Electron Bernstein Wave (EBW) Physics In NSTX and PEGASUS
Czech Academy of Sciences Publication Activity Database
Taylor, G.; Caughman, J.B.; Carter, M.D.; Diem, S.; Efthimion, P.C.; Harvey, R.W.; Preinhaelter, Josef; Wilgen, J.B.; Bigelow, T.S.; Ellis, R.A.; Ershov, N.M.; Fonck, R.J.; Fredd, E.; Gartska, G.D.; Hosea, J.; Jaeger, F.; LeBlanck, B.; Lewicki, B.T.; Philips, C.K.; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Urban, Jakub; Wilson, J.R.
USA: The University of Texas at Austin, 2006, s. 1-24. [Innovative Confinement Concepts Workshop. Austin,Texas (US), 13.02.2006-16.02.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://icc2006.ph.utexas.edu/proceedings.php http://icc2006.ph.utexas.edu/uploads/29/icc06_taylor_ebw_022706.pdf
Electron-Bernstein-wave current drive in an overdense plasma at the Wendelstein 7-AS stellarator
International Nuclear Information System (INIS)
Electron-Bernstein-wave (EBW) current drive in an overdense plasma was demonstrated at the Wendelstein 7-AS stellarator for the first time. The EBWs were generated by O-X-B mode conversion. The relatively high current drive efficiency was consistent with theoretical predictions. The experiments provided first investigations of EBW phase space interaction for wave refractive indices much larger than unity
Electron Bernstein Wave Heating and Emission in the TCV Tokamak
Anja, Mueck; Yann, Camenen; Stefano, Coda; Loïc, Curchod; Timothy P., Goodman; Heinrich P., Laqua; Antoine, Pochelon; Laurie, Porte; Victor S., Udintsev; Francesco, Volpe; Team, TCV
2007-01-01
Electron cyclotron resonance heating (ECRH) of high-density tokamak plasmas is limited because of reflections of the waves at so-called wave cutoffs. Electron Bernstein wave (EBW) heating (EBWH) via a double mode conversion process from ordinary (O)-mode, launched from the low field side, to extraordinary (X)-mode and finally to Bernstein (B)-mode offers the possibility of overcoming these density limits. In this paper, the O-X mode conversion dependence on the microwave injection angle is de...
Electron Bernstein Wave Research on NSTX and PEGASUS
Diem, S. J.; Taylor, G.; Caughman, J. B.; Bigelow, T.; Garstka, G. D.; Harvey, R. W.; LeBlanc, B. P.; Preinhaelter, J.; Sabbagh, S. A.; Urban, J.; Wilgen, J. B.
2007-09-01
Spherical tokamaks (STs) routinely operate in the overdense regime (ωpe≫ωce), prohibiting the use of standard ECCD and ECRH. However, the electrostatic electron Bernstein wave (EBW) can propagate in the overdense regime and is strongly absorbed and emitted at the electron cyclotron resonances. As such, EBWs offer the potential for local electron temperature measurements and local electron heating and current drive. A critical challenge for these applications is to establish efficient coupling between the EBWs and electromagnetic waves outside the cutoff layer. Two STs in the U.S., the National Spherical Tokamak Experiment (NSTX, at Princeton Plasma Physics Laboratory) and PEGASUS Toroidal Experiment (University of Wisconsin-Madison) are focused on studying EBWs for heating and current drive. On NSTX, two remotely steered, quad-ridged antennas have been installed to measure 8-40 GHz (fundamental, second and third harmonics) thermal EBW emission (EBE) via the oblique B-X-O mode conversion process. This diagnostic has been successfully used to map the EBW mode conversion efficiency as a function of poloidal and toroidal angles on NSTX. Experimentally measured mode conversion efficiencies of 70±20% have been measured for 15.5 GHz (fundamental) emission in L-mode discharges, in agreement with a numerical EBE simulation. However, much lower mode conversion efficiencies of 25±10% have been measured for 25 GHz (second harmonic) emission in L-mode plasmas. Numerical modeling of EBW propagation and damping on the very-low aspect ratio PEGASUS Toroidal Experiment has been performed using the GENRAY ray-tracing code and CQL3D Fokker-Planck code in support of planned EBW heating and current drive (EBWCD) experiments. Calculations were performed for 2.45 GHz waves launched with a 10 cm poloidal extent for a variety of plasma equilibrium configurations. Poloidal launch scans show that driven current is maximum when the poloidal launch angle is between 10 and 25 degrees
Electron Bernstein Wave Research on NSTX and PEGASUS
International Nuclear Information System (INIS)
Spherical tokamaks (STs) routinely operate in the overdense regime (ωpe>>ωce), prohibiting the use of standard ECCD and ECRH. However, the electrostatic electron Bernstein wave (EBW) can propagate in the overdense regime and is strongly absorbed and emitted at the electron cyclotron resonances. As such, EBWs offer the potential for local electron temperature measurements and local electron heating and current drive. A critical challenge for these applications is to establish efficient coupling between the EBWs and electromagnetic waves outside the cutoff layer. Two STs in the U.S., the National Spherical Tokamak Experiment (NSTX, at Princeton Plasma Physics Laboratory) and PEGASUS Toroidal Experiment (University of Wisconsin-Madison) are focused on studying EBWs for heating and current drive. On NSTX, two remotely steered, quad-ridged antennas have been installed to measure 8-40 GHz (fundamental, second and third harmonics) thermal EBW emission (EBE) via the oblique B-X-O mode conversion process. This diagnostic has been successfully used to map the EBW mode conversion efficiency as a function of poloidal and toroidal angles on NSTX. Experimentally measured mode conversion efficiencies of 70±20% have been measured for 15.5 GHz (fundamental) emission in L-mode discharges, in agreement with a numerical EBE simulation. However, much lower mode conversion efficiencies of 25±10% have been measured for 25 GHz (second harmonic) emission in L-mode plasmas. Numerical modeling of EBW propagation and damping on the very-low aspect ratio PEGASUS Toroidal Experiment has been performed using the GENRAY ray-tracing code and CQL3D Fokker-Planck code in support of planned EBW heating and current drive (EBWCD) experiments. Calculations were performed for 2.45 GHz waves launched with a 10 cm poloidal extent for a variety of plasma equilibrium configurations. Poloidal launch scans show that driven current is maximum when the poloidal launch angle is between 10 and 25 degrees
Plasma heating via electron Bernstein wave heating using ordinary and extraodinary mode
Directory of Open Access Journals (Sweden)
A. Parvazian
2008-03-01
Full Text Available Magnetically confined plasma can be heated with high power microwave sources. In spherical torus the electron plasma frequency exeeds the electron cyclotron frequency (EC and, as a consequence, electromagnetic waves at fundamental and low harmonic EC cannot propagate within the plasma. In contrast, electron Bernstein waves (EBWs readily propagate in spherical torus plasma and are absorbed strongly at the electron cyclotron resonances. In order to proagate EBWs beyond the upper hybrid resonance (UHR, that surrounds the plasma, the EBWs must convert via one of two processes to either ordinary (O-mode or extraordinary (X-mode electromagnetic waves. O-mode and X-mode electromagnetic waves lunched at the plasma edge can convert to the electron Bernstein waves (EBWs which can propagate without and cut-off into the core of the plasma and damp on electrons. Since the electron Bernstein wave (EBW has no cut-off limits, it is well suited to heat an over-dense plasma by resonant absorption. An important problem is to calculate mode conversion coefficient that is very sensitive to density. Mode conversion coefficient depends on Budden parameter ( ñ and density scale length (Ln in upper hybrid resonance (UHR. In Mega Ampere Spherical Tokamak (MAST, the optimized conversion efficiency approached 72.5% when Ln was 4.94 cm and the magnetic field was 0.475 Tesla in the core of the plasma.
Mode-converted electron Bernstein waves for heating and current drive in NSTX
International Nuclear Information System (INIS)
The power coupled to electron Bernstein waves in a triplet mode conversion resonator from a fast X-mode at the plasma edge in NSTX is shown to be > 80% for fce ce. The EBW damping in the plasma is strong and localized and, thus, should be useful for heating, current drive, or profile control. (author)
Ion Bernstein wave heating research
International Nuclear Information System (INIS)
Ion Bernstein wave heating (IBWH) utilizes the ion Bernstein wave (IBW), a hot plasma wave, to carry the radio frequency (rf) power to heat tokamak reactor core. Earlier wave accessibility studies have shown that this finite-Larmor-radius (FLR) mode should penetrate into a hot dense reactor plasma core without significant attenuation. Moreover, the IBW's low phase velocity (ω/kperpendicular ∼ VTi much-lt Vα) greatly reduces the otherwise serious wave absorption by the 3.5 MeV fusion α-particles. In addition, the property of IBW's that kperpendicular ρi ∼ 1 makes localized bulk ion heating possible at the ion cyclotron harmonic layers. Such bulk ion heating can prove useful in optimizing fusion reactivity. In another vein, with proper selection of parameters, IBW's can be made subject to strong localized electron Landau damping near the major ion cyclotron harmonic resonance layers. This property can be useful, for example, for rf current drive in the reactor plasma core. This paper discusses this research
Observations of Obliquely Propagating Electron Bernstein Waves
DEFF Research Database (Denmark)
Armstrong, R. J.; Juul Rasmussen, Jens; Stenzel, R. L.;
1981-01-01
Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation.......Plane electron Bernstein waves propagating obliquely to the magnetic field are investigated. The waves are excited by a plane grid antenna in a large volume magnetoplasma. The observations compare favorably with the predictions of the linear dispersion relation....
Relativistic Bernstein waves in a degenerate plasma
International Nuclear Information System (INIS)
Bernstein mode for a relativistic degenerate electron plasma is investigated. Using relativistic Vlasov-Maxwell equations, a general expression for the conductivity tensor is derived and then employing Fermi-Dirac distribution function a generalized dispersion relation for the Bernstein mode is obtained. Two limiting cases, i.e., non-relativistic and ultra-relativistic are discussed. The dispersion relations obtained are also graphically presented for some specific values of the parameters depicting how the propagation characteristics of Bernstein waves as well as the Upper Hybrid oscillations are modified with the increase in plasma number density.
Mode-converted electron Bernstein wave emission research on CDX-U and NSTX
International Nuclear Information System (INIS)
Electron Bernstein waves (EBWs) may enable electron temperature profile measurements and local electron heating and current drive in high β overdense (ωpe/ωce>>1) plasmas. Significant results are presented from the measurement of X-mode radiation, converted from EBWs observed normal to the magnetic field on the mid-plane of overdense plasmas in CDX-U and NSTX. A radially scannable, in-vessel, quad-ridged antenna and Langmuir probe array on CDX-U studied EBW to X-mode conversion. A local limiter optimized the conversion efficiency by modifying the density scale length at the mode conversion layer. The fundamental EBW conversion efficiency increased, by an order of magnitude, to ∼100% when the local limiter and antenna were inserted near the conversion layer. This technique can be extended to large, high temperature devices. Another significant observation was that the EBW emission source was localized near the electron cyclotron resonance. As a result, mode-converted EBW radiometry has measured radial transport in CDX-U. In addition, a threefold increase in conversion efficiency was observed at the L to H transition in NSTX. Measured conversion efficiency agreed well with theoretical predictions. EBW ray tracing and bounce-averaged Fokker-Planck codes are being used to model EBW heating and current drive scenarios for NSTX equilibria with β up to 40%. So far, results show that it is possible to drive localized currents on the high field side of the magnetic axis in NSTX at β ∼ 12% with current drive efficiency which compares favorably with ECCD. (authors)
EBW simulations in an experimental context
International Nuclear Information System (INIS)
In the past several years we have been developing simulation techniques for electron Bernstein wave (EBW) physics in toroidal fusion devices. EBW simulations are rather difficult for several reasons. EBWs are electrostatic waves, whose propagation is strongly affected by the plasma parameters. EBWs cannot propagate in a vacuum and must be coupled to X- and/or O-modes. The conversion efficiency must be in general computed numerically by a full-wave solver. Details of our code AMR are described. This includes electrostatic ray-tracing, EBW root finder and 1D full-wave adaptive finite elements solver of the EBW-X-O mode conversion. The plasma configuration is handled by independent modules and typically obtained from experimental results. A Python driver script handles user configuration files and is able to parallelized the simulation. We describe applications of AMR to support various experiments. It is used to interpret EBW emission from the spherical tokamaks MAST and NSTX, to confirm the resonant EBW heating on the WEGA stellarator, to model its new 28 GHz system and to predict the applicability of the designated EBW emission radiometer for COMPASS. (author)
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
Urban, Jakub; Peysson, Yves; Preinhaelter, Josef; Shevchenko, Vladimir; Taylor, Gary; Vahala, Linda; Vahala, George
2011-01-01
The electron Bernstein wave (EBW) is typically the only wave in the electron cyclotron (EC) range that can be applied in spherical tokamaks for heating and current drive (H&CD). Spherical tokamaks (STs), which feature relatively high neutron flux and good economy, operate generally in high-beta regimes, in which the usual EC O- and X- modes are cut-off. In this case, EBWs seem to be the only option that can provide features similar to the EC waves---controllable localized H&CD that can be utilized for core plasma heating as well as for accurate plasma stabilization. The EBW is a quasi-electrostatic wave that can be excited by mode conversion from a suitably launched O- or X-mode; its propagation further inside the plasma is strongly influenced by the plasma parameters. These rather awkward properties make its application somewhat more difficult. In this paper we perform an extensive numerical study of EBW H&CD performance in four typical ST plasmas (NSTX L- and H-mode, MAST Upgrade, NHTX). Coupled...
A survey of electron Bernstein wave heating and current drive potential for spherical tokamaks
Czech Academy of Sciences Publication Activity Database
Urban, Jakub; Decker, J.; Peysson, Y.; Preinhaelter, Josef; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.
2011-01-01
Roč. 51, č. 8 (2011), 083050-083050. ISSN 0029-5515 R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G10072 Institutional research plan: CEZ:AV0Z20430508 Keywords : spherical tokamak * electron Bernstein wave (EBW) * heating * current drive * electron cyclotron wave Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.090, year: 2011 http://iopscience.iop.org/0029-5515/51/8/083050/pdf/0029-5515_51_8_083050.pdf
Energy Technology Data Exchange (ETDEWEB)
B. Jones; G. Taylor; P.C. Efthimion; T. Munsat
2004-01-28
Measurement of the magnetic field in a spherical torus by observation of harmonic overlap frequencies in the electron Bernstein wave (EBW) spectrum has been previously suggested [V.F. Shevchenko, Plasma Phys. Reports 26 (2000) 1000]. EBW mode conversion to X-mode radiation has been studied in the Current Drive Experiment-Upgrade spherical torus, [T. Jones, Ph.D. thesis, Princeton University, 1995] with emission measured at blackbody levels [B. Jones et al., Phys. Rev. Lett. 90 (2003) article no. 165001]. Sharp transitions in the thermally emitted EBW spectrum have been observed for the first two harmonic overlaps. These transition frequencies are determined by the magnetic field and electron density at the mode conversion layer in accordance with hot-plasma wave theory. Prospects of extending this measurement to higher harmonics, necessary in order to determine the magnetic field profile, and high beta equilibria are discussed for this proposed magnetic field diagnostic.
International Nuclear Information System (INIS)
A high power radio wave, launched into the polar ionosphere at angle θ with the earth's magnetic field from a ground-based transmitter in the vicinity of twice the electron cyclotron frequency (2.75 MHz), is reported to create an airglow at an effective radiated power (ERP) = 10 MW. We interpret this result as a consequence of parametric decay of the radio wave into an electron Bernstein wave (EBW) and an ion acoustic wave (IAW). The oscillatory velocity of electrons due to the pump couples with the density perturbation due to the IAW to produce a current, driving the Bernstein mode. The latter, in connection with the pump, exerts a ponderomotive force on electrons, driving the IAW. The growth rate of the parametric instability is maximum for θ = 0. At the same time, for any given value of θ, the growth rate increases with b(=k12vth2/2ωc2) and attains a maximum around b ∼ 2, then falls gradually. The EBW produces energetic electrons via cyclotron damping. These electrons collide with the neutral atoms of the plasma to excite them to higher energy states. As the excited atoms return to lower energy states, they radiate in the visible
Design and testing of an electron Bernstein wave emission radiometer for the TJ-II Stellarator
International Nuclear Information System (INIS)
Efficient Electron Bernstein wave (EBW) mode conversion is important for heating dense plasmas in TJ-II. The O-X-B mode conversion scenario is being considered for heating plasmas with densities over 1,3 x 1019 m-3, which will be very interesting to study high-density physics and for heating NBI plasmas. Measurement of the thermal EBW emission from the plasma allows the EBW mode conversion efficiency to be determined, and also has the potential to offer a diagnostic for measuring electron temperature profile evolution in overdense plasmas. A dual-polarized quad-ridged broadband horn with a focusing lens will be used to measure the EBW emission at 28 GHz on TJ-II. A focused beam is needed to achieve efficient coupling at the mode conversion layer. Emission from the plasma is reflected from a steerable internal mirror, propagates through a glass lens, and is focused on the horn. The field pattern from the horn-lens combination has been measured as a function of horn-lens spacing and lens focal length with a 3-D scanning system in an effort to minimize the beam waist at the plasma edge. Beam waist sizes have been measured at distances of up to 80 cm from the lens. Details of the experimental results and future plans will be presented. [Oak Ridge National Laboratory is managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725. A part of this work is performed under support of Spanish 'Subdireccion General de Proyectos de Investigacion, Ministerio de Educacion y Ciencia' with reference ENE2004-06957]. (author)
International Nuclear Information System (INIS)
A sudden, threefold increase in emission from fundamental electrostatic electron Bernstein waves (EBW) which mode convert and tunnel to the electromagnetic X-mode has been observed during high energy and particle confinement (H-mode) transitions in the National Spherical Torus Experiment (NSTX) plasma [M. Ono, S. Kaye, M. Peng et al., in Proceedings of the 17th IAEA Fusion Energy Conference (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135]. The mode-converted EBW emission viewed normal to the magnetic field on the plasma midplane increases when the density profile steepens in the vicinity of the mode conversion layer, which is located in the plasma scrape off. The measured conversion efficiency during the H-mode is consistent with the calculated EBW to X-mode conversion efficiency derived using edge density data. Calculations indicate that there may also be a small residual contribution to the measured X-mode electromagnetic radiation from polarization-scrambled, O-mode emission, converted from EBWs
Harmonic launching of ion Bernstein waves via mode transformation
International Nuclear Information System (INIS)
Ion Bernstein wave excitation and propagation via finite ion-Larmor-radium mode-transformation are investigated theoretically and experimentally. It is shown that in the ion cyclotron range of frequencies omega less than or equal to 4Ω/sub i/, with modest ion temperatures (T/sub i/ less than or equal to 10 eV), the finite-Larmor-radius effect removes the wave singularity at lower-hybrid resonance layer, enabling an externally initiated electron plasma wave to transform continuously into an ion Bernstein wave. In an ACT-1 hydrogen plasma (T/sub e/ approx. = 2.5 eV, T/sub i/ less than or equal to 2.0 eV), externally excited ion Bernstein waves have been observed for omega less than or equal to 2Ω/sub i/ as well as for omega less than or equal to 3Ω/sub i/. The finite ion-Larmor-radius mode transformation process resulting in strong ion Bernstein wave excitation has been experimentally verified. Detailed measurements of the wave dispersion relation and of the wave-packet trajectory show excellent agreement with theory. The dependence of the excited ion Bernstein wave on the antenna phasing, the plasma density, and on the neutral pressure (T/sub i/) is also investigated
Yatsuka, Eiichi; Kinjo, Kiyotake; Morikawa, Junji; Ogawa, Yuichi
2009-02-01
To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic. PMID:19256646
International Nuclear Information System (INIS)
To identify the mode-converted electron Bernstein wave (EBW) in a torus plasma directly, we have developed an interferometry system, in which a diagnostic microwave injected outside of the plasma column was directly detected with the probing antenna inserted into the plasma. In this work, plasma production and heating are achieved with 2.45 GHz, 2.5 kW electron cyclotron heating (ECH), whereas diagnostics are carried out with a lower power (10 W) separate frequency (1-2.1 GHz) microwave. Three components, i.e., two electromagnetic (toroidal and poloidal directions) and an electrostatic (if refractive index is sufficiently higher than unity, it corresponds to radial component), of ECRF electric field are simultaneously measured with three probing antennas, which are inserted into plasma. Selectivities of each component signal were checked experimentally. Excitation antennas have quite high selectivity of direction of linear polarization. As probing antennas for detecting electromagnetic components, we employed a monopole antenna with a length of 35 mm, and the separation of the poloidal (O-wave) and toroidal (X-wave) components of ECRF electric field could be available with this antenna. To detect EBW, which is an electrostatic wave, a small tip (1 mm) antenna was used. As the preliminary results, we detected signals that have three characteristics of EBW, i.e., short wavelength, backward propagation, and electrostatic.
Electron-Bernstein Waves in Inhomogeneous Magnetic Fields
DEFF Research Database (Denmark)
Armstrong, R. J.; Frederiksen, Å.; Pécseli, Hans;
1984-01-01
The propagation of small amplitude electron-Bernstein waves in different inhomogeneous magnetic field geometries is investigated experimentally. Wave propagation towards both cut-offs and resonances are considered. The experimental results are supported by a numerical ray-tracing analysis. Spatial...... enhancements of the wave amplitude are interpreted as a result of caustic formation....
First results from EBW emission diagnostics on COMPASS
Energy Technology Data Exchange (ETDEWEB)
Zajac, J.; Preinhaelter, J.; Aftanas, M.; Bilkova, P.; Boehm, P.; Fuchs, V.; Weinzettl, V.; Zacek, F. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Prague (Czech Republic); Urban, J. [Institute of Plasma Physics AS CR, v.v.i., Association EURATOM/IPP.CR, Prague (Czech Republic); CEA, IRFM, F-13108 Saint Paul-lez-Durance (France); Nanobashvili, S. [Andronikashvili Institute of Physics, Tamarashvili St. 6, 0177 Tbilisi (Georgia)
2012-10-15
COMPASS tokamak shots at low magnetic field feature overdense plasmas during the extended current flat-top phase. The first harmonic of the electron cyclotron emission is completely cutoff for O and X modes and so the emission caused by electron Bernstein waves (EBWs) propagating obliquely with respect to the magnetic field and undergoing so called EBW-X-O conversion process can be observed. We perform an angular scan of the EBW emission during a set of comparable shots in order to determine the optimum antenna direction. A weak dependence of the radiative temperature on the antenna angles indicates an influence of multiple reflections from the vessel wall. The low temperature at the mode conversion region is responsible for the collisional damping of EBW, which can explain several times lower measured radiative temperature than the electron temperature measured by the Thomson scattering system.
Lower hybrid and Electron Bernstein Wave current drive experiments in MST
International Nuclear Information System (INIS)
Inductive current profile modification in MST has been successful in reducing fluctuations and transport but is transient and radially non-localized. Current profile control with rf waves offers steady and more precise control. Studies of lower hybrid (LH) wave and electron Bernstein wave (EBW) injection are underway. This first application of LH waves to the high dielectric RFP presents challenges in rf physics, e.g., limited wave accessibility. The novel interdigital line antenna, chosen because of stringent vacuum vessel constraints, operates at 800 MHz and nparallel ∼ 7.5 parameters chosen to drive current in the edge (r/a ∼ 0.8) with strong single-pass absorption. Extensive antenna loading studies have been performed to validate the design up to the present source power limit of 225 kW with up to 125 kW being coupled to the plasma. Hard-x-ray emission with energies as high as 50 keV has been observed. The emission is spatially localized to the antenna location with a toroidal spread of about 60 degrees. This interesting toroidal localization of the emission that occurs in the dominantly poloidal magnetic field of the RFP could result from the formation of a localized current structure. Presently, a 250 kW system designed to heat electrons and drive current via the electron Bernstein wave is in operation on the MST reversed field pinch. The antenna is a grill of four half-height S-band waveguides with each arm powered by a separate, phase controlled traveling wave tube amplifier at 3.6 GHz. The X-mode polarization is being used to launch electromagnetic waves that mode convert to EBWs in the edge plasma. Coupling to the plasma (as measured by the reflected power ratio) is dependent on the relative phasing between adjacent waveguides. The total reflected power can be maintained near the 10% level. The antenna face is outfitted with a pair of triple Langmuir probes to measure local electron density; the density gradient at the upper hybrid resonance
Ion Bernstein waves in the magnetic reconnection region
Narita, Y.; Nakamura, R.; Baumjohann, W.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.
2016-01-01
Four-dimensional energy spectra and a diagram for dispersion relations are determined for the first time in a magnetic reconnection region in the magnetotail using data from four-spacecraft measurements by the Cluster mission on a spatial scale of 200 km, about 0.1 ion inertial lengths. The energy spectra are anisotropic with an extension in the perpendicular direction and axially asymmetric with respect to the mean magnetic field. The dispersion diagram in the plasma rest frame is in reasonably good agreement with the ion Bernstein waves at the second and higher harmonics of the proton gyrofrequency. Perpendicular-propagating ion Bernstein waves likely exist in an outflow region of magnetic reconnection, which may contribute to bifurcation of the current sheet in the outflow region.
Thermal Electron Bernstein Wave Emission Measurements on NST
Czech Academy of Sciences Publication Activity Database
Diem, S.J.; Taylor, G.; Efthimion, P.; LeBlanc, B.P.; Philips, C.K.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, Josef; Urban, Jakub
2006-01-01
Roč. 51, č. 7 (2006), s. 134. ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania, 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf
Electron Bernstein Wave Research on NSTX and PEGASUS
Czech Academy of Sciences Publication Activity Database
Diem, S.J.; Taylor, G.; Caughman, J.; Bigelow, T.S.; Garstka, G.D.; Harvey, R.W.; LeBlanc, B.P.; Preinhaelter, Josef; Sabbagh, S.A.; Urban, Jakub; Wilgen, J.
Vol. 933. Melville: -, 2007 - (Ryan, P.; Rasmussen, D.), s. 331-334 ISBN 978-0-7354-0444-1. ISSN 0094-243X. [Topical Conference on Radio Frequency Power in Plasmas/17th./. Clearwater (US), 07.05.2007-09.05.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Cyclotron Heating * Tokamaks * Electron Bernstein waves Subject RIV: BL - Plasma and Gas Discharge Physics
Ion-Bernstein wave mode conversion in hot tokamak plasmas
International Nuclear Information System (INIS)
Mode conversion at the second harmonic cyclotron resonance is studied in a toroidal plasma, showing how the ion-Bernstein wave can dramatically affect the power profile and partition among the species. The results obtained with the gyrokinetic toroidal PENN code in particular suggest that off-axis electron and second harmonic core ion heating should become important when the temperatures in JET reach 10 keV. (author) 1 fig., 11 refs
Long pulse EBW start-up experiments in MAST
International Nuclear Information System (INIS)
Start-up technique reported here relies on a double mode conversion (MC) for electron Bernstein wave (EBW) excitation. It consists of MC of the ordinary (O) mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR) and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR). Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario
Long Pulse EBW Start-up Experiments in MAST
Shevchenko, V F; Caughman, J B; Diem, S; Mailloux, J; Brien, M R O; Peng, M; Saveliev, A N; Takase, Y; Tanaka, H; Taylor, G
2015-01-01
The non-solenoid start-up technique reported here relies on a double mode conversion for electron Bernstein wave (EBW) excitation. It consists of the mode conversion of the ordinary mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X) mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance and experiences a subsequent X to EBW mode conversion near the upper hybrid resonance. Finally the excited EBW mode is totally absorbed at the Doppler shifted electron cyclotron resonance. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [V. Shevchenko et al, Nuclear Fusion 50, 022004 (2010)]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results ...
Long Pulse EBW Start-up Experiments in MAST
Directory of Open Access Journals (Sweden)
Shevchenko V.F.
2015-01-01
Full Text Available Start-up technique reported here relies on a double mode conversion (MC for electron Bernstein wave (EBW excitation. It consists of MC of the ordinary (O mode, entering the plasma from the low field side of the tokamak, into the extraordinary (X mode at a mirror-polarizer located at the high field side. The X mode propagates back to the plasma, passes through electron cyclotron resonance (ECR and experiences a subsequent X to EBW MC near the upper hybrid resonance (UHR. Finally the excited EBW mode is totally absorbed at the Doppler shifted ECR. The absorption of EBW remains high even in cold rarefied plasmas. Furthermore, EBW can generate significant plasma current giving the prospect of a fully solenoid-free plasma start-up. First experiments using this scheme were carried out on MAST [1]. Plasma currents up to 33 kA have been achieved using 28 GHz 100kW 90ms RF pulses. Recently experimental results were extended to longer RF pulses showing further increase of plasma currents generated by RF power alone. A record current of 73kA has been achieved with 450ms RF pulse of similar power. The current drive enhancement was mainly achieved due to RF pulse extension and further optimisation of the start-up scenario.
Ion Bernstein wave experiments on the Alcator C tokamak
International Nuclear Information System (INIS)
Ion Bernstein wave experiments are carried out on the Alcator C tokamak to study wave excitation, propagation, absorption, and plasma heating due to wave power absorption. It is shown that ion Bernstein wave power is coupled into the plasma and follows the expected dispersion relation. The antenna loading is maximized when the hydrogen second harmonic layer is positioned just behind the antenna. Plasma heating results at three values of the toroidal magnetic field are presented. Central ion temperature increases of ΔT/sub i//Ti /approx lt/ 0.1 and density increases Δn/n 6s/sup /minus/1/ for plasmas within the density range 0.6 /times/ 1020m/sup /minus/3/ ≤ /bar n//sub e/ ≤ 4 /times/ 1020m/sup /minus/3/ and magnetic fields 2.4 ≥ ω/Ω/sub H/ ≥ 1.1. The density increases is usually accompanied by an improvement in the global particle confinement time relative to the Ohmic value. The ion heating rate is measured to be ΔT/sub i//P/sub rf/ ≅ 2-4.5 eV/kW at low densities. At higher densities /bar n//sub e/ ≤ 1.5 /times/ 1020m/sup /minus/3/ the ion heating rate dramatically decreases. It is shown that the decrease in the ion heating rate can be explained by the combined effects of wave scattering through the edge turbulence and the decreasing on energy confinement of these discharges with density. The effect of observed edge turbulence is shown to cause a broadening of the rf power deposition profile with increasing density. It is shown that the inferred value of the Ohmic ion thermal conduction, when compared to the Chang-Hinton neoclassical prediction, exhibits an increasing anomaly with increasing plasma density
Generation of magnetospheric radiation by decay of Bernstein waves
International Nuclear Information System (INIS)
Recent observations show that extremely narrow emission lines are present in the spectrum of the terrestrial myriametric radiation, which on the basis of earlier observations has been characterized as nonthermal contiunuum radiation. The occurance of these monochromatic emissions is not predicted by previoiusly published theories for the generation of the radiaiton. A linear instability, exciting low frequency electrostatic turbulence, is required by theories invoking a nonlinear coalescence to produce the radiation, but there are no conclusive observations associating low frequency electrostatic waves with the sources of myriametric radiation. In this study, the possibility that the radiation is produced by a nonlinear decay of electrostatic Bernstein waves with frequency near the upper hybrid frequency is considered. This mechanism can explain the narrow spectral lines, and does not require a linear instability at low frequencies. (Author)
International Nuclear Information System (INIS)
Full text: In LHD, electron Bernstein wave (EBW) heating was successfully demonstrated by two ways of mode conversion to EBWs from injected EC-waves, by so-called slow-XB and OXB techniques. To realize the excitation of EBWs by the slow-XB technique, EC-waves in X-mode polarization should be injected to plasmas from high magnetic field side (HFS). In LHD, newly installed inner-vessel mirror close to a helical coil is used for the HFS injection. Evident increases in Te at the plasma core region and Wp were caused by the HFS injection with 0.18 s pulse width to a plasma with ne(0) of 24 x 1019 m-3, that is, 3.3 times higher than the plasma cut-off density for O-mode waves, and 1.6 x higher than the left-hand cut-off density of 14.7 x 1019 m-3 for slow-X-mode waves. Thus, the heating effects especially the increase in Te at the plasma core region should be attributed to the mode-converted EBWs, not to the X- or O-mode waves. For excitation of EBWs by the OXB technique, O-mode waves should be injected from the low magnetic filed side toward the so-called 'mode conversion window' . Two pulses of 77 GHz, 1.05 MW EC-wave (0.1 s pulse width each with a 0.1 s interval) in O-mode polarization were injected to an NB-sustained plasma, aiming at the mode conversion window calculated in advance. With both of the two ECH pulses, increases in Wp and mitigations of decreasing trend in Te measured with ECE are recognized. The line average electron density continuously increased during the ECH pulse injection. At the start timing of the 1st pulse, ne(0) was equal to the O-mode cut-off density, 7.35 x 1019 m-3, and ne(0) gradually increased to 7.7 x 1019 m-3 at the end of the 2nd pulse. The heating efficiency Pabs/Pech is evaluated as ∼ 15%. Using the high-power, long-pulse 77 GHz ECH system, 2nd harmonic on-axis ECCD experiments with 775 kW injection power and the line average electron density of 0.3 x 1019 m-3 were conducted. At optimum beam directions, maximum EC-driven currents
Fokker-Planck/Ray Tracing for Electron Bernstein and Fast Wave Modeling in Support of NSTX
Energy Technology Data Exchange (ETDEWEB)
Harvey, R. W. [CompX, Del Mar, CA (United States)
2009-11-12
This DOE grant supported fusion energy research, a potential long-term solution to the world's energy needs. Magnetic fusion, exemplified by confinement of very hot ionized gases, i.e., plasmas, in donut-shaped tokamak vessels is a leading approach for this energy source. Thus far, a mixture of hydrogen isotopes has produced 10's of megawatts of fusion power for seconds in a tokamak reactor at Princeton Plasma Physics Laboratory in New Jersey. The research grant under consideration, ER54684, uses computer models to aid in understanding and projecting efficacy of heating and current drive sources in the National Spherical Torus Experiment, a tokamak variant, at PPPL. The NSTX experiment explores the physics of very tight aspect ratio, almost spherical tokamaks, aiming at producing steady-state fusion plasmas. The current drive is an integral part of the steady-state concept, maintaining the magnetic geometry in the steady-state tokamak. CompX further developed and applied models for radiofrequency (rf) heating and current drive for applications to NSTX. These models build on a 30 year development of rf ray tracing (the all-frequencies GENRAY code) and higher dimensional Fokker-Planck rf-collisional modeling (the 3D collisional-quasilinear CQL3D code) at CompX. Two mainline current-drive rf modes are proposed for injection into NSTX: (1) electron Bernstein wave (EBW), and (2) high harmonic fast wave (HHFW) modes. Both these current drive systems provide a means for the rf to access the especially high density plasma--termed high beta plasma--compared to the strength of the required magnetic fields. The CompX studies entailed detailed modeling of the EBW to calculate the efficiency of the current drive system, and to determine its range of flexibility for driving current at spatial locations in the plasma cross-section. The ray tracing showed penetration into NSTX bulk plasma, relatively efficient current drive, but a limited ability to produce current over
Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak
International Nuclear Information System (INIS)
Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced
Characteristics of ion Bernstein wave heating in JIPPT-II-U tokamak
Energy Technology Data Exchange (ETDEWEB)
Okamoto, M.; Ono, M.
1985-11-01
Using a transport code combined with an ion Bernstein wave tokamak ray tracing code, a modelling code for the ion Bernstein wave heating has been developed. Using this code, the ion Bernstein wave heating experiment on the JIPPT-II-U tokamak has been analyzed. It is assumed that the resonance layer is formed by the third harmonic of deuterium-like ions, such as fully ionized carbon, and oxygen ions near the plasma center. For wave absorption mechanisms, electron Landau damping, ion cyclotron harmonic damping, and collisional damping are considered. The characteristics of the ion Bernstein wave heating experiment, such as the ion temperature increase, the strong dependence of the quality factor on the magnetic field strength, and the dependence of the ion temperature increment on the input power, are well reproduced.
EBW H&CD Potential for Spherical Tokamaks
Czech Academy of Sciences Publication Activity Database
Urban, Jakub; Decker, J.; Peysson, Y.; Preinhaelter, Josef; Shevchenko, V.; Taylor, G.; Vahala, L.; Vahala, G.
Vol. 1406. New York : American Institute of Physics, 2011 - (Phillips, C.; Wilson, J.), s. 477-480 ISBN 978-0-7354-0978-1. - (AIP Conference Proceedings. 1406). [Topical Conference on Radio Frequency Power in Plasmas/19./. Newport (US), 01.06.2011-03.06.2011] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : Fusion * tokamak * heating * current drive * electron Bernstein wave * EBW Subject RIV: BL - Plasma and Gas Discharge Physics http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=APCPCS001406000001000477000001&idtype=cvips&doi=10.1063/1.3665018&prog=normal
International Nuclear Information System (INIS)
A theory of coupling between electromagnetic and electron Bernstein waves in a plasma slab is presented. The theory uses an approach that associates the linear mode conversion with the singularity of the cold plasma wave equation at the upper hybrid resonance (UHR). The singularity results in linear interaction of cold plasma (electromagnetic) and hot plasma (Bernstein) modes. Applicability of the WKB theory to interacting modes is not required. In this method the full solution of the mode conversion problem including calculation of the excited Bernstein wave complex amplitude is reduced to finding a solution to the cold plasma wave equation, which describes dissipative wave power absorption at the UHR. This method is applicable to a variety of plasma configurations practically without limitations on the inhomogeneity scale-length. It permits one to consider in the framework of a single procedure particular cases like direct tunnelling of the incident wave, O-X-B conversion and transformation of the X-mode launched from the high-field side of a tokamak and having free access to the UHR
Localized electron heating experiments by ion Bernstein wave in the TNT-A tokamak
International Nuclear Information System (INIS)
Plasma heating by ion Bernstein wave in the range of 2 ωD D is investigated in deuterium dominant plasma of the TNT-A tokamak. The localized electron heating is observed at the harmonic (3 ωD) and subharmonic (2.5 ωD) resonance layers, while the electron heating on the whole plasma region is observed at ω = 2 ωD. It is also shown that the heating is efficient and heating layer is localized by ion Bernstein wave in comparison with fast magnetosonic wave. (author)
Modeling of EBW Propagation and Damping in PEGASUS and MST
Diem, S. J.; Anderson, J. K.; Bongard, M. W.; Fonck, R. J.; Forest, C.; Redd, A.; Seltzman, A.; Harvey, R. W.; Petrov, Y.
2010-11-01
Electron Bernstein waves (EBW) can be used for localized heating and current drive (CD) in overdense devices, such as the spherical torus, Pegasus, and the reversed field pinch, Madison Symmetric Torus (MST), located at UW-Madison. Numerical modeling of EBW propagation and damping has been explored using the GENRAY ray-tracing code and the CQL3D Fokker-Planck code in support of current and proposed heating and CD experiments on both devices. In Pegasus, calculations were performed investigating a proposed EBW system for available sources at 2.45, 3.6 and 5.55 GHz frequencies for waves launched 25^o above the midplane. Preliminary results show between -35 kA/MW to 65 kA/MW can be driven at r/a > 0.5 with the available sources. Edge current profile modification is being explored to improve particle and energy transport in MST. Calculations of 5.5 GHz injection estimate > 10 kA/MW can be driven off axis at r/a > 0.65 via the Ohkawa CD method. The effect of large stochastic particle transport on CD efficiency was investigated by varying the radial transport model included in CQL3D.
Ion Bernstein-wave excitation via finite-Larmor-radius mode-transformation process
International Nuclear Information System (INIS)
It is shown that in the ion cyclotron range of frequency ω less than or equal to 2 Ω/sub i/, the finite-Larmor-radius effect removes the wave singularity at the lower-hybrid resonance layer, enabling an externally initiated electron plasma wave to propagate freely through the resonance layer, transforming continuously into an ion Bernstein wave. In an ACT-1 hydrogen plasma (T/sub e/ approx. = 2.5 eV, T/sub i/ approx. = 1.5 eV), linear excitation of ion Bernstein waves has been investigated experimentally for ω approx. = 2Ω/sub i/. The mode-transformation process resulting in a strong ω approx. = 2 Ω/sub i/ ion Berstein wave excitation without observable reflections has been experimentally verified. Detailed measurements of wave dispersion relation and of the wave-packet trajectory show excellent agreement with theory
Preliminary Observation on Coordination of Pellet Injection and Ion Bernstein Wave on a HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
杨愚; 赵燕平; 李建刚; 万宝年; 罗家融; 辜学茂
2002-01-01
A pellet injection (PI) experiment was performed during the application of the ion Bernstein wave on a HT-7tokamak. A preliminary coordination effect was observed. With a lower wave power, shortly after PI, the couplingof the wave was enhanced, and the particle confinement was improved. With higher power, off-axis heating for 15% at about a/3 in the low field side was observed.
Measurements of Intrinsic Ion Bernstein Waves in a Tokamak by Collective Thomson Scattering
DEFF Research Database (Denmark)
Korsholm, Søren Bang; Stejner Pedersen, Morten; Bindslev, Henrik; Furtula, Vedran; Leipold, Frank; Meo, Fernando; Michelsen, Poul; Moseev, Dmitry; Nielsen, Stefan Kragh; Salewski, Mirko; de Baar, M.; Delabie, E.; Kantor, M.; Bürger, A.
2011-01-01
In this Letter we report measurements of collective Thomson scattering (CTS) spectra with clear signatures of ion Bernstein waves and ion cyclotron motion in tokamak plasmas. The measured spectra are in accordance with theoretical predictions and show clear sensitivity to variation in the density...
Flow shear suppression of turbulence using externally driven ion Bernstein and Alfven waves
International Nuclear Information System (INIS)
The utilization of externally-launched radio-frequency waves as a means of active confinement control through the generation of sheared poloidal flows is explored. For low-frequency waves, kinetic Alfven waves are proposed, and are shown to drive sheared E x B flows as a result of the radial variation in the electromagnetic Reynolds stress. In the high frequency regime, ion Bernstein waves are considered, and shown to generate sheared poloidal rotation through the ponderomotive force. In either case, it is shown that modest amounts of absorbed power (∼ few 100 kW) are required to suppress turbulence in a region of several cm radial width. 9 refs
Propagation and absorption of Ion Bernstein waves in U-2M torsatron by ray tracing technique
International Nuclear Information System (INIS)
Ion Bernstein modes with frequencies higher than the ion cyclotron frequency are planned to be applied to produce and heat the Uragan-2M plasma. This brief report gives the propagation and absorption ray-tracing studies of these waves in the Uragan-2M device, taking into account the three-dimensional non-uniformities of the plasma parameters and the magnetic field. 4 refs, 5 figs
Energy Technology Data Exchange (ETDEWEB)
Kuwahata, A., E-mail: kuwahata@ts.t.u-tokyo.ac.jp [Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656 (Japan); Igami, H. [National Institute for Fusion Science, Toki 509-5292 (Japan); Kawamori, E. [Institute of Space and Plasma Sciences, National Cheng Kung University, Tainan 70101, Taiwan (China); Kogi, Y. [Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Inomoto, M.; Ono, Y. [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561 (Japan)
2014-10-15
We report the observation of electromagnetic radiation at high harmonics of the electron cyclotron frequency that was considered to be converted from electrostatic waves called electron Bernstein waves (EBWs) during magnetic reconnection in laboratory overdense plasmas. The excitation of EBWs was attributed to the thermalization of electrons accelerated by the reconnection electric field around the X-point. The radiative process discussed here is an acceptable explanation for observed radio waves pulsation associated with major flares.
Caliri, C.; Romano, F. P.; Mascali, D.; Gammino, S.; Musumarra, A.; Castro, G.; Celona, L.; Neri, L.; Altana, C.
2013-10-01
Electron Cyclotron Resonance Ion Sources (ECRIS) are based on ECR heated plasmas emitting high fluxes of X-rays. Here we illustrate a pilot study of the X-ray emission from a compact plasma-trap in which an off-resonance microwave-plasma interaction has been attempted, highlighting a possible Bernstein-Waves based heating mechanism. EBWs-heating is obtained via the inner plasma EM-to-ES wave conversion and enables to reach densities much larger than the cut-off ones. At LNS-INFN, an innovative diagnostic technique based on the design of a Pinhole Camera (PHC) coupled to a CCD device for X-ray Imaging of the plasma (XRI) has been developed, in order to integrate X-ray traditional diagnostics (XRS). The complementary use of electrostatic probes measurements and X-ray diagnostics enabled us to gain knowledge about the high energy electrons density and temperature and about the spatial structure of the source. The combination of the experimental data with appropriate modeling of the plasma-source allowed to estimate the X-ray emission intensity in different energy domains (ranging from EUV up to Hard X-rays). The use of ECRIS as X-ray source for multidisciplinary applications, is now a concrete perspective due to the intense fluxes produced by the new plasma heating mechanism.
Bernstein-Greene-Kruskal waves in relativistic cold plasma
Singh Verma, Prabal; Sengupta, Sudip; Kaw, Predhiman
2012-03-01
We construct the longitudinal traveling wave solution [Akhiezer and Polovin, Sov. Phys. JETP 3, 696 (1956)] from the exact space and time dependent solution of relativistic cold electron fluid equations [Infeld and Rowlands, Phys. Rev. Lett. 62, 1122 (1989)]. Ions are assumed to be static. We also suggest an alternative derivation of the Akhiezer Polovin solution after making the standard traveling wave Ansatz.
International Nuclear Information System (INIS)
The paper describes a successful proof-of-principle experimental determination of tokamak ion temperature using cw far-infrared (FIR) collective laser scattering from externally excited ion Bernstein waves. It is shown that a viable wave excitation technique for tokamak plasmas is mode conversion of an externally launched fast Alfven wave. A fit of the experimentally determined ion Bernstein wave dispersion to the temperature-dependent theoretical dispersion yields the local ion temperature. Partial ion temperature profiles (chord-averaged) have been obtained with temperature values consistent with charge-exchange measurements. (author)
Ion Bernstein waves in a plasma with a kappa velocity distribution
International Nuclear Information System (INIS)
Using a Vlasov-Poisson model, a numerical investigation of the dispersion relation for ion Bernstein waves in a kappa-distributed plasma has been carried out. The dispersion relation is found to depend significantly on the spectral index of the ions, κi, the parameter whose smallness is a measure of the departure from thermal equilibrium of the distribution function. Over all cyclotron harmonics, the typical Bernstein wave curves are shifted to higher wavenumbers (k) if κi is reduced. For waves whose frequency lies above the lower hybrid frequency, ωLH, an increasing excess of superthermal particles (decreasing κi) reduces the frequency, ωpeak, of the characteristic peak at which the group velocity vanishes, while the associated kpeak is increased. As the ratio of ion plasma to cyclotron frequency (ωpi/ωci) is increased, the fall-off of ω at large k is smaller for lower κi and curves are shifted towards larger wavenumbers. In the lower hybrid frequency band and harmonic bands above it, the frequency in a low-κi plasma spans only a part of the intraharmonic space, unlike the Maxwellian case, thus exhibiting considerably less coupling between adjacent bands for low κi. It is suggested that the presence of the ensuing stopbands may be a useful diagnostic for the velocity distribution characteristics. The model is applied to the Earth's plasma sheet boundary layer in which waves propagating perpendicularly to the ambient magnetic field at frequencies between harmonics of the ion cyclotron frequency are frequently observed
Ion Bernstein wave heating experiments on PBX-M
International Nuclear Information System (INIS)
A multi-megawatt level IBWH experiment on PBX-M1 is in preparation. The goal of the expriment is to contribute to the attainment of the high beta, second regime of stability. The high power IBWH will be used as an additional heating power source to supplement the existing 6 MW of NBI power to achieve higher β values in PBX-M. Bulk ion heating via IBW excitation with localized, off-axis deposition can be used to modify the pressure profile for improved plasma stability at high β. The high power off-axis heating in principle can generate a significant boostrap current 2(∼30%) in the outer region of the PBX-M plasma complementing LHCD for broadening the current profiles. It is also interesting to note that the available rf power (∼4 MW) is comparable to the predicted power levels required for the rf ponderomotive stabilization of pressure driven modes (such as the high-n ballooning3 and external kink modes4) for the closely fitted stabilizing shell configuration of PBX-M. There are, however, several experimental factors that require careful consideration in planning a high power experiment. Four important factors are discussed here in some detail: 1. Antenna location. 2. Effects of parallel electric fields. 3. Modification of launched wave spectrum due to antenna misalignement 4. Possible interference of wave launching by protective limiters
Energy Technology Data Exchange (ETDEWEB)
Xiao, Jianyuan; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [Department of Modern Physics and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Yu, Zhi; Xiang, Nong [Theory and Simulation Division, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)
2015-09-15
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments.
International Nuclear Information System (INIS)
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonlinear mode conversion are investigated. It is illustrated that nonlinear effects significantly modify the physics of the radio-frequency injection in magnetized plasmas. The evolutions of the radio-frequency wave reflectivity and the energy deposition are observed, as well as the self-interaction of the Bernstein waves and mode excitations. Even for waves with small magnitude, nonlinear effects can also become important after continuous wave injections, which are common in the realistic radio-frequency wave heating and current drive experiments
The new features of ion Bernstein Wave Heating in JIPP T-IIU tokamak
International Nuclear Information System (INIS)
Ion Bernstein Wave Heating experiment was conducted in JIPP T-IIU tokamak. A relatively high frequency, 130 MHz, was used to reduce impurity influx and IBW power up to 400kW was injected without plasma disruption. It was found that the radial profiles of electron density, electron temperature, and ion temperature are all peaked during the IBWH. It was also found that ion distribution function does not have high energy tail above certain critical energy. These are favorable and useful features in optimizing fusion reactivity in reactor applications. (author)
Power Deposition of Ion Bernstein Wave Heating on the HT-7 Tokamak
Institute of Scientific and Technical Information of China (English)
BAO Yi; LI Jian-Gang; ZHAO Yan-Ping; CUI Ning-Zhuo
2001-01-01
Effcient direct heating of electrons by ion Bernstein waves has been obtained on the HT-7 tokamak. Off-axis heating, which is considered to be the result of electron Landau damping, was observed and studied by means of soft x-ray imaging. The measured power deposition was found to be independent of magnetic field through scanning the toroidal field from 1.5 to 1.7 T, in contrast to the ion heating results. It is suggested that the electron Landau damping is dominant in this heating regime.
Czech Academy of Sciences Publication Activity Database
Laqua, H.P.; Andruczyk, D.; Marsen, S.; Otte, M.; Podoba, Y.; Preinhaelter, Josef; Urban, Jakub
Geneva: IAEA, 2008, EXP6-18-EXP6-18. ISBN N. [IAEA Fusion Energy Conference/22nd./. Geneva (CH), 13.10.2008-18.10.2008] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Stellarators * Electron Bernstein waves * Simulation * WEGA Subject RIV: BL - Plasma and Gas Discharge Physics http://www-pub.iaea.org/MTCD/Meetings/FEC2008/ex_p6-18.pdf
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Franklin, F R
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode- Converted Ion Bernstein Waves (MCIBWs) and Alfvé n Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control...
Verma, Prabal Singh; Sengupta, Sudip; Kaw, Predhiman
2012-07-01
A one-dimensional particle in cell simulation of large amplitude plasma oscillations is carried out to explore the physics beyond wave breaking in a cold homogeneous unmagnetized plasma. It is shown that after wave breaking, all energy of the plasma oscillation does not end up as random kinetic energy of particles, but some fraction, which is decided by Coffey's wave breaking limit in warm plasma, always remains with two oppositely propagating coherent Bernstein-Greene-Kruskal like modes with supporting trapped particle distributions. The randomized energy distribution of untrapped particles is found to be characteristically non-Maxwellian with a preponderance of energetic particles.
Formation of core transport barrier and CH-Mode by ion Bernstein wave heating in PBX-M
International Nuclear Information System (INIS)
Observation of core transport barrier formation (for particles, ion and electron energies, and toroidal momentum) by ion Bernstein wave heating (IBWH) in PBX-M plasma is reported. The formation of a transport barrier leads to a strong peaking and significant increase of the core pressure (70%) and toroidal momentum (20%), and has been termed the core-high confinement mode (CH-Mode). This formation of a transport barrier is consistent, in terms of the expected barrier location as well as the required threshold power, with a theoretical model based on the poloidal sheared flow generation by the ion Bernstein wave power. The use of ion Bernstein wave (IBW) induced sheared flow as a tool to control plasma pressure and bootstrap current profiles shows a favorable scaling for the use in future reactor grade tokamak plasmas
Parameter dependence of ray trajectory and damping for the ion Bernstein wave in the TNT-A tokamak
International Nuclear Information System (INIS)
The dependence of ray trajectories and damping on various plasma parameters was studied using three-dimensional ray tracing for an ion Bernstein wave in the TNT-A tokamak. The condition for wave power absorption dominated by electron Landau damping was also estimated. (author)
International Nuclear Information System (INIS)
A new coupling scheme of ion Bernstein waves (IBW) to plasma ions, by mode conversion of fast waves, has been tested in D-3He plasma of the JET tokamak. Injecting 4.8 MW ion cyclotron radio frequency power, 1.8 MW IBW power absorption on deuterons occurs at the fundamental cyclotron resonant layer, which is located in the high field side near the plasma edge (R = 2.1 m). Plasma sheared flows, ponderomotively induced by IBW, are observed near the edge, producing an ExB shearing rate of 5 MHz, higher than the threshold expected for turbulence suppression. Transport analysis shows a 70% reduction of the thermal diffusivity of both electrons and ions in the edge plasma region where the sheared flows are observed. (author)
A spinning mirror for fast angular scans of EBW emission for magnetic pitch profile measurements
International Nuclear Information System (INIS)
A tilted spinning mirror rapidly steers the line of sight of the electron Bernstein wave (EBW) emission radiometer at the Mega-Amp Spherical Tokamak (MAST). In order to resist high mechanical stresses at rotation speeds of up to 12 000 rpm and to avoid eddy current induced magnetic braking, the mirror consists of a glass-reinforced nylon substrate of a special self-balanced design, coated with a reflecting layer. By completing an angular scan every 2.5-10 ms, it allows one to characterize with good time resolution the Bernstein-extraordinary-ordinary mode-conversion efficiency as a function of the view angles. Angular maps of conversion efficiency are directly related to the magnetic pitch angle at the cutoff layer for the ordinary mode. Hence, measurements at various frequencies provide the safety factor profile at the plasma edge. Initial measurements and indications of the feasibility of the diagnostic are presented. Moreover, angular scans indicate the best launch conditions for EBW heating.
Boardsen, S. A.; Kim, E.-H.; Raines, J. M.; Slavin, J. A.; Gershman, D. J.; Anderson, B. J.; Korth, H.; Sundberg, T.; Schriver, D.; Travnicek, P.
2015-06-01
We show that ~1 Hz magnetic compressional waves observed in Mercury's inner magnetosphere could be interpreted as ion-Bernstein waves in a moderate proton beta ~0.1 plasma. An observation of a proton distribution with a large planetary loss cone is presented, and we show that this type of distribution is highly unstable to the generation of ion-Bernstein waves with low magnetic compression. Ray tracing shows that as these waves propagate back and forth about the magnetic equator; they cycle between a state of low and high magnetic compression. The group velocity decreases during the high-compression state leading to a pileup of compressional wave energy, which could explain the observed dominance of the highly compressional waves. This bimodal nature is due to the complexity of the index of refraction surface in a warm plasma whose upper branch has high growth rate with low compression, and its lower branch has low growth/damping rate with strong compression. Two different cycles are found: one where the compression maximum occurs at the magnetic equator and one where the compression maximum straddles the magnetic equator. The later cycle could explain observations where the maximum in compression straddles the equator. Ray tracing shows that this mode is confined within ±12° magnetic latitude which can account for the bulk of the observations. We show that the Doppler shift can account for the difference between the observed and model wave frequency, if the wave vector direction is in opposition to the plasma flow direction. We note that the Wentzel-Kramers-Brillouin approximation breaks down during the pileup of compressional energy and that a study involving full wave solutions is required.
Ion Bernstein wave heating experiment on JIPPT-II-U device
International Nuclear Information System (INIS)
Ion Bernstein wave heating is investigated in the JIPPT-II-U tokamak plasma, n-bar sub(o) asymptoticaly equals 1.5 x 1013 cm-3, Tsub(eo) asymptoticaly equals 700 eV, and Tsub(io) = 300 eV for Psub(rf) 1-- 100 kW. In a two-ion-species helium-hydrogen plasma, the third harmonics of helium minority cyclotron resonance (deuterium-like) is heated. The background hydrogen ion temperature monitored by charge-exchange shows a significant rise, ΔTsub(i) 1-- 600 eV, when the helium harmonic resonance layer is placed near the center of the plasma. Typical observed hydrogen ion heating quality factor, ΔTsub(i)/Psub(rf)/n-barsub(o), is 1-- 10 eV/kW/1013cm-3. The dependence of ion heating efficiency on rf power, magnetic field and ion concentration is presented. (author)
Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak
International Nuclear Information System (INIS)
The COMPASS tokamak recently started operation at the Institute of Plasma Physics AS CR, v.v.i., Prague. A new 16-channel radiometer, operating alternatively in three frequency bands, has been designed and constructed. The system is prepared for detection of normal electron cyclotron emission (O1 or X2) or oblique electron Bernstein wave emission. The end-to-end calibration method includes all components that influence the antenna radiation pattern. A steady recalibration is possible using a noise generator connected to the radiometer input through a fast waveguide PIN-switch. Measurements of the antenna radiation characteristics (2D electric field) were performed in free space as well as in the tokamak chamber, showing the degradation effect of structures on the Gaussian beam shape. First plasma radiation temperature measurements from low-field circular plasmas are available.
Alfven Eigenmode And Ion Bernstein Wave Studies For Controlling Fusion Alpha Particles
Heeter, R F
1999-01-01
In magnetic confinement fusion reactor plasmas, the charged fusion products (such as alpha particles in deuterium-tritium plasmas) will be the dominant power source, and by controlling these charged fusion products using wave-particle interactions the reactor performance could be optimized. This thesis studies two candidate waves: Mode-Converted Ion Bernstein Waves (MCIBWs) and Alfvén Eigenmodes (AEs). Rates of MCIBW-driven losses of alpha-like fast deuterons, previously observed in the Tokamak Fusion Test Reactor (TFTR), are reproduced by a new model so that the wave-particle diffusion coefficient can be deduced. The MCIBW power in TFTR is found to be ∼ 1/3 that needed for collisionless alpha particle control. A reasonable reactor power scaling is derived. To study AEs, existing magnetic fluctuation probes at the Joint European Torus (JET) have been absolutely calibrated from 30–500 kHz for the first time, allowing fluctuation measurements with &vbm0;dBpol&vbm0;/B0&am...
Electron heating by mode-converted ion-Bernstein waves in ICRF heating of tokamak plasmas
International Nuclear Information System (INIS)
In a tokamak plasma, ion-Bernstein waves (IBW) can be excited by mode-conversion of the externally launched fast wave for ICRF heating. This conversion process is known to be efficient for low k/sub parallel/'s which carry substantial power from a single loop antenna. A detailed numerical analysis of the propagation of the IBW shows that the initial small k/sub parallel/ are significantly enhanced along the rays due to toroidal effects. The upshift can occur for short radial distances of propagation and is large enough so that the IBW can Landau damp onto the electrons. This could help explain the observed strong electron heating by ICRF waves in tokamak plasmas. The numerical ray trajectory analysis is done in toroidal geometry for a hot Maxwellian plasma with gradients in temperature, density, toroidal and poloidal magnetic fields included in a WKB sense. A simple analytical model is derived which explains the upshift in k/sub parallel/ and gives results very close to the numerically obtained values. Approximate analytical conditions for appreciable electron Landau damping of the IBW are also given
Energy Technology Data Exchange (ETDEWEB)
A. Cardinali; A. Post-Zwicker; F. Paoletti; S. Bernabei; S. Von Goeler; W. Tighe
1998-02-01
The synergistic behavior of lower hybrid and ion Bernstein waves on the Princeton Beta Experiment-Modified tokamak [Phys. Fluids B 2, 1271 (1990)] is experimentally studied using a 2-D hard X-ray camera. The hard X-ray bremsstrahlung emission from suprathermal electrons, generated with lower hybrid current drive, is enhanced during ion Bernstein wave power injection. This enhancement is observed in limited regions of space suggesting the formation of localized current channels. The effects on plasma electrons during combined application of these two types of waves are theoretically investigated using a quasilinear model. The numerical code simultaneously solves the 3-D (R, Z, {Phi}) toroidal wave equation for the electric field (in the WKBJ approximation) and the Fokker-Planck equation for the distribution function in two dimensions (v{sub parallel}, v{sub perpendicular}) with an added quasilinear diffusion coefficient. The radial profile of the non-inductively generated current density, the transmitted power traces and the total power damping curve are calculated. The beneficial effects of a combined utilization of ion Bernstein and lower hybrid waves on the current drive are emphasized. The numerical results are compared with the experimental observations.
Ion Bernstein wave antenna loading measurements on the DIII-D tokamak
Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Porkolab, M.; Chiu, S. C.; Cary, W. P.; Prater, R.
1993-04-01
Antenna loading measurements carried out during high power ion Bernstein wave (IBW) heating experiments on the DIII-D tokamak indicate that efficient, direct coupling to the IBW at ω lesssim 2ωci as predicted by linear coupling theory did not occur. Whereas strong peaking in the loading resistance near cyclotron harmonics is predicted for high edge densities (ω front of the antenna, thus allowing coupling to the cold plasma lower hybrid wave (LHW). A linear LHW coupling code including the modified density profile due to the ponderomotive force reproduces the measured dependence of antenna loading on toroidal magnetic field, edge density, antenna frequency and antenna phasing. Further evidence for the ponderomotive force is obtained from reactive loading measurements which indicate that the plasma is pushed away from the antenna as the radiofrequency power level is increased. The results indicate that the lack of central ion heating observed during DIII-D IBW experiments may be due to a lack of efficient mode transformation from the coupled LHW to a centrally propagating IBW, possibly as a result of nonlinear mechanism(s)
Czech Academy of Sciences Publication Activity Database
Harvey, R.W.; Cary, J.R.; Taylor, G.; Barnes, D.C.; Bigelow, T.S.; Coda, S.; Carlsson, J.; Caughman, J.B.; Carter, M.D.; Diem, S.; Efthimion, P.C.; Ellis, R.A.; Ershov, N.M.; Fonck, R.J.; Fredd, E.; Gartska, G.D.; Hosea, J.; Jaeger, F.; LeBlanck, B.; Lewicki, B.T.; Phillips, C.K.; Preinhaelter, Josef; Ram, A.K.; Rasmussen, D.A.; Smirnov, A.P.; Urban, Jakub; Wilgen, J.B.; Wilson, J.R.; Xiang, N.
Čína: IAEA, 2006, TH/P6-11. [IAEA Fusion Energy Conference/21st./. Chengdu, China (CN), 16.10.2006-21.10.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * NSTX * Particle in cell Subject RIV: BL - Plasma and Gas Discharge Physics http://www-pub.iaea.org/MTCD/Meetings/FEC2006/th_p6-11.pdf
Modification of boundary plasma behavior by Ion Bernstein Wave heating on the HT-7 tokamak
International Nuclear Information System (INIS)
The boundary plasma behavior during Ion Bernstein Wave heating was investigated using Langmuir probe arrays on the HT-7 tokamak. A distinct weak turbulence regime was reproducibly observed in the 30 MHz IBW heated plasmas with RF power larger than 120 kW, which resulted in a particle confinement improvement of a factor of 2. The strong suppression and decorrelation effect of fluctuations resulted in the turbulent particle flux dropping by more than an order of magnitude in the plasma boundary region. An additional inward radial electric field and associated poloidal ExB flows were produced, which could account for the additional poloidal velocity in the electron diamagnetic direction at some radial locations of the boundary plasma. The electrostatic fluctuations were nearly completely decorrelated in the high frequency region and only low frequency fluctuations remained. The poloidal correlation was considerably reduced in the high poloidal wave number region and only the fluctuations with long poloidal wavelength remained. Three-wave nonlinear phase coupling between the whole frequency domain and the very low frequency region increased significantly in both the plasma edge and the SOL. Quite low frequency fluctuations (about 5 kHz) were generated, which dominated the boundary turbulence during IBW heating. Detailed analyses suggested that, when an IBW with a frequency of 30 MHz was launched into a plasma with the toroidal magnetic field between 1.75 T and 2.0 T, the ion cyclotron resonant layer of 5/2.D was located in the plasma edge region. The poloidal ExB sheared flows generated by IBW near this layer due to a ponderomotive interaction were found to be the mechanism underlying these phenomena. (author)
Ghizzo, A.
2013-08-01
The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the "multiring" model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al. [Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.
EBW simulations in experimental context
Czech Academy of Sciences Publication Activity Database
Urban, Jakub; Preinhaelter, Josef; Pavlo, Pavol; Diem, S.J.; Taylor, G.; Laqua, H.P.; Shevchenko, V.; Valovic, M.; Vahala, L.; Vahala, G.
Vol. BTT-P2-178. Fukuoka: Kyushu University, 2008. s. 274-279. ISBN N. [International Congress on Plasma Physics 2008/14st./. 08.09.2008-12.09.2008, Fukuoka] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Stellarators * Electron Bernstein waves * Simulation * MAST * NSTX * WEGA Subject RIV: BL - Plasma and Gas Discharge Physics http://www.triam.kyushu-u.ac.jp/ICPP/
Directory of Open Access Journals (Sweden)
Uchida Masaki
2015-01-01
Full Text Available An extremely overdense special Tokamak plasma has been non-inductively formed and maintained by electron Bernstein (EB wave heating and current drive in the Low Aspect ratio Torus Experiment (LATE device. The plasma current reaches 12 kA and the line-averaged electron density exceeds 7 times the plasma cut off density by injecting a 2.45 GHz microwave power of 60 kW. Such a highly overdense plasma is obtained when the upper hybrid resonance layer lies to the higher field side of the 2nd harmonic ECR layer, which may realize a good coupling to EB waves at their first propagation band. The effect of the injection polarization on the mode conversion rate to EB waves at the extremely overdense regime has been investigated and an improvement in the plasma current is observed.
International Nuclear Information System (INIS)
This proposal was peer reviewed and funded as a Collaboration on ''Low Phase Speed Radio Frequency Current Drive Experiments at the Tokamak Fusion Test Reactor''. The original plans we had were to carry out the collaboration proposal by including a post doctoral scientist stationed at PPPL. In response to a 60+% funding cut, all expenses were radically pruned. The post doctoral position was eliminated, and the Principal Investigator (T. Intrator) carried out the brunt of the collaboration. Visits to TFTR enabled T. Intrator to set up access to the TFTR computing network, database, and get familiar with the new antennas that were being installed in TFTR during an up to air. One unfortunate result of the budget squeeze that TFTR felt for its last year of operation was that the experiments that we specifically got funded to perform were not granted run time on TFTR., On the other hand we carried out some modeling of the electric field structure around the four strap direct launch Ion Bernstein Wave (IBW) antenna that was operated on TFTR. This turned out to be a useful exercise and shed some light on the operational characteristics of the IBW antenna and its coupling to the plasma. Because of this turn of events, the project was renamed ''Modeling of Ion Bernstein Wave Antenna Array and Coupling to Plasma on Tokamak Fusion Test Reactor''
Active core profile and transport modification by application of Ion Bernstein Wave power in PBX-M
International Nuclear Information System (INIS)
Application of Ion Bernstein Wave Heating (IBWH) into the Princeton Beta Experiment-Modification (PBX-M) tokamak stabilizes sawtooth oscillations and generates peaked density profiles. A transport barrier, spatially correlated with the IBWH power deposition profile, is observed in the core of IBWH assisted neutral beam injection (NBI) discharges. A precursor to the fully developed barrier is seen in the soft x-ray data during edge localized mode (ELM) activity. Sustained IBWH operation is conducive to a regime where the barrier supports large triangledown ne, triangledown Te, triangledown vphi, and triangledown Ti, delimiting the confinement zone. This regime is reminiscent of the H(high)-mode but with a confinement zone moved inwards. The core region has better than H-mode confinement while the peripheral region is L(low)-mode-like. The peaked profile enhanced NBI core deposition and increases nuclear reactivity. An increase in central Ti results from χi reduction (compared to H-mode) and better beam penetration. Bootstrap current fractions of up to 0.32--0.35 locally and 0.28 overall were obtained when an additional NBI burst is applied to this plasma
Possibility of using ion-Bernstein waves for alpha power extraction in tokamaks
International Nuclear Information System (INIS)
If the fusion α-particle power is directly channeled to do useful things rather than simply undergo collisional absorption, there is an opportunity for significantly improved tokamak reactor performance. In the absence of the channeling, the α-particle power results predominantly in electron heating, which is a poor use of this power. One possibility is to direct this power into waves that damp on electrons traveling in one direction to sustain the plasma current. Since the power required to drive the toroidal current is about 10% of the fusion power output, whereas the α-particle power is 20% of the fusion power output, using even a fraction of the α-particle power to amplify the waves used for current drive can result in very significant savings in the required power for the current drive. A second possibility is to direct this power into waves that damp on fuel ions to increase the plasma reactivity. Such a channeling of the α-particle power could make possible the operation of fusion reactors in regimes in which the fuel ion temperature can be much greater than the electron temperature. It may also be possible to sustain a hot, nonmaxwellian component of the fuel ions, further enhancing the reactivity. By these means, if 75% of the α-particle power is diverted, the plasma reactivity, at constant pressure, can be increased by about a factor of two. It may even be possible to achieve at once the increased reactivity and the current drive, if, for example the α-particle power is channeled into waves that damp on fast ions traveling in one toroidal direction. (author) 10 refs., 4 figs
Directory of Open Access Journals (Sweden)
Shimizu A.
2012-09-01
Full Text Available In the large helical device (LHD, fundamental electron cyclotron resonance heating (ECRH by the electron Bernstein wave (EBW excited via the ordinary-extraordinary–EBW (O-X-B mode conversion process was performed with high power (~1MW launching. Profiles of increase of the electron temperature (Te and the soft X-ray signals during the power injection suggest power absorption in the core region. Effects of the local modification of the rotational transform l/2π(=1/q by electron cyclotron current drive (ECCD on the formation and sustainment of the electron internal transport barrier (e-ITB was investigated for the first time. Co ECCD raised l/2π close to 0.5 in the core region and caused the flattening of the Te profile. Additional ECRH power is required to form the e-ITB. On the contrary, counter (cntr. ECCD separates l/2π from 0.5 in the core region and avoids the flattening of the Te profile. The e-ITB can be formed and sustained without additional ECRH. Analysis of the heat pulse transport with use of the modulation ECRH (MECH shows the good confinement region extends to the l/2π =0.5 rational surface in the case of cntr. ECCD.
Bernstein polynomials on Simplex
Bayad, A.; Kim, T.; Rim, S. -H.
2011-01-01
We prove two identities for multivariate Bernstein polynomials on simplex, which are considered on a pointwise. In this paper, we study good approximations of Bernstein polynomials for every continuous functions on simplex and the higher dimensional q-analogues of Bernstein polynomials on simplex
Xiao, Jianyuan; Liu, Jian; Qin, Hong; Yu, Zhi; Xiang, Nong
2015-01-01
In this paper, the nonlinear mode conversion of extraordinary waves in nonuniform magnetized plasmas is studied using the variational symplectic particle-in-cell simulation. The accuracy of the nonlinear simulation is guaranteed by the long-term accuracy and conservativeness of the symplectic algorithm. The spectra of the electromagnetic wave, the evolution of the wave reflectivity, the energy deposition profile, and the parameter-dependent properties of radio-frequency waves during the nonli...
Czech Academy of Sciences Publication Activity Database
LeBlanc, B.P.; Bell, R.E.; Bernabei, S.; Caughman, J.B.; Delgado-Aparicio, L.; Diem, S.J.; Efthimion, P.C.; Harvey, R.W.; Hosea, J.C.; Phillips, C.K.; Preinhaelter, Josef; Ryan, P.M.; Sabbagh, S.; Taylor, G.; Tritz, K.; Urban, Jakub; Wilgen, J.B.; Wilson, J.R.; NSTX, team.
Warsaw : European Physical Society, 2007 - (Gąsior, P.; Wołowski, J.), P4.160-P4.160 ISBN 978-83-926290-0-9. - (Europhysics Conference Abstracts). [European Physical Society Conference on Plasma Physics/34th./. Warsaw (PL), 02.07.2007-06.07.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.eps2007.ifpilm.waw.pl/pdf/P4_160.pdf
Stefan, V. Alexander
2014-10-01
A novel method for alpha particle diagnostics is proposed. The theory of stimulated Raman scattering, SRS, of the fast wave and ion Bernstein mode, IBM, turbulence in multi-ion species plasmas, (Stefan University Press, La Jolla, CA, 2008). is utilized for the diagnostics of fast ions, (4)He (+2), in ITER plasmas. Nonlinear Landau damping of the IBM on fast ions near the plasma edge leads to the space-time changes in the turbulence level, (inverse alpha particle channeling). The space-time monitoring of the IBM turbulence via the SRS techniques may prove efficient for the real time study of the fast ion velocity distribution function, spatial distribution, and transport. Supported by Nikola Tesla Labs., La Jolla, CA 92037.
Full-wave modeling of the O-X mode conversion in the Pegasus Toroidal Experiment
Köhn, Alf; Bongard, Michael W; Gallian, Sara; Hinson, Edward T; Volpe, Francesco A
2011-01-01
The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus Toroidal Experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBW). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as \\pm 10 cm.
Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment
Energy Technology Data Exchange (ETDEWEB)
Koehn, A. [Institut fuer Plasmaforschung, Universitaet Stuttgart, D-70569 (Germany); Jacquot, J. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Bongard, M. W.; Hinson, E. T.; Volpe, F. A. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Gallian, S. [Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2011-08-15
The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as {+-}10 cm.
Full-wave modeling of the O-X mode conversion in the Pegasus toroidal experiment
International Nuclear Information System (INIS)
The ordinary-extraordinary (O-X) mode conversion is modeled with the aid of a 2D full-wave code in the Pegasus toroidal experiment as a function of the launch angles. It is shown how the shape of the plasma density profile in front of the antenna can significantly influence the mode conversion efficiency and, thus, the generation of electron Bernstein waves (EBWs). It is therefore desirable to control the density profile in front of the antenna for successful operation of an EBW heating and current drive system. On the other hand, the conversion efficiency is shown to be resilient to vertical displacements of the plasma as large as ±10 cm.
Simulation of the time development of EBW emission from NSTX
Czech Academy of Sciences Publication Activity Database
Preinhaelter, Josef; Urban, Jakub; Taylor, G.; Diem, S.; Vahala, L.; Vahala, G.
2006-01-01
Roč. 51, č. 4 (2006), K1.00024. ISSN 0003-0503. [International Sherwood Fusion Theory Conference/2006./. Dallas, Texas, 22.4.2006-25.4.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/APR06/baps/all_APR06.pdf http://meetings.aps.org/Meeting/APR06/Event/47670
Effect of Various EFIT NSTX Equilibria on EBW Simulations
Czech Academy of Sciences Publication Activity Database
Urban, Jakub; Preinhaelter, Josef; Sabbagh, S.; Pavlo, Pavol; Vahala, L.; Vahala, G.
2006-01-01
Roč. 51, č. 7 (2006), QPI.00027. ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/48th./. Philadelphia, Pennsylvania, 30.10.2006-3.11.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * MAST * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://www.aps.org/meet/DPP06/baps/all_DPP06.pdf
Bernstein functions theory and applications
Schilling, René L; Vondracek, Zoran
2010-01-01
This text is a self-contained and unified approach to Bernstein functions and their subclasses, bringing together old and establishing new connections. Applications of Bernstein functions in different fields of mathematics are given, with special attention to interpretations in probability theory. An extensive list of complete Bernstein functions with their representations is provided.
Sesnic, S.; Kaita, R.; Batha, S. H.; Bell, R. E.; Bernabei, S.; Chance, M. S.; DeLa Luna, E.; Dunlap, J. L.; England, A. C.; Isler, R. C.; Jones, S.; Kaye, S. M.; Kesner, J.; Kugel, H. W.; LeBlanc, B.; Levinton, F. M.; Luckhardt, S. C.; Manickam, J.; Okabayashi, M.; Ono, M.; Paoletti, F.; Paul, S. F.; Post-Zwicker, A. P.; Sanchez Sanz, J.; Sauthoff, N. R.; Seki, T.; Takahashi, H.; Tighe, W.; Von Goeler, S.; Woskov, P.; Zolfaghari, A.
1998-06-01
If the ion Bernstein wave (IBW) heating power in an H mode discharge of the PBX-M experiment exceeds a threshold power of about 200 kW, a core transport barrier is created in the central region of the plasma. At lower neutral beam injection (NBI) powers, the core barrier is accompanied by an edge L mode. The high edge localized mode (ELM) repetition frequency (1 kHz) prevents the creation of a strong barrier, so the edge first has to make an H-to-L transition before a strong core transport barrier can be created. At higher NBI powers, the ELM repetition frequency is lowered to less than 200 Hz, which allows the immediate creation of a strong core barrier. Edge localized mode loss, which propagates radially first on a fast (non-diffusive) and then on a slow (diffusive) time-scale all the way to the plasma core, is strongly reduced in the core barrier region. Correlated with the reduced ELM loss, the fluctuations in the core barrier region are also strongly reduced, both during the ELM and during the quiet periods between the ELMs. There is strong evidence that the IBW induced poloidal flow shear is responsible for the stabilization of core turbulence and the creation of the core transport barrier. The large perpendicular E × B flow shear component of the measured toroidal velocity in co-injection neutral beam heated discharges seems to be largely cancelled by the ion diamagnetic drift shear produced by large ion pressure gradients in the core barrier region. The value of IBW induced poloidal flow has not been experimentally determined, but its numerical value is found to be a factor of 4 larger than either the toroidal velocity or the ion diamagnetic drift shear components, leaving only IBW induced flow shear as the most probable cause for the turbulence stabilization. The core turbulence suppression and the creation of the core transport barrier is also consistent with expectations from a comparison between the E × B flow shear rate and a rough estimate of the
International Nuclear Information System (INIS)
If the ion Bernstein wave (IBW) heating power in an H mode discharge of the PBX-M experiment exceeds a threshold power of about 200 kW, a core transport barrier is created in the central region of the plasma. At lower neutral beam injection (NBI) powers, the core barrier is accompanied by an edge L mode. The high edge localized mode (ELM) repetition frequency (1 kHz) prevents the creation of a strong barrier, so the edge first has to make an H-to-L transition before a strong core transport barrier can be created. At higher NBI powers, the ELM repetition frequency is lowered to less than 200 Hz, which allows the immediate creation of a strong core barrier. Edge localized mode loss, which propagates radially first on a fast (non-diffusive) and then on a slow (diffusive) time-scale all the way to the plasma core, is strongly reduced in the core barrier region. Correlated with the reduced ELM loss, the fluctuations in the core barrier region are also strongly reduced, both during the ELM and during the quite periods between the ELMs. There is strong evidence that the IBW induced poloidal flow shear is responsible for the stabilization of core turbulence and the creation of the core transport barrier. The large perpendicular E x B flow shear component of the measured toroidal velocity in co-injection neutral beam heated discharges seems to be largely cancelled by the ion diamagnetic drift shear produced by large ion pressure gradients in the core barrier region. The value of IBW induced poloidal flow has not been experimentally determined, but its numerical value is found to be a factor of 4 larger than either the toroidal velocity or the ion diamagnetic drift shear components, leaving only IBW induced flow shear as the most probable cause for the turbulence stabilization. The core turbulence suppression and the creation of the core transport barrier is also consistent with expectations from a comparison between the E x B flow shear rate and a rough estimate of the
Electron Bernstein Driven and Bootstrap Current Estimations in the TJ-II Stellarator
International Nuclear Information System (INIS)
Full text: The control of the total parallel current may lead to the possibility of continuous operation in tokamak plasmas and it can provide access to improved confinement regimes in stellarators, by means of control of the rotational transform profile. In fact one of the main lines of research at the stellarator TJ-II is the relation between confinement and the magnetic configuration, putting emphasis on the rotational transform profile. The two main non-inductive parallel currents in plasma confinement devices are the bootstrap and the ones driven by external means, like radio frequency or NBI. The current drive (CD) systems must be appropriated to work on overdense plasmas, since this could be mandatory in a reactor. Therefore, electron Bernstein waves (EBW), which do not present density cut-off have been considered as CD system for TJ-II. In this work we present calculations of the bootstrap and the EBW currents in the dense plasmas confined in a complex 3D confinement device like the TJ-II stellarator. The precise calculation of the bootstrap current is a numerical challenge, since the error estimates for computations of this current, specially in the long-mean-free-path (lmfp) regime of stellarators, are very large. This issue is particularly relevant for the lmfp regime of stellarators, particularly for TJ-II, which is characterized by its very complex magnetic configuration. A new code, NEO-MC, has been developed in order to overcome this problem. It combines the standard δf method with an algorithm employing constant particle weights and re-discretizations of the test particle distribution. In this way, it is able to provide, for the first time, calculations of the contribution of the lmfp regime to the bootstrap current of TJ-II with very low error estimates. For a fast estimation of EBCD, different linear models based on the adjoint approach or Langevin equations techniques have been developed in order to simplify the task of solving the kinetic
A view on the functioning mechanism of EBW detonators -part 2: bridgewire output
Lee, E. A.; Drake, R. C.; Richardson, J.
2014-05-01
This is the second paper of three papers describing the studies to identify the initiating mechanisms in Exploding Bridgewire (EBW) detonators. In this paper the results of experiments to quantify the effect of the bridgewire explosion are described. Experiments have been performed to characterise the output from the bridgewire in terms of the stimulus it would apply to the surrounding explosive in an EBW detonator. The expansion speed of the bridgewire at burst as a function of input energy has been measured using Photonic Doppler Velocimety (PDV). To complement the bridgewire expansion velocity determinations aquarium experiments were carried out in which the shock wave velocity in water was measured, as a function of energy, by high speed photography. The shock pressures were calculated and compared to initiation criteria for PETN.
Recent EBW Emission Results and Plans for a 350 kW 28 GHz EC/EBW Heating System on NSTX
Czech Academy of Sciences Publication Activity Database
Taylor, G.; Diem, S.J.; Ellis, R.A.; Fredd, E.; Greenough, N.I.; Hosea, J.C.; Bigelow, T.S.; Caughman, J.B.; Rasmussen, D.A.; Ryan, P.; Wilgen, J.B.; Harvey, R.W.; Smirnov, A.P.; Ershov, N.M.; Preinhaelter, Josef; Urban, Jakub; Ram, A.K.
2007-01-01
Roč. 52, č. 16 (2007), s. 304-304. ISSN 0003-0503. [Annual Meeting of the Division of Plasma Physics/49th./. Orlando, Florida, 12.11.2007-16.11.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Tokamaks * Electron Bernstein waves * Simulation * NSTX Subject RIV: BL - Plasma and Gas Discharge Physics http://meetings.aps.org/Meeting/DPP07/Content/901
EBW/ECE Radiometry on COMPASS tokamak – design and first measurements
Czech Academy of Sciences Publication Activity Database
Zajac, Jaromír; Preinhaelter, Josef; Urban, Jakub; Šesták, David; Křivská, Alena; Nanobashvili, S.
Vol. 1187. Melville : American Institute of Physics, 2009 - (Bobkov, V.; Noterdaeme, J.), s. 473-476 ISBN 978-0-7354-0753-4. - (AIP Conference Proceedings. 1187). [Topical Conference on Radio Frequency Power in Plasmas/18th./. Ghent (BE), 24.06.2009-26.06.2009] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : Electron cyclotron emission * Mode conversion * Electron Bernstein waves * Tokamaks Subject RIV: BL - Plasma and Gas Discharge Physics http://proceedings.aip.org/dbt/dbt.jsp?KEY=APCPCS&Volume=1187&Issue=1
Influence of Bernstein modes on the efficiency of electron cyclotron resonance x-ray source
International Nuclear Information System (INIS)
The article considers the factors influencing the temperature of hot electron component in an electron cyclotron resonance (ECR) x-ray source. In such sources the electron heating occurs often due to extraordinary electromagnetic wave propagating perpendicularly to the magnetic field. In this case the possibility of the absorption of Bernstein modes is regarded as an additional mechanism of electron heating. The Bernstein modes in an ECR x-ray source can arise due to either linear transformation or parametric instability of external transversal wave. The article briefly reviews also the further experiments which will be carried out to study the influence of Bernstein modes on the increase of hot electron temperature and consequently of x-ray emission
Simulation study of Bernstein modes
International Nuclear Information System (INIS)
The properties of Bernstein modes were investigated through computer simulations using two-dimensional and two-and-one-half-dimensional (i.e., two spatial and three velocity coordinates) electrostatic models with fixed magnetic field. The measured discrete spectrum was found to agree with the linear dispersion relation for these modes. The quasi-periodic phenomenon of early phase-mixing damping and later recurrence, predicted by Baldwin and Rowlands, was observed. For large wavenumber k/sub perpendicular/, the initial damping rate is the same as that for Landau damping in an unmagnetized plasma; for small k/sub perpendicular/, however, it is much stronger. The recurrence peaks slowly damp in time at a rate proportional to k2/sub perpendicular/D, where D is the measured cross-field particle diffusion coefficient which is dominated by convective transport. Finally, splitting of the main spectral peaks and the appearance of subpeaks at half-integral multiples of the cyclotron frequency are observed and may be explained by nonlinear mode coupling
Min, Kyungguk; Liu, Kaijun
2016-04-01
Fast magnetosonic waves in Earth's inner magnetosphere, which have as their source ion Bernstein instabilities, are driven by hot proton velocity distributions (fp) with ∂fp(v⊥)/∂v⊥>0. Two typical types of distributions with such features are ring and shell velocity distributions. Both have been used in studies of ion Bernstein instabilities and fast magnetosonic waves, but the differences between instabilities driven by the two types of distributions have not been thoroughly addressed. The present study uses linear kinetic theory to examine and understand these differences. It is found that the growth rate pattern is primarily determined by the cyclotron resonance condition and the structure of the velocity distribution in gyroaveraged velocity space. For ring-driven Bernstein instabilities, as the parallel wave number (k∥) increases, the discrete unstable modes approximately follow the corresponding proton cyclotron harmonic frequencies while they become broader in frequency space. At sufficiently large k∥, the neighboring discrete modes merge into a continuum. In contrast, for shell-driven Bernstein instabilities, the curved geometry of the shell velocity distribution in gyroaveraged velocity space results in a complex alternating pattern of growth and damping rates in frequency and wave number space and confines the unstable Bernstein modes to relatively small k∥. In addition, when k∥ increases, the unstable modes are no longer limited to the proton cyclotron harmonic frequencies. The local growth rate peak near an exact harmonic at small k∥ bifurcates into two local peaks on both sides of the harmonic when k∥ becomes large.
Radio frequency wave experiments on the MST reversed field pinch
International Nuclear Information System (INIS)
Experiments, simulations, and theory all indicate that the magnetic fluctuations responsible for the poor confinement in the reversed field pinch (RFP) can be controlled by altering the radial profile of the current density. The magnetic fluctuations in the RFP are due to resistive MHD instabilities caused by current profile peaking; thus confinement in the RFP is ultimately the result of a misalignment between inductively driven current profiles and the stable current profiles characteristic of the Taylor state. If a technique such as rf current drive can be developed to non-inductively sustain a Taylor state (a current profile linearly stable to all tearing modes), the confinement of the RFP and its potential as a reactor concept are likely to increase. Whether there is a self-consistent path from poor confinement to greatly improved confinement through current profile modification is an issue for future experiments to address if and only if near term experiments can demonstrate: (1) coupling to and the propagation of rf waves in RFP plasmas, (2) efficient current drive, and (3) control of the power deposition which will make it possible to control the current profile. In this paper, modeling results and experimental plans are presented for two rf experiments which have the potential of satisfying these three goals: high-nparallel lower hybrid (LH) waves and electron Bernstein waves (EBWs)
CONVERGENCE ARTE FOR INTERATES OF q-BERNSTEIN POLYNOMIALS
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Recently, q-Bernstein polynomials have been intensively investigated by a number of authors. Their results show that for q ≠ 1, q-Bernstein polynomials possess of many interesting properties. In this paper, the convergence rate for iterates of both q-Bernstein when n →∞ and convergence rate of Bn(f,q;x) when f ∈ Cn-1[0, 1], q →∞ are also presented.
High frequency fast wave results from the CDX-U spherical torus
International Nuclear Information System (INIS)
The Current Drive Experiment-Upgrade (CDX-U) is the first spherical torus (ST) to investigate radio frequency (RF) heating and current drive. To address the concern that large magnetic field line pitch at the outboard midplane of ST's could inhibit successful coupling to the high harmonic fast wave (HHFW), a rotatable, two strap antenna was installed on CDX-U. Parasitic loading and impurity generation were discovered to be weak and nearly independent of antenna phasing and angle over a wide range, and fast wave electron heating has been observed. Plasma densities up to about 1012cm-3 were obtained with noninductive startup solely with HHFW. New ST diagnostics under development on CDX-U include a multilayer mirror (MLM) detector to measure ultrasoft X-rays, a twelve spatial point Thomson scattering (TS) system, and an Electron Bernstein Wave (EBW) system for both electron heating and electron temperature measurements. Preliminary experiments with a boron low velocity edge micropellet injector have also been performed, and further studies of its effectiveness for impurity control will be conducted with a variety of spectroscopic and imaging diagnostics on CDX-U. (author)
ECW/EBW heating and current drive experiment results and prospects for CW operation in QUEST
International Nuclear Information System (INIS)
A CW phased-array antenna system for electron cyclotron/Bernstein wave heating and current drive (ECWH/CD, EBWH/CD) experiments was developed in the QUEST. The antenna was designed to excite an elliptically polarized pure O-mode wave in oblique injection for the O-X-B mode conversion scenario, and its good performance was confirmed at a high power level. Long pulse discharges with a plasma current of 10 kA and 15 kA were non-inductively attained for 37 s and 20 s, respectively, with only radio frequency (RF) power. Divertor configurations were also obtained in the RF-sustained plasmas. A new operational window for sustained plasma current was observed in the high-density plasma with a higher RF incident power. Two new heating and current drive systems with an 8.56 GHz klystron and a 28 GHz gyrotron are being prepared to conduct CW EBWH/CD experiments in the high-density plasma. (author)
Bernstein's Lethargy Theorem in Frechet Spaces
Aksoy, Asuman Guven; Lewicki, Grzegorz
2015-01-01
In this paper we consider Bernstein's Lethargy Theorem (BLT) in the context of Fr\\'{e}chet spaces. Let $X$ be an infinite-dimensional Fr\\'echet space and let $\\mathcal{V}=\\{V_n\\}$ be a nested sequence of subspaces of $ X$ such that $ \\bar{V_n} \\subseteq V_{n+1}$ for any $ n \\in \\mathbb{N}$ and $ X=\\bar{\\bigcup_{n=1}^{\\infty}V_n}.$ Let $ e_n$ be a decreasing sequence of positive numbers tending to 0. Under an additional natural condition on $\\sup\\{\\{dist}(x, V_n)\\}$, we prove that there exists...
The dynamic financial distress prediction method of EBW-VSTW-SVM
Sun, Jie; Li, Hui; Chang, Pei-Chann; He, Kai-Yu
2016-07-01
Financial distress prediction (FDP) takes important role in corporate financial risk management. Most of former researches in this field tried to construct effective static FDP (SFDP) models that are difficult to be embedded into enterprise information systems, because they are based on horizontal data-sets collected outside the modelling enterprise by defining the financial distress as the absolute conditions such as bankruptcy or insolvency. This paper attempts to propose an approach for dynamic evaluation and prediction of financial distress based on the entropy-based weighting (EBW), the support vector machine (SVM) and an enterprise's vertical sliding time window (VSTW). The dynamic FDP (DFDP) method is named EBW-VSTW-SVM, which keeps updating the FDP model dynamically with time goes on and only needs the historic financial data of the modelling enterprise itself and thus is easier to be embedded into enterprise information systems. The DFDP method of EBW-VSTW-SVM consists of four steps, namely evaluation of vertical relative financial distress (VRFD) based on EBW, construction of training data-set for DFDP modelling according to VSTW, training of DFDP model based on SVM and DFDP for the future time point. We carry out case studies for two listed pharmaceutical companies and experimental analysis for some other companies to simulate the sliding of enterprise vertical time window. The results indicated that the proposed approach was feasible and efficient to help managers improve corporate financial management.
MULTIVARIATE WEIGHTED BERNSTEIN-TYPE INEQUALITY AND ITS APPLICATIONS
Institute of Scientific and Technical Information of China (English)
Cao Feilong; Lin Shaobo
2012-01-01
Bernstein inequality played an important role in approximation theory and Fourier analysis.This article first introduces a general system of functions and the socalled multivariate weighted Bernstein,Nikol'skiǐ,and Ul'yanov-type inequalities.Then,the relations among these three inequalities are discussed.Namely,it is proved that a family of functions equipped with Bernstein-type inequality satisfies Nikol'skiǐ-type and Ul'yanov-type inequality.Finally,as applications,some classical inequalities are deduced from the obtained results.
Generalized -Bernstein-Schurer Operators and Some Approximation Theorems
Directory of Open Access Journals (Sweden)
M. Mursaleen
2013-01-01
Full Text Available We study statistical approximation properties of -Bernstein-Shurer operators and establish some direct theorems. Furthermore, we compute error estimation and show graphically the convergence for a function by operators and give its algorithm.
Generating functions for q-Bernstein, q-Meyer-Konig-Zeller and q-Beta basis
Gupta, Vijay; Kim, Taekyun; Choi, Jongsung; Kim, Young-Hee
2010-01-01
The present paper deals with the q-analogue of Bernstein, Meyer-Konig-Zeller and Beta operators. Here we estimate the generating functions for q-Bernstein, q-Meyer-Konig-Zeller and q-Beta basis functions.
Proofs of the Cantor-Bernstein theorem a mathematical excursion
Hinkis, Arie
2013-01-01
This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly an...
77 FR 75200 - AllianceBernstein Active ETFs, Inc., et al.; Notice of Application
2012-12-19
... COMMISSION AllianceBernstein Active ETFs, Inc., et al.; Notice of Application December 13, 2012. AGENCY...Bernstein Active ETFs, Inc. (``Corporation''), AllianceBernstein L.P. (``Adviser''), and ALPS Distributors... Business Day's NAV and the market closing price or mid-point of the bid/ask spread at the time...
Fu, H.; Scales, W. A.; Bernhardt, P. A.; Samimi, A.; Mahmoudian, A.; Briczinski, S. J.; McCarrick, M. J.
2013-09-01
Results of secondary radiation, Stimulated Electromagnetic Emission (SEE), produced during ionospheric modification experiments using ground-based high-power radio waves are reported. These results obtained at the High Frequency Active Auroral Research Program (HAARP) facility specifically considered the generation of Magnetized Stimulated Brillouin Scatter (MSBS) and Stimulated Ion Bernstein Scatter (SIBS) lines in the SEE spectrum when the transmitter frequency is near harmonics of the electron gyrofrequency. The heater antenna beam angle effect was investigated on MSBS in detail and shows a new spectral line postulated to be generated near the upper hybrid resonance region due to ion acoustic wave interaction. Frequency sweeping experiments near the electron gyroharmonics show for the first time the transition from MSBS to SIBS lines as the heater pump frequency approaches the gyroharmonic. Significantly far from the gyroharmonic, MSBS lines dominate, while close to the gyroharmonic, SIBS lines strengthen while MSBS lines weaken. New possibilities for diagnostic information are discussed in light of these new observations.
International Nuclear Information System (INIS)
This study investigates the correlation between the microstructure and the corrosion resistance properties of the fusion zone of Alloy 690-SUS 304L stainless steel dissimilar weldments formed by electron beam welding (EBW). The effects of the EBW process are evaluated by comparing the microstructure and corrosion resistance properties of the EBW weldment with those of Alloy 690-SUS 304L weldment formed by gas tungsten arc welding (GTAW). The experimental results reveal that the interdendritic region of the fusion zone of the EBW weldment contains fine TiN precipitates and Cr-Ni rich phases. The TiN precipitates are originated from the Alloy 690 base metal, while the Cr-Ni rich phases, a new formation of precipitates, is precipitated in the region around TiN during solidification. Microscopic analysis of the samples following a modified Huey test indicates that the matrix around TiN precipitate and the Cr-Ni rich phase precipitate provide the preferred sites for corrosion pit initiation. Due to the rapid cooling in the EBW process, relatively fewer and smaller TiN precipitates and Cr-Ni rich phases are formed in the weldment. Consequently, only limited corrosive pitting is observed which indicates better interdendritic corrosion resistance properties in comparison to joints with GTAW process. Furthermore, rapid solidification in the fusion zone results not only the suppression of chromium carbide precipitation but also the chromium depletion at the grain boundaries. As a result, the intergranular corrosion resistance and interdendritic corrosion resistance of the EBW weldment are significantly higher than that of the GTAW weldment. (author)
Pointwise Approximation for the Iterated Boolean Sums of Bernstein Operators
Institute of Scientific and Technical Information of China (English)
HUO Xiao-yan; LI Cui-xiang; YAO Qiu-mei
2013-01-01
In this paper,with the help of modulus of smoothness ω2r(4)(f,t),we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator Bnn and obtain direct and inverse theorems when 1-1/r ≤ λ ≤ 1,r ∈ N.
On -Euler Numbers Related to the Modified -Bernstein Polynomials
Min-Soo Kim; Daeyeoul Kim; Taekyun Kim
2010-01-01
We consider q-Euler numbers, polynomials, and q-Stirling numbers of first and second kinds. Finally, we investigate some interesting properties of the modified q-Bernstein polynomials related to q-Euler numbers and q-Stirling numbers by using fermionic p-adic integrals on ℤp.
A view on the functioning mechanism of EBW detonation - Part 2: Exploding Bridgewire Output
Lee, Elizabeth; Drake, Rodney; Richardson, John
2013-06-01
This paper is the second of three looking at the initiation of PETN in an exploding bridgewire detonator. The first study examined the interactions between the fireset and bridgewire. This second study focuses on quantifying the effect of bridgewire burst energy on the output from the bridgewire at burst. A suite of experimental tests have been performed to characterise the output from the bridgewire in terms of the stimulus it would apply to the surrounding PETN in an EBW detonator. The expansion speed of the bridgewire at burst as a function of input energy has been measured using Photonic Doppler Velocimetry (PDV). This work has enabled an estimate to be made of the duration of the shock generated by the bridgewire explosion. To compliment these measurements an aquarium test was performed to measure the shock pressure, also as a function of input energy. In addition to a variable input energy, a number of bridgewire materials were studied. This suite of experimental tests has indicated a relationship between the ionisation energy of the bridgewire material and the detonator threshold energy. The results of the experimental work will be presented, together with the EBW detonator conceptual model developed as a result.
Kim, E.-H.; Boardsen, S. A.; Johnson, J. R.; Slavin, J. A.
2016-02-01
This chapter provides a brief overview of the observed characteristics of ultra-low-frequency (ULF) waves at Mercury. It shows how field-aligned propagating ULF waves at Mercury can be generated by externally driven fast compressional waves (FWs) via mode conversion at the ion-ion hybrid resonance. Then, the chapter reviews the interpretation that the strong magnetic compressional waves near and its harmonics observed with 20 of Mercury's magnetic equator could be the ion Bernstein wave (IBW) mode. A recent statistical study of ULF waves at Mercury based on MESSENGER data reported the occurrence and polarization of the detected waves. The chapter further introduces the field line resonance and the electromagnetic ion Bernstein waves to explain such waves, and shows that both theories can partially explain the observations.
International Nuclear Information System (INIS)
There are plans to install or replace many PWR-steam generators. The welding period must be reduced because of its length. The use of electron beam welding (EBW) can greatly reduce the welding period compared to conventional welding methods (narrow-gap GMAW and SAW). The problem in applying EBW is to improve the toughness of the weld metal. The authors investigated the factors that deteriorate weld metal toughness of EBW and made clear the manufacturing process which utilizes a new secondary refining process and a high-torque mill in actual mass production. The actual fabrication was evaluated and approved by an EBW quality assurance committee including neutral members. As a result, application of EBW to PWR-steam generators has become possible and large amounts of ASTM A533 GrB C12 (JIS SQV2B) steel plates for EBW have come to be produced. The authors evaluated EBW base metal and weld joints including fracture toughness, and also reported on the status of fabricating steam generators
The nonlinear Bernstein-Schr\\"odinger equation in Economics
Galichon, Alfred; Kominers, Scott; WEBER, Simon
2015-01-01
In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the "nonlinear Bernstein-Schr\\"odinger system", which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.
The nonlinear Bernstein-Schr\\"odinger equation in Economics
Alfred Galichon; Scott Kominers; Simon Weber
2015-01-01
In this paper we relate the Equilibrium Assignment Problem (EAP), which is underlying in several economics models, to a system of nonlinear equations that we call the "nonlinear Bernstein-Schr\\"odinger system", which is well-known in the linear case, but whose nonlinear extension does not seem to have been studied. We apply this connection to derive an existence result for the EAP, and an efficient computational method.
Semiparametric Bernstein-von Mises for the error standard deviation
Jonge, de, B.; Zanten, van, M.
2013-01-01
We study Bayes procedures for nonparametric regression problems with Gaussian errors, giving conditions under which a Bernstein-von Mises result holds for the marginal posterior distribution of the error standard deviation. We apply our general results to show that a single Bayes procedure using a hierarchical spline-based prior on the regression function and an independent prior on the error variance, can simultaneously achieve adaptive, rate-optimal estimation of a smooth, multivariate regr...
International Nuclear Information System (INIS)
Regarding the final sealing technique of the overpack using carbon steel, one of the candidate materials for the disposal container in the geological disposal of high-level radioactive waste in Japan, welding tests were conducted using TIG (GTAW), a typical arc welding process, and electron beam welding (EBW), a high-energy beam welding process. The purpose of the tests was to evaluate the applicability, the scope of the applications and the conditions for the application of the existing techniques; while also examining the welding conditions and the weld quality. Regarding TIG, the optimum welding conditions (the conditions pertaining to the welding procedures and the groove geometry) were checked by using a specimen with a plate thickness of 50 mm, and then circumferential welding tests were conducted for cylindrical specimens with a groove depth of 100 mm and 150 mm. Radiographic testing showed that there was no significant weld defect in the weld and that the welding characteristics were satisfactory. The results of the test of the mechanical properties of the joint were also satisfactory. Measurement of the temperature distribution and the residual stress distribution at the time of the welding was conducted for an evaluation of the residual stress caused by the welding, and an appropriate residual stress analysis method was developed, which confirmed the generation of tensile stress along the circumferential direction of the weld. Then it was pointed out that a necessity of further consideration of how to reduce the stress and to examine the influence that residual stress has on corrosion property. The goal in the EBW test was to achieve a one-pass full penetration welding process for 190 mm while conducting a partial penetration welding test for a welding depth of 80 mm. Subsequent radiographic testing confirmed that there was no significant weld defect. (orig.)
Solutions of differential equations in a Bernstein polynomial basis
Idrees Bhatti, M.; Bracken, P.
2007-08-01
An algorithm for approximating solutions to differential equations in a modified new Bernstein polynomial basis is introduced. The algorithm expands the desired solution in terms of a set of continuous polynomials over a closed interval and then makes use of the Galerkin method to determine the expansion coefficients to construct a solution. Matrix formulation is used throughout the entire procedure. However, accuracy and efficiency are dependent on the size of the set of Bernstein polynomials and the procedure is much simpler compared to the piecewise B spline method for solving differential equations. A recursive definition of the Bernstein polynomials and their derivatives are also presented. The current procedure is implemented to solve three linear equations and one nonlinear equation, and excellent agreement is found between the exact and approximate solutions. In addition, the algorithm improves the accuracy and efficiency of the traditional methods for solving differential equations that rely on much more complicated numerical techniques. This procedure has great potential to be implemented in more complex systems where there are no exact solutions available except approximations.
International Nuclear Information System (INIS)
Fuel elements are fabricated by welding the end plugs to the fuel tubes. GTAW is widely practiced in view of its simplicity and low cost. EBW and LBW techniques are being developed because of better process control and flexibility. In this paper we have studied the welds made by these techniques. The study includes optical and scanning electron microscopy, microhardness measurements and EPMA of these welds
Bernstein - Von Mises theorem and its application in survival analysis
Czech Academy of Sciences Publication Activity Database
Timková, Jana
2010-01-01
Roč. 22, č. 3 (2010), s. 115-122. ISSN 1210-8022. [16. letní škola JČMF Robust 2010. Králíky, 30.01.2010-05.02.2010] R&D Projects: GA AV ČR(CZ) IAA101120604 Institutional research plan: CEZ:AV0Z10750506 Keywords : Cox model * bayesian asymptotics * survival function Subject RIV: BB - Applied Statistics, Operational Research http://library.utia.cas.cz/separaty/2010/SI/timkova-bernstein - von mises theorem and its application in survival analysis.pdf
Brian Davies
2003-01-01
Neste texto o autor procura elucidar o modo pelo qual Basil Bernstein utilizou e enriqueceu a contribuição de Durkheim para a análise de questões abordadas pela sociologia da educação.The author attempts to elucidate how Basil Bernstein used and enhanced Durkheim's contribution to the analysis of issues addressed by the sociology of education.
A view on the functioning mechanism of EBW detonators-part 3: explosive initiation characterisation
International Nuclear Information System (INIS)
This paper is the third of three looking at the initiation of PETN in an exploding bridgewire detonator. The energy flow from the fireset through the bridgewire has been characterised and the probable input to the low density PETN determined. These earlier studies showed that shock initiation remained a credible mechanism for an exploding bridgewire detonator. This final set of experiments was designed to compare and contrast the shock initiation of low density PETN, by both a slapper detonator and a shock sensitivity test, with exploding bridgewire initiation. The function and lost times of slapper and EBW detonators were compared to one another to allow the credibility of a shock initiation mechanism to be further assessed. The results of the experimental work will be presented, together with a potential step-by-step initiation mechanism for a PETN exploding bridgewire detonator. The proposed mechanism is based on the energy flow through the detonator system and the affect of varying the input energy on the detonator function time.
A view on the functioning mechanism of EBW detonators -part 1: electrical characterisation
Lee, E. A.; Drake, R. C.; Richardson, J.
2014-05-01
Exploding Bridgewire (EBW) Detonators are in widespread use and have proven reliability and performance characteristics. Since their invention there have been numerous studies to identify the mechanism by which the exploding bridgewire initiates the explosive. However, there is still not a universally accepted mechanism. This paper is the first of three characterising the initiation of PETN in an exploding bridgewire detonator to understand the underlying mechanism. The approach taken was to understand the transfer of energy through the system, beginning with the fireset / bridgewire interactions. The measurement of current, time to bridgewire burst and the transient voltage across the bridgewire at burst have enabled the determination of the energy used in bursting the bridgewire. This in turn has led to the calculation of the energy efficiency of the fireset bridgewire system and an estimate of the energy delivered post bridgewire burst. The results of the experimental work will be presented, together with the implications for the initiation mechanism of PETN in an exploding bridgewire detonator.
A view on the functioning mechanism of EBW detonators-part 3: explosive initiation characterisation
Lee, E. A.; Drake, R. C.; Richardson, J.
2014-05-01
This paper is the third of three looking at the initiation of PETN in an exploding bridgewire detonator. The energy flow from the fireset through the bridgewire has been characterised and the probable input to the low density PETN determined. These earlier studies showed that shock initiation remained a credible mechanism for an exploding bridgewire detonator. This final set of experiments was designed to compare and contrast the shock initiation of low density PETN, by both a slapper detonator and a shock sensitivity test, with exploding bridgewire initiation. The function and lost times of slapper and EBW detonators were compared to one another to allow the credibility of a shock initiation mechanism to be further assessed. The results of the experimental work will be presented, together with a potential step-by-step initiation mechanism for a PETN exploding bridgewire detonator. The proposed mechanism is based on the energy flow through the detonator system and the affect of varying the input energy on the detonator function time.
International Nuclear Information System (INIS)
This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based
Energy Technology Data Exchange (ETDEWEB)
Salonen, T.
2014-05-15
This report consist the results of the development of the electron beam welding (EBW) method for sealing spent nuclear fuel (SNF) disposal canister. This report has been used as background material for selection of the sealing method for the SNF canister. Report contains the state of the art knowledge of the EBW method and research and development (R and D) results done by Posiva. Relevant R and D results of EB-welds done by SKB are also reviewed in this report. Requirements set for the welding and weld are present. These requirements are based on the long term safety and also some part of requirements are set by other processes like non-destructive testing (NDT) and manufacturing processes of components. Initial state of the weld is described in this report. Initial state has significant effect on the long term safety issues like corrosion resistance and creep ductility. Also short and long term mechanical properties as well as corrosion properties are described. Microstructure and residual stresses of the weld is represented in this report. Report consists also imperfections of the weld and statistical analysis of the evaluation of the probability of the largest defect size on the weld. Results of corrosion and creep tests of EB-welds are reviewed in this report. EBW process and machine are described. Preliminary designing of the EBW-machine has been done including component handling equipments. Preliminary welding procedure specification (pWPS) has drawn up and qualification of the personnel is described briefly. In-line process and quality control system including seam tracking system is implemented in modern EBW machine. Also NDT methods for inspection of the weld are described in this report. Concerning the results from the research and development work it can be concluded that EB welding method is suitable method for sealing SNF canister. Weld material fulfils requirements set by the long term safety. The welding system is robust and reliable and it is based
$L^p$ Bernstein Inequalities and Inverse Theorems for RBF Approximation on $\\mathbb{R}^d$
Ward, John Paul
2010-01-01
Bernstein inequalities and inverse theorems are a recent development in the theory of radial basis function(RBF) approximation. The purpose of this paper is to extend what is known by deriving $L^p$ Bernstein inequalities for RBF networks on $\\mathbb{R}^d$. These inequalities involve bounding a Bessel-potential norm of an RBF network by its corresponding $L^p$ norm in terms of the separation radius associated with the network. The Bernstein inequalities will then be used to prove the corresponding inverse theorems.
A teoria de Basil Bernstein: alguns aspectos fundamentais
Directory of Open Access Journals (Sweden)
Ana Maria Morais
2007-12-01
Full Text Available The article begins with a reference to the pieces of work that Basil Bernstein considered to have been the landmarks of the evolution of his thought. This is followed by a detailed description of the two models that contain the main concepts of his theory – Model of Cultural Reproduction and Transformation and Model of Pedagogic Discourse – where the theoretical meaning of these models and concepts is explained and where are given some examples of how to put them into practice at the level of pedagogic texts and contexts. The article also includes the most recent developments of Bernstein’s thought by explaining his ideas about the forms discourses can take – Vertical and Horizontal Discourses. Finally, Bernstein’s theory is approached within the framework of the empirical research, highlighting his epistemological positioning and explicating the methodological model that he suggested should be the driving force of any theory.
q-Bernstein polynomials, q-Stirling numbers and q-Bernoulli polynomials
Kim, T.
2010-01-01
In this paper, we give new identities involving Phillips q-Bernstein polynomials and we derive some interesting properties of q-Berstein polynomials associated with q-Stirling numbers and q-Bernoulli polynomials.
Directory of Open Access Journals (Sweden)
Ryoo CS
2010-01-01
Full Text Available The purpose of this paper is to give some properties of several Bernstein type polynomials to represent the fermionic -adic integral on . From these properties, we derive some interesting identities on the Euler numbers and polynomials.
Bernstein dual-Petrov-Galerkin method: application to 2D time fractional diffusion equation
Jani, Mostafa; Babolian, Esmail
2016-01-01
In this paper, we develop a dual-Petrov-Galerkin method using Bernstein polynomials. The method is then implemented for the numerical simulation of the two-dimensional subdiffusion equation. The method is based on a finite difference discretization in time and a spectral method in space utilizing a suitable compact combinations of dual Bernstein basis as the test functions and the Bernstein polynomials as the trial ones. We derive the exact sparse operational matrix of differentiation for the dual Bernstein basis which provides a matrix-based approach for spatial discretization of the problem. It is also shown that the proposed method leads to banded linear systems. Finally some numerical examples are provided to show the efficiency and accuracy of the method.
On the approximation properties of bivariate $(p, q)-$Bernstein operators
Karaisa, Ali
2016-01-01
In the present study, we have given a corrigendum to our paper on the approximation properties of bivariate $(p, q)-$Bernstein operators. Recently, we \\cite{kar} have defined the bivariate $(p, q)-$Bernstein operators. Later, we have aware of Acar et. al \\cite{acar} already have given some moments. In this case, we have revised \\cite[Lemma 2.3]{kar}.
Solution of the Lane-Emden Equation Using the Bernstein Operational Matrix of Integration
Narayan Kumar; Pandey, Rajesh K.; Carlo Cattani
2011-01-01
Lane-Emden's equation has fundamental importance in the recent analysis of many problems in relativity and astrophysics including some models of density profiles for dark matter halos. An efficient numerical method is presented for linear and nonlinear Lane-Emden-type equations using the Bernstein polynomial operational matrix of integration. The proposed approach is different from other numerical techniques as it is based on the Bernstein polynomial integration matrix. Some illustrative exam...
MALDI-TOF Baseline Drift Removal Using Stochastic Bernstein Approximation
Directory of Open Access Journals (Sweden)
Howard Daniel
2006-01-01
Full Text Available Stochastic Bernstein (SB approximation can tackle the problem of baseline drift correction of instrumentation data. This is demonstrated for spectral data: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF data. Two SB schemes for removing the baseline drift are presented: iterative and direct. Following an explanation of the origin of the MALDI-TOF baseline drift that sheds light on the inherent difficulty of its removal by chemical means, SB baseline drift removal is illustrated for both proteomics and genomics MALDI-TOF data sets. SB is an elegant signal processing method to obtain a numerically straightforward baseline shift removal method as it includes a free parameter that can be optimized for different baseline drift removal applications. Therefore, research that determines putative biomarkers from the spectral data might benefit from a sensitivity analysis to the underlying spectral measurement that is made possible by varying the SB free parameter. This can be manually tuned (for constant or tuned with evolutionary computation (for .
Institute of Scientific and Technical Information of China (English)
李翠香; 任孟霞
2007-01-01
本文利用光滑模及最佳逼近多项式的性质,研究了Bernstein-Kantorovich算子的迭代布尔和对Lp[0,1]中的函数的逼近性质,得到了逼近正定理,弱逆不等式及等价定理.
Full-wave modeling of the O-X mode conversion in the Pegasus Toroidal Experiment
Köhn, A.; Jacquot, J.; Bongard, M. W.; Gallian, S.; Hinson, E. T.; Volpe, F. A.
2011-12-01
The potential of an EBW heating scheme via the O—X—B mode conversion scenarios has been investigated for the PEGASUS toroidal experiment. With the 2D full-wave code IPF-FDMC the O—X conversion has been modeled as a function of the poloidal and toroidal injection angles for a microwave frequency of 2.45 GHz. Based on preliminary Langmuir probe measurements in the mode conversion layer, different density profiles have been also included in the simulations. A maximum mode conversion efficiency of approximately 80 % has been found, making EBW heating an attractive heating scheme for PEGASUS.
A critique of Bernstein's beyond objectivism and relativism: science, hermeneutics, and praxis.
Matusitz, Jonathan; Kramer, Eric
2011-06-01
This analysis comments on Bernstein's lack of clear understanding of subjectivity, based on his book, Beyond Objectivism and Relativism: Science, Hermeneutics, and Praxis. Bernstein limits his interpretation of subjectivity to thinkers such as Gadamer and Habermas. The authors analyze the ideas of classic scholars such as Edmund Husserl and Friedrich Nietzsche. Husserl put forward his notion of transcendental subjectivity and phenomenological ramifications of the relationship between subjectivity and objectivity. Nietzsche referred to subjectivity as "perspectivism," the inescapable fact that any and all consciousnesses exist in space and time. Consciousness is fundamentally constituted of cultural, linguistic, and historical dimensions. PMID:21874130
Approximation and Shape Preserving Properties of the Bernstein Operator of Max-Product Kind
Directory of Open Access Journals (Sweden)
Barnabás Bede
2009-01-01
question of improving the order of approximation 1√(;1/ is raised. The first aim of this note is to obtain this order of approximation but by a simpler method, which in addition presents, at least, two advantages: it produces an explicit constant in front of 1√(;1/ and it can easily be extended to other max-prod operators of Bernstein type. However, for subclasses of functions including, for example, that of concave functions, we find the order of approximation 1(;1/, which for many functions is essentially better than the order of approximation obtained by the linear Bernstein operators. Finally, some shape-preserving properties are obtained.
Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polynomials
Saito, Morihiko
2015-01-01
We show that there is a pair of homogeneous polynomials such that the sets of roots of their Bernstein-Sato polynomials which are strictly supported at the origin are different although the sets of roots which are not strictly supported at the origin are the same and moreover their graded Milnor algebras have the same Hilbert series. This shows that the roots of the Bernstein-Sato polynomials strictly supported at the origin cannot be determined uniquely by the Hilbert series of the Milnor al...
Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.
2010-01-01
We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
Small amplitude variable charge dust Bernstein-Greene-Kruskal double layers
Energy Technology Data Exchange (ETDEWEB)
Amour, Rabia [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria); Tribeche, Mouloud [Plasma Physics Group, Theoretical Physics Laboratory, Faculty of Sciences - Physics, U.S.T.H.B, Bab-Ezzouar, B.P. 32, El Alia, Algiers 16111 (Algeria)], E-mail: mouloud-tribeche@lycos.com
2009-05-11
A first theoretical attempt is made to investigate small amplitude, variable charge dust Bernstein-Greene-Kruskal (BGK) double layers (DLs). The nature of the dust BGK-DLs (compressive or rarefactive), their strength and thickness depend sensitively on the net negative charge residing on the grain surface, the dust grain dynamics and, more interestingly, on the ion-to-electron temperatures ratio.
Code Switching and Sexual Orientation: A Test of Bernstein's Sociolinguistic Theory
Lumby, Malcolm E.
1976-01-01
Bernstein's theory was tested in the homosexual's "closed" community to determine code-switching ability and its relationship to jargon. Subjects told a story based on homoerotic photographs where knowledge of sexual orientation was varied. Results suggest that homosexual homophyly encouraged elaboration. (Author)
Translation of Bernstein Coefficients Under an Affine Mapping of the Unit Interval
Alford, John A., II
2012-01-01
We derive an expression connecting the coefficients of a polynomial expanded in the Bernstein basis to the coefficients of an equivalent expansion of the polynomial under an affine mapping of the domain. The expression may be useful in the calculation of bounds for multi-variate polynomials.
Solving Bernstein's Problem: A Proposal for the Development of Coordinated Movement by Selection.
Sporns, Olaf; Edelman, Gerald M.
1993-01-01
In the 1930s, Bernstein pointed out that more than one motor signal can trigger the same physical movement and that identical motor signals can lead to different movements, a dilemma that continues to puzzle scientists. Based on results from computer simulations, posits that these motor signals can be grouped into categories that correspond to…
Iterates of Bernstein Type Operators on a Triangle with All Curved Sides
Directory of Open Access Journals (Sweden)
Teodora Cătinaş
2014-01-01
Full Text Available We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.
Iterates of Bernstein Type Operators on a Triangle with All Curved Sides
Teodora Cătinaş
2014-01-01
We consider some Bernstein-type operators as well as their product and Boolean sum for a function defined on a triangle with all curved sides. Using the weakly Picard operators technique and the contraction principle, we study the convergence of the iterates of these operators.
Raghunathan, M.; Ganesh, R.
2013-03-01
In the past, long-time evolution of an initial perturbation in collisionless Maxwellian plasma (q = 1) has been simulated numerically. The controversy over the nonlinear fate of such electrostatic perturbations was resolved by Manfredi [Phys. Rev. Lett. 79, 2815-2818 (1997)] using long-time simulations up to t = 1600 ωp - 1 . The oscillations were found to continue indefinitely leading to Bernstein-Greene-Kruskal (BGK)-like phase-space vortices (from here on referred as "BGK structures"). Using a newly developed, high resolution 1D Vlasov-Poisson solver based on piecewise-parabolic method (PPM) advection scheme, we investigate the nonlinear Landau damping in 1D plasma described by toy q-distributions for long times, up to t = 3000 ωp - 1 . We show that BGK structures are found only for a certain range of q-values around q = 1. Beyond this window, for the generic parameters, no BGK structures were observed. We observe that for values of q 1 where distribution has a sharp fall in velocity, the formation of BGK structures is rendered difficult due to high wave number damping imposed by the steep velocity profile, which had not been previously reported. Wherever relevant, we compare our results with past work.
Sun, Jicheng; Gao, Xinliang; Chen, Lunjin; Lu, Quanming; Tao, Xin; Wang, Shui
2016-02-01
Ion Bernstein modes, also known as magnetosonic waves in the magnetospheric community, are considered to play an important role in radiation belt electron acceleration. The detailed properties of perpendicular magnetosonic waves excited in the inner magnetosphere by a tenuous proton ring distribution are investigated in a two series paper with a combination of the linear theory and one-dimensional particle-in-cell simulations. Here, in this paper, we study the properties of the excited magnetosonic waves under different plasma conditions with the linear theory. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is small, the excited magnetosonic waves are prone to having a discrete spectrum with only several wave modes. With the increase of the proton to electron mass ratio or the ratio of the light speed to the Alfven speed, the lower hybrid frequency also increases, which leads to the increase of both the number and frequency of the excited wave modes. Meanwhile, the growth rate of these wave modes also increases. When the proton to electron mass ratio or the ratio of the light speed to the Alfven speed is sufficiently large, the spectrum of the excited magnetic waves becomes continuous due to the overlapping of the adjacent wave modes. The increase of the density of the protons with the ring distribution can also result in the increase of the growth rate, which may also change the discrete spectrum of the excited waves to a continuous one, while the increase of the ring velocity of the tenuous proton ring distribution leads to a broader spectrum, but with a smaller growth rate.
13. TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM
International Nuclear Information System (INIS)
Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. ωpe >> (Omega)ce in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition (τ > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large Ki. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B0 ∼ 2 kG, e> ∼ 1013 cm-3 and Te ∼ 10 - 200 eV. Results will be presented for both direct detection of EBWs and for mode-converted EBW emission. The EBW emission was absolutely calibrated and compared to the electron temperature profile measured by a multi-point Thomson scattering diagnostic. Depending on the plasma conditions, the mode-converted EBW radiation temperature was found to be ≤ Te and the emission source was determined to be radially localized at the electron cyclotron resonance layer. A Langmuir triple probe was employed to measure changes in edge density profile in the vicinity of the upper hybrid resonance where the mode conversion of the EBWs is expected to occur. Changes in the mode conversion efficiency may explain the observation of mode-converted EBW radiation temperatures below Te. Initial results suggest EBW emission and EBW heating are viable concepts for plasmas where ωpe >> (Omega)ce
13th TOPICAL CONFERENCE ON HIGH TEMPERATURE PLASMA DIAGNOSTICS SCIENTIFIC PROGRAM
Energy Technology Data Exchange (ETDEWEB)
C. BARNES
2000-07-01
Electron cyclotron emission (ECE) has been employed as a standard electron temperature profile diagnostic on many tokamaks and stellarators, but most magnetically confined plasma devices cannot take advantage of standard ECE diagnostics to measure temperature. They are either overdense, operating at high density relative to the magnetic field (e.g. {omega}{sub pe} >> {Omega}{sub ce} in a spherical torus) or they have insufficient density and temperature to reach the blackbody condition ({tau} > 2). Electron Bernstein waves (EBWs) are electrostatic waves which can propagate in overdense plasmas and have a high optical thickness at the electron cyclotron resonance layers, as a result of their large K{sub i}. This talk reports on measurements of EBW emission on the CDX-U spherical torus, where B{sub 0} {approx} 2 kG,
Mechanical properties of Ti6.5Al2Zr1Mo1V titanium alloy with EBW under different temperatures
Energy Technology Data Exchange (ETDEWEB)
Fu, Peng-fei [Huazhong University of Science and Technology, Wuhan 430074 (China); Beijing Aeronautical Manufacturing Technology Research Institute, Science and Technology on Power Beam Processes Laboratory, Beijing 100024 (China); Mao, Zhi-yong [Beijing Aeronautical Manufacturing Technology Research Institute, Science and Technology on Power Beam Processes Laboratory, Beijing 100024 (China); Wang, Ya-jun [Beihang University, Beijing 100124 (China); Zuo, Cong-jin; Xu, Hai-ying [Beijing Aeronautical Manufacturing Technology Research Institute, Science and Technology on Power Beam Processes Laboratory, Beijing 100024 (China)
2014-07-01
With the development of welding technology, electron beam welding (EBW) is manufacturing the aero parts with heavy thickness. To improve welding quality and mechanical property, we employed EBW with beam oscillation on Ti6.5Al2Zr1Mo1V alloy with 60 mm thickness, and observed the weld microstructures after X-ray NDT, and conducted the tensile and impact tests under different temperatures. The results showed the crystals of the welds were fringe, and the microstructures of the welds were acicular α′ martensite. The acicular and isometric crystals existed in HAZ, which were α′ martensite mixed with α+β structure. With the increase of the temperatures, tensile properties of the top and bottom joints gradually lowered, and the strengths were almost equal to base metal, and the percentage elongations after fracture were lower than those of base metals. The strength overmatching of the joints resulted in the inhomogeneous elastic–plastic deformations, and tensile specimens of the joints ruptured in base metal. The impact toughnesses of top welds were equal to the bottoms under different temperatures, which were lower than those of base metals. Electron beam oscillation improved the uniformity of the microstructures, which contributed to the homogeneity of mechanical properties from the top to bottom joints.
Mechanical properties of Ti6.5Al2Zr1Mo1V titanium alloy with EBW under different temperatures
International Nuclear Information System (INIS)
With the development of welding technology, electron beam welding (EBW) is manufacturing the aero parts with heavy thickness. To improve welding quality and mechanical property, we employed EBW with beam oscillation on Ti6.5Al2Zr1Mo1V alloy with 60 mm thickness, and observed the weld microstructures after X-ray NDT, and conducted the tensile and impact tests under different temperatures. The results showed the crystals of the welds were fringe, and the microstructures of the welds were acicular α′ martensite. The acicular and isometric crystals existed in HAZ, which were α′ martensite mixed with α+β structure. With the increase of the temperatures, tensile properties of the top and bottom joints gradually lowered, and the strengths were almost equal to base metal, and the percentage elongations after fracture were lower than those of base metals. The strength overmatching of the joints resulted in the inhomogeneous elastic–plastic deformations, and tensile specimens of the joints ruptured in base metal. The impact toughnesses of top welds were equal to the bottoms under different temperatures, which were lower than those of base metals. Electron beam oscillation improved the uniformity of the microstructures, which contributed to the homogeneity of mechanical properties from the top to bottom joints
Energy Technology Data Exchange (ETDEWEB)
Brandi, S.D.; Padilha, A.F.; Wolynec, S. [Univ. of Sao Paulo (Brazil). Metallurgical and Materials Engineering Dept.
1996-12-01
The duplex stainless steels present better corrosion behavior than the conventional stainless steels. This is due to their chemical composition (Cr, Ni, Mo, N) and a balanced microstructure (50% ferrite). It might be an increase on the volumetric fraction of ferrite, depending on the cooling rate after welding. In the same way the chemical composition can be altered by a loss of the alloying elements during welding, such as N. Both phenomena will decrease the corrosion resistance of the weldment. Autogenous GTAW and EBW were used to join the plates. Several corrosion tests were used to evaluate the behavior of the joints in as-welded (AW) and post-welded-heat-treated (PWHT) conditions. The results were analyzed and correlated to the microstructure of the welded joints. The main conclusion of this work is that corrosion resistance of both joint processes (EBW and GTAW) in as-welded condition is inadequate. PWHT (post-weld-heat-treatment) dissolved the chromium-rich precipitates, restored the equilibrium amount of austenite in the joints and recovered their corrosion resistance.
Te(R, t) measurements using electron Bernstein wave thermal emission on NSTX
Czech Academy of Sciences Publication Activity Database
Diem, S.J.; Taylor, G.; Efthimion, P.C.; LeBlanc, P.C.; Carter, M.; Caughman, J.; Wilgen, J.B.; Harvey, R.W.; Preinhaelter, Josef; Urban, Jakub
2006-01-01
Roč. 77, č. 10 (2006), 10E919, 1-10E919,4. ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/16th./. Williamsburg, Virginia, 7.5.2006-11.5.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : Overdense plasma * Conversion * Emission * Excitation * Tokamaks * Diagnostics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.541, year: 2006 http://link.aip.org/link/?RSI/77/10E919
Electron cyclotron-electron Bernstein wave emission diagnostics for the COMPASS tokamak
Czech Academy of Sciences Publication Activity Database
Zajac, Jaromír; Preinhaelter, Josef; Urban, Jakub; Žáček, František; Šesták, David; Nanobashvili, S.
2010-01-01
Roč. 81, č. 10 (2010), 10D911-10D911. ISSN 0034-6748. [TOPICAL CONFERENCE ON HIGH-TEMPERATURE PLASMA DIAGNOSTICS/18th./. Wildwood, New Jersey, 16.05.2010-20.05.2010] R&D Projects: GA ČR GA202/08/0419 Institutional research plan: CEZ:AV0Z20430508 Keywords : antenna radiation patterns * antennas in plasma * plasma diagnostics * Tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.598, year: 2010 http://link.aip.org/link/?RSI/81/10D911
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for t...
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many...... times smaller it remains very high. For example, whilst there is enough potential wave power off the UK to supply the electricity demands several times over, the economically recoverable resource for the UK is estimated at 25% of current demand; a lot less, but a very substantial amount nonetheless....
Wave excitation in inhomogeneous dielectric media.
Cary, John R; Xiang, Nong
2007-11-01
The equation describing the propagation of a mode driven by external currents in an inhomogeneous dielectric is derived from the principle of the conservation of wave energy density and wave momentum density. The wave amplitude in steady state is obtained in terms of a simple spatial integration of the driving current. The contribution from the spatial derivative of the dielectric response is found to be important. The analytical predictions are verified through comparison with deltaf particle-in-cell computations of electron Bernstein wave propagation, thus showing applicability to kinetic systems. PMID:18233709
On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution
Directory of Open Access Journals (Sweden)
Alan Stark
2012-01-01
Full Text Available Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed.
On S.N. Bernstein's derivation of Mendel's Law and 'rediscovery' of the Hardy-Weinberg distribution.
Stark, Alan; Seneta, Eugene
2012-04-01
Around 1923 the soon-to-be famous Soviet mathematician and probabilist Sergei N. Bernstein started to construct an axiomatic foundation of a theory of heredity. He began from the premise of stationarity (constancy of type proportions) from the first generation of offspring. This led him to derive the Mendelian coefficients of heredity. It appears that he had no direct influence on the subsequent development of population genetics. A basic assumption of Bernstein was that parents coupled randomly to produce offspring. This paper shows that a simple model of non-random mating, which nevertheless embodies a feature of the Hardy-Weinberg Law, can produce Mendelian coefficients of heredity while maintaining the population distribution. How W. Johannsen's monograph influenced Bernstein is discussed. PMID:22888285
Bernstein diffusions for a class of linear parabolic partial differential equations
Vuillermot, Pierre-A.; Zambrini, Jean-Claude
2013-01-01
In this article we prove the existence of Bernstein processes which we associate in a natural way with a class of non-autonomous linear parabolic initial- and nal-boundary value problems de ned in bounded convex subsets of Euclidean space of arbitrary dimension. Under certain conditions regarding their joint endpoint distributions, we also prove that such processes become reversible Markov di¤usions. Furthermore we show that those di¤usions satisfy two Itô equations for some suitably constru...
Transport Implementation of the Bernstein-Vazirani Algorithm with Ion Qubits
Fallek, Spencer; McMahon, Brian; Maller, Kara; Brown, Kenneth; Amini, Jason
2016-01-01
Using trapped ion quantum bits in a scalable microfabricated surface trap, we perform the Bernstein-Vazirani algorithm. Our architecture relies upon ion transport and can readily be expanded to larger systems. The algorithm is demonstrated using two- and three-ion chains. For three ions, an improvement is achieved compared to a classical system using the same number of oracle queries. For two ions and one query, we correctly determine an unknown bit string with probability 97.6(8)%. For three ions, we succeed with probability 80.9(3)%.
PAC-Bayes-Bernstein Inequality for Martingales and its Application to Multiarmed Bandits
Seldin, Yevgeny; Auer, Peter; Laviolette, François; Shawe-Taylor, John
2011-01-01
We combine PAC-Bayesian analysis with a Bernstein-type inequality for martingales to obtain a result that makes it possible to control the concentration of multiple (possibly uncountably many) simultaneously evolving and interdependent martingales. We apply this result to derive a regret bound for the multiarmed bandit problem. Our result forms a basis for integrative simultaneous analysis of exploration-exploitation and model order selection trade-offs. It also opens a way for applying PAC-Bayesian analysis in other fields, where sequentially dependent samples and limited feedback are encountered.
Transfinite diameter of Bernstein sets in
Bialas-Cież Leokadia; Jedrzejowski Mieczysław
2002-01-01
Let be a compact set in satisfying the following generalized Bernstein inequality: for each such that , for each polynomial of degree where is a constant independent of and , is an infinite set of natural numbers that is also independent of and . We give an estimate for the transfinite diameter of the set : For satisfying the usual Bernstein inequality (i.e., ), we prove that
Kalaee, Mohammad Javad; Katoh, Yuto
2016-07-01
One of the mechanisms for generating electromagnetic plasma waves (Z-mode and LO-mode) is mode conversion from electrostatic waves into electromagnetic waves in inhomogeneous plasma. Herein, we study a condition required for mode conversion of electrostatic waves propagating purely perpendicular to the ambient magnetic field, by numerically solving the full dispersion relation. An approximate model is derived describing the coupling between electrostatic waves (hot plasma Bernstein mode) and Z-mode waves at the upper hybrid frequency. The model is used to study conditions required for mode conversion from electrostatic waves (electrostatic electron cyclotron harmonic waves, including Bernstein mode) into electromagnetic plasma waves (LO-mode). It is shown that for mode conversion to occur in inhomogeneous plasma, the angle between the boundary surface and the magnetic field vector should be within a specific range. The range of the angle depends on the norm of the k vector of waves at the site of mode conversion in the inhomogeneous region. The present study reveals that inhomogeneity alone is not a sufficient condition for mode conversion from electrostatic waves to electromagnetic plasma waves and that the angle between the magnetic field and the density gradient plays an important role in the conversion process.
Nonlinear particle simulation of ion cyclotron waves in toroidal geometry
Energy Technology Data Exchange (ETDEWEB)
Kuley, A., E-mail: akuley@uci.edu; Lin, Z. [Department of Physics and Astronomy, University of California Irvine, CA-92697 (United States); Bao, J. [Fusion Simulation Center, Peking University, Beijing (China); Department of Physics and Astronomy, University of California Irvine, CA-92697 (United States); Wei, X. S.; Xiao, Y. [Institute of Fusion Theory and Simulation, Zhejiang University, Hangzhou (China)
2015-12-10
Global particle simulation model has been developed in this work to provide a first-principles tool for studying the nonlinear interactions of radio frequency (RF) waves with plasmas in tokamak. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation with realistic electron-to-ion mass ratio. Boris push scheme for the ion motion has been developed in the toroidal geometry using magnetic coordinates and successfully verified for the ion cyclotron and ion Bernstein waves in global gyrokinetic toroidal code (GTC). The nonlinear simulation capability is applied to study the parametric decay instability of a pump wave into an ion Bernstein wave side band and a low frequency ion cyclotron quasi mode.
Extracting the QCD Cutoff Parameter Using the Bernstein Polynomials and the Truncated Moments
Directory of Open Access Journals (Sweden)
A. Mirjalili
2014-01-01
Full Text Available Since there are not experimental data over the whole range of x-Bjorken variable, that is, 0
McLean, Monica; Abbas, Andrea; Ashwin, Paul
2013-01-01
This paper illustrates how critical use of Basil Bernstein's theory illuminates the mechanisms by which university knowledge, curriculum and pedagogy both reproduce and interrupt social inequalities. To this end, empirical examples are selected from the findings of the ESRC-funded project "Pedagogic Quality and Inequality in University First…
Peng, X; Fang, X; Feng, M; Liu, M; Gao, K; Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin
2002-01-01
Based on ''spectral implementation'' proposed by Madi et al. (J. Chem. Phys. 109, 10603, 1998), we have experimentally realized a pseudo-pure state by the line-selective excitation and a three-qubit Bernstein-Vazirani's algorithm using a carbon-13 analine sample in NMR. The superiority of quantum computation to classical counterpart is well displayed.
Non Axisymmetric Three-Dimensional Magnetic Bernstein-Greene-Kruskal (BGK) Modes
Ng, Chung-Sang
2013-10-01
The theory of three-dimensional (3D) magnetic Magnetic Bernstein-Greene-Kruskal (BGK) modes has been generalized to the non axisymmetric case. While the shape of the electrostatic structure is usually elongated along the direction of the strong large-scale magnetic field, a limiting case with the elongated direction along one of the perpendicular direction is also possible. Essentially this makes the solution 2D with the magnetic field on the 2D plane. Note that such 2D BGK modes are very different from those described by another theory, of which the magnetic field is perpendicular to the 2D plane. This theory might explain 2D BGK modes observed in some numerical simulations. This work is supported by a National Science Foundation grant PHY-1004357 and by the National Science Foundation of China NSFC under Grant No. 41128004.
Overdense plasma generation by 2.45 GHz heating in WEGA
Czech Academy of Sciences Publication Activity Database
Podoba, Y.Y.; Laqua, H.P.; Marsen, S.; Otte, M.; Preinhaelter, Josef; Stange, T.; Urban, Jakub; Zhang, D.
Greifswald : IPP Greifswald, 2009, s. 3-3. ISBN N. [Joint Russian-German Workshop on ECRH and Gyrotrons (STC-Meeting)/21st./. Greifswald (DE), 11.05.2009-15.05.2009] R&D Projects: GA ČR GA202/08/0419; GA MŠk 7G09042 Institutional research plan: CEZ:AV0Z20430508 Keywords : Stellarator * Electron Bernstein wave * EBW * WEGA * ECRH Subject RIV: BL - Plasma and Gas Discharge Physics
Global ion cyclotron waves in a perpendicularly stratified, one-dimensional warm plasma
International Nuclear Information System (INIS)
The sixth-order wave equation which results from a finite temperature expansion of the Vlasov equation is solved globally in a perpendicularly stratified, one-dimensional slab plasma. The diamagnetic drift and associated anisotropy are included in the unperturbed distribution function to ensure a self-adjoint system. All x-dependence in the plasma pressure and magnetic field is retained along with the electric field parallel to vector B. Thus, Landau damping of the ion Bernstein wave is included as well. Because the wave equation is solved implicitly as a two-point boundary value problem, the evanescent short-wavelength Bernstein waves do not grow exponentially as in shooting methods. Solutions to the complete sixth-order partial differential equation are compared to those from an approximate second-order equation based on local dispersion theory. Strong variations occur in the absorption and in the structure of the wave fields as resonance topology is varied
Theory and observations of electrostatic ion waves in the cold Io torus
Barbosa, D. D.; Kurth, W. S.
1990-01-01
A study of the ELF plasma wave environment of the cold Io torus in Jupiter's magnetosphere is made. Voyager 1 data are presented which show three distinct types of electrostatic ion waves occurring there: the Buchsbaum ion-ion mode just below the proton cyclotron frequency f(cp), hydrogen Bernstein modes at (n + 1/2) f(cp), and lower hybrid waves near f(LHR). The presence of these waves at their characteristic frequencies is consistent with a predominantly heavy ion plasma composed of singly ionized sulfur and oxygen ions along with a small admixture of protons. The hydrogen Bernstein modes are tightly confined to the magnetic equator, occurring within + or - 4 deg of it, while the Buchsbaum mode is localized to the dense heavy ion plasma of the cold torus near the centrifugal equator. A general theory for excitation of the waves based on the ion pickup process is developed.
Ion wave excitation for the study of wave-induced transport
International Nuclear Information System (INIS)
A general program to study wave-particle interactions and wave-induced transport in a low temperature, low density, collisionless plasma has led to the application of an assortment of ion wave launching schemes. This wave launching techniques include the use of: capacitively coupled rings at the plasma periphery, inductive coils, grids immersed in the plasma, and ion wave excitation by modulation of microwaves (double resonance). The generated ion waves are either ion acoustic, the forward and backward (neutralized ion Bernstein) branches of electrostatic ion cyclotron, and/or ballistic modes. Our earlier studies have addressed the ion interaction with a single monochromatic wave, such as ion acceleration by intrinsic stochasticity induced by interaction with an ion Bernstein mode, and ion coordinate space diffusion constrained by conservation of integrals of the motion in this deterministic system. In the case of linear ion acoustic wave-particle interaction, an experimental test ion approach has yielded direct evidence of phase space orbit perturbations for ions resonant with the wave phase velocity, demonstrating on the kinetic level the essence of ion Landau damping. We are now turning our attention to the problem of stochastic interaction with two ion cyclotron modes. A detailed knowledge of the waves excited by the antenna will allow a selection of mode phase velocities such that the separation of wave-particle resonances can be controlled. In this way, the wave field amplitudes necessary for reaching the stochasticity threshold can be reduced, in comparison to the situation with one wave. This paper reviews the wave dispersion characteristics compiled during the aforementioned wave-particle interaction studies. It will be seen that the plasma dispersion relation universally determines the wave response, quite independent of the antenna configuration. (author) 9 refs., 4 figs
Dumitru Baleanu; Mohsen Alipour; Hossein Jafari
2013-01-01
We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs) operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the propos...
Ng, C. S.; Soundararajan, S. J.; Yasin, E.
2012-05-01
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region, and in association with shocks, turbulence, and magnetic reconnection. Due to potentially large amplitude of electric fields within these structures, their effects on particle heating, scattering, or acceleration can be important. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. BGK modes have been studied extensively for many decades, predominately in one dimension (1D), although there have been observations showing that some of these structures have clear 3D features. While there have been approximate solutions of higher dimensional BGK modes, an exact 3D BGK mode solution in a finite magnetic field has not been found yet. Recently we have constructed exact solutions of 2D BGK modes in a magnetized plasma with finite magnetic field strength in order to gain insights of the ultimate 3D theory [Ng, Bhattacharjee, and Skiff, Phys. Plasmas 13, 055903 (2006)]. Based on the analytic form of these solutions, as well as Particle-in-Cell (PIC) simulations, we will present numerical studies of their stability for different levels of background magnetic field strength.
Full wave simulations of fast wave mode conversion and lower hybrid wave propagation in tokamaks
DEFF Research Database (Denmark)
Wright, J.C.; Bonoli, P.T.; Brambilla, M.;
2004-01-01
Fast wave (FW) studies of mode conversion (MC) processes at the ion-ion hybrid layer in toroidal plasmas must capture the disparate scales of the FW and mode converted ion Bernstein and ion cyclotron waves. Correct modeling of the MC layer requires resolving wavelengths on the order of k......). Two full wave codes, a massively-parallel-processor (MPP) version of the TORIC-2D finite Larmor radius code [M. Brambilla, Plasma Phys. Controlled Fusion 41, 1 (1999)] and also an all orders spectral code AORSA2D [E. F. Jaeger , Phys. Plasmas 9, 1873 (2002)], have been developed which for the first...... time are capable of achieving the resolution and speed necessary to address mode conversion phenomena in full two-dimensional (2-D) toroidal geometry. These codes have been used in conjunction with theory and experimental data from the Alcator C-Mod [I. H. Hutchinson , Phys. Plasmas 1, 1511 (1994)] to...
Excitation of Large-ktheta Ion-Berstein Waves in Tokamaks
Valeo, E. J.; Fisch, N. J.
1995-01-01
The mode-converted ion-Bernstein wave excited in tokamaks is shown to exhibit certain very interesting behavior, including the attainment of very small poloidal phase velocities, the reversal of poloidal direction, and up-down asymmetries in propagation and damping. Because of these effects, this wave holds promise for channeling {$\\alpha$-particle}\\ power to ions, something that would make a tokamak fusion reactor far more attractive than presently envisioned.
Topology of relativistic refractive index surfaces for electron cyclotron waves
International Nuclear Information System (INIS)
The dispersion of electron cyclotron waves in a weakly relativistic Maxwellian plasma is investigated. It is shown that the apparently very complicated picture of the coupling of the extraordinary (X) mode to Bernstein waves can be accounted for in a simple way by considering the refractive indices as Riemann-like surfaces in the Clemmow-Mullaly-Allis (CMA) parameter space, (ωp2/ω2, ωc/ω), and by introducing a few topological concepts from the analysis of complex functions. A detailed study is made of the surface representing the X mode for perpendicular propagation, with special attention given to the connection between this mode and Gross-Bernstein modes. For perpendicular propagation non-transcendental approximations to the relativistic refractive indices for X and O modes can be given. We show that these approximations are good up to ∼ 25 keV and, at frequencies up to the second harmonic of the electron cyclotron frequency, the X mode approximation also accounts correctly for the connection of the X mode to Bernstein modes. The accuracy and the numerical efficiency of the approximations make them well suited for routine calculations for millimetre wave applications in fusion plasmas, including the analysis of X mode and O mode reflectometry. (author)
Verification of nonlinear particle simulation of radio frequency waves in tokamak
Energy Technology Data Exchange (ETDEWEB)
Kuley, A., E-mail: akuley@uci.edu; Lin, Z. [Department of Physics and Astronomy, University of California Irvine, California 92697 (United States); Bao, J. [Department of Physics and Astronomy, University of California Irvine, California 92697 (United States); Fusion Simulation Center, Peking University, Beijing 100871 (China); Wei, X. S.; Xiao, Y. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Zhang, W. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, G. Y. [Department of Physics, Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005 (China); Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08540 (United States); Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2015-10-15
Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity.
Verification of nonlinear particle simulation of radio frequency waves in tokamak
International Nuclear Information System (INIS)
Nonlinear simulation model for radio frequency waves in fusion plasmas has been developed and verified using fully kinetic ion and drift kinetic electron. Ion cyclotron motion in the toroidal geometry is implemented using Boris push in the Boozer coordinates. Linear dispersion relation and nonlinear particle trapping are verified for the lower hybrid wave and ion Bernstein wave (IBW). Parametric decay instability is observed where a large amplitude pump wave decays into an IBW sideband and an ion cyclotron quasimode (ICQM). The ICQM induces an ion perpendicular heating, with a heating rate proportional to the pump wave intensity
A full wave code for ion cyclotron waves in toroidal plasmas
International Nuclear Information System (INIS)
The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron frequency range in arbitrary axisymmetric toroidal geometry. The model used describes the compressional and torsional Alfven waves (or, depending on the parallel phase velocity, the kinetic counterpart of the latter), and ion Bernstein waves excited by mode conversion near the first ion cyclotron harmonic. In the ion response the broadening of the absorption regions due to the finite width of the cyclotron resonance of individual ions in toroidal geometry is taken into account. The parallel component of the wave electric field is evaluated on the same footing as the transverse ones; the response of the electrons includes Landau damping, Transit Time damping and the mixed term. The numerical approach uses a spectral representation of the solution in the poloidal angle θ, and cubic finite elements in the radial variable ψ. Great flexibility is provided in the way ion Bernstein waves excited by mode conversion are damped when their wavelength becomes comparable with the ion Larmor radius, in the regularization of Alfven resonances, and in the treatment of the outer plasma layers. As an option, we have also implemented the Order Reduction Algorithm, which provides a particularly fast, yet accurate evaluation of the power deposition profiles in toroidal geometry. Thee present report describes the model and its numerical implementation, and provides the information needed to use the code. A few examples illustrating applications of TORIC are also included. (orig.)
Excitation of parametric instabilities by radio waves in the ionosphere.
Fejer, J. A.; Leer, E.
1972-01-01
The excitation of parametric instabilities by radio waves in a magnetoplasma is discussed. A uniform medium is assumed and linear approximations are used. Excitation by a pump wave of ordinary polarization is hardly affected by the magnetic field. Low or zero frequency ion waves and high frequency Langmuir waves are excited simultaneously. For an extraordinary pump wave, the excited high frequency electrostatic waves are in the Bernstein mode. The threshold is slightly higher and excitation can occur only within certain 'allowed' frequency bands. A new type of parametric instability in which the excited waves are electromagnetic in nature and which is more strongly affected by the inhomogeneous nature of the medium is discussed qualitatively.
Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime
International Nuclear Information System (INIS)
Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f0 = 15 GHz, and maximum amplitude E0 = 105 V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, Cmodelling = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around 36% and 17%, respectively
Direct X-B mode conversion for high-β national spherical torus experiment in nonlinear regime
Energy Technology Data Exchange (ETDEWEB)
Ali Asgarian, M., E-mail: maliasgarian@ph.iut.ac.ir, E-mail: maa@msu.edu [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States); Parvazian, A.; Abbasi, M. [Physics Department, Isfahan University of Technology, Isfahan 84156 (Iran, Islamic Republic of); Verboncoeur, J. P. [Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824-1226 (United States)
2014-09-15
Electron Bernstein wave (EBW) can be effective for heating and driving currents in spherical tokamak plasmas. Power can be coupled to EBW via mode conversion of the extraordinary (X) mode wave. The most common and successful approach to study the conditions for optimized mode conversion to EBW was evaluated analytically and numerically using a cold plasma model and an approximate kinetic model. The major drawback in using radio frequency waves was the lack of continuous wave sources at very high frequencies (above the electron plasma frequency), which has been addressed. A future milestone is to approach high power regime, where the nonlinear effects become significant, exceeding the limits of validity for present linear theory. Therefore, one appropriate tool would be particle in cell (PIC) simulation. The PIC method retains most of the nonlinear physics without approximations. In this work, we study the direct X-B mode conversion process stages using PIC method for incident wave frequency f{sub 0} = 15 GHz, and maximum amplitude E{sub 0} = 10{sup 5 }V/m in the national spherical torus experiment (NSTX). The modelling shows a considerable reduction in X-B mode conversion efficiency, C{sub modelling} = 0.43, due to the presence of nonlinearities. Comparison of system properties to the linear state reveals predominant nonlinear effects; EBW wavelength and group velocity in comparison with linear regime exhibit an increment around ∼36% and 17%, respectively.
International Nuclear Information System (INIS)
Purpose: To acknowledge the tacit rules underpinning academic practice of undergraduate radiographers in determining normality vs. abnormality when appraising skeletal images. Methodology: Twelve students were interviewed (individually) using in-depth semi-structured questions. Interviews were mediated through a PowerPoint presentation containing two digital X-ray images. Each image was based on a level of expertise; the elementary (Case 1) and the complicated (Case 2). The questions were based on regular ‘frames’ created from observing tutor–student contact in class, and then validated through a group interview. Bernstein's theory of pedagogic discourse was then utilised as a data analysis instrument to determine how third year diagnostic radiography students interpreted X-ray images, in relation to the ‘recognition’ and ‘realisation’ rules of the Educational Theoretical Framework. Conclusion: Bernstein's framework has made it possible to specify, in detail, how issues and difficulties are formed at the level of the acquirer during interpretation. The recognition rules enabled students to meaningfully recognise what trauma characteristics can be associated with the image and the demands of a detailed scrutiny so as to enact a competent interpretation. Realisation rules, made it possible for students to establish their own systematic approach and realise legitimate meanings of normality and abnormality. Whereas obvious or visible trauma generated realisation rules (represented via homogenous terminology), latent trauma authorised students to deviate from legitimate meanings. The latter rule, in this context, has directed attention to the student issue of visioning abnormality when images are normal
Urška Valenčič Arh
2014-01-01
Bernstein, Nils (2011): „kennen sie mich herren/meine damen und herren”. Phraseologismen in Moderner Lyrik am Beispiel von Ernst Jandl und Nicanor Parra. Würzburg: Königshausen&Neumann. ISBN: 978-3-8260-4699-5, mehka vezava, 262 strani, 38,00 EUR
Directory of Open Access Journals (Sweden)
Urška Valenčič Arh
2014-01-01
Full Text Available Bernstein, Nils (2011: „kennen sie mich herren/meine damen und herren”. Phraseologismen in Moderner Lyrik am Beispiel von Ernst Jandl und Nicanor Parra. Würzburg: Königshausen&Neumann. ISBN: 978-3-8260-4699-5, mehka vezava, 262 strani, 38,00 EUR
Directory of Open Access Journals (Sweden)
SJ Cornelius
2012-12-01
Full Text Available Parties generally enter into contractual relations with the sincere intention to fulfil all the obligations created in terms of their contract. However, for various reasons, parties sometimes do not comply with the terms of their contract. Where a party fails to perform at the agreed date and time or after receiving a demand from the creditor, the debtor commits breach of contract in the form of mora debitoris. The question then arises whether or not a debtor would also commit breach in the form of mora debitoris if the delay in performance cannot be attributed to wilful disregard of the contract or a negligent failure to perform on time. This was the question which the court had to determine in Scoin Trading (Pty Ltd v Bernstein.
Ng, C. S.
2014-10-01
Electrostatic structures have been observed in many regions of space plasmas, including the solar wind, the magnetosphere, the auroral acceleration region. One possible theoretical description of some of these structures is the concept of Bernstein-Greene-Kruskal (BGK) modes, which are exact nonlinear steady-state solutions of the Vlasov-Poisson system of equations in collisionless kinetic theory. We generalize exact solutions of two-dimensional BGK modes in a magnetized plasma with finite magnetic field strength to cases with azimuthal magnetic fields so that these structures carry electric current as well as steady electric and magnetic fields. Such nonlinear solutions now satisfy exactly the Vlasov-Poisson-Ampere system of equations. This work is supported by a National Science Foundation Grant PHY-1004357.
Ion cyclotron wave excitation by double resonance coupling
International Nuclear Information System (INIS)
A modulated high frequency wave is used to remotely excite low frequency oscillations in a linear, strongly magnetized plasma column. An electromagnetic wave is launched as an extraordinary mode across the plasma by an external waveguide in the Upper Hybrid frequency regime f=fUH=fce=8 GHz, with P≤2 W. By frequency modulating (at fFM=1-60 kHz, with fci≅30 kHz) the pump wave, the resonant layer is swept radially across the profile and perpendicularly to the field lines at f=fFM. The resulting radial oscillation of the electron linear and non linear pressure can be considered to act as a source term for the ion wave. A localized virtual antenna is thereby created inside the plasma. Measurements of the ion dielectric response (interferograms and perturbed distribution functions) via laser induced fluorescence identify the two branches (forward, or ion-acoustic-like, and backward, or Bernstein, modes) of the electrostatic dispersion relation in the ion cyclotron frequency range. By changing the modulation bandwidth, and thus the spatial excursion of the oscillating resonant layer, a control on the perpendicular wavelength of the excited mode can be exerted. In particular, the possibility of selective excitation of the ion Bernstein wave is demonstrated experimentally. (author) 38 refs., 13 figs
Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1
International Nuclear Information System (INIS)
Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of Ti ∼ 1/40 eV. Taking advantage of the relatively high field and long device length of L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas
Effective action approach to wave propagation in scalar QED plasmas
Shi, Yuan; Qin, Hong
2016-01-01
A relativistic quantum field theory with nontrivial background fields is developed and applied to study waves in plasmas. The effective action of the electromagnetic 4-potential is calculated ab initio from the standard action of scalar QED using path integrals. The resultant effective action is gauge invariant and contains nonlocal interactions, from which gauge bosons acquire masses without breaking the local gauge symmetry. To demonstrate how the general theory can be applied, we study a cold unmagnetized plasma and a cold uniformly magnetized plasma. Using these two examples, we show that all linear waves well-known in classical plasma physics can be recovered from relativistic quantum results when taking the classical limit. In the opposite limit, classical wave dispersion relations are modified substantially. In unmagnetized plasmas, longitudinal waves propagate with nonzero group velocities even when plasmas are cold. In magnetized plasmas, anharmonically spaced Bernstein waves persist even when plasma...
Feasibility study of microwave electron heating on the C-2 field-reversed configuration device
Yang, Xiaokang; Koehn, Alf; Petrov, Yuri; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl
2015-12-01
Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.
1998-01-01
Conference "Internet, Web, What's next?" on 26 June 1998 at CERN: Mark Bernstein, Vice President of CNN Interactive, describes the impact of the Web on world media and predicts what we can expect as the next developments
Wave-particle resonance condition test for ion-kinetic waves in the solar wind
Narita, Y.; Marsch, E.; Perschke, C.; Glassmeier, K.-H.; Motschmann, U.; Comişel, H.
2016-04-01
Conditions for the Landau and cyclotron resonances are tested for 543 waves (identified as local peaks in the energy spectra) in the magnetic field fluctuations of the solar wind measured by the Cluster spacecraft on a tetrahedral scale of 100 km. The resonance parameters are evaluated using the frequencies in the plasma rest frame, the parallel components of the wavevectors, the ion cyclotron frequency, and the ion thermal speed. The observed waves show a character of the sideband waves associated with the ion Bernstein mode, and are in a weak agreement with the fundamental electron cyclotron resonance in spite of the ion-kinetic scales. The electron cyclotron resonance is likely taking place in solar wind turbulence near 1 AU (astronomical unit).
Physical design of MW-class steady-state spherical tokamak, QUEST
International Nuclear Information System (INIS)
QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, Ip=20-30 kA on open divertor configuration and phase II: steady state operation with Ip = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)
System studies of rf current drive for MST
International Nuclear Information System (INIS)
Two rf schemes are being studied on the MST reversed field pinch for their potential in current profile control experiments. MHD modeling has shown that a substantial externally-driven off axis parallel current can improve stability of the dominant core tearing modes. A radially localized axisymmetric population of fast electrons has been observed by SXR emission during LH injection (100kW at 800MHz), and is consistent with CQL3D modeling which predicts a small driven current. Computational work suggests that doubling the input power will statistically improve the LH-induced SXR signal to background ratio, and that about 2MW of injected power (an order of magnitude increase) will drive enough current for stabilization of tearing modes. Additionally, a 1 MW 5.5 GHz electron Bernstein wave (EBW) experiment is under construction, which utilizes a very simple and compact antenna compatible with the demands of the RFP. EBW allows access to electron cyclotron heating and current drive in the overdense plasma. Coupling of the external electromagnetic wave to the EBW has been demonstrated, and initial tests at ∼100kW power have produced a small, localized xray flux consistent with rf heating and high diffusivity of fast electrons. Computational work is currently underway to answer the very important questions of how much power is required, and what level of electron diffusivity is tolerable, to generate a consequential amount of EBW current.
Peng, Xinhua; Zhu, Xiwen; Fang, Ximing; Feng, Mang; Liu, Maili; Gao, Kelin
2002-01-01
A quantum circuit is introducted to describe the preparation of a labeled pseudo-pure state by mutiplet-component excitation scheme which has been experimentally implemented on a 4-qubit nuclear magnetic resonance quantum processor. Meanwhile, we theoretically analyze and numerically inverstigate the low-power selective single-pulse implementation of a controlled-rotation gate, which manifests its validity in our experiment. Based on the labeled pseudo-pure state prepared, a 3-qubit Bernstein...
Electron Cyclotron Wave Experiments at the WEGA Stellarator
Czech Academy of Sciences Publication Activity Database
Laqua, H.P.; Andruczyk, D.; Holzhauer, E.; Marsen, S.; Otte, M.; Podoba, Y.Y.; Preinhaelter, Josef; Urban, Jakub; Warr, G.B.
Warsaw : European Physical Society, 2007 - (Gąsior, P.; Wołowski, J.), s. 4-7 ISBN 978-83-926290-0-9. - (Europhysics Conference Abstracts). [European Physical Society Conference on Plasma Physics/34th./. Warsaw (PL), 02.07.2007-06.07.2007] Institutional research plan: CEZ:AV0Z20430508 Keywords : Conversion * Emission * Stellarators * Electron Bernstein waves * Simulation Subject RIV: BL - Plasma and Gas Discharge Physics http://www.eps2007.ifpilm.waw.pl/pdf/P1_154.pdf
Non linear response of plasma ions in linear electrostatic waves
International Nuclear Information System (INIS)
We present experiments which test the applicability of the Hamiltonian single particle theory to wave-particle interactions. This theory describes the chaotic acceleration of plasmas ions by electrostatic waves. The Hamiltonian description gives predictions about the threshold, fast time scale, details of the distribution function and conservation of three integrals of the motion while some of the integrals have been broken by the overlap of resonances. Both electrostatic ion cyclotron and Bernstein waves are launched from antennae at the plasma boundary. Ion motions are observed by Laser Induced Fluorescence (LIF) and optical tagging. The linear response of the ion to the wave is distinguished from the chaotic response. Several predictions of the single particle theory are observed in the experiments. In addition, evidence of self-consistent effects have been observed. (author) 14 figs., 22 refs
Stefan, V.
2006-10-01
A novel mechanism for the suppression of Weibel instabilities in the core of advanced fast ignition pellets is addressed. The propagation of generated suprathermal electron beam toward the core may lead to the appearance of colossal (˜10MG), small scale (L˜c/φpe, c---velocity of light, φpe---local electron plasma frequency) magnetic fields. The suppression synergy of high harmonic electron Bernstein, (EB), modes and Weibel modes, (WB), in the cone-attached laser fusion pellets is based on nonlinear mode-mode coupling. EB modes are excited by ignition, a cone guided, or implosion laser beams. High harmonic EB modes easily propagate to the core of the pellet whereby they nonlinearly interact with, and suppress, the WB. The suppression synergy is maximized at the simultaneous action of ignition and implosion lasers. E. S. Weibel, Phys. Rev. Lett., 2,83 (1959) in the core of advanced fast ignition pellets M. Tabak, J. Hammer, M.E. Glinsky, W.L. Kruer, S. C. Wilks, J. Woodworth, E. M. Campbell, and M.D. Perry, Phys. Plasmas 1 (5), 1626 (1994). V. Stefan, (a) Quasi-Stationary B-Fields due to Weibel Instability in FI Laser Fusion Pellets; (b) Pellet Core Heating Via High Harmonic EB Modes in FI Laser Fusion. 35th Annual A.A.C, 2005,
Directory of Open Access Journals (Sweden)
Mateus Casanova dos Santos
2010-12-01
Full Text Available O presente artigo é um estudo de caso investigativo de caráter participante e descritivo, a partir da vivência pedagógica no disparador de aprendizagem Simulação em Enfermagem, do segundo semestre do primeiro ciclo da graduação da Faculdade de Enfermagem (FEn da Universidade Federal de Pelotas (UFPel, onde se desenvolve a simulação clínica de semiologia e semiotécnica em Enfermagem. O objetivo é estudar a recontextualização da prática pedagógica da Simulação com base em teorizações do sociólogo da educação Basil Bernstein, contribuindo para o processo de aperfeiçoamento do planejamento de ensino e, especialmente, da avaliação deste disparador de aprendizagem. A partir das reflexões deste estudo, observa-se a teorização de Bernstein como uma potente ferramenta semiológica das práticas pedagógicas, a qual contribui para o planejamento e análise do dispositivo pedagógico curricular.Este artículo es un caso de estudio de carácter descriptivo y de investigación participante, desde la experiencia educativa de aprendizaje en el gatillo Simulación en Enfermería, de la segunda mitad del primer ciclo de la Escuela Enfermería (FEN de la Universidade Federal de Pelotas (UFPel donde se desarrolla la simulación de la semiología clínica y la semiótica en Enfermería. El objetivo es estudiar la recontextualización de la práctica pedagógica de teorías basadas en la simulación del sociólogo de la educación Basil Bernstein, contribuyendo al proceso de mejora de la educación, planificación y aprendizaje, especialmente la evaluación de gatillo. De las reflexiones de este estudio, existe la teoría de Bernstein como una poderosa herramienta de semiótica prácticas pedagógicas, lo que contribuye a la planificación y el análisis de dispositivos educativos curriculares.This article is a case study of investigative and descriptive participant character, from the educational experience of learning in the trigger
Harmonics Effect on Ion-Bulk Waves in CH Plasmas
Feng, Q S; Liu, Z J; Cao, L H; Xiao, C Z; Wang, Q; He, X T
2016-01-01
The harmonics effect on ion-bulk (IBk) waves has been researched by Vlasov simulation. The condition of excitation of a large-amplitude IBk waves is given to explain the phenomenon of strong short-wavelength electrostatic activity in solar wind. When $k$ is much lower than $k_{lor}/2$ ($k_{lor}$ is the wave number at loss-of-resonance point), the IBk waves will not be excited to a large amplitude, because a large part of energy will be spread to harmonics. The nature of nonlinear IBk waves in the condition of $k
On a New Family of Trigonometric Summation Polynomials of Bernstein Type%关于一类新的Bernstein型三角求和多项式
Institute of Scientific and Technical Information of China (English)
袁学刚; 何甲兴
2006-01-01
A new family of trigonometric summation polynomials, Gn,r(f; θ), of Bernstein type is constructed. In contrast to other trigonometric summation polynomials, the convergence properties of the new polynomials are superior to others.It is proved that Gn,r(f; θ) converges to arbitrary continuous functions with period 2π uniformly on (-∞, +∞) as n →∞. In particular, Gn,r(f; θ) has the best convergence order, and its saturation order is 1/n2r+4.
PIC Simulations of the Ion Flow Induced by Radio Frequency Waves in Ion Cyclotron Frequency Range
International Nuclear Information System (INIS)
Full text: PIC simulations have been conducted to study the nonlinear interactions of plasmas and radio frequency wave in the ion cyclotron frequency range. It is found that in the presence of the mode conversion from an electromagnetic wave into an electrostatic wave (ion Bernstein wave), the ions near the lower hybrid resonance can be heated by nonlinear Landau damping via the parametric decay. As a result, the ion velocity distribution in the poloidal direction becomes asymmetric near the lower hybrid resonance and an ion poloidal flow is thus produced. The flow directions are opposite on both sides of the lower hybrid resonance. The poloidal flow is mainly produced by the nonlinear Reynolds stress and the electromagnetic force of the incident wave in the radial direction rather than poloidal direction predicted by the existing theories. (author)
Uvidet heruvima / Boris Bernstein
Bernštein, Boriss, 1924-
2006-01-01
Inglite kujundi loomisest euroopalike traditsioonide baasil. Inglite kujutamine Euroopa kunstis. Vaadeldud Jean Fouquet, Benozzo Gozzoli, Raffaeli, Luigi Bernini, Aleksandr Ivanovi, Alek Rapoporti töid
Wave propagation and absorption near the electron-cyclotron layer in the 'THOR' device
International Nuclear Information System (INIS)
The wave propagation and absorption near the electron-cyclotron frequency in a plasma with parameters as expected in the THOR device are considered. Both the ordinary and extraordinary modes are found to be only weakly damped by cyclotron damping. The extraordinary mode launched from the inside of the torus is expected to be completely absorbed at the electron-cyclotron layer via the Bernstein mode generated by mode conversion at the upper-hybrid layer. This study is preliminary to the application of high frequency microwave radiation to plasma heating near the electron-cyclotron frequency in THOR
Parametrically driven low-frequency waves in weakly inhomogeneous magnetized plasmas
International Nuclear Information System (INIS)
The linear dispersion relation governing the parametric interaction of a lower hybrid (or an electron plasma) pump wave with a weakly inhomogeneous current-carrying hot cylindrical plasma confined by a helical magnetic field is derived and solved numerically. The coupling parameter, frequency and growth rate of decay instabilities are calculated for a wide range of plasma parameters relevant to lower hybrid plasma heating experiments. It is found that in the outer plasma layer (20/ωsub(LH)0/ωsub(LH)<2) the short wavelength nonresonant quasimodes and hot ion Bernstein waves have relatively fast growth rates and small group velocities, and consequently they are considerably amplified in the pump wave field. These waves are strongly damped by electron Landau and ion cyclotron harmonic interaction. The presented theoretical results are in good qualitative agreement with current LH plasma heating experiments
Experimental Studies of BGK Ion Waves
Skiff, F.; Noonan, W. A.; Case, A.; Bachet, G.; Doveil, F.
2000-10-01
Since the classic work of Bernstein, Green, and Kruskal, it has been known that plasmas support a large class of propagating disturbances that are kinetic equilibria in the propagating frame. We present experimental studies of BGK ion equilibria in singly ionized Argon plasma in two contexts. The first context is the formation of an ion phase-space hole behind a weak electrostatic shock in unmagnetized plasma. The approach toward BGK equilibrium where the contours of the ion distribution function tend to align with curves of constant particle energy in the propagating frame - is observed and the structure is shown to be a solution of the kinetic equation. The second context is a low amplitude time-periodic structure that interacts primarily with ions near wave-particle resonance in magnetized plasma. There exist theoretical predictions of nonlinear waves at very low amplitude. The existence of low amplitude nonlinear waves complicates the formulation of a complete linear description. In each context, laser induced florescence is used to measure the perturbation of the ion distribution and to determine the associated electrostatic electric field.
Wave particle interactions in the high-altitude polar cusp: a Cluster case study
Directory of Open Access Journals (Sweden)
B. Grison
2005-12-01
Full Text Available On 23 March 2002, the four Cluster spacecraft crossed in close configuration (~100 km separation the high-altitude (10 R_{E} cusp region. During a large part of the crossing, the STAFF and EFW instruments have detected strong electromagnetic wave activity at low frequencies, especially when intense field-aligned proton fluxes were detected by the CIS/HIA instrument. In all likelihood, such fluxes correspond to newly-reconnected field lines. A focus on one of these ion injection periods highlights the interaction between waves and protons. The wave activity has been investigated using the k-filtering technique. Experimental dispersion relations have been built in the plasma frame for the two most energetic wave modes. Results show that kinetic Alfvén waves dominate the electromagnetic wave spectrum up to 1 Hz (in the spacecraft frame. Above 0.8 Hz, intense Bernstein waves are also observed. The close simultaneity observed between the wave and particle events is discussed as an evidence for local wave generation. A mechanism based on current instabilities is consistent with the observations of the kinetic Alfvén waves. A weak ion heating along the recently-opened field lines is also suggested from the examination of the ion distribution functions. During an injection event, a large plasma convection motion, indicative of a reconnection site location, is shown to be consistent with the velocity perturbation induced by the large-scale Alfvén wave simultaneously detected.
Verification of particle simulation of radio frequency waves in fusion plasmas
International Nuclear Information System (INIS)
Radio frequency (RF) waves can provide heating, current and flow drive, as well as instability control for steady state operations of fusion experiments. A particle simulation model has been developed in this work to provide a first-principles tool for studying the RF nonlinear interactions with plasmas. In this model, ions are considered as fully kinetic particles using the Vlasov equation and electrons are treated as guiding centers using the drift kinetic equation. This model has been implemented in a global gyrokinetic toroidal code using real electron-to-ion mass ratio. To verify the model, linear simulations of ion plasma oscillation, ion Bernstein wave, and lower hybrid wave are carried out in cylindrical geometry and found to agree well with analytic predictions
Identification of broad-band waves above the auroral acceleration region: Cluster observations
Directory of Open Access Journals (Sweden)
M. Backrud
2004-12-01
Full Text Available We investigate broad-band emissions at frequencies above the ion gyrofrequency on auroral field lines at geocentric distances of about 4.5 Earth radii. Observations by the Cluster satellites are used to study the wave characteristics and to determine the wave modes involved. All events include some bursts of broad-band emissions with a substantial component of the electric field parallel to the geomagnetic field. Studying the polarization of the emissions we find that linear waves in a homogeneous plasma can be used to theoretically describe the observations.
The broad-band emissions include short bursts of ion acoustic waves, and longer periods of ion Bernstein and Electrostatic Ion Cyclotron (EIC waves. All waves occur during the same event within a few seconds, with EIC waves as the most common. Theoretically, there is no sharp limit between these wave modes and they can be described by the same dispersion surface. These emissions are closely associated with low-frequency Alfvén waves, indicating a possible generation mechanism.
Key words. Magnetospheric physics (auroral phenomena; electric fields; plasma waves and instabilities
Newly Discovered Parametric Instabilities Excited by High Power Radio Waves in the Ionosphere
Bernhardt, Paul
2010-11-01
A powerful electromagnetic wave can decay into a large number of low frequency electrostatic waves and a scattered electromagnetic wave by generalized stimulated Brillouin scatter (GSBS). The generalization occurs in the F-layer ionosphere because of the presence of the magnetic field supporting a large number of plasma waves not present in an unmagnetized plasma. Stimulated Brillouin scatter excites the ion acoustic mode. In addition, GSBS can excite slow MHD, Alfven, fast MHD, ion cyclotron, whistler, lower hybrid, ion Bernstein waves. The first detection of this process during ionospheric modification with high power radio waves was demonstrated using the HAARP transmitter in Alaska in 2009. Subsequent experiments have provided additional verification of the GSBS process with quantitative measurements of the scattered electromagnetic waves with low frequency offsets from the pump wave. Relative to ground-based laboratory experiments with laser plasma interactions, the ionospheric HF wave interactions experiments are more completely diagnosed into terms of understanding the basic decay process of the magnetized plasma. Applications of the GSBS observations included remote sensing of the plasma state and launching propagating wave modes.
Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Schriver, David; Solomon, Sean C.
2012-01-01
We summarize observations by the MESSENGER spacecraft of highly coherent waves at frequencies between 0.4 and 5 Hz in Mercury's inner magnetosphere. This survey covers the time period from 24 March to 25 September 2011, or 2.1 Mercury years. These waves typically exhibit banded harmonic structure that drifts in frequency as the spacecraft traverses the magnetic equator. The waves are seen at all magnetic local times, but their observed rate of occurrence is much less on the dayside, at least in part the result of MESSENGER's orbit. On the nightside, on average, wave power is maximum near the equator and decreases with increasing magnetic latitude, consistent with an equatorial source. When the spacecraft traverses the plasma sheet during its equatorial crossings, wave power is a factor of 2 larger than for equatorial crossings that do not cross the plasma sheet. The waves are highly transverse at large magnetic latitudes but are more compressional near the equator. However, at the equator the transverse component of these waves increases relative to the compressional component as the degree of polarization decreases. Also, there is a substantial minority of events that are transverse at all magnetic latitudes, including the equator. A few of these latter events could be interpreted as ion cyclotron waves. In general, the waves tend to be strongly linear and characterized by values of the ellipticity less than 0.3 and wave-normal angles peaked near 90 deg. Their maxima in wave power at the equator coupled with their narrow-band character suggests that these waves might be generated locally in loss cone plasma characterized by high values of the ratio beta of plasma pressure to magnetic pressure. Presumably both electromagnetic ion cyclotron waves and electromagnetic ion Bernstein waves can be generated by ion loss cone distributions. If proton beta decreases with increasing magnetic latitude along a field line, then electromagnetic ion Bernstein waves are predicted
Production of over-dense plasmas by launching 2.45 GHz electron cyclotron waves in a helical device
International Nuclear Information System (INIS)
For production of low temperature plasmas with low collisionality, 2.45 GHz microwave power up to 20 kW is injected perpendicularly to the toroidal field at very low toroidal field Bt t = 0.0613 T, the maximum electron density reaches three times the O-mode cutoff density and the measured power deposition is concentrated in the plasma core region beyond the Left-hand cutoff layer. It clearly suggests that this over-dense plasma is produced and heated by electron Bernstein waves converted from the launched X-mode in the peripheral region with steep density gradient. (authors)
Gemmrich, J.; Garrett, C.
2009-04-01
Rogue waves have received considerable scientific attention in recent years. They are commonly defined as waves with height H â¥ 2.2Hs, where Hs is the significant wave height (typically estimated from records that are several tens of minutes long). This definition of rogue waves is solely based on the wave height. We suggest that the "unexpectedness" of large waves is also of great concern to mariners and beachcombers, and define "unexpected waves" as waves being twice as large as any of the preceding 30 waves. Our simulations suggest that, even in a Gaussian sea, unexpected waves might be as common as rogue waves occurring within a longer wave group. The return period of unexpected waves decreases if modifications of the wave shape due to phase locked second harmonics are allowed for. In particular, shallow water effects significantly increase the probability of occurrence of unexpected waves. We analyze historical Canadian wave buoy records from the Pacific and Atlantic in terms of unexpected waves, and find our simulations to be in agreement with the occurrence rates of unexpected waves obtained from these records. This agreement suggests that extreme waves in the ocean occur largely due to linear superposition
DEFF Research Database (Denmark)
This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis...
Hosseini Jenab, S. M.; Kourakis, I.
2014-04-01
A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via independent simulations. Considering all plasma components modeled through a kinetic approach, the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on Bernstein-Greene-Kruskal (BGK) modes generated during the simulations. In particular, we aim at investigating the parametric dependence of the characteristics of BGK structures, namely of their time periodicity (τtrap) and their amplitude, on the electron-to-ion temperature ratio and on the dust concentration. In electron-ion plasma, an exponential relation between τtrap and the amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that both characteristics, namely, the periodicity τtrap and amplitude, are also related to the size of the phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes characteristics appear to depend on the dust particle density linearly.
Huang, S. Y.; Yuan, Z. G.; Ni, B.; Zhou, M.; Fu, H. S.; Fu, S.; Deng, X. H.; Pang, Y.; Li, H. M.; Wang, D. D.; Li, H. M.; Yu, X. D.
2015-07-01
Broadband frequency waves around the dipolarization front (DF) are believed to play a crucial role in the particle dynamics. Using the Cluster observations, we report in this study large-amplitude electromagnetic waves with frequencies just above the ion cyclotron frequency at the DF in the near-Earth magnetotail region. The waves have very large amplitudes of magnetic and electric field fluctuations, up to ~2 nT and ~10 mV/m, respectively. The magnetic fluctuations are predominately along the ambient magnetic field (B0), while the electric fluctuations are primarily perpendicular to B0. The observed waves are highly oblique with a propagation angle of ~100° with respect to the ambient magnetic field, and are also linearly polarized. These features are consistent with the properties of the ion Bernstein wave mode in the high plasma β region, and also with the properties of current-driven ion cyclotron waves driven by the electromagnetic current-driven Alfven instability. We also discuss the possibility of wave-particle interactions at the DF.
High harmonic fast waves in high beta plasmas
International Nuclear Information System (INIS)
High harmonic fast magnetosonic wave in high beta/high dielectric plasmas is investigated. including the finite-Larmor-radius effects. In this regime, due to the combination of group velocity slow down and the high beta enhancement, the electron absorption via electron Landau and electron magnetic pumping becomes significant enough that one can expect a strong (∼ 100%) single pass absorption. By controlling the wave spectrum, the prospect of some localized electron heating and current drive appears to be feasible in high beta low-aspect-ratio tokamak regimes. Inclusion of finite-Larmor-radius terms shows an accessibility limit in the high ion beta regime (βi = 50% for a deuterium plasma) due to mode-conversion into an ion Bernstein-wave-like mode while no beta limit is expected for electrons. With increasing ion beta, the ion damping can increase significantly particularly near the beta limits. The presence of energetic ion component expected during intense NBI and α-heating does not appear to modify the accessibility condition nor cause excessive wave absorption
Nonlinear phenomena in RF wave propagation in magnetized plasma: A review
International Nuclear Information System (INIS)
Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7
Nonlinear phenomena in RF wave propagation in magnetized plasma: A review
Energy Technology Data Exchange (ETDEWEB)
Porkolab, Miklos
2015-12-10
Nonlinear phenomena in RF wave propagation has been observed from the earliest days in basic laboratory experiments going back to the 1960s [1], followed by observations of parametric instability (PDI) phenomena in large scale RF heating experiments in magnetized fusion plasmas in the 1970s and beyond [2]. Although not discussed here, the importance of PDI phenomena has also been central to understanding anomalous absorption in laser-fusion experiments (ICF) [3]. In this review I shall discuss the fundamentals of nonlinear interactions among waves and particles, and in particular, their role in PDIs. This phenomenon is distinct from quasi-linear phenomena that are often invoked in calculating absorption of RF power in wave heating experiments in the core of magnetically confined plasmas [4]. Indeed, PDIs are most likely to occur in the edge of magnetized fusion plasmas where the electron temperature is modest and hence the oscillating quiver velocity of charged particles can be comparable to their thermal speeds. Specifically, I will review important aspects of PDI theory and give examples from past experiments in the ECH/EBW, lower hybrid (LHCD) and ICRF/IBW frequency regimes. Importantly, PDI is likely to play a fundamental role in determining the so-called “density limit” in lower hybrid experiments that has persisted over the decades and still central to understanding present day experiments [5-7].
Kankaanniemi, Marko
2011-01-01
Google Wave is a real-time communication and collaboration system introduced in 2009. The Wave system allows multiple users to view and modify hosted conversations called waves simultaneously. A wave conversation consists of a tree-like structure of messages. The messages can contain rich text, images and other attachments. Concurrency control is handled using a technique called operational transformation. It enables users to modify a wave simultaneously without acquiring any locks. Google ha...
International Nuclear Information System (INIS)
Scattering experiments with a 2-mm microwave oscillator (E.I.O.) and a 337-μm HCN laser were performed to measure density fluctuations on the JIPP T-II/T-IIU tokamak in a wide range of the plasma density. It is found from the measurements of the frequency and wavenumber spectra of the instability that the density fluctuation shows characteristics of a turbulence which is originated in the instability of drift type. The dependence of the fluctuation level on the plasma parameters was investigated and compared with the scaling law of the energy confinement time of the plasma. The relation between the density fluctuation level and the confinement time was obtained. The fluctuation level decreases as the electron density is increased. The plasma temperature dependence of the density fluctuation was also investigated. During the rf heating in the ion-cyclotron range of frequency (ICRF) the increase in the density fluctuation level was observed in low-frequency and long-wavelength region. The temporal behavior of the density fluctuation was correlated with the MHD oscillation observed by magnetic probes. The excited wave during the ICRF heating experiment was studied by the HCN laser scattering. The frequency and wavenumber spectra of the excited wave observed during the heating are found to be consistent with the theoretically estimated wave dispersion of the ion Bernstein wave which is mode-converted from the fast wave in the vicinity of the ion-ion hybrid resonance layer. When the MHD activity grows and the plasma becomes unstable, the scattered signal from the ion Bernstein wave decreases, being accompanied with large pulsation. (author)
Bernhardt, P. A.; Scales, W.; Briczinski, S. J.; Fu, H.; Mahmoudian, A.; Samimi, A.
2012-12-01
High power radio waves resonantly interact with to accelerate electrons for production of artificial aurora and plasma clouds. These plasma clouds are formed when the HF frequency is tuned near a harmonic of the electron cyclotron frequency. At a narrow band resonance, large electrostatic fields are produced below the F-layer and the neutral atmosphere breaks down with a glow plasma discharge. The conditions for this resonance are given by matching the pump wave frequency and wave-number with the sum of daughter frequencies and wave-numbers for several plasma modes. The most likely plasma mode that accelerates the electrons is the electron Bernstein wave in conjunction with an ion acoustic wave. Both upper hybrid and whistler mode waves are also possible sources of electron acceleration. To determine the plasma process for electron acceleration, stimulated electromagnetic emissions are measured using ground receivers in a north-south chain from the HAARP site. Recent observations have shown that broad band spectral lines downshifted from the HF pump frequency are observed when artificial plasma clouds are formed. For HF transmissions are the 2nd, 3rd, and 4th gyro harmonic, the downshifted indicators are found 500 Hz, 20 kHz, and 140 kHz, respectively, from the pump frequency. This Indicator Mode (IM) anticipates that a plasma layer will be formed before it is recorded with an ionosonde or optical imager.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Swanson, DG
1989-01-01
Plasma Waves discusses the basic development and equations for the many aspects of plasma waves. The book is organized into two major parts, examining both linear and nonlinear plasma waves in the eight chapters it encompasses. After briefly discussing the properties and applications of plasma wave, the book goes on examining the wave types in a cold, magnetized plasma and the general forms of the dispersion relation that characterize the waves and label the various types of solutions. Chapters 3 and 4 analyze the acoustic phenomena through the fluid model of plasma and the kinetic effects. Th
Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star.......Denne rapport beskriver numeriske beregninger af forskellige flydergeometrier for bølgeenergianlæget Wave Star....
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Sørensen, H. C.;
1998-01-01
This paper concerns with the development of the wave energy converter (WEC) Wave Dragon. This WEC is based on the overtopping principle. An overview of the performed research done concerning the Wave Dragon over the past years is given, and the results of one of the more comprehensive studies......, concerning a hydraulic evaluation and optimisation of the geometry of the Wave Dragon, is presented. Furthermore, the plans for the future development projects are sketched....
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Knapp, W.;
2006-01-01
Wave Dragon is a floating wave energy converter working by extracting energy principally by means of overtopping of waves into a reservoir. A 1:4.5 scale prototype has been sea tested for 20 months. This paper presents results from testing, experiences gained and developments made during this...
Towne, Dudley H
1988-01-01
This excellent undergraduate-level text emphasizes optics and acoustics, covering inductive derivation of the equation for transverse waves on a string, acoustic plane waves, boundary-value problems, polarization, three-dimensional waves and more. With numerous problems (solutions for about half). ""The material is superbly chosen and brilliantly written"" - Physics Today. Problems. Appendices.
International Nuclear Information System (INIS)
Magnetically confined plasmas can contain significant concentrations of nonthermal particles, arising from neutral beam injection, fusion reactions, shock heating, or wave-driven acceleration of resonant plasma species. The associated distribution functions can depart significantly from Maxwellians, which may impact the propagation and absorption of radio frequency waves. The potential effect of these particles has been investigated using a full-wave code that has been extended to handle gyrotropic, but otherwise arbitrary distribution functions. This code has been used to numerically simulate ion cyclotron resonance heating (ICRH) in magnetic fusion plasmas in which coresonant neutral beam injection (NBI) heating may also be applied. The presence of nonthermal ion populations generated by the NBI can alter the ICRH characteristics. Two situations involving ion cyclotron range of frequency waves are presented: fast wave to ion Bernstein wave mode conversion and high harmonic fast wave electron heating. In both cases, the adequacy of an equivalent Maxwellian-based description is discussed. Results indicate that the absorption profiles are more strongly affected than the wave fields by the presence of nonthermal species
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Bayesian semiparametric power spectral density estimation in gravitational wave data analysis
Edwards, Matthew C; Christensen, Nelson
2015-01-01
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with non-stationary data by breaking longer data streams into smaller and locally stationary components.
Edwards, Matthew C.; Meyer, Renate; Christensen, Nelson
2015-09-01
The standard noise model in gravitational wave (GW) data analysis assumes detector noise is stationary and Gaussian distributed, with a known power spectral density (PSD) that is usually estimated using clean off-source data. Real GW data often depart from these assumptions, and misspecified parametric models of the PSD could result in misleading inferences. We propose a Bayesian semiparametric approach to improve this. We use a nonparametric Bernstein polynomial prior on the PSD, with weights attained via a Dirichlet process distribution, and update this using the Whittle likelihood. Posterior samples are obtained using a blocked Metropolis-within-Gibbs sampler. We simultaneously estimate the reconstruction parameters of a rotating core collapse supernova GW burst that has been embedded in simulated Advanced LIGO noise. We also discuss an approach to deal with nonstationary data by breaking longer data streams into smaller and locally stationary components.
Modeling Results for Proposed Nstx 28 GHZ Ech/ebwh System
Taylor, G.; Diem, S. J.; Ellis, R. A.; Fredd, E.; Greenough, N.; Hosea, J. C.; Bigelow, T. S.; Caughman, J. B.; Rasmussen, D. A.; Ryan, P.; Wilgen, J. B.; Harvey, R. W.; Smirnov, A. P.; Preinhaelter, J.; Urban, J.; Ram, A. K.
2009-04-01
A 28 GHz electron cyclotron heating (ECH) and electron Bernstein wave heating (EBWH) system has been proposed for installation on the National Spherical Torus Experiment (NSTX). A 350 kW gyrotron connected to a fixed horn antenna is proposed for ECH-assisted solenoid-free plasma startup. Modeling predicts strong first pass on-axis EC absorption, even for low electron temperature, Te ~ 20 eV, Coaxial Helicity Injection (CHI) startup plasmas. ECH will heat the CHI plasma to Te ~ 300 eV, providing a suitable target plasma for 30 MHz high-harmonic fast wave heating. A second gyrotron and steered O-X-B mirror launcher is proposed for EBWH experiments. Radiometric measurements of thermal EBW emission detected via B-X-O coupling on NSTX support implementation of the proposed system. 80% B-X-O coupling efficiency was measured in L-mode plasmas and 60% B-X-O coupling efficiency was recently measured in H-mode plasmas conditioned with evaporated lithium. Modeling predicts local on-axis EBW heating and current drive using 28 GHz power in β ~ 20% NSTX plasmas should be possible, with current drive efficiencies ~40 kA/MW.
A Megawatt-level 28z GHz Heating System For The National Spherical Torus Experiment Upgrade
Energy Technology Data Exchange (ETDEWEB)
Taylor, Gary
2014-04-01
The National Spherical Torus Experiment Upgrade (NSTX-U) will operate at axial toroidal fields of < 1 T and plasma currents, Ip < 2 MA. The development of non-inductive (NI) plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC) heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI) in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0)) before the plasma becomes overdense. The increased Te(0) will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW) plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.
A megawatt-level 28 GHz heating system for the National Spherical Torus Experiment Upgrade
Directory of Open Access Journals (Sweden)
Taylor G.
2015-01-01
Full Text Available The National Spherical Torus Experiment Upgrade (NSTX-U will operate at axial toroidal fields of ≤ 1 T and plasma currents, Ip ≤ 2 MA. The development of non-inductive (NI plasmas is a major long-term research goal for NSTX-U. Time dependent numerical simulations of 28 GHz electron cyclotron (EC heating of low density NI start-up plasmas generated by Coaxial Helicity Injection (CHI in NSTX-U predict a significant and rapid increase of the central electron temperature (Te(0 before the plasma becomes overdense. The increased Te(0 will significantly reduce the Ip decay rate of CHI plasmas, allowing the coupling of fast wave heating and neutral beam injection. A megawatt-level, 28 GHz electron heating system is planned for heating NI start-up plasmas in NSTX-U. In addition to EC heating of CHI start-up discharges, this system will be used for electron Bernstein wave (EBW plasma start-up, and eventually for EBW heating and current drive during the Ip flattop.
Feasibility study of microwave electron heating on the C-2 field-reversed configuration device
International Nuclear Information System (INIS)
Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition
Feasibility study of microwave electron heating on the C-2 field-reversed configuration device
Energy Technology Data Exchange (ETDEWEB)
Yang, Xiaokang, E-mail: xyang@trialphaenergy.com; Ceccherini, Francesco; Dettrick, Sean; Binderbauer, Michl [Tri Alpha Energy, Inc., P.O. Box 7010, Rancho Santa Margarita, CA 92688 (United States); Koehn, Alf [IGVP, University of Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart (Germany); Petrov, Yuri [CompX, P.O. Box 2672, Del Mar, CA 92014 (United States)
2015-12-10
Different microwave heating scenarios for the C-2 plasmas have been investigated recently with use of both the Genray ray-racing code and the IPF-FDMC full-wave code, and the study was focused on the excitation of the electron Bernstein wave (EBW) with O-mode launch. For a given antenna position on C-2 and the fixed 2D plasma density and equilibrium field profiles, simulations have been done for six selected frequencies (2.45 GHz, 5 GHz, 8 GHz, 18 GHz, 28 GHz, and 50 GHz). Launch angles have been optimized for each case in order to achieve high coupling efficiencies to the EBW by the O-X-B mode conversion process and high power deposition. Results show that among those six frequencies, the case of 8 GHz is the most promising scenario, which has both high mode conversion efficiency (90%) and the relatively deeper power deposition.
Reed, Chris
2000-01-01
Third Wave is a Christian charity based in Derby (England) that offers training in vocational skills, preindustrial crafts, horticultural and agricultural skills, environmental education, and woodland survival skills to disadvantaged people at city and farm locations. Third Wave employs a holistic approach to personal development in a community…
Schutz, Bernard F.
1990-01-01
In 1989 four groups around the world proposed the construction of large-scale laser interferometric gravitational wave detectors. The author reviews the design of these detectors, the problems of analysing their data, and the theory of the sources of the gravitational waves that they are designed to detect.
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter; Friis-Madsen, Erik;
2008-01-01
Since March 2003 a prototype of Wave Dragon has been tested in an inland sea in Denmark. This has been a great success with all subsystems tested and improved through working in an offshore environment. The project has proved the Wave Dragon device and has enabled the next stage, a production sized...
DEFF Research Database (Denmark)
Kramer, Morten; Brorsen, Michael; Frigaard, Peter
Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star.......Nærværende rapport beskriver numeriske beregninger af den hydrodynamiske interaktion mellem 5 flydere i bølgeenergianlægget Wave Star....
Utz, Marcel; Begley, Matthew R; Haj-Hariri, Hossein
2011-11-21
The propagation of pressure waves in fluidic channels with elastic covers is discussed in view of applications to flow control in microfluidic devices. A theory is presented which describes pressure waves in the fluid that are coupled to bending waves in the elastic cover. At low frequencies, the lateral bending of the cover dominates over longitudinal bending, leading to propagating, non-dispersive longitudinal pressure waves in the channel. The theory addresses effects due to both the finite viscosity and compressibility of the fluid. The coupled waves propagate without dispersion, as long as the wave length is larger than the channel width. It is shown that in channels of typical microfluidic dimensions, wave velocities in the range of a few 10 m s(-1) result if the channels are covered by films of a compliant material such as PDMS. The application of this principle to design microfluidic band pass filters based on standing waves is discussed. Characteristic frequencies in the range of a few kHz are readily achieved with quality factors above 30. PMID:21966667
Sharman, R. D.; Wurtele, M. G.
1983-01-01
Dynamics analogous to those of surface ship waves on water of finite depth are noted for the three-dimensional trapped lee wave modes produced by an isolated obstacle in a stratified fluid. This vertical trapping of wave energy is modeled by uniform upstream flow and stratification, bounded above by a rigid lid, and by a semiinfinite fluid of uniform stability whose wind velocity increases exponentially with height, representing the atmosphere. While formal asymptotic solutions are produced, limited quantitative usefulness is obtained through them because of the limitations of the approximations and the infinity of modes in the solution. Time-dependent numerical models are accordingly developed for both surface ship waves and internal and atmospheric ship waves, yielding a variety of results.
Lower hybrid current drive in the presence of ICRF waves
International Nuclear Information System (INIS)
Motivated by recent JET results showing an enhancement in the lower hybrid current drive (LHCD) efficiency in ICRF heated plasmas, the authors have been studying the interaction of lower hybrid generated electron tails with fast Alfven waves (FAW) and ion-Bernstein waves (IBW). The IBW's are generated by mode conversion, at the hybrid resonance layers inside the plasma, of the externally launched FAW's. The numerical solutions of the Fokker-Planck equation using CQL3D show that, for the powers used in JET, the FAW cannot significantly modify the LH electron tail and, consequently, does not play a role in the enhancement of the LHCD efficiency. Similar analysis for IBW's shows that these waves play an important role in the enhancement of the current drive efficiency. Calculations show that for small kparallel's about 20% of the FAW power is mode converted to the IBW's. Previous analysis of the propagation of IBW's has shown that the electric field amplitudes are considerably enhanced as IBW propagate in toroidal plasmas. This compensates for the possibly small fraction of the total input power that mode converts to IBW's. Furthermore, IBW's interact with electrons off-axis through Landau damping on flux surfaces where LHW's generate currents. FAW's only interact with electrons near the ion cyclotron or ion-ion hybrid resonance layers which, in the case of JET, may be near the axis of the plasma while the LH waves damp well off-axis. So IBW's are more likely to enhance the LHCD efficiency. In fact, the conditions for which JET shows an enhancement in LHCD efficiency are those for which mode conversion to IBW's occurs. The authors present detailed analytical and numerical results in support of the statements made above
Papazoglou, Dimitris G; Tzortzakis, Stelios
2016-01-01
We show the existence of a family of waves that share a common interesting property affecting the way they propagate and focus. These waves are a superposition of twin waves, which are conjugate to each other under inversion of the propagation direction. In analogy to holography, these twin "real" and "virtual" waves are related respectively to the converging and the diverging part of the beam and can be clearly visualized in real space at two distinct foci under the action of a focusing lens. Analytic formulas for the intensity distribution after focusing are derived, while numerical and experimental demonstrations are given for some of the most interesting members of this family, the accelerating Airy and ring-Airy beams.
International Nuclear Information System (INIS)
Seven chapters are included. Chapters 1 and 2 introduce the Alfven wave and describe its linear properties in a homogeneous medium. Chapters 3 and 4 cover the effects of inhomogeneities on these linear properties. Particular emphasis is placed on the appearance of a continuum spectrum and the associated absorption of the Alfven wave which arise due to the inhomogeneity. The explanation of the physical origin of absorption is given using kinetic theory. Chapter 5 is devoted to the associated plasma instabilities. Nonlinear effects discussed in Chapter 6 include quasilinear diffusion, decay, a solitary wave, and a modulational instability. The principles of Alfven wave heating, a design example and present-day experimental results are described in Chapter 7
Bazzi, Tomaso; Di Memmo, Alberico; Palini, Massimo; Sellini, Massimiliano; Fabbri, Luigi
2011-01-01
Purpose of the present report is the summary of the experimental campaign performed at INSEAN facilities. This campaign has been oriented to analyze the classical wave measurement systems and, furthermore, to validate the results of the numerical models. A devoted paragraph describes the main features of a new innovative and non intrusive methodology for the wave measurements aimed to perform both model and ship scale trials.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Byggeri og Anlæg med bølgeenergianlæget Wave Star....
DEFF Research Database (Denmark)
Kramer, Morten; Andersen, Thomas Lykke
Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star.......Nærværende rapport beskriver modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star....
Needham, Charles E
2010-01-01
The primary purpose of this text is to document many of the lessons that have been learned during the author’s more than forty years in the field of blast and shock. The writing therefore takes on an historical perspective, in some sense, because it follows the author’s experience. The book deals with blast waves propagating in fluids or materials that can be treated as fluids. It begins by distinguishing between blast waves and the more general category of shock waves. It then examines several ways of generating blast waves, considering the propagation of blast waves in one, two and three dimensions as well as through the real atmosphere. One section treats the propagation of shocks in layered gases in a more detailed manner. The book also details the interaction of shock waves with structures in particular reflections, progressing from simple to complex geometries, including planar structures, two-dimensional structures such as ramps or wedges, reflections from heights of burst, and three-dimensional st...
Nonlinear wave-wave interactions and wedge waves
Institute of Scientific and Technical Information of China (English)
Ray Q.Lin; Will Perrie
2005-01-01
A tetrad mechanism for exciting long waves,for example edge waves,is described based on nonlinear resonant wave-wave interactions.In this mechanism,resonant interactions pass energy to an edge wave,from the three participating gravity waves.The estimated action flux into the edge wave can be orders of magnitude greater than the transfer fluxes derived from other competing mechanisms,such as triad interactions.Moreover,the numerical results show that the actual transfer rates into the edge wave from the three participating gravity waves are two-to three- orders of magnitude greater than bottom friction.
A maximum entropy based Abel inversion for bolometer measurements on WEGA
International Nuclear Information System (INIS)
Maximum-entropy based Abel inversion is applied for reconstructing the radial radiation profiles in the WEGA stellarator, where a multi-channel bolometer system is installed. The inversion procedure has been tested by forward calculations of presumed radiation profiles, taking the realistic geometries of the individual view channels into account. After exact reproduction of the input profiles, Gaussian-noise is added to the line-integrated signals of each channel, in order to check the sensitivity of the inverse results to errors in the raw signals. The contribution presents detailed results of this analysis. The inversion method has been used for data processing of the WEGA bolometer system, which has become a standard diagnostic tool for measuring the radiation distributions. As, in the WEGA plasmas, the radiation is mainly contributed by the working gas itself, the radiation distribution reflects the profiles of the plasma parameters. Thus, the bolometer has the potential of providing additional information on the plasma pressure profile reflecting the power deposition of the ECR-heating. Recently, strongly peaked radiation profiles were observed in over-dense plasmas heated by electron Bernstein waves (EBWs). This is believed to be attributed to a centrally peaked power deposition of the EBWs heating. Results in this regard are discussed.
DEFF Research Database (Denmark)
Frigaard, Peter; Høgedal, Michael; Christensen, Morten
The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered.......The intention of this manual is to provide some formulas and techniques which can be used for generating waves in hydraulic laboratories. Both long crested waves (2-D waves) and short crested waves (3-D waves) are considered....
Thorne, K S
1995-01-01
This article reviews current efforts and plans for gravitational-wave detection, the gravitational-wave sources that might be detected, and the information that the detectors might extract from the observed waves. Special attention is paid to (i) the LIGO/VIRGO network of earth-based, kilometer-scale laser interferometers, which is now under construction and will operate in the high-frequency band (1 to 10^4 Hz), and (ii) a proposed 5-million-kilometer-long Laser Interferometer Space Antenna (LISA), which would fly in heliocentric orbit and operate in the low-frequency band (10^{-4} to 1 Hz). LISA would extend the LIGO/VIRGO studies of stellar-mass (M\\sim2 to 300 M_\\odot) black holes into the domain of the massive black holes (M\\sim1000 to 10^8M_\\odot) that inhabit galactic nuclei and quasars.
International Nuclear Information System (INIS)
Two dimensional surface waves including surface tension are considered in this paper. The disturbance potential φ created by a moving concentrated pressure has been determined uniquely following Peters. Linearized free surface conditions have been utilized. The free surface elevations η(x) have been obtained and discussed for stream velocities U ≥ = min, the minimum wave velocity. The results obtained are satisfactory. It is hoped that a similar approach may help to solve the three dimensional problem. It is, of course, apprehended that it may lead to complications which may not be easy to handle theoretically. (author). 11 refs, 5 figs
Power absorption during nonlinear electron cyclotron wave-particle interaction
International Nuclear Information System (INIS)
The linear theory of wave absorption and the quasilinear theory of the evolution of the distribution function are presently the main tools for a quantitative description of ECRH and ECCD in fusion devices. However the applicability of this theories is violated for some ECRH (ECCD) scenarios in typical experimental conditions. In particular this is true for one of the basic scenarios where the 2. harmonic electron cyclotron resonance for the extraordinary mode (X-mode) is used. In this paper a numerical model for ECRH and ECCD which consistently takes into account nonlinear wave-particle interaction has been developed. The results of computations show that the distortion of the particle distribution function from Maxwellian is strong for parameters typical for present day ECRH experiments. These leads to a reduction of the absorption, consequent broadening of the absorption profile and incomplete absorption. The distortion of the particle distribution function is essentially different from what is expected from the quasilinear theory where a Fokker-Planck equation is assumed to be valid. The positive derivative of the distribution function indicates that nonlinear effects of ECRH may cause the electron Bernstein wave instability. The modelling of ECCD at the 2. harmonic X-mode resonance shows that the effect of power redistribution in velocity space can especially be important for current drive. Therefore, for ECCD the absorption should be taken into account correctly by using nonlinear computations. With increasing both magnetic field and size of the beam, the nonlinear effects become more important. Therefore, the proper account of nonlinear effects is ultimate for reactor-scale devices
Shallow Water Waves and Solitary Waves
Hereman, Willy
2013-01-01
Encyclopedic article covering shallow water wave models used in oceanography and atmospheric science. Sections: Definition of the Subject; Introduction and Historical Perspective; Completely Integrable Shallow Water Wave Equations; Shallow Water Wave Equations of Geophysical Fluid Dynamics; Computation of Solitary Wave Solutions; Numerical Methods; Water Wave Experiments and Observations; Future Directions, and Bibliography.
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
På foranledning af Löwenmark F.R.I, er der udført numeriske beregninger af Wave Dragons (herefter WD) armes effektivitet for forskellige geometriske udformninger. 5 geometriske modeller, hvor WD's arme er forkortet/forlænget er undersøgt for 3 forskellige drejninger af armene. I alt er 15...
Fast Magnetosonic Waves Driven by Gravitational Waves
Papadopoulos, D.; Stergioulas, N.; Vlahos, L.; Kuijpers, J.
2001-01-01
The propagation of a gravitational wave (GW) through a magnetized plasma is considered. In particular, we study the excitation of fast magnetosonic waves (MSW) by a gravitational wave, using the linearized general-relativistic hydromagnetic equations. We derive the dispersion relation for the plasma, treating the gravitational wave as a perturbation in a Minkowski background space-time. We show that the presence of gravitational waves will drive magnetosonic waves in the plasma and discuss th...
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter; Brorsen, Michael
Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004.......Nærværende rapport beskriver foreløbige hovedkonklusioner på modelforsøg udført på Aalborg Universitet, Institut for Vand, Jord og Miljøteknik med bølgeenergianlægget Wave Star i perioden 13/9 2004 til 12/11 2004....
Ciufolini, I; Moschella, U; Fre, P
2001-01-01
Gravitational waves (GWs) are a hot topic and promise to play a central role in astrophysics, cosmology, and theoretical physics. Technological developments have led us to the brink of their direct observation, which could become a reality in the coming years. The direct observation of GWs will open an entirely new field: GW astronomy. This is expected to bring a revolution in our knowledge of the universe by allowing the observation of previously unseen phenomena, such as the coalescence of compact objects (neutron stars and black holes), the fall of stars into supermassive black holes, stellar core collapses, big-bang relics, and the new and unexpected.With a wide range of contributions by leading scientists in the field, Gravitational Waves covers topics such as the basics of GWs, various advanced topics, GW detectors, astrophysics of GW sources, numerical applications, and several recent theoretical developments. The material is written at a level suitable for postgraduate students entering the field.
Jiang, Z
2005-01-01
The International Symposium on Shock Waves (ISSW) is a well established series of conferences held every two years in a different location. A unique feature of the ISSW is the emphasis on bridging the gap between physicists and engineers working in fields as different as gas dynamics, fluid mechanics and materials sciences. The main results presented at these meetings constitute valuable proceedings that offer anyone working in this field an authoritative and comprehensive source of reference.
Impact of Wave Dragon on Wave Climate
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Tedd, James; Kramer, Morten;
This report is an advisory paper for use in determining the wave dragon effects on hydrography, by considering the effect on the wave climate in the region of a wave dragon. This is to be used in the impact assessment for the Wave Dragon pre-commercial demonstrator....
Geometrical vs wave optics under gravitational waves
Angélil, Raymond
2015-01-01
We present some new derivations of the effect of a plane gravitational wave on a light ray. A simple interpretation of the results is that a gravitational wave causes a phase modulation of electromagnetic waves. We arrive at this picture from two contrasting directions, namely null geodesics and Maxwell's equations, or, geometric and wave optics. Under geometric optics, we express the geodesic equations in Hamiltonian form and solve perturbatively for the effect of gravitational waves. We find that the well-known time-delay formula for light generalizes trivially to massive particles. We also recover, by way of a Hamilton-Jacobi equation, the phase modulation obtained under wave optics. Turning then to wave optics, rather than solving Maxwell's equations directly for the fields, as in most previous approaches, we derive a perturbed wave equation (perturbed by the gravitational wave) for the electromagnetic four-potential. From this wave equation it follows that the four-potential and the electric and magnetic...
International Nuclear Information System (INIS)
Sharifi and Parvazian have presented comments on our paper by questioning the validity of the results. The plots of different curves of kappa and (r, q) distributions produced by them are incorrect. They pretended as if we have made claim that our results are valid for large arguments of product of Bessel Function, whereas Neumann's series expansion is valid only for small arguments. In our paper, no claim is made that the results are valid for all values of b. Our results are valid only for b ≪ 1. The results plotted by the commenters are incorrect and in this response we are presenting correct plots of dispersion curves
Wave dispersion in the hybrid-Vlasov model: Verification of Vlasiator
International Nuclear Information System (INIS)
Vlasiator is a new hybrid-Vlasov plasma simulation code aimed at simulating the entire magnetosphere of the Earth. The code treats ions (protons) kinetically through Vlasov's equation in the six-dimensional phase space while electrons are a massless charge-neutralizing fluid [M. Palmroth et al., J. Atmos. Sol.-Terr. Phys. 99, 41 (2013); A. Sandroos et al., Parallel Comput. 39, 306 (2013)]. For first global simulations of the magnetosphere, it is critical to verify and validate the model by established methods. Here, as part of the verification of Vlasiator, we characterize the low-β plasma wave modes described by this model and compare with the solution computed by the Waves in Homogeneous, Anisotropic Multicomponent Plasmas (WHAMP) code [K. Rönnmark, Kiruna Geophysical Institute Reports No. 179, 1982], using dispersion curves and surfaces produced with both programs. The match between the two fundamentally different approaches is excellent in the low-frequency, long wavelength range which is of interest in global magnetospheric simulations. The left-hand and right-hand polarized wave modes as well as the Bernstein modes in the Vlasiator simulations agree well with the WHAMP solutions. Vlasiator allows a direct investigation of the importance of the Hall term by including it in or excluding it from Ohm's law in simulations. This is illustrated showing examples of waves obtained using the ideal Ohm's law and Ohm's law including the Hall term. Our analysis emphasizes the role of the Hall term in Ohm's law in obtaining wave modes departing from ideal magnetohydrodynamics in the hybrid-Vlasov model
International Nuclear Information System (INIS)
To maintain the ignition state in a tokamak fusion reactor, a control must be performed on the population of alpha-products, and this implies the ability to diagnose those α-particles. It is studied here whether the detection of emission radiated in the ion cyclotron range of frequency be a reactor plasma can provide useful information concerning fusion products, especially concerning their density profile. It is shown that the detection of the radiation emitted by the fast alpha particles along their cyclotron motion can give access to moments of their distribution function. This requires to compute the phase of the emitted field, using a full-wave approach. Such a technique allows to set in a convenient way the inverse problem of the determination of the emitting α-particles distribution through the radiation detection. A brief analysis of the expected situation in a reactor-relevant plasma is given. In parallel, the 1-D full-wave code developed in this frame is also useful for studying the physics of Fast Wave plasma heating. It enables to take into account the mode conversion of the Fast Wave into the Ion Bernstein Wave that appears near each ion cyclotron resonance. Results show that higher order terms may significantly alter the energy partitioning, in hot plasma cases involving mode conversion heating and/or ion cyclotron high harmonics heating. (author)
Energy Technology Data Exchange (ETDEWEB)
Fraboulet, D.; Becoulet, A.; Nguyen, F
1998-11-01
To maintain the ignition state in a tokamak fusion reactor, a control must be performed on the population of alpha-products, and this implies the ability to diagnose those {alpha}-particles. It is studied here whether the detection of emission radiated in the ion cyclotron range of frequency be a reactor plasma can provide useful information concerning fusion products, especially concerning their density profile. It is shown that the detection of the radiation emitted by the fast alpha particles along their cyclotron motion can give access to moments of their distribution function. This requires to compute the phase of the emitted field, using a full-wave approach. Such a technique allows to set in a convenient way the inverse problem of the determination of the emitting {alpha}-particles distribution through the radiation detection. A brief analysis of the expected situation in a reactor-relevant plasma is given. In parallel, the 1-D full-wave code developed in this frame is also useful for studying the physics of Fast Wave plasma heating. It enables to take into account the mode conversion of the Fast Wave into the Ion Bernstein Wave that appears near each ion cyclotron resonance. Results show that higher order terms may significantly alter the energy partitioning, in hot plasma cases involving mode conversion heating and/or ion cyclotron high harmonics heating. (author) 47 refs.
Efficient Wave Energy Amplification with Wave Reflectors
DEFF Research Database (Denmark)
Kramer, Morten Mejlhede; Frigaard, Peter Bak
2002-01-01
Wave Energy Converters (WEC's) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased to approximately 130......-140%. In the paper a procedure for calculating the efficiency and optimizing the geometry of wave reflectors are described, this by use of a 3D boundary element method. The calculations are verified by laboratory experiments and a very good agreement is found. The paper gives estimates of possible power...... benifit for different geometries of the wave reflectors and optimal geometrical design parameters are specified. On this basis inventors of WEC's can evaluate whether a specific WEC possible could benefit from wave reflectors....
Ion absorption effects in high-harmonic fast wave ray tracing theory
International Nuclear Information System (INIS)
Effects of finite ion temperature on the propagation and absorption characteristics of high-harmonic fast waves (HHFW) are investigated theoretically using a hot electron (cold ion) ray tracing code in combination with solutions of the full hot plasma dispersion relation. Ray tracing is performed on numerical solutions of the Grad-Shafranov equation and the hot plasma dispersion relation is solved along the resultant ray trajectory using the cold ion n(parallelsign). As was observed previously (see Ref. [1]), for typical expected plasma parameters in the National Spherical Torus Experiment (NSTX) [2], ion absorption begins to appear between 0.5 and 1.0 keV local ion temperature at high deuterium cyclotron harmonics. Further, the ion power absorption rate is predicted to depend strongly on the launched parallel wavenumber [3,4]. Ray tracing on the full hot plasma dispersion relation has been attempted, but generally fails at high ion temperature near cyclotron harmonics primarily because the group velocity is ill-behaved. Such behavior usually suggests mode conversion to the ion-Bernstein wave (IBW). However, at sufficiently high n(parallelsign), mode conversion becomes negligible and the total power flux (Poynting+kinetic) is positive definite, while ray tracing still fails. The underlying cause of this apparent paradox is discussed. (c) 1999 American Institute of Physics
Smooth sandwich gravitational waves
Podolsky, J.
1998-01-01
Gravitational waves which are smooth and contain two asymptotically flat regions are constructed from the homogeneous pp-waves vacuum solution. Motion of free test particles is calculated explicitly and the limit to an impulsive wave is also considered.
Moortgat, Joachim
2001-01-01
In the vicinity of merging neutron strar binaries or supernova remnants, gravitational waves can interact with the prevailing strong magnetic fields. The resulting partial conversion of gravitational waves into electromagnetic (radio) waves might prove to be an indirect way of detecting gravitational waves from such sources. Another interesting interaction considered in this article is the excitation of magnetosonic plasma waves by a gravitational wave passing through the surrounding plasma. ...
Coronal Waves and Oscillations
Nakariakov Valery M.; Verwichte Erwin
2005-01-01
Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD) wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves), theoretical modelling of interactio...
International Nuclear Information System (INIS)
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black-Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
Yan, Zhen-Ya
2010-11-01
We analytically give the financial rogue waves in the nonlinear option pricing model due to Ivancevic, which is nonlinear wave alternative of the Black—Scholes model. These rogue wave solutions may he used to describe the possible physical mechanisms for rogue wave phenomenon in financial markets and related fields.
Gerritsen, S.
2007-01-01
In this thesis we study wave propagation in inhomogeneous media. Examples of the classical (massless) waves we consider are acoustic waves (sound) and electromagnetic waves (light, for example). Interaction with inhomogeneities embedded in a reference medium alter the propagation direction, velocity
Institute of Scientific and Technical Information of China (English)
张海明; 陈晓非
2003-01-01
The development of seismic wave study in China in the past four years is reviewed. The discussion is divided into several aspects, including seismic wave propagation in laterally homogeneous media, laterally heterogeneous media, anisotropic and porous media, surface wave and seismic wave inversion, and seismic wave study in prospecting and logging problems. Important projects in the current studies on seismic wave is suggested as the development of high efficient numerical methods, and applying them to the studies of excitation and propagation of seismic waves in complex media and strong ground motion, which will form a foundation for refined earthquake hazard analysis and prediction.
DEFF Research Database (Denmark)
Alikhani, Amir; Frigaard, Peter; Burcharth, Hans F.
1998-01-01
The data collected over the course of the experiment must be analysed and converted into a form suitable for its intended use. Type of analyses range from simple to sophisticated. Depending on the particular experiment and the needs of the researcher. In this study three main part of irregular wave...... data analyses are presented e.g. Time Domain (Statistical) Analyses, Frequency Domain (Spectral) Analyses and Wave Reflection Analyses. Random wave profile and definitions of representative waves, distributions of individual wave height and wave periods and spectra of sea waves are presented....
Gravity wave transmission diagram
Tomikawa, Y.
2015-01-01
A new method of obtaining power spectral distribution of gravity waves as a function of ground-based horizontal phase speed and propagation direction from airglow observations has recently been proposed. To explain gravity wave power spectrum anisotropy, a new gravity wave transmission diagram was developed in this study. Gravity wave transmissivity depends on the existence of critical and turning levels for waves that are determined by background horizontal wind distributio...
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Institute of Scientific and Technical Information of China (English)
沈奚海莉
2001-01-01
The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.
Gravity wave transmission diagram
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Photoelectron wave function in photoionization: plane wave or Coulomb wave?
Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I
2015-11-19
The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion. PMID:26509428
Long Waves Associated with Bichromatic Waves
Institute of Scientific and Technical Information of China (English)
DONG Guohai(董国海); YE Wenya(叶文亚); Nicholas Dodd
2001-01-01
A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the numerical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method withTime-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number ofcomputational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave)energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The modeldescribed in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromaticwaves.
Study of wave-particle interaction from the linear regime to dynamical chaos in a magnetized plasma
International Nuclear Information System (INIS)
Deterministic chaos generated by the interaction between charged particles and electrostatic plasma waves has been observed in a linear magnetized plasma. The target plasma is created by a barium Q-source, guaranteeing low fluctuation levels and a high degree of uniformity over an extended plasma volume. Characteristics of the background plasma are investigated by a variety of diagnostic techniques, including laser induced fluorescence (LIF) and optical tagging (OT). Particular tagging schemes and specific theoretical approaches to data interpretation (both for LIF and OT) have been developed during this work. As part of these background plasma studies, special attention has been devoted to an investigation of test-ion cross-field transport under different conditions. Test-ions are created and followed in their motion across the magnetic field lines via spin state tagging. In the unperturbed plasma this motion is found to be a diffusive process, supported by classical mechanisms, even in the presence of relatively high pressures of non-reactive neutral gases injected into the plasma volume. Electrostatic waves are excited using a ring antenna structure encircling the plasma column and electrically isolated from it. This system has been chosen on the basis of a comparative analysis of different ion wave launching methods, including the use of grids, inductive coils coupled electromagnetically to the plasma and modulated high frequency electron waves. Two modes propagating parallel to the magnetic field, one of which has two perpendicular components (ion Bernstein and ion acoustic-like waves), characterize the spectrum excited by the electrostatic ring antenna for a single frequency, f, chosen in the range fcici. (author) figs., tabs., 134 refs
Advanced ST plasma scenario simulations for NSTX
International Nuclear Information System (INIS)
Integrated scenario simulations are done for NSTX that address four primary milestones for developing advanced ST configurations: high β and high βN inductive discharges to study all aspects of ST physics in the high beta regime; non-inductively sustained discharges for flattop times greater than the skin time to study the various current drive techniques; non-inductively sustained discharges at high βfor flattop times much greater than a skin time which provides the integrated advanced ST target for NSTX; and non-solenoidal startup and plasma current rampup. The simulations done here use the Tokamak Simulation Code (TSC) and are based on a discharge 109070. TRANSP analysis of the discharge provided the thermal diffusivities for electrons and ions, the neutral beam (NB) deposition profile and other characteristics. CURRAY is used to calculate the High Harmonic Fast Wave (HHFW) heating depositions and current drive. GENRAY/CQL3D is used to establish the heating and CD deposition profiles for electron Bernstein waves (EBW). Analysis of the ideal MHD stability is done with JSOLVER, BALMSC, and PEST2. The simulations indicate that the integrated advanced ST plasma is reachable, obtaining stable plasmas with β ∼ 40% at βN's of 7.7-9, IP = 1.0 MA and BT = 0.35 T. The plasma is 100% non-inductive and has a flattop of 4 skin times. The resulting global energy confinement corresponds to a multiplier of H98(y,2) = 1.5. The simulations have demonstrated the importance of HHFW heating and CD, EBW off-axis CD, strong plasma shaping, density control, and early heating/H-mode transition for producing and optimizing these plasma configurations (author)
Thomas, J. H.
1983-01-01
A theoretical treatment of magneto-atmospheric waves is presented and applied to the modelling of waves in the solar atmosphere. The waves arise in compressible, stratified, electrically conductive atmospheres within gravitational fields when permeated by a magnetic field. Compression, buoyancy, and distortion of the magnetic field all contribute to the existence of the waves. Basic linearized equations are introduced to describe the waves and attention is given to plane-stratified atmospheres and their stability. A dispersion relation is defined for wave propagation in a plane-stratified atmosphere when there are no plane-wave solutions. Solutions are found for the full wave equation in the presence of either a vertical or a horizontal magnetic field. The theory is applied to describing waves in sunspots, in penumbrae, and flare-induced coronal disturbances.
Space charge wave accelerators
International Nuclear Information System (INIS)
We present an account of experimental observations showing control of the wave phase velocity for a slow wave, measurements of the wave electric field, and indicate how these results might apply to an ion accelerator. An interesting and new possibility is also indicated, namely the use of fast waves for electron accelerators. In this case preliminary estimates indicate that comparable field gradients to those already obtained in the slow wave scheme should be obtainable in fast waves and that these field gradients can be maintained at phase velocities close to the speed of light. (orig./HSI)
NEW WIND WAVE GROWTH RELATIONS
Institute of Scientific and Technical Information of China (English)
WU Shu-ping; HOU Yi-jun; YIN Bao-shu
2004-01-01
In the present paper combining the relationship between wave steepness and wave age with the significant wave energy balance equation for wind wave,a new wind wave growth relation is presented.Comparisons with the other existing wind wave growth relations show that the results in present paper accord better with the wind wave growth process.
Nonlinear and multi-wave effects in fast-scale laser-plasma interactions
Lindberg, Ryan Roger
A new model of kinetic effects in Langmuir wave dynamics is developed. A nonlinear distribution function is constructed that accounts for particle separatrix crossing and self-consistent electrostatic evolution, assuming that the Langmuir wave changes slowly with respect to the particle bounce frequency in the wave. Using simple physical arguments, the distribution function is shown to be nearly invariant in the canonical action, such that slow evolution results in an overall translation of the distribution in action. Requirements of self-consistency with the electrostatic potential yield the key properties of the nonlinear distribution function, including a frequency shift of the wave and the incoherent energy associated with developing the final, phase-mixed state. These Bernstein-Greene-Kruskal (BGK) type waves naturally arise in weakly driven, thermal plasmas, and extend earlier work on nonlinear plasma waves by Morales and O'Neil and by Dewar. The bulk properties of these BGK-type waves are used to develop a fluid model describing nonlinear, kinetic Langmuir waves in a driven plasma that is shown to agree closely with electrostatic particle simulations over a wide range of temperatures (0.1 ≤ klambdaD ≤ 0.4). This model is then applied to the fundamental problem of including kinetic effects in Raman backscatter. To obtain the coupled mode equations relevant to Raman backscatter in a plasma, we average the Vlasov-Maxwell system over the fine spatio-temporal scales of the laser phase. The resulting set of envelope equations coupling the two counter-propagating lasers with the plasma wave is then analyzed in two limits: that of an initial, linear Langmuir wave, and that of the time-asymptotic state in which the particles become phase-mixed in the wave. In the former limit, the standard natural frequency and Landau damping is obtained, while the latter case leads to a vanishing damping and a nonlinear frequency shift of the wave, in agreement with recent
Reflectors to Focus Wave Energy
DEFF Research Database (Denmark)
Kramer, Morten; Frigaard, Peter
2005-01-01
Wave Energy Converters (WEC’s) extract wave energy from a limited area, often a single point or line even though the wave energy is generally spread out along the wave crest. By the use of wave reflectors (reflecting walls) the wave energy is effectively focused and increased by approximately 30......-50%. Clearly longer wave reflectors will focus more wave energy than shorter wave reflectors. Thus the draw back is the increased wave forces for the longer wave reflectors. In the paper a procedure for calculating the energy efficiency and the wave forces on the reflectors are described, this by use of a 3D...
Kirk, John G
2011-01-01
Recent work on the properties of superluminal waves in pulsar winds is summarized. It is speculated that these waves play an important role in the termination shock that divides the wind from the surrounding nebula.
Wiley, Scott
2008-01-01
This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.
... this page: //medlineplus.gov/ency/article/002693.htm Cold wave lotion poisoning To use the sharing features on this page, please enable JavaScript. Cold wave lotion is a hair care product used ...
Electromagnetic ultrasonic guided waves
Huang, Songling; Li, Weibin; Wang, Qing
2016-01-01
This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-12-14
The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.
Coronal Waves and Oscillations
Directory of Open Access Journals (Sweden)
Nakariakov Valery M.
2005-07-01
Full Text Available Wave and oscillatory activity of the solar corona is confidently observed with modern imaging and spectral instruments in the visible light, EUV, X-ray and radio bands, and interpreted in terms of magnetohydrodynamic (MHD wave theory. The review reflects the current trends in the observational study of coronal waves and oscillations (standing kink, sausage and longitudinal modes, propagating slow waves and fast wave trains, the search for torsional waves, theoretical modelling of interaction of MHD waves with plasma structures, and implementation of the theoretical results for the mode identification. Also the use of MHD waves for remote diagnostics of coronal plasma - MHD coronal seismology - is discussed and the applicability of this method for the estimation of coronal magnetic field, transport coefficients, fine structuring and heating function is demonstrated.
High density plasma heating in the Tokamak à configuration variable
International Nuclear Information System (INIS)
The Tokamak à Configuration Variable (TCV) is a medium size magnetic confinement thermonuclear fusion experiment designed for the study of the plasma performances as a function of its shape. It is equipped with a high power and highly flexible electron cyclotron heating (ECH) and current drive (ECCD) system. Up to 3 MW of 2nd harmonic EC power in ordinary (O2) or extraordinary (X2) polarization can be injected from TCV low-field side via six independently steerable launchers. In addition, up to 1.5 MW of 3rd harmonic EC power (X3) can be launched along the EC resonance from the top of TCV vacuum vessel. At high density, standard ECH and ECCD are prevented by the appearance of a cutoff layer screening the access to the EC resonance at the plasma center. As a consequence, less than 50% of TCV density operational domain is accessible to X2 and X3 ECH. The electron Bernstein waves (EBW) have been proposed to overcome this limitation. EBW is an electrostatic mode propagating beyond the plasma cutoff without upper density limit. Since it cannot propagate in vacuum, it has to be excited by mode conversion of EC waves in the plasma. Efficient electron Bernstein waves heating (EBH) and current drive (EBCD) were previously performed in several fusion devices, in particular in the W7-AS stellarator and in the MAST spherical tokamak. In TCV, the conditions for an efficient O-X-B mode conversion (i.e. a steep density gradient at the O2 plasma cutoff) are met at the edge of high confinement (H-mode) plasmas characterized by the appearance of a pedestal in the electron temperature and density profiles. TCV experiments have demonstrated the first EBW coupling to overdense plasmas in a medium aspect-ratio tokamak via O-X-B mode conversion. This thesis work focuses on several aspects of ECH and EBH in low and high density plasmas. Firstly, the experimental optimum angles for the O-X-B mode conversion is successfully compared to the full-wave mode conversion calculation of the AMR
Bøckmann, Eirik
2015-01-01
Propelling a boat forward by converting wave energy into propulsive thrust was first proposed in 1858 and first successfully done in practice in the 1890s - to the author's knowledge. Several experimenters have since demonstrated the feasibility of wave-powered boats, both in model and full scale. The most common type of wave-powered boat, and also the type studied in this thesis, is a boat with foils that convert the vertical motion in waves into propulsive thrust. In addition to...
Mougel, Jérôme; Fabre, David; Lacaze, Laurent
2015-01-01
The motion of a liquid in an open cylindrical tank rotating at a constant rate around its vertical axis of symmetry, a configuration called Newton’s bucket, is investigated using a linear stability approach. This flow is shown to be affected by several families of waves, all weakly damped by viscosity. The wave families encountered correspond to: surface waves which can be driven either by gravity or centrifugal acceleration, inertial waves due to Coriolis acceleration which are singular in t...
WAVE ENERGY CONVERSION SYSTEMS
Güney, Mükrimin Şevket
2015-01-01
It is a consensus to widespread use of renewable sources for disposal of environmental impact caused by fossil fuel consumption, and moreover to remedy of fossil fuels depletion. Wave power is a renewable kind of energy. Worldwide potential for wave power is enormous. Ocean appears to be an important source of wave energy. Various systems are developed and some new projects are implemented on this subject. Therefore, in this study has been presented the wave energy conversion systems in detai...
Controlling spiral wave with target wave in oscillatory systems
Institute of Scientific and Technical Information of China (English)
Liu Fu-Cheng; Wang Xiao-Fei; Li Xue-Chen; Dong Li-Fang
2007-01-01
Spiral waves have been controlled by generating target waves with a localized inhomogeneity in the oscillatory medium. The competition between the spiral waves and target waves is discussed. The effect of the localized inhomogeneity size has also been studied.
Electron cyclotron resonance heating in a short cylindrical plasma system
Indian Academy of Sciences (India)
Vipin K Yadav; D Bora
2004-09-01
Electron cyclotron resonance (ECR) plasma is produced and studied in a small cylindrical system. Microwave power is delivered by a CW magnetron at 2.45 GHz in TE10 mode and launched radially to have extraordinary (X) wave in plasma. The axial magnetic field required for ECR in the system is such that the first two ECR surfaces ( = 875.0 G and = 437.5 G) reside in the system. ECR plasma is produced with hydrogen with typical plasma density e as 3.2 × 1010 cm-3 and plasma temperature e between 9 and 15 eV. Various cut-off and resonance positions are identified in the plasma system. ECR heating (ECRH) of the plasma is observed experimentally. This heating is because of the mode conversion of X-wave to electron Bernstein wave (EBW) at the upper hybrid resonance (UHR) layer. The power mode conversion efficiency is estimated to be 0.85 for this system. The experimental results are presented in this paper.
International Nuclear Information System (INIS)
A review of linear and weakly non-linear theory of electron waves, ion waves and electromagnetic waves in plasmas is presented. The author restricts the discussion to an infinitely extended, homogeneous and isotropic plasma, not affected by external fields and described by Vlasov's and Maxwell's equations. (Auth.)
Institute of Scientific and Technical Information of China (English)
LIU Shi-Da; FU Zun-Tao; LIU Shi-Kuo; XIN Guo-Jun; LIANG Fu-Ming
2004-01-01
In this paper, it is shown that the homoclinic orbits exist in iterated functional systems, so do the solitary wave structures. Moreover, Harr father wavelet, Mexican Cap wavelet, and other closed form wavelets have this solitary wave structure, too. So wavelet is a certain kind of solitary wave.
Degasperis, Antonio; Aceves, Alejandro B
2015-01-01
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing, may lead to extreme waves at extremely low powers.
International Nuclear Information System (INIS)
The theoretical basis for gravity-wave astronomy is described, along with the energy and momentum of gravitational fields. Other topics discussed include:- burst and periodic sources of gravitational waves, the cosmological stochastic background, and the detection of gravitational waves. (U.K.)
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter
Wave Dragon is a wave energy converter of the overtopping type. The device has been thoroughly tested on a 1:51.8 scale model in wave laboratories and a 1:4.5 scale model deployed in Nissum Bredning, a large inland waterway in Denmark. Based on the experience gained a full scale, multi MW prototype...
Acatrinei, C S
2001-01-01
We study radial waves in (2+1)-dimensional noncommutative scalar field theory, using operatorial methods. The waves propagate along a discrete radial coordinate and are described by finite series deformations of Bessel-type functions. At large radius with respect to the noncomutativity scale $\\theta$, the waves behave like the usual commutative ones.
International Nuclear Information System (INIS)
In the field of wave heating absorption studies of plasma magnetic waves in the theta pinch are extended to axially inhomogeneous waves. In the Plasmaus 4 experiment direct plasma production has been accomplished for overcritical densities and high magnetic fields. The numerical methods developed at IPF for plasma simulation studies have been applied successfully to further problems. (orig./GG)
Energy Technology Data Exchange (ETDEWEB)
Degasperis, Antonio [Dipartimento di Fisica, “Sapienza” Università di Roma, P.le A. Moro 2, 00185 Roma (Italy); Wabnitz, Stefan, E-mail: stefan.wabnitz@unibs.it [Dipartimento di Ingegneria dell' Informazione, Università degli Studi di Brescia and INO-CNR, via Branze 38, 25123 Brescia (Italy); Aceves, Alejandro B. [Southern Methodist University, Dallas (United States)
2015-06-12
We derive the rogue wave solution of the classical massive Thirring model, that describes nonlinear optical pulse propagation in Bragg gratings. Combining electromagnetically induced transparency with Bragg scattering four-wave mixing may lead to extreme waves at extremely low powers.
Wave turbulence in annular wave tank
Onorato, Miguel; Stramignoni, Ettore
2014-05-01
We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.
DEFF Research Database (Denmark)
Sørensen, H. C.; Hansen, R.; Friis-Madsen, E.;
2000-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type, utilizing a patented wave reflector design to focus the waves towards a ramp, and the overtopping is used for electricity production through a set of Kaplan/propeller hydro turbines. During the last 2 years, excessive...... design an testing has been performed on a scale 1:50 model of the Wave Dragon, and on a scale 1:3:5 model turbine. Thus survivability, overtopping, hydraulic response, turbine performance and feasibility have been verified....
Energy Technology Data Exchange (ETDEWEB)
Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.
1985-07-01
Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.
Pulsars and Gravitational Waves
Lee, K J; Qiao, G J
2011-01-01
The relationship between pulsar-like compact stars and gravitational waves is briefly reviewed. Due to regular spins, pulsars could be useful tools for us to detect ~nano-Hz low-frequency gravitational waves by pulsar-timing array technique; besides, they would also be ~kilo-Hz high-frequency gravitational wave radiators because of their compactness. The wave strain of an isolate pulsar depends on the equation state of cold matter at supra-nuclear densities. Therefore, a real detection of gravitational wave should be very meaningful in gravity physics, micro-theory of elementary strong interaction, and astronomy.
Elmore, William C
1985-01-01
Because of the increasing demands and complexity of undergraduate physics courses (atomic, quantum, solid state, nuclear, etc.), it is often impossible to devote separate courses to the classic wave phenomena of optics, acoustics, and electromagnetic radiation. This brief comprehensive text helps alleviate the problem with a unique overview of classical wave theory in one volume.By examining a sequence of concrete and specific examples (emphasizing the physics of wave motion), the authors unify the study of waves, developing abstract and general features common to all wave motion. The fundam
BOOK REVIEW: Kinetic theory of plasma waves, homogeneous plasmas
Porkolab, Miklos
1998-11-01
from the BBGKY hierarchy. This is a somewhat unusual chapter in a book on plasma waves, but I welcome it since it demonstrates the author's desire to be complete and rigorous in justifying the use of the collisionless Vlasov equation for `high frequency' wave propagation phenomena. Incidentally, it is interesting that while the author derives the Fokker-Planck equation at great length, it is used only to derive the fluid and MHD equations, but not for estimating Coulomb collisional damping of specific waves in later chapters. Chapter 4 gives the derivation of the hot plasma dielectric tensor. There is an extensive and excellent discussion of the relativistic formulation of the dielectric tensor, which is of fundamental importance to practising fusion physicists (for example) involved in ECR heating of high temperature plasmas. Various temperature limits are taken in Chapters 5, 6 and 7, and the author discusses the infinite number of waves in the cold plasma limit (Chapter 5), in the hot plasma limit (Chapter 6) and in the electrostatic limit (Chapter 7). In my opinion, these chapters represent the `meat' of the book. Chapter 7 includes a detailed treatment of electrostatic waves in a hot plasma, including Bernstein waves and their damping at high harmonics. This is a difficult topic, and the extensive treatment presented here is hard to find in other texts. The author also includes a discussion of two stream instabilities here, together with the Nyquist-Penrose criterion for instability. Chapter 8 discusses linear wave-particle interactions, including damping of electromagnetic waves, RF current drive and RF heating. Chapter 9 is called `Collisionless Stochasticity' and institutes an introduction to the subject as well as applications to the heating of ions by high harmonic, lower hybrid waves. Chapter 10 is another key part of the book, on the quasilinear theory of heating and current drive. It deals with the practical aspects of RF heating and current drive in
Wave Overtopping Characteristics of the Wave Dragon
DEFF Research Database (Denmark)
Tedd, James; Kofoed, Jens Peter
Simulation work has been used extensively with the Wave dragon and other overtopping devices to analyse the power production performance of them and to optimise the structural design and the control strategy. A time domain approach to this is well documented in Jakobsen & Frigaard 1999. Using...... measurements taken from the Wave Dragon Nissum Bredning prototype, some of the previous assumptions have been slightly modified and improved upon, so that the simulation method better represents the reality of what is occurring....
Cycloidal Wave Energy Converter
Energy Technology Data Exchange (ETDEWEB)
Stefan G. Siegel, Ph.D.
2012-11-30
This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will
Propagating waves along spicules
Okamoto, Takenori J
2011-01-01
Alfv\\'enic waves are thought to play an important role in coronal heating and acceleration of solar wind. Here we investigated the statistical properties of Alfv\\'enic waves along spicules (jets that protrude into the corona) in a polar coronal hole using high cadence observations of the Solar Optical Telescope (SOT) onboard \\emph{Hinode}. We developed a technique for the automated detection of spicules and high-frequency waves. We detected 89 spicules, and found: (1) a mix of upward propagating, downward propagating, as well as standing waves (occurrence rates of 59%, 21%, and 20%, respectively). (2) The phase speed gradually increases with height. (3) Upward waves dominant at lower altitudes, standing waves at higher altitudes. (4) Standing waves dominant in the early and late phases of each spicule, while upward waves were dominant in the middle phase. (5) In some spicules, we find waves propagating upward (from the bottom) and downward (from the top) to form a standing wave in the middle of the spicule. (...
Delva, Pacôme; Angonin, Marie-Christine; Tourrenc, Philippe
2006-01-01
We calculate and compare the response of light wave interferometers and matter wave interferometers to gravitational waves. We find that metric matter wave interferometers will not challenge kilometric light wave interferometers such as Virgo or LIGO, but could be a good candidate for the detection of very low frequency gravitational waves.
Ockendon, Hilary
2016-01-01
Now in its second edition, this book continues to give readers a broad mathematical basis for modelling and understanding the wide range of wave phenomena encountered in modern applications. New and expanded material includes topics such as elastoplastic waves and waves in plasmas, as well as new exercises. Comprehensive collections of models are used to illustrate the underpinning mathematical methodologies, which include the basic ideas of the relevant partial differential equations, characteristics, ray theory, asymptotic analysis, dispersion, shock waves, and weak solutions. Although the main focus is on compressible fluid flow, the authors show how intimately gasdynamic waves are related to wave phenomena in many other areas of physical science. Special emphasis is placed on the development of physical intuition to supplement and reinforce analytical thinking. Each chapter includes a complete set of carefully prepared exercises, making this a suitable textbook for students in applied mathematics, ...
DEFF Research Database (Denmark)
Østergaard, Claus Møller; Rosenstand, Claus Andreas Foss; Gertsen, Frank
2012-01-01
Building on previous well-argued work by Jon Sundbo (1995a), on how innovation has evolved in three phases or waves since 1880, this paper’s contribution is extending the historical line, by offering arguments and explanations for two additional waves of innovation that explain the most recent...... developments. The paper also adds new interpretations of the previous work by Sundbo (1995a) in suggesting that the waves are triggered by societal and economic crisis. The result is a new theoretical and historical framework, proposing five waves of innovation triggered by societal and economic crises....... The innovation within each wave is constituted by different drivers of innovation: Cost-driven, development-driven, market-driven, user-driven, and remains of these waves are accumulated to form the complex character of today’s network-driven innovation....
DEFF Research Database (Denmark)
Frigaard, Peter; Andersen, Thomas Lykke
The present book describes the most important aspects of wave analysis techniques applied to physical model tests. Moreover, the book serves as technical documentation for the wave analysis software WaveLab 3, cf. Aalborg University (2012). In that respect it should be mentioned that supplementary...... to the present technical documentation exists also the online help document describing the WaveLab software in detail including all the inputs and output fields. In addition to the two main authors also Tue Hald, Jacob Helm-Petersen and Morten Møller Jakobsen have contributed to the note. Their input is highly...... acknowledged. The outline of the book is as follows: • Chapter 2 and 3 describes analysis of waves in time and frequency domain. • Chapter 4 and 5 describes the separation of incident and reflected waves for the two-dimensional case. • Chapter 6 describes the estimation of the directional spectra which also...
Sych, Robert
2015-01-01
The review addresses the spatial frequency morphology of sources of sunspot oscillations and waves, including their localization, size, oscillation periods, height localization with the mechanism of cut-off frequency that forms the observed emission variability. Dynamic of sunspot wave processes, provides the information about the structure of wave fronts and their time variations, investigates the oscillation frequency transformation depending on the wave energy is shown. The initializing solar flares caused by trigger agents like magnetoacoustic waves, accelerated particle beams, and shocks are discussed. Special attention is paid to the relation between the flare reconnection periodic initialization and the dynamics of sunspot slow magnetoacoustic waves. A short review of theoretical models of sunspot oscillations is provided.
DEFF Research Database (Denmark)
Frigaard, Peter; Kofoed, Jens Peter; Tedd, James William
2006-01-01
The Wave Dragon is a 4 to 11 MW offshore wave energy converter of the overtopping type. It basically consists of two wave reflectors focusing the waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the...... period from 1998 to 2001 extensive testing on a scale 1:50 model was carried at Aalborg University. During the last two years, testing has started on a prototype of the Wave Dragon in Nissum Bredning, Denmark (scale 1:4.5 of the North Sea). The prototype was grid connected in May 2003 as the world......'s first offshore wave energy converter. During this period an extensive measuring program has established the background for optimal design of the structure and regulation of the power take off system. Planning for full scale deployment of a 7 MW unit within the next 2 years is in progress. The prototype...
International Nuclear Information System (INIS)
Applications of linear mode conversion at Alfven/ion-ion hybrid resonances and at electron plasma frequency have been discussed. Alfven resonances play an important role on energy transport the outer to inner regions of magnetospheres. At Earth's magnetopause, the mode-converted kinetic Alfven waves also lead to solar wind particle entry and transverse ion heating. IIH resonant waves can explain of the generation of linearly polarized EMIC waves at Earth. Compressional waves can also interact with Mercury's magnetosphere exciting IIH resonances as global eigenmodes. Linear mode conversion (LMC) from Langmuir to electromagnetic waves is relevant to explain type II and III radio bursts. Through the LMC, both right- and left-hand polarized wave modes are produced and it provides the solutions for linear/partial polarized type II and III problems.
Grimshaw, R. H. J.; Pullin, D. I.
1986-01-01
Numerical solutions are presented for large-amplitude interfacial waves of extreme form on the interface between two fluids of different densities in the Boussinesq approximation. The flow in the lower fluid is irrotational, but the upper fluid may have constant, nonzero vorticity. Only symmetric waves are calculated. The results suggest limiting wave profiles for which separate portions of the interface touch, forming stagnant zones of one fluid imbedded in the other fluid.
DEFF Research Database (Denmark)
Takayama, Osamu; Crasovan, Lucian Cornel; Johansen, Steffen Kjær;
2008-01-01
The interface of two semi-infinite media, where at least one of them is a birefringent crystal, supports a special type of surface wave that was predicted theoretically by D'yakonov in 1988. Since then, the properties of such waves, which exist in transparent media only under very special......, the existence of these surface waves in specific material examples is analyzed, discussing the challenge posed by their experimental observation....
International Nuclear Information System (INIS)
A method is described for generating a traveling wave laser pulse of almost unlimited energy content wherein a gain medium is pumped into a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
Millimeter Wave Energy Harvesting
Khan, Talha Ahmed; Alkhateeb, Ahmed; Heath Jr, Robert W.
2015-01-01
The millimeter wave (mmWave) band, which is a prime candidate for 5G cellular networks, seems attractive for wireless energy harvesting. This is because it will feature large antenna arrays as well as extremely dense base station (BS) deployments. The viability of mmWave for energy harvesting though is unclear, due to the differences in propagation characteristics such as extreme sensitivity to building blockages. This paper considers a scenario where low-power devices extract energy and/or i...
Directed Relativistic Blast Wave
Gruzinov, Andrei
2007-01-01
A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativi...
Boyd, Jeffrey
2010-02-01
As preposterous as it might sound, if quantum waves travel in the reverse direction from subatomic particles, then most of quantum physics can be explained without quantum weirdness or Schr"odinger's cat. Quantum mathematics is unchanged. The diffraction pattern on the screen of the double slit experiment is the same. This proposal is not refuted by the Innsbruck experiments; this is NOT a hidden local variable theory. Research evidence will be presented that is consistent with the idea waves travel in the opposite direction as neutrons. If one's thinking shifts from forwards to backwards quantum waves, the world changes so drastically it is almost unimaginable. Quantum waves move from the mathematical to the real world, multiply in number, and reverse in direction. Wave-particle duality is undone. In the double slit experiment every part of the target screen is emitting such quantum waves in all directions. Some pass through the two slits. Interference occurs on the opposite side of the barrier than is usually imagined. They impinge on ``S'' and an electron is released at random. Because of the interference it is more likely to follow some waves than others. It follows one and only one wave backward; hitting the screen where it's wave originated. )
Hernandez-Figueroa, Hugo E; Recami, Erasmo
2013-01-01
This continuation and extension of the successful book ""Localized Waves"" by the same editors brings together leading researchers in non-diffractive waves to cover the most important results in their field and as such is the first to present the current state.The well-balanced presentation of theory and experiments guides readers through the background of different types of non-diffractive waves, their generation, propagation, and possible applications. The authors include a historical account of the development of the field, and cover different types of non-diffractive waves, including Airy
International Nuclear Information System (INIS)
The invention broadly involves a method and means for generating a traveling wave laser pulse and is basically analogous to a single pass light amplifier system. However, the invention provides a traveling wave laser pulse of almost unlimited energy content, wherein a gain medium is pumped in a traveling wave mode, the traveling wave moving at essentially the velocity of light to generate an amplifying region or zone which moves through the medium at the velocity of light in the presence of directed stimulating radiation, thereby generating a traveling coherent, directed radiation pulse moving with the amplification zone through the gain medium. (U.S.)
DEFF Research Database (Denmark)
Burcharth, H. F.; Frigaard, Peter
1989-01-01
Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area.......Wave loads may be defined as time varying forces on a body resulting from the wave induced flow fields which surrounds the body in whole or in part. Such unsteady fluid forces are the net result of pressure and shear forces integrated over the instantaneous wetted area....
Ultrasonic wave inspection device
International Nuclear Information System (INIS)
The device of the present invention inspects incore structural components by visualizing them by scanning an ultrasonic transducer in an opaque liquid metal sodium in a pressure vessel of an FBR type reactor. Namely, a piezoelectric vibrator for transmitting/receiving ultrasonic waves is formed into a protruded shape. A portion at the center of the protruded piezoelectric vibrator is coaxially separated. Upon transmitting ultrasonic waves, a large opening of the entire piezoelectric vibrator is used. A small opening at the center of the piezoelectric vibrator is used upon receiving ultrasonic waves. With such a constitution, an object to be inspected is visualized based on the waveform of the received ultrasonic wave signals defining the center of a curvature of the protruded piezoelectric vibrator as a position of transmitting ultrasonic waves and defining the center of the opening at the center of the piezoelectric vibrator as a position of receiving ultrasonic waves. As a result, the energy of the ultrasonic waves can be enhanced to improve sensitivity upon transmitting ultrasonic waves. Since the distance between an optional position of the receiving surface and the reflecting surface of the object is minimized upon receiving ultrasonic waves, there is no distortion in the waveforms of the received signals thereby enabling to obtain images at high accuracy. (I.S.)
David, P
2013-01-01
Propagation of Waves focuses on the wave propagation around the earth, which is influenced by its curvature, surface irregularities, and by passage through atmospheric layers that may be refracting, absorbing, or ionized. This book begins by outlining the behavior of waves in the various media and at their interfaces, which simplifies the basic phenomena, such as absorption, refraction, reflection, and interference. Applications to the case of the terrestrial sphere are also discussed as a natural generalization. Following the deliberation on the diffraction of the "ground? wave around the ear
Exitation of Whistler Waves by a Helical Wave Structure
DEFF Research Database (Denmark)
Balmashnov, A. A.; Lynov, Jens-Peter; Michelsen, Poul;
1981-01-01
The excitation of whistler waves in a radial inhomogeneous plasma is investigated experimentally, using a slow-wave structure consisting of a helix of variable length surrounding the plasma column. The excited waves were observed to have a wave-vector parallel to the external magnetic field. The...... possibility of exciting the waves in different radial regions is demonstrated....
Wave Dragon Wave Energy Converters Used as Coastal Protection
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke; Kofoed, Jens Peter
2011-01-01
This paper deals with wave energy converters used to reduce the wave height along shorelines. For this study the Wave Dragon wave energy converter is chosen. The wave height reduction from a single device has been evaluated from physical model tests in scale 1:51.8 of the 260 x 150 m, 24 kW/m model...
Wave Mechanics or Wave Statistical Mechanics
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
By comparison between equations of motion of geometrical optics and that of classical statistical mechanics, this paper finds that there should be an analogy between geometrical optics and classical statistical mechanics instead of geometrical mechanics and classical mechanics. Furthermore, by comparison between the classical limit of quantum mechanics and classical statistical mechanics, it finds that classical limit of quantum mechanics is classical statistical mechanics not classical mechanics, hence it demonstrates that quantum mechanics is a natural generalization of classical statistical mechanics instead of classical mechanics. Thence quantum mechanics in its true appearance is a wave statistical mechanics instead of a wave mechanics.
Maria Cristina ENACHE
2010-01-01
IThe purpose of this paper is to report on emerging technologies, especially those who are considering collaboration technologies. In 2009, there were a number of technologies with special implications on the educational environment. Such technology was launched in 2009 by Google and it is called Google Wave. Google Wave is a much hyped new Internet-based communications and collaboration platform.
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhenya, E-mail: zyyan@mmrc.iss.ac.cn [Key Laboratory of Mathematics Mechanization, Institute of Systems Science, AMSS, Chinese Academy of Sciences, Beijing 100190 (China)
2011-11-21
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.
International Nuclear Information System (INIS)
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black–Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields. -- Highlights: ► We investigate the coupled nonlinear volatility and option pricing model. ► We analytically present vector financial rogue waves. ► The vector financial rogue waves may be used to describe the extreme events in financial markets. ► This results may excite the relative researches and potential applications of vector rogue waves.
Directory of Open Access Journals (Sweden)
V. P. Singh
1983-01-01
Full Text Available Propagation of converging detonation waves in solid explosive is discussed. Whitham's method modified for solid explosives is used. Using folding coordinates, it is found that the strength of detonation waves increases as it moves towards the centre of implosion.
Those Elusive Gravitational Waves
MOSAIC, 1976
1976-01-01
The presence of gravitational waves was predicted by Einstein in his theory of General Relativity. Since then, scientists have been attempting to develop a detector sensitive enough to measure these cosmic signals. Once the presence of gravitational waves is confirmed, scientists can directly study star interiors, galaxy cores, or quasars. (MA)
Gravitational waves in preheating
Tilley, Daniel; Maartens, Roy
2000-01-01
We study the evolution of gravitational waves through the preheating era that follows inflation. The oscillating inflaton drives parametric resonant growth of scalar field fluctuations, and although super-Hubble tensor modes are not strongly amplified, they do carry an imprint of preheating. This is clearly seen in the Weyl tensor, which provides a covariant description of gravitational waves.
Directory of Open Access Journals (Sweden)
Zheng-Johansson J. X.
2006-10-01
Full Text Available The electromagnetic component waves, comprising together with their generating oscillatory massless charge a material particle, will be Doppler shifted when the charge hence particle is in motion, with a velocity v, as a mere mechanical consequence of the source motion. We illustrate here that two such component waves generated in opposite directions and propagating at speed c between walls in a one-dimensional box, superpose into a traveling beat wave of wavelength Λd=vcΛ and phase velocity c2/v+v which resembles directly L. de Broglie’s hypothetic phase wave. This phase wave in terms of transmitting the particle mass at the speed v and angular frequency Ωd= 2πv/Λd, with Λd and Ωd obeying the de Broglie relations, represents a de Broglie wave. The standing-wave function of the de Broglie (phase wave and its variables for particle dynamics in small geometries are equivalent to the eigen-state solutions to Schrödinger equation of an identical system.
International Nuclear Information System (INIS)
A brief history of plasma wave observations in the Earth's magnetosphere is recounted and a classification of the identified plasma wave phenomena is presented. The existence of plasma waves is discussed in terms of the characteristic frequencies of the plasma, the energetic particle populations and the proposed generation mechanisms. Examples are given for which plasmas waves have provided information about the plasma parameters and particle characteristics once a reasonable theory has been developed. Observational evidence and arguments by analogy to the observed Earth plasma wave processes are used to identify plasma waves that may be significant in other planetary magnetospheres. The similarities between the observed characteristics of the terrestrial kilometric radiation and radio bursts from Jupiter, Saturn and possibly Uranus are stressed. Important scientific problems concerning plasma wave processes in the solar system and beyond are identified and discussed. Models for solar flares, flare star radio outbursts and pulsars include elements which are also common to the models for magnetospheric radio bursts. Finally, a listing of the research and development in terms of instruments, missions, laboratory experiments, theory and computer simulations needed to make meaningful progress on the outstanding scientific problems of plasma wave research is given. (Auth.)
Acatrinei, Ciprian
2001-01-01
We study radial waves in (2+1)-dimensional noncommutative scalar field theory, using operatorial methods. The waves propagate along a discrete radial coordinate and are described by finite series deformations of Bessel-type functions. At radius much larger than the noncommutativity scale $\\sqrt{\\theta}$, one recovers the usual commutative behaviour. At small distances, classical divergences are smoothed out by noncommutativity.
DEFF Research Database (Denmark)
Burcharth, H. F.; Larsen, Brian Juul
The investigation concerns the design of a new internal breakwater in the main port of Ibiza. The objective of the model tests was in the first hand to optimize the cross section to make the wave reflection low enough to ensure that unacceptable wave agitation will not occur in the port. Secondly...
Yan, Zhenya
2011-11-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.
Lan, Jin; Yu, Weichao; Wu, Ruqian; Xiao, Jiang
2015-10-01
A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound states in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. Our findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.
Busswell, Geoff; Ash, Ellis; Piolle, Jean-Francois; Poulter, David J. S.; Snaith, Helen; Collard, Fabrice; Sheera, Harjit; Pinnock, Simon
2010-12-01
The ESA GlobWave project is a three year initiative, funded by ESA and CNES, to service the needs of satellite wave product users across the globe. Led by Logica UK, with support from CLS, IFREMER, SatOC and NOCS, the project will provide free access to satellite wave data and products in a common format, both historical and in near real time, from various European and American SAR and altimeter missions. Building on the successes of similar projects for Sea Surface Temperature and ocean colour, the project aims to stimulate increased use and analysis of satellite wave products. In addition to common-format satellite data the project will provide comparisons with in situ measurements, interactive data analysis tools and a pilot spatial wave forecast verification scheme for operational forecast production centres. The project will begin operations in January 2010, with direction from regular structured user consultation.
Gravitational waves from inflation
Guzzetti, Maria Chiara; Liguori, Michele; Matarrese, Sabino
2016-01-01
The production of a stochastic background of gravitational waves is a fundamental prediction of any cosmological inflationary model. The features of such a signal encode unique information about the physics of the Early Universe and beyond, thus representing an exciting, powerful window on the origin and evolution of the Universe. We review the main mechanisms of gravitational-wave production, ranging from quantum fluctuations of the gravitational field to other mechanisms that can take place during or after inflation. These include e.g. gravitational waves generated as a consequence of extra particle production during inflation, or during the (p)reheating phase. Gravitational waves produced in inflation scenarios based on modified gravity theories and second-order gravitational waves are also considered. For each analyzed case, the expected power-spectrum is given. We discuss the discriminating power among different models, associated with the validity/violation of the standard consistency relation between t...
Electromagnetic wave energy converter
Bailey, R. L. (Inventor)
1973-01-01
Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.
Sculpting Waves (Presentation Recording)
Engheta, Nader
2015-09-01
In electronics controlling and manipulating flow of charged carriers has led to design of numerous functional devices. In photonics, by analogy, this is done through controlling photons and optical waves. However, the challenges and opportunities are different in these two fields. Materials control waves, and as such they can tailor, manipulate, redirect, and scatter electromagnetic waves and photons at will. Recent development in condensed matter physics, nanoscience, and nanotechnology has made it possible to tailor materials with unusual parameters and extreme characteristics and with atomic precision and thickness. One can now construct structures much smaller than the wavelengths of visible light, thus ushering in unprecedented possibilities and novel opportunities for molding fields and waves at the nanoscale with desired functionalities. At such subwavelength scales, sculpting optical fields and waves provides a fertile ground for innovation and discovery. I will discuss some of the exciting opportunities in this area, and forecast some future directions and possibilities.
Ion Acoustic Waves in the Presence of Electron Plasma Waves
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave.......Long-wavelength ion acoustic waves in the presence of propagating short-wavelength electron plasma waves are examined. The influence of the high frequency oscillations is to decrease the phase velocity and the damping distance of the ion wave....
Investigation of Wave Transmission from a Floating Wave Dragon Wave Energy Converter
DEFF Research Database (Denmark)
Nørgaard, Jørgen Harck; Andersen, Thomas Lykke
2012-01-01
This paper focuses on the calibration of the MIKE21BW model against the measured wave height reduction behind a 24 kW/m Wave Dragon (WD) wave energy converter. A numerical model is used to determine the wave transmission through the floating WD in varying wave conditions. The transmission obtained...
Elimination of Spiral Waves and Competition between Travelling Wave Impulses and Spiral Waves
Institute of Scientific and Technical Information of China (English)
YUAN Guo-Yong; ZHANG Guang-Cai; WANG Guang-Rui; CHEN Shi-Gang; SUN Peng
2005-01-01
@@ The interaction between travelling wave impulses and spiral waves is studied and the results of their competition are related to the exciting period. From the results, it is known that the formation and development of spiral waves in cardiac tissue depend on the period by which the travelling wave impulses are excited. A method is proposed to eliminate spiral waves, which is easily operated.
Löhner-Böttcher, Johannes
2016-03-01
Context: The dynamic atmosphere of the Sun exhibits a wealth of magnetohydrodynamic (MHD) waves. In the presence of strong magnetic fields, most spectacular and powerful waves evolve in the sunspot atmosphere. Allover the sunspot area, continuously propagating waves generate strong oscillations in spectral intensity and velocity. The most prominent and fascinating phenomena are the 'umbral flashes' and 'running penumbral waves' as seen in the sunspot chromosphere. Their nature and relation have been under intense discussion in the last decades. Aims: Waves are suggested to propagate upward along the magnetic field lines of sunspots. An observational study is performed to prove or disprove the field-guided nature and coupling of the prevalent umbral and penumbral waves. Comprehensive spectroscopic observations at high resolution shall provide new insights into the wave characteristics and distribution across the sunspot atmosphere. Methods: Two prime sunspot observations were carried out with the Dunn Solar Telescope at the National Solar Observatory in New Mexico and with the Vacuum Tower Telescope at the Teide Observatory on Tenerife. The two-dimensional spectroscopic observations were performed with the interferometric spectrometers IBIS and TESOS. Multiple spectral lines are scanned co-temporally to sample the dynamics at the photospheric and chromospheric layers. The time series (1 – 2.5 h) taken at high spatial and temporal resolution are analyzed according to their evolution in spectral intensities and Doppler velocities. A wavelet analysis was used to obtain the wave power and dominating wave periods. A reconstruction of the magnetic field inclination based on sunspot oscillations was developed. Results and conclusions: Sunspot oscillations occur continuously in spectral intensity and velocity. The obtained wave characteristics of umbral flashes and running penumbral waves strongly support the scenario of slow-mode magnetoacoustic wave propagation along
Abnormal Waves Modelled as Second-order Conditional Waves
DEFF Research Database (Denmark)
Jensen, Jørgen Juncher
2005-01-01
The paper presents results for the expected second order short-crested wave conditional of a given wave crest at a specific point in time and space. The analysis is based on the second order Sharma and Dean shallow water wave theory. Numerical results showing the importance of the spectral density......, the water depth and the directional spreading on the conditional mean wave profile are presented. Application of conditional waves to model and explain abnormal waves, e.g. the well-known New Year Wave measured at the Draupner platform January 1st 1995, is discussed. Whereas the wave profile can be modelled...... quite well by the second order conditional wave including directional spreading and finite water depth the probability to encounter such a wave is still, however, extremely rare. The use of the second order conditional wave as initial condition to a fully non-linear three-dimensional analysis...
Nondiffracting Accelerating Waves: Weber waves and parabolic momentum
Bandres, Miguel A
2012-01-01
Diffraction is one of the universal phenomena of physics, and a way to overcome it has always represented a challenge for physicists. In order to control diffraction, the study of structured waves has become decisive. Here, we present nondiffracting spatially accelerating solutions of the Maxwell equations: the Weber waves. These nonparaxial waves propagate along a parabolic trajectory while preserving its shape to a good approximation. They are expressed in analytic closed form and naturally separate in forward and backward propagation. We show that the Weber waves are self-healing, can form periodic breather waves, and have a well-defined conserved quantity: the parabolic momentum. We find that our Weber waves for moderate to large values of the parabolic momenta can be described by a modulated Airy function. Because the Weber waves are exact time-harmonic solution of the wave equation, they have implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in ...
International Nuclear Information System (INIS)
We study the geometry of magnetogravity wave surfaces in an incompressible, isothermal, inviscid, nonrotating, flat, horizontally stratified perfectly conducting atmosphere. Our ultimate goal is the verification of the contention by Lighthill that such waves may contribute heavily to the heating of the upper solar atmosphere. The equations of the wave surface are determined from those of the wave normal surface using the envelope construction. For a vertical magnetic field, we find that for frequencies greater than the Vaisala-Brunt frequency N, the wave surfaces are arrow shaped, having both a point cusp and a circular cuspidal edge. The locations of these cusps are determined using the polar reciprocal relationship between the slowness (reciprocal velocity) and wave surfaces. We find that for high frequencies, these surfaces subtend small angles with respect to the origin, strongly suggesting the ability of these waves to carry energy upward. For a wave frequency equal to the Vaisala-Brunt, the surface is spherical, while for frequencies lower than the Vaisala-Brunt, the surfaces become infinite in extent. For the case of a horizontal magnetic field, we again determine the location of cuspidal edges. For oblique fields, we again find a line of self-intersection, provided the frequency ω is related to the angle zeta of the magnetic field with the vertical by ω2 > N2cos2zeta. The equation of these lines is derived: Z = cot zeta X, showing that the line is always directed along the magnetic field. The existence of the line of self-intersection suggests that magnetogravity waves, at least those of high enough frequency, can carry energy upward along the solar magnetic field, thus lending support to Lighthill's conjecture
Wave-wave interactions in solar type III radio bursts
International Nuclear Information System (INIS)
The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at fpe, 2fpe and 3 fpe (fpe is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts
Inner harbour wave agitation using boussinesq wave model
Directory of Open Access Journals (Sweden)
Panigrahi Jitendra K.
2015-01-01
Full Text Available Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity- to harbour site is established using Wave Model (WAM hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW. A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW. Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.
Zetie, K. P.
2015-05-01
There are many examples on the internet of videos of ‘pendulum wave machines’ and how to make them (for example, www.instructables.com/id/Wave-Pendulum/). The machine is simply a set of pendula of different lengths which, when viewed end on, produce wave-like patterns from the positions of the bobs. These patterns change with time, with new patterns emerging as the bobs change phase. In this article, the physics of the machine is explored and explained, along with tips on how to build such a device.
Contaminant migration between waves
International Nuclear Information System (INIS)
Multicomponent chromatography is presented within the framework of the theory of hyperbolic differential equations. It is applied to systems in which a metal competes with the proton for adsorption sites on hydrous ferric oxides. The transport equations can be solved analytically for a single abrupt change of the chemical composition of the feed, when the ionic strength is small (Riemann problem). Of the solutions (centered waves) only the rarefaction waves (diffuse waves) are discussed. They are used as orientation in the system with higher ionic strength
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...
Kaliski, S
2013-01-01
This book gives a comprehensive overview of wave phenomena in different media with interacting mechanical, electromagnetic and other fields. Equations describing wave propagation in linear and non-linear elastic media are followed by equations of rheological models, models with internal rotational degrees of freedom and non-local interactions. Equations for coupled fields: thermal, elastic, electromagnetic, piezoelectric, and magneto-spin with adequate boundary conditions are also included. Together with its companion volume Vibrations and Waves. Part A: Vibrations this work provides a wealth
International Nuclear Information System (INIS)
This invention concerns a device for simulating earth tremors. This device includes a seismic wave generator formed of a cylinder, one end of which is closed by one of the walls of a cell containing a soil, the other end being closed by a wall on which are fixed pyrotechnic devices generating shock waves inside the cylinder. These waves are transmitted from the cylinder to the cell through openings made in the cell wall. This device also includes a mechanical device acting as low-pass filter, located inside the cylinder and close to the cell wall
Mandal, Birendra Nath
2015-01-01
The theory of water waves is most varied and is a fascinating topic. It includes a wide range of natural phenomena in oceans, rivers, and lakes. It is mostly concerned with elucidation of some general aspects of wave motion including the prediction of behaviour of waves in the presence of obstacles of some special configurations that are of interest to ocean engineers. Unfortunately, even the apparently simple problems appear to be difficult to tackle mathematically unless some simplified assumptions are made. Fortunately, one can assume water to be an incompressible, in viscid and homogeneous
2008-01-01
This book presents recent scientific achievements in the investigation of magnetization dynamics in confined magnetic systems. Introduced by Bloch as plane waves of magnetization in unconfined ferromagnets, spin waves currently play an important role in the description of very small magnetic systems ranging from microelements, which form the basis of magnetic sensors, to magnetic nano-contacts. The spin wave confinement effect was experimentally discovered in the 1990s in permalloy microstripes. The diversity of systems where this effect is observed has been steadily growing since then, and
McCormick, Michael E
2007-01-01
This volume will prove of vital interest to those studying the use of renewable resources. Scientists, engineers, and inventors will find it a valuable review of ocean wave mechanics as well as an introduction to wave energy conversion. It presents physical and mathematical descriptions of the nine generic wave energy conversion techniques, along with their uses and performance characteristics.Author Michael E. McCormick is the Corbin A. McNeill Professor of Naval Engineering at the U.S. Naval Academy. In addition to his timely and significant coverage of possible environmental effects associa
Geyer, Anna
2016-01-01
Following a general principle introduced by Ehrnstr\\"{o}m et.al. we prove that for an equation modeling the free surface evolution of moderate amplitude waves in shallow water, all symmetric waves are traveling waves.
A relationship between wave steepness and wave age for wind waves in deep water
Institute of Scientific and Technical Information of China (English)
LIU Bin; DING Yun; GUAN Changlong
2007-01-01
Studying the relationship between wave steepness and wave age is import ant for describing wind wave growth with energy balance equation of significant waves. After invoking the dispersion relation of surface gravity wave in deep water, a new relationship between wave steepness and wave age is revealed based on the "3/2-power law" (Toba, 1972), in which wave steepness is a function of wave age with a drag coefficient as a parameter. With a given wave age, a larger drag coefficient would lead to larger wave steepness. This could be interpreted as the result of interaction between wind and waves.Comparing with previous relationships, the newly proposed one is more consistent with observational data in field and laboratory.
Lattice Waves, Spin Waves, and Neutron Scattering
Brockhouse, Bertram N.
1962-03-01
Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)
Resonance wave pumping with surface waves
Carmigniani, Remi; Gharib, Morteza; Violeau, Damien; Caltech-ENPC Collaboration
2015-11-01
The valveless impedance pump enables the production or amplification of a flow without the use of integrated mobile parts, thus delaying possible failures. It is usually composed of fluid-filled flexible tubing, closed by solid tubes. The flexible tube is pinched at an off-centered position relative to the tube ends. This generates a complex wave dynamic that results in a pumping phenomenon. It has been previously reported that pinching at intrinsic resonance frequencies of the system results in a strong pulsating flow. A case of a free surface wave pump is investigated. The resonance wave pump is composed of a rectangular tank with a submerged plate separating the water into a free surface and a recirculation rectangular section connected through two openings at each end of the tank. A paddle placed at an off-center position above the submerged plate is controlled in a heaving motion with different frequencies and amplitudes. Similar to the case of valveless impedance pump, we observed that near resonance frequencies strong pulsating flow is generated with almost no oscillations. A linear theory is developed to pseudo-analytically evaluate these frequencies. In addition, larger scale applications were simulated using Smoothed Particle Hydrodynamic codes.
Physical Investigation of Directional Wave Focusing and Breaking Waves in Wave Basin
Institute of Scientific and Technical Information of China (English)
LIU Shu-xue; Keyyong HONG
2005-01-01
An experimental scheme for the generation of directional focusing waves in a wave basin is established in this paper. The effects of the directional range, frequency width and center frequency on the wave focusing are studied. The distribution of maximum amplitude and the evolution of time series and spectra during wave packet propagation and the variation of water surface parameters are extensively investigated. The results reveal that the characteristics of focusing waves are significantly influenced by wave directionality and that the breaking criteria for directional waves are distinctly different from those for unidirectional waves.
Dark- and bright-rogue-wave solutions for media with long-wave-short-wave resonance.
Chen, Shihua; Grelu, Philippe; Soto-Crespo, J M
2014-01-01
Exact explicit rogue-wave solutions of intricate structures are presented for the long-wave-short-wave resonance equation. These vector parametric solutions feature coupled dark- and bright-field counterparts of the Peregrine soliton. Numerical simulations show the robustness of dark and bright rogue waves in spite of the onset of modulational instability. Dark fields originate from the complex interplay between anomalous dispersion and the nonlinearity driven by the coupled long wave. This unusual mechanism, not available in scalar nonlinear wave equation models, can provide a route to the experimental realization of dark rogue waves in, for instance, negative index media or with capillary-gravity waves. PMID:24580164
Sound wave transmission (image)
When sounds waves reach the ear, they are translated into nerve impulses. These impulses then travel to the brain where they are interpreted by the brain as sound. The hearing mechanisms within the inner ear, can ...
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Alla [Principle Power Inc., Berkeley, CA (United States)
2011-11-01
Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.
Tiec, Alexandre Le
2016-01-01
The existence of gravitational radiation is a natural prediction of any relativistic description of the gravitational interaction. In this chapter, we focus on gravitational waves, as predicted by Einstein's general theory of relativity. First, we introduce those mathematical concepts that are necessary to properly formulate the physical theory, such as the notions of manifold, vector, tensor, metric, connection and curvature. Second, we motivate, formulate and then discuss Einstein's equation, which relates the geometry of spacetime to its matter content. Gravitational waves are later introduced as solutions of the linearized Einstein equation around flat spacetime. These waves are shown to propagate at the speed of light and to possess two polarization states. Gravitational waves can interact with matter, allowing for their direct detection by means of laser interferometers. Finally, Einstein's quadrupole formulas are derived and used to show that nonspherical compact objects moving at relativistic speeds a...
Magnetoresistive waves in plasmas
International Nuclear Information System (INIS)
The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed
Observation of Gravitational Waves
Gonzalez, Gabriela
2016-06-01
On September 14 2015, the two LIGO gravitational wave detectors in Hanford, Washington and Livingston, Louisiana registered a nearly simultaneous signal with time-frequency properties consistent with gravitational-wave emission by the merger of two massive compact objects. Further analysis of the signals by the LIGO Scientific Collaboration and Virgo Collaboration revealed that the gravitational waves detected by LIGO came from the merger of a binary black hole (BBH) system approximately 420 Mpc distant (z=0.09) with constituent masses of 36 and 29 M_sun. I will describe the details of the observation, the status of ground-based interferometric detectors, and prospects for future observations in the new era of gravitational wave astronomy.
Chen, P F
2016-01-01
After the {\\em Solar and Heliospheric Observatory} ({\\em SOHO}) was launched in 1996, the aboard Extreme Ultraviolet Imaging Telescope (EIT) observed a global coronal wave phenomenon, which was initially named "EIT wave" after the telescope. The bright fronts are immediately followed by expanding dimmings. It has been shown that the brightenings and dimmings are mainly due to plasma density increase and depletion, respectively. Such a spectacular phenomenon sparked long-lasting interest and debates. The debates were concentrated on two topics, one is about the driving source, and the other is about the nature of this wavelike phenomenon. The controversies are most probably because there may exist two types of large-scale coronal waves that were not well resolved before the {\\em Solar Dynamics Observatory} ({\\em SDO}) was launched: one is a piston-driven shock wave straddling over the erupting coronal mass ejection (CME), and the other is an apparently propagating front, which may correspond to the CME frontal...
Cavaleri, Luigi; Bidlot, Jean-Raymond
2015-01-01
We consider the effect of rain on wind wave generation and dissipation. Rain falling on a wavy surface may have a marked tendency to dampen the shorter waves in the tail of the spectrum, the related range increasing with the rain rate. Following the coupling between meteorological and wave models, we derive that on the whole this should imply stronger wind and higher waves in the most energetic part of the spectrum. This is supported by numerical experiments. However, a verification based on the comparison between operational model results and measured data suggests that the opposite is true. This leads to a keen analysis of the overall process, in particular on the role of the tail of the spectrum in modulating the wind input and the white-capping. We suggest that the relationship between white-capping and generation by wind is deeper and more implicative than presently generally assumed.
DEFF Research Database (Denmark)
Margheritini, Lucia; Vicinanza, Diego; Frigaard, Peter
2008-01-01
The SSG (Sea Slot-cone Generator) is a wave energy converter of the overtopping type. The structure consists of a number of reservoirs one on the top of each others above the mean water level, in which the water of incoming waves is stored temporary. In each reservoir, expressively designed low...... head hydroturbines are converting the potential energy of the stored water into power. A key to success for the SSG will be the low cost of the structure and its robustness. The construction of the pilot plant is scheduled and this paper aims to describe the concept of the SSG wave energy converter and...... the studies behind the process that leads to its construction. The pilot plant is an on-shore full scale module in 3 levels with an expected power production of 320 MWh/y in the North Sea. Location, wave climate and laboratory tests results will be used here to describe the pilot plant and its...
Acoustics waves and oscillations
Sen, S.N.
2013-01-01
Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...
Hietala, Vincent M.; Vawter, Gregory A.
1993-01-01
The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.
National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have waves data. Because of the nature of SOS requests, requests for data...
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
International Nuclear Information System (INIS)
The advantages of using wave power as a renewable energy source are discussed. Various methods of harnessing wave power are also discussed, together with investment requirements and the relative costs of producing electricity by other means. Island communities who currently rely on imported diesel are interested. The provision of power for reverse osmosis plants producing drinking water is an attractive application. There are many potential devices but the best way forward has yet to be identified. (UK)
López Ariste, A.; Centeno, R.; Khomenko, E.
2016-06-01
Context. Waves in the magnetized solar atmosphere are one of the favourite means of transferring and depositing energy into the solar corona. The study of waves brings information not just on the dynamics of the magnetized plasma, but also on the possible ways in which the corona is heated. Aims: The identification and analysis of the phase singularities or dislocations provide us with a complementary approach to the magnetoacoustic and Aflvén waves propagating in the solar atmosphere. They allow us to identify individual wave modes, shedding light on the probability of excitation or the nature of the triggering mechanism. Methods: We use a time series of Doppler shifts measured in two spectral lines, filtered around the three-minute period region. The data show a propagating magnetoacoustic slow mode with several dislocations and, in particular, a vortex line. We study under what conditions the different wave modes propagating in the umbra can generate the observed dislocations. Results: The observed dislocations can be fully interpreted as a sequence of sausage and kink modes excited sequentially on average during 15 min. Kink and sausage modes appear to be excited independently and sequentially. The transition from one to the other lasts less than three minutes. During the transition we observe and model the appearance of superoscillations inducing large phase gradients and phase mixing. Conclusions: The analysis of the observed wave dislocations leads us to the identification of the propagating wave modes in umbrae. The identification in the data of superoscillatory regions during the transition from one mode to the other may be an important indicator of the location of wave dissipation.
International Nuclear Information System (INIS)
Nuclear power stations located on the coast take the water they use to cool their circuits from the sea. The water intake and discharge devices must be able to operate in all weathers, notably during extreme storms, with waves 10 m high and over. To predict the impact of the waves on the equipment, they are modeled digitally from the moment they form in the middle of the ocean right up to the moment they break on the shore. (authors)
Benoit Frisquet; Bertrand Kibler; Philippe Morin; Fabio Baronio; Matteo Conforti; Guy Millot; Stefan Wabnitz
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal no...
DEFF Research Database (Denmark)
Kramer, Morten; Kristensen, Tom Sten
Design pile loads in this document are based on the Morison equation. In Chapter 3 and 4 the background for the design loads provided in Chapter 5 are given. In the remaining chapters from Chapter 6 and onward discussions and explanations of the results are given. A historical list of activities ...... to the present revision is given in Appendix A. Calculations of extreme events with wave slamming and plunging wave breaking is included in Appendix B and C....
Fedele, Francesco
2015-01-01
We propose a new conceptual framework for the prediction of rogue waves and third-order space-time extremes of wind seas that relies on the Tayfun (1980) and Janssen (2009) models coupled with Adler-Taylor (2009) theory on the Euler characteristics of random fields. Extreme statistics of the Andrea rogue wave event are examined capitalizing on European Reanalysis (ERA)-interim data. A refinement of Janssen's (2003) theory suggests that in realistic oceanic seas characterized by short-crested ...
Wave Equation Inversion of Skeletonized SurfaceWaves
Zhang, Zhendong
2015-08-19
We present a surface-wave inversion method that inverts for the S-wave velocity from the Rayleigh dispersion curve for the fundamental-mode. We call this wave equation inversion of skeletonized surface waves because the dispersion curve for the fundamental-mode Rayleigh wave is inverted using finite-difference solutions to the wave equation. The best match between the predicted and observed dispersion curves provides the optimal S-wave velocity model. Results with synthetic and field data illustrate the benefits and limitations of this method.
The wave of the future - Searching for gravity waves
International Nuclear Information System (INIS)
Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang
The wave of the future - Searching for gravity waves
Goldsmith, Donald
1991-04-01
Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang.
The wave of the future - Searching for gravity waves
Energy Technology Data Exchange (ETDEWEB)
Goldsmith, D.
1991-04-01
Research on gravity waves conducted by such scientists as Gamov, Wheeler, Weber and Zel'dovich is discussed. Particular attention is given to current trends in the theoretical analysis of gravity waves carried out by theorists Kip Thorne and Leonid Grishchuk. The problems discussed include the search for gravity waves; calculation of the types of gravity waves; the possibility of detecting gravity waves from localized sources, e.g., from the collision of two black holes in a distant galaxy or the collapse of a star, through the Laser Interferometer Gravitational Wave Observatory; and detection primordial gravity waves from the big bang.
International Nuclear Information System (INIS)
Evolution of waves subject to a randomly varying growth rate is considered and the statistical properties of the waves are calculated in terms of the mean, variance, and correlation time of the growth rate. This enables stochastic growth to be studied without needing full knowledge of the microphysics. However, where the microphysics is understood, this approach also allows it to be easily incorporated into studies of larger-scale phenomena involving stochastic growth. Stochastic differential equations and Fokker--Planck equations are obtained, which describe the wave evolution in the presence of a variety of linear and nonlinear processes and boundary conditions, and it is shown that these phenomena can be diagnosed observationally through their effects on the statistical distribution of the wave field strengths. The results are particularly useful for waves with small dispersion, where they explain the strong wave clumping often observed in nature and emphasize the role of marginal stability in setting the level about which fluctuations occur and in determining their magnitude. Application to type III solar radio bursts illustrates many of the main results and verifies and generalizes earlier conclusions reached using a less rigorous approach. In particular, a new condition for marginally stable propagation of type III solar electron beams is found. copyright 1995 American Institute of Physics
Kory, Carol L.
1998-01-01
The traveling-wave tube (TWT) is a vacuum device invented in the early 1940's used for amplification at microwave frequencies. Amplification is attained by surrendering kinetic energy from an electron beam to a radio frequency (RF) electromagnetic wave. The demand for vacuum devices has been decreased largely by the advent of solid-state devices. However, although solid state devices have replaced vacuum devices in many areas, there are still many applications such as radar, electronic countermeasures and satellite communications, that require operating characteristics such as high power (Watts to Megawatts), high frequency (below 1 GHz to over 100 GHz) and large bandwidth that only vacuum devices can provide. Vacuum devices are also deemed irreplaceable in the music industry where musicians treasure their tube-based amplifiers claiming that the solid-state and digital counterparts could never provide the same "warmth" (3). The term traveling-wave tube includes both fast-wave and slow-wave devices. This article will concentrate on slow-wave devices as the vast majority of TWTs in operation fall into this category.
Robust Wave Resource Estimation
DEFF Research Database (Denmark)
Lavelle, John; Kofoed, Jens Peter
2013-01-01
necessary for WEC developers, both to optimise the WEC for the site, and to estimate its average yearly power production using a power matrix. The wave height and wave period sea states parameters are commonly characterized with a bivariate histogram. This paper presents bivariate histograms and kernel...... density estimates of the PDF as a function both of Hm0 and Tp, and Hm0 and T0;2, together with the mean wave power per unit crest length, Pw, as a function of Hm0 and T0;2. The wave elevation parameters, from which the wave parameters are calculated, are filtered to correct or remove spurious data. An......;2 or Hm0 and Tp for the Hanstholm site data are demonstrated. As an alternative, the non-parametric loess method, which does not rely on any assumptions about the shape of the wave elevation spectra, is used to accurately estimate Pw as a function of Hm0 and T0;2....
Exact solitary wave solutions of nonlinear wave equations
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The hyperbolic function method for nonlinear wave equations ispresented. In support of a computer algebra system, many exact solitary wave solutions of a class of nonlinear wave equations are obtained via the method. The method is based on the fact that the solitary wave solutions are essentially of a localized nature. Writing the solitary wave solutions of a nonlinear wave equation as the polynomials of hyperbolic functions, the nonlinear wave equation can be changed into a nonlinear system of algebraic equations. The system can be solved via Wu Elimination or Grbner base method. The exact solitary wave solutions of the nonlinear wave equation are obtained including many new exact solitary wave solutions.
Chiral heat wave and mixed waves in kinetic theory
Frenklakh, D
2016-01-01
We study collective excitations in hot rotating chiral media in presence of magnetic field in kinetic theory, namely Chiral Heat Wave and its' mixings with Chiral Vortical Wave and Chiral Magnetic Wave. Our results for velocities of these waves have slight alterations from those obtained earlier. We explain the origin of these alterations and also give the most general expressions for the velocities of all these waves in hydrodynamic approach.
Evolution of Rogue Waves in Interacting Wave Systems
Grönlund, A.; Eliasson, B.; Marklund, M.
2009-01-01
Large amplitude water waves on deep water has long been known in the sea faring community, and the cause of great concern for, e.g., oil platform constructions. The concept of such freak waves is nowadays, thanks to satellite and radar measurements, well established within the scientific community. There are a number of important models and approaches for the theoretical description of such waves. By analyzing the scaling behavior of freak wave formation in a model of two interacting waves, d...
The Material Plasma Exposure eXperiment (MPEX)
Rapp, J.; Biewer, T. M.; Bigelow, T. S.; Canik, J.; Caughman, J. B. O.; Duckworth, R. C.; Goulding, R. H.; Hillis, D. L.; Lore, J. D.; Lumsdaine, A.; McGinnis, W. D.; Meitner, S. J.; Owen, L. W.; Shaw, G. C.; Luo, G.-N.
2014-10-01
Next generation plasma generators have to be able to access the plasma conditions expected on the divertor targets in ITER and future devices. The Material Plasma Exposure eXperiment (MPEX) will address this regime with electron temperatures of 1--10 eV and electron densities of 1021--1020 m-3. The resulting heat fluxes are about 10 MW/m2. MPEX is designed to deliver those plasma conditions with a novel Radio Frequency plasma source able to produce high density plasmas and heat electron and ions separately with Electron Bernstein Wave (EBW) heating and Ion Cyclotron Resonance Heating (ICRH). Preliminary modeling has been used for pre-design studies of MPEX. MPEX will be capable to expose neutron irradiated samples. In this concept targets will be irradiated in ORNL's High Flux Isotope Reactor (HFIR) or possibly at the Spallation Neutron Source (SNS) and then subsequently (after a sufficient long cool-down period) exposed to fusion reactor relevant plasmas in MPEX. The current state of the pre-design of MPEX including the concept of handling irradiated samples will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under Contract DE-AC-05-00OR22725.
Goodman, T. P.; TCV Team
2008-05-01
The ECH system on the TCV tokamak consists of six gyrotrons (82.6 GHz/0.5 MW/2 s) used for X2 and electron Bernstein wave (EBW) ECH/ECCD with individual low-field-side launchers. Three additional gyrotrons (118 GHz/0.5 MW/2 s) are used for X3-ECH in a top-launch configuration to provide central heating of high-density plasmas, at nearly 3 times the cutoff density of X2. The X2 subsystem was installed by the end of 1999 and the X3 subsystem by the end of 2003, making 4.2 MW available for experiments. The installation work provides data related to testing, repair and reliability of a complex ECH system designed to allow the highest possible degree of automation, integration and flexibility in the experimental programme. Its effective integration into the TCV plant is evidenced by the fact that the mean time between shots when operating with ECH increases roughly in proportion to the increase in the resources required to prepare, monitor and record the experimental sessions. Each of the X2 and X3 subsystems is routinely individually operated by one person. This gives confidence that with proper layout, planning and integration, the EC systems of future fusion experiments, such as ITER, can routinely provide reliable actuators, on demand.
Fedele, Francesco
2015-01-01
In this paper, we revisit extreme wave statistics related to the 1993's Draupner freak wave event drawing on ERA-interim reanalysis data. In particular, we study the influence of nonlinear wave-wave interactions and space-time variability of the wave field on the predictions of the maximum wave and crest heights expected at the Draupner site. According to Janssen's (2003) theory, in realistic oceanic storms characterized by short-crested seas the wave field forgets its initial conditions and adjusts to a non-Gaussian state dominated by second order bound nonlinearities on time scales $t\\gg t_{c}\\approx0.13T_{0}/\
Periodic waves in nonlinear metamaterials
International Nuclear Information System (INIS)
Periodic waves are presented in this Letter. With symbolic computation, equations for monochromatic waves are studied, and analytic periodic waves are obtained. Factors affecting properties of periodic waves are analyzed. Nonlinear metamaterials, with the continuous distribution of the dielectric permittivity obtained, are different from the ones with the discrete distribution. -- Highlights: ► Equations for the monochromatic waves in transverse magnetic polarization have been studied. ► Analytic periodic waves for the equations have been obtained. ► Periodic waves are theoretically presented and studied in the nonlinear metamaterials.
SOME PROBLEMS ABOUT SHIP WAVES
Institute of Scientific and Technical Information of China (English)
Liu Min-jia
2003-01-01
Several problems about ship waves were discussed in the dissertation:(1) Transient ship waves from calmness to the generation of steady-state ship waves were described. (2) The procedure of the formation of the V-shaped steady-state ship waves were clearly shown, and the difference of ship waves on an inviscid fluid and on a viscous fluid was exmined. (3) With the Lighthill two-stage scheme, the algebraic expression for ship waves on a viscous fluid of finite depth was obtained.(4) Singularity on the two boundaries of the ship waves was treated.
SCALAR WAVES AND WIRELESS POWER
Directory of Open Access Journals (Sweden)
Trunev A. P.
2013-11-01
Full Text Available It is established that in the classical electrodynamics with Lorenz gauge there are solutions in the form of waves of scalar and vector potential at zero magnetic and electric field. It is shown that wave scalar and vector potential can interact with the substance, causing ionization of the atoms and molecules. The analogue of scalar waves in electrodynamics and sound waves in gas dynamics is discussed. Proposed technical application of the waves of scalar and vector potential similar to acoustic waves. Discusses Tesla invented electrical device capable of generating and receiving scalar waves
Wave calculus based upon wave logic
International Nuclear Information System (INIS)
A number operator has been introduced based upon the binary (p-nary) presentation of numbers. This operator acts upon a numerical state vector. Generally the numerical state vector describes numbers that are not precise but smeared in a quantum sense. These states are interrupted in wave logic terms, according to which concepts may exist within the inner language of a phenomenon that in principle cannot be translated into the language of the investigator. In particular, states may exist where mean values of a quantity, continuous in classical limits, take only discrete values. Operators for differentiation and integration of operator functions are defined, which take the usual form in the classical limit. (author)
Metamaterials, from electromagnetic waves to water waves, bending waves and beyond
Dupont, G.
2015-08-04
We will review our recent work on metamaterials for different types of waves. Transposition of transform optics to water waves and bending waves on plates will be considered with potential applications of cloaking to water waves protection and anti-vibrating systems.
Yuan, Tao
Sensing and imaging using Terahertz (THz) radiation has attracted more and more interest in the last two decades thanks to the abundant material 'finger prints' in the THz frequency range. The low photon energy also makes THz radiation an attractive tool for nondestructive evaluation of materials and devices, biomedical applications, security checks and explosive screening. Due to the long wavelength, the far-field THz wave optical systems have relatively low spatial resolution. This physical limitation confines THz wave sensing and imaging to mostly macro-size samples. To investigate local material properties or micro-size structures and devices, near-field technology has to be employed. In this dissertation, the Electro-Optical THz wave emission microscope is investigated. The basic principle is to focus the femtosecond laser to a tight spot on a thin THz emitter layer to produce a THz wave source with a similar size as the focus spot. The apparatus provides a method for placing a THz source with sub-wavelength dimension in the near-field range of the investigated sample. Spatial resolution to the order of one tenth of the THz wavelength is demonstrated by this method. The properties of some widely used THz wave emission materials under tight focused pump light are studied. As an important branch of THz time domain spectroscopy (THz-TDS), THz wave emission spectroscopy has been widely used as a tool to investigate the material physics, such as energy band structure, carrier dynamics, material nonlinear properties and dynamics. As the main work of this dissertation, we propose to combine the THz wave emission spectroscopy with scanning probe microscopy (SPM) to build a tip-assisted THz wave emission microscope (TATEM), which is a valuable extension to current SPM science and technology. Illuminated by a femtosecond laser, the biased SPM tip forms a THz wave source inside the sample beneath the tip. The source size is proportional to the apex size of the tip so
Infragravity Waves Produced by Wave Groups on Beaches
Institute of Scientific and Technical Information of China (English)
邹志利; 常梅
2003-01-01
The generation of low frequency waves by a single or double wave groups incident upon two plane beaches with the slope of 1/40 and 1/100 is investigated experimentally and numerically. A new type of wave maker signal is used to generate the groups, allowing the bound long wave (set-down) to be included in the group. The experiments show that the low frequency wave is generated during breaking and propagation to the shoreline of the wave group. This process of generation and propagation of low frequency waves is simulated numerically by solving the short-wave averaged mass and momentum conservation equations. The computed and measured results are in good agreement. The mechanism of generation of low frequency waves in the surf zone is examined and discussed.
Prototype Testing of the Wave Energy Converter Wave Dragon
DEFF Research Database (Denmark)
Kofoed, Jens Peter; Frigaard, Peter; Friis-Madsen, Erik;
2006-01-01
The Wave Dragon is an offshore wave energy converter of the overtopping type. It consists of two wave reflectors focusing the incoming waves towards a ramp, a reservoir for collecting the overtopping water and a number of hydro turbines for converting the pressure head into power. In the period...... from 1998 to 2001 extensive wave tank testing on a scale model was carried at Aalborg University. Then, a 57!27 m wide and 237 tonnes heavy (incl. ballast) prototype of the Wave Dragon, placed in Nissum Bredning, Denmark, was grid connected in May 2003 as the world’s first offshore wave energy...... converter. The prototype is fully equipped with hydro turbines and automatic control systems, and is instrumented in order to monitor power production, wave climate, forces in mooring lines, stresses in the structure and movements of the Wave Dragon. In the period May 2003 to January 2005 an extensive...
International Nuclear Information System (INIS)
Experiments on the fast wave in the range of high ion cyclotron harmonics in the ACT-1 device show that current drive is possible with the fast wave just as it is for the lower hybrid wave, except that it is suitable for higher plasma densities. A 1400 loop antenna launched the high ion cyclotron harmonic fast wave [ω/Ω = O(10)] into a He+ plasma with n/sub e/approx. =4 x 1012 cm-3 and B = 4.5 kG. Probe and magnetic loop diagnostics and FIR laser scattering confirmed the presence of the fast wave, and the Rogowski loop indicated that the circulating plasma current increased by up to 40A with 1 kW of coupled power, which is comparable to lower hybrid current drive in the same device with the same unidirectional fast electron beam used as the target for the RF. A phased antenna array would be used for FWCD in a tokamak without the E-beam
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-02-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system.
Frisquet, Benoit; Kibler, Bertrand; Morin, Philippe; Baronio, Fabio; Conforti, Matteo; Millot, Guy; Wabnitz, Stefan
2016-01-01
Photonics enables to develop simple lab experiments that mimic water rogue wave generation phenomena, as well as relativistic gravitational effects such as event horizons, gravitational lensing and Hawking radiation. The basis for analog gravity experiments is light propagation through an effective moving medium obtained via the nonlinear response of the material. So far, analogue gravity kinematics was reproduced in scalar optical wave propagation test models. Multimode and spatiotemporal nonlinear interactions exhibit a rich spectrum of excitations, which may substantially expand the range of rogue wave phenomena, and lead to novel space-time analogies, for example with multi-particle interactions. By injecting two colliding and modulated pumps with orthogonal states of polarization in a randomly birefringent telecommunication optical fiber, we provide the first experimental demonstration of an optical dark rogue wave. We also introduce the concept of multi-component analog gravity, whereby localized spatiotemporal horizons are associated with the dark rogue wave solution of the two-component nonlinear Schrödinger system. PMID:26864099
Superconducting traveling wave accelerators
International Nuclear Information System (INIS)
This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 106 in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 103, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRA reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table
Potential changes of wave steepness and occurrence of rogue waves
Bitner-Gregersen, Elzbieta M.; Toffoli, Alessandro
2015-04-01
Wave steepness is an important characteristic of a sea state. It is also well established that wave steepness is one of the parameter responsible for generation of abnormal waves called also freak or rogue waves. The study investigates changes of wave steepness in the past and future wave climate in the North Atlantic. The fifth assessment report IPCC (2013) uses four scenarios for future greenhouse gas concentrations in the atmosphere called Representative Concentration Pathways (RCP). Two of these scenarios RCP 4.5 and RCP 8.5 have been selected to project future wave conditions in the North Atlantic. RCP 4.5 is believed to achieve the political target of a maximum global mean temperature increase of 2° C while RPC 8.5 is close to 'business as usual' and expected to give a temperature increase of 4° C or more. The analysis includes total sea, wind sea and swell. Potential changes of wave steepness for these wave systems are shown and compared with wave steepness derived from historical data. Three historical data sets with different wave model resolutions are used. The investigations show also changes in the mean wind direction as well as in the relative direction between wind sea and swell. Consequences of wave steepness changes for statistics of surface elevation and generation of rogue waves are demonstrated. Uncertainties associated with wave steepness projections are discussed.
Extreme waves and modulational instability: wave flume experiments on irregular waves
Onorato, M.; Osborne, A.R.; M.Serio; Cavaleri, L.; Brandini, C.; Stansberg, C. T.
2003-01-01
We discuss the formation of large amplitude waves for sea states characterized by JONSWAP spectra with random phases. In this context we discuss experimental results performed in one of the largest wave tank facilities in the world. We present experimental evidence that the tail of the cumulative probability function of the wave heights for random waves strongly depends on the ratio between the wave steepness and the spectral bandwidth. When this ratio, called the Benjamin-Feir Index, is larg...
Numerical Modelling of Wave Run-Up: Regular Waves
DEFF Research Database (Denmark)
Ramirez, Jorge; Frigaard, Peter; Andersen, Thomas Lykke;
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...... surface. NS3 is used to simulate the wave run-up due to a regular wave to calculate the maximum wave run-up around a cylinder. The aim of this paper is shown the calculations of NS3 code and compared with the data obtained from the large scale test performed in Grossen Wellenkanal (GWK...
Experimental Study on the WavePiston Wave Energy Converter
DEFF Research Database (Denmark)
Pecher, Arthur; Kofoed, Jens Peter; Angelelli, E.
This report presents the results of an experimental study of the power performance of the WavePiston wave energy converter. It focuses mainly on evaluating the power generating capabilities of the device and the effect of the following issues: Scaling ratios PTO loading Wave height and wave period...... dependency Oblique incoming waves Distance between plates During the study, the model supplied by the client, WavePiston, has been rigorously tested as all the anticipated tests have been done thoroughly and during all tests, good quality data has been obtained from all the sensors....
The gravitational wave experiment
Bertotti, B.; Ambrosini, R.; Asmar, S. W.; Brenkle, J. P.; Comoretto, G.; Giampieri, G.; Less, L.; Messeri, A.; Wahlquist, H. D.
1992-01-01
Since the optimum size of a gravitational wave detector is the wave length, interplanetary dimensions are needed for the mHz band of interest. Doppler tracking of Ulysses will provide the most sensitive attempt to date at the detection of gravitational waves in the low frequency band. The driving noise source is the fluctuations in the refractive index of interplanetary plasma. This dictates the timing of the experiment to be near solar opposition and sets the target accuracy for the fractional frequency change at 3.0 x 10 exp -14 for integration times of the order of 1000 sec. The instrumentation utilized by the experiment is distributed between the radio systems on the spacecraft and the seven participating ground stations of the Deep Space Network and Medicina. Preliminary analysis is available of the measurements taken during the Ulysses first opposition test.
Lucas, Timothy S.
1991-01-01
A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.
Yerganian, Simon Scott
2001-07-17
A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.
Gurnett, Donald A.
1995-01-01
An overview is given of spacecraft observations of plasma waves in the solar system. In situ measurements of plasma phenomena have now been obtained at all of the planets except Mercury and Pluto, and in the interplanetary medium at heliocentric radial distances ranging from 0.29 to 58 AU. To illustrate the range of phenomena involved, we discuss plasma waves in three regions of physical interest: (1) planetary radiation belts, (2) planetary auroral acceleration regions and (3) the solar wind. In each region we describe examples of plasma waves that are of some importance, either due to the role they play in determining the physical properties of the plasma, or to the unique mechanism involved in their generation.
Standing wave linear accelerator
International Nuclear Information System (INIS)
Consideration is being given to standing wave linear accelerator containing generator, phase shifter, two accelerating resonator sections, charged particle injector and waveguide bridge. Its first arm is oined up with generator via the phase shifter, the second and the third ones-with accelerating sections and the fourth one - with HF-power absorber. HF-power absorber represents a section of circular diaphragmatic wavequide with transformer with input wave and intrawaveguide output load located between injector and the first accelerating section. The section possesses holes in side walls lying on accelerator axis. The distances between centers of the last cell of the fast accelerating section and the first cell of the second accelerating sectiOn equal (2n+3)lambda/4, where n=1, 2, 3..., lambda - wave length of generator. The suggested system enables to improve by one order spectral characteristics of accelerators as compared to the prototype in which magnetrons are used as generator
DEFF Research Database (Denmark)
Dühring, Maria Bayard
The work of this project is concerned with the simulation of surface acoustic waves (SAW) and topology optimization of SAW devices. SAWs are elastic vibrations that propagate along a material surface and are extensively used in electromechanical filters and resonators in telecommunication. A new...... application is modulation of optical waves in waveguides. This presentation elaborates on how a SAW is generated by interdigital transducers using a 2D model of a piezoelectric, inhomogeneous material implemented in the high-level programming language Comsol Multiphysics. The SAW is send through a model of a...... output waveguide and the MZI can thus be used as an optical switch. It is explained how the mechanical model of the SAW is coupled to a model of the optical waves such that the change in effective refractive index introduced in the MZI arms by the SAW can be calculated. Results of a parameter study of...
DEFF Research Database (Denmark)
Bredmose, Henrik; Peregrine, D.H.; Bullock, G.N.
2009-01-01
When an ocean wave breaks against a steep-fronted breakwater, sea wall or a similar marine structure, its impact on the structure can be very violent. This paper describes the theoretical studies that, together with field and laboratory investigations, have been carried out in order to gain a...... better understanding of the processes involved. The wave's approach towards a structure is modelled with classical irrotational flow to obtain the different types of impact profiles that may or may not lead to air entrapment. The subsequent impact is modelled with a novel compressible-flow model for a...... homogeneous mixture of incompressible liquid and ideal gas. This enables a numerical description of both trapped air pockets and the propagation of pressure shock waves through the aerated water. An exact Riemann solver is developed to permit a finite-volume solution to the flow model with smallest possible...
Tuck, J.L.
1955-03-01
This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.
2016-01-01
This volume brings together four lecture courses on modern aspects of water waves. The intention, through the lectures, is to present quite a range of mathematical ideas, primarily to show what is possible and what, currently, is of particular interest. Water waves of large amplitude can only be fully understood in terms of nonlinear effects, linear theory being not adequate for their description. Taking advantage of insights from physical observation, experimental evidence and numerical simulations, classical and modern mathematical approaches can be used to gain insight into their dynamics. The book presents several avenues and offers a wide range of material of current interest. Due to the interdisciplinary nature of the subject, the book should be of interest to mathematicians (pure and applied), physicists and engineers. The lectures provide a useful source for those who want to begin to investigate how mathematics can be used to improve our understanding of water wave phenomena. In addition, some of the...
Goertz, C. K.
1986-01-01
Three planets, the earth, Jupiter and Saturn are known to emit nonthermal radio waves which require coherent radiation processes. The characteristic features (frequency spectrum, polarization, occurrence probability, radiation pattern) are discussed. Radiation which is externally controlled by the solar wind is distinguished from internally controlled radiation which only originates from Jupiter. The efficiency of the externally controlled radiation is roughly the same at all three planets (5 x 10 to the -6th) suggesting that similar processes are active there. The maser radiation mechanism for the generation of the radio waves and general requirements for the mechanism which couples the power generator to the region where the radio waves are generated are briefly discussed.
Robinett, R W
2004-01-01
The numerical prediction, theoretical analysis, and experimental verification of the phenomenon of wave packet revivals in quantum systems has flourished over the last decade and a half. Quantum revivals are characterized by initially localized quantum states which have a short-term, quasi-classical time evolution, which then can spread significantly over several orbits, only to reform later in the form of a quantum revival in which the spreading reverses itself, the wave packet relocalizes, and the semi-classical periodicity is once again evident. Relocalization of the initial wave packet into a number of smaller copies of the initial packet (`minipackets' or `clones') is also possible, giving rise to fractional revivals. Systems exhibiting such behavior are a fundamental realization of time-dependent interference phenomena for bound states with quantized energies in quantum mechanics and are therefore of wide interest in the physics and chemistry communities. We review the theoretical machinery of quantum w...
Energy Technology Data Exchange (ETDEWEB)
Graham, T. B.
2010-04-01
The IR Hot Wave{trademark} furnace is a breakthrough heat treatment system for manufacturing metal components. Near-infrared (IR) radiant energy combines with IR convective heating for heat treating. Heat treatment is an essential process in the manufacture of most components. The controlled heating and cooling of a metal or metal alloy alters its physical, mechanical, and sometimes chemical properties without changing the object's shape. The IR Hot Wave{trademark} furnace offers the simplest, quickest, most efficient, and cost-effective heat treatment option for metals and metal alloys. Compared with other heat treatment alternatives, the IR Hot Wave{trademark} system: (1) is 3 to 15 times faster; (2) is 2 to 3 times more energy efficient; (3) is 20% to 50% more cost-effective; (4) has a {+-}1 C thermal profile compared to a {+-}10 C thermal profile for conventional gas furnaces; and (5) has a 25% to 50% smaller footprint.
Superluminal Gravitational Waves
Moffat, J W
2014-01-01
The quantum gravity effects of vacuum polarization of gravitons propagating in a curved spacetime cause the quantum vacuum to act as a dispersive medium with a refractive index. Due to this dispersive medium gravitons acquire superluminal velocities. The dispersive medium is produced by higher derivative curvature contributions to the effective gravitational action. It is shown that in a Friedmann-Lema\\^{i}tre-Robertson-Walker spacetime in the early universe near the Planck time $t_{\\rm PL}\\gtrsim 10^{-43}\\,{\\rm sec}$, the speed of gravitational waves $c_g\\gg c_{g0}=c_0$, where $c_{g0}$ and $c_0$ are the speeds of gravitational waves and light today. The large speed of gravitational waves stretches their wavelengths to super-horizon sizes, allowing them to be observed in B-polarization experiments.
Directory of Open Access Journals (Sweden)
A. V. Vikulin
2015-09-01
Full Text Available Gravity phenomena related to the Earth movements in the Solar System and through the Galaxy are reviewed. Such movements are manifested by geological processes on the Earth and correlate with geophysical fields of the Earth. It is concluded that geodynamic processes and the gravity phenomena (including those of cosmic nature are related. The state of the geomedium composed of blocks is determined by stresses with force moment and by slow rotational waves that are considered as a new type of movements [Vikulin, 2008, 2010]. It is shown that the geomedium has typical rheid properties [Carey, 1954], specifically an ability to flow while being in the solid state [Leonov, 2008]. Within the framework of the rotational model with a symmetric stress tensor, which is developed by the authors [Vikulin, Ivanchin, 1998; Vikulin et al., 2012a, 2013], such movement of the geomedium may explain the energy-saturated state of the geomedium and a possibility of its movements in the form of vortex geological structures [Lee, 1928]. The article discusses the gravity wave detection method based on the concept of interactions between gravity waves and crustal blocks [Braginsky et al., 1985]. It is concluded that gravity waves can be recorded by the proposed technique that detects slow rotational waves. It is shown that geo-gravitational movements can be described by both the concept of potential with account of gravitational energy of bodies [Kondratyev, 2003] and the nonlinear physical acoustics [Gurbatov et al., 2008]. Based on the combined description of geophysical and gravitational wave movements, the authors suggest a hypothesis about the nature of spin, i.e. own moment as a demonstration of the space-time ‘vortex’ properties.
Wave Turbulence on Water Surface
Nazarenko, Sergey; Lukaschuk, Sergei
2016-03-01
We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.
Marsh, Stanley P.
1988-01-01
An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.
International Nuclear Information System (INIS)
CaWave User's Guide explains how to use the CaWave functions which were specifically written in PV-WAVE command language and C language for EPICS users. CaWave consists of a special set of external channel access functions which provides the PV-WAVE users with easy and flexible access of channel information across the IOC networks. It also provides a complete set of process variable event monitoring functions. This document also gives examples how a PV-WAVE user can interface to channel access devices. It is assumed that the user is already familiar with using PV-WAVE. Few simple example modules of using PV-WAVE command language with CaWave functions are also given in this document
Nonlinear elastic waves in materials
Rushchitsky, Jeremiah J
2014-01-01
The main goal of the book is a coherent treatment of the theory of propagation in materials of nonlinearly elastic waves of displacements, which corresponds to one modern line of development of the nonlinear theory of elastic waves. The book is divided on five basic parts: the necessary information on waves and materials; the necessary information on nonlinear theory of elasticity and elastic materials; analysis of one-dimensional nonlinear elastic waves of displacement – longitudinal, vertically and horizontally polarized transverse plane nonlinear elastic waves of displacement; analysis of one-dimensional nonlinear elastic waves of displacement – cylindrical and torsional nonlinear elastic waves of displacement; analysis of two-dimensional nonlinear elastic waves of displacement – Rayleigh and Love nonlinear elastic surface waves. The book is addressed first of all to people working in solid mechanics – from the students at an advanced undergraduate and graduate level to the scientists, professional...
Conti, C; Conti, Claudio; Trillo, Stefano
2003-01-01
We predict that an ultra-cold Bose gas in an optical lattice can give rise to a new form of condensation, namely matter X waves. These are non-spreading 3D wave-packets which reflect the symmetry of the Laplacian with a negative effective mass along the lattice direction, and are allowed to exist in the absence of any trapping potential even in the limit of non-interacting atoms. This result has also strong implications for optical propagation in periodic structures
Hietala, N; Salman, H; Barenghi, C F
2016-01-01
Two vortex rings can form a localized configuration whereby they continually pass through one another in an alternating fashion. This phenomenon is called leapfrogging. Using parameters suitable for superfluid helium-4, we describe a recurrence phenomenon that is similar to leapfrogging which occurs for two coaxial straight vortex filaments with the same Kelvin wave mode. For small amplitude Kelvin waves we demonstrate that our full Biot-Savart simulations closely follow predictions obtained from a simpified model that provides an analytical approximation developed for nearly parallel vortices. Our results are also relevant to thin-cored helical vortices in classical fluids.
Lominadze, D G
2013-01-01
Cyclotron Waves in Plasma is a four-chapter text that covers the basic physical concepts of the theory of cyclotron waves and cyclotron instabilities, brought about by the existence of steady or alternating plasma currents flowing perpendicular to the magnetic field.This book considers first a wide range of questions associated with the linear theory of cyclotron oscillations in equilibrium plasmas and in electron plasmas in metals and semiconductors. The next chapter deals with the parametric excitation of electron cyclotron oscillations in plasma in an alternating electric field. A chapter f
Digital Repository Service at National Institute of Oceanography (India)
Varkey, M.J.
of wave-energy for generation of electricty. Wind while blowing over the sea surface trans- fers huge amounts of energy into the sea by imparting oscillatory motion to the surface. This includes both ki- netic and potential Chaotic sea surface; (inset) a... stimulation and excite- ment since it has much complexity and scope for further developments. The recently developed wonder-tool of mathematics, 'fractals' can also be used to model sea surfaces. Generation of waves on the sea surface is a very complex process...
Périnet, Nicolas; Chergui, Jalel; Juric, Damir; Shin, Seungwon
2016-01-01
We report on the numerical and theoretical study of the subcritical bifurcation of parametrically amplified waves appearing at the interface between two immiscible incompressible fluids when the layer of the lower fluid is very shallow. As a critical control parameter is surpassed, small amplitude surface waves bifurcate towards highly nonlinear ones, with twice their amplitude. We propose a simple phenomenological model which can describe the observed bifurcation. We relate this hysteresis with the change of shear stress using a simple stress balance, in agreement with numerical results.
International Nuclear Information System (INIS)
The physics of Alfven-wave heating is particularly sensitive to the character of the linear mode conversion which occurs at the Alfven resonance layer. Parameter changes can profoundly affect both the location within the plasma and the mechanism for the power absorption. Under optimal conditions the heating power may be absorbed by electron Landau damping and by electron transit-time magnetic pumping in the plasma interior, or by the same processes acting near the resonance layer on the mode-converted kinetic Alfven wave. The method is outlined for computing the coefficients for reflection, transmission and absorption at the resonance layer and some representative results are offered
Mottola, Emil
2016-03-01
General Relativity receives quantum corrections relevant at macroscopic distance scales and near event horizons. These arise from the conformal scalar degree of freedom in the extended effective field theory (EFT) of gravity generated by the trace anomaly of massless quantum fields in curved space. Linearized around flat space this quantum scalar degree of freedom combines with the conformal part of the metric and predicts the existence of scalar spin-0 ``breather'' propagating gravitational waves in addition to the transverse tensor spin-2 waves of classical General Relativity. Estimates of the expected strength of scalar gravitational radiation from compact astrophysical sources are given.
Waves on Noncommutative Spacetimes
Balachandran, A. P.; Kumar S. Gupta; Kurkcuoglu, S.
2005-01-01
Waves on ``commutative'' spacetimes like R^d are elements of the commutative algebra C^0(R^d) of functions on R^d. When C^0(R^d) is deformed to a noncommutative algebra {\\cal A}_\\theta (R^d) with deformation parameter \\theta ({\\cal A}_0 (R^d) = C^0(R^d)), waves being its elements, are no longer complex-valued functions on R^d. Rules for their interpretation, such as measurement of their intensity, and energy, thus need to be stated. We address this task here. We then apply the rules to interf...
Metamaterials and wave control
Lheurette, Eric
2013-01-01
Since the concept was first proposed at the end of the 20th Century, metamaterials have been the subject of much research and discussion throughout the wave community. More than 10 years later, the number of related published articles is increasing significantly. Onthe one hand, this success can be attributed to dreams of new physical objects which are the consequences of the singular properties of metamaterials. Among them, we can consider the examples of perfect lensing and invisibility cloaking. On other hand,metamaterials also provide new tools for the design of well-known wave functions s
Nondispersing Bohr Wave Packets
International Nuclear Information System (INIS)
Long-lived, nondispersing circular, or Bohr, wave packets are produced starting from Li Rydberg atoms by exposing them first to a linearly polarized microwave field at the orbital frequency, 17.6 GHz at principal quantum number n=72, which locks the electron's motion into an approximately linear orbit in which the electron oscillates in phase with the microwave field. The microwave polarization is changed to circular polarization slowly compared to the orbital frequency, and the electron's motion follows, resulting in a nondispersing Bohr wave packet
On the generation of internal wave modes by surface waves
Harlander, Uwe; Kirschner, Ian; Maas, Christian; Zaussinger, Florian
2016-04-01
Internal gravity waves play an important role in the ocean since they transport energy and momentum and the can lead to mixing when they break. Surface waves and internal gravity waves can interact. On the one hand, long internal waves imply a slow varying shear current that modifies the propagation of surface waves. Surface waves generated by the atmosphere can, on the other hand, excite internal waves by nonlinear interaction. Thereby a surface wave packet consisting of two close frequencies can resonate with a low frequency internal wave (Phillips, 1966). From a theoretical point of view, the latter has been studied intensively by using a 2-layer model, i.e. a surface layer with a strong density contrast and an internal layer with a comparable weak density contrast (Ball, 1964; Craig et al., 2010). In the present work we analyse the wave coupling for a continuously stratified fluid using a fully non-linear 2D numerical model (OpenFoam) and compare this with laboratory experiments (see Lewis et al. 1974). Surface wave modes are used as initial condition and the time development of the dominant surface and internal waves are studied by spectral and harmonic analysis. For the simple geometry of a box, the results are compared with analytical spectra of surface and gravity waves. Ball, F.K. 1964: Energy transfer between external and internal gravity waves. J. Fluid Mech. 19, 465. Craig, W., Guyenne, P., Sulem, C. 2010: Coupling between internal and surface waves. Natural Hazards 57, 617-642. Lewis, J.E., Lake, B.M., Ko, D.R.S 1974: On the interaction of internal waves and surfacr gravity waves, J. Fluid Mech. 63, 773-800. Phillips, O.M. 1966: The dynamics of the upper ocean, Cambridge University Press, 336pp.
Wave "Coherency" and Implications for Wave-Particle Interactions
Tsurutani, Bruce; Lakhina, Gurbax; Remya, Banhu; Lee, Lou
2016-04-01
Wave "coherency" was introduced in 2009 by Tsurutani et al. (JGR, doi:10.1029/2008JA013353, 2009) to describe the waves detected in the ~10 to 100 ms duration subelements which are the fundamental components of ~0.1 to 0.5 s chorus "elements". In this talk we will show examples of what we mean by coherency and quasicoherency for: electromagnetic whistler mode chorus, electromagnetic ion cyclotron waves and plasmaspheric hiss waves. We will show how to measure coherency/quasicoherency quantitatively. This will be important for modeling purposes. Perhaps even more important is how coherent waves affect wave-particle interactions. Specific wave examples will be used to show that the pitch angle scattering rate for energetic electrons is roughly 3 orders of magnitude faster than Kennel-Petschek diffusion (which assumes incoherent waves).
Relationship between wave steepness and wave age in the course of wind wave growth
Institute of Scientific and Technical Information of China (English)
WU Shuping; HOU Yijun; YIN Baoshu; SONG Jinbao; ZHAO Xixi
2004-01-01
It is traditionally assumed that the relationship between wave steepness and wave age is independent of the wind wave growth state. In fact, the traditional relationship can not describe the whole course of wind wave growth. This paper assumes that the relationship between wave steepness and wave age changes with the variety of dimensionless fetch. Based on the relationship proposed by Hou and Wen (1990), a new relationship in the course of wind wave growth is revealed. Comparisons between the present study and other previous relationships show that this new relationship explains better the observations than the other existing relationships. In the case of small fetch, wave age value increases more quickly than other models while it is in opposition to that in the case of large fetch. The result in present paper can clearly reflect the whole course of wind wave growth, it is an improvement for traditional results.
Wave attenuation charcteristics of tethered float system
Digital Repository Service at National Institute of Oceanography (India)
Vethamony, P.
and transmitted wave powers, transmission coefficients are computed. The results show that transmission coefficient does not vary with changes in wave height or water depth. When depth of submergence of float increases, wave attenuation decreases, showing... incident wave height transmitted wave height G wave number float mass number of rows of floats drag power transmitted wave power incident wave power 111 112 P. Vethamony float radius wave period time velocity and acceleration of fluid...
Pushin, Dmitry
Most waves encountered in nature can be given a ``twist'', so that their phase winds around an axis parallel to the direction of wave propagation. Such waves are said to possess orbital angular momentum (OAM). For quantum particles such as photons, atoms, and electrons, this corresponds to the particle wavefunction having angular momentum of Lℏ along its propagation axis. Controlled generation and detection of OAM states of photons began in the 1990s, sparking considerable interest in applications of OAM in light and matter waves. OAM states of photons have found diverse applications such as broadband data multiplexing, massive quantum entanglement, optical trapping, microscopy, quantum state determination and teleportation, and interferometry. OAM states of electron beams have been used to rotate nanoparticles, determine the chirality of crystals and for magnetic microscopy. Here I discuss the first demonstration of OAM control of neutrons. Using neutron interferometry with a spatially incoherent input beam, we show the addition and conservation of quantum angular momenta, entanglement between quantum path and OAM degrees of freedom. Neutron-based quantum information science heretofore limited to spin, path, and energy degrees of freedom, now has access to another quantized variable, and OAM modalities of light, x-ray, and electron beams are extended to a massive, penetrating neutral particle. The methods of neutron phase imprinting demonstrated here expand the toolbox available for development of phase-sensitive techniques of neutron imaging. Financial support provided by the NSERC Create and Discovery programs, CERC and the NIST Quantum Information Program is acknowledged.
Canfora, F.; Vilasi, G.; Vitale, P.
2002-01-01
Gravitational fields invariant for a 2-dimensional Lie algebra of Killing fields [ X,Y] =Y, with Y of light type, are analyzed. The conditions for them to represent gravitational waves are verified and the definition of energy and polarization is addressed; realistic generating sources are described.
"Hearing" Electromagnetic Waves
Rojo, Marta; Munoz, Juan
2014-01-01
In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…
DEFF Research Database (Denmark)
Christensen, Poul Rind; Kirketerp, Anne
2006-01-01
The paper shortly reveals the history of a small school - the KaosPilots - dedicated to educate young people to carriers as entrepreneurs. In this contribution we want to explore how the KaosPilots managed to break the waves of institutionalised concepts and practices of teaching entrepreneurship...
... and not for use in the treatment or management of an actual poison exposure. If you have an exposure, you should call ... forms that need to be diluted before use. Exposure to concentrated cold wave lotion will cause much more damage than over-the-counter lotion.
Exciton solitary waves (exolitons)
International Nuclear Information System (INIS)
The soliton theory is briefly explained with regard to cooperative phenomena in one-dimensional systems. The study of the dynamics of a one-dimensional lattice shows that nonlinear phonon interaction results in the production of a solitary wave. The procedure is indicated for the mathematical solution of the problem of the exciton-phonon interaction. (M.S.)
DEFF Research Database (Denmark)
Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans
1975-01-01
The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent with th...
Oscilloscope Traveling Wave Experiment.
Cloud, S. D.
1985-01-01
The moving pattern that appears on an oscilloscope screen is used to illustrate two kinds of wave motion and the relationship between them. Suggestions are presented for measuring wavelength, frequency, phase shift, and phase velocity in this college-level laboratory exercise. (DH)
Osborne, Andrew G
2016-01-01
Under the right conditions, self sustaining fission waves can form in fertile nuclear materials. These waves result from the transport and absorption of neutrons and the resulting production of fissile isotopes. When these fission, additional neutrons are produced and the chain reaction propagates until it is poisoned by the buildup of fission products. It is typically assumed that fission waves are soliton-like and self stabilizing. However, we show that in uranium, coupling of the neutron field to the 239U->239Np->239Pu decay chain can lead to a Hopf bifurcation. The fission reaction then ramps up and down, along with the wave velocity. The critical driver for the instability is a delay, caused by the half-life of 239U, between the time evolution of the neutron field and the production of 239Pu. This allows the 239Pu to accumulate and burn out in a self limiting oscillation that is characteristic of a Hopf bifurcation. Time dependent results are obtained using a numerical implementation of a reduced order r...
Energy Technology Data Exchange (ETDEWEB)
Menikoff, Ralph [Los Alamos National Laboratory
2012-04-03
Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.
Converging Spherical Detonation Waves.
Directory of Open Access Journals (Sweden)
Arisudan Rai
1998-04-01
Full Text Available The problem of converging spherical detonation waves propagating through a gas with varyingdensity is discussed. By neglecting the effect of variation of Q on the similarity exponent, both analytical and numerical solutions for motion of the detonation front have been obtained and arepresented in graphical form.
Directory of Open Access Journals (Sweden)
B. G. Verma
1981-01-01
Full Text Available The problem of imploding detonation waves propagating through a gas with initial density, is studied. It is shown that the consideration of varying initial density affects the problem considerably incomparison to a uniform gas at rest. An analytical expression for the pressure distribution in the neighbourhood of the centre of symmetry has been found.
B. G. Verma; Singh, J. B.
1981-01-01
The problem of imploding detonation waves propagating through a gas with initial density, is studied. It is shown that the consideration of varying initial density affects the problem considerably incomparison to a uniform gas at rest. An analytical expression for the pressure distribution in the neighbourhood of the centre of symmetry has been found.
Converging Spherical Detonation Waves.
Arisudan Rai
1998-01-01
The problem of converging spherical detonation waves propagating through a gas with varyingdensity is discussed. By neglecting the effect of variation of Q on the similarity exponent, both analytical and numerical solutions for motion of the detonation front have been obtained and arepresented in graphical form.
Elandt, Ryan B; Shakeri, Mostafa; Alam, Mohammad-Reza
2014-02-01
Here we show that a nonlinear resonance between oceanic surface waves caused by small seabed features (the so-called Bragg resonance) can be utilized to create the equivalent of lenses and curved mirrors for surface gravity waves. Such gravity wave lenses, which are merely small changes to the seafloor topography and therefore are surface noninvasive, can focus or defocus the energy of incident waves toward or away from any desired focal point. We further show that for a broadband incident wave spectrum (i.e., a wave group composed of a multitude of different-frequency waves), a polychromatic topography (occupying no more than the area required for a monochromatic lens) can achieve a broadband lensing effect. Gravity wave lenses can be utilized to create localized high-energy wave zones (e.g., for wave energy harvesting or creating artificial surf zones) as well as to disperse waves in order to create protected areas (e.g., harbors or areas near important offshore facilities). In reverse, lensing of oceanic waves may be caused by natural seabed features and may explain the frequent appearance of very high amplitude waves in certain bodies of water. PMID:25353576
Electromagnetic waves, gravitational waves and the prophets who predicted them
Papachristou, Costas J.
2016-01-01
Using non-excessively-technical language and written in informal style, this article introduces the reader to the concepts of electromagnetic and gravitational waves and recounts the prediction of existence of these waves by Maxwell and Einstein, respectively. The issue of gravitational radiation is timely in view of the recent announcement of the detection of gravitational waves by the LIGO scientific team.
Conversion from surface wave to surface wave on reflection
DEFF Research Database (Denmark)
Novitsky, Andrey
2010-01-01
can be transmitted without changing its direction (nevertheless the amplitude varies). For other media parameters, only normally incident surface waves can be converted to surface waves. We propose applications of the predicted conversion as a beam splitter and polarization filter for surface waves....
On radio frequency wave induced radial transport and wave helicity
International Nuclear Information System (INIS)
Expressions for wave induced radial transport are derived allowing simple estimates. The transport is enhanced due to the presence of poloidal magnetostatic field and in the vicinity of the ion cyclotron resonance. The direction of the wave induced transport depends also on the wave polarization. (author) 19 refs
Embedded wave generation for dispersive surface wave models
She Liam, L.; Adytia, D.; Groesen, van E.
2014-01-01
This paper generalizes previous research on embedded wave generation in Boussinesq-type of equations for multi-directional surface water waves; the generation takes place by adding a suitable source term to the equations. Accurate generation is important to prevent influx errors in simulated waves d
Marto, Natália
2005-01-01
During the summer of 2003, record high temperatures were reported across Europe, causing thousands of casualties. Heat waves are sporadic recurrent events, characterised by intense and prolonged heat, associated with excess mortality and morbidity. The most frequent cause of death directly attributable to heat is heat stroke but heat waves are known to cause increases in all-cause mortality, specially circulatory and respiratory mortality. Epidemiological studies demonstrate excess casualties cluster in specific risk groups. The elderly, those with chronic medical conditions and the socially isolated are particularly vulnerable. Air conditioning is the strongest protective factor against heat-related disorders. Heat waves cause disease indirectly, by aggravating chronic disorders, and directly, by causing heat-related illnesses (HRI). Classic HRI include skin eruptions, heat cramps, heat syncope, heat exhaustion and heat stroke. Heat stroke is a medical emergency characterised by hyperthermia and central nervous system dysfunction. Treatment includes immediate cooling and support of organ-system function. Despite aggressive treatment, heat stroke is often fatal and permanent neurological damage is frequent in those who survive. Heat related illness and death are preventable through behavioural adaptations, such as use of air conditioning and increased fluid intake. Other adaptation measures include heat emergency warning systems and intervention plans and environmental heat stress reduction. Heat related mortality is expected to rise as a consequence of the increasing proportion of elderly persons, the growing urban population, and the anticipated increase in number and intensity of heat waves associated with global warming. Improvements in surveillance and response capability may limit the adverse health conditions of future heat waves. It is crucial that health professionals are prepared to recognise, prevent and treat HRI and learn to cooperate with local health
Wave propagation in electromagnetic media
Davis, Julian L
1990-01-01
This is the second work of a set of two volumes on the phenomena of wave propagation in nonreacting and reacting media. The first, entitled Wave Propagation in Solids and Fluids (published by Springer-Verlag in 1988), deals with wave phenomena in nonreacting media (solids and fluids). This book is concerned with wave propagation in reacting media-specifically, in electro magnetic materials. Since these volumes were designed to be relatively self contained, we have taken the liberty of adapting some of the pertinent material, especially in the theory of hyperbolic partial differential equations (concerned with electromagnetic wave propagation), variational methods, and Hamilton-Jacobi theory, to the phenomena of electromagnetic waves. The purpose of this volume is similar to that of the first, except that here we are dealing with electromagnetic waves. We attempt to present a clear and systematic account of the mathematical methods of wave phenomena in electromagnetic materials that will be readily accessi...
Institute of Scientific and Technical Information of China (English)
伍细如
2015-01-01
proton emits energy wave, electron could sits any position away from nucleus, but be the most stable just when it sits at the trough of energy wave, and this position accords with Bohr radius and Schr?dinger equation.
Implosion of quadrupole gravitational waves
Bonnor, W. B.; Piper, M. S.
1996-01-01
Einstein's vacuum equations are solved up to the second approximation for imploding quadrupole gravitational waves. The implosion generates a black hole singularity irrespective of the strength of the waves.
Gravitational Waves: The Evidence Mounts
Wick, Gerald L.
1970-01-01
Reviews the work of Weber and his colleagues in their attempts at detecting extraterrestial gravitational waves. Coincidence events recorded by special detectors provide the evidence for the existence of gravitational waves. Bibliography. (LC)
Heat Waves Hit Seniors Hardest
... https://medlineplus.gov/news/fullstory_160425.html Heat Waves Hit Seniors Hardest Risk of high-temperature trouble ... much of the Northeast struggles with a heat wave that isn't expected to ease until the ...
... https://medlineplus.gov/news/fullstory_159694.html Heat Waves Are Health Threats Drink plenty of water and ... 2016 SATURDAY, July 2, 2016 (HealthDay News) -- Heat waves are more than uncomfortable, they can be deadly. ...
Estimation of wave directional spreading
Digital Repository Service at National Institute of Oceanography (India)
Deo, M.C.; Gondane, D.S.; SanilKumar, V.
Networks (ANN). Different networks were developed in order to obtain the characteristic spreading parameter from the unidirectional parameters of significant wave height and average zero cross wave period, Ursell number, spectral width, spectral peakedness...
Estimation of directional wave spreading
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Bhat, S.S.; Anand, N.M.; Nayak, B.U.
Directional properties of ocean waves are of great economic interest. The knowledge of wave directionality is important for the design of maritime structures and offshore operations. Two main aspects are considered for this study for the data...
Curved characteristics behind blast waves.
Laporte, O.; Chang, T. S.
1972-01-01
The behavior of nonisentropic flow behind a propagating blast wave is theoretically studied. Exact solutions, expressed in closed form in terms of elementary functions, are presented for three sets of curved characteristicseind a self-similar, strong blast wave.
Spiral Waves in Accretion Disks
Harlaftis, Emilios
A review with the most characteristic spiral waves in accretion disks of cataclysmic variables will be presented. Recent work on experiments targeting the detection of spiral waves from time lapse movies of real disks and the study of permanent spiral waves will be discussed. The relevance of spiral waves with other systems such as star-planet X-ray binaries and Algols will be reviewed.
Phenomena Associated With EIT Waves
Thompson, B. J.; Biesecker, D. A.; Gopalswamy, N.
2003-01-01
We discuss phenomena associated with "EIT Wave" transients. These phenomena include coronal mass ejections, flares, EUV/SXR dimmings, chromospheric waves, Moreton waves, solar energetic particle events, energetic electron events, and radio signatures. Although the occurrence of many phenomena correlate with the appearance of EIT waves, it is difficult to mfer which associations are causal. The presentation will include a discussion of correlation surveys of these phenomena.
Source modeling sleep slow waves
Murphy, M.; Riedner, B.A.; Huber, R.; Massimini, M; F. Ferrarelli; Tononi, G
2009-01-01
Slow waves are the most prominent electroencephalographic (EEG) feature of sleep. These waves arise from the synchronization of slow oscillations in the membrane potentials of millions of neurons. Scalp-level studies have indicated that slow waves are not instantaneous events, but rather they travel across the brain. Previous studies of EEG slow waves were limited by the poor spatial resolution of EEGs and by the difficulty of relating scalp potentials to the activity of the underlying cortex...
Regulatory effects of terahertz waves
Directory of Open Access Journals (Sweden)
Vyacheslav F. Kirichuk
2013-11-01
Full Text Available There are modern data about biological effects of terahertz (THz waves in this article. Items of interaction of THz waves with bio objects of different organization level. A complex of the data indicates that the realization of a THz wave effect in biosystems is possible at molecular, cellular, tissular, organ and system levels of regulation. There are data about changes in nervous and humoral regulation of an organism and metabolic effects of THz waves.