solids, although some examples also concern non-conservative cases for the sake of completeness. Special attention is paid to the understanding of the influence of microstructure, nonlinearity and internal variables in continua. With the help of many mathematical models for describing waves, physical phenomena concerning wave dispersion, nonlinear effects, emergence of solitary waves, scales and hierarchies of waves as well as the governing physical parameters are analysed. Also, the energy balance in waves and non-conservative models with energy influx are discussed. Finally, all answers are interwoven into the canvas of complexity.

  10. Blast wave energy diagnostic.

    Science.gov (United States)

    Tierney, Thomas E; Tierney, Heidi E; Idzorek, George C; Watt, Robert G; Peterson, Robert R; Peterson, Darrell L; Fryer, Christopher L; Lopez, Mike R; Jones, Michael C; Sinars, Daniel; Rochau, Gregory A; Bailey, James E

    2008-10-01

    The distance radiation waves that supersonically propagate in optically thick, diffusive media are energy sensitive. A blast wave can form in a material when the initially diffusive, supersonic radiation wave becomes transonic. Under specific conditions, the blast wave is visible with radiography as a density perturbation. [Peterson et al., Phys. Plasmas 13, 056901 (2006)] showed that the time-integrated drive energy can be measured using blast wave positions with uncertainties less than 10% at the Z Facility. In some cases, direct measurements of energy loss through diagnostic holes are not possible with bolometric and x-ray radiometric diagnostics. Thus, radiography of high compression blast waves can serve as a complementary technique that provides time-integrated energy loss through apertures. In this paper, we use blast waves to characterize the energy emerging through a 2.4 mm aperture and show experimental results in comparison to simulations. PMID:19044574

  11. The Wave Energy Device

    DEFF Research Database (Denmark)

    Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William

    2006-01-01

    The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power....... In the period from 1998 to 2001 extensive testing on a scale 1:50 model was carried at Aalborg University. During the last two years, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (scale 1:4.5 of the North Sea). The prototype was grid connected in May 2003 as the world...... is instrumented in order to be able to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. The paper gives the present status of the Nissum Bredning Prototype....

  12. Wave Overtopping Characteristics of the Wave Dragon

    DEFF Research Database (Denmark)

    Tedd, James; Kofoed, Jens Peter

    Simulation work has been used extensively with the Wave dragon and other overtopping devices to analyse the power production performance of them and to optimise the structural design and the control strategy. A time domain approach to this is well documented in Jakobsen & Frigaard 1999. Using...... measurements taken from the Wave Dragon Nissum Bredning prototype, some of the previous assumptions have been slightly modified and improved upon, so that the simulation method better represents the reality of what is occurring....

  13. Cycloidal Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  14. Electron cyclotron resonance heating in a short cylindrical plasma system

    Indian Academy of Sciences (India)

    Vipin K Yadav; D Bora

    2004-09-01

    Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ECR surfaces ( = 875.0 G and = 437.5 G) reside in the system. ECR plasma is produced with hydrogen with typical plasma density e as 3.2 × 1010 cm-3 and plasma temperature e between 9 and 15 eV. Various cut-off and resonance positions are identified in the plasma system. ECR heating (ECRH) of the plasma is observed experimentally. This heating is because of the mode conversion of X-wave to electron Bernstein wave (EBW) at the upper hybrid resonance (UHR) layer. The power mode conversion efficiency is estimated to be 0.85 for this system. The experimental results are presented in this paper.

  15. Propagating waves along spicules

    CERN Document Server

    Okamoto, Takenori J

    2011-01-01

    Alfv\\'enic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigated the statistical properties of Alfv\\'enic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high cadence observations of the Solar Optical Telescope (SOT) onboard \\emph{Hinode}. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules, and found: (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively). (2) The phase speed gradually increases with height. (3) Upward waves dominant at lower altitudes, standing waves at higher altitudes. (4) Standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase. (5) In some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule. (...

  16. Waves and compressible flow

    CERN Document Server

    Ockendon, Hilary

    2016-01-01

    Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications.  New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises.  Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science.   Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...

  17. Five Waves of Innovation

    DEFF Research Database (Denmark)

    Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2012-01-01

    Building on previous well-argued work by Jon Sundbo (1995a), on how innovation has evolved in three phases or waves since 1880, this paper’s contribution is extending the historical line, by offering arguments and explanations for two additional waves of innovation that explain the most recent...... developments. The paper also adds new interpretations of the previous work by Sundbo (1995a) in suggesting that the waves are triggered by societal and economic crisis. The result is a new theoretical and historical framework, proposing five waves of innovation triggered by societal and economic crises....... The innovation within each wave is constituted by different drivers of innovation: Cost-driven, development-driven, market-driven, user-driven, and remains of these waves are accumulated to form the complex character of today’s network-driven innovation....

  18. Analysis of Waves

    DEFF Research Database (Denmark)

    Frigaard, Peter; Andersen, Thomas Lykke

    The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...

  19. RADIATION WAVE DETECTION

    Science.gov (United States)

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  20. Gravitational wave astronomy

    CERN Document Server

    CERN. Geneva

    2016-01-01

    In the past year, the LIGO-Virgo Collaboration announced the first secure detection of gravitational waves. This discovery heralds the beginning of gravitational wave astronomy: the use of gravitational waves as a tool for studying the dense and dynamical universe. In this talk, I will describe the full spectrum of gravitational waves, from Hubble-scale modes, through waves with periods of years, hours and milliseconds. I will describe the different techniques one uses to measure the waves in these bands, current and planned facilities for implementing these techniques, and the broad range of sources which produce the radiation. I will discuss what we might expect to learn as more events and sources are measured, and as this field matures into a standard part of the astronomical milieu.

  1. Traveling wave laser system

    International Nuclear Information System (INIS)

    A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  2. Dyakonov surface waves

    DEFF Research Database (Denmark)

    Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;

    2008-01-01

    The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....

  3. Millimeter Wave Energy Harvesting

    OpenAIRE

    Khan, Talha Ahmed; Alkhateeb, Ahmed; Heath Jr, Robert W.

    2015-01-01

    The millimeter wave (mmWave) band, which is a prime candidate for 5G cellular networks, seems attractive for wireless energy harvesting. This is because it will feature large antenna arrays as well as extremely dense base station (BS) deployments. The viability of mmWave for energy harvesting though is unclear, due to the differences in propagation characteristics such as extreme sensitivity to building blockages. This paper considers a scenario where low-power devices extract energy and/or i...

  4. Traveling wave laser system

    International Nuclear Information System (INIS)

    The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)

  5. Propagation of waves

    CERN Document Server

    David, P

    2013-01-01

    Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear

  6. Wave Loads on Cylinders

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Frigaard, Peter

    1989-01-01

    Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....

  7. Non-diffractive waves

    CERN Document Server

    Hernandez-Figueroa, Hugo E; Recami, Erasmo

    2013-01-01

    This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy

  8. Wave groups in uni-directional surface-wave models

    NARCIS (Netherlands)

    Groesen, van E.

    1998-01-01

    Uni-directional wave models are used to study wave groups that appear in wave tanks of hydrodynamic laboratories; characteristic for waves in such tanks is that the wave length is rather small, comparable to the depth of the layer. In second-order theory, the resulting Nonlinear Schrödinger (NLS) eq

  9. Wave Mechanics or Wave Statistical Mechanics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.

  10. EMS wave logger data processing

    NARCIS (Netherlands)

    Verhagen, H.J.

    2013-01-01

    Waves can be measured in several ways. One way of measuring waves is by measuring the wave pressure at a certain depth using a pressure sensor and calculate the wave information from the pressure record. The EMS wave logger uses a Honeywell MLH 050 PGP 06A pressure sensor. The information is stored

  11. Design wave estimation considering directional distribution of waves

    Digital Repository Service at National Institute of Oceanography (India)

    SanilKumar, V.; Deo, M.C.

    The design of coastal and offshore structures requires design significant wave height having a certain return period. The commonly followed procedure to estimate the design wave height, does not give any consideration to the directions of waves...

  12. Learning Waves from Google

    OpenAIRE

    Maria Cristina ENACHE

    2010-01-01

    IThe purpose of this paper is to report on emerging technologies, especially those who are considering collaboration technologies. In 2009, there were a number of technologies with special implications on the educational environment. Such technology was launched in 2009 by Google and it is called Google Wave. Google Wave is a much hyped new Internet-based communications and collaboration platform.

  13. Vector financial rogue waves

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhenya, E-mail: zyyan@mmrc.iss.ac.cn [Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-11-21

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.

  14. Vector financial rogue waves

    International Nuclear Information System (INIS)

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.

  15. Generalized Maass Wave Forms

    OpenAIRE

    Mühlenbruch, Tobias; Raji, Wissam

    2012-01-01

    We initiate the study of generalized Maass wave forms, those Maass wave forms for which the multiplier system is not necessarily unitary. We then prove some basic theorems inherited from the classical theory of modular forms with a generalization of some examples from the classical theory of Maass forms.

  16. The Relativistic Wave Vector

    Science.gov (United States)

    Houlrik, Jens Madsen

    2009-01-01

    The Lorentz transformation applies directly to the kinematics of moving particles viewed as geometric points. Wave propagation, on the other hand, involves moving planes which are extended objects defined by simultaneity. By treating a plane wave as a geometric object moving at the phase velocity, novel results are obtained that illustrate the…

  17. Ship bow waves

    Institute of Scientific and Technical Information of China (English)

    NOBLESSE Francis; DELHOMMEAU Gerard; LIU Hua; WAN De-cheng; YANG Chi

    2013-01-01

    The bow wave generated by a ship hull that advances at constant speed in calm water is considered.The bow wave only depends on the shape of the ship bow (not on the hull geometry aft of the bow wave).This basic property makes it possible to determine the bow waves generated by a canonical family of ship bows defined in terms of relatively few parameters.Fast ships with fine bows generate overturning bow waves that consist of detached thin sheets of water,which are mostly steady until they hit the main free surface and undergo turbulent breaking up and diffusion.However,slow ships with blunt bows create highly unsteady and turbulent breaking bow waves.These two alternative flow regimes are due to a nonlinear constraint related to the Bernoulli relation at the free surface.Recent results about the overturning and breaking bow wave regimes,and the boundary that divides these two basic flow regimes,are reviewed.Questions and conjectures about the energy of breaking ship bow waves,and free-surface effects on flow circulation,are also noted.

  18. Developing de Broglie Wave

    Directory of Open Access Journals (Sweden)

    Zheng-Johansson J. X.

    2006-10-01

    Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.

  19. Noncommutative radial waves

    OpenAIRE

    Acatrinei, Ciprian

    2001-01-01

    We study radial waves in (2+1)-dimensional noncommutative scalar field theory, using operatorial methods. The waves propagate along a discrete radial coordinate and are described by finite series deformations of Bessel-type functions. At radius much larger than the noncommutativity scale $\\sqrt{\\theta}$, one recovers the usual commutative behaviour. At small distances, classical divergences are smoothed out by noncommutativity.

  20. Gravitational waves from inflation

    Science.gov (United States)

    Guzzetti, M. C.; Bartolo, N.; Liguori, M.; Matarrese, S.

    2016-09-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between tensor-to-scalar ratio r and tensor spectral index nT. In light of the prospects for (directly/indirectly) detecting primordial gravitational waves, we give the expected present-day gravitational radiation spectral energy-density, highlighting the main characteristics imprinted by the cosmic thermal history, and we outline the signatures left by gravitational waves on the Cosmic Microwave Background and some imprints in the Large-Scale Structure of the Universe. Finally, current bounds and prospects of detection for inflationary gravitational waves are summarized.

  1. Wave Reflection Model Tests

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Larsen, Brian Juul

    The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...

  2. Magnetospheric plasma waves

    International Nuclear Information System (INIS)

    A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)

  3. Folding Detonation Waves

    Directory of Open Access Journals (Sweden)

    V. P. Singh

    1983-01-01

    Full Text Available Propagation of converging detonation waves in solid explosive is discussed. Whitham's method modified for solid explosives is used. Using folding coordinates, it is found that the strength of detonation waves increases as it moves towards the centre of implosion.

  4. Project GlobWave

    Science.gov (United States)

    Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon

    2010-12-01

    The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.

  5. Vector financial rogue waves

    Science.gov (United States)

    Yan, Zhenya

    2011-11-01

    The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.

  6. Wave Reflection Coefficient Spectrum

    Institute of Scientific and Technical Information of China (English)

    俞聿修; 邵利民; 柳淑学

    2003-01-01

    The wave reflection coefficient frequency spectrum and directional spectrum for concrete face slope breakwaters and rubble mound breakwaters are investigated through physical model tests in the present study. The reflection coefficients of oblique irregular waves are analyzed by the Modified Two-Point Method (MTPM) proposed by the authors. The results show that the wave reflection coefficient decreases with increasing wave frequency and incident angle or decreasing structure slope. The reflection coefficient frequency spectrum and its variation with Iribarren number are given in this paper. The paper also suggests an empirical 3-dimensional reflection coefficient spectrum, i.e. reflection coefficient directional spectrum, which can be used to illustrate quantitatively the variation of reflection coefficient with the incident angle and the Iribarren number for oblique irregular waves.

  7. Sculpting Waves (Presentation Recording)

    Science.gov (United States)

    Engheta, Nader

    2015-09-01

    In electronics controlling and manipulating flow of charged carriers has led to design of numerous functional devices. In photonics, by analogy, this is done through controlling photons and optical waves. However, the challenges and opportunities are different in these two fields. Materials control waves, and as such they can tailor, manipulate, redirect, and scatter electromagnetic waves and photons at will. Recent development in condensed matter physics, nanoscience, and nanotechnology has made it possible to tailor materials with unusual parameters and extreme characteristics and with atomic precision and thickness. One can now construct structures much smaller than the wavelengths of visible light, thus ushering in unprecedented possibilities and novel opportunities for molding fields and waves at the nanoscale with desired functionalities. At such subwavelength scales, sculpting optical fields and waves provides a fertile ground for innovation and discovery. I will discuss some of the exciting opportunities in this area, and forecast some future directions and possibilities.

  8. Gravitational waves from inflation

    CERN Document Server

    Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino

    2016-01-01

    The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between t...

  9. Spin-Wave Diode

    Science.gov (United States)

    Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang

    2015-10-01

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.

  10. Ion Acoustic Waves in the Presence of Electron Plasma Waves

    DEFF Research Database (Denmark)

    Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens

    1977-01-01

    Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....

  11. Elimination of Spiral Waves and Competition between Travelling Wave Impulses and Spiral Waves

    Institute of Scientific and Technical Information of China (English)

    YUAN Guo-Yong; ZHANG Guang-Cai; WANG Guang-Rui; CHEN Shi-Gang; SUN Peng

    2005-01-01

    @@ The interaction between travelling wave impulses and spiral waves is studied and the results of their competition are related to the exciting period. From the results, it is known that the formation and development of spiral waves in cardiac tissue depend on the period by which the travelling wave impulses are excited. A method is proposed to eliminate spiral waves, which is easily operated.

  12. Wave phenomena in sunspots

    Science.gov (United States)

    Löhner-Böttcher, Johannes

    2016-03-01

    Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 - 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along the

  13. Abnormal Waves Modelled as Second-order Conditional Waves

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher

    2005-01-01

    The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...

  14. Collisional effects in weakly collisional plasmas: nonlinear electrostatic waves and recurrence phenomena

    Science.gov (United States)

    Camporeale, E.; Pezzi, O.; Valentini, F.

    2015-12-01

    The longstanding problem of collisions in plasmas is a very fascinating and huge topic in plasma physics. The 'natural' operator that describes the Coulombian interactions between charged particles is the Landau (LAN) integral operator. The LAN operator is a nonlinear, integro-differential and Fokker-Planck type operator which satisfies the H theorem for the entropy growth. Due to its nonlinear nature and multi-dimensionality, any approach to the solution of the Landau integral is almost prohibitive. Therefore collisions are usually modeled by simplified collisional operators. Here collisional effects are modeled by i) the one-dimensional Lenard-Bernstein (LB) operator and ii) the three-dimensional Dougherty (DG) operator. In the first case i), by focusing on a 1D-1V phase space, we study recurrence effects in a weakly collisional plasma, being collisions modeled by the LB operator. By decomposing the linear Vlasov-Poisson system in the Fourier-Hermite space, the recurrence problem is investigated in the linear regime of the damping of a Langmuir wave and of the onset of the bump-on-tail instability. The analysis is then confirmed and extended to the nonlinear regime through a Eulerian collisional Vlasov-Poisson code. Despite being routinely used, an artificial collisionality is not in general a viable way of preventing recurrence in numerical simulations. Moreover, recursive phenomena affect both the linear exponential growth and the nonlinear saturation of a linear instability by producing a fake growth in the electric field, thus showing that, although the filamentation is usually associated with low amplitude fluctuations contexts, it can occur also in nonlinear phenomena. On the other hand ii), the effects of electron-electron collisions on the propagation of nonlinear electrostatic waves are shown by means of Eulerian simulations in a 1D-3V (one dimension in physical space, three dimensions in velocity space) phase space. The nonlinear regime of the symmetric

  15. Wave-wave interactions in solar type III radio bursts

    International Nuclear Information System (INIS)

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at fpe, 2fpe and 3 fpe (fpe is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts

  16. Stress wave focusing transducers

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  17. A relationship between wave steepness and wave age for wind waves in deep water

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; DING Yun; GUAN Changlong

    2007-01-01

    Studying the relationship between wave steepness and wave age is import ant for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion relation of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the "3/2-power law" (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves.Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.

  18. Symmetric waves are traveling waves for a shallow water equation for surface waves of moderate amplitude

    OpenAIRE

    Geyer, Anna

    2016-01-01

    Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.

  19. The pendulum wave machine

    Science.gov (United States)

    Zetie, K. P.

    2015-05-01

    There are many examples on the internet of videos of ‘pendulum wave machines’ and how to make them (for example, www.instructables.com/id/Wave-Pendulum/). The machine is simply a set of pendula of different lengths which, when viewed end on, produce wave-like patterns from the positions of the bobs. These patterns change with time, with new patterns emerging as the bobs change phase. In this article, the physics of the machine is explored and explained, along with tips on how to build such a device.

  20. Vibrations and waves

    CERN Document Server

    Kaliski, S

    2013-01-01

    This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth

  1. SSG Wave Energy Converter

    DEFF Research Database (Denmark)

    Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter

    2008-01-01

    The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter...

  2. Ocean wave energy conversion

    CERN Document Server

    McCormick, Michael E

    2007-01-01

    This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa

  3. Water wave scattering

    CERN Document Server

    Mandal, Birendra Nath

    2015-01-01

    The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous

  4. Spin wave confinement

    CERN Document Server

    2008-01-01

    This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and

  5. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  6. Lattice Waves, Spin Waves, and Neutron Scattering

    Science.gov (United States)

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  7. Physical Investigation of Directional Wave Focusing and Breaking Waves in Wave Basin

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-xue; Keyyong HONG

    2005-01-01

    An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.

  8. Resonance wave pumping with surface waves

    Science.gov (United States)

    Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration

    2015-11-01

    The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.

  9. Exitation of Whistler Waves by a Helical Wave Structure

    DEFF Research Database (Denmark)

    Balmashnov, A. A.; Lynov, Jens-Peter; Michelsen, Poul;

    1981-01-01

    The excitation of whistler waves in a radial inhomogeneous plasma is investigated experimentally, using a slow-wave structure consisting of a helix of variable length surrounding the plasma column. The excited waves were observed to have a wave-vector parallel to the external magnetic field...

  10. Sound wave transmission (image)

    Science.gov (United States)

    When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...

  11. Magnetoresistive waves in plasmas

    International Nuclear Information System (INIS)

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed

  12. Theory of Gravitational Waves

    CERN Document Server

    Tiec, Alexandre Le

    2016-01-01

    The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...

  13. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  14. Traveling-wave photodetector

    Science.gov (United States)

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  15. Turbulence generation by waves

    Energy Technology Data Exchange (ETDEWEB)

    Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)

    1995-12-31

    The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.

  16. Waving in the rain

    CERN Document Server

    Cavaleri, Luigi; Bidlot, Jean-Raymond

    2015-01-01

    We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Following the coupling between meteorological and wave models, we derive that on the whole this should imply stronger wind and higher waves in the most energetic part of the spectrum. This is supported by numerical experiments. However, a verification based on the comparison between operational model results and measured data suggests that the opposite is true. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping. We suggest that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.

  17. Global Coronal Waves

    CERN Document Server

    Chen, P F

    2016-01-01

    After the {\\em Solar and Heliospheric Observatory} ({\\em SOHO}) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named "EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the {\\em Solar Dynamics Observatory} ({\\em SDO}) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal...

  18. NOAA NDBC SOS - waves

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...

  19. Gravitational-wave joy

    Science.gov (United States)

    seyithocuk; jjeherrera; eltodesukane; GrahamRounce; rloldershaw; Beaker, Dr; Sandhu, G. S.; Ophiuchi

    2016-03-01

    In reply to the news article on the LIGO collaboration's groundbreaking detection of gravitational waves, first predicted by Einstein 100 years ago, from two black holes colliding (pp5, 6-7 and http://ow.ly/Ylsyt).

  20. On Oceanic Rogue Waves

    OpenAIRE

    Fedele, Francesco

    2015-01-01

    We propose a new conceptual framework for the prediction of rogue waves and third-order space-time extremes of wind seas that relies on the Tayfun (1980) and Janssen (2009) models coupled with Adler-Taylor (2009) theory on the Euler characteristics of random fields. Extreme statistics of the Andrea rogue wave event are examined capitalizing on European Reanalysis (ERA)-interim data. A refinement of Janssen's (2003) theory suggests that in realistic oceanic seas characterized by short-crested ...

  1. Vortex waves in sunspots

    Science.gov (United States)

    López Ariste, A.; Centeno, R.; Khomenko, E.

    2016-06-01

    Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.

  2. Wave Equation Inversion of Skeletonized SurfaceWaves

    KAUST Repository

    Zhang, Zhendong

    2015-08-19

    We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.

  3. Exact solitary wave solutions of nonlinear wave equations

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.

  4. Wind generated rogue waves in an annular wave flume

    CERN Document Server

    Toffoli, A; Salman, H; Monbaliu, J; Frascoli, F; Dafilis, M; Stramignoni, E; Forza, R; Manfrin, M; Onorato, M

    2016-01-01

    We investigate experimentally the statistical properties of a wind-generated wave field and the spontaneous formation of rogue waves in an annular flume. Unlike many experiments on rogue waves, where waves are mechanically generated, here the wave field is forced naturally by wind as it is in the ocean. What is unique about the present experiment is that the annular geometry of the tank makes waves propagating circularly in an {\\it unlimited-fetch} condition. Within this peculiar framework, we discuss the temporal evolution of the statistical properties of the surface elevation. We show that rogue waves and heavy-tail statistics may develop naturally during the growth of the waves just before the wave height reaches a stationary condition. Our results shed new light on the formation of rogue waves in a natural environment.

  5. Robust Wave Resource Estimation

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    2013-01-01

    is necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....

  6. The gravitational wave decade

    Science.gov (United States)

    Conklin, John

    2016-03-01

    With the expected direct detection of gravitational waves by Advanced LIGO and pulsar timing arrays in the near future, and with the recent launch of LISA Pathfinder this can arguably be called the decade of gravitational waves. Low frequency gravitational waves in the mHz range, which can only be observed from space, provide the richest science and complement high frequency observatories on the ground. A space-based observatory will improve our understanding of the formation and growth of massive black holes, create a census of compact binary systems in the Milky Way, test general relativity in extreme conditions, and enable searches for new physics. LISA, by far the most mature concept for detecting gravitational waves from space, has consistently ranked among the nation's top priority large science missions. In 2013, ESA selected the science theme ``The Gravitational Universe'' for its third large mission, L3, under the Cosmic Visions Program, with a planned launch date of 2034. NASA has decided to join with ESA on the L3 mission as a junior partner and has recently assembled a study team to provide advice on how NASA might contribute to the European-led mission. This talk will describe these efforts and the activities of the Gravitational Wave Science Interest Group and the L3 Study Team, which will lead to the first space-based gravitational wave observatory.

  7. Traveling-Wave Tubes

    Science.gov (United States)

    Kory, Carol L.

    1998-01-01

    The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.

  8. Rain waves-wind waves interaction application to scatterometry

    Science.gov (United States)

    Kharif, C.; Giovanangeli, J. P.; Bliven, L.

    1989-01-01

    Modulation of a rain wave pattern by longer waves has been studied. An analytical model taking into account capillarity effects and obliquity of short waves has been developed. Modulation rates in wave number and amplitude have been computed. Experiments were carried out in a wave tank. First results agree with theoretical models, but higher values of modulation rates are measured. These results could be taken into account for understanding the radar response from the sea surface during rain.

  9. Evolution of Rogue Waves in Interacting Wave Systems

    OpenAIRE

    Grönlund, A.; Eliasson, B.; Marklund, M.

    2009-01-01

    Large amplitude water waves on deep water has long been known in the sea faring community, and the cause of great concern for, e.g., oil platform constructions. The concept of such freak waves is nowadays, thanks to satellite and radar measurements, well established within the scientific community. There are a number of important models and approaches for the theoretical description of such waves. By analyzing the scaling behavior of freak wave formation in a model of two interacting waves, d...

  10. Chiral heat wave and mixed waves in kinetic theory

    CERN Document Server

    Frenklakh, D

    2016-01-01

    We study collective excitations in hot rotating chiral media in presence of magnetic field in kinetic theory, namely Chiral Heat Wave and its' mixings with Chiral Vortical Wave and Chiral Magnetic Wave. Our results for velocities of these waves have slight alterations from those obtained earlier. We explain the origin of these alterations and also give the most general expressions for the velocities of all these waves in hydrodynamic approach.

  11. On the Draupner freak wave

    CERN Document Server

    Fedele, Francesco

    2015-01-01

    In this paper, we revisit extreme wave statistics related to the 1993's Draupner freak wave event drawing on ERA-interim reanalysis data. In particular, we study the influence of nonlinear wave-wave interactions and space-time variability of the wave field on the predictions of the maximum wave and crest heights expected at the Draupner site. According to Janssen's (2003) theory, in realistic oceanic storms characterized by short-crested seas the wave field forgets its initial conditions and adjusts to a non-Gaussian state dominated by second order bound nonlinearities on time scales $t\\gg t_{c}\\approx0.13T_{0}/\

  12. Periodic waves in nonlinear metamaterials

    International Nuclear Information System (INIS)

    Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.

  13. SOME PROBLEMS ABOUT SHIP WAVES

    Institute of Scientific and Technical Information of China (English)

    Liu Min-jia

    2003-01-01

    Several problems about ship waves were discussed in the dissertation:(1) Transient ship waves from calmness to the generation of steady-state ship waves were described. (2) The procedure of the formation of the V-shaped steady-state ship waves were clearly shown, and the difference of ship waves on an inviscid fluid and on a viscous fluid was exmined. (3) With the Lighthill two-stage scheme, the algebraic expression for ship waves on a viscous fluid of finite depth was obtained.(4) Singularity on the two boundaries of the ship waves was treated.

  14. SCALAR WAVES AND WIRELESS POWER

    Directory of Open Access Journals (Sweden)

    Trunev A. P.

    2013-11-01

    Full Text Available It is established that in the classical electrodynamics with Lorenz gauge there are solutions in the form of waves of scalar and vector potential at zero magnetic and electric field. It is shown that wave scalar and vector potential can interact with the substance, causing ionization of the atoms and molecules. The analogue of scalar waves in electrodynamics and sound waves in gas dynamics is discussed. Proposed technical application of the waves of scalar and vector potential similar to acoustic waves. Discusses Tesla invented electrical device capable of generating and receiving scalar waves

  15. Wave calculus based upon wave logic

    International Nuclear Information System (INIS)

    A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)

  16. Metamaterials, from electromagnetic waves to water waves, bending waves and beyond

    KAUST Repository

    Dupont, G.

    2015-08-04

    We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.

  17. Infragravity Waves Produced by Wave Groups on Beaches

    Institute of Scientific and Technical Information of China (English)

    邹志利; 常梅

    2003-01-01

    The generation of low frequency waves by a single or double wave groups incident upon two plane beaches with the slope of 1/40 and 1/100 is investigated experimentally and numerically. A new type of wave maker signal is used to generate the groups, allowing the bound long wave (set-down) to be included in the group. The experiments show that the low frequency wave is generated during breaking and propagation to the shoreline of the wave group. This process of generation and propagation of low frequency waves is simulated numerically by solving the short-wave averaged mass and momentum conservation equations. The computed and measured results are in good agreement. The mechanism of generation of low frequency waves in the surf zone is examined and discussed.

  18. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik;

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. During the last months, extensive testing has started...

  19. Prototype Testing of the Wave Energy Converter Wave Dragon

    DEFF Research Database (Denmark)

    Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik;

    2006-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...

  20. Wave Dragon Wave Energy Converters Used as Coastal Protection

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter

    2011-01-01

    This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...... Spain, to evaluate the potential for reducing wave heights close the shore by means of Wave Dragons........ Different stiffness of the mooring system and reflector joints has been tested for different wave steepness and relative floating ratios. The influence of each of these parameters on the wave transmission is presented. Additionally, a numerical case study is performed for the Santander Bay in the northern...

  1. THz wave emission microscope

    Science.gov (United States)

    Yuan, Tao

    Sensing and imaging using Terahertz (THz) radiation has attracted more and more interest in the last two decades thanks to the abundant material 'finger prints' in the THz frequency range. The low photon energy also makes THz radiation an attractive tool for nondestructive evaluation of materials and devices, biomedical applications, security checks and explosive screening. Due to the long wavelength, the far-field THz wave optical systems have relatively low spatial resolution. This physical limitation confines THz wave sensing and imaging to mostly macro-size samples. To investigate local material properties or micro-size structures and devices, near-field technology has to be employed. In this dissertation, the Electro-Optical THz wave emission microscope is investigated. The basic principle is to focus the femtosecond laser to a tight spot on a thin THz emitter layer to produce a THz wave source with a similar size as the focus spot. The apparatus provides a method for placing a THz source with sub-wavelength dimension in the near-field range of the investigated sample. Spatial resolution to the order of one tenth of the THz wavelength is demonstrated by this method. The properties of some widely used THz wave emission materials under tight focused pump light are studied. As an important branch of THz time domain spectroscopy (THz-TDS), THz wave emission spectroscopy has been widely used as a tool to investigate the material physics, such as energy band structure, carrier dynamics, material nonlinear properties and dynamics. As the main work of this dissertation, we propose to combine the THz wave emission spectroscopy with scanning probe microscopy (SPM) to build a tip-assisted THz wave emission microscope (TATEM), which is a valuable extension to current SPM science and technology. Illuminated by a femtosecond laser, the biased SPM tip forms a THz wave source inside the sample beneath the tip. The source size is proportional to the apex size of the tip so

  2. Fast wave current drive

    International Nuclear Information System (INIS)

    Experiments on the fast wave in the range of high ion cyclotron harmonics in the ACT-1 device show that current drive is possible with the fast wave just as it is for the lower hybrid wave, except that it is suitable for higher plasma densities. A 1400 loop antenna launched the high ion cyclotron harmonic fast wave [ω/Ω = O(10)] into a He+ plasma with n/sub e/approx. =4 x 1012 cm-3 and B = 4.5 kG. Probe and magnetic loop diagnostics and FIR laser scattering confirmed the presence of the fast wave, and the Rogowski loop indicated that the circulating plasma current increased by up to 40A with 1 kW of coupled power, which is comparable to lower hybrid current drive in the same device with the same unidirectional fast electron beam used as the target for the RF. A phased antenna array would be used for FWCD in a tokamak without the E-beam

  3. Superconducting traveling wave accelerators

    International Nuclear Information System (INIS)

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table

  4. Optical Dark Rogue Wave.

    Science.gov (United States)

    Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan

    2016-01-01

    Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099

  5. Optimally focusing wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, K., E-mail: karl.vogel@uni-ulm.de [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Gleisberg, F. [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Harshman, N.L. [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Department of Physics, American University, 4400 Massachusetts Ave. NW, Washington, DC 20016-8058 (United States); Kazemi, P.; Mack, R.; Plimak, L.; Schleich, W.P. [Institut fuer Quantenphysik, Universitaet Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany)

    2010-10-05

    An appropriately prepared real-valued wave packet moving in one space dimension will focus during a brief period of time even in the absence of any force. We illustrate this phenomenon by considering the time evolution of the elementary superposition of the ground state and the second excited state of a harmonic oscillator. Moreover, we show that a variation of the superposition parameter leads us from a domain of enhanced spreading via a point of suppressed spreading to a region where the wave packets focuses before it spreads again. We determine the points of maximal spreading and optimal focusing. Our analysis of this unusual behavior of a free quantum particle rests on the time dependence of (i) the average separation of the wave packet from the origin, (ii) the probability density in position space, and (iii) the Wigner phase space distribution. We conclude our search for optimally focusing wave packets by solving the corresponding variational problem with respect to a family of measures expressing the width of the wave packet.

  6. Extreme waves and modulational instability: wave flume experiments on irregular waves

    OpenAIRE

    Onorato, M.; Osborne, A.R.; M.Serio; Cavaleri, L.; Brandini, C.; Stansberg, C. T.

    2003-01-01

    We discuss the formation of large amplitude waves for sea states characterized by JONSWAP spectra with random phases. In this context we discuss experimental results performed in one of the largest wave tank facilities in the world. We present experimental evidence that the tail of the cumulative probability function of the wave heights for random waves strongly depends on the ratio between the wave steepness and the spectral bandwidth. When this ratio, called the Benjamin-Feir Index, is larg...

  7. Dynamics of coupled light waves and electron-acoustic waves.

    Science.gov (United States)

    Shukla, P K; Stenflo, L; Hellberg, M

    2002-08-01

    The nonlinear interaction between coherent light waves and electron-acoustic waves in a two-electron plasma is considered. The interaction is governed by a pair of equations comprising a Schrödinger-like equation for the light wave envelope and a driven (by the light pressure) electron-acoustic wave equation. The newly derived nonlinear equations are used to study the formation and dynamics of envelope light wave solitons and light wave collapse. The implications of our investigation to space and laser-produced plasmas are pointed out.

  8. Prototype Testing of the Wave Energy Converter Wave Dragon

    OpenAIRE

    Kofoed, Jens Peter; Frigaard, Peter Bak; Friis-Madsen, Erik; Sørensen, Hans Chr.

    2004-01-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57 x 27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nis...

  9. Experimental Study on the WavePiston Wave Energy Converter

    DEFF Research Database (Denmark)

    Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.

    This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....

  10. Numerical Modelling of Wave Run-Up: Regular Waves

    DEFF Research Database (Denmark)

    Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke;

    2011-01-01

    Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...... surface. NS3 is used to simulate the wave run-up due to a regular wave to calculate the maximum wave run-up around a cylinder. The aim of this paper is shown the calculations of NS3 code and compared with the data obtained from the large scale test performed in Grossen Wellenkanal (GWK...

  11. Conversion from surface wave to surface wave on reflection

    DEFF Research Database (Denmark)

    Novitsky, Andrey

    2010-01-01

    We discuss the reflection and transmission of an incident surface wave to a pure surface wave state at another interface. This is allowed only for special media parameters: at least one of the media must be magnetic. We found such material characteristics that the obliquely incident surface wave...... can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....

  12. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...... with increasing temperatures implies that the two-ion coupling is effectively isotropic above ∼ 150 K. We present arguments for concluding that, among the mechanisms which may introduce anisotropic two-ion couplings in the rare-earth metals, the modification of the indirect exchange interaction by the spin...

  13. Piezoelectric wave motor

    Science.gov (United States)

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  14. Nonlinear Water Waves

    CERN Document Server

    2016-01-01

    This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...

  15. Solar system plasma waves

    Science.gov (United States)

    Gurnett, Donald A.

    1995-01-01

    An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.

  16. IR Hot Wave

    Energy Technology Data Exchange (ETDEWEB)

    Graham, T. B.

    2010-04-01

    The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.

  17. Quantum wave packet revivals

    CERN Document Server

    Robinett, R W

    2004-01-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...

  18. Planetary radio waves

    Science.gov (United States)

    Goertz, C. K.

    1986-01-01

    Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.

  19. Standing wave linear accelerator

    International Nuclear Information System (INIS)

    Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator

  20. TIMING OF SHOCK WAVES

    Science.gov (United States)

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  1. Violent breaking wave impacts

    DEFF Research Database (Denmark)

    Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.

    2009-01-01

    When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain...... a better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model...... for a homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...

  2. GEODYNAMIC WAVES AND GRAVITY

    Directory of Open Access Journals (Sweden)

    A. V. Vikulin

    2015-09-01

    Full Text Available  Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related.  The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.  

  3. Nonlinear elastic waves in materials

    CERN Document Server

    Rushchitsky, Jeremiah J

    2014-01-01

    The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...

  4. CaWave user's guide

    International Nuclear Information System (INIS)

    CaWave User's Guide explains how to use the CaWave functions which were specifically written in PV-WAVE command language and C language for EPICS users. CaWave consists of a special set of external channel access functions which provides the PV-WAVE users with easy and flexible access of channel information across the IOC networks. It also provides a complete set of process variable event monitoring functions. This document also gives examples how a PV-WAVE user can interface to channel access devices. It is assumed that the user is already familiar with using PV-WAVE. Few simple example modules of using PV-WAVE command language with CaWave functions are also given in this document

  5. Hysteretic Faraday Waves

    CERN Document Server

    Périnet, Nicolas; Chergui, Jalel; Juric, Damir; Shin, Seungwon

    2016-01-01

    We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate towards highly nonlinear ones, with twice their amplitude. We propose a simple phenomenological model which can describe the observed bifurcation. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results.

  6. Piecewise flat gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Van de Meent, Maarten, E-mail: M.vandeMeent@uu.nl [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, PO Box 80.195, 3508 TD Utrecht (Netherlands)

    2011-04-07

    We examine the continuum limit of the piecewise flat locally finite gravity model introduced by 't Hooft. In the linear weak field limit, we find the energy-momentum tensor and metric perturbation of an arbitrary configuration of defects. The energy-momentum turns out to be restricted to satisfy certain conditions. The metric perturbation is mostly fixed by the energy-momentum except for its lightlike modes which reproduce linear gravitational waves, despite no such waves being present at the microscopic level.

  7. Cyclotron waves in plasma

    CERN Document Server

    Lominadze, D G

    2013-01-01

    Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f

  8. Waves on Noncommutative Spacetimes

    OpenAIRE

    Balachandran, A. P.; Kumar S. Gupta; Kurkcuoglu, S.

    2005-01-01

    Waves on ``commutative'' spacetimes like R^d are elements of the commutative algebra C^0(R^d) of functions on R^d. When C^0(R^d) is deformed to a noncommutative algebra {\\cal A}_\\theta (R^d) with deformation parameter \\theta ({\\cal A}_0 (R^d) = C^0(R^d)), waves being its elements, are no longer complex-valued functions on R^d. Rules for their interpretation, such as measurement of their intensity, and energy, thus need to be stated. We address this task here. We then apply the rules to interf...

  9. Thermoplastic waves in magnetars

    CERN Document Server

    Beloborodov, Andrei M

    2014-01-01

    Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields, which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure and velocity, and discuss implications for observed magnetar activity.

  10. THERMOPLASTIC WAVES IN MAGNETARS

    Energy Technology Data Exchange (ETDEWEB)

    Beloborodov, Andrei M. [Physics Department and Columbia Astrophysics Laboratory, Columbia University, 538 West 120th Street New York, NY 10027 (United States); Levin, Yuri, E-mail: amb@phys.columbia.edu, E-mail: yuri.levin@monash.edu.au [Monash Center for Astrophysics and School of Physics, Monash University, Clayton, VIC 3800 (Australia)

    2014-10-20

    Magnetar activity is generated by shear motions of the neutron star surface, which relieve internal magnetic stresses. An analogy with earthquakes and faults is problematic, as the crust is permeated by strong magnetic fields which greatly constrain crustal displacements. We describe a new deformation mechanism that is specific to strongly magnetized neutron stars. The magnetically stressed crust begins to move because of a thermoplastic instability, which launches a wave that shears the crust and burns its magnetic energy. The propagating wave front resembles the deflagration front in combustion physics. We describe the conditions for the instability, the front structure, and velocity, and discuss implications for observed magnetar activity.

  11. Supersymmetric String Waves

    CERN Document Server

    Bergshoeff, E A; Ortín, Tomas

    1993-01-01

    We present plane-wave-type solutions of the lowest order superstring effective action which have unbroken space-time supersymmetries. They describe dilaton, axion and gauge fields in a stringy generalization of the Brinkmann metric. Some conspiracy between the metric and the axion field is required. We show that there exists a special class of these solutions, for which $\\alpha^\\prime$ stringy corrections to the effective on-shell action, to the equations of motion (and therefore to the solutions themselves), and to the supersymmetry transformations vanish. We call these solutions supersymmetric string waves (SSW).

  12. Leapfrogging Kelvin waves

    CERN Document Server

    Hietala, N; Salman, H; Barenghi, C F

    2016-01-01

    Two vortex rings can form a localized configuration whereby they continually pass through one another in an alternating fashion. This phenomenon is called leapfrogging. Using parameters suitable for superfluid helium-4, we describe a recurrence phenomenon that is similar to leapfrogging which occurs for two coaxial straight vortex filaments with the same Kelvin wave mode. For small amplitude Kelvin waves we demonstrate that our full Biot-Savart simulations closely follow predictions obtained from a simpified model that provides an analytical approximation developed for nearly parallel vortices. Our results are also relevant to thin-cored helical vortices in classical fluids.

  13. Scalar Gravitational Waves

    Science.gov (United States)

    Mottola, Emil

    2016-03-01

    General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.

  14. Metamaterials and wave control

    CERN Document Server

    Lheurette, Eric

    2013-01-01

    Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s

  15. Alfven wave heating

    International Nuclear Information System (INIS)

    The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered

  16. On the generation of internal wave modes by surface waves

    Science.gov (United States)

    Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian

    2016-04-01

    Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.

  17. The Material Plasma Exposure eXperiment (MPEX)

    Science.gov (United States)

    Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.

    2014-10-01

    Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.

  18. TSUNAMI WAVE PROPAGATION ALONG WAVEGUIDES

    Directory of Open Access Journals (Sweden)

    Andrei G. Marchuk

    2009-01-01

    Full Text Available This is a study of tsunami wave propagation along the waveguide on a bottom ridge with flat sloping sides, using the wave rays method. During propagation along such waveguide the single tsunami wave transforms into a wave train. The expression for the guiding velocities of the fastest and slowest signals is defined. The tsunami wave behavior above the ocean bottom ridges, which have various model profiles, is investigated numerically with the help of finite difference method. Results of numerical experiments show that the highest waves are detected above a ridge with flat sloping sides. Examples of tsunami propagation along bottom ridges of the Pacific Ocean are presented.

  19. Wave "Coherency" and Implications for Wave-Particle Interactions

    Science.gov (United States)

    Tsurutani, Bruce; Lakhina, Gurbax; Remya, Banhu; Lee, Lou

    2016-04-01

    Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency and quasicoherency for: electromagnetic whistler mode chorus, electromagnetic ion cyclotron waves and plasmaspheric hiss waves. We will show how to measure coherency/quasicoherency quantitatively. This will be important for modeling purposes. Perhaps even more important is how coherent waves affect wave-particle interactions. Specific wave examples will be used to show that the pitch angle scattering rate for energetic electrons is roughly 3 orders of magnitude faster than Kennel-Petschek diffusion (which assumes incoherent waves).

  20. Relationship between wave steepness and wave age in the course of wind wave growth

    Institute of Scientific and Technical Information of China (English)

    WU Shuping; HOU Yijun; YIN Baoshu; SONG Jinbao; ZHAO Xixi

    2004-01-01

    It is traditionally assumed that the relationship between wave steepness and wave age is independent of the wind wave growth state. In fact, the traditional relationship can not describe the whole course of wind wave growth. This paper assumes that the relationship between wave steepness and wave age changes with the variety of dimensionless fetch. Based on the relationship proposed by Hou and Wen (1990), a new relationship in the course of wind wave growth is revealed. Comparisons between the present study and other previous relationships show that this new relationship explains better the observations than the other existing relationships. In the case of small fetch, wave age value increases more quickly than other models while it is in opposition to that in the case of large fetch. The result in present paper can clearly reflect the whole course of wind wave growth, it is an improvement for traditional results.

  1. Wave Dragon:a slack moored wave energy converter

    OpenAIRE

    Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.; Friis-Madsen, E.

    1998-01-01

    This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched.

  2. Converging Spherical Detonation Waves.

    Directory of Open Access Journals (Sweden)

    Arisudan Rai

    1998-04-01

    Full Text Available The problem of converging spherical detonation waves propagating through a gas with varyingdensity is discussed. By neglecting the effect of variation of Q on the similarity exponent, both analytical and numerical solutions for motion of the detonation front have been obtained and arepresented in graphical form.

  3. Imploding Detonation Waves

    Directory of Open Access Journals (Sweden)

    B. G. Verma

    1981-01-01

    Full Text Available The problem of imploding detonation waves propagating through a gas with initial density, is studied. It is shown that the consideration of varying initial density affects the problem considerably incomparison to a uniform gas at rest. An analytical expression for the pressure distribution in the neighbourhood of the centre of symmetry has been found.

  4. Imploding Detonation Waves

    OpenAIRE

    B. G. Verma; Singh, J. B.

    1981-01-01

    The problem of imploding detonation waves propagating through a gas with initial density, is studied. It is shown that the consideration of varying initial density affects the problem considerably incomparison to a uniform gas at rest. An analytical expression for the pressure distribution in the neighbourhood of the centre of symmetry has been found.

  5. Converging Spherical Detonation Waves.

    OpenAIRE

    Arisudan Rai

    1998-01-01

    The problem of converging spherical detonation waves propagating through a gas with varyingdensity is discussed. By neglecting the effect of variation of Q on the similarity exponent, both analytical and numerical solutions for motion of the detonation front have been obtained and arepresented in graphical form.

  6. Quaternionic Wave Packets

    CERN Document Server

    De Leo, Stefano

    2007-01-01

    We compare the behavior of a wave packet in the presence of a complex and a pure quaternionic potential step. This analysis, done for a gaussian convolution function, sheds new light on the possibility to recognize quaternionic deviations from standard quantum mechanics.

  7. Fission waves can oscillate

    CERN Document Server

    Osborne, Andrew G

    2016-01-01

    Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...

  8. Twisting Neutron Waves

    Science.gov (United States)

    Pushin, Dmitry

    Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.

  9. Breaking the Waves

    DEFF Research Database (Denmark)

    Christensen, Poul Rind; Kirketerp, Anne

    2006-01-01

    The paper shortly reveals the history of a small school - the KaosPilots - dedicated to educate young people to carriers as entrepreneurs. In this contribution we want to explore how the KaosPilots managed to break the waves of institutionalised concepts and practices of teaching entrepreneurship...

  10. mm-wave antenna

    Science.gov (United States)

    Muhs, H. P.

    1985-07-01

    The present low profile seeker front end's slotted waveguide antenna was primarily developed to investigate the feasibility of the application of standard manufacturing techniques to mm-wave hardware. A dual plane monopulse comparator was constructed to mate with the antenna via integrated packaging techniques. The comparator was fabricated by CAD/CAM milling operations.

  11. Surface Acoustic Wave Devices

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...

  12. Deflagration Wave Profiles

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph [Los Alamos National Laboratory

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  13. "Hearing" Electromagnetic Waves

    Science.gov (United States)

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  14. Exciton solitary waves (exolitons)

    International Nuclear Information System (INIS)

    The soliton theory is briefly explained with regard to cooperative phenomena in one-dimensional systems. The study of the dynamics of a one-dimensional lattice shows that nonlinear phonon interaction results in the production of a solitary wave. The procedure is indicated for the mathematical solution of the problem of the exciton-phonon interaction. (M.S.)

  15. Surface gravity-wave lensing.

    Science.gov (United States)

    Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza

    2014-02-01

    Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576

  16. Localized coherence of freak waves

    Science.gov (United States)

    Latifah, Arnida L.; van Groesen, E.

    2016-09-01

    This paper investigates in detail a possible mechanism of energy convergence leading to freak waves. We give examples of a freak wave as a (weak) pseudo-maximal wave to illustrate the importance of phase coherence. Given a time signal at a certain position, we identify parts of the time signal with successive high amplitudes, so-called group events, that may lead to a freak wave using wavelet transform analysis. The local coherence of the critical group event is measured by its time spreading of the most energetic waves. Four types of signals have been investigated: dispersive focusing, normal sea condition, thunderstorm condition and an experimental irregular wave. In all cases presented in this paper, it is shown that a high correlation exists between the local coherence and the appearance of a freak wave. This makes it plausible that freak waves can be developed by local interactions of waves in a wave group and that the effect of waves that are not in the immediate vicinity is minimal. This indicates that a local coherence mechanism within a wave group can be one mechanism that leads to the appearance of a freak wave.

  17. Active Absorption Wave Maker System for Irregular Waves

    Institute of Scientific and Technical Information of China (English)

    柳淑学; 王先涛; 李木国; 郭美谊

    2003-01-01

    The key problem in physical model tests with highly reflective structures is to prevent the multiple reflections between the reflective structures and the wave maker. An active absorption wave maker system is described and the representative frequency method for irregular waves is proposed in this paper. Physical model tests are conducted to verify the effectiveness of the proposed method.

  18. On radio frequency wave induced radial transport and wave helicity

    International Nuclear Information System (INIS)

    Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs

  19. Embedded wave generation for dispersive surface wave models

    NARCIS (Netherlands)

    She Liam, L.; Adytia, D.; Groesen, van E.

    2014-01-01

    This paper generalizes previous research on embedded wave generation in Boussinesq-type of equations for multi-directional surface water waves; the generation takes place by adding a suitable source term to the equations. Accurate generation is important to prevent influx errors in simulated waves d

  20. Quantum wave packet revivals

    Energy Technology Data Exchange (ETDEWEB)

    Robinett, R.W

    2004-03-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet ('minipackets' or 'clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.

  1. Quantum wave packet revivals

    Science.gov (United States)

    Robinett, R. W.

    2004-03-01

    The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (‘minipackets’ or ‘clones’) is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum wave packet construction leading to the existence of revivals and fractional revivals, in systems with one (or more) quantum number(s), as well as discussing how information on the classical period and revival time is encoded in the energy eigenvalue spectrum. We discuss a number of one-dimensional model systems which exhibit revival behavior, including the infinite well, the quantum bouncer, and others, as well as several two-dimensional integrable quantum billiard systems. Finally, we briefly review the experimental evidence for wave packet revivals in atomic, molecular, and other systems, and related revival phenomena in condensed matter and optical systems.

  2. [Heat waves: health impacts].

    Science.gov (United States)

    Marto, Natália

    2005-01-01

    During the summer of 2003, record high temperatures were reported across Europe, causing thousands of casualties. Heat waves are sporadic recurrent events, characterised by intense and prolonged heat, associated with excess mortality and morbidity. The most frequent cause of death directly attributable to heat is heat stroke but heat waves are known to cause increases in all-cause mortality, specially circulatory and respiratory mortality. Epidemiological studies demonstrate excess casualties cluster in specific risk groups. The elderly, those with chronic medical conditions and the socially isolated are particularly vulnerable. Air conditioning is the strongest protective factor against heat-related disorders. Heat waves cause disease indirectly, by aggravating chronic disorders, and directly, by causing heat-related illnesses (HRI). Classic HRI include skin eruptions, heat cramps, heat syncope, heat exhaustion and heat stroke. Heat stroke is a medical emergency characterised by hyperthermia and central nervous system dysfunction. Treatment includes immediate cooling and support of organ-system function. Despite aggressive treatment, heat stroke is often fatal and permanent neurological damage is frequent in those who survive. Heat related illness and death are preventable through behavioural adaptations, such as use of air conditioning and increased fluid intake. Other adaptation measures include heat emergency warning systems and intervention plans and environmental heat stress reduction. Heat related mortality is expected to rise as a consequence of the increasing proportion of elderly persons, the growing urban population, and the anticipated increase in number and intensity of heat waves associated with global warming. Improvements in surveillance and response capability may limit the adverse health conditions of future heat waves. It is crucial that health professionals are prepared to recognise, prevent and treat HRI and learn to cooperate with local health

  3. Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Thomas Lykke

    2012-01-01

    This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...... from the MIKE21BW model is compared to results from a simpler model, based on the integration of wave energy flux. The conclusion is that the simplified approach provides results similar to the transmission obtained from the numerical model, both for a single WD and a farm of multiple WDs....

  4. Curved characteristics behind blast waves.

    Science.gov (United States)

    Laporte, O.; Chang, T. S.

    1972-01-01

    The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.

  5. Heat Waves Hit Seniors Hardest

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160425.html Heat Waves Hit Seniors Hardest Risk of high-temperature trouble ... much of the Northeast struggles with a heat wave that isn't expected to ease until the ...

  6. Heat Waves Are Health Threats

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_159694.html Heat Waves Are Health Threats Drink plenty of water and ... 2016 SATURDAY, July 2, 2016 (HealthDay News) -- Heat waves are more than uncomfortable, they can be deadly. ...

  7. Recurrent networks for wave forecasting

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Prabaharan, N.

    The tremendous increase in offshore operational activities demands improved wave forecasting techniques. With the knowledge of accurate wave conditions, it is possible to carry out the marine activities such as offshore drilling, naval operations...

  8. Energy Wave Model of Atom

    Institute of Scientific and Technical Information of China (English)

    伍细如

    2015-01-01

    proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.

  9. Wave propagation in electromagnetic media

    CERN Document Server

    Davis, Julian L

    1990-01-01

    This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro­ magnetic materials. Since these volumes were designed to be relatively self­ contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...

  10. Diurnal variation of mountain waves

    Directory of Open Access Journals (Sweden)

    R. M. Worthington

    2006-11-01

    Full Text Available Mountain waves could be modified as the boundary layer varies between stable and convective. However case studies show mountain waves day and night, and above e.g. convective rolls with precipitation lines over mountains. VHF radar measurements of vertical wind (1990–2006 confirm a seasonal variation of mountain-wave amplitude, yet there is little diurnal variation of amplitude. Mountain-wave azimuth shows possible diurnal variation compared to wind rotation across the boundary layer.

  11. Source modeling sleep slow waves

    OpenAIRE

    Murphy, M.; Riedner, B.A.; Huber, R.; Massimini, M; F. Ferrarelli; Tononi, G

    2009-01-01

    Slow waves are the most prominent electroencephalographic (EEG) feature of sleep. These waves arise from the synchronization of slow oscillations in the membrane potentials of millions of neurons. Scalp-level studies have indicated that slow waves are not instantaneous events, but rather they travel across the brain. Previous studies of EEG slow waves were limited by the poor spatial resolution of EEGs and by the difficulty of relating scalp potentials to the activity of the underlying cortex...

  12. Phenomena Associated With EIT Waves

    Science.gov (United States)

    Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.

    2003-01-01

    We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.

  13. Shock Waves in Gas Dynamics

    Directory of Open Access Journals (Sweden)

    Abdolrahman Razani

    2007-11-01

    Full Text Available Shock wave theory was studied in literature by many authors. This article presents a survey with references about various topics related to shock waves: Hyperbolic conservation laws, Well-posedness theory, Compactness theory, Shock and reaction-diffusion wave, The CJ and ZND theory, Existence of detonation in Majda's model, Premixed laminar flame, Multidimensional gas flows, Multidimensional Riemann problem.

  14. Shock Waves in Gas Dynamics

    OpenAIRE

    Abdolrahman Razani

    2007-01-01

    Shock wave theory was studied in literature by many authors. This article presents a survey with references about various topics related to shock waves: Hyperbolic conservation laws, Well-posedness theory, Compactness theory, Shock and reaction-diffusion wave, The CJ and ZND theory, Existence of detonation in Majda's model, Premixed laminar flame, Multidimensional gas flows, Multidimensional Riemann problem.

  15. Conceptual Design of Wave Plane

    DEFF Research Database (Denmark)

    Frigaard, Peter; Trewers, Andrew; Kofoed, Jens Peter;

    The Wave Plane is a patented Wave Energy device of the overtopping type, designed to capture potential as well as kinetic energy. This is as such different to other overtopping devices, who usually only focus on potential energy. If Wave Plane A/S can deliver the turbine technology to utilize both...

  16. An Extented Wave Action Equation

    Institute of Scientific and Technical Information of China (English)

    左其华

    2003-01-01

    Based on the Navier-Stokes equation, an average wave energy equation and a generalized wave action conservation equation are presented in this paper. The turbulence effects on water particle velocity ui and wave surface elavation ξ as well as energy dissipation are included. Some simplified forms are also given.

  17. Wave Dragon Buoyancy Regulation Study

    DEFF Research Database (Denmark)

    Jakobsen, Jens; Kofoed, Jens Peter

    Wave Dragon is a wave energy converter, which was deployed offshore at Nissum Bredning in Denmark in 2003. The experience gained from operating Wave Dragon during 2003 and 2004 has shown that the buoyancy regulation system can be improved in a number of ways. This study describes the current...

  18. Generation of long subharmonic internal waves by surface waves

    Science.gov (United States)

    Tahvildari, Navid; Kaihatu, James M.; Saric, William S.

    2016-10-01

    A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immiscible. Based on the Boussinesq equations, an analytical model is developed using a second-order perturbation theory and applied to examine the transient evolution of a resonant triad composed of a surface wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous studies which focus on short internal waves, we examine long waves and investigate some previously unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes must be larger than a threshold to overcome viscous damping and trigger internal waves. The dependency of this critical amplitude as well as the growth and damping rates of internal waves on important parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated.

  19. Chiral Heat Wave and wave mixing in chiral media

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.

  20. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  1. INTERFERENCE OF UNIDIRECTIONAL SHOCK WAVES

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-05-01

    Full Text Available Subject of study.We consider interference of unidirectional shock waves or, as they are called, catching up shock waves. The scope of work is to give a classification of the shock-wave structures that arise in this type of interaction of shock waves, and the area of their existence. Intersection of unidirectional shock waves results in arising of a shock-wave structure at the intersection point, which contains the main shock wave, tangential discontinuity and one more reflected gas-dynamic discontinuity of unknown beforehand type. The problem of determining the type of reflected discontinuity is the main problem that one has to solve in the study of catching shock waves interference. Main results.The paper presents the pictures of shock-wave structures arising at the interaction of catching up shock waves. The areas with a regular and irregular unidirectional interaction of shocks are described. Characteristic shock-wave structures are of greatest interest, where reflected gas-dynamic discontinuity degenerates into discontinuous characteristics. Such structures have a number of extreme properties. We have found the areas of existence for such shock-wave structures. There are also areas in which the steady-state solution is not available. The latter has determined revival of interest for the theoretical study of the problem, because the facts of sudden shock-wave structure destruction inside the air intake of supersonic aircrafts at high Mach numbers have been discovered. Practical significance.The theory of interference for unidirectional shock waves and design procedure are usable in the design of supersonic air intakes. It is also relevant for application possibility investigation of catching up oblique shock waves to create overcompressed detonation in perspective detonation air-jet and rocket engines.

  2. Nonlinear Hysteretic Torsional Waves.

    Science.gov (United States)

    Cabaret, J; Béquin, P; Theocharis, G; Andreev, V; Gusev, V E; Tournat, V

    2015-07-31

    We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters. PMID:26274421

  3. Electromagnetic Wave Source Conditions

    CERN Document Server

    Oskooi, Ardavan

    2013-01-01

    This chapter discusses the relationships between current sources and the resulting electromagnetic waves in FDTD simulations. First, the "total-field/scattered-field" approach to creating incident plane waves is reviewed and seen to be a special case of the well-known principle of equivalence in electromagnetism: this can be used to construct "equivalent" current sources for any desired incident field, including waveguide modes. The effects of dispersion and discretization are discussed, and a simple technique to separate incident and scattered fields is described in order to compensate for imperfect equivalent currents. The important concept of the local density of states (LDOS) is reviewed, which elucidates the relationship between current sources and the resulting fields, including enhancement of the LDOS via mode cutoffs (Van Hove singularities) and resonant cavities (Purcell enhancement). We also address various other source techniques such as covering a wide range of frequencies and incident angles in a...

  4. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  5. Waves in pulsar winds

    CERN Document Server

    Kirk, J G

    2010-01-01

    The radio, optical, X-ray and gamma-ray nebulae that surround many pulsars are thought to arise from synchrotron and inverse Compton emission. The energy powering this emission, as well as the magnetic fields and relativistic particles, are supplied by a "wind" driven by the central object. The inner parts of the wind can be described using the equations of MHD, but these break down in the outer parts, when the density of charge carriers drops below a critical value. This paper reviews the wave properties of the inner part (striped wind), and uses a relativistic two-fluid model (cold electrons and positrons) to re-examine the nonlinear electromagnetic modes that propagate in the outer parts. It is shown that in a radial wind, two solutions exist for circularly polarised electromagnetic modes. At large distances one of them turns into a freely expanding flow containing a vacuum wave, whereas the other decelerates, corresponding to a confined flow.

  6. When Shock Waves Collide

    CERN Document Server

    Hartigan, P; Frank, A; Hansen, E; Yirak, K; Liao, A S; Graham, P; Wilde, B; Blue, B; Martinez, D; Rosen, P; Farley, D; Paguio, R

    2016-01-01

    Supersonic outflows from objects as varied as stellar jets, massive stars and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures and therefore a higher-excitation spectrum than an oblique one does. In this paper we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and ...

  7. Millimeter wave nonreciprocal devices

    Science.gov (United States)

    Morgenthaler, F. R.

    1983-01-01

    The Microwave and Quantum Magnetics Group within the MIT Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics proposed a three year research program aimed at developing coherent magnetic wave signal-processing techniques for microwave energy which may form either the primary signal or else the intermediate frequency (IF) modulation of millimeter wavelength signals-especially at frequencies in the 50-94 GHz. range. Emphasis has been placed upon developing advanced types of signal processors that make use of quasi-optical propagation of electromagnetic and magnetostatic waves propagating in high quality single crystal ferrite thin films. A strong theoretical effort is required in order to establish valid models useful for predicting device performance. We emphasized new filter and circulator designs that employ combinations of the Faraday effect, field displacement nonreciprocity and magnetostatic resonance and periodic structures.

  8. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  9. Gravitational Wave Confusion Noise

    OpenAIRE

    Cornish, Neil J.

    2003-01-01

    One of the greatest challenges facing gravitational wave astronomy in the low frequency band is the confusion noise generated by the vast numbers of unresolved galactic and extra galactic binary systems. Estimates of the binary confusion noise suffer from several sources of astrophysical uncertainty, such as the form of the initial mass function and the star formation rate. There is also considerable uncertainty about what defines the confusion limit. Various ad-hoc rules have been proposed, ...

  10. Internal Ocean Waves

    Science.gov (United States)

    2006-01-01

    Internal waves are waves that travel within the interior of a fluid. The waves propagate at the interface or boundary between two layers with sharp density differences, such as temperature. They occur wherever strong tides or currents and stratification occur in the neighborhood of irregular topography. They can propagate for several hundred kilometers. The ASTER false-color VNIR image off the island of Tsushima in the Korea Strait shows the signatures of several internal wave packets, indicating a northern propagation direction. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 60 by 120 kilometers (37.2 by 74.4 miles) Location: 34.6 degrees North latitude, 129.5 degrees East longitude Orientation: North at top Image Data: ASTER bands 3, 2, and 1 Original Data Resolution: 90

  11. Geometry of wave electromagnetics

    International Nuclear Information System (INIS)

    A challenge to the commonly held view of light as a wave phenomenon is presented. An exact realization of light as generalized pencils or rays is constructed, with stress placed on using pencils of rays rather than single rays. Exact equations of motion are presented for the rays in the pencil, and these rays tend to travel in straight lines in empty space (not too near the edge of the beam)

  12. Vortices in brain waves

    OpenAIRE

    Freeman, Walter J III; Vitiello, Giuseppe

    2008-01-01

    Interactions by mutual excitation in neural populations in human and animal brains cre- ate a mesoscopic order parameter that is recorded in brain waves (electroencephalogram, EEG). Spatially and spectrally distributed oscillations are imposed on the background activity by inhibitory feedback in the gamma range (30–80 Hz). Beats recur at theta rates (3–7 Hz), at which the order parameter transiently approaches zero and micro- scopic activity becomes disordered. After these null spikes, the or...

  13. Homogeneous Plane Waves

    OpenAIRE

    Blau, Matthias; O'Loughlin, Martin

    2002-01-01

    Motivated by the search for potentially exactly solvable time-dependent string backgrounds, we determine all homogeneous plane wave (HPW) metrics in any dimension and find one family of HPWs with geodesically complete metrics and another with metrics containing null singularities. The former generalises both the Cahen-Wallach (constant $A_{ij}$) metrics to time-dependent HPWs, $A_{ij}(t)$, and the Ozsvath-Sch\\"ucking anti-Mach metric to arbitrary dimensions. The latter is a generalisation of ...

  14. Wave transformation over coral reefs

    Science.gov (United States)

    Young, Ian R.

    1989-07-01

    Ocean wave attenuation on coral reefs is discussed using data obtained from a preliminary field experiment and from the Seasat altimeter. Marked attenuation of the waves is observed, the rate being consistent with existing theories of bottom friction and wave breaking decay. In addition, there is a significant broadening of the spectrum during propagation across reefs. Three-dimensional effects, such as refraction and defraction, can also lead to substantial wave height reduction for significant distances adjacent to coral reefs. As a result, a matrix of such reefs provides significantly more wave attenuation than may initially be expected.

  15. Gravitational Wave - Gauge Field Oscillations

    CERN Document Server

    Caldwell, R R; Maksimova, N A

    2016-01-01

    Gravitational waves propagating through a stationary gauge field transform into gauge field waves and back again. When multiple families of flavor-space locked gauge fields are present, the gravitational and gauge field waves exhibit novel dynamics. At high frequencies, the system behaves like coupled oscillators in which the gravitational wave is the central pacemaker. Due to energy conservation and exchange among the oscillators, the wave amplitudes lie on a multi-dimensional sphere, reminiscent of neutrino flavor oscillations. This phenomenon has implications for cosmological scenarios based on flavor-space locked gauge fields.

  16. Snell's Law for Spin Waves

    Science.gov (United States)

    Stigloher, J.; Decker, M.; Körner, H. S.; Tanabe, K.; Moriyama, T.; Taniguchi, T.; Hata, H.; Madami, M.; Gubbiotti, G.; Kobayashi, K.; Ono, T.; Back, C. H.

    2016-07-01

    We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25 ° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

  17. Phonon creation by gravitational waves

    CERN Document Server

    Sabín, Carlos; Ahmadi, Mehdi; Fuentes, Ivette

    2014-01-01

    We show that gravitational waves create phonons in a Bose-Einstein condensate (BEC). A traveling spacetime distortion produces particle creation resonances that correspond to the dynamical Casimir effect in a BEC phononic field contained in a cavity-type trap. We propose to use this effect to detect gravitational waves. The amplitude of the wave can be estimated applying recently developed relativistic quantum metrology techniques. We provide the optimal precision bound on the estimation of the wave's amplitude. Finally, we show that the parameter regime required to detect gravitational waves with this technique is within experimental reach.

  18. Introduction to THz wave photonics

    CERN Document Server

    Zhang, X-C

    2009-01-01

    Introduction to THz Wave Photonics examines the science and technology related to terahertz wave technologies, taking a dual approach between presenting the field 's history while simultaneously providing an overview of existing technology. The latest research in developing THz areas such as electromagnetic waves are presented, along with an introduction to continuous wave THz technology. Authors X.-C. Zhang and Jingzhou Xu place particular emphasis on pulsed THz technology, among many other facets of THz technology including: Complete coverage of THz wave spectroscopy and imagingA discussion

  19. Efficient Generation of Freak Waves in Laboratory

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In the present study, Kriebel's method is improved to generate freak waves in laboratory. The improved method superposes a random wave train with two transient wave trains to simulate freak wave events in a wave tank. The freak waves are more nonlinear than what generated with Kriebel's method of the same energy. It can also generate freak waves to satisfy all the qualifications of the adopted definition with less energy than Kriebel's and can hardly influence the significant wave height.

  20. Hindcasting cyclonic waves using neural networks

    Digital Repository Service at National Institute of Oceanography (India)

    Mandal, S.; Rao, S.; Chakravarty, N.V.

    for computing extreme wave conditions or design wave statistics. As far as Indian seas are concerned recorded wave data are available for short periods for some places along the coasts. Estimation of wave parameters by numerical wave forecasting schemes.... Some applications of neural network (NN) in wave forecasting are carried out by Deo and Naidu (1999), and Prabaharan (2001). Londhe and Deo (2001) have worked on wave propagation using neural network. This paper describes about hindcasting of wave...

  1. Residual Liquefaction under Standing Waves

    DEFF Research Database (Denmark)

    Kirca, V.S. Ozgur; Sumer, B. Mutlu; Fredsøe, Jørgen

    2012-01-01

    This paper summarizes the results of an experimental study which deals with the residual liquefaction of seabed under standing waves. It is shown that the seabed liquefaction under standing waves, although qualitatively similar, exhibits features different from that caused by progressive waves....... The experimental results show that the buildup of pore-water pressure and the resulting liquefaction first starts at the nodal section and spreads towards the antinodal section. The number of waves to cause liquefaction at the nodal section appears to be equal to that experienced in progressive waves for the same...... wave height. Recommendations are made as to how to assess liquefaction potential in standing waves. Copyright © 2012 by the International Society of Offshore and Polar Engineers (ISOPE)....

  2. Surface-wave photonic quasicrystal

    CERN Document Server

    Gao, Zhen; Zhang, Youming; Xu, Hongyi; Zhang, Baile

    2016-01-01

    In developing strategies of manipulating surface electromagnetic waves, it has been recently recognized that a complete forbidden band gap can exist in a periodic surface-wave photonic crystal, which has subsequently produced various surface-wave photonic devices. However, it is not obvious whether such a concept can be extended to a non-periodic surface-wave system that lacks translational symmetry. Here we experimentally demonstrate that a surface-wave photonic quasicrystal that lacks periodicity can also exhibit a forbidden band gap for surface electromagnetic waves. The lower cutoff of this forbidden band gap is mainly determined by the maximum separation between nearest neighboring pillars. Point defects within this band gap show distinct properties compared to a periodic photonic crystal for the absence of translational symmetry. A line-defect waveguide, which is crafted out of this surface-wave photonic quasicrystal by shortening a random row of metallic rods, is also demonstrated to guide and bend sur...

  3. Tamm-Langmuir surface waves

    CERN Document Server

    Golenitskii, K U; Bogdanov, A A

    2016-01-01

    In this work we develop a theory of surface electromagnetic waves localized at the interface of periodic metal-dielectric structures. We have shown that the anisotropy of plasma frequency in metal layers lifts the degeneracy of plasma oscillations and opens a series of photonic band gaps. This results in appearance of surface waves with singular density of states - we refer to them as Tamm-Langmuir waves. Such naming is natural since we have found that their properties are very similar to the properties of both bulk Langmuir and surface Tamm waves. Depending on the anisotropy parameters, Tamm-Langmuir waves can be either forward or backward waves. Singular density of states and high sensitivity of the dispersion to the anisotropy of the structure makes Tamm-Langmuir waves very promising for potential applications in nanophotonics and biosensing.

  4. Partnership for Wave Power - Roadmaps

    DEFF Research Database (Denmark)

    Nielsen, Kim; Krogh, Jan; Brodersen, Hans Jørgen;

    This Wave Energy Technology Roadmap is developed by the Partnership for Wave Power including nine Danish wave energy developers. It builds on to the strategy [1] published by the Partnership in 2012, a document that describes the long term vision of the Danish Wave Energy sector: “By 2030...... at the latest, wave energy technologies must provide a cost-effective and sustainable electricity supply from offshore energy farms in Denmark”. Technology roadmaps are tools that provide a framework for stimulating innovation in specific technology areas to achieve a long term vision, target or goal. The aim...... of these roadmaps is to help the emerging wave energy sector in Denmark to develop cost-effective solutions to convert Wave Energy....

  5. WAVE ASSIMILATION AND NUMERICAL PREDICTION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An adjoint variational method for wave data assimilation in the LAGFD-WAM wave model is proposed. The adjoint equation of the wavenumber energy spectrum balance equation is derived. And fortunately, its characteristic equations are the same as those in the LAGFD-WAM wave model. Simple experiments on the functional optimization and assimilation effectiveness during the prediction period indicated that the adjoint variational method is effective for wave assimilation and that the initial optimization of the wave model is important for the short-range wave prediction. All of this is under the assumption that the wind field is accurate, the method is the important first step for combined wind and wave data assimilation systems.

  6. Laboratory Experiments on Wave Turbulence

    CERN Document Server

    Falcon, Eric

    2010-01-01

    This review paper is devoted to a presentation of recent progress in wave turbulence. I first present the context and state of the art of this field of research both experimentally and theoretically. I then focus on the case of wave turbulence on the surface of a fluid, and I discuss the main results obtained by our group: caracterization of the gravity and capillary wave turbulence regimes, the first observation of intermittency in wave turbulence, the occurrence of strong fluctuations of injected power in the fluid, the observation of a pure capillary wave turbulence in low gravity environment and the observation of magnetic wave turbulence on the surface of a ferrofluid. Finally, open questions in wave turbulence are discussed.

  7. Gravitational wave astronomy and cosmology

    CERN Document Server

    Hughes, Scott A

    2014-01-01

    The first direct observation of gravitational waves' action upon matter has recently been reported by the BICEP2 experiment. Advanced ground-based gravitational-wave detectors are being installed. They will soon be commissioned, and then begin searches for high-frequency gravitational waves at a sensitivity level that is widely expected to reach events involving compact objects like stellar mass black holes and neutron stars. Pulsar timing arrays continue to improve the bounds on gravitational waves at nanohertz frequencies, and may detect a signal on roughly the same timescale as ground-based detectors. The science case for space-based interferometers targeting millihertz sources is very strong. The decade of gravitational-wave discovery is poised to begin. In this writeup of a talk given at the 2013 TAUP conference, we will briefly review the physics of gravitational waves and gravitational-wave detectors, and then discuss the promise of these measurements for making cosmological measurements in the near fu...

  8. Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube

    Science.gov (United States)

    Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming

    2006-07-01

    Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.

  9. Satellite observations of the QBO wave driving by Kelvin waves and gravity waves

    Science.gov (United States)

    Ern, Manfred; Preusse, Peter; Kalisch, Silvio; Riese, Martin

    2014-05-01

    The quasi-biennial oscillation (QBO) of the zonal wind in the tropical stratosphere is an important process in atmospheric dynamics influencing a wide range of altitudes and latitudes. Effects of the QBO are found also in the mesosphere and in the extra-tropics. The QBO even has influence on the surface weather and climate, for example during winter in the northern hemisphere at midlatitudes. Still, climate models have large difficulties in reproducing a realistic QBO. One reason for this deficiency are uncertainties in the wave driving by planetary waves and, in particular, gravity waves that are usually too small-scale to be resolved in global models. Different global equatorial wave modes (e.g., Kelvin waves) have been identified by longitude-time 2D spectral analysis in Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite temperature data, as well as ECMWF temperatures. We find good agreement between SABER satellite observations and ECMWF wave variances in both QBO-related temporal variations and their magnitude. Slow phase speed waves are strongly modulated by the QBO, higher phase speed waves are almost unaffected by the QBO, and ultra-fast equatorial waves can even reach the MLT region. Momentum fluxes and zonal wind drag due to Kelvin waves are derived, and the relative contribution of Kelvin waves to the QBO wind reversal from westward to eastward wind is estimated to be about 30% of the total wave driving. This is in good agreement with the general assumption that gravity waves (GWs) are probably more important for the QBO driving than global-scale waves. This is further supported by SABER and High Resolution Dynamics Limb Sounder (HIRDLS) satellite observations of gravity wave drag in the equatorial region. These observations are compared with the drag still missing in the ECMWF ERA Interim (ERAI) tropical momentum budget after considering zonal wind tendency, Coriolis force, advection terms and drag of resolved global

  10. Wave turbulent statistics in non-weak wave turbulence

    International Nuclear Information System (INIS)

    In wave turbulence, which is made by nonlinear interactions among waves, it has been believed that statistical properties are well described by the weak turbulence theory, where separation of linear and nonlinear time scales derived from weak nonlinearity is assumed. However, the separation of the time scales is often violated. To get rid of this inconsistency, closed equations are derived in wave turbulence without assuming the weak nonlinearity according to Direct-Interaction Approximation (DIA), which has been successful in Navier–Stokes turbulence. The DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence. -- Highlights: ► Direct-Interaction Approximation is applied to wave turbulence. ► The DIA equations describe non-weak wave turbulent statistics. ► They can be applied to spatio-temporal intermittent structures. ► The conventional kinetic equation is recoverable in the weak nonlinear limit.

  11. A Wave Modulation Model of Ripples over Long Surface Waves

    Institute of Scientific and Technical Information of China (English)

    CONG Peixiu; ZHENG Guizhen

    2011-01-01

    A study is presented on the modulation of ripples induced by a long surface wave (LW) and a new theoretical modulation model is proposed. In this model, the wind surface stress modulation is related to the modulation of tipple spectrum. The model results show that in the case of LW propagating in the wind direction with the wave age parameter of LW increasing, the area with enhanced shear stress shifts from the region near the LW crest on the upwind slope to the LW trough. With a smaller wave age parameter of LW, the tipple modulation has the maximum on the upwind slope in the vicinity of LW crest, while with a larger parameter the enhancement of ripple spectrum does not occur in that region. At low winds the amplitude of ripple modulation transfer function (MTF) is larger in the gravity wave range, while at moderate or high winds it changes little in the range from short gravity waves to capillary waves.

  12. Shock wave treatment in medicine

    Indian Academy of Sciences (India)

    S K Shrivastava; Kailash

    2005-03-01

    Extracorporeal shock wave therapy in orthopedics and traumatology is still a young therapy method. Since the last few years the development of shock wave therapy has progressed rapidly. Shock waves have changed the treatment of urolithiasis substantially. Today shock waves are the first choice to treat kidney and urethral stones. Urology has long been the only medical field for shock waves in medicine. Meanwhile shock waves have been used in orthopedics and traumatology to treat insertion tendinitis, avascular necrosis of the head of femur and other necrotic bone alterations. Another field of shock wave application is the treatment of tendons, ligaments and bones on horses in veterinary medicine. In the present paper we discuss the basic theory and application of shock waves and its history in medicine. The idea behind using shock wave therapy for orthopedic diseases is the stimulation of healing in tendons, surrounding tissue and bones. This is a completely different approach compared to urology where shock waves are used for disintegration.

  13. Book review: Extreme ocean waves

    Science.gov (United States)

    Geist, Eric L.

    2011-01-01

    ‘‘Extreme Ocean Waves’’ is a collection of ten papers edited by Efim Pelinovsky and Christian Kharif that followed the April 2007 meeting of the General Assembly of the European Geosciences Union. A note on terminology: extreme waves in this volume broadly encompass different types of waves, includ- ing deep-water and shallow-water rogue waves (alternatively termed freak waves), storm surges from cyclones, and internal waves. Other types of waves such as tsunamis or rissaga (meteotsunamis) are not discussed in this volume. It is generally implied that ‘‘extreme’’ has a statistical connotation relative to the average or significant wave height specific to each type of wave. Throughout the book, in fact, the reader will find a combination of theoretical and statistical/ empirical treatment necessary for the complete examination of this subject. In the introduction, the editors underscore the importance of studying extreme waves, documenting several dramatic instances of damaging extreme waves that occurred in 2007. 

  14. Rogue waves emerging from the resonant interaction of three waves

    CERN Document Server

    Baronio, Fabio; Degasperis, Antonio; Lombardo, Sara

    2013-01-01

    We introduce a novel family of analytic solutions of the three-wave resonant interaction equations to the purpose of modeling unique events, i.e. "amplitude peaks" which are isolated in space and time. The description of these solutions is likely to be a crucial step in the understanding and forecasting of rogue-waves in a variety of multi-component wave dynamics, from oceanography to optics, from plasma physics to acoustics.

  15. Wave turbulent statistics in non-weak wave turbulence

    OpenAIRE

    Yokoyama, Naoto

    2011-01-01

    In wave turbulence, which is made by nonlinear interactions among waves, it has been believed that statistical properties are well described by the weak turbulence theory, where separation of linear and nonlinear time scales derived from weak nonlinearity is assumed. However, the separation of the time scales is often violated. To get rid of this inconsistency, closed equations are derived in wave turbulence without assuming the weak nonlinearity according to Direct-Interaction Approximation ...

  16. Amazon flood wave hydraulics

    Science.gov (United States)

    Trigg, Mark A.; Wilson, Matthew D.; Bates, Paul D.; Horritt, Matthew S.; Alsdorf, Douglas E.; Forsberg, Bruce R.; Vega, Maria C.

    2009-07-01

    SummaryA bathymetric survey of 575 km of the central Amazon River and one of its tributaries, the Purus, are combined with gauged data to characterise the Amazon flood wave, and for hydraulic modelling of the main channel for the period June 1995-March 1997 with the LISFLOOD-FP and HEC-RAS hydraulic models. Our investigations show that the Amazon flood wave is subcritical and diffusive in character and, due to shallow bed slopes, backwater conditions control significant reach lengths and are present for low and high water states. Comparison of the different models shows that it is necessary to include at least the diffusion term in any model, and the RMSE error in predicted water elevation at all cross sections introduced by ignoring the acceleration and advection terms is of the order of 0.02-0.03 m. The use of a wide rectangular channel approximation introduces an error of 0.10-0.15 m on the predicted water levels. Reducing the bathymetry to a simple bed slope and with mean cross section only, introduces an error in the order of 0.5 m. These results show that when compared to the mean annual amplitude of the Amazon flood wave of 11-12 m, water levels are relatively insensitive to the bathymetry of the channel model. The implication for remote sensing studies of the central Amazon channel, such as those proposed with the Surface Water and Ocean Topography mission (SWOT), is that even relatively crude assumptions regarding the channel bathymetry will be valid in order to derive discharge from water surface slope of the main channel, as long as the mean channel area is approximately correct.

  17. From bell-shaped solitary wave to W/M-shaped solitary wave solutions in an integrable nonlinear wave equation

    Indian Academy of Sciences (India)

    Aiyong Chen; Jibin Li; Chunhai Li; Yuanduo Zhang

    2010-01-01

    The bifurcation theory of dynamical systems is applied to an integrable non-linear wave equation. As a result, it is pointed out that the solitary waves of this equation evolve from bell-shaped solitary waves to W/M-shaped solitary waves when wave speed passes certain critical wave speed. Under different parameter conditions, all exact explicit parametric representations of solitary wave solutions are obtained.

  18. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    OpenAIRE

    Tedd, James

    2007-01-01

    Et element i krigen mod klimaændringer er udvikling af alternative, ikke-forurenende kilder til produktion af energi. Wave Dragon, som er en førende teknologi indenfor området, omdanner havets bølger til elektricitet. Nærværende afhandling omhandler forfatterens arbejde med de tekniske aspekter i relation til udviklingen af Wave Dragon. Arbejdet er gennemført i samarbejde med selskaberne bag Wave Dragon og er i høj grad baseret på anvendelse af den højt instrumenterede Wave Dragon, som har li...

  19. Experiments on the WavePiston, Wave Energy Converter

    DEFF Research Database (Denmark)

    Angelelli, E.; Zanuttigh, B.; Kofoed, Jens Peter;

    2011-01-01

    This paper analyses the performance of a new Wave Energy Converter (WEC) of the Oscillating Water Column type (OWC), named WavePiston. This near-shore floating device is composed of plates (i.e. energy collectors) sliding around a cylinder, that is placed perpendicular to the shore. Tests...... results and survivability considerations suggest that the WavePiston would be particularly suited for installations in milder seas. An example application is therefore presented in the Mediterranean Sea, off-shore the island of Sicily. In this case, each collector harvests the 10% of the available wave...

  20. Comparison of standing-wave and traveling-wave structures

    International Nuclear Information System (INIS)

    The controversy over the relative advantages of standing-wave and traveling-wave linear accelerators is now in its fourth decade. It has been fed by a considerable body of misinformation. The author hopes in this paper to shed some light on the subject, and expose some of the falsehoods. The discussion is directed toward the question of which structure to use for short pulse high field electron accelerators since it is almost universally accepted that standing-wave structures are appropriate for CW and long pulse accelerators. Three arguments against standing-wave accelerators are discussed and shown to be invalid

  1. Comparison of standing-wave and traveling-wave structures

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.

    1986-04-01

    The controversy over the relative advantages of standing-wave and traveling-wave linear accelerators is now in its fourth decade. It has been fed by a considerable body of misinformation. The author hopes in this paper to shed some light on the subject, and expose some of the falsehoods. The discussion is directed toward the question of which structure to use for short pulse high field electron accelerators since it is almost universally accepted that standing-wave structures are appropriate for CW and long pulse accelerators. Three arguments against standing-wave accelerators are discussed and shown to be invalid.

  2. Prototype testing of the wave energy converter wave dragon

    Energy Technology Data Exchange (ETDEWEB)

    Kofoed, Jens Peter; Frigaard, Peter [Hydraulics and Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, Aalborg 9000 (Denmark); Friis-Madsen, Erik [Loewenmark F.R.I., Copenhagen (Denmark); Soerensen, Hans Chr. [SPOK, Copenhagen (Denmark)

    2006-02-01

    The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57x27m wide and 237tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world's first offshore wave energy converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive measuring program has been carried out, establishing the background for optimal design of the structure and regulation of the power take off system. Planning for deployment of a 4MW power production unit in the Atlantic by 2007 is in progress. (author)

  3. Holographic Magnetisation Density Waves

    CERN Document Server

    Donos, Aristomenis

    2016-01-01

    We numerically construct asymptotically $AdS$ black brane solutions of $D=4$ Einstein theory coupled to a scalar and two $U(1)$ gauge fields. The solutions are holographically dual to $d=3$ CFTs in a constant external magnetic field along one of the $U(1)$'s. Below a critical temperature the system's magnetisation density becomes inhomogeneous, leading to spontaneous formation of current density waves. We find that the transition can be of second order and that the solutions which minimise the free energy locally in the parameter space of solutions have averaged stressed tensor of a perfect fluid.

  4. Exploring Beneath the Waves

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A China-made manned submersible has reached a depth of 3,759 meters The first China-designed and developed manned submersible Jiaolong has successfully completed its work in manned tests,diving to 3,000 meters under the waves,the Ministry of Science and Technology and the State Oceanic Administration(SOA) said at a press conference on August 26. With a deepest dive to 3,759 meters,Jiaolong surpassed the average ocean depth,3,682 meters.It also established a record by operating underwater for 9 hours and 3 minutes.

  5. Exploring Beneath the Waves

    Institute of Scientific and Technical Information of China (English)

    YU LINTAO

    2010-01-01

    @@ The first China-designed and developed manned submersible Jiaolong has successfully completed its work in manned tests, diving to 3,000 meters under the waves, the Ministry of Science and Technology and the State Oceanic Administration (SOA) said at a press confer-ence on August 26. With a deepest dive to 3,759 meters, Jiaolong surpassed the aver-age ocean depth, 3,682 meters. It also estab-lished a record by operating underwater for 9 hours and 3 minutes.

  6. Waves of information technology

    OpenAIRE

    Case, Donald O.

    2009-01-01

    This is a history of the various concepts and technologies of a public information utility. The first “wave” existed from about 1900 to 1945, and was centered on the idea of microfilm as an access mechanism to the world’s information. The advocates included Paul Otlet (1934) of Belgium, Englishman H.G. Wells’ vision of a “World Brain” (1938), and American Vanevar Bush and his “Memex” device (1945). The second wave consisted of the development of computers and their networks, which eventual...

  7. Electromagnetic waves and photons

    CERN Document Server

    Hofmann, Ralf

    2015-01-01

    We explore how the thermal ground states of two mixing and pure SU(2) Yang-Mills theories, SU(2)$_{\\tiny\\mbox{CMB}}$ of scale $\\Lambda_{\\tiny\\mbox{CMB}}\\sim 10^{-4}\\,$eV and SU(2)$_{e}$ of scale $\\Lambda_{e}\\sim 5\\times 10^5\\,$eV, associate either wave or particle aspects to electromagnetic disturbances during thermalisation towards the photon gas of a blackbody, in realising the photoelectric effect, and through the frequency dependence of the monochromatic, nonthermal beam structure in Thomson/Compton scattering.

  8. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been expl...... by Liu. The coupled magnon—transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory....

  9. Strong acoustic wave action

    Science.gov (United States)

    Gokhberg, M. B.

    1983-07-01

    Experiments devoted to acoustic action on the atmosphere-magnetosphere-ionosphere system using ground based strong explosions are reviewed. The propagation of acoustic waves was observed by ground observations over 2000 km in horizontal direction and to an altitude of 200 km. Magnetic variations up to 100 nT were detected by ARIEL-3 satellite near the epicenter of the explosion connected with the formation of strong field aligned currents in the magnetosphere. The enhancement of VLF emission at 800 km altitude is observed.

  10. Beat wave development work

    International Nuclear Information System (INIS)

    The first phase of experiments on beat wave acceleration have been completed at UCLA. Here we examined the suitability of a theta pinch as a plasma source. The beatwave was excited to amplitudes providing GeV/m-scale accelerating fields. However, trapped magnetic fields within the theta-pinch plasma hindered the injection of test particles. Optical diagnostics were developed to measure the accelerating gradient-length product which was found to be around 3 MeV. Future plans are also discussed. copyright 1989 American Institute of Physics

  11. Elementary wave optics

    CERN Document Server

    Webb, Robert H

    2005-01-01

    This undergraduate textbook presents thorough coverage of the standard topics of classical optics and optical instrument design; it also offers significant details regarding the concepts of modern optics. Its survey of the mathematical tools of optics grants students insights into the physical principles of quantum mechanics.Two principal concepts occur throughout: a treatment of scattering from real scatterers (leading to Huygens' principles, diffraction theory, the index of refraction, and related topics); and the difference between coherent and noncoherent wave phenomena. Examinations of su

  12. Thermal Wave Phenomena

    Science.gov (United States)

    1999-01-01

    This map from the MGS Horizon Sensor Assembly (HORSE) shows middle atmospheric temperatures near the 1 mbar level of Mars between Ls 170 to 175 (approx. July 14 - 23, 1999). Local Mars times between 1:30 and 4:30 AM are included. Infrared radiation measured by the Mars Horizon Sensor Assembly was used to make the map. That device continuously views the 'limb' of Mars in four directions, to help orient the spacecraft instruments to the nadir: straight down. The map shows thermal wave phenomena that are caused by the large topographic variety of Mars' surface, as well the latitudinally symmetric behavior expected at this time of year near the equinox.

  13. Iterated multidimensional wave conversion

    Science.gov (United States)

    Brizard, A. J.; Tracy, E. R.; Johnston, D.; Kaufman, A. N.; Richardson, A. S.; Zobin, N.

    2011-12-01

    Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

  14. Models of wave memory

    CERN Document Server

    Kashchenko, Serguey

    2015-01-01

    This monograph examines in detail models of neural systems described by delay-differential equations. Each element of the medium (neuron) is an oscillator that generates, in standalone mode, short impulses also known as spikes. The book discusses models of synaptic interaction between neurons, which lead to complex oscillatory modes in the system. In addition, it presents a solution to the problem of choosing the parameters of interaction in order to obtain attractors with predetermined structure. These attractors are represented as images encoded in the form of autowaves (wave memory). The target audience primarily comprises researchers and experts in the field, but it will also be beneficial for graduate students.

  15. Abnormal amplification of sound waves refracted by an oblique shock wave

    OpenAIRE

    Nakamura, Yoshiaki; Menshov, Igor; 中村 佳朗

    2004-01-01

    Reflection and refraction of linear disturbance waves by an oblique shock wave is studied by a linear analysis. Several different cases are considered, when the incident plane wave is a fast acoustic, slow acoustic, entropy, or vorticity wave. Results show that 1) a critical angle of the wave incidence exists, beyond which the regular wave solution of the linear problem can not be realized, 2) strongest sound waves are generated behind the shock wave, if the incident wave strikes the shock wa...

  16. Rogue waves in Alfvenic turbulence

    International Nuclear Information System (INIS)

    Rogue waves, in the form of giant breathers, are shown to develop in the Alfven wave (AW) turbulence regime described by the randomly driven derivative nonlinear Schroedinger equation in the presence of a weak dissipation. The distribution of the instantaneous global maxima of the AW intensity fluctuations is seen to be accurately fitted by power laws, which contrasts with the integrable regime (absence of dissipation and forcing) where the behavior is rather exponential. As the dissipation is reduced, freak waves form less frequently but reach larger amplitudes. -- Highlights: → Rogue wave formation in long-wavelength Alfvenic turbulence. → Huge waves form by quasi-collapse of breathers in presence of weak dissipation. → Amplitude distribution of rogue waves is fitted by power laws. → Possible relation with SLAMS pulses observed near the Earth bow shock.

  17. Interference of interacting matter waves

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Mattias; Haller, Elmar; Mark, Manfred J; Danzl, Johann G; Hart, Russell; Naegerl, Hanns-Christoph [Institut fuer Experimentalphysik und Zentrum fuer Quantenphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Daley, Andrew J, E-mail: christoph.naegerl@uibk.ac.a [Institut fuer Theoretische Physik und Zentrum fuer Quantenphysik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)

    2010-06-15

    The phenomenon of matter-wave interference lies at the heart of quantum physics. It has been observed in various contexts in the limit of non-interacting particles as a single-particle effect. Here we observe and control matter-wave interference whose evolution is driven by interparticle interactions. In a multi-path matter-wave interferometer, the macroscopic many-body wave function of an interacting atomic Bose-Einstein condensate develops a regular interference pattern, allowing us to detect and directly visualize the effect of interaction-induced phase shifts. We demonstrate control over the phase evolution by inhibiting interaction-induced dephasing and by refocusing a dephased macroscopic matter wave in a spin-echo-type experiment. Our results show that interactions in a many-body system lead to a surprisingly coherent evolution, possibly enabling narrow-band and high-brightness matter-wave interferometers based on atom lasers.

  18. Ion shell distributions as free energy source for plasma waves on auroral field lines mapping to plasma sheet boundary layer

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-06-01

    Full Text Available Ion shell distributions are hollow spherical shells in velocity space that can be formed by many processes and occur in several regions of geospace. They are interesting because they have free energy that can, in principle, be transmitted to ions and electrons. Recently, a technique has been developed to estimate the original free energy available in shell distributions from in-situ data, where some of the energy has already been lost (or consumed. We report a systematic survey of three years of data from the Polar satellite. We present an estimate of the free energy available from ion shell distributions on auroral field lines sampled by the Polar satellite below 6 RE geocentric radius. At these altitudes the type of ion shells that we are especially interested in is most common on auroral field lines close to the polar cap (i.e. field lines mapping to the plasma sheet boundary layer, PSBL. Our analysis shows that ion shell distributions that have lost some of their free energy are commonly found not only in the PSBL, but also on auroral field lines mapping to the boundary plasma sheet (BPS, especially in the evening sector auroral field lines. We suggest that the PSBL ion shell distributions are formed during the so-called Velocity Dispersed Ion Signatures (VDIS events. Furthermore, we find that the partly consumed shells often occur in association with enhanced wave activity and middle-energy electron anisotropies. The maximum downward ion energy flux associated with a shell distribution is often 10mWm-2 and sometimes exceeds 40mWm-2 when mapped to the ionosphere and thus may be enough to power many auroral processes. Earlier simulation studies have shown that ion shell distributions can excite ion Bernstein waves which, in turn, energise electrons in the parallel direction. It is possible that ion shell distributions are the link between the X-line and the auroral wave activity and electron

  19. Wave Manipulation by Topology Optimization

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders

    Sound and light propagate as waves and are scattered, reflected and change direction when encountering other media and obstacles. By optimizing the spatial placement and distribution of the media, which the waves encounter, one can obtain useful and interesting effects. This thesis describes how ...... concerns the design of planar Fresnel zone plate lenses for focusing electromagnetic waves. The topology optimized zone plates improve the focusing performance compared to results known from the literature....

  20. Global Attraction to Solitary Waves

    OpenAIRE

    Komech, Andrey

    2009-01-01

    The long time asymptotics for nonlinear wave equations have been the subject of intensive research, starting with the pioneering papers by Segal, Strauss, and Morawetz, where the nonlinear scattering and local attraction to zero were considered. Global attraction (for large initial data) to zero may not hold if there are quasistationary solitary wave solutions. We will call such solutions "solitary waves". Other appropriate names are "nonlinear eigenfunctions" and "quantum stationary states"....

  1. Waves and instabilities in plasmas

    International Nuclear Information System (INIS)

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations

  2. Precession resonance in water waves

    CERN Document Server

    Lucas, Dan; Perlin, Marc

    2016-01-01

    We describe the theory and present numerical evidence for a new type of nonlinear resonant interaction between gravity waves on the surface of deep water. The resonance constitutes a generalisation of the usual 'exact' resonance as we show that exchanges of energy between the waves can be enhanced when the interaction is three-wave rather than four and the linear frequency mismatch, or detuning, is non-zero i.e. $\\omega_1\\pm\\omega_2\\pm\\omega_3 \

  3. Infragravity waves across the oceans

    Science.gov (United States)

    Rawat, Arshad; Ardhuin, Fabrice; Aucan, Jerome

    2014-05-01

    The propagation of transoceanic Infragravity (IG) wave was investigated using a global spectral wave model together with deep-ocean pressure recorders. IG waves are generated mostly at the shorelines due to non-linear hydrodynamic effects that transfer energy from the main windsea and swell band, with periods of 1 to 25 s, to periods up to 500 s. IG waves are important for the study of near-shore processes and harbor agitation, and can also be a potential source of errors in satellite altimetry measurements. Setting up a global IG model was motivated by the investigation of these errors for the future planned SWOT mission. Despite the fact that the infragravity waves exhibit much smaller vertical amplitudes than the usual high frequency wind-driven waves, of the order of 1 cm in the deep oceans, their propagation throughout the oceans and signature in the wave spectrum can be clearly observed. Using a simplified empirical parameterization of the nearshore source of free IG waves as a function of the incoming wave parameters we extended to WAVEWATCH III model, used so far for windseas and swell, to the IG band, up to periods of 300 s. The spatial and temporal variability of the modeled IG energy was well correlated to the DART station records, making it useful to interpret the records of IG waves. Open ocean IG wave records appear dominated by trans-oceanic events with well defined sources concentrated on a few days, usually on West coasts, and affecting the entire ocean basin, with amplitude patterns very similar to those of tsunamis. Three particular IG bursts during 2008 are studied, 2 in the Pacific Ocean and 1 in the North Atlantic. It was observed that the liberated IG waves can travel long distances often crossing whole oceans with negligible dissipation. The IG signatures are clearly observed at sensors along their propagation paths.

  4. Fundamentals of Seismic Wave Propagation

    Science.gov (United States)

    Chapman, Chris

    2004-08-01

    Presenting a comprehensive introduction to the propagation of high-frequency body-waves in elastodynamics, this volume develops the theory of seismic wave propagation in acoustic, elastic and anisotropic media to allow seismic waves to be modelled in complex, realistic three-dimensional Earth models. The book is a text for graduate courses in theoretical seismology, and a reference for all academic and industrial seismologists using numerical modelling methods. Exercises and suggestions for further reading are included in each chapter.

  5. Magnetodynamic waves in the air

    International Nuclear Information System (INIS)

    The paper describes experiments to search for a variable magnetic field close to a rechargeable conductive flat plate and a ball in the air, as well as an experiment looking for a variable electric field near a rotating permanent magnet. It has been found that variable electric and magnetic fields do not induce each other within the measurement error. It means that rotary Maxwell's equations are not applicable in the near-field zone and the classical concept of displacement current in vacuum (air) has no physical meaning. A conclusion is made on the existence of transverse magnetodynamic waves. Statics and dynamics of the magnetic field near the permanent magnet rod are investigated experimentally. The methods to compute magnetodynamic waves from any source are presented. Four types of polarization of these waves are identified: linear, circular, toroidal and mixed. Concentration and deflection of magnetodynamic waves are observed on introducing inhomogeneity in the form of a ferrite rod into their propagation way, which is similar to diffraction in optics. Secondary magnetodynamic waves from the induced magnetic moments in atoms of ferrite are registered near its surface, which is like reflection in optics. Some ideas for observation of effects similar to dispersion and interference are presented for magnetodynamic waves. The structure and properties of electrodynamic, magnetodynamic and electromagnetic waves are discussed. The ideas of experiments to search for their unknown properties are described. In conclusion, technical applications of magnetodynamic waves such as magnetography, magnetic tomography and other are considered. - Highlights: ► This paper is about new type of spatial-in-time disturbance (wave)- magnetodynamic waves. ► Theoretical and experimental evidences of existence the waves are done. ► The general properties of this waves are considered and suggestions regarding research new useful properties are done.

  6. Quantitative wave-particle duality

    Science.gov (United States)

    Qureshi, Tabish

    2016-07-01

    The complementary wave and particle character of quantum objects (or quantons) was pointed out by Niels Bohr. This wave-particle duality, in the context of the two-slit experiment, is here described not just as two extreme cases of wave and particle characteristics, but in terms of quantitative measures of these characteristics, known to follow a duality relation. A very simple and intuitive derivation of a closely related duality relation is presented, which should be understandable to the introductory student.

  7. Surface waves affect frontogenesis

    Science.gov (United States)

    Suzuki, Nobuhiro; Fox-Kemper, Baylor; Hamlington, Peter E.; Van Roekel, Luke P.

    2016-05-01

    This paper provides a detailed analysis of momentum, angular momentum, vorticity, and energy budgets of a submesoscale front undergoing frontogenesis driven by an upper-ocean, submesoscale eddy field in a Large Eddy Simulation (LES). The LES solves the wave-averaged, or Craik-Leibovich, equations in order to account for the Stokes forces that result from interactions between nonbreaking surface waves and currents, and resolves both submesoscale eddies and boundary layer turbulence down to 4.9 m × 4.9 m × 1.25 m grid scales. It is found that submesoscale frontogenesis differs from traditional frontogenesis theory due to four effects: Stokes forces, momentum and kinetic energy transfer from submesoscale eddies to frontal secondary circulations, resolved turbulent stresses, and unbalanced torque. In the energy, momentum, angular momentum, and vorticity budgets for the frontal overturning circulation, the Stokes shear force is a leading-order contributor, typically either the second or third largest source of frontal overturning. These effects violate hydrostatic and thermal wind balances during submesoscale frontogenesis. The effect of the Stokes shear force becomes stronger with increasing alignment of the front and Stokes shear and with a nondimensional scaling. The Stokes shear force and momentum transfer from submesoscale eddies significantly energize the frontal secondary circulation along with the buoyancy.

  8. Wave mixing spectroscopy

    International Nuclear Information System (INIS)

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr+3:LaF3 verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the 3H4, 3H6, and 3P0 levels of the praseodymium ions

  9. Rarefaction wave gun propulsion

    Science.gov (United States)

    Kathe, Eric Lee

    A new species of gun propulsion that dramatically reduces recoil momentum imparted to the gun is presented. First conceived by the author on 18 March 1999, the propulsion concept is explained, a methodology for the design of a reasonable apparatus for experimental validation using NATO standard 35mm TP anti-aircraft ammunition is developed, and the experimental results are presented. The firing results are juxtaposed by a simple interior ballistic model to place the experimental findings into a context within which they may better be understood. Rarefaction wave gun (RAVEN) propulsion is an original contribution to the field of armament engineering. No precedent is known, and no experimental results of such a gun have been published until now. Recoil reduction in excess of 50% was experimentally achieved without measured loss in projectile velocity. RAVEN achieves recoil reduction by means of a delayed venting of the breech of the gun chamber that directs the high enthalpy propellant gases through an expansion nozzle to generate forward thrust that abates the rearward momentum applied to the gun prior to venting. The novel feature of RAVEN, relative to prior recoilless rifles, is that sufficiently delayed venting results in a rarefaction wave that follows the projectile though the bore without catching it. Thus, the projectile exits the muzzle without any compromise to its propulsion performance relative to guns that maintain a sealed chamber.

  10. Homogeneous plane waves

    Energy Technology Data Exchange (ETDEWEB)

    Blau, Matthias E-mail: mblau@ictp.trieste.it; O' Loughlin, Martin E-mail: loughlin@sissa.it

    2003-03-24

    Motivated by the search for potentially exactly solvable time-dependent string backgrounds, we determine all homogeneous plane wave (HPW) metrics in any dimension and find one family of HPWs with geodesically complete metrics and another with metrics containing null singularities. The former generalises both the Cahen-Wallach (constant A{sub ij}) metrics to time-dependent HPWs, A{sub ij}(x{sup +}), and the Ozsvath-Schuecking anti-Mach metric to arbitrary dimensions. The latter is a generalisation of the known homogeneous metrics with A{sub ij}{approx}1/(x{sup +}){sup 2} to a more complicated time-dependence. We display these metrics in various coordinate systems, show how to embed them into string theory, and determine the isometry algebra of a general HPW and the associated conserved charges. We review the Lewis-Riesenfeld theory of invariants of time-dependent harmonic oscillators and show how it can be deduced from the geometry of plane waves. We advocate the use of the invariant associated with the extra (timelike) isometry of HPWs for lightcone quantisation, and illustrate the procedure in some examples.

  11. When Shock Waves Collide

    Science.gov (United States)

    Hartigan, P.; Foster, J.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Wilde, B.; Blue, B.; Martinez, D.; Rosen, P.; Farley, D.; Paguio, R.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. The experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.

  12. Wave mixing spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.W.

    1980-08-01

    Several new aspects of nonlinear or wave mixing spectroscopy were investigated utilizing the polarization properties of the nonlinear output field and the dependence of this field upon the occurrence of multiple resonances in the nonlinear susceptibility. First, it is shown theoretically that polarization-sensitive detection may be used to either eliminate or controllably reduce the nonresonant background in coherent anti-Stokes Raman spectroscopy, allowing weaker Raman resonances to be studied. The features of multi-resonant four-wave mixing are examined in the case of an inhomogeneously broadened medium. It is found that the linewidth of the nonlinear output narrows considerably (approaching the homogeneous width) when the quantum mechanical expressions for the doubly- and triply-resonant susceptibilities are averaged over a Doppler or strain broadened profile. Experimental studies of nonlinear processes in Pr/sup +3/:LaF/sub 3/ verify this linewidth narrowing, but indicate that this strain broadened system cannot be treated with a single broadening parameter as in the case of Doppler broadening in a gas. Several susceptibilities are measured from which are deduced dipole matrix elements and Raman polarizabilities related to the /sup 3/H/sub 4/, /sup 3/H/sub 6/, and /sup 3/P/sub 0/ levels of the praseodymium ions.

  13. Homogeneous plane waves

    International Nuclear Information System (INIS)

    Motivated by the search for potentially exactly solvable time-dependent string backgrounds, we determine all homogeneous plane wave (HPW) metrics in any dimension and find one family of HPWs with geodesically complete metrics and another with metrics containing null singularities. The former generalises both the Cahen-Wallach (constant Aij) metrics to time-dependent HPWs, Aij(x+), and the Ozsvath-Schuecking anti-Mach metric to arbitrary dimensions. The latter is a generalisation of the known homogeneous metrics with Aij∼1/(x+)2 to a more complicated time-dependence. We display these metrics in various coordinate systems, show how to embed them into string theory, and determine the isometry algebra of a general HPW and the associated conserved charges. We review the Lewis-Riesenfeld theory of invariants of time-dependent harmonic oscillators and show how it can be deduced from the geometry of plane waves. We advocate the use of the invariant associated with the extra (timelike) isometry of HPWs for lightcone quantisation, and illustrate the procedure in some examples

  14. Homogeneous Plane Waves

    CERN Document Server

    Blau, Matthias; Blau, Matthias; Loughlin, Martin O'

    2003-01-01

    Motivated by the search for potentially exactly solvable time-dependent string backgrounds, we determine all homogeneous plane wave (HPW) metrics in any dimension and find one family of HPWs with geodesically complete metrics and another with metrics with null singularities. The former generalises both the Cahen-Wallach (constant $A_{ij}$) metrics to time-dependent HPWs, $A_{ij}(t)$, and the Ozsvath-Sch\\"ucking anti-Mach metric to arbitrary dimensions. The latter is a generalisation of the known homogeneous metrics with $A_{ij}\\sim 1/t^2$ to a more complicated time-dependence. We display these metrics in various coordinate systems, show how to embed them into string theory, and determine the isometry algebra of a general HPW and the associated conserved charges. We review the Lewis-Riesenfeld theory of invariants of time-dependent harmonic oscillators and show how it can be deduced from the geometry of plane waves. We advocate the use of the invariant associated with the extra (timelike) isometry of HPWs for ...

  15. Delaying vortex breakdown by waves

    Science.gov (United States)

    Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.

    1989-03-01

    The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.

  16. Revivals of Quantum Wave Packets

    CERN Document Server

    Bluhm, R; Porter, J; Tudose, B; Bluhm, Robert; Kostelecky, Alan; Porter, James; Tudose, Bogdan

    1997-01-01

    We present a generic treatment of wave-packet revivals for quantum-mechanical systems. This treatment permits a classification of certain ideal revival types. For example, wave packets for a particle in a one-dimensional box are shown to exhibit perfect revivals. We also examine the revival structure of wave packets for quantum systems with energies that depend on two quantum numbers. Wave packets in these systems exhibit quantum beats in the initial motion as well as new types of long-term revivals. As an example, we consider the revival structure of a particle in a two-dimensional box.

  17. Wave motion in elastic solids

    CERN Document Server

    Graff, Karl F

    1991-01-01

    This highly useful textbook presents comprehensive intermediate-level coverage of nearly all major topics of elastic wave propagation in solids. The subjects range from the elementary theory of waves and vibrations in strings to the three-dimensional theory of waves in thick plates. The book is designed not only for a wide audience of engineering students, but also as a general reference for workers in vibrations and acoustics. Chapters 1-4 cover wave motion in the simple structural shapes, namely strings, longitudinal rod motion, beams and membranes, plates and (cylindrical) shells. Chapter

  18. Wigner functions of s waves

    DEFF Research Database (Denmark)

    Dahl, Jens Peder; Varro, S.; Wolf, A.;

    2007-01-01

    We derive explicit expressions for the Wigner function of wave functions in D dimensions which depend on the hyperradius-that is, of s waves. They are based either on the position or the momentum representation of the s wave. The corresponding Wigner function depends on three variables......: the absolute value of the D-dimensional position and momentum vectors and the angle between them. We illustrate these expressions by calculating and discussing the Wigner functions of an elementary s wave and the energy eigenfunction of a free particle....

  19. Traveling waves in rapid solidification

    Directory of Open Access Journals (Sweden)

    Karl Glasner

    2000-02-01

    Full Text Available We analyze rigorously the one-dimensional traveling wave problem for a thermodynamically consistent phase field model. Existence is proved for two new cases: one where the undercooling is large but not in the hypercooled regime, and the other for waves which leave behind an unstable state. The qualitative structure of the wave is studied, and under certain restrictions monotonicity of front profiles can be obtained. Further results, such as a bound on propagation velocity and non-existence are discussed. Finally, some numerical examples of monotone and non-monotone waves are provided.

  20. Newnes short wave listening handbook

    CERN Document Server

    Pritchard, Joe

    2013-01-01

    Newnes Short Wave Listening Handbook is a guide for starting up in short wave listening (SWL). The book is comprised of 15 chapters that discuss the basics and fundamental concepts of short wave radio listening. The coverage of the text includes electrical principles; types of signals that can be heard in the radio spectrum; and using computers in SWL. The book also covers SWL equipment, such as receivers, converters, and circuits. The text will be of great use to individuals who want to get into short wave listening.

  1. Google Wave Up and Running

    CERN Document Server

    Ferrate, Andres

    2010-01-01

    Catch Google Wave, the revolutionary Internet protocol and web service that lets you communicate and collaborate in realtime. With this book, you'll understand how Google Wave integrates email, instant messaging (IM), wiki, and social networking functionality into a powerful and extensible platform. You'll also learn how to use its features, customize its functions, and build sophisticated extensions with Google Wave's open APIs and network protocol. Written for everyone -- from non-techies to ninja coders -- Google Wave: Up and Running provides a complete tour of this complex platform. You'

  2. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  3. Current-drive and plasma-formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    International Nuclear Information System (INIS)

    During lower-hybrid current-driven (LHCD) tokamak, discharges with thermal electron temperature Te ∼ 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E parallel ∼ 4.5 keV with temperature T ∼ 1.5 keV, and the hot tail extends to E parallel ∼ 4.5 keV with T > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high N parallel sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the ''spectral gap,'' enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electron-cyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100--200μs. Wave power is detected in the plasma with frequency f = 300 MHz, indicating the EC waves decay into ion modes and electron Bernstein waves during plasma formation. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Toroidal currents up to Ip ∼ 1 kA are generated, consistent with theory, which predicts asymmetric electron confinement. Electron-cyclotron current-drive (ECCD) is observed with loop voltage Vloop ≤ 0 and fully sustained plasma current Ip approx-lt 15 kA at densities up to left-angle ne right-angle = 2 x 1012 cm-3. The ECCD efficiency η ≡ left-angle ne right-angle IpR0/Prf = 0.003, which is 30%--40% of the maximum achievable LHCD efficiency on Versator. The efficiency falls rapidly to zero as the density is raised above left-angle ne right-angle = 3 x 1012 cm-3, suggesting the ECCD depends on low collisionality. X-ray measurements indicate the current is carried primarily by electrons with energies 1 keV approx-lt E approx-lt 10 keV

  4. Current-drive and plasma-formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, J.A.

    1992-08-01

    During lower-hybrid current-driven (LHCD) tokamak, discharges with thermal electron temperature T{sub e} {approx} 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E{parallel} {approx} 4.5 keV with temperature T {approx} 1.5 keV, and the hot tail extends to E{parallel} {approx} 4.5 keV with T > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high N{parallel} sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the ``spectral gap,`` enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electron-cyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100--200{mu}s. Wave power is detected in the plasma with frequency f = 300 MHz, indicating the EC waves decay into ion modes and electron Bernstein waves during plasma formation. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Toroidal currents up to I{sub p} {approx} 1 kA are generated, consistent with theory, which predicts asymmetric electron confinement. Electron-cyclotron current-drive (ECCD) is observed with loop voltage V{sub loop} {le} 0 and fully sustained plasma current I{sub p} {approx_lt} 15 kA at densities up to {l_angle}n{sub e}{r_angle} = 2 {times} 10{sup 12} cm{sup {minus}3}. The ECCD efficiency {eta} {equivalent_to} {l_angle}n{sub e}{r_angle}I{sub p}R{sub 0}/P{sub rf} = 0.003, which is 30%--40% of the maximum achievable LHCD efficiency on Versator. The efficiency falls rapidly to zero as the density is raised above {l_angle}n{sub e}{r_angle} = 3 {times} 10{sup 12} cm{sup {minus}3}, suggesting the ECCD depends on low collisionality. X-ray measurements indicate the current is carried primarily by electrons with energies 1 keV {approx_lt} E {approx_lt} 10 keV.

  5. Current-drive and plasma-formation experiments on the Versator-II tokamak using lower-hybrid and electron-cyclotron waves

    Energy Technology Data Exchange (ETDEWEB)

    Colborn, J.A.

    1992-08-01

    During lower-hybrid current-driven (LHCD) tokamak, discharges with thermal electron temperature T[sub e] [approx] 150 eV, a two-parallel-temperature tail is observed in the electron distribution function. The cold tail extends to parallel energy E[parallel] [approx] 4.5 keV with temperature T [approx] 1.5 keV, and the hot tail extends to E[parallel] [approx] 4.5 keV with T > 40 keV. Fokker-Planck computer simulations suggest the cold tail is created by low power, high N[parallel] sidelobes in the lower-hybrid antenna spectrum, and that these sidelobes bridge the spectral gap,'' enabling current drive on small tokamaks such as Versator. During plasma-formation experiments using 28 GHz electron-cyclotron (EC) waves, the plasma is born near the EC layer, then moves toward the upper-hybrid (UH) layer within 100--200[mu]s. Wave power is detected in the plasma with frequency f = 300 MHz, indicating the EC waves decay into ion modes and electron Bernstein waves during plasma formation. Measured turbulent plasma fluctuations are correlated with decay-wave amplitude. Toroidal currents up to I[sub p] [approx] 1 kA are generated, consistent with theory, which predicts asymmetric electron confinement. Electron-cyclotron current-drive (ECCD) is observed with loop voltage V[sub loop] [le] 0 and fully sustained plasma current I[sub p] [approx lt] 15 kA at densities up to [l angle]n[sub e][r angle] = 2 [times] 10[sup 12] cm[sup [minus]3]. The ECCD efficiency [eta] [equivalent to] [l angle]n[sub e][r angle]I[sub p]R[sub 0]/P[sub rf] = 0.003, which is 30%--40% of the maximum achievable LHCD efficiency on Versator. The efficiency falls rapidly to zero as the density is raised above [l angle]n[sub e][r angle] = 3 [times] 10[sup 12] cm[sup [minus]3], suggesting the ECCD depends on low collisionality. X-ray measurements indicate the current is carried primarily by electrons with energies 1 keV [approx lt] E [approx lt] 10 keV.

  6. From the Somigliana waves to the evanescent waves

    Directory of Open Access Journals (Sweden)

    Pietro Caloi

    2010-02-01

    Full Text Available The Rayleigh equation has real coefficients; therefore, also the case of complex conjugated roots may be explained physically. The Author proves that the Somigliana waves may be formed for Poisson ratio values until 0.30543; for gradually less rigid media, they are missing altogether and degenerate into evanescent waves.

  7. Solitary Wave and Wave Front as Viewed From Curvature

    Institute of Scientific and Technical Information of China (English)

    LIUShi-Kuo; FUZun-Tao; LIUShi-Da; LIANGFu-Ming; XINGuo-Jun

    2004-01-01

    The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometrically, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s),which varies with arc length s. For solitary wave when s→±∞, then its curvature c(s) approaches zero, and whens = 0, the curvature c(s) reaches its maximum. For wave front, when s→±∞, then its curvature c(s) approaches zero,and when s = 0, the curvature c(s) is still zero, but c'(s)≠0. That is, s = 0 is a turning point. When c(s) is given,the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coeffcient ordinary differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.

  8. Wave Forces on a Vertical Smooth Cylinder in Directional Waves

    DEFF Research Database (Denmark)

    Høgedal, M.; Skourup, J.; Burcharth, H. F.

    1994-01-01

    In this paper the results from physical experiments with an instrumented cylinder conducted in laboratory environments are presented. The primary aim of the study has been to investigate the effect from wave directionality on the local and depth integrated maximum wave forces on a smooth vertical...

  9. Solitary Wave and Wave Front as Viewed From Curvature

    Institute of Scientific and Technical Information of China (English)

    LIU Shi-Kuo; FU Zun-Tao; LIU Shi-Da; LIANG Fu-Ming; XIN Guo-Jun

    2004-01-01

    The solitary wave and wave front are two important behaviors of nonlinear evolution equations. Geometri cally, solitary wave and wave front are all plane curve. In this paper, they can be represented in terms of curvature c(s), which varies with arc length s. For solitary wave when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) reaches its maximum. For wave front, when s →±∞, then its curvature c(s) approaches zero, and when s = 0, the curvature c(s) is still zero, but c'(s) ≠ 0. That is, s = 0 is a turning point. When c(s) is given, the variance at some point (x, y) in stream line with arc length s satisfies a 2-order linear variable-coefficient ordinary differential equation. From this equation, it can be determined qualitatively whether the given curvature is a solitary wave or wave front.

  10. Topological horseshoes in travelling waves of discretized nonlinear wave equations

    International Nuclear Information System (INIS)

    Applying the concept of anti-integrable limit to coupled map lattices originated from space-time discretized nonlinear wave equations, we show that there exist topological horseshoes in the phase space formed by the initial states of travelling wave solutions. In particular, the coupled map lattices display spatio-temporal chaos on the horseshoes

  11. Short wave breaking effects on low frequency waves

    NARCIS (Netherlands)

    Daly, C.; Roelvink, J.A.; Van Dongeren, A.; Van Thiel de Vries, J.S.M.; McCall, R.T.

    2010-01-01

    The effect of short wave breaking on low frequency waves is investigated using two breaker formulations implemented in a time-dependent numerical model (XBeach): (1) an advective-deterministic approach (ADA) and (2) the probabilistic breaker formulation of Roelvink (1993). Previous research has show

  12. Testing, Analysis and Control of Wave Dragon, Wave Energy Converter

    DEFF Research Database (Denmark)

    Tedd, James

    of the process Wave Dragon has undergone to develop from an inventor's concept to a serious contender in the wave energy industry is very valuable. This shows the gradual steps of development testing, increasing in scale and complexity, in parallel with the growth in the organisational structure behind...

  13. Broadband wave manipulation in surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen

    2016-01-01

    The ability to perfectly guide surface electromagnetic waves around ultra-sharp corners without back-scattering and radiation is in great demand for various photonic and plasmonic applications. This is fundamentally difficult to realize because of the dramatic momentum mismatch and wave nature of radiation at the sharp corners. Here we experimentally demonstrate that a simple photonic structure, a periodic square array of metallic cylinders standing on a metal surface, can behaves as a surface-wave photonic crystal with complete photonic band gap to overcome this bottleneck simply. A line-defect waveguide can support and guide surface waves around ultra-sharp corners without perceptible radiation and reflection, achieving almost perfect transmission efficiency in a broad frequency range. We also demonstrate an ideal T-shaped splitter to split input surface waves equally into two arms and a square radiation-suppressed plasmonic open resonator with high quality factors by simply inducing line-defects in this fu...

  14. Surface Shear, Persistent Wave Groups and Rogue Waves

    CERN Document Server

    Chafin, Clifford

    2014-01-01

    We investigate the interaction of waves with surface flows by considering the full set of conserved quantities, subtle but important surface elevations induced by wave packets and by directly considering the necessary forces to prevent packet spreading in the deep water limit. Narrow surface shear flows are shown to exert strong localizing and stabilizing forces on wavepackets to maintain their strength and amplify their intensity even in the linear regime. Necessary criticisms of some earlier notions of stress and angular momentum of waves are included and we argue that nonlinearity enters the system in a way that makes the formation of rogue waves nonperturbative. Quantitative bounds on the surface shear flow necessary to stabilize packets of any wave amplitude are given.

  15. Evanescent Wave Atomic Mirror

    Science.gov (United States)

    Ghezali, S.; Taleb, A.

    2008-09-01

    A research project at the "Laboratoire d'électronique quantique" consists in a theoretical study of the reflection and diffraction phenomena via an atomic mirror. This poster presents the principle of an atomic mirror. Many groups in the world have constructed this type of atom optics experiments such as in Paris-Orsay-Villetaneuse (France), Stanford-Gaithersburg (USA), Munich-Heidelberg (Germany), etc. A laser beam goes into a prism with an incidence bigger than the critical incidence. It undergoes a total reflection on the plane face of the prism and then exits. The transmitted resulting wave out of the prism is evanescent and repulsive as the frequency detuning of the laser beam compared to the atomic transition δ = ωL-ω0 is positive. The cold atomic sample interacts with this evanescent wave and undergoes one or more elastic bounces by passing into backward points in its trajectory because the atoms' kinetic energy (of the order of the μeV) is less than the maximum of the dipolar potential barrier ℏΩ2/Δ where Ω is the Rabi frequency [1]. In fact, the atoms are cooled and captured in a magneto-optical trap placed at a distance of the order of the cm above the prism surface. The dipolar potential with which interact the slow atoms is obtained for a two level atom in a case of a dipolar electric transition (D2 Rubidium transition at a wavelength of 780nm delivered by a Titane-Saphir laser between a fundamental state Jf = l/2 and an excited state Je = 3/2). This potential is corrected by an attractive Van der Waals term which varies as 1/z3 in the Lennard-Jones approximation (typical atomic distance of the order of λ0/2π where λ0 is the laser wavelength) and in 1/z4 if the distance between the atom and its image in the dielectric is big in front of λ0/2π. This last case is obtained in a quantum electrodynamic calculation by taking into account an orthornormal base [2]. We'll examine the role of spontaneous emission for which the rate is inversely

  16. Turbulent wind waves on a water current

    Directory of Open Access Journals (Sweden)

    M. V. Zavolgensky

    2008-05-01

    Full Text Available An analytical model of water waves generated by the wind over the water surface is presented. A simple modeling method of wind waves is described based on waves lengths diagram, azimuthal hodograph of waves velocities and others. Properties of the generated waves are described. The wave length and wave velocity are obtained as functions on azimuth of wave propagation and growth rate. Motionless waves dynamically trapped into the general picture of three dimensional waves are described. The gravitation force does not enter the three dimensional of turbulent wind waves. That is why these waves have turbulent and not gravitational nature. The Langmuir stripes are naturally modeled and existence of the rogue waves is theoretically proved.

  17. Three-dimensional freak waves and higher-order wave-wave resonances

    Science.gov (United States)

    Badulin, S. I.; Ivonin, D. V.; Dulov, V. A.

    2012-04-01

    Quite often the freak wave phenomenon is associated with the mechanism of modulational (Benjamin-Feir) instability resulted from resonances of four waves with close directions and scales. This weakly nonlinear model reflects some important features of the phenomenon and is discussing in a great number of studies as initial stage of evolution of essentially nonlinear water waves. Higher-order wave-wave resonances attract incomparably less attention. More complicated mathematics and physics explain this disregard partially only. The true reason is a lack of adequate experimental background for the study of essentially three-dimensional water wave dynamics. We start our study with the classic example of New Year Wave. Two extreme events: the famous wave 26.5 meters and one of smaller 18.5 meters height (formally, not freak) of the same record, are shown to have pronounced features of essentially three-dimensional five-wave resonant interactions. The quasi-spectra approach is used for the data analysis in order to resolve adequately frequencies near the spectral peak fp ≈ 0.057Hz and, thus, to analyze possible modulations of the dominant wave component. In terms of the quasi-spectra the above two anomalous waves show co-existence of the peak harmonic and one at frequency f5w = 3/2fp that corresponds to maximum of five-wave instability of weakly nonlinear waves. No pronounced marks of usually discussed Benjamin-Feir instability are found in the record that is easy to explain: the spectral peak frequency fp corresponds to the non-dimensional depth parameter kD ≈ 0.92 (k - wavenumber, D ≈ 70 meters - depth at the Statoil platform Draupner site) that is well below the shallow water limit of the instability kD = 1.36. A unique data collection of wave records of the Marine Hydrophysical Institute in the Katsiveli platform (Black Sea) has been analyzed in view of the above findings of possible impact of the five-wave instability on freak wave occurrence. The data cover

  18. The role of wave-wave interaction during stratospheric splits

    Science.gov (United States)

    Miller, Andreas; Plumb, Alan

    2016-04-01

    Sudden Stratospheric Warmings (SSWs) are the most studied example of troposphere-stratosphere coupling. They are often categorized as either splits (dominated by wavenumber 2) or displacements (wavenumber 1) and many studies (e.g. Charlton and Polvani (2007)) found statistically significant differences between the zonal wind fields and associated momentum fluxes. These differences are observed from the stratosphere to the surface. Our study focuses on how wave-wave interactions within the stratosphere can determine the type of SSW. We derive an energy budget for each wavenumber that allows us to quantify the major stratospheric processes within each wavenumber as well as the energy transfer from one wavenumber into another. Calculating these budgets, using MERRA reanalysis data, we find that for many split events the energy flux into the stratosphere is predominantly in wavenumber one. Thus, wave-wave interactions within the stratosphere, which can flux energy between wavenumbers, play a key role in splitting the polar stratospheric vortex. However, the signal is weak when we calculate composites over all splits as the timing of wave-wave interactions is unrelated to classic definitions (e.g. central date) highlighting the need for a dynamically more meaningful definition of SSWs. In order to better understand the role of wave-wave interactions, we employ GFDL's FMS shallow water model to simulate the stratospheric vortex under idealized forcings (similar to Polavani et al. (1994)). Contrary to many other idealized experiments, we are able to simulate both types of warmings with pure wavenumber one or two forcings. We further explore the strength of the necessary forcing to cause stratospheric splits in relation to the state of of the polar vortex. These results are compared to the work of Matthewman and Esler (2011) on splits being a result of resonance. We finally use the energy budget described above to determine the importance of wave-wave interaction in this

  19. Control of optical solitons by light waves.

    Science.gov (United States)

    Grigoryan, V S; Hasegawa, A; Maruta, A

    1995-04-15

    A new method of controlling optical solitons by means of light wave(s) in fibers is presented. By a proper choice of light wave(s), parametric four-wave mixing can control the soliton shape as well as the soliton parameters (amplitude, frequency, velocity, and position).

  20. Encounter Probability of Significant Wave Height

    DEFF Research Database (Denmark)

    Liu, Z.; Burcharth, H. F.

    The determination of the design wave height (often given as the significant wave height) is usually based on statistical analysis of long-term extreme wave height measurement or hindcast. The result of such extreme wave height analysis is often given as the design wave height corresponding to a c...