WorldWideScience

Sample records for berkeley structural genomics

  1. Structure-based inference of molecular functions of proteins of unknown function from Berkeley Structural Genomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong Hae; Hou, Jingtong; Chandonia, John-Marc; Das, Debanu; Choi, In-Geol; Kim, Rosalind; Kim, Sung-Hou

    2007-09-02

    Advances in sequence genomics have resulted in an accumulation of a huge number of protein sequences derived from genome sequences. However, the functions of a large portion of them cannot be inferred based on the current methods of sequence homology detection to proteins of known functions. Three-dimensional structure can have an important impact in providing inference of molecular function (physical and chemical function) of a protein of unknown function. Structural genomics centers worldwide have been determining many 3-D structures of the proteins of unknown functions, and possible molecular functions of them have been inferred based on their structures. Combined with bioinformatics and enzymatic assay tools, the successful acceleration of the process of protein structure determination through high throughput pipelines enables the rapid functional annotation of a large fraction of hypothetical proteins. We present a brief summary of the process we used at the Berkeley Structural Genomics Center to infer molecular functions of proteins of unknown function.

  2. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  3. BERSAFE: (BERkeley Structural Analysis by Finite Elements)

    International Nuclear Information System (INIS)

    BERSAFE is a well-known finite element system which has been under continuous use and development for over 20 years. The BERSAFE system comprises an inter-compatible set of program modules covering static stress analysis, linear dynamics and thermal analysis. Data generation and results presentation modules are also available, along with special supporting functions including automatic crack growth through a model with adaptive meshing. The functionality of BERSAFE, is nowadays very advanced, both in engineering scope and finite element technology. It has seen many firsts, including the front solution and Virtual Crack Extension methods (VCE). More recent additions which have developed out of the Power Industry's requirements are a finite element computational fluid dynamics code, FEAT, and engineering design assessment procedures. These procedures include R6 and R5 for the assessment of the integrity of structures containing defects below and within the creep regime. To use all this software in a user-friendly manner, a new computational environment has been developed, called 'The Harness' which takes advantage of modern hardware and software philosophies. This provides the tool-kit to undertake complete problems, covering determination of fluid loads, structural analysis and failure assessment. In the following sections we describe briefly various components of the BERSAFE suite. (author)

  4. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  5. Bishop Berkeley

    OpenAIRE

    Bindon, Francis (Irish artist, 1690-1765)

    2008-01-01

    'Berkeley was born at his family home, Dysart Castle, near Thomastown, County Kilkenny, Ireland, the eldest son of William Berkeley, a cadet of the noble family of Berkeley. He was educated at Kilkenny College and attended Trinity College, Dublin, completing a Master's degree in 1707. He remained at Trinity College after completion of his degree as a tutor and Greek lecturer.' (en.wikipedia.org)

  6. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  7. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-01-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined. PMID:27354155

  8. Informational laws of genome structures

    Science.gov (United States)

    Bonnici, Vincenzo; Manca, Vincenzo

    2016-06-01

    In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k = lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined.

  9. Structural Genomics of Protein Phosphatases

    Energy Technology Data Exchange (ETDEWEB)

    Almo,S.; Bonanno, J.; Sauder, J.; Emtage, S.; Dilorenzo, T.; Malashkevich, V.; Wasserman, S.; Swaminathan, S.; Eswaramoorthy, S.; et al

    2007-01-01

    The New York SGX Research Center for Structural Genomics (NYSGXRC) of the NIGMS Protein Structure Initiative (PSI) has applied its high-throughput X-ray crystallographic structure determination platform to systematic studies of all human protein phosphatases and protein phosphatases from biomedically-relevant pathogens. To date, the NYSGXRC has determined structures of 21 distinct protein phosphatases: 14 from human, 2 from mouse, 2 from the pathogen Toxoplasma gondii, 1 from Trypanosoma brucei, the parasite responsible for African sleeping sickness, and 2 from the principal mosquito vector of malaria in Africa, Anopheles gambiae. These structures provide insights into both normal and pathophysiologic processes, including transcriptional regulation, regulation of major signaling pathways, neural development, and type 1 diabetes. In conjunction with the contributions of other international structural genomics consortia, these efforts promise to provide an unprecedented database and materials repository for structure-guided experimental and computational discovery of inhibitors for all classes of protein phosphatases.

  10. 2004 Structural, Function and Evolutionary Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Brutlag Nancy Ryan Gray

    2005-03-23

    This Gordon conference will cover the areas of structural, functional and evolutionary genomics. It will take a systematic approach to genomics, examining the evolution of proteins, protein functional sites, protein-protein interactions, regulatory networks, and metabolic networks. Emphasis will be placed on what we can learn from comparative genomics and entire genomes and proteomes.

  11. Environmental research at Berkeley

    CERN Document Server

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  12. El idealismo de Berkeley

    Directory of Open Access Journals (Sweden)

    David Sobrevilla

    1995-12-01

    Full Text Available En esta conferencia se examina en qué consiste el idealismo de Berkeley. Para ello se sigue el mismo camino propuesto por G .J. Warnock: se indaga contra qué se opone Berkeley, el materialismo, y cómo lo entiende, y por qué está en contra del mismo. A continuación se reexamina el idealismo berkeleyano, y en la consideración final se juzgan sus virtudes y defectos: algunas de las críticas fundadas que se le han formulado y la visión de la ciencia que se desprende de los escritos de Berkeley. A este respecto se pone en conexión las ideas del autor con algunos planteamientos del último Husserl y con una interpretación de Popper sobre la sorprendente modernidad de algunas de las ideas berkeleyanas sobre la ciencia.

  13. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing.

  14. Berkeley mini-collider

    International Nuclear Information System (INIS)

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  15. Berkeley Low Background Facility

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K. J.; Norman, E. B. [Department of Nuclear Engineering, University of California-Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Smith, A. R.; Poon, A. W. P.; Chan, Y. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Lesko, K. T. [Physics Division, Lawrence Berkeley National Laboratory, CA 94720 (United States)

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  16. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  17. Genome structure of cottontail rabbit herpesvirus.

    OpenAIRE

    Cebrian, J; Berthelot, N; Laithier, M

    1989-01-01

    The genome structure of a herpesvirus isolated from primary cultures of kidney cells from the cottontail rabbit Sylvilagus floridanus was elucidated by using electron microscopy and restriction enzyme analysis. The genome, which was about 150 kilobase pairs long and which had an average G + C composition of 45%, consisted of two regions with unique base sequences (54 and 47 kilobase pairs) enclosed by reiterations of a 925-base-pair sequence with a variable copy number. The internal repeats w...

  18. Towards a comprehensive structural coverage of completed genomes: a structural genomics viewpoint

    Directory of Open Access Journals (Sweden)

    Orengo Christine A

    2007-03-01

    Full Text Available Abstract Background Structural genomics initiatives were established with the aim of solving protein structures on a large-scale. For many initiatives, such as the Protein Structure Initiative (PSI, the primary aim of target selection is focussed towards structurally characterising protein families which, so far, lack a structural representative. It is therefore of considerable interest to gain insights into the number and distribution of these families, and what efforts may be required to achieve a comprehensive structural coverage across all protein families. Results In this analysis we have derived a comprehensive domain annotation of the genomes using CATH, Pfam-A and Newfam domain families. We consider what proportions of structurally uncharacterised families are accessible to high-throughput structural genomics pipelines, specifically those targeting families containing multiple prokaryotic orthologues. In measuring the domain coverage of the genomes, we show the benefits of selecting targets from both structurally uncharacterised domain families, whilst in addition, pursuing additional targets from large structurally characterised protein superfamilies. Conclusion This work suggests that such a combined approach to target selection is essential if structural genomics is to achieve a comprehensive structural coverage of the genomes, leading to greater insights into structure and the mechanisms that underlie protein evolution.

  19. The Center for Eukaryotic Structural Genomics

    OpenAIRE

    Markley, John L.; Aceti, David J.; Bingman, Craig A.; Fox, Brian G.; Frederick, Ronnie O.; Makino, Shin-ichi; Nichols, Karl W.; Phillips, George N.; Primm, John G.; Sahu, Sarata C.; Vojtik, Frank C.; Volkman, Brian F.; Wrobel, Russell L.; Zolnai, Zsolt

    2009-01-01

    The Center for Eukaryotic Structural Genomics (CESG) is a “specialized” or “technology development” center supported by the Protein Structure Initiative (PSI). CESG’s mission is to develop improved methods for the high-throughput solution of structures from eukaryotic proteins, with a very strong weighting toward human proteins of biomedical relevance. During the first three years of PSI-2, CESG selected targets representing 601 proteins from Homo sapiens, 33 from mouse, 10 from rat, 139 from...

  20. Phenotypic impact of genomic structural variation

    DEFF Research Database (Denmark)

    Weischenfeldt, Joachim; Symmons, Orsolya; Spitz, François;

    2013-01-01

    Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have...

  1. Using Genomics for Natural Product Structure Elucidation.

    Science.gov (United States)

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques. PMID:26456468

  2. Using Genomics for Natural Product Structure Elucidation.

    Science.gov (United States)

    Tietz, Jonathan I; Mitchell, Douglas A

    2016-01-01

    Natural products (NPs) are the most historically bountiful source of chemical matter for drug development-especially for anti-infectives. With insights gleaned from genome mining, interest in natural product discovery has been reinvigorated. An essential stage in NP discovery is structural elucidation, which sheds light not only on the chemical composition of a molecule but also its novelty, properties, and derivatization potential. The history of structure elucidation is replete with techniquebased revolutions: combustion analysis, crystallography, UV, IR, MS, and NMR have each provided game-changing advances; the latest such advance is genomics. All natural products have a genetic basis, and the ability to obtain and interpret genomic information for structure elucidation is increasingly available at low cost to non-specialists. In this review, we describe the value of genomics as a structural elucidation technique, especially from the perspective of the natural product chemist approaching an unknown metabolite. Herein we first introduce the databases and programs of interest to the natural products chemist, with an emphasis on those currently most suited for general usability. We describe strategies for linking observed natural product-linked phenotypes to their corresponding gene clusters. We then discuss techniques for extracting structural information from genes, illustrated with numerous case examples. We also provide an analysis of the biases and limitations of the field with recommendations for future development. Our overview is not only aimed at biologically-oriented researchers already at ease with bioinformatic techniques, but also, in particular, at natural product, organic, and/or medicinal chemists not previously familiar with genomic techniques.

  3. A data management system for structural genomics

    Directory of Open Access Journals (Sweden)

    O'Toole Nicholas

    2004-06-01

    Full Text Available Abstract Background Structural genomics (SG projects aim to determine thousands of protein structures by the development of high-throughput techniques for all steps of the experimental structure determination pipeline. Crucial to the success of such endeavours is the careful tracking and archiving of experimental and external data on protein targets. Results We have developed a sophisticated data management system for structural genomics. Central to the system is an Oracle-based, SQL-interfaced database. The database schema deals with all facets of the structure determination process, from target selection to data deposition. Users access the database via any web browser. Experimental data is input by users with pre-defined web forms. Data can be displayed according to numerous criteria. A list of all current target proteins can be viewed, with links for each target to associated entries in external databases. To avoid unnecessary work on targets, our data management system matches protein sequences weekly using BLAST to entries in the Protein Data Bank and to targets of other SG centers worldwide. Conclusion Our system is a working, effective and user-friendly data management tool for structural genomics projects. In this report we present a detailed summary of the various capabilities of the system, using real target data as examples, and indicate our plans for future enhancements.

  4. 2009 SCDNR Berkeley County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  5. Genome structure of cottontail rabbit herpesvirus.

    Science.gov (United States)

    Cebrian, J; Berthelot, N; Laithier, M

    1989-02-01

    The genome structure of a herpesvirus isolated from primary cultures of kidney cells from the cottontail rabbit Sylvilagus floridanus was elucidated by using electron microscopy and restriction enzyme analysis. The genome, which was about 150 kilobase pairs long and which had an average G + C composition of 45%, consisted of two regions with unique base sequences (54 and 47 kilobase pairs) enclosed by reiterations of a 925-base-pair sequence with a variable copy number. The internal repeats were in opposite polarity with respect to the terminal repeats, and both unique regions underwent inversion. The nucleotide sequence of the repeat unit was determined, and virion DNA termini were precisely localized within this sequence. Elements showing homology with the cleavage-packaging signals common to other herpesviruses were detected. The data indicate that this virus is different from the previously described herpesvirus sylvilagus. PMID:2911115

  6. Chloroplast genome structure in Ilex (Aquifoliaceae).

    Science.gov (United States)

    Yao, Xin; Tan, Yun-Hong; Liu, Ying-Ying; Song, Yu; Yang, Jun-Bo; Corlett, Richard T

    2016-01-01

    Aquifoliaceae is the largest family in the campanulid order Aquifoliales. It consists of a single genus, Ilex, the hollies, which is the largest woody dioecious genus in the angiosperms. Most species are in East Asia or South America. The taxonomy and evolutionary history remain unclear due to the lack of a robust species-level phylogeny. We produced the first complete chloroplast genomes in this family, including seven Ilex species, by Illumina sequencing of long-range PCR products and subsequent reference-guided de novo assembly. These genomes have a typical bicyclic structure with a conserved genome arrangement and moderate divergence. The total length is 157,741 bp and there is one large single-copy region (LSC) with 87,109 bp, one small single-copy with 18,436 bp, and a pair of inverted repeat regions (IR) with 52,196 bp. A total of 144 genes were identified, including 96 protein-coding genes, 40 tRNA and 8 rRNA. Thirty-four repetitive sequences were identified in Ilex pubescens, with lengths >14 bp and identity >90%, and 11 divergence hotspot regions that could be targeted for phylogenetic markers. This study will contribute to improved resolution of deep branches of the Ilex phylogeny and facilitate identification of Ilex species. PMID:27378489

  7. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Science.gov (United States)

    2011-06-28

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 4th of July Festival Berkeley Marina... Berkeley Pier, Berkeley, CA in support of the 4th of July Festival Berkeley Marina Fireworks Display... used in the fireworks display. Background and Purpose The City of Berkeley Marina will sponsor the...

  8. Structural characterization of genomes by large scale sequence-structure threading: application of reliability analysis in structural genomics

    Directory of Open Access Journals (Sweden)

    Brunham Robert C

    2004-07-01

    Full Text Available Abstract Background We establish that the occurrence of protein folds among genomes can be accurately described with a Weibull function. Systems which exhibit Weibull character can be interpreted with reliability theory commonly used in engineering analysis. For instance, Weibull distributions are widely used in reliability, maintainability and safety work to model time-to-failure of mechanical devices, mechanisms, building constructions and equipment. Results We have found that the Weibull function describes protein fold distribution within and among genomes more accurately than conventional power functions which have been used in a number of structural genomic studies reported to date. It has also been found that the Weibull reliability parameter β for protein fold distributions varies between genomes and may reflect differences in rates of gene duplication in evolutionary history of organisms. Conclusions The results of this work demonstrate that reliability analysis can provide useful insights and testable predictions in the fields of comparative and structural genomics.

  9. Three new bricks in the wall: Berkeley 23, Berkeley 31, and King 8

    CERN Document Server

    Cignoni, Michele; Bragaglia, Angela; Tosi, Monica

    2011-01-01

    A comprehensive census of Galactic open cluster properties places unique constraints on the Galactic disc structure and evolution. In this framework we investigate the evolutionary status of three poorly-studied open clusters, Berkeley 31, Berkeley 23 and King 8, all located in the Galactic anti-centre direction. To this aim, we make use of deep LBT observations, reaching more than 6 mag below the main sequence Turn- Off. To determine the cluster parameters, namely age, metallicity, distance, reddening and binary fraction, we compare the observational colour-magnitude diagrams (CMDs) with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC and FST) and metallicities. We find that Berkeley 31 is relatively old, with an age between 2.3 and 2.9 Gyr, and rather high above the Galactic plane, at about 700 pc. Berkeley 23 and King 8 are younger, with best fitting ages in the range 1.1-1.3 Gyr and 0.8-1.3 Gyr, respectively. The position above the Galactic plane is about 500- 600 pc...

  10. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome.

    Directory of Open Access Journals (Sweden)

    Jian Li

    Full Text Available The hotspots of structural polymorphisms and structural mutability in the human genome remain to be explained mechanistically. We examine associations of structural mutability with germline DNA methylation and with non-allelic homologous recombination (NAHR mediated by low-copy repeats (LCRs. Combined evidence from four human sperm methylome maps, human genome evolution, structural polymorphisms in the human population, and previous genomic and disease studies consistently points to a strong association of germline hypomethylation and genomic instability. Specifically, methylation deserts, the ~1% fraction of the human genome with the lowest methylation in the germline, show a tenfold enrichment for structural rearrangements that occurred in the human genome since the branching of chimpanzee and are highly enriched for fast-evolving loci that regulate tissue-specific gene expression. Analysis of copy number variants (CNVs from 400 human samples identified using a custom-designed array comparative genomic hybridization (aCGH chip, combined with publicly available structural variation data, indicates that association of structural mutability with germline hypomethylation is comparable in magnitude to the association of structural mutability with LCR-mediated NAHR. Moreover, rare CNVs occurring in the genomes of individuals diagnosed with schizophrenia, bipolar disorder, and developmental delay and de novo CNVs occurring in those diagnosed with autism are significantly more concentrated within hypomethylated regions. These findings suggest a new connection between the epigenome, selective mutability, evolution, and human disease.

  11. Child Development and Structural Variation in the Human Genome

    Science.gov (United States)

    Zhang, Ying; Haraksingh, Rajini; Grubert, Fabian; Abyzov, Alexej; Gerstein, Mark; Weissman, Sherman; Urban, Alexander E.

    2013-01-01

    Structural variation of the human genome sequence is the insertion, deletion, or rearrangement of stretches of DNA sequence sized from around 1,000 to millions of base pairs. Over the past few years, structural variation has been shown to be far more common in human genomes than previously thought. Very little is currently known about the effects…

  12. Toward Elucidating the Structure of Tetraploid Cotton Genome

    Institute of Scientific and Technical Information of China (English)

    GUO Wang-zhen

    2008-01-01

    @@ Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evolutionary studies of the species.Here,we employed GeneTrek and BAC tagging information approaches to predict the general composition and structure of the allotetraploid cotton genome.

  13. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2013-05-17

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA... enforce the safety zone for the Berkeley Marina Fourth of July Fireworks display in the Captain of the...'19'' W (NAD 83) for the Berkeley Marina Fourth of July Fireworks display listed in 33 CFR...

  14. Structural and functional analysis of rice genome

    Indian Academy of Sciences (India)

    Akhilesh K. Tyagi; Jitendra P. Khurana; Paramjit Khurana; Saurabh Raghuvanshi; Anupama Gaur; Anita Kapur; Vikrant Gupta; Dibyendu Kumar; V. Ravi; Shubha Vij; Parul Khurana; Sulabha Sharma

    2004-04-01

    Rice is an excellent system for plant genomics as it represents a modest size genome of 430 Mb. It feeds more than half the population of the world. Draft sequences of the rice genome, derived by whole-genome shotgun approach at relatively low coverage (4–6 X), were published and the International Rice Genome Sequencing Project (IRGSP) declared high quality (>10 X), genetically anchored, phase 2 level sequence in 2002. In addition, phase 3 level finished sequence of chromosomes 1, 4 and 10 (out of 12 chromosomes of rice) has already been reported by scientists from IRGSP consortium. Various estimates of genes in rice place the number at > 50,000. Already, over 28,000 full-length cDNAs have been sequenced, most of which map to genetically anchored genome sequence. Such information is very useful in revealing novel features of macro- and micro-level synteny of rice genome with other cereals. Microarray analysis is unraveling the identity of rice genes expressing in temporal and spatial manner and should help target candidate genes useful for improving traits of agronomic importance. Simultaneously, functional analysis of rice genome has been initiated by marker-based characterization of useful genes and employing functional knock-outs created by mutation or gene tagging. Integration of this enormous information is expected to catalyze tremendous activity on basic and applied aspects of rice genomics.

  15. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene struc

  16. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  17. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  18. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  19. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  20. Genome Editing of Structural Variations: Modeling and Gene Correction.

    Science.gov (United States)

    Park, Chul-Yong; Sung, Jin Jea; Kim, Dong-Wook

    2016-07-01

    The analysis of chromosomal structural variations (SVs), such as inversions and translocations, was made possible by the completion of the human genome project and the development of genome-wide sequencing technologies. SVs contribute to genetic diversity and evolution, although some SVs can cause diseases such as hemophilia A in humans. Genome engineering technology using programmable nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) has been rapidly developed, enabling precise and efficient genome editing for SV research. Here, we review advances in modeling and gene correction of SVs, focusing on inversion, translocation, and nucleotide repeat expansion. PMID:27016031

  1. Two amateur astronomers at Berkeley

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    The book on Mechanics of the Physics at Berkeley, by C. Kittel, W.D. Knight and M.A. Ruderman, is proposing at the end of its first chapter some problems of simple astronomy within the solar system. The discussion begins with two amateur astronomers who set for themselves the goal of determining the diameter and mass of the Sun. Here we discuss the problems proposed by the book and some other matters on ancient and modern astronomical studies of the solar system.

  2. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology

    DEFF Research Database (Denmark)

    Cao, Hongzhi; Hastie, Alex R.; Cao, Dandan;

    2014-01-01

    mutations; however, none of the current detection methods are comprehensive, and currently available methodologies are incapable of providing sufficient resolution and unambiguous information across complex regions in the human genome. To address these challenges, we applied a high-throughput, cost...... fosmid data. Of the remaining 270 SVs, 260 are insertions and 213 overlap known SVs in the Database of Genomic Variants. Overall, 609 out of 666 (90%) variants were supported by experimental orthogonal methods or historical evidence in public databases. At the same time, genome mapping also provides...... mapping technology as a comprehensive and cost-effective method for detecting structural variation and studying complex regions in the human genome, as well as deciphering viral integration into the host genome....

  3. Structural genomics of eukaryotic targets at a laboratory scale.

    Science.gov (United States)

    Busso, Didier; Poussin-Courmontagne, Pierre; Rosé, David; Ripp, Raymond; Litt, Alain; Thierry, Jean-Claude; Moras, Dino

    2005-01-01

    Structural genomics programs are distributed worldwide and funded by large institutions such as the NIH in United-States, the RIKEN in Japan or the European Commission through the SPINE network in Europe. Such initiatives, essentially managed by large consortia, led to technology and method developments at the different steps required to produce biological samples compatible with structural studies. Besides specific applications, method developments resulted mainly upon miniaturization and parallelization. The challenge that academic laboratories faces to pursue structural genomics programs is to produce, at a higher rate, protein samples. The Structural Biology and Genomics Department (IGBMC - Illkirch - France) is implicated in a structural genomics program of high eukaryotes whose goal is solving crystal structures of proteins and their complexes (including large complexes) related to human health and biotechnology. To achieve such a challenging goal, the Department has established a medium-throughput pipeline for producing protein samples suitable for structural biology studies. Here, we describe the setting up of our initiative from cloning to crystallization and we demonstrate that structural genomics may be manageable by academic laboratories by strategic investments in robotic and by adapting classical bench protocols and new developments, in particular in the field of protein expression, to parallelization.

  4. Phylogenetic clusters of rhizobia revealed by genome structures

    Institute of Scientific and Technical Information of China (English)

    ZHENG Junfang; LIU Guirong; ZHU Wanfu; ZHOU Yuguang; LIU Shulin

    2004-01-01

    Rhizobia, bacteria that fix atmospheric nitrogen, are important agricultural resources. In order to establish the evolutionary relationships among rhizobia isolated from different geographic regions and different plant hosts for systematic studies, we evaluated the use of physical structure of the rhizobial genomes as a phylogenetic marker to categorize these bacteria. In this work, we analyzed the features of genome structures of 64 rhizobial strains. These rhizobial strains were divided into 21 phylogenetic clusters according to the features of genome structures evaluated by the endonuclease I-CeuI. These clusters were supported by 16S rRNA comparisons and genomic sequences of four rhizobial strains, but they are largely different from those based on the current taxonomic scheme (except 16S rRNA).

  5. A genome-wide survey of switchgrass genome structure and organization.

    Directory of Open Access Journals (Sweden)

    Manoj K Sharma

    Full Text Available The perennial grass, switchgrass (Panicum virgatum L., is a promising bioenergy crop and the target of whole genome sequencing. We constructed two bacterial artificial chromosome (BAC libraries from the AP13 clone of switchgrass to gain insight into the genome structure and organization, initiate functional and comparative genomic studies, and assist with genome assembly. Together representing 16 haploid genome equivalents of switchgrass, each library comprises 101,376 clones with average insert sizes of 144 (HindIII-generated and 110 kb (BstYI-generated. A total of 330,297 high quality BAC-end sequences (BES were generated, accounting for 263.2 Mbp (16.4% of the switchgrass genome. Analysis of the BES identified 279,099 known repetitive elements, >50,000 SSRs, and 2,528 novel repeat elements, named switchgrass repetitive elements (SREs. Comparative mapping of 47 full-length BAC sequences and 330K BES revealed high levels of synteny with the grass genomes sorghum, rice, maize, and Brachypodium. Our data indicate that the sorghum genome has retained larger microsyntenous regions with switchgrass besides high gene order conservation with rice. The resources generated in this effort will be useful for a broad range of applications.

  6. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2012-06-22

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA... enforce the safety zone for the Berkeley Marina Fourth of July Fireworks display in the Captain of the... Marina Fourth of July Fireworks display in 33 CFR 165.1191. This safety zone will be in effect from...

  7. Progress in the detection of human genome structural variations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The emerging of high-throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome.These variants include copy number variations(CNVs),inversions,insertions,deletions and other complex rearrangements of DNA sequences.This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences.Particularly,we highlight the array-based,PCR-based and sequencing-based assays,including array-based comparative genomic hybridization(aCGH),representational oligonucleotide microarray analysis(ROMA),multiplex amplifiable probe hybridization(MAPH),multiplex ligation-dependent probe amplification(MLPA),paired-end mapping(PEM),and next-generation DNA sequencing technologies.Furthermore,we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable.

  8. Progress in the detection of human genome structural variations

    Institute of Scientific and Technical Information of China (English)

    WU XueMei; XIAO HuaSheng

    2009-01-01

    The emerging of high.throughput and high-resolution genomic technologies led to the detection of submicroscopic variants ranging from 1 kb to 3 Mb in the human genome. These variants include copy number variations (CNVs), inversions, insertions, deletions and other complex rearrangements of DNA sequences. This paper briefly reviews the commonly used technologies to discover both genomic structural variants and their potential influences. Particularly, we highlight the array-based, PCR-based and sequencing-based assays, including array-based comparative genomic hybridization (aCGH),representational oligonucleotide microarray analysis (ROMA), multiplex amplifiable probe hybridization (MAPH), multiplex ligation-dependent probe amplification (MLPA), paired-end mapping (PEM), and next-generation DNA sequencing technologies. Furthermore, we discuss the limitations and challenges of current assays and give advices on how to make the database of genomic variations more reliable.

  9. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  10. Structural dynamics of retroviral genome and the packaging

    Directory of Open Access Journals (Sweden)

    Yasuyuki eMiyazaki

    2011-12-01

    Full Text Available Retroviruses can cause diseases such as AIDS, leukemia and tumors, but are also used as vectors for human gene therapy. All retroviruses, except foamy viruses, package two copies of unspliced genomic RNA into their progeny viruses. Understanding the molecular mechanisms of retroviral genome packaging will aid the design of new anti-retroviral drugs targeting the packaging process and improve the efficacy of retroviral vectors. Retroviral genomes have to be specifically recognized by the cognate nucleocapsid (NC domain of the Gag polyprotein from among an excess of cellular and spliced viral mRNA. Extensive virological and structural studies have revealed how retroviral genomic RNA is selectively packaged into the viral particles. The genomic area responsible for the packaging is generally located in the 5’ untranslated region (5’ UTR, and contains dimerization site(s. Recent studies have shown that retroviral genome packaging is modulated by structural changes of RNA at the 5’ UTR accompanied by the dimerization. In this review, we focus on three representative retroviruses, Moloney murine leukemia virus (MoMLV, human immunodeficiency virus type 1 (HIV-1 and 2 (HIV-2, and describe the molecular mechanism of retroviral genome packaging.

  11. Characterization of the Poplar Pan-Genome by Genome-Wide Identification of Structural Variation

    Science.gov (United States)

    Pinosio, Sara; Giacomello, Stefania; Faivre-Rampant, Patricia; Taylor, Gail; Jorge, Veronique; Le Paslier, Marie Christine; Zaina, Giusi; Bastien, Catherine; Cattonaro, Federica; Marroni, Fabio; Morgante, Michele

    2016-01-01

    Many recent studies have emphasized the important role of structural variation (SV) in determining human genetic and phenotypic variation. In plants, studies aimed at elucidating the extent of SV are still in their infancy. Evidence has indicated a high presence and an active role of SV in driving plant genome evolution in different plant species. With the aim of characterizing the size and the composition of the poplar pan-genome, we performed a genome-wide analysis of structural variation in three intercrossable poplar species: Populus nigra, Populus deltoides, and Populus trichocarpa. We detected a total of 7,889 deletions and 10,586 insertions relative to the P. trichocarpa reference genome, covering respectively 33.2 Mb and 62.9 Mb of genomic sequence, and 3,230 genes affected by copy number variation (CNV). The majority of the detected variants are inter-specific in agreement with a recent origin following separation of species. Insertions and deletions (INDELs) were preferentially located in low-gene density regions of the poplar genome and were, for the majority, associated with the activity of transposable elements. Genes affected by SV showed lower-than-average expression levels and higher levels of dN/dS, suggesting that they are subject to relaxed selective pressure or correspond to pseudogenes. Functional annotation of genes affected by INDELs showed over-representation of categories associated with transposable elements activity, while genes affected by genic CNVs showed enrichment in categories related to resistance to stress and pathogens. This study provides a genome-wide catalogue of SV and the first insight on functional and structural properties of the poplar pan-genome. PMID:27499133

  12. Structural Genomics and Drug Discovery for Infectious Diseases

    International Nuclear Information System (INIS)

    The application of structural genomics methods and approaches to proteins from organisms causing infectious diseases is making available the three dimensional structures of many proteins that are potential drug targets and laying the groundwork for structure aided drug discovery efforts. There are a number of structural genomics projects with a focus on pathogens that have been initiated worldwide. The Center for Structural Genomics of Infectious Diseases (CSGID) was recently established to apply state-of-the-art high throughput structural biology technologies to the characterization of proteins from the National Institute for Allergy and Infectious Diseases (NIAID) category A-C pathogens and organisms causing emerging, or re-emerging infectious diseases. The target selection process emphasizes potential biomedical benefits. Selected proteins include known drug targets and their homologs, essential enzymes, virulence factors and vaccine candidates. The Center also provides a structure determination service for the infectious disease scientific community. The ultimate goal is to generate a library of structures that are available to the scientific community and can serve as a starting point for further research and structure aided drug discovery for infectious diseases. To achieve this goal, the CSGID will determine protein crystal structures of 400 proteins and protein-ligand complexes using proven, rapid, highly integrated, and cost-effective methods for such determination, primarily by X-ray crystallography. High throughput crystallographic structure determination is greatly aided by frequent, convenient access to high-performance beamlines at third-generation synchrotron X-ray sources.

  13. The Impact of Structural Genomics: Expectations and Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-12-21

    Structural Genomics (SG) projects aim to expand our structural knowledge of biological macromolecules, while lowering the average costs of structure determination. We quantitatively analyzed the novelty, cost, and impact of structures solved by SG centers, and contrast these results with traditional structural biology. The first structure from a protein family is particularly important to reveal the fold and ancient relationships to other proteins. In the last year, approximately half of such structures were solved at a SG center rather than in a traditional laboratory. Furthermore, the cost of solving a structure at the most efficient U.S. center has now dropped to one-quarter the estimated cost of solving a structure by traditional methods. However, top structural biology laboratories are much more efficient than the average, and comparable to SG centers despite working on very challenging structures. Moreover, traditional structural biology papers are cited significantly more often, suggesting greater current impact.

  14. The anticentre old open clusters Berkeley 27, Berkeley 34, and Berkeley 36: new additions to the BOCCE project

    CERN Document Server

    Donati, P; Cignoni, M; Cocozza, G; Tosi, M

    2012-01-01

    In this paper we present the investigation of the evolutionary status of three open clusters: Berkeley 27, Berkeley 34, and Berkeley 36, all located in the Galactic anti-centre direction. All of them were observed with SUSI2@NTT using the Bessel B, V, and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC, and FST). This analysis shows that Berkeley 27 has an age between 1.5 and 1.7 Gyr, a reddening E(B-V) in the range 0.40 and 0.50, and a distance modulus (m-M)_0 between 13.1 and 13.3; Berkeley 34 is older with an age in the range 2.1 and 2.5 Gyr, E(B-V) between 0.57 and 0.64, and (m-M)_0 between 14.1 and 14.3; Berkeley 36, with an age between 7.0 and 7.5 Gyr, has a reddening E(B-V)~0.50 and a distance modulus (m-M)_0 between 13.1 and 13.2. For all the clusters our analysis suggests a sub-solar metallicity ...

  15. Coevolution of the Organization and Structure of Prokaryotic Genomes.

    Science.gov (United States)

    Touchon, Marie; Rocha, Eduardo P C

    2016-01-01

    The cytoplasm of prokaryotes contains many molecular machines interacting directly with the chromosome. These vital interactions depend on the chromosome structure, as a molecule, and on the genome organization, as a unit of genetic information. Strong selection for the organization of the genetic elements implicated in these interactions drives replicon ploidy, gene distribution, operon conservation, and the formation of replication-associated traits. The genomes of prokaryotes are also very plastic with high rates of horizontal gene transfer and gene loss. The evolutionary conflicts between plasticity and organization lead to the formation of regions with high genetic diversity whose impact on chromosome structure is poorly understood. Prokaryotic genomes are remarkable documents of natural history because they carry the imprint of all of these selective and mutational forces. Their study allows a better understanding of molecular mechanisms, their impact on microbial evolution, and how they can be tinkered in synthetic biology. PMID:26729648

  16. Evolutionary genomics and population structure of Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Koushik Das

    2014-11-01

    Full Text Available Amoebiasis caused by the gastrointestinal parasite Entamoeba histolytica has diverse disease outcomes. Study of genome and evolution of this fascinating parasite will help us to understand the basis of its virulence and explain why, when and how it causes diseases. In this review, we have summarized current knowledge regarding evolutionary genomics of E. histolytica and discussed their association with parasite phenotypes and its differential pathogenic behavior. How genetic diversity reveals parasite population structure has also been discussed. Queries concerning their evolution and population structure which were required to be addressed have also been highlighted. This significantly large amount of genomic data will improve our knowledge about this pathogenic species of Entamoeba.

  17. Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly

    DEFF Research Database (Denmark)

    Li, Yingrui; Zheng, Hancheng; Luo, Ruibang;

    2011-01-01

    Here we use whole-genome de novo assembly of second-generation sequencing reads to map structural variation (SV) in an Asian genome and an African genome. Our approach identifies small- and intermediate-size homozygous variants (1-50 kb) including insertions, deletions, inversions and their preci...

  18. The Berkeley Digital Seismic Network

    Science.gov (United States)

    Romanowicz, B.; Dreger, D.; Neuhauser, D.; Karavas, W.; Hellweg, M.; Uhrhammer, R.; Lombard, P.; Friday, J.; Lellinger, R.; Gardner, J.; McKenzie, M. R.; Bresloff, C.

    2007-05-01

    Since it began monitoring earthquakes in northern California 120 years ago, the Berkeley Seismological Laboratory (BSL) has been striving to produce the highest quality and most complete seismic data possible in the most modern way. This goal has influenced choices in instrumentation, installation and telemetry, as well as the investment in expertise and manpower. Since the transition to broadband (BB) instrumentation in the mid- 1980s and to a fully digitally telemetered network in the early 1990s, we have continued these efforts. Each of our 25 BB installations includes three component BB seismometers (STS-1s or STS-2) and digital accelerometers to capture the full range of ground motion from distant teleseisms to large, nearby earthquakes (almost 250 dB). The ground motion is recorded on-site by 24 bit dataloggers. Additional environmental parameters, such as temperature and pressure, are also monitored continuously. Many stations record also C-GPS data that is transmitted continuously to the BSL via shared real-time telemetry. The BDSN's first stations were installed in abandoned mines. In the last 15 years, we developed installations using buried shipping containers to reduce environmental noise and provide security and easy access to the equipment. Data are transmitted in real-time at several sampling rates to one or more processing centers, using frame relay, radio, microwave, and/or satellite. Each site has 7-30 days of onsite data storage to guard against data loss during telemetry outages. Each station is supplied with backup batteries to provide power for 3 days. The BDSN real-time data acquisition, earthquake analysis and archiving computers are housed in a building built to "emergency grade" seismic standards, with air conditioning and power backed up by a UPS and a large generator. Data latency and power are monitored by automated processes that alert staff via pager and email. Data completeness and timing quality are automatically assessed on a daily

  19. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  20. Toward Elucidating the Structure of Tetraploid Cotton Genome

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Upland cotton has the highest yield,and accounts for >95% of world cotton production.Decoding upland cotton genomes will undoubtedly provide the ultimate reference and resource for structural,functional,and evolutionary studies of the species.Here,we employed GeneTrek and BAC

  1. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob H;

    2014-01-01

    Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). CONCLUSIONS: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the...

  2. Structured RNAs and synteny regions in the pig genome

    DEFF Research Database (Denmark)

    Anthon, Christian; Tafer, Hakim; Havgaard, Jakob Hull;

    2014-01-01

    for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). CONCLUSIONS: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70...

  3. Genomic Structure and Evolution of Multigene Families: “Flowers” on the Human Genome

    Directory of Open Access Journals (Sweden)

    Hie Lim Kim

    2012-01-01

    Full Text Available We report the results of an extensive investigation of genomic structures in the human genome, with a particular focus on relatively large repeats (>50 kb in adjacent chromosomal regions. We named such structures “Flowers” because the pattern observed on dot plots resembles a flower. We detected a total of 291 Flowers in the human genome. They were predominantly located in euchromatic regions. Flowers are gene-rich compared to the average gene density of the genome. Genes involved in systems receiving environmental information, such as immunity and detoxification, were overrepresented in Flowers. Within a Flower, the mean number of duplication units was approximately four. The maximum and minimum identities between homologs in a Flower showed different distributions; the maximum identity was often concentrated to 100% identity, while the minimum identity was evenly distributed in the range of 78% to 100%. Using a gene conversion detection test, we found frequent and/or recent gene conversion events within the tested Flowers. Interestingly, many of those converted regions contained protein-coding genes. Computer simulation studies suggest that one role of such frequent gene conversions is the elongation of the life span of gene families in a Flower by the resurrection of pseudogenes.

  4. Genomic structure and evolution of multigene families: "flowers" on the human genome.

    Science.gov (United States)

    Kim, Hie Lim; Iwase, Mineyo; Igawa, Takeshi; Nishioka, Tasuku; Kaneko, Satoko; Katsura, Yukako; Takahata, Naoyuki; Satta, Yoko

    2012-01-01

    We report the results of an extensive investigation of genomic structures in the human genome, with a particular focus on relatively large repeats (>50 kb) in adjacent chromosomal regions. We named such structures "Flowers" because the pattern observed on dot plots resembles a flower. We detected a total of 291 Flowers in the human genome. They were predominantly located in euchromatic regions. Flowers are gene-rich compared to the average gene density of the genome. Genes involved in systems receiving environmental information, such as immunity and detoxification, were overrepresented in Flowers. Within a Flower, the mean number of duplication units was approximately four. The maximum and minimum identities between homologs in a Flower showed different distributions; the maximum identity was often concentrated to 100% identity, while the minimum identity was evenly distributed in the range of 78% to 100%. Using a gene conversion detection test, we found frequent and/or recent gene conversion events within the tested Flowers. Interestingly, many of those converted regions contained protein-coding genes. Computer simulation studies suggest that one role of such frequent gene conversions is the elongation of the life span of gene families in a Flower by the resurrection of pseudogenes. PMID:22779033

  5. Structure-Based Alignment and Consensus Secondary Structures for Three HIV-Related RNA Genomes.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2015-05-01

    Full Text Available HIV and related primate lentiviruses possess single-stranded RNA genomes. Multiple regions of these genomes participate in critical steps in the viral replication cycle, and the functions of many RNA elements are dependent on the formation of defined structures. The structures of these elements are still not fully understood, and additional functional elements likely exist that have not been identified. In this work, we compared three full-length HIV-related viral genomes: HIV-1NL4-3, SIVcpz, and SIVmac (the latter two strains are progenitors for all HIV-1 and HIV-2 strains, respectively. Model-free RNA structure comparisons were performed using whole-genome structure information experimentally derived from nucleotide-resolution SHAPE reactivities. Consensus secondary structures were constructed for strongly correlated regions by taking into account both SHAPE probing structural data and nucleotide covariation information from structure-based alignments. In these consensus models, all known functional RNA elements were recapitulated with high accuracy. In addition, we identified multiple previously unannotated structural elements in the HIV-1 genome likely to function in translation, splicing and other replication cycle processes; these are compelling targets for future functional analyses. The structure-informed alignment strategy developed here will be broadly useful for efficient RNA motif discovery.

  6. Chromatin structure and evolution in the human genome

    Directory of Open Access Journals (Sweden)

    Dunlop Malcolm G

    2007-05-01

    Full Text Available Abstract Background Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time. Results In this study we have shown that, paradoxically, synonymous site divergence (dS at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important. Conclusion We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor

  7. Elucidation of operon structures across closely related bacterial genomes.

    Science.gov (United States)

    Zhou, Chuan; Ma, Qin; Li, Guojun

    2014-01-01

    About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG) and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i) a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii) a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  8. Elucidation of operon structures across closely related bacterial genomes.

    Directory of Open Access Journals (Sweden)

    Chuan Zhou

    Full Text Available About half of the protein-coding genes in prokaryotic genomes are organized into operons to facilitate co-regulation during transcription. With the evolution of genomes, operon structures are undergoing changes which could coordinate diverse gene expression patterns in response to various stimuli during the life cycle of a bacterial cell. Here we developed a graph-based model to elucidate the diversity of operon structures across a set of closely related bacterial genomes. In the constructed graph, each node represents one orthologous gene group (OGG and a pair of nodes will be connected if any two genes, from the corresponding two OGGs respectively, are located in the same operon as immediate neighbors in any of the considered genomes. Through identifying the connected components in the above graph, we found that genes in a connected component are likely to be functionally related and these identified components tend to form treelike topology, such as paths and stars, corresponding to different biological mechanisms in transcriptional regulation as follows. Specifically, (i a path-structure component integrates genes encoding a protein complex, such as ribosome; and (ii a star-structure component not only groups related genes together, but also reflects the key functional roles of the central node of this component, such as the ABC transporter with a transporter permease and substrate-binding proteins surrounding it. Most interestingly, the genes from organisms with highly diverse living environments, i.e., biomass degraders and animal pathogens of clostridia in our study, can be clearly classified into different topological groups on some connected components.

  9. Genome instability induced by structured DNA and replication fork restart

    OpenAIRE

    Schalbetter, Stephanie

    2012-01-01

    DNA replication is a central mechanism to all forms of life. Errors occurring during DNA replication can result in mutagenesis and genome rearrangements, which can cause various diseases. In this work I have investigated the stability of direct tandem repeats (TRs) in the context of replication and replication-associated repair mechanisms. During DNA replication the replication fork encounters many obstacles, such as DNA-protein barriers, secondary DNA structures and DNA lesions. How and if r...

  10. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  11. TOPSAN: a collaborative annotation environment for structural genomics

    Directory of Open Access Journals (Sweden)

    Weekes Dana

    2010-08-01

    Full Text Available Abstract Background Many protein structures determined in high-throughput structural genomics centers, despite their significant novelty and importance, are available only as PDB depositions and are not accompanied by a peer-reviewed manuscript. Because of this they are not accessible by the standard tools of literature searches, remaining underutilized by the broad biological community. Results To address this issue we have developed TOPSAN, The Open Protein Structure Annotation Network, a web-based platform that combines the openness of the wiki model with the quality control of scientific communication. TOPSAN enables research collaborations and scientific dialogue among globally distributed participants, the results of which are reviewed by experts and eventually validated by peer review. The immediate goal of TOPSAN is to harness the combined experience, knowledge, and data from such collaborations in order to enhance the impact of the astonishing number and diversity of structures being determined by structural genomics centers and high-throughput structural biology. Conclusions TOPSAN combines features of automated annotation databases and formal, peer-reviewed scientific research literature, providing an ideal vehicle to bridge a gap between rapidly accumulating data from high-throughput technologies and a much slower pace for its analysis and integration with other, relevant research.

  12. Comparative analysis of whole genome structure of Streptococcus suis using whole genome PCR scanning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 com-plex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak.

  13. Comparative analysis of whole genome structure of Streptococcus suis using whole genome PCR scanning

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An outbreak associated with Streptococcus suis infection in humans emerged in Sichuan province, China in 2005. The outbreak is atypical for the apparent large number of human cases, high fatality rate and geographical spread. To determine whether the bacterium has changed, we compared both human and animal isolates from the Sichuan outbreak with those collected previously within China and in other countries using whole genome PCR scanning (WGPScaning) comparative sequencing of several known virulence factor genes and multilocus sequence typing (MLST) analysis. WGPScanning analysis showed that all primer pairs yielded PCR products of the expected sizes in all four strains tested. The nucleotide sequences of all the detected virulence factor genes are identical in the four strains and MLST results showed that the four isolates studied and reference strain all belonged to the ST1 complex. No new genetic changes were found in the genome structure of the isolates from this Sichuan outbreak.

  14. Structural genomic variation in childhood epilepsies with complex phenotypes

    DEFF Research Database (Denmark)

    Helbig, Ingo; Swinkels, Marielle E M; Aten, Emmelien;

    2014-01-01

    A genetic contribution to a broad range of epilepsies has been postulated, and particularly copy number variations (CNVs) have emerged as significant genetic risk factors. However, the role of CNVs in patients with epilepsies with complex phenotypes is not known. Therefore, we investigated the role...... of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and...... likely to carry a rare CNV. Genome-wide screening methods for rare CNVs may provide clues for the genetic etiology in patients with a broader range of epilepsies than previously anticipated, including in patients with various brain anomalies detectable by MRI. Performing genome-wide screens for rare CNVs...

  15. The impact of structural genomics: the first quindecennial.

    Science.gov (United States)

    Grabowski, Marek; Niedzialkowska, Ewa; Zimmerman, Matthew D; Minor, Wladek

    2016-03-01

    The period 2000-2015 brought the advent of high-throughput approaches to protein structure determination. With the overall funding on the order of $2 billion (in 2010 dollars), the structural genomics (SG) consortia established worldwide have developed pipelines for target selection, protein production, sample preparation, crystallization, and structure determination by X-ray crystallography and NMR. These efforts resulted in the determination of over 13,500 protein structures, mostly from unique protein families, and increased the structural coverage of the expanding protein universe. SG programs contributed over 4400 publications to the scientific literature. The NIH-funded Protein Structure Initiatives alone have produced over 2000 scientific publications, which to date have attracted more than 93,000 citations. Software and database developments that were necessary to handle high-throughput structure determination workflows have led to structures of better quality and improved integrity of the associated data. Organized and accessible data have a positive impact on the reproducibility of scientific experiments. Most of the experimental data generated by the SG centers are freely available to the community and has been utilized by scientists in various fields of research. SG projects have created, improved, streamlined, and validated many protocols for protein production and crystallization, data collection, and functional analysis, significantly benefiting biological and biomedical research. PMID:26935210

  16. Population structure and minimum core genome typing of Legionella pneumophila.

    Science.gov (United States)

    Qin, Tian; Zhang, Wen; Liu, Wenbin; Zhou, Haijian; Ren, Hongyu; Shao, Zhujun; Lan, Ruiting; Xu, Jianguo

    2016-01-01

    Legionella pneumophila is an important human pathogen causing Legionnaires' disease. In this study, whole genome sequencing (WGS) was used to study the characteristics and population structure of L. pneumophila strains. We sequenced and compared 53 isolates of L. pneumophila covering different serogroups and sequence-based typing (SBT) types (STs). We found that 1,896 single-copy orthologous genes were shared by all isolates and were defined as the minimum core genome (MCG) of L. pneumophila. A total of 323,224 single-nucleotide polymorphisms (SNPs) were identified among the 53 strains. After excluding 314,059 SNPs which were likely to be results of recombination, the remaining 9,165 SNPs were referred to as MCG SNPs. Population Structure analysis based on MCG divided the 53 L. pneumophila into nine MCG groups. The within-group distances were much smaller than the between-group distances, indicating considerable divergence between MCG groups. MCG groups were also supplied by phylogenetic analysis and may be considered as robust taxonomic units within L. pneumophila. Among the nine MCG groups, eight showed high intracellular growth ability while one showed low intracellular growth ability. Furthermore, MCG typing also showed high resolution in subtyping ST1 strains. The results obtained in this study provided significant insights into the evolution, population structure and pathogenicity of L. pneumophila. PMID:26888563

  17. Population structure and diversity of the aa genome of rice based on simple sequence repeats variation in organelle genome

    International Nuclear Information System (INIS)

    Maternally inherited mitochondrial and chloroplast genomes based Simple Sequence Repeat (SSR) variations were examined for their contribution to diversity of rice genome. Population structure and diversity analysis based on mitochondria and chloroplast inherited genome has been studied less as compared to nuclear genome inheritance. The present study was designed to evaluate the population structure and diversity of rice grown in Pakistan along with other countries based on maternally inherited mitochondria and chloroplast genome. The mitochondrial and chloroplast genomes were analyzed by using 42 mitochondrial and 20 chloroplast pairs of SSR primers. A slightly higher percentage of polymorphism was observed in chloroplast (30 percentage) than mitochondria (28.57 percentage). The average gene diversity for both mitochondrial and chloroplast was 0.32 oscillating from 0.041 to 0.620. The Polymorphism Information Content (PIC) value ranged from 0.040 to 0.543 with an average of 0.282, while the allelic richness ranged from two to four alleles with an average of 2.779 alleles. Mononucleotide repeats stood first (50 percentage polymorphic) for detecting polymorphism for organelle genomes followed by tri- (25 percentage), tetra- (14.29 percentage) and dinucleotide (12.5 percentage), respectively. Cluster and population structure analysis revealed two groups of accessions. On the basis of our results the AA genome of Asian cultivated rice diverges from the same origin during evolution. (author)

  18. The Complete Chloroplast Genome Sequence of Podocarpus lambertii: Genome Structure, Evolutionary Aspects, Gene Content and SSR Detection

    Science.gov (United States)

    Vieira, Leila do Nascimento; Faoro, Helisson; Rogalski, Marcelo; Fraga, Hugo Pacheco de Freitas; Cardoso, Rodrigo Luis Alves; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Nodari, Rubens Onofre; Guerra, Miguel Pedro

    2014-01-01

    Background Podocarpus lambertii (Podocarpaceae) is a native conifer from the Brazilian Atlantic Forest Biome, which is considered one of the 25 biodiversity hotspots in the world. The advancement of next-generation sequencing technologies has enabled the rapid acquisition of whole chloroplast (cp) genome sequences at low cost. Several studies have proven the potential of cp genomes as tools to understand enigmatic and basal phylogenetic relationships at different taxonomic levels, as well as further probe the structural and functional evolution of plants. In this work, we present the complete cp genome sequence of P. lambertii. Methodology/Principal Findings The P. lambertii cp genome is 133,734 bp in length, and similar to other sequenced cupressophytes, it lacks one of the large inverted repeat regions (IR). It contains 118 unique genes and one duplicated tRNA (trnN-GUU), which occurs as an inverted repeat sequence. The rps16 gene was not found, which was previously reported for the plastid genome of another Podocarpaceae (Nageia nagi) and Araucariaceae (Agathis dammara). Structurally, P. lambertii shows 4 inversions of a large DNA fragment ∼20,000 bp compared to the Podocarpus totara cp genome. These unexpected characteristics may be attributed to geographical distance and different adaptive needs. The P. lambertii cp genome presents a total of 28 tandem repeats and 156 SSRs, with homo- and dipolymers being the most common and tri-, tetra-, penta-, and hexapolymers occurring with less frequency. Conclusion The complete cp genome sequence of P. lambertii revealed significant structural changes, even in species from the same genus. These results reinforce the apparently loss of rps16 gene in Podocarpaceae cp genome. In addition, several SSRs in the P. lambertii cp genome are likely intraspecific polymorphism sites, which may allow highly sensitive phylogeographic and population structure studies, as well as phylogenetic studies of species of this genus. PMID

  19. Identification of genomic indels and structural variations using split reads

    Directory of Open Access Journals (Sweden)

    Urban Alexander E

    2011-07-01

    Full Text Available Abstract Background Recent studies have demonstrated the genetic significance of insertions, deletions, and other more complex structural variants (SVs in the human population. With the development of the next-generation sequencing technologies, high-throughput surveys of SVs on the whole-genome level have become possible. Here we present split-read identification, calibrated (SRiC, a sequence-based method for SV detection. Results We start by mapping each read to the reference genome in standard fashion using gapped alignment. Then to identify SVs, we score each of the many initial mappings with an assessment strategy designed to take into account both sequencing and alignment errors (e.g. scoring more highly events gapped in the center of a read. All current SV calling methods have multilevel biases in their identifications due to both experimental and computational limitations (e.g. calling more deletions than insertions. A key aspect of our approach is that we calibrate all our calls against synthetic data sets generated from simulations of high-throughput sequencing (with realistic error models. This allows us to calculate sensitivity and the positive predictive value under different parameter-value scenarios and for different classes of events (e.g. long deletions vs. short insertions. We run our calculations on representative data from the 1000 Genomes Project. Coupling the observed numbers of events on chromosome 1 with the calibrations gleaned from the simulations (for different length events allows us to construct a relatively unbiased estimate for the total number of SVs in the human genome across a wide range of length scales. We estimate in particular that an individual genome contains ~670,000 indels/SVs. Conclusions Compared with the existing read-depth and read-pair approaches for SV identification, our method can pinpoint the exact breakpoints of SV events, reveal the actual sequence content of insertions, and cover the whole

  20. The Berkeley TRIGA Mark III research reactor

    International Nuclear Information System (INIS)

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  1. THE YOUNG OPEN CLUSTER BERKELEY 55

    Energy Technology Data Exchange (ETDEWEB)

    Negueruela, Ignacio; Marco, Amparo, E-mail: ignacio.negueruela@ua.es, E-mail: amparo.marco@ua.es [Departamento de Fisica, Ingenieria de Sistemas y Teoria de la Senal, Universidad de Alicante, Apdo. 99, E-03080 Alicante (Spain)

    2012-02-15

    We present UBV photometry of the highly reddened and poorly studied open cluster Berkeley 55, revealing an important population of B-type stars and several evolved stars of high luminosity. Intermediate-resolution far-red spectra of several candidate members confirm the presence of one F-type supergiant and six late supergiants or bright giants. The brightest blue stars are mid-B giants. Spectroscopic and photometric analyses indicate an age 50 {+-} 10 Myr. The cluster is located at a distance d Almost-Equal-To 4 kpc, consistent with other tracers of the Perseus Arm in this direction. Berkeley 55 is thus a moderately young open cluster with a sizable population of candidate red (super)giant members, which can provide valuable information about the evolution of intermediate-mass stars.

  2. Political-social reactor problems at Berkeley

    International Nuclear Information System (INIS)

    For better than ten years there was little public notice of the TRIGA reactor at UC-Berkeley. Then: a) A non-student persuaded the Student and Senate to pass a resolution to request Campus Administration to stop operation of the reactor and remove it from campus. b) Presence of the reactor became a campaign-issue in a City Mayoral election. c) Two local residents reported adverse physical reactions before, during, and after a routine tour of the reactor facility. d) The Berkeley City Council began a study of problems associated with radioactive material within the city. e) Friends Of The Earth formally petitioned the NRC to terminate the reactor's license. Campus personnel have expended many man-hours and many pounds of paper in responding to these happenings. Some of the details are of interest, and may be of use to other reactor facilities. (author)

  3. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  4. C. Judson King of UC Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Prausnitz, John

    2005-06-01

    In the middle of the UC Berkeley campus, next to the Main Library, South Hall is the last surviving building from the original campus, founded about 135 years ago. A tiny tree-shaded appendix to this venerated classical building houses Berkeley's Center for Studies in Higher Education, directed by C. Judson King, former Provost and Senior Vice President--Academic Affairs of the ten-campus University of California and long-time Professor of Chemical Engineering at Berkeley. Jud came to Berkeley in 1963 as assistant professor of chemical engineering, following receipt of a doctor's degree from MIT and a subsequent short appointment as director of the MIT chemical engineering practice school station at what was then Esso (now Exxon) in New Jersey. His undergraduate degree is from Yale. Starting with his MIT doctoral dissertation on gas absorption, Jud has devoted much of his professional career to separation processes. His teaching and research activities have been primarily concerned with separation of mixtures with emphasis on liquid-liquid extraction and drying. As a consultant to Procter and Gamble, he contributed to the technology of making instant coffee. His life-long activities in hiking and camping stimulated Jud's interest in the manufacture of freeze-dried foods (e.g. turkey meat) to minimize the weight of his hiking back-pack. Jud is internationally known not only for his many research publications but even more, for his acclaimed textbook ''Separation Processses'' (McGraw-Hill, second edition 1980) that is used in standard chemical engineering courses in the US and abroad.

  5. High-resolution haplotype block structure in the cattle genome

    Directory of Open Access Journals (Sweden)

    Choi Jungwoo

    2009-04-01

    similarities in haplotype block structure between dairy and beef breeds make them non-differentiable. Finally, our findings suggest that ~30,000 uniformly distributed SNPs would be necessary to construct a complete genome LD map in Bos taurus breeds, and ~580,000 SNPs would be necessary to characterize the haplotype block structure across the complete cattle genome.

  6. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    International Nuclear Information System (INIS)

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  7. Multi-scale coding of genomic information: From DNA sequence to genome structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Arneodo, Alain, E-mail: alain.arneodo@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Vaillant, Cedric, E-mail: cedric.vaillant@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Audit, Benjamin, E-mail: benjamin.audit@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); Argoul, Francoise, E-mail: francoise.argoul@ens-lyon.f [Universite de Lyon, F-69000 Lyon (France); Laboratoire Joliot-Curie and Laboratoire de Physique, CNRS, Ecole Normale Superieure de Lyon, F-69007 Lyon (France); D' Aubenton-Carafa, Yves, E-mail: daubenton@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France); Thermes, Claude, E-mail: claude.thermes@cgm.cnrs-gif.f [Centre de Genetique Moleculaire, CNRS, Allee de la Terrasse, 91198 Gif-sur-Yvette (France)

    2011-02-15

    Understanding how chromatin is spatially and dynamically organized in the nucleus of eukaryotic cells and how this affects genome functions is one of the main challenges of cell biology. Since the different orders of packaging in the hierarchical organization of DNA condition the accessibility of DNA sequence elements to trans-acting factors that control the transcription and replication processes, there is actually a wealth of structural and dynamical information to learn in the primary DNA sequence. In this review, we show that when using concepts, methodologies, numerical and experimental techniques coming from statistical mechanics and nonlinear physics combined with wavelet-based multi-scale signal processing, we are able to decipher the multi-scale sequence encoding of chromatin condensation-decondensation mechanisms that play a fundamental role in regulating many molecular processes involved in nuclear functions.

  8. Beyond The Human Genome: What's Next? (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Rokhsar, Daniel

    2003-06-18

    UC Berkeley's Daniel Rokhsar and his colleagues were instrumental in contributing the sequences for three of the human body's chromosomes in the effort to decipher the blueprint of life- the completion of the DNA sequencing of the human genome. Now he is turning to the structure and function of genes in other organisms, some of them no less important to the planet's future than the human map. Hear the latest in this lecture from Lawrence Berkeley National Laboratory.

  9. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain

    DEFF Research Database (Denmark)

    Sükösd, Zsuzsanna; Andersen, Ebbe Sloth; Seemann, Ernst Stefan;

    2015-01-01

    of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping...

  10. Macromolecular structure determination in the post-genome era

    International Nuclear Information System (INIS)

    Recent advances in genetics, molecular biology and crystallographic instrumentation and methodology have led to a revolution in the field of Structural Molecular Biology (SMB). These combined advances have paved the way to a more complete and detailed understanding of the biological macromolecules that make up an organism, both in terms of their individual functions and also the interactions between them. In this paper we describe a large-scale, genomic approach to the three-dimensional structure determination of macromolecules and their complexes, using high-throughput methodology to streamline all aspects of the process. This task requires the development of automated high-intensity synchrotron beam lines for X-ray diffraction data collection from single crystal samples. Furthermore, these beam lines must be operated within a sophisticated software and hardware environment, which is capable of delivering a completely automated structure determination pipeline. The SMB resource at SSRL is developing a system for the structure determination steps of this process, starting with the initial characterization of the frozen sample, followed by data collection, data reduction, phase determination, and model building. This paper focuses on the data collection elements of this high-throughput system

  11. Comparative genetics and genomics of nematodes: genome structure, development, and lifestyle.

    Science.gov (United States)

    Sommer, Ralf J; Streit, Adrian

    2011-01-01

    Nematodes are found in virtually all habitats on earth. Many of them are parasites of plants and animals, including humans. The free-living nematode, Caenorhabditis elegans, is one of the genetically best-studied model organisms and was the first metazoan whose genome was fully sequenced. In recent years, the draft genome sequences of another six nematodes representing four of the five major clades of nematodes were published. Compared to mammalian genomes, all these genomes are very small. Nevertheless, they contain almost the same number of genes as the human genome. Nematodes are therefore a very attractive system for comparative genetic and genomic studies, with C. elegans as an excellent baseline. Here, we review the efforts that were made to extend genetic analysis to nematodes other than C. elegans, and we compare the seven available nematode genomes. One of the most striking findings is the unexpectedly high incidence of gene acquisition through horizontal gene transfer (HGT). PMID:21721943

  12. PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics

    Directory of Open Access Journals (Sweden)

    Rychlewski Leszek

    2006-02-01

    Full Text Available Abstract Background The number of protein structures from structural genomics centers dramatically increases in the Protein Data Bank (PDB. Many of these structures are functionally unannotated because they have no sequence similarity to proteins of known function. However, it is possible to successfully infer function using only structural similarity. Results Here we present the PDB-UF database, a web-accessible collection of predictions of enzymatic properties using structure-function relationship. The assignments were conducted for three-dimensional protein structures of unknown function that come from structural genomics initiatives. We show that 4 hypothetical proteins (with PDB accession codes: 1VH0, 1NS5, 1O6D, and 1TO0, for which standard BLAST tools such as PSI-BLAST or RPS-BLAST failed to assign any function, are probably methyltransferase enzymes. Conclusion We suggest that the structure-based prediction of an EC number should be conducted having the different similarity score cutoff for different protein folds. Moreover, performing the annotation using two different algorithms can reduce the rate of false positive assignments. We believe, that the presented web-based repository will help to decrease the number of protein structures that have functions marked as "unknown" in the PDB file. Availability http://paradox.harvard.edu/PDB-UF and http://bioinfo.pl/PDB-UF

  13. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  14. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  15. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  16. Careers in Data Science: A Berkeley Perspective

    Science.gov (United States)

    Koy, K.

    2015-12-01

    Last year, I took on an amazing opportunity to serve as the Executive Director of the new Berkeley Institute for Data Science (BIDS). After a 15-year career working with geospatial data to advance our understanding of the environment, I have been presented with a unique opportunity through BIDS to work with talented researchers from a wide variety of backgrounds. Founded in 2013, BIDS is a central hub of research and education at UC Berkeley designed to facilitate and nurture data-intensive science. We are building a community centered on a cohort of talented data science fellows and senior fellows who are representative of the world-class researchers from across our campus and are leading the data science revolution within their disciplines. Our initiatives are designed to bring together broad constituents of the data science community, including domain experts from the life, social, and physical sciences and methodological experts from computer science, statistics, and applied mathematics. While many of these individuals rarely cross professional paths, BIDS actively seeks new and creative ways to engage and foster collaboration across these different research fields. In this presentation, I will share my own story, along with some insights into how BIDS is supporting the careers of data scientists, including graduate students, postdocs, faculty, and research staff. I will also describe how these individuals we are helping support are working to address a number of data science-related challenges in scientific research.

  17. Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.

    Science.gov (United States)

    Shirasawa, Kenta; Bertioli, David J; Varshney, Rajeev K; Moretzsohn, Marcio C; Leal-Bertioli, Soraya C M; Thudi, Mahendar; Pandey, Manish K; Rami, Jean-Francois; Foncéka, Daniel; Gowda, Makanahally V C; Qin, Hongde; Guo, Baozhu; Hong, Yanbin; Liang, Xuanqiang; Hirakawa, Hideki; Tabata, Satoshi; Isobe, Sachiko

    2013-04-01

    The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)(4×), were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding. PMID:23315685

  18. New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes

    DEFF Research Database (Denmark)

    Parker, Brian John; Moltke, Ida; Roth, Adam;

    2011-01-01

    a comparative method, EvoFam, for genome-wide identification of families of regulatory RNA structures, based on primary sequence and secondary structure similarity. We apply EvoFam to a 41-way genomic vertebrate alignment. Genome-wide, we identify 220 human, high-confidence families outside protein...... involving six long hairpins in the 3'-UTR of MAT2A, a key metabolic gene that produces the primary human methyl donor S-adenosylmethionine; the other involving a tRNA-like structure in the intron of the tRNA maturation gene POP1. We experimentally validate the predicted MAT2A structures. Finally, we...

  19. Evolution of genomic structural variation and genomic architecture in the adaptive radiations of African cichlid fishes

    Directory of Open Access Journals (Sweden)

    Shaohua eFan

    2014-06-01

    Full Text Available African cichlid fishes are an ideal system for studying explosive rates of speciation and the origin of diversity in adaptive radiation. Within the last few million years, more than 2000 species have evolved in the Great Lakes of East Africa, the largest adaptive radiation in vertebrates. These young species show spectacular diversity in their coloration, morphology and behavior. However, little is known about the genomic basis of this astonishing diversity. Recently, five African cichlid genomes were sequenced, including that of the Nile tilapia (Oreochromis niloticus, a basal and only relatively moderately diversified lineage, and the genomes of four representative endemic species of the adaptive radiations, Neolamprologus brichardi, Astatotilapia burtoni, Metriaclima zebra, and Pundamila nyererei. Using the tilapia genome as the reference genome, we generated a high-resolution genomic variation map, consisting of single nucleotide polymorphisms (SNPs, short insertions and deletions (indels, inversions and deletions. In total, around 18.8, 17.7, 17.0 and 17.0 million SNPs, 2.3, 2.2, 1.4 and 1.9 million indels, 262, 306, 162, and 154 inversions, and 3509, 2705, 2710 and 2634 deletions were inferred to have evolved in the N. brichardi, A. burtoni, P. nyererei and M. zebra respectively. Many of these variations affected the annotated gene regions in the genome. Different patterns of genetic variation were detected during the adaptive radiation of African cichlid fishes. For SNPs, the highest rate of evolution was detected in the common ancestor of N. brichardi, A. burtoni, P. nyererei and M. zebra. However, for the evolution of inversions and deletions, we found that the rates at the terminal taxa are substantially higher than the rates at the ancestral lineages. The high-resolution map provides an ideal opportunity to understand the genomic bases of the adaptive radiation of African cichlid fishes.

  20. A genome-wide survey of structural variation between human and chimpanzee

    OpenAIRE

    Newman, Tera L; Tuzun, Eray; Morrison, V. Anne; Hayden, Karen E.; Ventura, Mario; McGrath, Sean D.; Rocchi, Mariano; Eichler, Evan E.

    2005-01-01

    Structural changes (deletions, insertions, and inversions) between human and chimpanzee genomes have likely had a significant impact on lineage-specific evolution because of their potential for dramatic and irreversible mutation. The low-quality nature of the current chimpanzee genome assembly precludes the reliable identification of many of these differences. To circumvent this, we applied a method to optimally map chimpanzee fosmid paired-end sequences against the human genome to systematic...

  1. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  2. The Berkeley gas-filled separator

    CERN Document Server

    Ninov, V; McGrath, C A

    1998-01-01

    The BGS is being constructed at the 88-Inch Cyclotron at LBNL in Berkeley. The magnetic configuration of the BGS will allow a large angular acceptance and good suppression of primary beam particles. BGS operates as a mass spectrometer with a A/ Delta A approximately =200 and as a gas filled separator at pressures between 0.1-50 hPa. The reaction products recoiling off a thin target will be collected with efficiencies from 10-80at the focal plane. A Monte Carlo simulation program of the ion transport through the gas-filled magnets in combination of 3-dimensional TOSCA field maps has been developed and reproduces closely the experimental behavior of BGS. (9 refs).

  3. Genomic structure of metabotropic glutamate receptor 7 and comparison of genomic structures of extracellular domains of mGluR family

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Metabotropic glutamate receptor 7, coupled with a chemical neurotransmitter L-glutamate, plays an important role in the development of many psychiatric and neurological disorders. To study the biological and genetic mechanism of the mGluR7-related diseases, a physical map covering the full-length mGluR7 genomic sequence has been constructed through seed clone screening and fingerprinting database searching. These BAC clones in the physical map have been sequenced with shotgun strategy and assembled by Phred-Phrap-Consed software; the error rate of the final genomic sequence is less than 0.01%. mGluR7 spans 880 kb genomic region, the GC content and repeat content of mGluR7 genomic sequence are 38% and 37.5% respectively. mGluR7 has a typical "house-keeping" promoter and consists of 11 exons, with introns ranging from 6 kb to 285 kb. mGluR7a and mGluR7b are two known alternatively splicing variants. Comparing the genomic structures of extracellular domains of mGluR family, their genomic structures can be subdivided into three groups, which are consistent with that of proteins. Although the genomic organization of mGluR7's group is conserved, the majority of introns in the extracellular segments vary dramatically. It is an obvious trend of the increasing intron size inverse proportion to phylogenetic time. Variation of genomic structure is higher than that of protein, which is attributed to the species characteristic regulation of gene expression.

  4. Draft Genome of the Wheat Rust Pathogen (Puccinia triticina) Unravels Genome-Wide Structural Variations during Evolution.

    Science.gov (United States)

    Kiran, Kanti; Rawal, Hukam C; Dubey, Himanshu; Jaswal, Rajdeep; Devanna, B N; Gupta, Deepak Kumar; Bhardwaj, Subhash C; Prasad, P; Pal, Dharam; Chhuneja, Parveen; Balasubramanian, P; Kumar, J; Swami, M; Solanke, Amolkumar U; Gaikwad, Kishor; Singh, Nagendra K; Sharma, Tilak Raj

    2016-01-01

    Leaf rust is one of the most important diseases of wheat and is caused by Puccinia triticina, a highly variable rust pathogen prevalent worldwide. Decoding the genome of this pathogen will help in unraveling the molecular basis of its evolution and in the identification of genes responsible for its various biological functions. We generated high quality draft genome sequences (approximately 100- 106 Mb) of two races of P. triticina; the variable and virulent Race77 and the old, avirulent Race106. The genomes of races 77 and 106 had 33X and 27X coverage, respectively. We predicted 27678 and 26384 genes, with average lengths of 1,129 and 1,086 bases in races 77 and 106, respectively and found that the genomes consisted of 37.49% and 39.99% repetitive sequences. Genome wide comparative analysis revealed that Race77 differs substantially from Race106 with regard to segmental duplication (SD), repeat element, and SNP/InDel characteristics. Comparative analyses showed that Race 77 is a recent, highly variable and adapted Race compared with Race106. Further sequence analyses of 13 additional pathotypes of Race77 clearly differentiated the recent, active and virulent, from the older pathotypes. Average densities of 2.4 SNPs and 0.32 InDels per kb were obtained for all P. triticina pathotypes. Secretome analysis demonstrated that Race77 has more virulence factors than Race 106, which may be responsible for the greater degree of adaptation of this pathogen. We also found that genes under greater selection pressure were conserved in the genomes of both races, and may affect functions crucial for the higher levels of virulence factors in Race77. This study provides insights into the genome structure, genome organization, molecular basis of variation, and pathogenicity of P. triticina The genome sequence data generated in this study have been submitted to public domain databases and will be an important resource for comparative genomics studies of the more than 4000 existing

  5. Junior High Schools of Berkeley, California. Bulletin, 1923, No. 4

    Science.gov (United States)

    Preston, James T.; Clark, W. B.; Glessner, H. H.; Hennessey, D. L.

    1923-01-01

    This bulletin demonstrates that Berkeley, California's educational problem is and has been that of meeting the varied needs of a population such as may be found in any typical American city. The varied population needs, together with the rapid growth, have brought many difficult problems to Berkeley, just has they have to other cities. Based on…

  6. Berkeley UPC编译技术分析%Analysis of the Berkeley UPC Compile Technique

    Institute of Scientific and Technical Information of China (English)

    文延华; 黄传信; 漆锋滨

    2004-01-01

    UPC是一种可以在多种体系结构的并行系统上进行移植的基于全局地址空间(GAS)访问的并行编程语言.本文主要介绍了Berkeley UPC编译器的结构特点,分析了它对文本的支持程度和对并行的实现效率.

  7. Full-length RNA structure prediction of the HIV-1 genome reveals a conserved core domain.

    Science.gov (United States)

    Sükösd, Zsuzsanna; Andersen, Ebbe S; Seemann, Stefan E; Jensen, Mads Krogh; Hansen, Mathias; Gorodkin, Jan; Kjems, Jørgen

    2015-12-01

    A distance constrained secondary structural model of the ≈10 kb RNA genome of the HIV-1 has been predicted but higher-order structures, involving long distance interactions, are currently unknown. We present the first global RNA secondary structure model for the HIV-1 genome, which integrates both comparative structure analysis and information from experimental data in a full-length prediction without distance constraints. Besides recovering known structural elements, we predict several novel structural elements that are conserved in HIV-1 evolution. Our results also indicate that the structure of the HIV-1 genome is highly variable in most regions, with a limited number of stable and conserved RNA secondary structures. Most interesting, a set of long distance interactions form a core organizing structure (COS) that organize the genome into three major structural domains. Despite overlapping protein-coding regions the COS is supported by a particular high frequency of compensatory base changes, suggesting functional importance for this element. This new structural element potentially organizes the whole genome into three major domains protruding from a conserved core structure with potential roles in replication and evolution for the virus. PMID:26476446

  8. Conversion of sub-megasized DNA to desired structures using a novel Bacillus subtilis genome vector

    OpenAIRE

    Kaneko, Shinya; Tsuge, Kenji; Takeuchi, Takashi; Itaya, Mitsuhiro

    2003-01-01

    A novel genome vector using the 4215 kb Bacillus subtilis genome provides for precise target cloning and processing of the cloned DNA to the desired structure. Each process highly dependent on homologous recombination in the host B.subtilis is distinguished from the other cloning systems. A 120 kb mouse jumonji (jmj) genomic gene was processed in the genome vector to give a series of truncated sub-megasized DNA. One of these truncated segments containing the first intron was copied in a plasm...

  9. A sequence-based survey of the complex structural organization of tumor genomes

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Colin; Raphael, Benjamin J.; Volik, Stanislav; Yu, Peng; Wu, Chunxiao; Huang, Guiqing; Linardopoulou, Elena V.; Trask, Barbara J.; Waldman, Frederic; Costello, Joseph; Pienta, Kenneth J.; Mills, Gordon B.; Bajsarowicz, Krystyna; Kobayashi, Yasuko; Sridharan, Shivaranjani; Paris, Pamela; Tao, Quanzhou; Aerni, Sarah J.; Brown, Raymond P.; Bashir, Ali; Gray, Joe W.; Cheng, Jan-Fang; de Jong, Pieter; Nefedov, Mikhail; Ried, Thomas; Padilla-Nash, Hesed M.; Collins, Colin C.

    2008-04-03

    The genomes of many epithelial tumors exhibit extensive chromosomal rearrangements. All classes of genome rearrangements can be identified using End Sequencing Profiling (ESP), which relies on paired-end sequencing of cloned tumor genomes. In this study, brain, breast, ovary and prostate tumors along with three breast cancer cell lines were surveyed with ESP yielding the largest available collection of sequence-ready tumor genome breakpoints and providing evidence that some rearrangements may be recurrent. Sequencing and fluorescence in situ hybridization (FISH) confirmed translocations and complex tumor genome structures that include coamplification and packaging of disparate genomic loci with associated molecular heterogeneity. Comparison of the tumor genomes suggests recurrent rearrangements. Some are likely to be novel structural polymorphisms, whereas others may be bona fide somatic rearrangements. A recurrent fusion transcript in breast tumors and a constitutional fusion transcript resulting from a segmental duplication were identified. Analysis of end sequences for single nucleotide polymorphisms (SNPs) revealed candidate somatic mutations and an elevated rate of novel SNPs in an ovarian tumor. These results suggest that the genomes of many epithelial tumors may be far more dynamic and complex than previously appreciated and that genomic fusions including fusion transcripts and proteins may be common, possibly yielding tumor-specific biomarkers and therapeutic targets.

  10. Local chromatin structure of heterochromatin regulates repeatedDNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C.

    2007-05-05

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  11. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  12. Large-scale trends in the evolution of gene structures within 11 animal genomes.

    Directory of Open Access Journals (Sweden)

    Mark Yandell

    2006-03-01

    Full Text Available We have used the annotations of six animal genomes (Homo sapiens, Mus musculus, Ciona intestinalis, Drosophila melanogaster, Anopheles gambiae, and Caenorhabditis elegans together with the sequences of five unannotated Drosophila genomes to survey changes in protein sequence and gene structure over a variety of timescales--from the less than 5 million years since the divergence of D. simulans and D. melanogaster to the more than 500 million years that have elapsed since the Cambrian explosion. To do so, we have developed a new open-source software library called CGL (for "Comparative Genomics Library". Our results demonstrate that change in intron-exon structure is gradual, clock-like, and largely independent of coding-sequence evolution. This means that genome annotations can be used in new ways to inform, corroborate, and test conclusions drawn from comparative genomics analyses that are based upon protein and nucleotide sequence similarities.

  13. Comparative genomics of 274 Vibrio cholerae genomes reveals mobile functions structuring three niche dimensions

    NARCIS (Netherlands)

    Dutilh, B.E.; Thompson, C.C.; Vicente, A.C.; Marin, M.A.; Lee, C.; Silva, G.G.; Schmieder, R.; Andrade, B.G.; Chimetto, L.; Cuevas, D.; Garza, D.R.; Okeke, I.N.; Aboderin, A.O.; Spangler, J.; Ross, T.; Dinsdale, E.A.; Thompson, F.L.; Harkins, T.T.; Edwards, R.A.

    2014-01-01

    BACKGROUND: Vibrio cholerae is a globally dispersed pathogen that has evolved with humans for centuries, but also includes non-pathogenic environmental strains. Here, we identify the genomic variability underlying this remarkable persistence across the three major niche dimensions space, time, and h

  14. The discrepancies in the results of bioinformatics tools for genomic structural annotation

    Science.gov (United States)

    Pawełkowicz, Magdalena; Nowak, Robert; Osipowski, Paweł; Rymuszka, Jacek; Świerkula, Katarzyna; Wojcieszek, Michał; Przybecki, Zbigniew

    2014-11-01

    A major focus of sequencing project is to identify genes in genomes. However it is necessary to define the variety of genes and the criteria for identifying them. In this work we present discrepancies and dependencies from the application of different bioinformatic programs for structural annotation performed on the cucumber data set from Polish Consortium of Cucumber Genome Sequencing. We use Fgenesh, GenScan and GeneMark to automated structural annotation, the results have been compared to reference annotation.

  15. Phylogenetically clustering of rhizobia by genome structure: application to unclassified Rhizobium

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jun-fang; LIU Gui-rong; LIU Shu-lin

    2006-01-01

    Previous research reveals that the genome structures of rhizobial type strains and reference strains can reflect their phylogenetic relationships. In order to further explore the potential application of genome structure as a phylogenetic marker in rhizobial natural taxonomy, this study analyzed the genome structures of 29 unclassified nodule bacteria isolated from the root nodules of leguminous trees, Robinia sp., Dalbergia spp., and A lbizia spp. and 7 rhizobial reference strains by I-CeuI cleavage, then clustered these bacteria phylogenetically based on their genome structures and compared these clusters with those based on numerical taxonomy and 16S rDNA PCR-RFLP. Eleven phylogenetic clusters were obtained. The clusters were in large part consistent with those based on numerical taxonomy and 16S rDNA PCR-RFLP. Also there are inconsistent clusters based on the above three methods. But results are completely consistent with 16S rRNA clusters. This suggested that the genome structure clustering method can be used to fastly identify root nodule isolates and detect their phylogenetic relationships. The credibility and repeatability of the results, together with the simplicity and possibility to analyze a large number of strains in a short time of the method, indicates the broad potential application of genome structure as phylogenetic marker to categorize rhizobial isolates and should in the future facilitate biodiversity studies.

  16. Structural analysis of proteins in the immune system and structural genomics

    International Nuclear Information System (INIS)

    develop and advance high throughput methods for target selection, cloning, expression, crystallization, and structural determination of proteins, and is supported by the NIH-NIGMS Protein Structure Initiative (www.nigms.nih.gov/funding/psi.html). Our current targets are the complete T. maritima proteome, as well as a eukaryotic system represented by the mouse genome. The JCSG is mainly located at The Scripps Research Institute/ Genomic Institute of the Novartis Research Foundation, U.C. San Diego/San Diego Super Computer Center, and Stanford Synchrotron Radiation Laboratory/Stanford University. The primary goal is to develop a complete high throughput pipeline that is efficient and cost effective. High throughput robotic systems for protein expression, purification, and crystallization are already in place, as well as design and implementation of robotic devices and automation systems at the synchrotron beamline. In this way, a learning factory can be created for structural genomics that utilizes high throughput technologies and automation in almost all of the experimental steps from cloning to coordinate validation that utilizes feedback from data mining. Improved success rates and lower cost per structure will then lead to an enormous increase in our knowledge of protein folds and families and the conversion of gene sequence information to make progress into converting gene sequence information into structural models

  17. Structural genomic variation as risk factor for idiopathic recurrent miscarriage

    DEFF Research Database (Denmark)

    Nagirnaja, Liina; Palta, Priit; Kasak, Laura;

    2014-01-01

    Recurrent miscarriage (RM) is a multifactorial disorder with acknowledged genetic heritability that affects ∼3% of couples aiming at childbirth. As copy number variants (CNVs) have been shown to contribute to reproductive disease susceptibility, we aimed to describe genome-wide profile of CNVs an...

  18. Mosaic Structure Of Foot-And-Mouth Disease Virus Genomes

    Science.gov (United States)

    We report the results of a simple pairwise scanning analysis designed to identify inter-serotype recombination events applied to genome data from 144 isolates of foot-and-mouth disease virus (FMDV) representing all seven serotypes. We identify large numbers of candidate recombinant fragments from a...

  19. Studying Cattle Genomic Structural Variations in the Green Economy Era

    Science.gov (United States)

    Transgenic cattle carrying multiple genomic modifications have been produced by serial rounds of somatic cell chromatin transfer (cloning) of sequentially genetically targeted somatic cells. However, cloning efficiency tends to decline with the increase of rounds of cloning. It is possible that mult...

  20. Radioactive ion beam development in Berkeley

    CERN Document Server

    Wutte, D C; Leitner, M A; Xie, Z Q

    1999-01-01

    Two radioactive ion beam projects are under development at the 88" Cyclotron, BEARS (Berkeley Experiment with accelerated radioactive species) and the 14O experiment. The projects are initially focused on the production of 11C and 14O, but it is planned to expand the program to 17F, 18F, 13N and 76Kr. For the BEARS project, the radioactivity is produced in form of either CO2 or N2O in a small medical 10 MeV proton cyclotron. The activity is then transported through a 300 m long He-jet line to the 88" cyclotron building, injected into the AECR-U ion source and accelerated through the 88" cyclotron to energies between 1 to 30 MeV/ nucleon. The 14O experiment is a new experiment at the 88" cyclotron to measure the energy-shape of the beta decay spectrum. For this purpose, a target transfer line and a radioactive ion beam test stand has been constructed. The radioactivity is produced in form of CO in a hot carbon target with a 20 MeV 3He from the 88" Cyclotron. The activity diffuses through an 8m long stainless s...

  1. Complete Chloroplast Genome of the Wollemi Pine (Wollemia nobilis: Structure and Evolution.

    Directory of Open Access Journals (Sweden)

    Jia-Yee S Yap

    Full Text Available The Wollemi pine (Wollemia nobilis is a rare Southern conifer with striking morphological similarity to fossil pines. A small population of W. nobilis was discovered in 1994 in a remote canyon system in the Wollemi National Park (near Sydney, Australia. This population contains fewer than 100 individuals and is critically endangered. Previous genetic studies of the Wollemi pine have investigated its evolutionary relationship with other pines in the family Araucariaceae, and have suggested that the Wollemi pine genome contains little or no variation. However, these studies were performed prior to the widespread use of genome sequencing, and their conclusions were based on a limited fraction of the Wollemi pine genome. In this study, we address this problem by determining the entire sequence of the W. nobilis chloroplast genome. A detailed analysis of the structure of the genome is presented, and the evolution of the genome is inferred by comparison with the chloroplast sequences of other members of the Araucariaceae and the related family Podocarpaceae. Pairwise alignments of whole genome sequences, and the presence of unique pseudogenes, gene duplications and insertions in W. nobilis and Araucariaceae, indicate that the W. nobilis chloroplast genome is most similar to that of its sister taxon Agathis. However, the W. nobilis genome contains an unusually high number of repetitive sequences, and these could be used in future studies to investigate and conserve any remnant genetic diversity in the Wollemi pine.

  2. Femtomole SHAPE reveals regulatory structures in the authentic XMRV RNA genome

    OpenAIRE

    Grohman, Jacob K.; Kottegoda, Sumith; Gorelick, Robert J.; Allbritton, Nancy L.; Weeks, Kevin M.

    2011-01-01

    Higher-order structure influences critical functions in nearly all non-coding and coding RNAs. Most single-nucleotide resolution RNA structure determination technologies cannot be used to analyze RNA from scarce biological samples, like viral genomes. To make quantitative RNA structure analysis applicable to a much wider array of RNA structure-function problems, we developed and applied high-sensitivity selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) to structural analysi...

  3. Genome sequence, comparative analysis and haplotype structure of the domestic dog.

    Science.gov (United States)

    Lindblad-Toh, Kerstin; Wade, Claire M; Mikkelsen, Tarjei S; Karlsson, Elinor K; Jaffe, David B; Kamal, Michael; Clamp, Michele; Chang, Jean L; Kulbokas, Edward J; Zody, Michael C; Mauceli, Evan; Xie, Xiaohui; Breen, Matthew; Wayne, Robert K; Ostrander, Elaine A; Ponting, Chris P; Galibert, Francis; Smith, Douglas R; DeJong, Pieter J; Kirkness, Ewen; Alvarez, Pablo; Biagi, Tara; Brockman, William; Butler, Jonathan; Chin, Chee-Wye; Cook, April; Cuff, James; Daly, Mark J; DeCaprio, David; Gnerre, Sante; Grabherr, Manfred; Kellis, Manolis; Kleber, Michael; Bardeleben, Carolyne; Goodstadt, Leo; Heger, Andreas; Hitte, Christophe; Kim, Lisa; Koepfli, Klaus-Peter; Parker, Heidi G; Pollinger, John P; Searle, Stephen M J; Sutter, Nathan B; Thomas, Rachael; Webber, Caleb; Baldwin, Jennifer; Abebe, Adal; Abouelleil, Amr; Aftuck, Lynne; Ait-Zahra, Mostafa; Aldredge, Tyler; Allen, Nicole; An, Peter; Anderson, Scott; Antoine, Claudel; Arachchi, Harindra; Aslam, Ali; Ayotte, Laura; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Benamara, Mostafa; Berlin, Aaron; Bessette, Daniel; Blitshteyn, Berta; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Brown, Adam; Cahill, Patrick; Calixte, Nadia; Camarata, Jody; Cheshatsang, Yama; Chu, Jeffrey; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Dawoe, Tenzin; Daza, Riza; Decktor, Karin; DeGray, Stuart; Dhargay, Norbu; Dooley, Kimberly; Dooley, Kathleen; Dorje, Passang; Dorjee, Kunsang; Dorris, Lester; Duffey, Noah; Dupes, Alan; Egbiremolen, Osebhajajeme; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Ferreira, Patricia; Fisher, Sheila; FitzGerald, Mike; Foley, Karen; Foley, Chelsea; Franke, Alicia; Friedrich, Dennis; Gage, Diane; Garber, Manuel; Gearin, Gary; Giannoukos, Georgia; Goode, Tina; Goyette, Audra; Graham, Joseph; Grandbois, Edward; Gyaltsen, Kunsang; Hafez, Nabil; Hagopian, Daniel; Hagos, Birhane; Hall, Jennifer; Healy, Claire; Hegarty, Ryan; Honan, Tracey; Horn, Andrea; Houde, Nathan; Hughes, Leanne; Hunnicutt, Leigh; Husby, M; Jester, Benjamin; Jones, Charlien; Kamat, Asha; Kanga, Ben; Kells, Cristyn; Khazanovich, Dmitry; Kieu, Alix Chinh; Kisner, Peter; Kumar, Mayank; Lance, Krista; Landers, Thomas; Lara, Marcia; Lee, William; Leger, Jean-Pierre; Lennon, Niall; Leuper, Lisa; LeVine, Sarah; Liu, Jinlei; Liu, Xiaohong; Lokyitsang, Yeshi; Lokyitsang, Tashi; Lui, Annie; Macdonald, Jan; Major, John; Marabella, Richard; Maru, Kebede; Matthews, Charles; McDonough, Susan; Mehta, Teena; Meldrim, James; Melnikov, Alexandre; Meneus, Louis; Mihalev, Atanas; Mihova, Tanya; Miller, Karen; Mittelman, Rachel; Mlenga, Valentine; Mulrain, Leonidas; Munson, Glen; Navidi, Adam; Naylor, Jerome; Nguyen, Tuyen; Nguyen, Nga; Nguyen, Cindy; Nguyen, Thu; Nicol, Robert; Norbu, Nyima; Norbu, Choe; Novod, Nathaniel; Nyima, Tenchoe; Olandt, Peter; O'Neill, Barry; O'Neill, Keith; Osman, Sahal; Oyono, Lucien; Patti, Christopher; Perrin, Danielle; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Rachupka, Anthony; Raghuraman, Sujaa; Rameau, Rayale; Ray, Verneda; Raymond, Christina; Rege, Filip; Rise, Cecil; Rogers, Julie; Rogov, Peter; Sahalie, Julie; Settipalli, Sampath; Sharpe, Theodore; Shea, Terrance; Sheehan, Mechele; Sherpa, Ngawang; Shi, Jianying; Shih, Diana; Sloan, Jessie; Smith, Cherylyn; Sparrow, Todd; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Stone, Sabrina; Sykes, Sean; Tchuinga, Pierre; Tenzing, Pema; Tesfaye, Senait; Thoulutsang, Dawa; Thoulutsang, Yama; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Venkataraman, Vijay; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Yang, Shuli; Yang, Xiaoping; Young, Geneva; Yu, Qing; Zainoun, Joanne; Zembek, Lisa; Zimmer, Andrew; Lander, Eric S

    2005-12-01

    Here we report a high-quality draft genome sequence of the domestic dog (Canis familiaris), together with a dense map of single nucleotide polymorphisms (SNPs) across breeds. The dog is of particular interest because it provides important evolutionary information and because existing breeds show great phenotypic diversity for morphological, physiological and behavioural traits. We use sequence comparison with the primate and rodent lineages to shed light on the structure and evolution of genomes and genes. Notably, the majority of the most highly conserved non-coding sequences in mammalian genomes are clustered near a small subset of genes with important roles in development. Analysis of SNPs reveals long-range haplotypes across the entire dog genome, and defines the nature of genetic diversity within and across breeds. The current SNP map now makes it possible for genome-wide association studies to identify genes responsible for diseases and traits, with important consequences for human and companion animal health. PMID:16341006

  4. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    Science.gov (United States)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Summary Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated domain (TAD) repositioning and alterations of tissue-restricted genomic neighborhoods and chromatin loops, effectively erasing the somatic-cell-specific genome structures while establishing an embryonic stem-cell-like 3D genome. Yet, early passage iPSCs carry topological hallmarks that enable recognition of their cell of origin. These hallmarks are not remnants of somatic chromosome topologies. Instead, the distinguishing topological features are acquired during reprogramming, as we also find for cell-of-origin-dependent gene expression patterns. PMID:26971819

  5. Asymmetric cryo-EM reconstruction of phage MS2 reveals genome structure in situ

    Science.gov (United States)

    Koning, Roman I; Gomez-Blanco, Josue; Akopjana, Inara; Vargas, Javier; Kazaks, Andris; Tars, Kaspars; Carazo, José María; Koster, Abraham J.

    2016-01-01

    In single-stranded ribonucleic acid (RNA) viruses, virus capsid assembly and genome packaging are intertwined processes. Using cryo-electron microscopy and single particle analysis we determined the asymmetric virion structure of bacteriophage MS2, which includes 178 copies of the coat protein, a single copy of the A-protein and the RNA genome. This reveals that in situ, the viral RNA genome can adopt a defined conformation. The RNA forms a branched network of stem-loops that almost all allocate near the capsid inner surface, while predominantly binding to coat protein dimers that are located in one-half of the capsid. This suggests that genomic RNA is highly involved in genome packaging and virion assembly. PMID:27561669

  6. RNA 3D modules in genome-wide predictions of RNA 2D structure

    DEFF Research Database (Denmark)

    Theis, Corinna; Zirbel, Craig L; Zu Siederdissen, Christian Höner;

    2015-01-01

    Recent experimental and computational progress has revealed a large potential for RNA structure in the genome. This has been driven by computational strategies that exploit multiple genomes of related organisms to identify common sequences and secondary structures. However, these computational...... approaches have two main challenges: they are computationally expensive and they have a relatively high false discovery rate (FDR). Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canonical base pairs which occur in non-homologous positions, apparently by independent evolution....... These modules can, for example, occur inside structural elements which in RNA 2D predictions appear as internal loops. Hence one question is if the use of such RNA 3D information can improve the prediction accuracy of RNA secondary structure at a genome-wide level. Here, we use RNAz in combination with 3D...

  7. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    Science.gov (United States)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  8. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed.

  9. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  10. The structure of a rigorously conserved RNA element within the SARS virus genome.

    Directory of Open Access Journals (Sweden)

    Michael P Robertson

    2005-01-01

    Full Text Available We have solved the three-dimensional crystal structure of the stem-loop II motif (s2m RNA element of the SARS virus genome to 2.7-A resolution. SARS and related coronaviruses and astroviruses all possess a motif at the 3' end of their RNA genomes, called the s2m, whose pathogenic importance is inferred from its rigorous sequence conservation in an otherwise rapidly mutable RNA genome. We find that this extreme conservation is clearly explained by the requirement to form a highly structured RNA whose unique tertiary structure includes a sharp 90 degrees kink of the helix axis and several novel longer-range tertiary interactions. The tertiary base interactions create a tunnel that runs perpendicular to the main helical axis whose interior is negatively charged and binds two magnesium ions. These unusual features likely form interaction surfaces with conserved host cell components or other reactive sites required for virus function. Based on its conservation in viral pathogen genomes and its absence in the human genome, we suggest that these unusual structural features in the s2m RNA element are attractive targets for the design of anti-viral therapeutic agents. Structural genomics has sought to deduce protein function based on three-dimensional homology. Here we have extended this approach to RNA by proposing potential functions for a rigorously conserved set of RNA tertiary structural interactions that occur within the SARS RNA genome itself. Based on tertiary structural comparisons, we propose the s2m RNA binds one or more proteins possessing an oligomer-binding-like fold, and we suggest a possible mechanism for SARS viral RNA hijacking of host protein synthesis, both based upon observed s2m RNA macromolecular mimicry of a relevant ribosomal RNA fold.

  11. Structure and genome organization of AFV2, a novel archaeal lipothrixvirus with unusual terminal and core structures

    DEFF Research Database (Denmark)

    Häring, Monika; Vestergaard, Gisle Alberg; Brügger, Kim;

    2005-01-01

    A novel filamentous virus, AFV2, from the hyperthermophilic archaeal genus Acidianus shows structural similarity to lipothrixviruses but differs from them in its unusual terminal and core structures. The double-stranded DNA genome contains 31,787 bp and carries eight open reading frames homologous...

  12. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1990-08-01

    The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

  13. The admixed population structure in Danish Jersey dairy cattle challenges accurate genomic predictions

    DEFF Research Database (Denmark)

    Thomasen, Jørn Rind; Sørensen, Anders Christian; Su, Guosheng;

    2013-01-01

    of Danish or US origin. Furthermore, it is investigated whether a model explicitly incorporating breed origin of animals, inferred either through the known pedigree or from SNP marker data, leads to improved genomic predictions compared to a model ignoring breed origin. The study of the population structure...... incorporated 1,730 genotyped Jersey animals. In total 39,542 SNP markers were included in the analysis. The 1,079 genotyped bulls with de-regressed proof for udder health were used in the analysis for the predictions of the genomic breeding values. A range of random regressions models that included the breed...... prediction models showed that including population structure in a random regression prediction model, did not clearly improve the reliabilities of the genomic predictions compared to a basic genomic model...

  14. Three-dimensional Structure of a Viral Genome-delivery Portal Vertex

    Energy Technology Data Exchange (ETDEWEB)

    A Olia; P Prevelige Jr.; J Johnson; G Cingolani

    2011-12-31

    DNA viruses such as bacteriophages and herpesviruses deliver their genome into and out of the capsid through large proteinaceous assemblies, known as portal proteins. Here, we report two snapshots of the dodecameric portal protein of bacteriophage P22. The 3.25-{angstrom}-resolution structure of the portal-protein core bound to 12 copies of gene product 4 (gp4) reveals a {approx}1.1-MDa assembly formed by 24 proteins. Unexpectedly, a lower-resolution structure of the full-length portal protein unveils the unique topology of the C-terminal domain, which forms a {approx}200-{angstrom}-long {alpha}-helical barrel. This domain inserts deeply into the virion and is highly conserved in the Podoviridae family. We propose that the barrel domain facilitates genome spooling onto the interior surface of the capsid during genome packaging and, in analogy to a rifle barrel, increases the accuracy of genome ejection into the host cell.

  15. The complete genome sequence and genome structure of passion fruit mosaic virus.

    Science.gov (United States)

    Song, Yeon Sook; Ryu, Ki Hyun

    2011-06-01

    In this study, we determined the complete sequence of the genomic RNA of a Florida isolate of maracuja mosaic virus (MarMV-FL) and compared it to that of a Peru isolate of the virus (MarMV-P) and those of other known tobamoviruses. Complete sequence analysis revealed that the isolate should be considered a member of a new species and named passion fruit mosaic virus (PafMV). The genomic RNA of PafMV consists of 6,791 nucleotides and encodes four open reading frames (ORFs) coding for proteins of 125 kDa (1,101 aa), 184 kDa (1,612 aa), 34 kDa (311 aa) and 18 kDa (164 aa) in consecutive order from the 5' to the 3' end. The sequence homologies of the four ORFs of PafMV were from 78.8% to 81.6% to those of MarMV-P at the amino acid level. The sequence homologies of the four ORFs of PafMV ranged from 36.0% to 77.9% and from 21.7% to 81.6% to those of other tobamoviruses, at the nucleotide and amino acid level, respectively. Phylogenetic analysis revealed that these PafMV-encoded proteins are closely related to those of MarMV-P. In conclusion, the results indicate that PafMV and MarMV-P belong to different species within the genus Tobamovirus. PMID:21547441

  16. Strategic Plan for Loss Reduction and Risk Management: University of California, Berkeley

    OpenAIRE

    Office of the Vice Provost, University of California, Berkeley; Disaster-Resistant University Steering Committee, University of California, Berkeley

    2000-01-01

    In the nearly three years since Chancellor Berdahl announced the creation of the Seismic Action plan for Facilities Enhancement and Renewal (SAFER), the UC Berkeley campus has intensified its attention to seismic safety issues. SAFER Program initiatives have changed the organizational structure, altered the landscape, and increased our understanding of the complex operational needs of the campus. This Strategic Risk Management Plan grows out of the SAFER Program, and advances its twin goals o...

  17. Structure and Genome Organization of Cherry Virus A (Capillovirus, Betaflexiviridae) from China Using Small RNA Sequencing.

    Science.gov (United States)

    Wang, Jiawei; Zhai, Ying; Liu, Weizhen; Dhingra, Amit; Pappu, Hanu R; Liu, Qingzhong

    2016-01-01

    Cherry virus A (CVA) (Capillovirus, Betaflexiviridae) is widely present in cherry-growing areas. We obtained the complete genome of a CVA isolate (CVA-TA) using small RNA deep sequencing, followed by overlapping reverse transcription-PCR (RT-PCR) and rapid amplification of cDNA ends (RACE). The newly identified 5'-untranslated region (5'-UTR) from CVA-TA may form additional hairpin and loop structures to stabilize the CVA genome. PMID:27174277

  18. Structural analysis of electrophoretic variation in the genome profiles of rotavirus field isolates.

    OpenAIRE

    Clarke, I. N.; McCrae, M A

    1982-01-01

    Detailed structural studies were undertaken on five isolates of bovine rotavirus which showed variability in the migration patterns of their genome segments on electrophoresis in polyacrylamide gels. The individual genome segments of each isolate were characterized by partial digestion of terminally radiolabeled RNA with a base-specific nuclease. This analysis showed that whereas mobility variations were always associated with detectable changes in nucleotide sequence, sequence changes at lea...

  19. Human insulin genome sequence map, biochemical structure of insulin for recombinant DNA insulin.

    Science.gov (United States)

    Chakraborty, Chiranjib; Mungantiwar, Ashish A

    2003-08-01

    Insulin is a essential molecule for type I diabetes that is marketed by very few companies. It is the first molecule, which was made by recombinant technology; but the commercialization process is very difficult. Knowledge about biochemical structure of insulin and human insulin genome sequence map is pivotal to large scale manufacturing of recombinant DNA Insulin. This paper reviews human insulin genome sequence map, the amino acid sequence of porcine insulin, crystal structure of porcine insulin, insulin monomer, aggregation surfaces of insulin, conformational variation in the insulin monomer, insulin X-ray structures for recombinant DNA technology in the synthesis of human insulin in Escherichia coli. PMID:12769691

  20. From structure prediction to genomic screens for novel non-coding RNAs

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.

    2011-01-01

    upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other....

  1. Genome-wide identification of structural variants in genes encoding drug targets

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Berg; Dahmcke, Christina Mackeprang

    2012-01-01

    The objective of the present study was to identify structural variants of drug target-encoding genes on a genome-wide scale. We also aimed at identifying drugs that are potentially amenable for individualization of treatments based on knowledge about structural variation in the genes encoding...

  2. Integrating sequencing technologies in personal genomics: optimal low cost reconstruction of structural variants.

    Directory of Open Access Journals (Sweden)

    Jiang Du

    2009-07-01

    Full Text Available The goal of human genome re-sequencing is obtaining an accurate assembly of an individual's genome. Recently, there has been great excitement in the development of many technologies for this (e.g. medium and short read sequencing from companies such as 454 and SOLiD, and high-density oligo-arrays from Affymetrix and NimbelGen, with even more expected to appear. The costs and sensitivities of these technologies differ considerably from each other. As an important goal of personal genomics is to reduce the cost of re-sequencing to an affordable point, it is worthwhile to consider optimally integrating technologies. Here, we build a simulation toolbox that will help us optimally combine different technologies for genome re-sequencing, especially in reconstructing large structural variants (SVs. SV reconstruction is considered the most challenging step in human genome re-sequencing. (It is sometimes even harder than de novo assembly of small genomes because of the duplications and repetitive sequences in the human genome. To this end, we formulate canonical problems that are representative of issues in reconstruction and are of small enough scale to be computationally tractable and simulatable. Using semi-realistic simulations, we show how we can combine different technologies to optimally solve the assembly at low cost. With mapability maps, our simulations efficiently handle the inhomogeneous repeat-containing structure of the human genome and the computational complexity of practical assembly algorithms. They quantitatively show how combining different read lengths is more cost-effective than using one length, how an optimal mixed sequencing strategy for reconstructing large novel SVs usually also gives accurate detection of SNPs/indels, how paired-end reads can improve reconstruction efficiency, and how adding in arrays is more efficient than just sequencing for disentangling some complex SVs. Our strategy should facilitate the sequencing of

  3. Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Condon, Bradford J.; Leng, Yueqiang; Wu, Dongliang; Bushley, Kathryn E.; Ohm, Robin A.; Otillar, Robert; Martin, Joel; Schackwitz, Wendy; Grimwood, Jane; MohdZainudin, NurAinlzzati; Xue, Chunsheng; Wang, Rui; Manning, Viola A.; Dhillon, Braham; Tu, Zheng Jin; Steffenson, Brian J.; Salamov, Asaf; Sun, Hui; Lowry, Steve; LaButti, Kurt; Han, James; Copeland, Alex; Lindquist, Erika; Barry, Kerrie; Schmutz, Jeremy; Baker, Scott E.; Ciuffetti, Lynda M.; Grigoriev, Igor V.; Zhong, Shaobin; Turgeon, B. Gillian

    2013-01-24

    The genomes of five Cochliobolus heterostrophus strains, two Cochliobolus sativus strains, three additional Cochliobolus species (Cochliobolus victoriae, Cochliobolus carbonum, Cochliobolus miyabeanus), and closely related Setosphaeria turcica were sequenced at the Joint Genome Institute (JGI). The datasets were used to identify SNPs between strains and species, unique genomic regions, core secondary metabolism genes, and small secreted protein (SSP) candidate effector encoding genes with a view towards pinpointing structural elements and gene content associated with specificity of these closely related fungi to different cereal hosts. Whole-genome alignment shows that three to five of each genome differs between strains of the same species, while a quarter of each genome differs between species. On average, SNP counts among field isolates of the same C. heterostrophus species are more than 25 higher than those between inbred lines and 50 lower than SNPs between Cochliobolus species. The suites of nonribosomal peptide synthetase (NRPS), polyketide synthase (PKS), and SSP encoding genes are astoundingly diverse among species but remarkably conserved among isolates of the same species, whether inbred or field strains, except for defining examples that map to unique genomic regions. Functional analysis of several strain-unique PKSs and NRPSs reveal a strong correlation with a role in virulence.

  4. Network Structure and Dynamics, and Emergence of Robustness by Stabilizing Selection in an Artificial Genome

    CERN Document Server

    Rohlf, Thimo

    2008-01-01

    Genetic regulation is a key component in development, but a clear understanding of the structure and dynamics of genetic networks is not yet at hand. In this work we investigate these properties within an artificial genome model originally introduced by Reil. We analyze statistical properties of randomly generated genomes both on the sequence- and network level, and show that this model correctly predicts the frequency of genes in genomes as found in experimental data. Using an evolutionary algorithm based on stabilizing selection for a phenotype, we show that robustness against single base mutations, as well as against random changes in initial network states that mimic stochastic fluctuations in environmental conditions, can emerge in parallel. Evolved genomes exhibit characteristic patterns on both sequence and network level.

  5. GeneViTo: Visualizing gene-product functional and structural features in genomic datasets

    Directory of Open Access Journals (Sweden)

    Promponas Vasilis J

    2003-10-01

    Full Text Available Abstract Background The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies. Results GeneViTo is a JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of "poor" annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. A compilation of properly formatted GeneViTo input data for demonstration is available to interested readers for two completely sequenced prokaryotes, Chlamydia trachomatis and Methanococcus jannaschii. Conclusions GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application is compatible with Linux or Windows ME-2000-XP operating

  6. Gene order data from a model amphibian (Ambystoma: new perspectives on vertebrate genome structure and evolution

    Directory of Open Access Journals (Sweden)

    Voss S Randal

    2006-08-01

    Full Text Available Abstract Background Because amphibians arise from a branch of the vertebrate evolutionary tree that is juxtaposed between fishes and amniotes, they provide important comparative perspective for reconstructing character changes that have occurred during vertebrate evolution. Here, we report the first comparative study of vertebrate genome structure that includes a representative amphibian. We used 491 transcribed sequences from a salamander (Ambystoma genetic map and whole genome assemblies for human, mouse, rat, dog, chicken, zebrafish, and the freshwater pufferfish Tetraodon nigroviridis to compare gene orders and rearrangement rates. Results Ambystoma has experienced a rate of genome rearrangement that is substantially lower than mammalian species but similar to that of chicken and fish. Overall, we found greater conservation of genome structure between Ambystoma and tetrapod vertebrates, nevertheless, 57% of Ambystoma-fish orthologs are found in conserved syntenies of four or more genes. Comparisons between Ambystoma and amniotes reveal extensive conservation of segmental homology for 57% of the presumptive Ambystoma-amniote orthologs. Conclusion Our analyses suggest relatively constant interchromosomal rearrangement rates from the euteleost ancestor to the origin of mammals and illustrate the utility of amphibian mapping data in establishing ancestral amniote and tetrapod gene orders. Comparisons between Ambystoma and amniotes reveal some of the key events that have structured the human genome since diversification of the ancestral amniote lineage.

  7. The genomic structure of the human UFO receptor.

    Science.gov (United States)

    Schulz, A S; Schleithoff, L; Faust, M; Bartram, C R; Janssen, J W

    1993-02-01

    Using a DNA transfection-tumorigenicity assay we have recently identified the UFO oncogene. It encodes a tyrosine kinase receptor characterized by the juxtaposition of two immunoglobulin-like and two fibronectin type III repeats in its extracellular domain. Here we describe the genomic organization of the human UFO locus. The UFO receptor is encoded by 20 exons that are distributed over a region of 44 kb. Different isoforms of UFO mRNA are generated by alternative splicing of exon 10 and differential usage of two imperfect polyadenylation sites resulting in the presence or absence of 1.5-kb 3' untranslated sequences. Primer extension and S1 nuclease analyses revealed multiple transcriptional initiation sites including a major site 169 bp upstream of the translation start site. The promoter region is GC rich, lacks TATA and CAAT boxes, but contains potential recognition sites for a variety of trans-acting factors, including Sp1, AP-2 and the cyclic AMP response element-binding protein. Proto-UFO and its oncogenic counterpart exhibit identical cDNA and promoter regions sequences. Possible modes of UFO activation are discussed.

  8. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics

    NARCIS (Netherlands)

    Dekker, Frank J; Koch, Marcus A; Waldmann, Herbert; Dekker, Frans

    2005-01-01

    Finding small molecules that modulate protein function is of primary importance in drug development and in the emerging field of chemical genomics. To facilitate the identification of such molecules, we developed a novel strategy making use of structural conservatism found in protein domain architec

  9. Structure of Ljungan virus provides insight into genome packaging of this picornavirus

    Science.gov (United States)

    Zhu, Ling; Wang, Xiangxi; Ren, Jingshan; Porta, Claudine; Wenham, Hannah; Ekström, Jens-Ola; Panjwani, Anusha; Knowles, Nick J.; Kotecha, Abhay; Siebert, C. Alistair; Lindberg, A. Michael; Fry, Elizabeth E.; Rao, Zihe; Tuthill, Tobias J.; Stuart, David I.

    2015-10-01

    Picornaviruses are responsible for a range of human and animal diseases, but how their RNA genome is packaged remains poorly understood. A particularly poorly studied group within this family are those that lack the internal coat protein, VP4. Here we report the atomic structure of one such virus, Ljungan virus, the type member of the genus Parechovirus B, which has been linked to diabetes and myocarditis in humans. The 3.78-Å resolution cryo-electron microscopy structure shows remarkable features, including an extended VP1 C terminus, forming a major protuberance on the outer surface of the virus, and a basic motif at the N terminus of VP3, binding to which orders some 12% of the viral genome. This apparently charge-driven RNA attachment suggests that this branch of the picornaviruses uses a different mechanism of genome encapsidation, perhaps explored early in the evolution of picornaviruses.

  10. Heterogeneous genome divergence, differential introgression, and the origin and structure of hybrid zones.

    Science.gov (United States)

    Harrison, Richard G; Larson, Erica L

    2016-06-01

    Hybrid zones have been promoted as windows on the evolutionary process and as laboratories for studying divergence and speciation. Patterns of divergence between hybridizing species can now be characterized on a genomewide scale, and recent genome scans have focused on the presence of 'islands' of divergence. Patterns of heterogeneous genomic divergence may reflect differential introgression following secondary contact and provide insights into which genome regions contribute to local adaptation, hybrid unfitness and positive assortative mating. However, heterogeneous genome divergence can also arise in the absence of any gene flow, as a result of variation in selection and recombination across the genome. We suggest that to understand hybrid zone origins and dynamics, it is essential to distinguish between genome regions that are divergent between pure parental populations and regions that show restricted introgression where these populations interact in hybrid zones. The latter, more so than the former, reveal the likely genetic architecture of reproductive isolation. Mosaic hybrid zones, because of their complex structure and multiple contacts, are particularly good subjects for distinguishing primary intergradation from secondary contact. Comparisons among independent hybrid zones or transects that involve the 'same' species pair can also help to distinguish between divergence with gene flow and secondary contact. However, data from replicate hybrid zones or replicate transects do not reveal consistent patterns; in a few cases, patterns of introgression are similar across independent transects, but for many taxa, there is distinct lack of concordance, presumably due to variation in environmental context and/or variation in the genetics of the interacting populations.

  11. Genomic mid-range inhomogeneity correlates with an abundance of RNA secondary structures

    Directory of Open Access Journals (Sweden)

    Song Jun

    2008-06-01

    Full Text Available Abstract Background Genomes possess different levels of non-randomness, in particular, an inhomogeneity in their nucleotide composition. Inhomogeneity is manifest from the short-range where neighboring nucleotides influence the choice of base at a site, to the long-range, commonly known as isochores, where a particular base composition can span millions of nucleotides. A separate genomic issue that has yet to be thoroughly elucidated is the role that RNA secondary structure (SS plays in gene expression. Results We present novel data and approaches that show that a mid-range inhomogeneity (~30 to 1000 nt not only exists in mammalian genomes but is also significantly associated with strong RNA SS. A whole-genome bioinformatics investigation of local SS in a set of 11,315 non-redundant human pre-mRNA sequences has been carried out. Four distinct components of these molecules (5'-UTRs, exons, introns and 3'-UTRs were considered separately, since they differ in overall nucleotide composition, sequence motifs and periodicities. For each pre-mRNA component, the abundance of strong local SS ( Conclusion We demonstrate that the excess of strong local SS in pre-mRNAs is linked to the little explored phenomenon of genomic mid-range inhomogeneity (MRI. MRI is an interdependence between nucleotide choice and base composition over a distance of 20–1000 nt. Additionally, we have created a public computational resource to support further study of genomic MRI.

  12. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    annotation. The modelling of evolution by the existing comparative gene finders leaves room for improvement. Results: A probabilistic model of both genome structure and evolution is designed. This type of model is called an Evolutionary Hidden Markov Model (EHMM), being composed of an HMM and a set of region...

  13. Integrated view of genome structure and sequence of a single DNA molecule in a nanofluidic device

    DEFF Research Database (Denmark)

    Marie, Rodolphe; Pedersen, Jonas Nyvold; L. V. Bauer, David;

    2013-01-01

    We show how a bird’s-eye view of genomic structure can be obtained at ∼1-kb resolution from long (∼2 Mb) DNA molecules extracted from whole chromosomes in a nanofluidic laboratoryon-a-chip. We use an improved single-molecule denaturation mapping approach to detect repetitive elements and known as...

  14. Thousands of corresponding human and mouse genomic regions unalignable in primary sequence contain common RNA structure

    DEFF Research Database (Denmark)

    Torarinsson, Elfar; Sawera, Milena; Havgaard, Jakob Hull;

    2006-01-01

    Human and mouse genome sequences contain roughly 100,000 regions that are unalignable in primary sequence and neighbor corresponding alignable regions between both organisms. These pairs are generally assumed to be nonconserved, although the level of structural conservation between these has never...... been investigated. Owing to the limitations in computational methods, comparative genomics has been lacking the ability to compare such nonconserved sequence regions for conserved structural RNA elements. We have investigated the presence of structural RNA elements by conducting a local structural...... overlapped by transfrags than regions that are not overlapped by transfrags. To verify the coexpression between predicted candidates in human and mouse, we conducted expression studies by RT-PCR and Northern blotting on mouse candidates, which overlap with transfrags on human chromosome 20. RT-PCR results...

  15. Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics*

    OpenAIRE

    Huang, Yuanpeng Janet; Hang, Dehua; Lu, Long Jason; Tong, Liang; Gerstein, Mark B; Montelione, Gaetano T.

    2008-01-01

    Structural genomics provides an important approach for characterizing and understanding systems biology. As a step toward better integrating protein three-dimensional (3D) structural information in cancer systems biology, we have constructed a Human Cancer Pathway Protein Interaction Network (HCPIN) by analysis of several classical cancer-associated signaling pathways and their physical protein-protein interactions. Many well known cancer-associated proteins play central roles as “hubs” or “b...

  16. Mapping the structure and dynamics of genomics-related MeSH terms complex networks.

    Directory of Open Access Journals (Sweden)

    Jesús M Siqueiros-García

    Full Text Available It has been proposed that the history and evolution of scientific ideas may reflect certain aspects of the underlying socio-cognitive frameworks in which science itself is developing. Systematic analyses of the development of scientific knowledge may help us to construct models of the collective dynamics of science. Aiming at scientific rigor, these models should be built upon solid empirical evidence, analyzed with formal tools leading to ever-improving results that support the related conclusions. Along these lines we studied the dynamics and structure of the development of research in genomics as represented by the entire collection of genomics-related scientific papers contained in the PubMed database. The analyzed corpus consisted in more than 49,000 articles published in the years 1987 (first appearance of the term Genomics to 2011, categorized by means of the Medical Subheadings (MeSH content-descriptors. Complex networks were built where two MeSH terms were connected if they are descriptors of the same article(s. The analysis of such networks revealed a complex structure and dynamics that to certain extent resembled small-world networks. The evolution of such networks in time reflected interesting phenomena in the historical development of genomic research, including what seems to be a phase-transition in a period marked by the completion of the first draft of the Human Genome Project. We also found that different disciplinary areas have different dynamic evolution patterns in their MeSH connectivity networks. In the case of areas related to science, changes in topology were somewhat fast while retaining a certain core-structure, whereas in the humanities, the evolution was pretty slow and the structure resulted highly redundant and in the case of technology related issues, the evolution was very fast and the structure remained tree-like with almost no overlapping terms.

  17. Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain

    Energy Technology Data Exchange (ETDEWEB)

    Bertonati, C.; Punta, M; Fischer, M; Yachdav, G; Forouhar, F; Hunt, J; Tong, L; Montelione, G; Rost, B; et. al.

    2008-01-01

    We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.

  18. Unique genomic structure and distinct mitotic behavior of ring chromosome 21 in two unrelated cases.

    Science.gov (United States)

    Zhang, H Z; Xu, F; Seashore, M; Li, P

    2012-01-01

    A ring chromosome replacing a normal chromosome could involve variable structural rearrangements and mitotic instability. However, most previously reported cases lacked further genomic characterization. High-resolution oligonucleotide array comparative genomic hybridization with single-nucleotide polymorphism typing (aCGH+SNP) was used to study 2 unrelated cases with a ring chromosome 21. Case 1 had severe myopia, hypotonia, joint hypermobility, speech delay, and dysmorphic features. aCGH detected a 1.275-Mb duplication of 21q22.12-q22.13 and a 6.731-Mb distal deletion at 21q22.2. Case 2 showed severe growth and developmental retardations, intractable seizures, and dysmorphic features. aCGH revealed a contiguous pattern of a 3.612- Mb deletion of 21q22.12-q22.2, a 4.568-Mb duplication of 21q22.2-q22.3, and a 2.243-Mb distal deletion at 21q22.3. Mitotic instability was noted in 13, 30, and 76% of in vitro cultured metaphase cells, interphase cells, and leukocyte DNA, respectively. The different phenotypes of these 2 cases are likely associated with the unique genomic structure and distinct mitotic behavior of their ring chromosome 21. These 2 cases represent a subtype of ring chromosome 21 probably involving somatic dicentric ring breakage and reunion. A cytogenomic approach is proposed for characterizing the genomic structure and mitotic instability of ring chromosome abnormalities.

  19. The Drosophila Helicase MLE Targets Hairpin Structures in Genomic Transcripts.

    Directory of Open Access Journals (Sweden)

    Simona Cugusi

    2016-01-01

    Full Text Available RNA hairpins are a common type of secondary structures that play a role in every aspect of RNA biochemistry including RNA editing, mRNA stability, localization and translation of transcripts, and in the activation of the RNA interference (RNAi and microRNA (miRNA pathways. Participation in these functions often requires restructuring the RNA molecules by the association of single-strand (ss RNA-binding proteins or by the action of helicases. The Drosophila MLE helicase has long been identified as a member of the MSL complex responsible for dosage compensation. The complex includes one of two long non-coding RNAs and MLE was shown to remodel the roX RNA hairpin structures in order to initiate assembly of the complex. Here we report that this function of MLE may apply to the hairpins present in the primary RNA transcripts that generate the small molecules responsible for RNA interference. Using stocks from the Transgenic RNAi Project and the Vienna Drosophila Research Center, we show that MLE specifically targets hairpin RNAs at their site of transcription. The association of MLE at these sites is independent of sequence and chromosome location. We use two functional assays to test the biological relevance of this association and determine that MLE participates in the RNAi pathway.

  20. Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome.

    Science.gov (United States)

    Barghi, Neda; Concepcion, Gisela P; Olivera, Baldomero M; Lluisma, Arturo O

    2016-02-01

    The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.

  1. Pass-Fail Grading at Berkeley: Facts and Opinions.

    Science.gov (United States)

    Suslow, Sidney

    The facts and opinions regarding pass/no pass grading at Berkeley discussed in this report are based on three sources of information. These sources include a survey of faculty conducted in the spring quarter 1970, a survey of undergraduate students in the winter quarter 1971, and the records routinely generated in the Registrar's Office for the…

  2. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  3. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs.

  4. Integration Defended: Berkeley Unified's Strategy to Maintain School Diversity

    Science.gov (United States)

    Chavez, Lisa; Frankenberg, Erica

    2009-01-01

    In June 2007, the Supreme Court limited the tools that school districts could use to voluntarily integrate schools. In the aftermath of the decision, educators around the country have sought models of successful plans that would also be legal. One such model may be Berkeley Unified School District's (BUSD) plan. Earlier this year, the California…

  5. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  6. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  7. A structure-based approach for targeting the HIV-1 genomic RNA dimerization initiation site.

    Science.gov (United States)

    Ennifar, Eric; Paillart, Jean-Christophe; Bernacchi, Serena; Walter, Philippe; Pale, Patrick; Decout, Jean-Luc; Marquet, Roland; Dumas, Philippe

    2007-10-01

    Dimerization of the genomic RNA is an important step of the HIV-1 replication cycle. The Dimerization Initiation Site (DIS) promotes dimerization of the viral genome by forming a loop-loop complex between two DIS hairpins. Crystal structures of the DIS loop-loop complex revealed an unexpected and strong similitude with the bacterial 16S ribosomal aminoacyl-tRNA site (A site), which is the target of aminoglycoside antibiotics. As a consequence of these structural and sequence similarities, the HIV-1 DIS also binds some aminoglycosides, not only in vitro, but also ex vivo, in lymphoid cells and in viral particles. Crystal structures of the DIS loop-loop in complex with several aminoglycoside antibiotics provide a detailed-view of the DIS/drug interaction and reveal some hints about possible modifications to increase the drug affinity and/or specificity. PMID:17434658

  8. An Isochore-Like Structure in the Genome of the Flatworm Schistosoma mansoni.

    Science.gov (United States)

    Lamolle, Guillermo; Protasio, Anna V; Iriarte, Andrés; Jara, Eugenio; Simón, Diego; Musto, Héctor

    2016-01-01

    Eukaryotic genomes are compositionally heterogeneous, that is, composed by regions that differ in guanine-cytosine (GC) content (isochores). The most well documented case is that of vertebrates (mainly mammals) although it has been also noted among unicellular eukaryotes and invertebrates. In the human genome, regarded as a typical mammal, this heterogeneity is associated with several features. Specifically, genes located in GC-richest regions are the GC3-richest, display CpG islands and have shorter introns. Furthermore, these genes are more heavily expressed and tend to be located at the extremes of the chromosomes. Although the compositional heterogeneity seems to be widespread among eukaryotes, the associated properties noted in the human genome and other mammals have not been investigated in depth in other taxa Here we provide evidence that the genome of the parasitic flatworm Schistosoma mansoni is compositionally heterogeneous and exhibits an isochore-like structure, displaying some features associated, until now, only with the human and other vertebrate genomes, with the exception of gene concentration. PMID:27435793

  9. Ancestral Genomes, Sex, and the Population Structure of Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    2006-03-01

    Full Text Available Acquisition of detailed knowledge of the structure and evolution of Trypanosoma cruzi populations is essential for control of Chagas disease. We profiled 75 strains of the parasite with five nuclear microsatellite loci, 24Salpha RNA genes, and sequence polymorphisms in the mitochondrial cytochrome oxidase subunit II gene. We also used sequences available in GenBank for the mitochondrial genes cytochrome B and NADH dehydrogenase subunit 1. A multidimensional scaling plot (MDS based in microsatellite data divided the parasites into four clusters corresponding to T. cruzi I (MDS-cluster A, T. cruzi II (MDS-cluster C, a third group of T. cruzi strains (MDS-cluster B, and hybrid strains (MDS-cluster BH. The first two clusters matched respectively mitochondrial clades A and C, while the other two belonged to mitochondrial clade B. The 24Salpha rDNA and microsatellite profiling data were combined into multilocus genotypes that were analyzed by the haplotype reconstruction program PHASE. We identified 141 haplotypes that were clearly distributed into three haplogroups (X, Y, and Z. All strains belonging to T. cruzi I (MDS-cluster A were Z/Z, the T. cruzi II strains (MDS-cluster C were Y/Y, and those belonging to MDS-cluster B (unclassified T. cruzi had X/X haplogroup genotypes. The strains grouped in the MDS-cluster BH were X/Y, confirming their hybrid character. Based on these results we propose the following minimal scenario for T. cruzi evolution. In a distant past there were at a minimum three ancestral lineages that we may call, respectively, T. cruzi I, T. cruzi II, and T. cruzi III. At least two hybridization events involving T. cruzi II and T. cruzi III produced evolutionarily viable progeny. In both events, the mitochondrial recipient (as identified by the mitochondrial clade of the hybrid strains was T. cruzi II and the mitochondrial donor was T. cruzi III.

  10. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  11. Salmonella strains isolated from Galapagos iguanas show spatial structuring of serovar and genomic diversity.

    Directory of Open Access Journals (Sweden)

    Emily W Lankau

    Full Text Available It is thought that dispersal limitation primarily structures host-associated bacterial populations because host distributions inherently limit transmission opportunities. However, enteric bacteria may disperse great distances during food-borne outbreaks. It is unclear if such rapid long-distance dispersal events happen regularly in natural systems or if these events represent an anthropogenic exception. We characterized Salmonella enterica isolates from the feces of free-living Galápagos land and marine iguanas from five sites on four islands using serotyping and genomic fingerprinting. Each site hosted unique and nearly exclusive serovar assemblages. Genomic fingerprint analysis offered a more complex model of S. enterica biogeography, with evidence of both unique strain pools and of spatial population structuring along a geographic gradient. These findings suggest that even relatively generalist enteric bacteria may be strongly dispersal limited in a natural system with strong barriers, such as oceanic divides. Yet, these differing results seen on two typing methods also suggests that genomic variation is less dispersal limited, allowing for different ecological processes to shape biogeographical patterns of the core and flexible portions of this bacterial species' genome.

  12. Nuclear Medicine at Berkeley Lab: From Pioneering Beginnings to Today (LBNL Summer Lecture Series)

    International Nuclear Information System (INIS)

    Summer Lecture Series 2006: Thomas Budinger, head of Berkeley Lab's Center for Functional Imaging, discusses Berkeley Lab's rich history pioneering the field of nuclear medicine, from radioisotopes to medical imaging.

  13. Structure and genome release of Twort-like Myoviridae phage with a double-layered baseplate.

    Science.gov (United States)

    Nováček, Jiří; Šiborová, Marta; Benešík, Martin; Pantůček, Roman; Doškař, Jiří; Plevka, Pavel

    2016-08-16

    Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with "double-layered" baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome's release. PMID:27469164

  14. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  15. Comparative Annotation of Viral Genomes with Non-Conserved Gene Structure

    DEFF Research Database (Denmark)

    de Groot, Saskia; Mailund, Thomas; Hein, Jotun

    2007-01-01

    allows for coding in unidirectional nested and overlapping reading frames, to annotate two homologous aligned viral genomes. Our method does not insist on conserved gene structure between the two sequences, thus making it applicable for the pairwise comparison of more distantly related sequences. Results......: We apply our method to 15 pairwise alignments of six different HIV2 genomes. Given sufficient evolutionary distance between the two sequences, we achieve sensitivity of about 84% and specificity of about 97%. We additionally annotate three pairwise alignments of the more distantly related HIV1...... and HIV2, as well as of two different Hepatitis Viruses, attaining results of ~87% sensitivity and ~98.5% specificity. We subsequently incorporate prior knowledge by "knowing" the gene structure of one sequence and annotating the other conditional on it. Boosting accuracy close to perfect we demonstrate...

  16. De novo prediction of structured RNAs from genomic sequences

    DEFF Research Database (Denmark)

    Gorodkin, Jan; Hofacker, Ivo L.; Þórarinsson, Elfar;

    2010-01-01

    Growing recognition of the numerous, diverse and important roles played by non-coding RNA in all organisms motivates better elucidation of these cellular components. Comparative genomics is a powerful tool for this task and is arguably preferable to any high-throughput experimental technology...... currently available, because evolutionary conservation highlights functionally important regions. Conserved secondary structure, rather than primary sequence, is the hallmark of many functionally important RNAs, because compensatory substitutions in base-paired regions preserve structure. Unfortunately......, such substitutions also obscure sequence identity and confound alignment algorithms, which complicates analysis greatly. This paper surveys recent computational advances in this difficult arena, which have enabled genome-scale prediction of cross-species conserved RNA elements. These predictions...

  17. Protein structure similarity clustering (PSSC) and natural product structure as inspiration sources for drug development and chemical genomics.

    Science.gov (United States)

    Dekker, Frank J; Koch, Marcus A; Waldmann, Herbert

    2005-06-01

    Finding small molecules that modulate protein function is of primary importance in drug development and in the emerging field of chemical genomics. To facilitate the identification of such molecules, we developed a novel strategy making use of structural conservatism found in protein domain architecture and natural product inspired compound library design. Domains and proteins identified as being structurally similar in their ligand-sensing cores are grouped in a protein structure similarity cluster (PSSC). Natural products can be considered as evolutionary pre-validated ligands for multiple proteins and therefore natural products that are known to interact with one of the PSSC member proteins are selected as guiding structures for compound library synthesis. Application of this novel strategy for compound library design provided enhanced hit rates in small compound libraries for structurally similar proteins.

  18. High-throughput SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological states.

    Directory of Open Access Journals (Sweden)

    Kevin A Wilkinson

    2008-04-01

    Full Text Available Replication and pathogenesis of the human immunodeficiency virus (HIV is tightly linked to the structure of its RNA genome, but genome structure in infectious virions is poorly understood. We invent high-throughput SHAPE (selective 2'-hydroxyl acylation analyzed by primer extension technology, which uses many of the same tools as DNA sequencing, to quantify RNA backbone flexibility at single-nucleotide resolution and from which robust structural information can be immediately derived. We analyze the structure of HIV-1 genomic RNA in four biologically instructive states, including the authentic viral genome inside native particles. Remarkably, given the large number of plausible local structures, the first 10% of the HIV-1 genome exists in a single, predominant conformation in all four states. We also discover that noncoding regions functioning in a regulatory role have significantly lower (p-value < 0.0001 SHAPE reactivities, and hence more structure, than do viral coding regions that function as the template for protein synthesis. By directly monitoring protein binding inside virions, we identify the RNA recognition motif for the viral nucleocapsid protein. Seven structurally homologous binding sites occur in a well-defined domain in the genome, consistent with a role in directing specific packaging of genomic RNA into nascent virions. In addition, we identify two distinct motifs that are targets for the duplex destabilizing activity of this same protein. The nucleocapsid protein destabilizes local HIV-1 RNA structure in ways likely to facilitate initial movement both of the retroviral reverse transcriptase from its tRNA primer and of the ribosome in coding regions. Each of the three nucleocapsid interaction motifs falls in a specific genome domain, indicating that local protein interactions can be organized by the long-range architecture of an RNA. High-throughput SHAPE reveals a comprehensive view of HIV-1 RNA genome structure, and further

  19. The structure of the Morganella morganii lipopolysaccharide core region and identification of its genomic loci.

    Science.gov (United States)

    Vinogradov, Evgeny; Nash, John H E; Foote, Simon; Young, N Martin

    2015-01-30

    The core region of the lipopolysaccharide of Morganella morganii serotype O:1ab was obtained by hydrolysis of the LPS and studied by 2D NMR, ESI MS, and chemical methods. Its structure was highly homologous to those from the two major members of the same Proteeae tribe, Proteus mirabilis and Providencia alcalifaciens, and analysis of the M. morganii genome disclosed that the loci for its outer core, lipid A and Ara4N moieties are similarly conserved.

  20. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    OpenAIRE

    Liu, Biao; Conroy, Jeffrey M; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an...

  1. Analysis of the Genome Structure of the Nonpathogenic Probiotic Escherichia coli Strain Nissle 1917

    OpenAIRE

    Grozdanov, Lubomir; Raasch, Carsten; Schulze, Jürgen; Sonnenborn, Ulrich; Gottschalk, Gerhard; Hacker, Jörg; Dobrindt, Ulrich

    2004-01-01

    Nonpathogenic Escherichia coli strain Nissle 1917 (O6:K5:H1) is used as a probiotic agent in medicine, mainly for the treatment of various gastroenterological diseases. To gain insight on the genetic level into its properties of colonization and commensalism, this strain's genome structure has been analyzed by three approaches: (i) sequence context screening of tRNA genes as a potential indication of chromosomal integration of horizontally acquired DNA, (ii) sequence analysis of 280 kb of gen...

  2. Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering.

    Directory of Open Access Journals (Sweden)

    Sebastian Will

    2007-04-01

    Full Text Available The RFAM database defines families of ncRNAs by means of sequence similarities that are sufficient to establish homology. In some cases, such as microRNAs and box H/ACA snoRNAs, functional commonalities define classes of RNAs that are characterized by structural similarities, and typically consist of multiple RNA families. Recent advances in high-throughput transcriptomics and comparative genomics have produced very large sets of putative noncoding RNAs and regulatory RNA signals. For many of them, evidence for stabilizing selection acting on their secondary structures has been derived, and at least approximate models of their structures have been computed. The overwhelming majority of these hypothetical RNAs cannot be assigned to established families or classes. We present here a structure-based clustering approach that is capable of extracting putative RNA classes from genome-wide surveys for structured RNAs. The LocARNA (local alignment of RNA tool implements a novel variant of the Sankoff algorithm that is sufficiently fast to deal with several thousand candidate sequences. The method is also robust against false positive predictions, i.e., a contamination of the input data with unstructured or nonconserved sequences. We have successfully tested the LocARNA-based clustering approach on the sequences of the RFAM-seed alignments. Furthermore, we have applied it to a previously published set of 3,332 predicted structured elements in the Ciona intestinalis genome (Missal K, Rose D, Stadler PF (2005 Noncoding RNAs in Ciona intestinalis. Bioinformatics 21 (Supplement 2: i77-i78. In addition to recovering, e.g., tRNAs as a structure-based class, the method identifies several RNA families, including microRNA and snoRNA candidates, and suggests several novel classes of ncRNAs for which to date no representative has been experimentally characterized.

  3. Global MLST of Salmonella Typhi Revisited in Post-Genomic Era: Genetic conservation, Population Structure and Comparative genomics of rare sequence types

    Directory of Open Access Journals (Sweden)

    Kien-Pong eYap

    2016-03-01

    Full Text Available Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus Sequence Typing (MLST is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2 co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC and tviD that may explain the variations that differentiate between seemingly successful (widespread and unsuccessful (poor dissemination S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  4. Comparative genetic mapping between clementine, pummelo and sweet orange and the interspecicic structure of the Clementine genome

    Science.gov (United States)

    Comparative genetic mapping between clementine, pummelo and sweet orange and the interspecicic structure of the Clementine genome The availability of a saturated genetic map of Clementine was identified by the International Citrus Genome Consortium as an essential prerequisite to assist the assembly...

  5. Combining functional and structural genomics to sample the essential Burkholderia structome.

    Directory of Open Access Journals (Sweden)

    Loren Baugh

    Full Text Available The genus Burkholderia includes pathogenic gram-negative bacteria that cause melioidosis, glanders, and pulmonary infections of patients with cancer and cystic fibrosis. Drug resistance has made development of new antimicrobials critical. Many approaches to discovering new antimicrobials, such as structure-based drug design and whole cell phenotypic screens followed by lead refinement, require high-resolution structures of proteins essential to the parasite.We experimentally identified 406 putative essential genes in B. thailandensis, a low-virulence species phylogenetically similar to B. pseudomallei, the causative agent of melioidosis, using saturation-level transposon mutagenesis and next-generation sequencing (Tn-seq. We selected 315 protein products of these genes based on structure-determination criteria, such as excluding very large and/or integral membrane proteins, and entered them into the Seattle Structural Genomics Center for Infection Disease (SSGCID structure determination pipeline. To maximize structural coverage of these targets, we applied an "ortholog rescue" strategy for those producing insoluble or difficult to crystallize proteins, resulting in the addition of 387 orthologs (or paralogs from seven other Burkholderia species into the SSGCID pipeline. This structural genomics approach yielded structures from 31 putative essential targets from B. thailandensis, and 25 orthologs from other Burkholderia species, yielding an overall structural coverage for 49 of the 406 essential gene families, with a total of 88 depositions into the Protein Data Bank. Of these, 25 proteins have properties of a potential antimicrobial drug target i.e., no close human homolog, part of an essential metabolic pathway, and a deep binding pocket. We describe the structures of several potential drug targets in detail.This collection of structures, solubility and experimental essentiality data provides a resource for development of drugs against

  6. Transposon Insertions, Structural Variations, and SNPs Contribute to the Evolution of the Melon Genome.

    Science.gov (United States)

    Sanseverino, Walter; Hénaff, Elizabeth; Vives, Cristina; Pinosio, Sara; Burgos-Paz, William; Morgante, Michele; Ramos-Onsins, Sebastián E; Garcia-Mas, Jordi; Casacuberta, Josep Maria

    2015-10-01

    The availability of extensive databases of crop genome sequences should allow analysis of crop variability at an unprecedented scale, which should have an important impact in plant breeding. However, up to now the analysis of genetic variability at the whole-genome scale has been mainly restricted to single nucleotide polymorphisms (SNPs). This is a strong limitation as structural variation (SV) and transposon insertion polymorphisms are frequent in plant species and have had an important mutational role in crop domestication and breeding. Here, we present the first comprehensive analysis of melon genetic diversity, which includes a detailed analysis of SNPs, SV, and transposon insertion polymorphisms. The variability found among seven melon varieties representing the species diversity and including wild accessions and highly breed lines, is relatively high due in part to the marked divergence of some lineages. The diversity is distributed nonuniformly across the genome, being lower at the extremes of the chromosomes and higher in the pericentromeric regions, which is compatible with the effect of purifying selection and recombination forces over functional regions. Additionally, this variability is greatly reduced among elite varieties, probably due to selection during breeding. We have found some chromosomal regions showing a high differentiation of the elite varieties versus the rest, which could be considered as strongly selected candidate regions. Our data also suggest that transposons and SV may be at the origin of an important fraction of the variability in melon, which highlights the importance of analyzing all types of genetic variability to understand crop genome evolution.

  7. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species.

    Science.gov (United States)

    de Bruijn, Irene; de Kock, Maarten J D; Yang, Meng; de Waard, Pieter; van Beek, Teris A; Raaijmakers, Jos M

    2007-01-01

    Analysis of microbial genome sequences have revealed numerous genes involved in antibiotic biosynthesis. In Pseudomonads, several gene clusters encoding non-ribosomal peptide synthetases (NRPSs) were predicted to be involved in the synthesis of cyclic lipopeptide (CLP) antibiotics. Most of these predictions, however, are untested and the association between genome sequence and biological function of the predicted metabolite is lacking. Here we report the genome-based identification of previously unknown CLP gene clusters in plant pathogenic Pseudomonas syringae strains B728a and DC3000 and in plant beneficial Pseudomonas fluorescens Pf0-1 and SBW25. For P. fluorescens SBW25, a model strain in studying bacterial evolution and adaptation, the structure of the CLP with a predicted 9-amino acid peptide moiety was confirmed by chemical analyses. Mutagenesis confirmed that the three identified NRPS genes are essential for CLP synthesis in strain SBW25. CLP production was shown to play a key role in motility, biofilm formation and in activity of SBW25 against zoospores of Phytophthora infestans. This is the first time that an antimicrobial metabolite is identified from strain SBW25. The results indicate that genome mining may enable the discovery of unknown gene clusters and traits that are highly relevant in the lifestyle of plant beneficial and plant pathogenic bacteria.

  8. In silico prediction and screening of modular crystal structures via a high-throughput genomic approach

    Science.gov (United States)

    Li, Yi; Li, Xu; Liu, Jiancong; Duan, Fangzheng; Yu, Jihong

    2015-09-01

    High-throughput computational methods capable of predicting, evaluating and identifying promising synthetic candidates with desired properties are highly appealing to today's scientists. Despite some successes, in silico design of crystalline materials with complex three-dimensionally extended structures remains challenging. Here we demonstrate the application of a new genomic approach to ABC-6 zeolites, a family of industrially important catalysts whose structures are built from the stacking of modular six-ring layers. The sequences of layer stacking, which we deem the genes of this family, determine the structures and the properties of ABC-6 zeolites. By enumerating these gene-like stacking sequences, we have identified 1,127 most realizable new ABC-6 structures out of 78 groups of 84,292 theoretical ones, and experimentally realized 2 of them. Our genomic approach can extract crucial structural information directly from these gene-like stacking sequences, enabling high-throughput identification of synthetic targets with desired properties among a large number of candidate structures.

  9. Calibration of the Berkeley EUV Airglow Rocket Spectrometer

    Science.gov (United States)

    Cotton, Daniel M.; Chakrabarti, Supriya; Siegmund, Oswald

    1989-01-01

    The Berkeley Extreme-ultraviolet Airglow Rocket Spectrometer (BEARS), a multiinstrument sounding rocket payload, made comprehensive measurements of the earth's dayglow. The primary instruments consisted of two near-normal Rowland mount spectrometers: one channel to measure several atomic oxygen features at high spectral resolution (about 1.5 A) in the band passes 980-1040 and 1300-1360 A, and the other to measure EUV dayglow and the solar EUV simultaneously in a much broader bandpass (250-1150 A) at moderate resolution (about 10 A). The payload also included a hydrogen Lyman-alpha photometer to monitor the solar irradiance and goecoronal emissions. The instrument was calibrated at the EUV calibration facility at the University of California at Berkeley, and was subsequently launched successfully on September 30, 1988 aboard a four-stage experimental sounding rocket, Black Brant XII flight 12.041 WT. The calibration procedure and resulting data are presented.

  10. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  11. Annual site environmental report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs.

  12. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  13. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  14. Population genomic structure and linkage disequilibrium analysis of South African goat breeds using genome-wide SNP data.

    Science.gov (United States)

    Mdladla, K; Dzomba, E F; Huson, H J; Muchadeyi, F C

    2016-08-01

    The sustainability of goat farming in marginal areas of southern Africa depends on local breeds that are adapted to specific agro-ecological conditions. Unimproved non-descript goats are the main genetic resources used for the development of commercial meat-type breeds of South Africa. Little is known about genetic diversity and the genetics of adaptation of these indigenous goat populations. This study investigated the genetic diversity, population structure and breed relations, linkage disequilibrium, effective population size and persistence of gametic phase in goat populations of South Africa. Three locally developed meat-type breeds of the Boer (n = 33), Savanna (n = 31), Kalahari Red (n = 40), a feral breed of Tankwa (n = 25) and unimproved non-descript village ecotypes (n = 110) from four goat-producing provinces of the Eastern Cape, KwaZulu-Natal, Limpopo and North West were assessed using the Illumina Goat 50K SNP Bead Chip assay. The proportion of SNPs with minor allele frequencies >0.05 ranged from 84.22% in the Tankwa to 97.58% in the Xhosa ecotype, with a mean of 0.32 ± 0.13 across populations. Principal components analysis, admixture and pairwise FST identified Tankwa as a genetically distinct population and supported clustering of the populations according to their historical origins. Genome-wide FST identified 101 markers potentially under positive selection in the Tankwa. Average linkage disequilibrium was highest in the Tankwa (r(2)  = 0.25 ± 0.26) and lowest in the village ecotypes (r(2) range = 0.09 ± 0.12 to 0.11 ± 0.14). We observed an effective population size of 100 kb with the exception of those in Savanna and Tswana populations. This study highlights the high level of genetic diversity in South African indigenous goats as well as the utility of the genome-wide SNP marker panels in genetic studies of these populations. PMID:27306145

  15. Novel proteases from the genome of the carnivorous plant Drosera capensis: Structural prediction and comparative analysis.

    Science.gov (United States)

    Butts, Carter T; Bierma, Jan C; Martin, Rachel W

    2016-10-01

    In his 1875 monograph on insectivorous plants, Darwin described the feeding reactions of Drosera flypaper traps and predicted that their secretions contained a "ferment" similar to mammalian pepsin, an aspartic protease. Here we report a high-quality draft genome sequence for the cape sundew, Drosera capensis, the first genome of a carnivorous plant from order Caryophyllales, which also includes the Venus flytrap (Dionaea) and the tropical pitcher plants (Nepenthes). This species was selected in part for its hardiness and ease of cultivation, making it an excellent model organism for further investigations of plant carnivory. Analysis of predicted protein sequences yields genes encoding proteases homologous to those found in other plants, some of which display sequence and structural features that suggest novel functionalities. Because the sequence similarity to proteins of known structure is in most cases too low for traditional homology modeling, 3D structures of representative proteases are predicted using comparative modeling with all-atom refinement. Although the overall folds and active residues for these proteins are conserved, we find structural and sequence differences consistent with a diversity of substrate recognition patterns. Finally, we predict differences in substrate specificities using in silico experiments, providing targets for structure/function studies of novel enzymes with biological and technological significance. Proteins 2016; 84:1517-1533. © 2016 Wiley Periodicals, Inc. PMID:27353064

  16. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid Miscanthus sinensis.

    Directory of Open Access Journals (Sweden)

    Xue-Feng Ma

    Full Text Available We have created a high-resolution linkage map of Miscanthus sinensis, using genotyping-by-sequencing (GBS, identifying all 19 linkage groups for the first time. The result is technically significant since Miscanthus has a very large and highly heterozygous genome, but has no or limited genomics information to date. The composite linkage map containing markers from both parental linkage maps is composed of 3,745 SNP markers spanning 2,396 cM on 19 linkage groups with a 0.64 cM average resolution. Comparative genomics analyses of the M. sinensis composite linkage map to the genomes of sorghum, maize, rice, and Brachypodium distachyon indicate that sorghum has the closest syntenic relationship to Miscanthus compared to other species. The comparative results revealed that each pair of the 19 M. sinensis linkages aligned to one sorghum chromosome, except for LG8, which mapped to two sorghum chromosomes (4 and 7, presumably due to a chromosome fusion event after genome duplication. The data also revealed several other chromosome rearrangements relative to sorghum, including two telomere-centromere inversions of the sorghum syntenic chromosome 7 in LG8 of M. sinensis and two paracentric inversions of sorghum syntenic chromosome 4 in LG7 and LG8 of M. sinensis. The results clearly demonstrate, for the first time, that the diploid M. sinensis is tetraploid origin consisting of two sub-genomes. This complete and high resolution composite linkage map will not only serve as a useful resource for novel QTL discoveries, but also enable informed deployment of the wealth of existing genomics resources of other species to the improvement of Miscanthus as a high biomass energy crop. In addition, it has utility as a reference for genome sequence assembly for the forthcoming whole genome sequencing of the Miscanthus genus.

  17. Maintenance of genome stability in plants: repairing DNA double strand breaks and chromatin structure stability

    Directory of Open Access Journals (Sweden)

    Sujit eRoy

    2014-09-01

    Full Text Available Plant cells are subject to high levels of DNA damage resulting from plant’s obligatory dependence on sunlight and the associated exposure to environmental stresses like solar UV radiation, high soil salinity, drought, chilling injury and other air and soil pollutants including heavy metals and metabolic byproducts from endogenous processes. The irreversible DNA damages, generated by the environmental and genotoxic stresses affect plant growth and development, reproduction and crop productivity. Thus, for maintaining genome stability, plants have developed an extensive array of mechanisms for the detection and repair of DNA damages. This review will focus recent advances in our understanding of mechanisms regulating plant genome stability in the context of repairing of double stand breaks and chromatin structure maintenance.

  18. SGCEdb: a flexible database and web interface integrating experimental results and analysis for structural genomics focusing on Caenorhabditis elegans

    OpenAIRE

    David H Johnson; Tsao, Jun; Luo, Ming; Carson, Mike

    2005-01-01

    The SGCEdb () database/interface serves the primary purpose of reporting progress of the Structural Genomics of Caenorhabditis elegans project at the University of Alabama at Birmingham. It stores and analyzes results of experiments ranging from solubility screening arrays to individual protein purification and structure solution. External databases and algorithms are referenced and evaluated for target selection in the human, C.elegans and Pneumocystis carinii genomes. The flexible and reusa...

  19. De Novo Discovery of Structured ncRNA Motifs in Genomic Sequences

    DEFF Research Database (Denmark)

    Ruzzo, Walter L; Gorodkin, Jan

    2014-01-01

    De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphas...... on an approach based on the CMfinder CMfinder program as a case study. Applications to genomic screens for novel de novo structured ncRNA ncRNA s, including structured RNA elements in untranslated portions of protein-coding genes, are presented.......De novo discovery of "motifs" capturing the commonalities among related noncoding ncRNA structured RNAs is among the most difficult problems in computational biology. This chapter outlines the challenges presented by this problem, together with some approaches towards solving them, with an emphasis...

  20. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure.

    Directory of Open Access Journals (Sweden)

    Nicolas M Berbenetz

    2010-09-01

    Full Text Available Eukaryotic DNA replication origins differ both in their efficiency and in the characteristic time during S phase when they become active. The biological basis for these differences remains unknown, but they could be a consequence of chromatin structure. The availability of genome-wide maps of nucleosome positions has led to an explosion of information about how nucleosomes are assembled at transcription start sites, but no similar maps exist for DNA replication origins. Here we combine high-resolution genome-wide nucleosome maps with comprehensive annotations of DNA replication origins to identify patterns of nucleosome occupancy at eukaryotic replication origins. On average, replication origins contain a nucleosome depleted region centered next to the ACS element, flanked on both sides by arrays of well-positioned nucleosomes. Our analysis identified DNA sequence properties that correlate with nucleosome occupancy at replication origins genome-wide and that are correlated with the nucleosome-depleted region. Clustering analysis of all annotated replication origins revealed a surprising diversity of nucleosome occupancy patterns. We provide evidence that the origin recognition complex, which binds to the origin, acts as a barrier element to position and phase nucleosomes on both sides of the origin. Finally, analysis of chromatin reconstituted in vitro reveals that origins are inherently nucleosome depleted. Together our data provide a comprehensive, genome-wide view of chromatin structure at replication origins and suggest a model of nucleosome positioning at replication origins in which the underlying sequence occludes nucleosomes to permit binding of the origin recognition complex, which then (likely in concert with nucleosome modifiers and remodelers positions nucleosomes adjacent to the origin to promote replication origin function.

  1. An assessment of population structure in eight breeds of cattle using a whole genome SNP panel

    Directory of Open Access Journals (Sweden)

    Gao Chuan

    2008-05-01

    Full Text Available Abstract Background Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is possible to perform genome wide population genetic analyses in cattle. In this study, we used a high-density panel of SNP markers to examine population structure and diversity among eight cattle breeds sampled from Bos indicus and Bos taurus. Results Two thousand six hundred and forty one single nucleotide polymorphisms (SNPs spanning all of the bovine autosomal genome were genotyped in Angus, Brahman, Charolais, Dutch Black and White Dairy, Holstein, Japanese Black, Limousin and Nelore cattle. Population structure was examined using the linkage model in the program STRUCTURE and Fst estimates were used to construct a neighbor-joining tree to represent the phylogenetic relationship among these breeds. Conclusion The whole-genome SNP panel identified several levels of population substructure in the set of examined cattle breeds. The greatest level of genetic differentiation was detected between the Bos taurus and Bos indicus breeds. When the Bos indicus breeds were excluded from the analysis, genetic differences among beef versus dairy and European versus Asian breeds were detected among the Bos taurus breeds. Exploration of the number of SNP loci required to differentiate between breeds showed that for 100 SNP loci, individuals could only be correctly clustered into breeds 50% of the time, thus a large number of SNP markers are required to replace the 30 microsatellite markers that are currently commonly used in genetic diversity studies.

  2. Whole genome PCR scanning reveals the syntenic genome structure of toxigenic Vibrio cholerae strains in the O1/O139 population.

    Directory of Open Access Journals (Sweden)

    Bo Pang

    Full Text Available Vibrio cholerae is commonly found in estuarine water systems. Toxigenic O1 and O139 V. cholerae strains have caused cholera epidemics and pandemics, whereas the nontoxigenic strains within these serogroups only occasionally lead to disease. To understand the differences in the genome and clonality between the toxigenic and nontoxigenic strains of V. cholerae serogroups O1 and O139, we employed a whole genome PCR scanning (WGPScanning method, an rrn operon-mediated fragment rearrangement analysis and comparative genomic hybridization (CGH to analyze the genome structure of different strains. WGPScanning in conjunction with CGH revealed that the genomic contents of the toxigenic strains were conservative, except for a few indels located mainly in mobile elements. Minor nucleotide variation in orthologous genes appeared to be the major difference between the toxigenic strains. rrn operon-mediated rearrangements were infrequent in El Tor toxigenic strains tested using I-CeuI digested pulsed-field gel electrophoresis (PFGE analysis and PCR analysis based on flanking sequence of rrn operons. Using these methods, we found that the genomic structures of toxigenic El Tor and O139 strains were syntenic. The nontoxigenic strains exhibited more extensive sequence variations, but toxin coregulated pilus positive (TCP+ strains had a similar structure. TCP+ nontoxigenic strains could be subdivided into multiple lineages according to the TCP type, suggesting the existence of complex intermediates in the evolution of toxigenic strains. The data indicate that toxigenic O1 El Tor and O139 strains were derived from a single lineage of intermediates from complex clones in the environment. The nontoxigenic strains with non-El Tor type TCP may yet evolve into new epidemic clones after attaining toxigenic attributes.

  3. Genomic-scale comparison of sequence- and structure-based methods of function prediction: Does structure provide additional insight?

    Science.gov (United States)

    Fetrow, Jacquelyn S.; Siew, Naomi; Di Gennaro, Jeannine A.; Martinez-Yamout, Maria; Dyson, H. Jane; Skolnick, Jeffrey

    2001-01-01

    A function annotation method using the sequence-to-structure-to-function paradigm is applied to the identification of all disulfide oxidoreductases in the Saccharomyces cerevisiae genome. The method identifies 27 sequences as potential disulfide oxidoreductases. All previously known thioredoxins, glutaredoxins, and disulfide isomerases are correctly identified. Three of the 27 predictions are probable false-positives. Three novel predictions, which subsequently have been experimentally validated, are presented. Two additional novel predictions suggest a disulfide oxidoreductase regulatory mechanism for two subunits (OST3 and OST6) of the yeast oligosaccharyltransferase complex. Based on homology, this prediction can be extended to a potential tumor suppressor gene, N33, in humans, whose biochemical function was not previously known. Attempts to obtain a folded, active N33 construct to test the prediction were unsuccessful. The results show that structure prediction coupled with biochemically relevant structural motifs is a powerful method for the function annotation of genome sequences and can provide more detailed, robust predictions than function prediction methods that rely on sequence comparison alone. PMID:11316881

  4. Structural heterogeneity and functional diversity of topologically associating domains in mammalian genomes.

    Science.gov (United States)

    Wang, Xiao-Tao; Dong, Peng-Fei; Zhang, Hong-Yu; Peng, Cheng

    2015-09-01

    Recent chromosome conformation capture (3C) derived techniques have revealed that topologically associating domain (TAD) is a pervasive element in chromatin three-dimensional (3D) organization. However, there is currently no parameter to quantitatively measure the structural characteristics of TADs, thus obscuring our understanding on the structural and functional differences among TADs. Based on our finding that there exist intrinsic chromatin interaction patterns in TADs, we define a theoretical parameter, called aggregation preference (AP), to characterize TAD structures by capturing the interaction aggregation degree. Applying this defined parameter to 11 Hi-C data sets generated by both traditional and in situ Hi-C experimental pipelines, our analyses reveal that heterogeneous structures exist among TADs, and this structural heterogeneity is significantly correlated to DNA sequences, epigenomic signals and gene expressions. Although TADs can be stable in genomic positions across cell lines, structural comparisons show that a considerable number of stable TADs undergo significantly structural rearrangements during cell changes. Moreover, the structural change of TAD is tightly associated with its transcription remodeling. Altogether, the theoretical parameter defined in this work provides a quantitative method to link structural characteristics and biological functions of TADs, and this linkage implies that chromatin interaction pattern has the potential to mark transcription activity in TADs. PMID:26150425

  5. Genome-wide functional annotation and structural verification of metabolic ORFeome of Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Fan Changyu

    2011-06-01

    Full Text Available Abstract Background Recent advances in the field of metabolic engineering have been expedited by the availability of genome sequences and metabolic modelling approaches. The complete sequencing of the C. reinhardtii genome has made this unicellular alga a good candidate for metabolic engineering studies; however, the annotation of the relevant genes has not been validated and the much-needed metabolic ORFeome is currently unavailable. We describe our efforts on the functional annotation of the ORF models released by the Joint Genome Institute (JGI, prediction of their subcellular localizations, and experimental verification of their structural annotation at the genome scale. Results We assigned enzymatic functions to the translated JGI ORF models of C. reinhardtii by reciprocal BLAST searches of the putative proteome against the UniProt and AraCyc enzyme databases. The best match for each translated ORF was identified and the EC numbers were transferred onto the ORF models. Enzymatic functional assignment was extended to the paralogs of the ORFs by clustering ORFs using BLASTCLUST. In total, we assigned 911 enzymatic functions, including 886 EC numbers, to 1,427 transcripts. We further annotated the enzymatic ORFs by prediction of their subcellular localization. The majority of the ORFs are predicted to be compartmentalized in the cytosol and chloroplast. We verified the structure of the metabolism-related ORF models by reverse transcription-PCR of the functionally annotated ORFs. Following amplification and cloning, we carried out 454FLX and Sanger sequencing of the ORFs. Based on alignment of the 454FLX reads to the ORF predicted sequences, we obtained more than 90% coverage for more than 80% of the ORFs. In total, 1,087 ORF models were verified by 454 and Sanger sequencing methods. We obtained expression evidence for 98% of the metabolic ORFs in the algal cells grown under constant light in the presence of acetate. Conclusions We functionally

  6. Structural relationships between highly conserved elements and genes in vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Hong Sun

    Full Text Available Large numbers of sequence elements have been identified to be highly conserved among vertebrate genomes. These highly conserved elements (HCEs are often located in or around genes that are involved in transcription regulation and early development. They have been shown to be involved in cis-regulatory activities through both in vivo and additional computational studies. We have investigated the structural relationships between such elements and genes in six vertebrate genomes human, mouse, rat, chicken, zebrafish and tetraodon and detected several thousand cases of conserved HCE-gene associations, and also cases of HCEs with no common target genes. A few examples underscore the potential significance of our findings about several individual genes. We found that the conserved association between HCE/HCEs and gene/genes are not restricted to elements by their absolute distance on the genome. Notably, long-range associations were identified and the molecular functions of the associated genes do not show any particular overrepresentation of the functional categories previously reported. HCEs in close proximity are found to be linked with different set of gene/genes. The results reflect the highly complex correlation between HCEs and their putative target genes.

  7. Primary structure of the human follistatin precursor and its genomic organization

    International Nuclear Information System (INIS)

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution

  8. Primary structure of the human follistatin precursor and its genomic organization

    Energy Technology Data Exchange (ETDEWEB)

    Shimasaki, Shunichi; Koga, Makoto; Esch, F.; Cooksey, K.; Mercado, M.; Koba, A.; Ueno, Naoto; Ying, Shaoyao; Ling, N.; Guillemin, R. (Salk Institute, La Jolla, CA (USA))

    1988-06-01

    Follistatin is a single-chain gonadal protein that specifically inhibits follicle-stimulating hormone release. By use of the recently characterized porcine follistatin cDNA as a probe to screen a human testis cDNA library and a genomic library, the structure of the complete human follistatin precursor as well as its genomic organization have been determined. Three of eight cDNA clones that were sequenced predicted a precursor with 344 amino acids, whereas the remaining five cDNA clones encoded a 317 amino acid precursor, resulting from alternative splicing of the precursor mRNA. Mature follistatins contain four contiguous domains that are encoded by precisely separated exons; three of the domains are highly similar to each other, as well as to human epidermal growth factor and human pancreatic secretory trypsin inhibitor. The genomic organization of the human follistatin is similar to that of the human epidermal growth factor gene and thus supports the notion of exon shuffling during evolution.

  9. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, Roger P [ORNL; Jouline, Igor B [ORNL

    2007-01-01

    As an important model for transmembrane signaling, methyl-accepting chemotaxis proteins (MCPs) have been extensively studied by using genetic, biochemical, and structural techniques. However, details of the molecular mechanism of signaling are still not well understood. The availability of genomic information for hundreds of species enables the identification of features in protein sequences that are conserved over long evolutionary distances and thus are critically important for function. We carried out a large-scale comparative genomic analysis of the MCP signaling and adaptation domain family and identified features that appear to be critical for receptor structure and function. Based on domain length and sequence conservation, we identified seven major MCP classes and three distinct structural regions within the cytoplasmic domain: signaling, methylation, and flexible bundle subdomains. The flexible bundle subdomain, not previously recognized in MCPs, is a conserved element that appears to be important for signal transduction. Remarkably, the N- and C-terminal helical arms of the cytoplasmic domain maintain symmetry in length and register despite dramatic variation, from 24 to 64 7-aa heptads in overall domain length. Loss of symmetry is observed in some MCPs, where it is concomitant with specific changes in the sensory module. Each major MCP class has a distinct pattern of predicted methylation sites that is well supported by experimental data. Our findings indicate that signaling and adaptation functions within the MCP cytoplasmic domain are tightly coupled, and that their coevolution has contributed to the significant diversity in chemotaxis mechanisms among different organisms.

  10. Update on the Pfam5000 Strategy for Selection of StructuralGenomics Targets

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2005-06-27

    Structural Genomics is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy that is medically and biologically relevant, of good financial value, and tractable. In 2003, we presented the ''Pfam5000'' strategy, which involves selecting the 5,000 most important families from the Pfam database as sources for targets. In this update, we show that although both the Pfam database and the number of sequenced genomes have increased in size, the expected benefits of the Pfam5000 strategy have not changed substantially. Solving the structures of proteins from the 5,000 largest Pfam families would allow accurate fold assignment for approximately 65 percent of all prokaryotic proteins (covering 54 percent of residues) and 63 percent of eukaryotic proteins (42 percent of residues). Fewer than 2,300 of the largest families on this list remain to be solved, making the project feasible in the next five years given the expected throughput to be achieved in the production phase of the Protein Structure Initiative.

  11. Structured RNAs in the ENCODE selected regions of the human genome

    DEFF Research Database (Denmark)

    Washietl, Stefan; Pedersen, Jakob Skou; Korbel, Jan O;

    2007-01-01

    several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison...... with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz...

  12. Genetic Segregation and Genomic Hybridization Patterns Support an Allotetraploid Structure and Disomic Inheritance for Salix Species

    Directory of Open Access Journals (Sweden)

    Gianni Barcaccia

    2014-09-01

    Full Text Available The Salix alba L. (white willow—Salix fragilis L. (crack willow complex includes closely related polyploid species, mainly tetraploid (2n = 4x = 76, which are dioecious and hence obligate allogamous. Because little is known about the genome constitution and chromosome behavior of these pure willow trees, genetic analysis of their naturally occurring interspecific polyploid hybrids is still very difficult. A two-way pseudo-testcross strategy was exploited using single-dose AFLP markers in order to assess the main inheritance patterns of tetraploid biotypes (disomy vs. tetrasomy in segregating populations stemmed from S. alba × S. fragilis crosses and reciprocals. In addition, a genomic in situ hybridization (GISH technology was implemented in willow to shed some light on the genome structure of S. alba and S. fragilis species, and their hybrids (allopolyploidy vs. autopolyploidy. The frequency of S. alba-specific molecular markers was almost double compared to that of S. fragilis-specific ones, suggesting the phylogenetic hypothesis of S. fragilis as derivative species from S. alba-like progenitors. Cytogenetic observations at pro-metaphase revealed about half of the chromosome complements being less contracted than the remaining ones, supporting an allopolyploid origin of both S. alba and S. fragilis. Both genetic segregation and genomic hybridization data are consistent with an allotetraploid nature of the Salix species. In particular, the vast majority of the AFLP markers were inherited according to disomic patterns in S. alba × S. fragilis populations and reciprocals. Moreover, in all S. alba against S. fragilis hybridizations and reciprocals, GISH signals were observed only on the contracted chromosomes whereas the non-contracted chromosomes were never hybridized. In conclusion, half of the chromosomes of the pure species S. alba and S. fragilis are closely related and they could share a common diploid ancestor, while the rest of

  13. Comparison of SIV and HIV-1 genomic RNA structures reveals impact of sequence evolution on conserved and non-conserved structural motifs.

    Science.gov (United States)

    Pollom, Elizabeth; Dang, Kristen K; Potter, E Lake; Gorelick, Robert J; Burch, Christina L; Weeks, Kevin M; Swanstrom, Ronald

    2013-01-01

    RNA secondary structure plays a central role in the replication and metabolism of all RNA viruses, including retroviruses like HIV-1. However, structures with known function represent only a fraction of the secondary structure reported for HIV-1(NL4-3). One tool to assess the importance of RNA structures is to examine their conservation over evolutionary time. To this end, we used SHAPE to model the secondary structure of a second primate lentiviral genome, SIVmac239, which shares only 50% sequence identity at the nucleotide level with HIV-1NL4-3. Only about half of the paired nucleotides are paired in both genomic RNAs and, across the genome, just 71 base pairs form with the same pairing partner in both genomes. On average the RNA secondary structure is thus evolving at a much faster rate than the sequence. Structure at the Gag-Pro-Pol frameshift site is maintained but in a significantly altered form, while the impact of selection for maintaining a protein binding interaction can be seen in the conservation of pairing partners in the small RRE stems where Rev binds. Structures that are conserved between SIVmac239 and HIV-1(NL4-3) also occur at the 5' polyadenylation sequence, in the plus strand primer sites, PPT and cPPT, and in the stem-loop structure that includes the first splice acceptor site. The two genomes are adenosine-rich and cytidine-poor. The structured regions are enriched in guanosines, while unpaired regions are enriched in adenosines, and functionaly important structures have stronger base pairing than nonconserved structures. We conclude that much of the secondary structure is the result of fortuitous pairing in a metastable state that reforms during sequence evolution. However, secondary structure elements with important function are stabilized by higher guanosine content that allows regions of structure to persist as sequence evolution proceeds, and, within the confines of selective pressure, allows structures to evolve. PMID:23593004

  14. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  15. Control system for the 2nd generation Berkeley automounters (BAM2) at GM/CA-CAT macromolecular crystallography beamlines

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, O., E-mail: makarov@anl.gov [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Hilgart, M.; Ogata, C.; Pothineni, S. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Cork, C. [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2011-09-01

    GM/CA-CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second-generation Berkeley automounter is being integrated into the beamline control system at the 23BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design.

  16. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  17. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    CERN Document Server

    Collier, M

    2002-01-01

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  18. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  19. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  20. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    International Nuclear Information System (INIS)

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle

  1. Stability of the Zagreb Carnegie-Mellon-Berkeley model

    CERN Document Server

    Osmanović, H; Švarc, A; Hadžimehmedović, M; Stahov, J

    2011-01-01

    In ref. [1] we have used the Zagreb realization of Carnegie-Melon-Berkeley coupled-channel, unitary model as a tool for extracting pole positions from the world collection of partial wave data, with the aim of eliminating model dependence in pole-search procedures. In order that the method is sensible, we in this paper discuss the stability of the method with respect to the strong variation of different model ingredients. We show that the Zagreb CMB procedure is very stable with strong variation of the model assumptions, and that it can reliably predict the pole positions of the fitted partial wave amplitudes.

  2. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  3. USING DOE-2.1 AT LAWRENCE BERKELEY LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Building Energy Analysis Group.; Authors, Various

    1980-09-01

    The purpose of this manual is to assist the DOE-2 user to run DOE-2 and its utility programs at Lawrence Berkeley Laboratory (LBL). It is organized to reflect the facts that every DOE-2 job run at LBL requires certain steps, and that there are options related to DOE-2 job runs available to any DOE-2 user. The standard steps for running a DOE-2 job are as follows: 1. Prepare a job deck 2. Process a job deck 3. Obtain standard output reports.

  4. Assembly Manual for the Berkeley Lab Cosmic Ray Detector

    Energy Technology Data Exchange (ETDEWEB)

    Collier, Michael

    2002-12-17

    The Berkeley Lab Cosmic Ray Detector consists of 3 main components that must be prepared separately before they can be assembled. These components are the scintillator, circuit board, and casing. They are described in the main sections of this report, which may be completed in any order. Preparing the scintillator paddles involves several steps--cutting the scintillator material to the appropriate size and shape, preparing and attaching Lucite cookies (optional), polishing the edges, gluing the end to the photomultiplier tube (optional), and wrapping the scintillator. Since the detector has 2 paddles, each of the sections needs to be repeated for the other paddle.

  5. Lipoprotein subclasses in genetic studies: The Berkeley Data Set

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, R.M.; Williams, P.T.; Blanche, P.J.; Cavanaugh, A.; Holl, L.G. [Lawrence Berkeley Lab., CA (United States); Austin, M.A. [Washington Univ., Seattle, WA (United States). Dept. of Epidemiology

    1992-10-01

    Data from the Berkeley Data Set was used to investigate familial correlations of HDL-subclasses. Analysis of the sibling intraclass correlation coefficient by HDL particle diameter showed that sibling HDL levels were significantly correlated for HDL{sub 2b}, HDL{sub 3a} and HDL{sub 3b} subclasses. The percentage of the offsprings` variance explained by their two parents. Our finding that parents and offspring-have the highest correlation for HDL{sub 2b} is consistent with published reports that show higher heritability estimates for HDL{sub 2} compared with HDL{sub 3}{minus} cholesterol.

  6. Discovery of new enzymes and metabolic pathways by using structure and genome context.

    Science.gov (United States)

    Zhao, Suwen; Kumar, Ritesh; Sakai, Ayano; Vetting, Matthew W; Wood, B McKay; Brown, Shoshana; Bonanno, Jeffery B; Hillerich, Brandan S; Seidel, Ronald D; Babbitt, Patricia C; Almo, Steven C; Sweedler, Jonathan V; Gerlt, John A; Cronan, John E; Jacobson, Matthew P

    2013-10-31

    Assigning valid functions to proteins identified in genome projects is challenging: overprediction and database annotation errors are the principal concerns. We and others are developing computation-guided strategies for functional discovery with 'metabolite docking' to experimentally derived or homology-based three-dimensional structures. Bacterial metabolic pathways often are encoded by 'genome neighbourhoods' (gene clusters and/or operons), which can provide important clues for functional assignment. We recently demonstrated the synergy of docking and pathway context by 'predicting' the intermediates in the glycolytic pathway in Escherichia coli. Metabolite docking to multiple binding proteins and enzymes in the same pathway increases the reliability of in silico predictions of substrate specificities because the pathway intermediates are structurally similar. Here we report that structure-guided approaches for predicting the substrate specificities of several enzymes encoded by a bacterial gene cluster allowed the correct prediction of the in vitro activity of a structurally characterized enzyme of unknown function (PDB 2PMQ), 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) and cis-4-hydroxy-D-proline betaine (cHyp-B), and also the correct identification of the catabolic pathway in which Hyp-B 2-epimerase participates. The substrate-liganded pose predicted by virtual library screening (docking) was confirmed experimentally. The enzymatic activities in the predicted pathway were confirmed by in vitro assays and genetic analyses; the intermediates were identified by metabolomics; and repression of the genes encoding the pathway by high salt concentrations was established by transcriptomics, confirming the osmolyte role of tHyp-B. This study establishes the utility of structure-guided functional predictions to enable the discovery of new metabolic pathways.

  7. Modeling structure of G protein-coupled receptors in huan genome

    KAUST Repository

    Zhang, Yang

    2016-01-26

    G protein-coupled receptors (or GPCRs) are integral transmembrane proteins responsible to various cellular signal transductions. Human GPCR proteins are encoded by 5% of human genes but account for the targets of 40% of the FDA approved drugs. Due to difficulties in crystallization, experimental structure determination remains extremely difficult for human GPCRs, which have been a major barrier in modern structure-based drug discovery. We proposed a new hybrid protocol, GPCR-I-TASSER, to construct GPCR structure models by integrating experimental mutagenesis data with ab initio transmembrane-helix assembly simulations, assisted by the predicted transmembrane-helix interaction networks. The method was tested in recent community-wide GPCRDock experiments and constructed models with a root mean square deviation 1.26 Å for Dopamine-3 and 2.08 Å for Chemokine-4 receptors in the transmembrane domain regions, which were significantly closer to the native than the best templates available in the PDB. GPCR-I-TASSER has been applied to model all 1,026 putative GPCRs in the human genome, where 923 are found to have correct folds based on the confidence score analysis and mutagenesis data comparison. The successfully modeled GPCRs contain many pharmaceutically important families that do not have previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin and Neuropeptide Y receptors. All the human GPCR models have been made publicly available through the GPCR-HGmod database at http://zhanglab.ccmb.med.umich.edu/GPCR-HGmod/ The results demonstrate new progress on genome-wide structure modeling of transmembrane proteins which should bring useful impact on the effort of GPCR-targeted drug discovery.

  8. Protein structure similarity clustering and natural product structure as guiding principles for chemical genomics.

    Science.gov (United States)

    Koch, M A; Waldmann, H

    2006-01-01

    The majority of all proteins are modularly built from a limited set of approximately 1,000 structural domains. The knowledge of a common protein fold topology in the ligand-sensing cores of protein domains can be exploited for the design of small-molecule libraries in the development of inhibitors and ligands. Thus, a novel strategy of clustering protein domain cores based exclusively on structure similarity considerations (protein structure similarity clustering, PSSC) has been successfully applied to the development of small-molecule inhibitors of acetylcholinesterase and the 11beta-hydroxysteroid dehydrogenases based on the structure of a naturally occurring Cdc25 inhibitor. The efficiency of making use of the scaffolds of natural products as biologically prevalidated starting points for the design of compound libraries is further highlighted by the development of benzopyran-based FXR ligands.

  9. The function genomics study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Genomics is a biology term appeared ten years ago, used to describe the researches of genomic mapping, sequencing, and structure analysis, etc. Genomics, the first journal for publishing papers on genomics research was born in 1986. In the past decade, the concept of genomics has been widely accepted by scientists who are engaging in biology research. Meanwhile, the research scope of genomics has been extended continuously, from simple gene mapping and sequencing to function genomics study. To reflect the change, genomics is divided into two parts now, the structure genomics and the function genomics.

  10. ViVar: a comprehensive platform for the analysis and visualization of structural genomic variation.

    Directory of Open Access Journals (Sweden)

    Tom Sante

    Full Text Available Structural genomic variations play an important role in human disease and phenotypic diversity. With the rise of high-throughput sequencing tools, mate-pair/paired-end/single-read sequencing has become an important technique for the detection and exploration of structural variation. Several analysis tools exist to handle different parts and aspects of such sequencing based structural variation analyses pipelines. A comprehensive analysis platform to handle all steps, from processing the sequencing data, to the discovery and visualization of structural variants, is missing. The ViVar platform is built to handle the discovery of structural variants, from Depth Of Coverage analysis, aberrant read pair clustering to split read analysis. ViVar provides you with powerful visualization options, enables easy reporting of results and better usability and data management. The platform facilitates the processing, analysis and visualization, of structural variation based on massive parallel sequencing data, enabling the rapid identification of disease loci or genes. ViVar allows you to scale your analysis with your work load over multiple (cloud servers, has user access control to keep your data safe and is easy expandable as analysis techniques advance. URL: https://www.cmgg.be/vivar/

  11. From Genome to Structure and Back Again: A Family Portrait of the Transcarbamylases

    Directory of Open Access Journals (Sweden)

    Dashuang Shi

    2015-08-01

    Full Text Available Enzymes in the transcarbamylase family catalyze the transfer of a carbamyl group from carbamyl phosphate (CP to an amino group of a second substrate. The two best-characterized members, aspartate transcarbamylase (ATCase and ornithine transcarbamylase (OTCase, are present in most organisms from bacteria to humans. Recently, structures of four new transcarbamylase members, N-acetyl-l-ornithine transcarbamylase (AOTCase, N-succinyl-l-ornithine transcarbamylase (SOTCase, ygeW encoded transcarbamylase (YTCase and putrescine transcarbamylase (PTCase have also been determined. Crystal structures of these enzymes have shown that they have a common overall fold with a trimer as their basic biological unit. The monomer structures share a common CP binding site in their N-terminal domain, but have different second substrate binding sites in their C-terminal domain. The discovery of three new transcarbamylases, l-2,3-diaminopropionate transcarbamylase (DPTCase, l-2,4-diaminobutyrate transcarbamylase (DBTCase and ureidoglycine transcarbamylase (UGTCase, demonstrates that our knowledge and understanding of the spectrum of the transcarbamylase family is still incomplete. In this review, we summarize studies on the structures and function of transcarbamylases demonstrating how structural information helps to define biological function and how small structural differences govern enzyme specificity. Such information is important for correctly annotating transcarbamylase sequences in the genome databases and for identifying new members of the transcarbamylase family.

  12. Universal internucleotide statistics in full genomes: a footprint of the DNA structure and packaging?

    Directory of Open Access Journals (Sweden)

    Mikhail I Bogachev

    Full Text Available Uncovering the fundamental laws that govern the complex DNA structural organization remains challenging and is largely based upon reconstructions from the primary nucleotide sequences. Here we investigate the distributions of the internucleotide intervals and their persistence properties in complete genomes of various organisms from Archaea and Bacteria to H. Sapiens aiming to reveal the manifestation of the universal DNA architecture. We find that in all considered organisms the internucleotide interval distributions exhibit the same [Formula: see text]-exponential form. While in prokaryotes a single [Formula: see text]-exponential function makes the best fit, in eukaryotes the PDF contains additionally a second [Formula: see text]-exponential, which in the human genome makes a perfect approximation over nearly 10 decades. We suggest that this functional form is a footprint of the heterogeneous DNA structure, where the first [Formula: see text]-exponential reflects the universal helical pitch that appears both in pro- and eukaryotic DNA, while the second [Formula: see text]-exponential is a specific marker of the large-scale eukaryotic DNA organization.

  13. Core genome conservation of Staphylococcus haemolyticus limits sequence based population structure analysis.

    Science.gov (United States)

    Cavanagh, Jorunn Pauline; Klingenberg, Claus; Hanssen, Anne-Merethe; Fredheim, Elizabeth Aarag; Francois, Patrice; Schrenzel, Jacques; Flægstad, Trond; Sollid, Johanna Ericson

    2012-06-01

    The notoriously multi-resistant Staphylococcus haemolyticus is an emerging pathogen causing serious infections in immunocompromised patients. Defining the population structure is important to detect outbreaks and spread of antimicrobial resistant clones. Currently, the standard typing technique is pulsed-field gel electrophoresis (PFGE). In this study we describe novel molecular typing schemes for S. haemolyticus using multi locus sequence typing (MLST) and multi locus variable number of tandem repeats (VNTR) analysis. Seven housekeeping genes (MLST) and five VNTR loci (MLVF) were selected for the novel typing schemes. A panel of 45 human and veterinary S. haemolyticus isolates was investigated. The collection had diverse PFGE patterns (38 PFGE types) and was sampled over a 20 year-period from eight countries. MLST resolved 17 sequence types (Simpsons index of diversity [SID]=0.877) and MLVF resolved 14 repeat types (SID=0.831). We found a low sequence diversity. Phylogenetic analysis clustered the isolates in three (MLST) and one (MLVF) clonal complexes, respectively. Taken together, neither the MLST nor the MLVF scheme was suitable to resolve the population structure of this S. haemolyticus collection. Future MLVF and MLST schemes will benefit from addition of more variable core genome sequences identified by comparing different fully sequenced S. haemolyticus genomes. PMID:22484086

  14. Chloroplast Genome Sequence of the Moss Tortula ruralis: Gene Content and Structural Arrangement Relative to Other Green Plant Chloroplast Genomes

    Science.gov (United States)

    Tortula ruralis, a widely distributed moss species in the family Pottiaceae, is increasingly being used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of Tortula ruralis, only the second publishe...

  15. Mutational and structural analysis of diffuse large B-cell lymphoma using whole genome sequencing | Office of Cancer Genomics

    Science.gov (United States)

    Abstract: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous cancer comprising at least two molecular subtypes that differ in gene expression and distribution of mutations. Recently, application of genome/exome sequencing and RNA-seq to DLBCL has revealed numerous genes that are recurrent targets of somatic point mutation in this disease.

  16. Population genomics of dengue virus serotype 4: insights into genetic structure and evolution.

    Science.gov (United States)

    Waman, Vaishali P; Kasibhatla, Sunitha Manjari; Kale, Mohan M; Kulkarni-Kale, Urmila

    2016-08-01

    The spread of dengue disease has become a global public health concern. Dengue is caused by dengue virus, which is a mosquito-borne arbovirus of the genus Flavivirus, family Flaviviridae. There are four dengue virus serotypes (1-4), each of which is known to trigger mild to severe disease. Dengue virus serotype 4 (DENV-4) has four genotypes and is increasingly being reported to be re-emerging in various parts of the world. Therefore, the population structure and factors shaping the evolution of DENV-4 strains across the world were studied using genome-based population genetic, phylogenetic and selection pressure analysis methods. The population genomics study helped to reveal the spatiotemporal structure of the DENV-4 population and its primary division into two spatially distinct clusters: American and Asian. These spatial clusters show further time-dependent subdivisions within genotypes I and II. Thus, the DENV-4 population is observed to be stratified into eight genetically distinct lineages, two of which are formed by American strains and six of which are formed by Asian strains. Episodic positive selection was observed in the structural (E) and non-structural (NS2A and NS3) genes, which appears to be responsible for diversification of Asian lineages in general and that of modern lineages of genotype I and II in particular. In summary, the global DENV-4 population is stratified into eight genetically distinct lineages, in a spatiotemporal manner with limited recombination. The significant role of adaptive evolution in causing diversification of DENV-4 lineages is discussed. The evolution of DENV-4 appears to be governed by interplay between spatiotemporal distribution, episodic positive selection and intra/inter-genotype recombination. PMID:27169727

  17. Structural and Expressional Variations of the Mitochondrial Genome Conferring the Wild Abortive Type of Cytoplasmic Male Sterility in Rice

    Institute of Scientific and Technical Information of China (English)

    Zhen-Lan Liu; Hong Xu; Jing-Xin Guo; Yao-Guang Liu

    2007-01-01

    The so-called "wild abortive" (WA) type of cytoplasmic male sterility (CMS) derived from a wild rice species Oryza rufipogon has been extensively used for hybrid rice breeding. However, extensive analysis of the structure of the related mitochondrial genome has not been reported, and the CMS-associated gene(s) remain unknown. In this study, we exploited a mitochondrial genome-wide strategy to examine the structural and expressional variations in the mitochondrial genome conferring the CMS. The entire mitochondrial genomes of a CMS-WA line and two normal fertile rice lines were amplified by Long-polymerase chain reaction into tilling fragments of up to 15.2 kb. Restriction and DNA blotting analyses of these fragments revealed that structural variations occurred in several regions in the WA mitochondrial genome, as compared to those of the fertile lines. All of the amplified fragments covering the entire mitochondrial genome were used as RNA blot probes to examine the mitochondrial expression profile among the CMS-WA and fertile lines. As a result, only two mRNAs were found to be differentially expressed between the CMS-WA and the fertile lines, which were detected by a probe containing the nadS and orf153 genes and the other having the ribosomal protein gene rp15, respectively. These mRNAs are proposed to be the candidates for further identification and functional studies of the CMS gene.

  18. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  19. Berkeley extreme-ultraviolet airglow rocket spectrometer: BEARS.

    Science.gov (United States)

    Cotton, D M; Chakrabarti, S

    1992-09-20

    We describe the Berkeley extreme-UV airglow rocket spectrometer, which is a payload designed to test several thermospheric remote-sensing concepts by measuring the terrestrial O I far-UV and extreme-UV dayglow and the solar extreme-UV spectrum simultaneously. The instrument consisted of two near-normal Rowland mount spectrometers and a Lyman-alpha photometer. The dayglow spectrometer covered two spectral regions from 980 to 1040 A and from 1300 to 1360 A with 1.5-A resolution. The solar spectrometer had a bandpass of 250-1150 A with an ~ 10-A resolution. All three spectra were accumulated by using a icrochannel-plate-intensified, two-dimensional imaging detector with three separate wedge-and strip anode readouts. The hydrogen Lyman-alpha photometer was included to monitor the solar Lyman-alpha irradiance and geocoronal Lyman-alpha emissions. The instrument was designed, fabricated, and calibrated at the University of California, Berkeley and was successfully launched on 30 September 1988 aboard the first test flight of a four-stage sounding rocket, Black Brant XII. PMID:20733778

  20. Metalloproteomics: High-Throughput Structural and Functional Annotation of Proteins in Structural Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Shi,W.; Zhan, C.; Lgnatov, A.; Manjasetty, B.; Marinkovic, N.; Sullivan, M.; Huang, R.; Chance, M.; Li, H.; et al.

    2005-01-01

    A high-throughput method for measuring transition metal content based on quantitation of X-ray fluorescence signals was used to analyze 654 proteins selected as targets by the New York Structural GenomiX Research Consortium. Over 10% showed the presence of transition metal atoms in stoichiometric amounts; these totals as well as the abundance distribution are similar to those of the Protein Data Bank. Bioinformatics analysis of the identified metalloproteins in most cases supported the metalloprotein annotation; identification of the conserved metal binding motif was also shown to be useful in verifying structural models of the proteins. Metalloproteomics provides a rapid structural and functional annotation for these sequences and is shown to be {approx}95% accurate in predicting the presence or absence of stoichiometric metal content. The project's goal is to assay at least 1 member from each Pfam family; approximately 500 Pfam families have been characterized with respect to transition metal content so far.

  1. Report on three Genomes to Life Workshops: Data Infrastructure, Modeling and Simulation, and Protein Structure Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Geist, GA

    2003-09-16

    On July 22, 23, 24, 2003, three one day workshops were held in Gaithersburg, Maryland. Each was attended by about 30 computational biologists, mathematicians, and computer scientists who were experts in the respective workshop areas The first workshop discussed the data infrastructure needs for the Genomes to Life (GTL) program with the objective to identify gaps in the present GTL data infrastructure and define the GTL data infrastructure required for the success of the proposed GTL facilities. The second workshop discussed the modeling and simulation needs for the next phase of the GTL program and defined how these relate to the experimental data generated by genomics, proteomics, and metabolomics. The third workshop identified emerging technical challenges in computational protein structure prediction for DOE missions and outlining specific goals for the next phase of GTL. The workshops were attended by representatives from both OBER and OASCR. The invited experts at each of the workshops made short presentations on what they perceived as the key needs in the GTL data infrastructure, modeling and simulation, and structure prediction respectively. Each presentation was followed by a lively discussion by all the workshop attendees. The following findings and recommendations were derived from the three workshops. A seamless integration of GTL data spanning the entire range of genomics, proteomics, and metabolomics will be extremely challenging but it has to be treated as the first-class component of the GTL program to assure GTL's chances for success. High-throughput GTL facilities and ultrascale computing will make it possible to address the ultimate goal of modern biology: to achieve a fundamental, comprehensive, and systematic understanding of life. But first the GTL community needs to address the problem of the massive quantities and increased complexity of biological data produced by experiments and computations. Genome-scale collection, analysis

  2. Seismic Protection of Laboratory Contents: The UC Berkeley Science Building Case Study

    OpenAIRE

    Comerio, Mary C.

    2003-01-01

    The research described in this report is a part of the Disaster Resistant University (DRU) initiative funded by the Federal Emergency Management Agency (FEMA) and the University of California, Berkeley. The first phase of the Disaster Resistant University initiative produced a study of potential earthquake losses at UC Berkeley together with an analysis of the economic impacts. In that report, Comerio (2000) found that despite the extraordinary building retrofit program, the UC Berkeley cam...

  3. Losing identity: structural diversity of transposable elements belonging to different classes in the genome of Anopheles gambiae

    Directory of Open Access Journals (Sweden)

    Fernández-Medina Rita D

    2012-06-01

    Full Text Available Abstract Background Transposable elements (TEs, both DNA transposons and retrotransposons, are genetic elements with the main characteristic of being able to mobilize and amplify their own representation within genomes, utilizing different mechanisms of transposition. An almost universal feature of TEs in eukaryotic genomes is their inability to transpose by themselves, mainly as the result of sequence degeneration (by either mutations or deletions. Most of the elements are thus either inactive or non-autonomous. Considering that the bulk of some eukaryotic genomes derive from TEs, they have been conceived as “TE graveyards.” It has been shown that once an element has been inactivated, it progressively accumulates mutations and deletions at neutral rates until completely losing its identity or being lost from the host genome; however, it has also been shown that these “neutral sequences” might serve as raw material for domestication by host genomes. Results We have analyzed the sequence structural variations, nucleotide divergence, and pattern of insertions and deletions of several superfamilies of TEs belonging to both class I (long terminal repeats [LTRs] and non-LTRs [NLTRs] and II in the genome of Anopheles gambiae, aiming at describing the landscape of deterioration of these elements in this particular genome. Our results describe a great diversity in patterns of deterioration, indicating lineage-specific differences including the presence of Solo-LTRs in the LTR lineage, 5′-deleted NLTRs, and several non-autonomous and MITEs in the class II families. Interestingly, we found fragments of NLTRs corresponding to the RT domain, which preserves high identity among them, suggesting a possible remaining genomic role for these domains. Conclusions We show here that the TEs in the An. gambiae genome deteriorate in different ways according to the class to which they belong. This diversity certainly has implications not only at the host

  4. Structure modeling of all identified G protein-coupled receptors in the human genome.

    Directory of Open Access Journals (Sweden)

    Yang Zhang

    2006-02-01

    Full Text Available G protein-coupled receptors (GPCRs, encoded by about 5% of human genes, comprise the largest family of integral membrane proteins and act as cell surface receptors responsible for the transduction of endogenous signal into a cellular response. Although tertiary structural information is crucial for function annotation and drug design, there are few experimentally determined GPCR structures. To address this issue, we employ the recently developed threading assembly refinement (TASSER method to generate structure predictions for all 907 putative GPCRs in the human genome. Unlike traditional homology modeling approaches, TASSER modeling does not require solved homologous template structures; moreover, it often refines the structures closer to native. These features are essential for the comprehensive modeling of all human GPCRs when close homologous templates are absent. Based on a benchmarked confidence score, approximately 820 predicted models should have the correct folds. The majority of GPCR models share the characteristic seven-transmembrane helix topology, but 45 ORFs are predicted to have different structures. This is due to GPCR fragments that are predominantly from extracellular or intracellular domains as well as database annotation errors. Our preliminary validation includes the automated modeling of bovine rhodopsin, the only solved GPCR in the Protein Data Bank. With homologous templates excluded, the final model built by TASSER has a global C(alpha root-mean-squared deviation from native of 4.6 angstroms, with a root-mean-squared deviation in the transmembrane helix region of 2.1 angstroms. Models of several representative GPCRs are compared with mutagenesis and affinity labeling data, and consistent agreement is demonstrated. Structure clustering of the predicted models shows that GPCRs with similar structures tend to belong to a similar functional class even when their sequences are diverse. These results demonstrate the usefulness

  5. Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC.

    Directory of Open Access Journals (Sweden)

    Weerachai Jaratlerdsiri

    Full Text Available The major histocompatibility complex (MHC is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC within this lineage has been largely unexplored. Here, we studied the MHC region of the saltwater crocodile (Crocodylus porosus and compared it with that of other taxa. We characterised genomic clusters encompassing MHC class I and class II genes in the saltwater crocodile based on sequencing of bacterial artificial chromosomes. Six gene clusters spanning ∼452 kb were identified to contain nine MHC class I genes, six MHC class II genes, three TAP genes, and a TRIM gene. These MHC class I and class II genes were in separate scaffold regions and were greater in length (2-6 times longer than their counterparts in well-studied fowl B loci, suggesting that the compaction of avian MHC occurred after the crocodilian-avian split. Comparative analyses between the saltwater crocodile MHC and that from the alligator and gharial showed large syntenic areas (>80% identity with similar gene order. Comparisons with other vertebrates showed that the saltwater crocodile had MHC class I genes located along with TAP, consistent with birds studied. Linkage between MHC class I and TRIM39 observed in the saltwater crocodile resembled MHC in eutherians compared, but absent in avian MHC, suggesting that the saltwater crocodile MHC appears to have gene organisation intermediate between these two lineages. These observations suggest that the structure of the saltwater crocodile MHC, and other crocodilians, can help determine the MHC that was present in the ancestors of archosaurs.

  6. Population genomic analysis of ancient and modern genomes yields new insights into the genetic ancestry of the Tyrolean Iceman and the genetic structure of Europe.

    Directory of Open Access Journals (Sweden)

    Martin Sikora

    2014-05-01

    Full Text Available Genome sequencing of the 5,300-year-old mummy of the Tyrolean Iceman, found in 1991 on a glacier near the border of Italy and Austria, has yielded new insights into his origin and relationship to modern European populations. A key finding of that study was an apparent recent common ancestry with individuals from Sardinia, based largely on the Y chromosome haplogroup and common autosomal SNP variation. Here, we compiled and analyzed genomic datasets from both modern and ancient Europeans, including genome sequence data from over 400 Sardinians and two ancient Thracians from Bulgaria, to investigate this result in greater detail and determine its implications for the genetic structure of Neolithic Europe. Using whole-genome sequencing data, we confirm that the Iceman is, indeed, most closely related to Sardinians. Furthermore, we show that this relationship extends to other individuals from cultural contexts associated with the spread of agriculture during the Neolithic transition, in contrast to individuals from a hunter-gatherer context. We hypothesize that this genetic affinity of ancient samples from different parts of Europe with Sardinians represents a common genetic component that was geographically widespread across Europe during the Neolithic, likely related to migrations and population expansions associated with the spread of agriculture.

  7. The population genomics of begomoviruses: global scale population structure and gene flow

    Directory of Open Access Journals (Sweden)

    Prasanna HC

    2010-09-01

    Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could

  8. Whole-Genome Analysis of a Novel Fish Reovirus (MsReV Discloses Aquareovirus Genomic Structure Relationship with Host in Saline Environments

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2015-08-01

    Full Text Available Aquareoviruses are serious pathogens of aquatic animals. Here, genome characterization and functional gene analysis of a novel aquareovirus, largemouth bass Micropterus salmoides reovirus (MsReV, was described. It comprises 11 dsRNA segments (S1–S11 covering 24,024 bp, and encodes 12 putative proteins including the inclusion forming-related protein NS87 and the fusion-associated small transmembrane (FAST protein NS22. The function of NS22 was confirmed by expression in fish cells. Subsequently, MsReV was compared with two representative aquareoviruses, saltwater fish turbot Scophthalmus maximus reovirus (SMReV and freshwater fish grass carp reovirus strain 109 (GCReV-109. MsReV NS87 and NS22 genes have the same structure and function with those of SMReV, whereas GCReV-109 is either missing the coiled-coil region in NS79 or the gene-encoding NS22. Significant similarities are also revealed among equivalent genome segments between MsReV and SMReV, but a difference is found between MsReV and GCReV-109. Furthermore, phylogenetic analysis showed that 13 aquareoviruses could be divided into freshwater and saline environments subgroups, and MsReV was closely related to SMReV in saline environments. Consequently, these viruses from hosts in saline environments have more genomic structural similarities than the viruses from hosts in freshwater. This is the first study of the relationships between aquareovirus genomic structure and their host environments.

  9. Complete genomic structure of mouse lysyl hydroxylase 2 and lysyl hydroxylase 3/collagen glucosyltransferase.

    Science.gov (United States)

    Ruotsalainen, H; Vanhatupa, S; Tampio, M; Sipilä, L; Valtavaara, M; Myllylä, R

    2001-04-01

    Lysyl hydroxylase is an enzyme involved in collagen biosynthesis, catalyzing the hydroxylation of lysyl residues as a post-translational event. Three isoforms have been characterized so far (LH1, LH2, LH3). Our recent findings indicate that LH3 possesses, not only lysyl hydroxylase activity, but also galactosylhydroxylysyl glucosyltransferase activity [Heikkinen et al., J. Biol. Chem. 275 (2000) 36158-36163]. We report here the characterization of mouse LH2 (Plod2) and LH3/glucosyltransferase (Plod3) genes. Plod2 spans approximately 50 kb of the genomic DNA, and is organized in 20 exons, one of the exons being alternatively spliced in the RNA processing. Plod3 spans approximately 10 kb of the genomic DNA, and contains 19 exons. Analysis of the 5' flanking region with many transcription start sites reveals the lack of a TATAA box in both genes. Sequence analysis indicated many retroposon-like elements within the Plod3 gene. A comparison was carried out among the LH1, LH2 and LH3 gene structures characterized so far from different species. PMID:11334715

  10. Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure

    Institute of Scientific and Technical Information of China (English)

    SHEN; Sile; WANG; Zhenwei; SHAN; Xiaohui; WANG; Hua; LI; Ling; LIN; Xuyun; LONG; Likun; WENG; Kenan; LIU; Bao; ZOU; Guangtian

    2006-01-01

    By using high-pressure treatment, two mutant lines were obtained from a genetically stable japonica rice cultivar Bijing38. Genomic DNA of the mutant lines, together with the original line (Bijing38), was either undigested or digested by Hpa II/Msp I, and then subjected to molecular analysis using two markers, ISSR and RAPD. Results indicated that changes in the PCR amplification profiles of both markers are apparent in the two mutant lines compared with the original rice cultivar, suggesting that there had been both sequence changes and DNA methylation modifications in the mutant lines. Southern blot analysis using diverse sequences, including two cellular genes (S2 and S3), a set of retrotransposons (Osr7, Osr36, Tos19 and more), and a MITE transposon family (mPing and Pong), confirmed the results, and indicated that changes in DNA methylation pattern, genomic structure, and possible activation of some transposons indeed occurred in the mutant lines. Moreover, these changes are stably maintained through selfed generations and in different organs. Thus, our results indicate that it is possible to obtain stable mutants in rice by high pressure treatments, and the molecular basis of the mutants may include both genetic and epigenetic changes. Therefore, high hydrostatic pressure seems a promising approach for plant mutagenesis.

  11. Structural variation discovery in the cancer genome using next generation sequencing: Computational solutions and perspectives

    Science.gov (United States)

    Liu, Biao; Conroy, Jeffrey M.; Morrison, Carl D.; Odunsi, Adekunle O.; Qin, Maochun; Wei, Lei; Trump, Donald L.; Johnson, Candace S.; Liu, Song; Wang, Jianmin

    2015-01-01

    Somatic Structural Variations (SVs) are a complex collection of chromosomal mutations that could directly contribute to carcinogenesis. Next Generation Sequencing (NGS) technology has emerged as the primary means of interrogating the SVs of the cancer genome in recent investigations. Sophisticated computational methods are required to accurately identify the SV events and delineate their breakpoints from the massive amounts of reads generated by a NGS experiment. In this review, we provide an overview of current analytic tools used for SV detection in NGS-based cancer studies. We summarize the features of common SV groups and the primary types of NGS signatures that can be used in SV detection methods. We discuss the principles and key similarities and differences of existing computational programs and comment on unresolved issues related to this research field. The aim of this article is to provide a practical guide of relevant concepts, computational methods, software tools and important factors for analyzing and interpreting NGS data for the detection of SVs in the cancer genome. PMID:25849937

  12. Crystal Structures of DNA-Whirly Complexes and Their Role in Arabidopsis Organelle Genome Repair

    Energy Technology Data Exchange (ETDEWEB)

    Cappadocia, Laurent; Maréchal, Alexandre; Parent, Jean-Sébastien; Lepage, Étienne; Sygusch, Jurgen; Brisson, Normand (Montreal)

    2010-09-07

    DNA double-strand breaks are highly detrimental to all organisms and need to be quickly and accurately repaired. Although several proteins are known to maintain plastid and mitochondrial genome stability in plants, little is known about the mechanisms of DNA repair in these organelles and the roles of specific proteins. Here, using ciprofloxacin as a DNA damaging agent specific to the organelles, we show that plastids and mitochondria can repair DNA double-strand breaks through an error-prone pathway similar to the microhomology-mediated break-induced replication observed in humans, yeast, and bacteria. This pathway is negatively regulated by the single-stranded DNA (ssDNA) binding proteins from the Whirly family, thus indicating that these proteins could contribute to the accurate repair of plant organelle genomes. To understand the role of Whirly proteins in this process, we solved the crystal structures of several Whirly-DNA complexes. These reveal a nonsequence-specific ssDNA binding mechanism in which DNA is stabilized between domains of adjacent subunits and rendered unavailable for duplex formation and/or protein interactions. Our results suggest a model in which the binding of Whirly proteins to ssDNA would favor accurate repair of DNA double-strand breaks over an error-prone microhomology-mediated break-induced replication repair pathway.

  13. Predicting effects of structural stress in a genome-reduced model bacterial metabolism

    Science.gov (United States)

    Güell, Oriol; Sagués, Francesc; Serrano, M. Ángeles

    2012-08-01

    Mycoplasma pneumoniae is a human pathogen recently proposed as a genome-reduced model for bacterial systems biology. Here, we study the response of its metabolic network to different forms of structural stress, including removal of individual and pairs of reactions and knockout of genes and clusters of co-expressed genes. Our results reveal a network architecture as robust as that of other model bacteria regarding multiple failures, although less robust against individual reaction inactivation. Interestingly, metabolite motifs associated to reactions can predict the propagation of inactivation cascades and damage amplification effects arising in double knockouts. We also detect a significant correlation between gene essentiality and damages produced by single gene knockouts, and find that genes controlling high-damage reactions tend to be expressed independently of each other, a functional switch mechanism that, simultaneously, acts as a genetic firewall to protect metabolism. Prediction of failure propagation is crucial for metabolic engineering or disease treatment.

  14. Population structure of Neisseria gonorrhoeae based on whole genome data and its relationship with antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Matthew N. Ezewudo

    2015-03-01

    Full Text Available Neisseria gonorrhoeae is the causative agent of gonorrhea, a sexually transmitted infection (STI of major importance. As a result of antibiotic resistance, there are now limited options for treating patients. We collected draft genome sequence data and associated metadata data on 76 N. gonorrhoeae strains from around the globe and searched for known determinants of antibiotics resistance within the strains. The population structure and evolutionary forces within the pathogen population were analyzed. Our results indicated a cosmopolitan gonoccocal population mainly made up of five subgroups. The estimated ratio of recombination to mutation (r/m = 2.2 from our data set indicates an appreciable level of recombination occurring in the population. Strains with resistance phenotypes to more recent antibiotics (azithromycin and cefixime were mostly found in two of the five population subgroups.

  15. Early History of Heavy Isotope Research at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Glenn T. Seaborg

    1976-06-01

    I have had the idea for some time that it would be interesting and worthwhile to put together an account of the early work on heavy isotopes at Berkeley. Of a special interest is the discovery of plutonium (atomic number 94) and the isotope U{sup 233}, and the demonstration of their fission with slow neutrons. This work served as a prelude to the subsequent Plutonium Project (Metallurgical Project) centered at the University of Chicago, in connection with which I have also had the idea of putting together a history of the work of my chemistry group. I have decided that it would be an interesting challenge to write this account on a day-to-day basis in a style that would be consistent with the entries having been written at the end of each day. The aim would be to make this history as accurate as possible by going back to the original records and using them with meticulous care.

  16. BVI photometry of the very old open cluster Berkeley 17

    CERN Document Server

    Bragaglia, A; Marconi, G; Tosi, M; Andreuzzi, Gloria; Bragaglia, Angela; Marconi, Gianni; Tosi, Monica

    2006-01-01

    We have obtained BVI CCD imaging of Berkeley 17, an anticentre open cluster that competes with NGC 6791 as the oldest known open cluster. Using the synthetic colour magnitude diagrams (CMD) technique with three sets of evolutionary tracks we have determined that its age is 8.5 - 9.0 Gyr, it distance modulus is (m-M)_0 = 12.2, with a reddening of E(B-V) = 0.62 - 0.60. Differential reddening, if present, is at the 5 % level. All these values have been obtained using models with metallicity about half of solar (Z=0.008 or Z=0.01 depending on the stellar evolution tracks), which allows us to reproduce the features of the cluster CMD better than other metallicities. Finally, from the analysis of a nearby comparison field we think to have intercepted a portion of the disrupting Canis Major dwarf galaxy.

  17. Berkeley Program Offers New Option for Financing Residential PV Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax

  18. Whole-genome sequence variation, population structure and demographic history of the Dutch population

    NARCIS (Netherlands)

    The Genome of the Netherlands Consortium; Marschall, T.; Schoenhuth, A.

    2014-01-01

    Whole-genome sequencing enables complete characterization of genetic variation, but geographic clustering of rare alleles demands many diverse populations be studied. Here we describe the Genome of the Netherlands (GoNL) Project, in which we sequenced the whole genomes of 250 Dutch parent-offspring

  19. UC Berkeley Seismic Guidelines, Appendix II: Ground Motion TimeHistories for the UC Berkeley Campus

    Energy Technology Data Exchange (ETDEWEB)

    Various

    2003-06-03

    Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.

  20. UC Berkeley Seismic Guidelines, Appendix II: Ground Motion Time Histories for the UC Berkeley Campus

    Energy Technology Data Exchange (ETDEWEB)

    Authors, Various

    2003-06-03

    Three sets of ten time histories each were developed to represent the ground motions for each of the three return periods. All of the time histories are provided as pairs of fault-normal and fault-parallel components. The ground motion time histories are provided in two forms: unmodified, and spectrally modified to match the probabilistic response spectra. The unmodified time histories can be scaled to match the probabilistic response spectra at a specified period, such as the first mode period of the structure being analyzed, while leaving the shape of the response spectrum unmodified. This approach preserves the particular characteristics of the individual time history, together with the peaks and troughs of its response spectrum. These individual characteristics are modified in the spectrally matched time histories, resulting in a suite of ten time histories (for a given return period) that all have the same response spectrum for a given component (fault normal or fault parallel) that follows the smooth shape of the probabilistic response spectrum.

  1. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    Science.gov (United States)

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural

  2. Genome Structural Diversity among 31 Bordetella pertussis Isolates from Two Recent U.S. Whooping Cough Statewide Epidemics.

    Science.gov (United States)

    Bowden, Katherine E; Weigand, Michael R; Peng, Yanhui; Cassiday, Pamela K; Sammons, Scott; Knipe, Kristen; Rowe, Lori A; Loparev, Vladimir; Sheth, Mili; Weening, Keeley; Tondella, M Lucia; Williams, Margaret M

    2016-01-01

    During 2010 and 2012, California and Vermont, respectively, experienced statewide epidemics of pertussis with differences seen in the demographic affected, case clinical presentation, and molecular epidemiology of the circulating strains. To overcome limitations of the current molecular typing methods for pertussis, we utilized whole-genome sequencing to gain a broader understanding of how current circulating strains are causing large epidemics. Through the use of combined next-generation sequencing technologies, this study compared de novo, single-contig genome assemblies from 31 out of 33 Bordetella pertussis isolates collected during two separate pertussis statewide epidemics and 2 resequenced vaccine strains. Final genome architecture assemblies were verified with whole-genome optical mapping. Sixteen distinct genome rearrangement profiles were observed in epidemic isolate genomes, all of which were distinct from the genome structures of the two resequenced vaccine strains. These rearrangements appear to be mediated by repetitive sequence elements, such as high-copy-number mobile genetic elements and rRNA operons. Additionally, novel and previously identified single nucleotide polymorphisms were detected in 10 virulence-related genes in the epidemic isolates. Whole-genome variation analysis identified state-specific variants, and coding regions bearing nonsynonymous mutations were classified into functional annotated orthologous groups. Comprehensive studies on whole genomes are needed to understand the resurgence of pertussis and develop novel tools to better characterize the molecular epidemiology of evolving B. pertussis populations. IMPORTANCE Pertussis, or whooping cough, is the most poorly controlled vaccine-preventable bacterial disease in the United States, which has experienced a resurgence for more than a decade. Once viewed as a monomorphic pathogen, B. pertussis strains circulating during epidemics exhibit diversity visible on a genome structural

  3. Structural variation in the chicken genome identified by paired-end next-generation DNA sequencing of reduced representation libraries

    NARCIS (Netherlands)

    Kerstens, H.H.D.; Crooijmans, R.P.M.A.; Dibbits, B.W.; Vereijken, A.; Okimoto, R.; Groenen, M.A.M.

    2011-01-01

    Background Variation within individual genomes ranges from single nucleotide polymorphisms (SNPs) to kilobase, and even megabase, sized structural variants (SVs), such as deletions, insertions, inversions, and more complex rearrangements. Although much is known about the extent of SVs in humans and

  4. Insight into structure and assembly of the nuclear pore complex by utilizing the genome of a eukaryotic thermophile

    DEFF Research Database (Denmark)

    Amlacher, Stefan; Sarges, Phillip; Flemming, Dirk;

    2011-01-01

    Despite decades of research, the structure and assembly of the nuclear pore complex (NPC), which is composed of ~30 nucleoporins (Nups), remain elusive. Here, we report the genome of the thermophilic fungus Chaetomium thermophilum (ct) and identify the complete repertoire of Nups therein. The the...... of a thermophilic eukaryote for studying complex molecular machines....

  5. Unexpected structural complexity of supernumerary marker chromosomes characterized by microarray comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Hing Anne V

    2008-04-01

    Full Text Available Abstract Background Supernumerary marker chromosomes (SMCs are structurally abnormal extra chromosomes that cannot be unambiguously identified by conventional banding techniques. In the past, SMCs have been characterized using a variety of different molecular cytogenetic techniques. Although these techniques can sometimes identify the chromosome of origin of SMCs, they are cumbersome to perform and are not available in many clinical cytogenetic laboratories. Furthermore, they cannot precisely determine the region or breakpoints of the chromosome(s involved. In this study, we describe four patients who possess one or more SMCs (a total of eight SMCs in all four patients that were characterized by microarray comparative genomic hybridization (array CGH. Results In at least one SMC from all four patients, array CGH uncovered unexpected complexity, in the form of complex rearrangements, that could have gone undetected using other molecular cytogenetic techniques. Although array CGH accurately defined the chromosome content of all but two minute SMCs, fluorescence in situ hybridization was necessary to determine the structure of the markers. Conclusion The increasing use of array CGH in clinical cytogenetic laboratories will provide an efficient method for more comprehensive characterization of SMCs. Improved SMC characterization, facilitated by array CGH, will allow for more accurate SMC/phenotype correlation.

  6. Qualitative, quantitative and structural analysis of non- coding regions of classical swine fever virus genome

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Classical swine fever virus (CSFV) is the pathogen of the swine fever. Understanding of the replication and expression of its genome is the basis for research of the pathogenicity for CSFV and development of antiviral drug. The noncoding regions (NCRs) of CSFV are the main regulatory regions for replication and expression. Qualitative, quantitative and structural analysis of 3′ NCRs and 5′ NCRs was done in order to locate the regulatory region in the NCRs and to character the NCRs. The sites, conserved sequences and structural elements related to the initiation of replication and expression were extracted from 17 3′ NCRs and 56 5′ NCRs. Those cis-elements may be initial recognition sites for replication, binding sites for transcription factors of host cell and interacting sites for initiation of protein synthesis, based on which a mechanism for the replication and expression of CSFV was brought forth. This research offers the direction for further experiment and lays down a basis for the research on hepatitis C virus (HCV), other pestiviruses and plus-strand RNA viruses.

  7. Genome-wide analysis of single nucleotide polymorphisms uncovers population structure in Northern Europe.

    Directory of Open Access Journals (Sweden)

    Elina Salmela

    Full Text Available BACKGROUND: Genome-wide data provide a powerful tool for inferring patterns of genetic variation and structure of human populations. PRINCIPAL FINDINGS: In this study, we analysed almost 250,000 SNPs from a total of 945 samples from Eastern and Western Finland, Sweden, Northern Germany and Great Britain complemented with HapMap data. Small but statistically significant differences were observed between the European populations (F(ST = 0.0040, p<10(-4, also between Eastern and Western Finland (F(ST = 0.0032, p<10(-3. The latter indicated the existence of a relatively strong autosomal substructure within the country, similar to that observed earlier with smaller numbers of markers. The Germans and British were less differentiated than the Swedes, Western Finns and especially the Eastern Finns who also showed other signs of genetic drift. This is likely caused by the later founding of the northern populations, together with subsequent founder and bottleneck effects, and a smaller population size. Furthermore, our data suggest a small eastern contribution among the Finns, consistent with the historical and linguistic background of the population. SIGNIFICANCE: Our results warn against a priori assumptions of homogeneity among Finns and other seemingly isolated populations. Thus, in association studies in such populations, additional caution for population structure may be necessary. Our results illustrate that population history is often important for patterns of genetic variation, and that the analysis of hundreds of thousands of SNPs provides high resolution also for population genetics.

  8. Functional and Structural Overview of G-Protein-Coupled Receptors Comprehensively Obtained from Genome Sequences

    Directory of Open Access Journals (Sweden)

    Makiko Suwa

    2011-04-01

    Full Text Available An understanding of the functional mechanisms of G-protein-coupled receptors (GPCRs is very important for GPCR-related drug design. We have developed an integrated GPCR database (SEVENS http://sevens.cbrc.jp/ that includes 64,090 reliable GPCR genes comprehensively identified from 56 eukaryote genome sequences, and overviewed the sequences and structure spaces of the GPCRs. In vertebrates, the number of receptors for biological amines, peptides, etc. is conserved in most species, whereas the number of chemosensory receptors for odorant, pheromone, etc. significantly differs among species. The latter receptors tend to be single exon type or a few exon type and show a high ratio in the numbers of GPCRs, whereas some families, such as Class B and Class C receptors, have long lengths due to the presence of many exons. Statistical analyses of amino acid residues reveal that most of the conserved residues in Class A GPCRs are found in the cytoplasmic half regions of transmembrane (TM helices, while residues characteristic to each subfamily found on the extracellular half regions. The 69 of Protein Data Bank (PDB entries of complete or fragmentary structures could be mapped on the TM/loop regions of Class A GPCRs covering 14 subfamilies.

  9. Promoter prediction and annotation of microbial genomes based on DNA sequence and structural responses to superhelical stress

    Directory of Open Access Journals (Sweden)

    Benham Craig J

    2006-05-01

    Full Text Available Abstract Background In our previous studies, we found that the sites in prokaryotic genomes which are most susceptible to duplex destabilization under the negative superhelical stresses that occur in vivo are statistically highly significantly associated with intergenic regions that are known or inferred to contain promoters. In this report we investigate how this structural property, either alone or together with other structural and sequence attributes, may be used to search prokaryotic genomes for promoters. Results We show that the propensity for stress-induced DNA duplex destabilization (SIDD is closely associated with specific promoter regions. The extent of destabilization in promoter-containing regions is found to be bimodally distributed. When compared with DNA curvature, deformability, thermostability or sequence motif scores within the -10 region, SIDD is found to be the most informative DNA property regarding promoter locations in the E. coli K12 genome. SIDD properties alone perform better at detecting promoter regions than other programs trained on this genome. Because this approach has a very low false positive rate, it can be used to predict with high confidence the subset of promoters that are strongly destabilized. When SIDD properties are combined with -10 motif scores in a linear classification function, they predict promoter regions with better than 80% accuracy. When these methods were tested with promoter and non-promoter sequences from Bacillus subtilis, they achieved similar or higher accuracies. We also present a strictly SIDD-based predictor for annotating promoter sequences in complete microbial genomes. Conclusion In this report we show that the propensity to undergo stress-induced duplex destabilization (SIDD is a distinctive structural attribute of many prokaryotic promoter sequences. We have developed methods to identify promoter sequences in prokaryotic genomes that use SIDD either as a sole predictor or in

  10. Identification and classification of conserved RNA secondary structures in the human genome

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Bejerano, Gill; Siepel, Adam;

    2006-01-01

    for identifying functional RNAs encoded in the human genome and used it to survey an eight-way genome-wide alignment of the human, chimpanzee, mouse, rat, dog, chicken, zebra-fish, and puffer-fish genomes for deeply conserved functional RNAs. At a loose threshold for acceptance, this search resulted in a set......, the results nevertheless provide evidence for many new human functional RNAs and present specific predictions to facilitate their further characterization....

  11. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    Science.gov (United States)

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  12. A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor

    Science.gov (United States)

    The current limitations in genome sequencing technology require the construction of physical maps for high-quality draft sequences of large plant genomes, such as that of Aegilops tauschii, the wheat D-genome progenitor. To construct a physical map of the Ae. tauschii genome, we fingerprinted 461,70...

  13. Validity and Reliability of Preschool, First and Second Grade Versions of Berkeley Parenting Self-Efficacy Scale

    Directory of Open Access Journals (Sweden)

    Shahrbanoo Tajeri

    2009-02-01

    Full Text Available "nObjective: The purpose of this study is to examine the factor structure, internal consistency, and construct validity of preschool, first and second grade versions of Berkeley Parenting self-efficacy scale. "nMethod:  The subjects were 317 mothers: (102 mothers of preschool children, 111 mothers of first grade children and 104 mothers of second grade children who were randomly selected from schools in Tehran. They completed Berkeley parenting self-efficacy and Rotter `s locus of control scales. Factor analysis using the principle component method was used to identify the factor structure of parenting self-efficacy scale. Cronbach`s alpha coefficient was used to identify the reliability of parenting self efficacy scale. "nResults: Results of this study indicated that the cronbach`s alpha coefficient was 0.84, 0.87, 0.64 for preschool, first grade and second grade versions respectively. Based on the scree test ,,factor analysis produced two factors of maternal strategy and child outcome, and it also produced the highest level of total variance explained by these 2 factors. The Parenting self-efficacy scale was negatively associated with measure of locus of control(r=-0.54 for the preschool version, -0.64 for the first grade version and -0.54 for the second grade version. "nConclusion: Due to relatively high reliability and validity of preschool, first and second grade versions of Berkeley Parenting Self-Efficacy scale, this scale could be used as a reliable and valid scale in other research areas

  14. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  15. Status of the UC-Berkeley SETI Efforts

    CERN Document Server

    Korpela, Eric J; Bankay, Robert; Cobb, Jeff; Howard, Andrew; Lebofsky, Matt; Siemion, Andrew P V; von Korff, Joshua; Werthimer, Dan

    2011-01-01

    We summarize radio and optical SETI programs based at the University of California, Berkeley. The SEVENDIP optical pulse search looks for ns time scale pulses at visible wavelengths using an automated 30 inch telescope. The ongoing SERENDIP V.v sky survey searches for radio signals at the 300 meter Arecibo Observatory. The currently installed configuration supports 128 million channels over a 200 MHz bandwidth with ~1.6 Hz spectral resolution. SETI@home uses the desktop computers of volunteers to analyze over 160 TB of data at taken at Arecibo looking for two types of continuous wave signals and two types of pulsed signals. A version to be released this summer adds autocorrelation analysis to look for complex wave forms that have been repeated (and overlayed) after a short delay. SETI@home will soon be processing data of Kepler exoplanet systems collected at the GBT. The Astropulse project is the first SETI search for $\\mu$s time scale dispersed pulses in the radio spectrum. We recently reobserved 114 sky loc...

  16. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    Science.gov (United States)

    Hargrove, Paul H.; Duell, Jason C.

    2006-09-01

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters.

  17. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    International Nuclear Information System (INIS)

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES ampersand H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES ampersand H awareness at all staff levels and in identifying ES ampersand H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES ampersand H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES ampersand H program. 4 figs., 24 tabs

  18. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, L.D. (ed.)

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

  19. A study of the old galactic star cluster Berkeley 32

    CERN Document Server

    Richtler, T; Richtler, Tom; Sagar, Ram

    2001-01-01

    We present new CCD photometry of the distant old open star cluster Berkeley 32 in Johnson V and Cousins I passbands. A total of about 3200 stars have been observed in a field of 13X13 arcmin**2. The colour-magnitude diagram in V, (V-I) has been generated down to V = 22 mag. A broad but well defined main sequence is clearly visible. Some blue stragglers, a well developed subgiant branch and a Red Clump are also seen. By fitting isochrones to this CMD as well as to other CMDs available in the literature, and using the Red Clump location, the reddening, distance and age of the star cluster have been determined. The cluster has a distance of 3.3 kpc, its radius is about 2.4 pc; the reddening E(B-V) is 0.08 mag and the age is 6.3 Gyr. By comparison with theoretical isochrones, a metallicity of [Fe/H]= -0.2 dex has been estimated. We find a much flatter mass function than what has been found for young clusters. If the mass function is a power law dN/dm = const.*m**alpha, then we get alpha = -0.5+-0.3 in the mass ra...

  20. Berkeley lab checkpoint/restart (BLCR) for Linux clusters

    International Nuclear Information System (INIS)

    This article describes the motivation, design and implementation of Berkeley Lab Checkpoint/Restart (BLCR), a system-level checkpoint/restart implementation for Linux clusters that targets the space of typical High Performance Computing applications, including MPI. Application-level solutions, including both checkpointing and fault-tolerant algorithms, are recognized as more time and space efficient than system-level checkpoints, which cannot make use of any application-specific knowledge. However, system-level checkpointing allows for preemption, making it suitable for responding to ''fault precursors'' (for instance, elevated error rates from ECC memory or network CRCs, or elevated temperature from sensors). Preemption can also increase the efficiency of batch scheduling; for instance reducing idle cycles (by allowing for shutdown without any queue draining period or reallocation of resources to eliminate idle nodes when better fitting jobs are queued), and reducing the average queued time (by limiting large jobs to running during off-peak hours, without the need to limit the length of such jobs). Each of these potential uses makes BLCR a valuable tool for efficient resource management in Linux clusters

  1. Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming

    NARCIS (Netherlands)

    Krijger, Peter Hugo Lodewijk; Di Stefano, Bruno; de Wit, Elzo; Limone, Francesco; van Oevelen, Chris; de Laat, Wouter; Graf, Thomas

    2016-01-01

    Forced expression of reprogramming factors can convert somatic cells into induced pluripotent stem cells (iPSCs). Here we studied genome topology dynamics during reprogramming of different somatic cell types with highly distinct genome conformations. We find large-scale topologically associated doma

  2. The roles of adenoviral vectors and donor DNA structures on genome editing

    NARCIS (Netherlands)

    Holkers, Maarten

    2016-01-01

    Accurate and efficient genome editing is primarily dependent on the generation of a sequence-specific, genomic double-stranded DNA break (DSB) combined with the introduction of an exogenous DNA template into target cells. The exogenous template, called donor DNA, normally contains the foreign sequen

  3. Genomic structure, expression and association study of the porcine FSD2.

    Science.gov (United States)

    Lim, Kyu-Sang; Lee, Kyung-Tai; Lee, Si-Woo; Chai, Han-Ha; Jang, Gulwon; Hong, Ki-Chang; Kim, Tae-Hun

    2016-09-01

    The fibronectin type III and SPRY domain containing 2 (FSD2) on porcine chromosome 7 is considered a candidate gene for pork quality, since its two domains, which were present in fibronectin and ryanodine receptor. The fibronectin type III and SPRY domains were first identified in fibronectin and ryanodine receptor, respectively, which are candidate genes for meat quality. The aim of this study was to elucidate the genomic structure of FSD2 and functions of single nucleotide polymorphisms (SNPs) within FSD2 that are related to meat quality in pigs. Using a bacterial artificial chromosome clone sequence, we revealed that porcine FSD2 consisted of 13 exons encoding 750 amino acids. In addition, FSD2 was expressed in heart, longissimus dorsi muscle, psoas muscle, and tendon among 23 kinds of porcine tissues tested. A total of ten SNPs, including four missense mutations, were identified in the exonic region of FSD2, and two major haplotypes were obtained based on the SNP genotypes of 633 Berkshire pigs. Both haplotypes were associated significantly with intramuscular fat content (IMF, P < 0.020) and moisture percentage (MP, P < 0.002). Moreover, haplotype 2 was associated with meat color, affecting yellowness (P = 0.002). These haplotype effects were further supported by the alteration of putative protein structures with amino acid substitutions. Taken together, our results suggest that FSD2 haplotypes are involved in regulating meat quality including IMF, MP, and meat color in pigs, and may be used as meaningful molecular makers to identify pigs with preferable pork quality. PMID:27350214

  4. Congruence as a measurement of extended haplotype structure across the genome

    Directory of Open Access Journals (Sweden)

    Baschal Erin E

    2012-02-01

    Full Text Available Abstract Background Historically, extended haplotypes have been defined using only a few data points, such as alleles for several HLA genes in the MHC. High-density SNP data, and the increasing affordability of whole genome SNP typing, creates the opportunity to define higher resolution extended haplotypes. This drives the need for new tools that support quantification and visualization of extended haplotypes as defined by as many as 2000 SNPs. Confronted with high-density SNP data across the major histocompatibility complex (MHC for 2,300 complete families, compiled by the Type 1 Diabetes Genetics Consortium (T1DGC, we developed software for studying extended haplotypes. Methods The software, called ExHap (Extended Haplotype, uses a similarity measurement we term congruence to identify and quantify long-range allele identity. Using ExHap, we analyzed congruence in both the T1DGC data and family-phased data from the International HapMap Project. Results Congruent chromosomes from the T1DGC data have between 96.5% and 99.9% allele identity over 1,818 SNPs spanning 2.64 megabases of the MHC (HLA-DRB1 to HLA-A. Thirty-three of 132 DQ-DR-B-A defined haplotype groups have > 50% congruent chromosomes in this region. For example, 92% of chromosomes within the DR3-B8-A1 haplotype are congruent from HLA-DRB1 to HLA-A (99.8% allele identity. We also applied ExHap to all 22 autosomes for both CEU and YRI cohorts from the International HapMap Project, identifying multiple candidate extended haplotypes. Conclusions Long-range congruence is not unique to the MHC region. Patterns of allele identity on phased chromosomes provide a simple, straightforward approach to visually and quantitatively inspect complex long-range structural patterns in the genome. Such patterns aid the biologist in appreciating genetic similarities and differences across cohorts, and can lead to hypothesis generation for subsequent studies.

  5. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.

    Science.gov (United States)

    Sul, Jae Hoon; Bilow, Michael; Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar

    2016-03-01

    Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.

  6. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Sul

    2016-03-01

    Full Text Available Although genome-wide association studies (GWASs have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs. Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants.

  7. Accounting for Population Structure in Gene-by-Environment Interactions in Genome-Wide Association Studies Using Mixed Models

    Science.gov (United States)

    Yang, Wen-Yun; Kostem, Emrah; Furlotte, Nick; He, Dan; Eskin, Eleazar

    2016-01-01

    Although genome-wide association studies (GWASs) have discovered numerous novel genetic variants associated with many complex traits and diseases, those genetic variants typically explain only a small fraction of phenotypic variance. Factors that account for phenotypic variance include environmental factors and gene-by-environment interactions (GEIs). Recently, several studies have conducted genome-wide gene-by-environment association analyses and demonstrated important roles of GEIs in complex traits. One of the main challenges in these association studies is to control effects of population structure that may cause spurious associations. Many studies have analyzed how population structure influences statistics of genetic variants and developed several statistical approaches to correct for population structure. However, the impact of population structure on GEI statistics in GWASs has not been extensively studied and nor have there been methods designed to correct for population structure on GEI statistics. In this paper, we show both analytically and empirically that population structure may cause spurious GEIs and use both simulation and two GWAS datasets to support our finding. We propose a statistical approach based on mixed models to account for population structure on GEI statistics. We find that our approach effectively controls population structure on statistics for GEIs as well as for genetic variants. PMID:26943367

  8. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  9. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  10. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  11. Integration of structural dynamics and molecular evolution via protein interaction networks: a new era in genomic medicine.

    Science.gov (United States)

    Kumar, Avishek; Butler, Brandon M; Kumar, Sudhir; Ozkan, S Banu

    2015-12-01

    Sequencing technologies are revealing many new non-synonymous single nucleotide variants (nsSNVs) in each personal exome. To assess their functional impacts, comparative genomics is frequently employed to predict if they are benign or not. However, evolutionary analysis alone is insufficient, because it misdiagnoses many disease-associated nsSNVs, such as those at positions involved in protein interfaces, and because evolutionary predictions do not provide mechanistic insights into functional change or loss. Structural analyses can aid in overcoming both of these problems by incorporating conformational dynamics and allostery in nSNV diagnosis. Finally, protein-protein interaction networks using systems-level methodologies shed light onto disease etiology and pathogenesis. Bridging these network approaches with structurally resolved protein interactions and dynamics will advance genomic medicine.

  12. The role of parasite-driven selection in shaping landscape genomic structure in red grouse (Lagopus lagopus scotica).

    Science.gov (United States)

    Wenzel, Marius A; Douglas, Alex; James, Marianne C; Redpath, Steve M; Piertney, Stuart B

    2016-01-01

    Landscape genomics promises to provide novel insights into how neutral and adaptive processes shape genome-wide variation within and among populations. However, there has been little emphasis on examining whether individual-based phenotype-genotype relationships derived from approaches such as genome-wide association (GWAS) manifest themselves as a population-level signature of selection in a landscape context. The two may prove irreconcilable as individual-level patterns become diluted by high levels of gene flow and complex phenotypic or environmental heterogeneity. We illustrate this issue with a case study that examines the role of the highly prevalent gastrointestinal nematode Trichostrongylus tenuis in shaping genomic signatures of selection in red grouse (Lagopus lagopus scotica). Individual-level GWAS involving 384 SNPs has previously identified five SNPs that explain variation in T. tenuis burden. Here, we examine whether these same SNPs display population-level relationships between T. tenuis burden and genetic structure across a small-scale landscape of 21 sites with heterogeneous parasite pressure. Moreover, we identify adaptive SNPs showing signatures of directional selection using F(ST) outlier analysis and relate population- and individual-level patterns of multilocus neutral and adaptive genetic structure to T. tenuis burden. The five candidate SNPs for parasite-driven selection were neither associated with T. tenuis burden on a population level, nor under directional selection. Similarly, there was no evidence of parasite-driven selection in SNPs identified as candidates for directional selection. We discuss these results in the context of red grouse ecology and highlight the broader consequences for the utility of landscape genomics approaches for identifying signatures of selection.

  13. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    Science.gov (United States)

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software.

  14. A simple grid implementation with Berkeley Open Infrastructure for Network Computing using BLAST as a model.

    Science.gov (United States)

    Pinthong, Watthanai; Muangruen, Panya; Suriyaphol, Prapat; Mairiang, Dumrong

    2016-01-01

    Development of high-throughput technologies, such as Next-generation sequencing, allows thousands of experiments to be performed simultaneously while reducing resource requirement. Consequently, a massive amount of experiment data is now rapidly generated. Nevertheless, the data are not readily usable or meaningful until they are further analysed and interpreted. Due to the size of the data, a high performance computer (HPC) is required for the analysis and interpretation. However, the HPC is expensive and difficult to access. Other means were developed to allow researchers to acquire the power of HPC without a need to purchase and maintain one such as cloud computing services and grid computing system. In this study, we implemented grid computing in a computer training center environment using Berkeley Open Infrastructure for Network Computing (BOINC) as a job distributor and data manager combining all desktop computers to virtualize the HPC. Fifty desktop computers were used for setting up a grid system during the off-hours. In order to test the performance of the grid system, we adapted the Basic Local Alignment Search Tools (BLAST) to the BOINC system. Sequencing results from Illumina platform were aligned to the human genome database by BLAST on the grid system. The result and processing time were compared to those from a single desktop computer and HPC. The estimated durations of BLAST analysis for 4 million sequence reads on a desktop PC, HPC and the grid system were 568, 24 and 5 days, respectively. Thus, the grid implementation of BLAST by BOINC is an efficient alternative to the HPC for sequence alignment. The grid implementation by BOINC also helped tap unused computing resources during the off-hours and could be easily modified for other available bioinformatics software. PMID:27547555

  15. Comparative Genome Analyses Reveal Distinct Structure in the Saltwater Crocodile MHC

    OpenAIRE

    Jaratlerdsiri, Weerachai; Deakin, Janine; Ricardo M Godinez; Shan, Xueyan; Peterson, Daniel G.; Marthey, Sylvain; Lyons, Eric; McCarthy, Fiona M.; Isberg, Sally R.; Higgins, Damien P.; Chong, Amanda Y; St John, John; Glenn, Travis C.; Ray, David A.; Gongora, Jaime

    2014-01-01

    The major histocompatibility complex (MHC) is a dynamic genome region with an essential role in the adaptive immunity of vertebrates, especially antigen presentation. The MHC is generally divided into subregions (classes I, II and III) containing genes of similar function across species, but with different gene number and organisation. Crocodylia (crocodilians) are widely distributed and represent an evolutionary distinct group among higher vertebrates, but the genomic organisation of MHC wit...

  16. Northern Bobwhite (Colinus virginianus Mitochondrial Population Genomics Reveals Structure, Divergence, and Evidence for Heteroplasmy.

    Directory of Open Access Journals (Sweden)

    Yvette A Halley

    Full Text Available Herein, we evaluated the concordance of population inferences and conclusions resulting from the analysis of short mitochondrial fragments (i.e., partial or complete D-Loop nucleotide sequences versus complete mitogenome sequences for 53 bobwhites representing six ecoregions across TX and OK (USA. Median joining (MJ haplotype networks demonstrated that analyses performed using small mitochondrial fragments were insufficient for estimating the true (i.e., complete mitogenome haplotype structure, corresponding levels of divergence, and maternal population history of our samples. Notably, discordant demographic inferences were observed when mismatch distributions of partial (i.e., partial D-Loop versus complete mitogenome sequences were compared, with the reduction in mitochondrial genomic information content observed to encourage spurious inferences in our samples. A probabilistic approach to variant prediction for the complete bobwhite mitogenomes revealed 344 segregating sites corresponding to 347 total mutations, including 49 putative nonsynonymous single nucleotide variants (SNVs distributed across 12 protein coding genes. Evidence of gross heteroplasmy was observed for 13 bobwhites, with 10 of the 13 heteroplasmies involving one moderate to high frequency SNV. Haplotype network and phylogenetic analyses for the complete bobwhite mitogenome sequences revealed two divergent maternal lineages (dXY = 0.00731; FST = 0.849; P < 0.05, thereby supporting the potential for two putative subspecies. However, the diverged lineage (n = 103 variants almost exclusively involved bobwhites geographically classified as Colinus virginianus texanus, which is discordant with the expectations of previous geographic subspecies designations. Tests of adaptive evolution for functional divergence (MKT, frequency distribution tests (D, FS and phylogenetic analyses (RAxML provide no evidence for positive selection or hybridization with the sympatric scaled quail

  17. Succession of Phylogeny and Function During Plant Litter Decomposition (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, Eoin [Berkeley Lab

    2013-03-01

    Eoin Brodie of Berkeley Lab on "Succession of phylogeny and function during plant litter decomposition" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  18. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  19. G-quadruplex forming structural motifs in the genome of Deinococcus radiodurans and their regulatory roles in promoter functions.

    Science.gov (United States)

    Kota, Swathi; Dhamodharan, V; Pradeepkumar, P I; Misra, Hari S

    2015-11-01

    Deinococcus radiodurans displays compromised radioresistance in the presence of guanine quadruplex (G4)-binding drugs (G4 drugs). Genome-wide scanning showed islands of guanine runs (G-motif) in the upstream regions of coding sequences as well as in the structural regions of many genes, indicating a role for G4 DNA in the regulation of genome functions in this bacterium. G-motifs present upstream to some of the DNA damage-responsive genes like lexA, pprI, recF, recQ, mutL and radA were synthesized, and the formation of G4 DNA structures was probed in vitro. The G-motifs present at the 67th position upstream to recQ and at the 121st position upstream to mutL produced parallel and mixed G4 DNA structures, respectively. Expression of β-galactosidase under recQ and mutL promoters containing respective G-motifs was inhibited by G4 drugs under normal growth conditions in D. radiodurans. However, when such cells were exposed to γ radiation, mutL promoter activity was stimulated while recQ promoter activity was inhibited in the presence of G4 drugs. Deletion of the G-motif from the recQ promoter could relax it from G4 drug repression. D. radiodurans cells treated with G4 drug showed reduction in recQ expression and γ radiation resistance, indicating an involvement of G4 DNA in the radioresistance of this bacterium. These results suggest that G-motifs from D. radiodurans genome form different types of G4 DNA structures at least in vitro, and the recQ and mutL promoters seem to be differentially regulated at the levels of G4 DNA structures.

  20. A Novel Interpretation of Structural Dot Plots of Genomes Derived from the Analysis of Two Strains of Neisseria meningitidis

    Institute of Scientific and Technical Information of China (English)

    Wilfred R.Cuff; Venkata R.S.K.Duvvuri; Binhua Liang; Bhargavi Duvvuri; Gillian E.Wu; Jianhong Wu; Raymond S.W.Tsang

    2010-01-01

    Neisseria meningitidis is the agent of invasive meningococcal disease,including cerebral meningitis and septicemia.Because the diseases caused by different clonai groups (sequence types) have their own epidemiological characteristics,it is important to understand the differences among the genomes of the N.meningitidis clonal groups.To this end,a novel interpretation of a structural dot plot of genomes was devised and applied;exact nucleotide matches between the genomes of N.meningitidis serogroup A strain Z2491 and serogroup B strain MC58 were identified,leading to the specification of various structural regions.Known and putative virulence genes for each N.meningitidis strain were then classified into these regions.We found that virulence genes of MC58 tend more to the translocated regions (chromosomal segments in new sequence contexts) than do those of Z2491,notably tending towards the interface between one of the translocated regions and the collinear region.Within the collinear region,virulence genes tend to occur within 16 kb of gaps in the exact matches.Verification of these tendencies using genes clustered in the cps locus was sufficiently supportive to suggest that these tendencies can be used to focus the search for and understanding of virulence genes and mechanisms of pathogenicity in these two organisms.

  1. An approach to incorporate linkage disequilibrium structure into genomic association analysis

    Institute of Scientific and Technical Information of China (English)

    Fengyu Zhang; Diane Wagener

    2008-01-01

    In this study, we propose to use the principal component analysis (PCA) and regression model to incorporate linkage disequilibrium (LD) in genomic association data analysis. To accommodate LD in genomic data and reduce multiple testing, we suggest performing PCA and extracting the PCA score to capture the variation of genomic data, after which regression analysis is used to assess the association of the disease with the principal component score. An empirical analysis result shows that both genotype-basod correlation matrix and haplotype-based LD matrix can produce similar results for PCA. Principal component score seems to be more powerful in detecting genetic association because the principal component score is quantitatively measured and may be able to capture the effect of multiple loci.

  2. Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains

    DEFF Research Database (Denmark)

    Castillo Bermúdez, Daniel Elías; Espejo, Romilio; Middelboe, Mathias

    2014-01-01

    . Here, we present the genome sequence of F. psychrophilum bacteriophage 6H and its distribution as prophage in F. psychrophilum isolates. The DNA sequence revealed a genome of 46 978 bp containing 63 predicted ORFs, of which 13% was assigned a putative function, including an integrase. Sequence analysis...... for the presence of four phage 6H genes (integrase, tail tape protein and two hypothetical proteins) by PCR showed the presence of these prophage genes in 80% of the isolates. In conclusion, we hypothesize that bacteriophage 6H belongs to an abundant group of temperate phages which has lysogenized a large fraction...

  3. The first complete sequence and genome structure of daphne virus Y.

    Science.gov (United States)

    Igori, Davaajargal; Hwang, Un Sun; Lim, Seungmo; Zhao, Fumei; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-10-01

    From Daphne odora Thunb., an ornamental shrub in the Republic of Korea, a potyvirus was identified that has an RNA genome of 9,448 nucleotides (excluding the 3'-terminal poly(A) tail) encoding a polyprotein of 3,065 amino acids, with nine putative protease cleavage sites producing ten proteins. Since this potyvirus shared the highest nucleotide sequence identity (91 %; query coverage 5 %) with the available partial sequence of daphne virus Y (DVY) from New Zealand (EU179854), it was considered a Korean isolate of DVY. This is the first molecular characterization of the complete genome sequence of a DVY isolate. PMID:27383206

  4. The first complete sequence and genome structure of daphne virus Y.

    Science.gov (United States)

    Igori, Davaajargal; Hwang, Un Sun; Lim, Seungmo; Zhao, Fumei; Kwon, Suk-Yoon; Moon, Jae Sun

    2016-10-01

    From Daphne odora Thunb., an ornamental shrub in the Republic of Korea, a potyvirus was identified that has an RNA genome of 9,448 nucleotides (excluding the 3'-terminal poly(A) tail) encoding a polyprotein of 3,065 amino acids, with nine putative protease cleavage sites producing ten proteins. Since this potyvirus shared the highest nucleotide sequence identity (91 %; query coverage 5 %) with the available partial sequence of daphne virus Y (DVY) from New Zealand (EU179854), it was considered a Korean isolate of DVY. This is the first molecular characterization of the complete genome sequence of a DVY isolate.

  5. Mitochondrial genome of the shorthead catfish (Pelteobagrus eupogon): structure, phylogeny, and intraspecific variation.

    Science.gov (United States)

    Wang, R-Q; Wang, D-Z; Li, C-T; Yang, X-R

    2016-01-01

    The complete 16,532-nucleotide sequence of the mitochondrial genome of the shorthead catfish (Pelteobagrus eupogon) was determined using the long and accurate polymerase chain reaction method, and compared with the mitochondrial genome sequences of 49 other catfish species belonging to the order Siluriformes. The locations of protein-coding genes and ribosomal ribonucleic acids (RNAs) were identified by comparison with known sequences of other catfishes, including P. fulvidraco and P. nitidus. The P. eupogon mitochondrial genome was composed of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNA genes, and a non-coding control region. The gene order was identical to that of other Siluriformes. Phylogenetic analyses based on mitochondrial 12S ribosomal RNA, 16S ribosomal RNA, and 13 protein-coding gene sequence data sets were carried out to further clarify the relative phylogenetic position of P. eupogon, and identify phylogenetic relationships among 24 families of Siluriformes. Phylogenetic analyses Randomized Axelerated Maximum Likelihood (RAxML) 8.0.X were congruent with a basal split of the order into Clupeiformes, Characiformes, Cypriniformes, and Siluriformes, and supported a closer relationship of P. eupogon with Amblycipitidae than Siluridae. We therefore concluded that this species appears to be closely related to the Amblycipitidae. In the phylogenetic tree, the Amblycipitidae appeared as the most basal extant lineage within the Siluriformes, while the Bagridae appeared as the sister group of Cranoglanididae and Pangasiidae. The mitochondrial genome sequence of P. eupogon has been deposited in GenBank (accession No. KJ001784). PMID:27323031

  6. Genomic structure in Europeans dating back at least 36,200 years

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine; Korneliussen, Thorfinn Sand; Sikora, Martin;

    2014-01-01

    The origin of contemporary Europeans remains contentious. We obtained a genome sequence from Kostenki 14 in European Russia dating from 38,700 to 36,200 years ago, one of the oldest fossils of anatomically modern humans from Europe. We find that Kostenki 14 shares a close ancestry with the 24,000...

  7. The Adenovirus Genome Contributes to the Structural Stability of the Virion

    Directory of Open Access Journals (Sweden)

    Bratati Saha

    2014-09-01

    Full Text Available Adenovirus (Ad vectors are currently the most commonly used platform for therapeutic gene delivery in human gene therapy clinical trials. Although these vectors are effective, many researchers seek to further improve the safety and efficacy of Ad-based vectors through detailed characterization of basic Ad biology relevant to its function as a vector system. Most Ad vectors are deleted of key, or all, viral protein coding sequences, which functions to not only prevent virus replication but also increase the cloning capacity of the vector for foreign DNA. However, radical modifications to the genome size significantly decreases virion stability, suggesting that the virus genome plays a role in maintaining the physical stability of the Ad virion. Indeed, a similar relationship between genome size and virion stability has been noted for many viruses. This review discusses the impact of the genome size on Ad virion stability and emphasizes the need to consider this aspect of virus biology in Ad-based vector design.

  8. Genomic Epidemiology of Salmonella enterica Serotype Enteritidis based on Population Structure of Prevalent Lineages

    DEFF Research Database (Denmark)

    Deng, Xiangyu; Desai, Prerak T.; den Bakker, Henk C.;

    2014-01-01

    serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains...

  9. Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species

    NARCIS (Netherlands)

    Bruijn, de I.; Kock, de M.J.D.; Meng, Y.; Waard, de P.; Beek, van T.A.; Raaijmakers, J.M.

    2007-01-01

    Analysis of microbial genome sequences have revealed numerous genes involved in antibiotic biosynthesis. In Pseudomonads, several gene clusters encoding non-ribosomal peptide synthetases (NRPSs) were predicted to be involved in the synthesis of cyclic lipopeptide (CLP) antibiotics. Most of these pre

  10. Genomic evaluation, breed identification, and population structure of North American, English and Island Guernsey dairy cattle

    Science.gov (United States)

    Genomic evaluations of dairy cattle in the United States have been available for Brown Swiss, Holsteins, and Jerseys since 2009 and for Ayrshires since 2013. As of February 2015, 2,281 Guernsey bulls and cows had genotypes from collaboration between the United States, Canada, England, and the island...

  11. Structural and functional impacts of copy member variations on the cattle genome

    Science.gov (United States)

    As a complement to the effort of studying single nucleotide polymorphisms (SNPs), we assessed bovine copy number variation (CNV) using comparative genomic hybridization (CGH) and SNP arrays, quantitative PCR, and fluorescent in situ hybridization (FISH). These CNV regions span multiple genes that a...

  12. The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida is ancestral within the deuterostomes

    Directory of Open Access Journals (Sweden)

    Lanfear Robert

    2009-05-01

    Full Text Available Abstract Background Mitochondrial genome comparisons contribute in multiple ways when inferring animal relationships. As well as primary sequence data, rare genomic changes such as gene order, shared gene boundaries and genetic code changes, which are unlikely to have arisen through convergent evolution, are useful tools in resolving deep phylogenies. Xenoturbella bocki is a morphologically simple benthic marine worm recently found to belong among the deuterostomes. Here we present analyses comparing the Xenoturbella bocki mitochondrial gene order, genetic code and control region to those of other metazoan groups. Results The complete mitochondrial genome sequence of Xenoturbella bocki was determined. The gene order is most similar to that of the chordates and the hemichordates, indicating that this conserved mitochondrial gene order might be ancestral to the deuterostome clade. Using data from all phyla of deuterostomes, we infer the ancestral mitochondrial gene order for this clade. Using inversion and breakpoint analyses of metazoan mitochondrial genomes, we test conflicting hypotheses for the phylogenetic placement of Xenoturbella and find a closer affinity to the hemichordates than to other metazoan groups. Comparative analyses of the control region reveal similarities in the transcription initiation and termination sites and origin of replication of Xenoturbella with those of the vertebrates. Phylogenetic analyses of the mitochondrial sequence indicate a weakly supported placement as a basal deuterostome, a result that may be the effect of compositional bias. Conclusion The mitochondrial genome of Xenoturbella bocki has a very conserved gene arrangement in the deuterostome group, strikingly similar to that of the hemichordates and the chordates, and thus to the ancestral deuterostome gene order. Similarity to the hemichordates in particular is suggested by inversion and breakpoint analysis. Finally, while phylogenetic analyses of the

  13. Recombination is associated with the evolution of genome structure and worker behavior in honey bees.

    Science.gov (United States)

    Kent, Clement F; Minaei, Shermineh; Harpur, Brock A; Zayed, Amro

    2012-10-30

    The rise of insect societies, marked by the formation of reproductive and sterile castes, represents a major unsolved mystery in evolution. Across several independent origins of sociality, the genomes of social hymenopterans share two peculiar attributes: high recombination and low but heterogeneous GC content. For example, the genome of the honey bee, Apis mellifera, represents a mosaic of GC-poor and GC-rich regions with rates of recombination an order of magnitude higher than in humans. However, it is unclear how heterogeneity in GC content arises, and how it relates to the expression and evolution of worker traits. Using population genetic analyses, we demonstrate a bias in the allele frequency and fixation rate of derived C or G mutations in high-recombination regions, consistent with recombination's causal influence on GC-content evolution via biased gene conversion. We also show that recombination and biased gene conversion actively maintain the heterogeneous GC content of the honey bee genome despite an overall A/T mutation bias. Further, we found that GC-rich genes and intergenic regions have higher levels of genetic diversity and divergence relative to GC-poor regions, also consistent with recombination's causal influence on the rate of molecular evolution. Finally, we found that genes associated with behavior and those with worker-biased expression are found in GC-rich regions of the bee genome and also experience high rates of molecular evolution. Taken together, these findings suggest that recombination acts to maintain a genetically diverse and dynamic part of the genome where genes underlying worker behavior evolve more quickly.

  14. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Wolf Paul G

    2010-02-01

    Full Text Available Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results The Tortula chloroplast genome is ~123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the ~71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.

  15. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae.

    Science.gov (United States)

    Lemieux, Claude; Otis, Christian; Turmel, Monique

    2016-01-01

    The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus

  16. Structure of Proximal and Distant Regulatory Elements in the Human Genome

    Science.gov (United States)

    Ovcharenko, Ivan

    Clustering of multiple transcription factor binding sites (TFBSs) for the same transcription factor (TF) is a common feature of cis-regulatory modules in invertebrate animals, but the occurrence of such homotypic clusters of TFBSs (HCTs) in the human genome has remained largely unknown. To explore whether HCTs are also common in human and other vertebrates, we used known binding motifs for vertebrate TFs and a hidden Markov model-based approach to detect HCTs in the human, mouse, chicken, and fugu genomes, and examined their association with cis-regulatory modules. We found that evolutionarily conserved HCTs occupy nearly 2% of the human genome, with experimental evidence for individual TFs supporting their binding to predicted HCTs. More than half of promoters of human genes contain HCTs, with a distribution around the transcription start site in agreement with the experimental data from the ENCODE project. In addition, almost half of 487 experimentally validated developmental enhancers contain them as well - a number more than 25-fold larger than expected by chance. We also found evidence of negative selection acting on TFBSs within HCTs, as the conservation of TFBSs is stronger than the conservation of sequences separating them. The important role of HCTs as components of developmental enhancers is additionally supported by a strong correlation between HCTs and the binding of the enhancer-associated co-activator protein p300. Experimental validation of HCT-containing elements in both zebrafish and mouse suggest that HCTs could be used to predict both the presence of enhancers and their tissue specificity, and are thus a feature that can be effectively used in deciphering the gene regulatory code. In conclusion, our results indicate that HCTs are a pervasive feature of human cis-regulatory modules and suggest that they play an important role in gene regulation in the human and other vertebrate genomes.

  17. Phenotypic, genetic, and genome-wide structure in the metabolic syndrome

    OpenAIRE

    Comuzzie Anthony G; Blangero John; Dyer Tom; North Kari E; Martin Lisa J; Williams Jeff

    2003-01-01

    Abstract Background Insulin resistance, obesity, dyslipidemia, and high blood pressure characterize the metabolic syndrome. In an effort to explore the utility of different multivariate methods of data reduction to better understand the genetic influences on the aggregation of metabolic syndrome phenotypes, we calculated phenotypic, genetic, and genome-wide LOD score correlation matrices using five traits (total cholesterol, high density lipoprotein cholesterol, triglycerides, systolic blood ...

  18. Berkeley e o papel das hipóteses na filosofia natural Berkeley and the role of hypothesis in natural philosophy

    Directory of Open Access Journals (Sweden)

    Silvio Seno Chibeni

    2010-09-01

    Full Text Available A questão do estatuto epistemológico das hipóteses que postulam entes e mecanismos inobserváveis tornou-se proeminente com o advento da ciência moderna, no século XVII. Uma das razões para isso é que, por um lado, as novas teorias científicas passaram a empregá-las amplamente na explicação dos fenômenos naturais, enquanto que, por outro lado, a epistemologia empirista, geralmente adotada desde então para a análise da ciência, parecia proscrever seu uso. Neste artigo analisam-se as soluções propostas por George Berkeley para essa tensão. Mostra-se que nos Princípios do conhecimento humano ele introduz uma nova noção de explicação científica, segundo a qual a ciência poderia prescindir de hipóteses sobre inobserváveis, quaisquer que sejam. Depois, para acomodar epistemologicamente a mecânica newtoniana, ele propõe, no De motu, a interpretação instrumentalista das hipóteses sobre forças, que são centrais nessa teoria, considerada por ele "a melhor chave para a ciência natural". Finalmente, em sua obra tardia, Siris, Berkeley envolve-se, de forma aparentemente realista, na discussão e defesa de uma série de hipóteses sobre fluidos inobserváveis. Examina-se brevemente, no final do artigo, a possibilidade de conciliar essa posição com os princípios fundamentais da epistemologia e metafísica de Berkeley.The issue of the epistemological status of hypotheses postulating unobservable entities became prominent with the advent of modern science, in the 17th century. The basic reason is that such entities were widely employed by the new scientific theories in the explanation and prediction of natural phenomena, whereas empiricist epistemology, which at that time became very popular among philosophers and scientists, formed a clearly inhospitable background for unobservable elements in general. This paper examines the stands adopted, and the proposals made on this topic by George Berkeley, one of the most important

  19. The genome of obligately intracellular Ehrlichia canis revealsthemes of complex membrane structure and immune evasion strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K.; Kuyler Doyle, C.; Lykidis, A.; Ivanova, N.; Francino, P.; Chain, P.; Shin, M.; Malfatti, S.; Larimer, F.; Copeland,A.; Detter, J.C.; Land, M.; Richardson, P.M.; Yu, X.J.; Walker, D.H.; McBride, J.W.; Kyrpides, N.C.

    2005-09-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, a-proteobacterium is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, and 17 putative pseudogenes, and a substantial proportion of non-coding sequence (27 percent). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences, and a unique serine-threonine bias associated with the potential for O-glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly G:C tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Proteins associated with pathogen-host interactions were identified including a small group of proteins (12) with tandem repeats and another with eukaryotic-like ankyrin domains (7).

  20. Indels, structural variation, and recombination drive genomic diversity in Plasmodium falciparum.

    Science.gov (United States)

    Miles, Alistair; Iqbal, Zamin; Vauterin, Paul; Pearson, Richard; Campino, Susana; Theron, Michel; Gould, Kelda; Mead, Daniel; Drury, Eleanor; O'Brien, John; Ruano Rubio, Valentin; MacInnis, Bronwyn; Mwangi, Jonathan; Samarakoon, Upeka; Ranford-Cartwright, Lisa; Ferdig, Michael; Hayton, Karen; Su, Xin-Zhuan; Wellems, Thomas; Rayner, Julian; McVean, Gil; Kwiatkowski, Dominic

    2016-09-01

    The malaria parasite Plasmodium falciparum has a great capacity for evolutionary adaptation to evade host immunity and develop drug resistance. Current understanding of parasite evolution is impeded by the fact that a large fraction of the genome is either highly repetitive or highly variable and thus difficult to analyze using short-read sequencing technologies. Here, we describe a resource of deep sequencing data on parents and progeny from genetic crosses, which has enabled us to perform the first genome-wide, integrated analysis of SNP, indel and complex polymorphisms, using Mendelian error rates as an indicator of genotypic accuracy. These data reveal that indels are exceptionally abundant, being more common than SNPs and thus the dominant mode of polymorphism within the core genome. We use the high density of SNP and indel markers to analyze patterns of meiotic recombination, confirming a high rate of crossover events and providing the first estimates for the rate of non-crossover events and the length of conversion tracts. We observe several instances of meiotic recombination within copy number variants associated with drug resistance, demonstrating a mechanism whereby fitness costs associated with resistance mutations could be compensated and greater phenotypic plasticity could be acquired. PMID:27531718

  1. Structurally Complex Organization of Repetitive DNAs in the Genome of Cobia (Rachycentron canadum).

    Science.gov (United States)

    Costa, Gideão W W F; Cioffi, Marcelo de B; Bertollo, Luiz A C; Molina, Wagner F

    2015-06-01

    Repetitive DNAs comprise the largest fraction of the eukaryotic genome. They include microsatellites or simple sequence repeats (SSRs), which play an important role in the chromosome differentiation among fishes. Rachycentron canadum is the only representative of the family Rachycentridae. This species has been focused on several multidisciplinary studies in view of its important potential for marine fish farming. In the present study, distinct classes of repetitive DNAs, with emphasis on SSRs, were mapped in the chromosomes of this species to improve the knowledge of its genome organization. Microsatellites exhibited a diversified distribution, both dispersed in euchromatin and clustered in the heterochromatin. The multilocus location of SSRs strengthened the heterochromatin heterogeneity in this species, as suggested by some previous studies. The colocalization of SSRs with retrotransposons and transposons pointed to a close evolutionary relationship between these repetitive sequences. A number of heterochromatic regions highlighted a greater complex organization than previously supposed, harboring a diversity of repetitive elements. In this sense, there was also evidence of colocalization of active genetic regions and different classes of repetitive DNAs in a common heterochromatic region, which offers a potential opportunity for further researches regarding the interaction of these distinct fractions in fish genomes. PMID:25719607

  2. A community of scientists: cultivating scientific identity among undergraduates within the Berkeley Compass Project

    Science.gov (United States)

    Aceves, Ana V.; Berkeley Compass Project

    2015-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at UC Berkeley. Our goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations typically underrepresented in the physical sciences. For students who enter as freshmen, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Compass encourages undergraduates to develop an identity as a scientist from the beginning of their university experience.

  3. The Indirect Perception of Distance: Interpretive Complexities in Berkeley's Theory of Vision

    Directory of Open Access Journals (Sweden)

    Michael James Braund

    2007-12-01

    Full Text Available The problem of whether perception is direct or if it depends on additional, cognitive contributions made by the perceiving subject, is posed with particular force in an Essay towards a New Theory of Vision (NTV. It is evident from the recurrent treatment it receives therein that Berkeley considers it to be one of the central issues concerning perception. Fittingly, the NTV devotes the most attention to it. In this essay, I deal exclusively with Berkeley's treatment of the problem of indirect distance perception, as it is presented in the context of that work.

  4. Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics.

    Directory of Open Access Journals (Sweden)

    Silvia Dal Santo

    Full Text Available BACKGROUND: Expansins are proteins that loosen plant cell walls in a pH-dependent manner, probably by increasing the relative movement among polymers thus causing irreversible expansion. The expansin superfamily (EXP comprises four distinct families: expansin A (EXPA, expansin B (EXPB, expansin-like A (EXLA and expansin-like B (EXLB. There is experimental evidence that EXPA and EXPB proteins are required for cell expansion and developmental processes involving cell wall modification, whereas the exact functions of EXLA and EXLB remain unclear. The complete grapevine (Vitis vinifera genome sequence has allowed the characterization of many gene families, but an exhaustive genome-wide analysis of expansin gene expression has not been attempted thus far. METHODOLOGY/PRINCIPAL FINDINGS: We identified 29 EXP superfamily genes in the grapevine genome, representing all four EXP families. Members of the same EXP family shared the same exon-intron structure, and phylogenetic analysis confirmed a closer relationship between EXP genes from woody species, i.e. grapevine and poplar (Populus trichocarpa, compared to those from Arabidopsis thaliana and rice (Oryza sativa. We also identified grapevine-specific duplication events involving the EXLB family. Global gene expression analysis confirmed a strong correlation among EXP genes expressed in mature and green/vegetative samples, respectively, as reported for other gene families in the recently-published grapevine gene expression atlas. We also observed the specific co-expression of EXLB genes in woody organs, and the involvement of certain grapevine EXP genes in berry development and post-harvest withering. CONCLUSION: Our comprehensive analysis of the grapevine EXP superfamily confirmed and extended current knowledge about the structural and functional characteristics of this gene family, and also identified properties that are currently unique to grapevine expansin genes. Our data provide a model for the

  5. A Global Genomic Characterization of Nairoviruses Identifies Nine Discrete Genogroups with Distinctive Structural Characteristics and Host-Vector Associations.

    Science.gov (United States)

    Walker, Peter J; Widen, Steven G; Wood, Thomas G; Guzman, Hilda; Tesh, Robert B; Vasilakis, Nikolaos

    2016-05-01

    Nairoviruses are primarily tick-borne bunyaviruses, some of which are known to cause mild-to-severe febrile illness in humans or livestock. We describe the genome sequences of 11 poorly characterized nairoviruses that have ecological associations with either birds (Farallon, Punta Salinas, Sapphire II, Zirqa, Avalon, Clo Mor, Taggert, and Abu Hammad viruses), rodents (Qalyub and Bandia viruses), or camels (Dera Ghazi Khan virus). Global phylogenetic analyses of proteins encoded in the L, M, and S RNA segments of these and 20 other available nairovirus genomes identified nine well-supported genogroups (Nairobi sheep disease, Thiafora, Sakhalin, Keterah, Qalyub, Kasokero, Dera Ghazi Khan, Hughes, and Tamdy). Genogroup-specific structural variations were evident, particularly in the M segment encoding a polyprotein from which virion envelope glycoproteins (Gn and Gc) are generated by proteolytic processing. Structural variations include the extension, abbreviation, or absence sequences encoding an O-glycosylated mucin-like protein in the N-terminal domain, distinctive patterns of conserved cysteine residues in the GP38-like domain, insertion of sequences encoding a double-membrane-spanning protein (NSm) between the Gn and Gc domains, and the presence of an alternative long open reading frame encoding a viroporin-like transmembrane protein (Gx). We also observed strong genogroup-specific associations with categories of hosts and tick vectors. PMID:26903607

  6. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas Syringae pv. Actinidiae

    Directory of Open Access Journals (Sweden)

    Rebekah A. Frampton

    2015-06-01

    Full Text Available Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.. Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.

  7. EigenGWAS: finding loci under selection through genome-wide association studies of eigenvectors in structured populations.

    Science.gov (United States)

    Chen, G-B; Lee, S H; Zhu, Z-X; Benyamin, B; Robinson, M R

    2016-07-01

    We develop a novel approach to identify regions of the genome underlying population genetic differentiation in any genetic data where the underlying population structure is unknown, or where the interest is assessing divergence along a gradient. By combining the statistical framework for genome-wide association studies (GWASs) with eigenvector decomposition (EigenGWAS), which is commonly used in population genetics to characterize the structure of genetic data, loci under selection can be identified without a requirement for discrete populations. We show through theory and simulation that our approach can identify regions under selection along gradients of ancestry, and in real data we confirm this by demonstrating LCT to be under selection between HapMap CEU-TSI cohorts, and we then validate this selection signal across European countries in the POPRES samples. HERC2 was also found to be differentiated between both the CEU-TSI cohort and within the POPRES sample, reflecting the likely anthropological differences in skin and hair colour between northern and southern European populations. Controlling for population stratification is of great importance in any quantitative genetic study and our approach also provides a simple, fast and accurate way of predicting principal components in independent samples. With ever increasing sample sizes across many fields, this approach is likely to be greatly utilized to gain individual-level eigenvectors avoiding the computational challenges associated with conducting singular value decomposition in large data sets. We have developed freely available software, Genetic Analysis Repository (GEAR), to facilitate the application of the methods. PMID:27142779

  8. Genome, Proteome and Structure of a T7-Like Bacteriophage of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae.

    Science.gov (United States)

    Frampton, Rebekah A; Acedo, Elena Lopez; Young, Vivienne L; Chen, Danni; Tong, Brian; Taylor, Corinda; Easingwood, Richard A; Pitman, Andrew R; Kleffmann, Torsten; Bostina, Mihnea; Fineran, Peter C

    2015-07-01

    Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae. PMID:26114474

  9. Structural analysis of the genome of breast cancer cell line ZR-75-30 identifies twelve expressed fusion genes

    Directory of Open Access Journals (Sweden)

    Schulte Ina

    2012-12-01

    Full Text Available Abstract Background It has recently emerged that common epithelial cancers such as breast cancers have fusion genes like those in leukaemias. In a representative breast cancer cell line, ZR-75-30, we searched for fusion genes, by analysing genome rearrangements. Results We first analysed rearrangements of the ZR-75-30 genome, to around 10kb resolution, by molecular cytogenetic approaches, combining array painting and array CGH. We then compared this map with genomic junctions determined by paired-end sequencing. Most of the breakpoints found by array painting and array CGH were identified in the paired end sequencing—55% of the unamplified breakpoints and 97% of the amplified breakpoints (as these are represented by more sequence reads. From this analysis we identified 9 expressed fusion genes: APPBP2-PHF20L1, BCAS3-HOXB9, COL14A1-SKAP1, TAOK1-PCGF2, TIAM1-NRIP1, TIMM23-ARHGAP32, TRPS1-LASP1, USP32-CCDC49 and ZMYM4-OPRD1. We also determined the genomic junctions of a further three expressed fusion genes that had been described by others, BCAS3-ERBB2, DDX5-DEPDC6/DEPTOR and PLEC1-ENPP2. Of this total of 12 expressed fusion genes, 9 were in the coamplification. Due to the sensitivity of the technologies used, we estimate these 12 fusion genes to be around two-thirds of the true total. Many of the fusions seem likely to be driver mutations. For example, PHF20L1, BCAS3, TAOK1, PCGF2, and TRPS1 are fused in other breast cancers. HOXB9 and PHF20L1 are members of gene families that are fused in other neoplasms. Several of the other genes are relevant to cancer—in addition to ERBB2, SKAP1 is an adaptor for Src, DEPTOR regulates the mTOR pathway and NRIP1 is an estrogen-receptor coregulator. Conclusions This is the first structural analysis of a breast cancer genome that combines classical molecular cytogenetic approaches with sequencing. Paired-end sequencing was able to detect almost all breakpoints, where there was adequate read depth. It supports

  10. Photoreactivation of bacteriophages after UV disinfection: role of genome structure and impacts of UV source.

    Science.gov (United States)

    Rodriguez, Roberto A; Bounty, Sarah; Beck, Sara; Chan, Connie; McGuire, Christian; Linden, Karl G

    2014-05-15

    The UV inactivation kinetics of bacteriophages MS2, PhiX174, T1 and PRD1 and the potential of bacterial UV repair mechanisms to reactivate these bacteriophages is described here. The selected bacteriophages represent a range of genome size, single and double stranded genomes, circular and linear organization and RNA and DNA. Bacteriophages were exposed to UV irradiation from two different collimated beam UV irradiation sources (medium-pressure (MP) mercury lamps and low-pressure (LP) mercury lamps) and assayed during which host-phage cultures were exposed to photoreactivating light for 6 h, then incubated overnight at 37 °C in the dark. Dark controls following UV exposure were performed in parallel. UV inactivation kinetics (using dark controls) showed that circular ssDNA phage (PhiX174) was the most sensitive and linear ssRNA phage (MS2) was the more resistant phage. No photoreactivation was observed for MS2 (RNA phage) and the highest photoreactivation was observed for PRD1. In the case of PRD1, the dose required for 4-log reduction (dark control) was around 35 mJ/cm(2), with a similar dose observed for both UV sources (MP and LP). When the photoreactivation step was added, the dose required for 4-log reduction using LP lamps was 103 mJ/cm(2) and for MP lamps was 60 mJ/cm(2). Genome organization differences between bacteriophages play an important role in resistance to UV inactivation and potential photoreactivation mediated by bacterial host mechanisms. The use of photoreactivation during the assay of PRD1 creates a more conservative surrogate for potential use in UV challenge testing.

  11. Recombinant expression library of Pyrococcus furiosus constructed by high-throughput cloning: a useful tool for functional and structural genomics

    Directory of Open Access Journals (Sweden)

    Hui eYuan

    2015-09-01

    Full Text Available Hyperthermophile Pyrococcus furiosus grows optimally near 100°C and is an important resource of many industrial and molecular biological enzymes. To study the structure and function of Pyrococcus furiosus proteins at whole genome level, we constructed expression plasmids of each Pyrococcus furiosus gene using a ligase-independent cloning method, which was based on amplifying target gene and vector by PCR using phosphorothioate-modified primers and digesting PCR products by λ exonuclease. Our cloning method had a positive clone percentage of ≥ 80% in 96-well plate cloning format. Small-scale expression experiment showed that 55 out of 80 genes were efficiently expressed in Escherichia coli Strain Rosetta 2(DE3pLysS. In summary, this recombinant expression library of Pyrococcus furiosus provides a platform for functional and structural studies, as well as developing novel industrial enzymes. Our cloning scheme is adaptable to constructing recombinant expression library of other sequenced organisms.

  12. A genomic perspective on protein tyrosine phosphatases: gene structure, pseudogenes, and genetic disease linkage

    DEFF Research Database (Denmark)

    Andersen, Jannik N; Jansen, Peter G; Echwald, Søren M;

    2004-01-01

    The protein tyrosine phosphatases (PTPs) are now recognized as critical regulators of signal transduction under normal and pathophysiological conditions. In this analysis we have explored the sequence of the human genome to define the composition of the PTP family. Using public and proprietary...... and provide predicted amino acid sequences for four human PTPs that are currently defined by fragments only. Finally, we correlated each PTP locus with genetic disease markers and identified 4 PTPs that map to known susceptibility loci for type 2 diabetes and 19 PTPs that map to regions frequently deleted...

  13. Genome-wide Identification and Structural, Functional and Evolutionary Analysis of WRKY Components of Mulberry.

    Science.gov (United States)

    Baranwal, Vinay Kumar; Negi, Nisha; Khurana, Paramjit

    2016-01-01

    Mulberry is known to be sensitive to several biotic and abiotic stresses, which in turn have a direct impact on the yield of silk, because it is the sole food source for the silk worm. WRKYs are a family of transcription factors, which play an important role in combating various biotic and abiotic stresses. In this study, we identified 54 genes with conserved WRKY motifs in the Morus notabilis genome. Motif searches coupled with a phylogenetic analysis revealed seven sub-groups as well as the absence of members of Group Ib in mulberry. Analyses of the 2K upstream region in addition to a gene ontology terms enrichment analysis revealed putative functions of mulberry WRKYs under biotic and abiotic stresses. An RNA-seq-based analysis showed that several of the identified WRKYs have shown preferential expression in the leaf, bark, root, male flower, and winter bud of M. notabilis. Finally, expression analysis by qPCR under different stress and hormone treatments revealed genotype-specific responses. Taken together, our results briefs about the genome-wide identification of WRKYs as well as their differential response to stresses and hormones. Importantly, these data can also be utilized to identify potential molecular targets for conferring tolerance to various stresses in mulberry. PMID:27477686

  14. The Vibrio parahaemolyticus-infecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure.

    Science.gov (United States)

    Wang, Weiyu; Li, Mengzhe; Lin, Hong; Wang, Jingxue; Mao, Xiangzhao

    2016-10-01

    Vibrio parahaemolyticus, a marine pathogen, is a causative agent of gastroenteritis in humans after consumption of contaminated seafood. In recent years, infections with V. parahaemolyticus have become an increasingly frequent factor in microbial food poisoning; therefore, it is urgent to figure out ways to control Vibrio parahaemolyticus. Endolysins, lytic enzymes encoded by bacteriophages, have been regarded as a therapeutic alternative to antibiotics in control of bacterial growth and have been successfully utilized in various areas. Here, we report the full genome sequence of the novel phage qdvp001, which lyses Vibrio parahaemolyticus 17802. The qdvp001 genome consists of a 134,742-bp DNA with a G+C content of 35.35 % and 227 putative open reading frames. Analysis revealed that the qdvp001 open reading frames encoded various putative functional proteins with a putative endolysin gene (ORF 60). No holin genes were identified in qdvp001. ORF 60 was cloned and expressed. The results showed that the purified endolysin Lysqdvp001 had a high hydrolytic activity toward Vibrio parahaemolyticus and a broader spectrum compared to that of the parental bacteriophage qdvp001. Thus, purified endolysin Lysqdvp001 has a potential to be used as an antibacterial agent in the future. PMID:27376376

  15. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure.

    Science.gov (United States)

    Comandatore, Francesco; Cordaux, Richard; Bandi, Claudio; Blaxter, Mark; Darby, Alistair; Makepeace, Benjamin L; Montagna, Matteo; Sassera, Davide

    2015-12-01

    Wolbachia pipientis is possibly the most widespread endosymbiont of arthropods and nematodes. While all Wolbachia strains have historically been defined as a single species, 16 monophyletic clusters of diversity (called supergroups) have been described. Different supergroups have distinct host ranges and symbiotic relationships, ranging from mutualism to reproductive manipulation. In filarial nematodes, which include parasites responsible for major diseases of humans (such as Onchocerca volvulus, agent of river blindness) and companion animals (Dirofilaria immitis, the dog heartworm), Wolbachia has an obligate mutualist role and is the target of new treatment regimens. Here, we compare the genomes of eight Wolbachia strains, spanning the diversity of the major supergroups (A-F), analysing synteny, transposable element content, GC skew and gene loss or gain. We detected genomic features that differ between Wolbachia supergroups, most notably in the C and D clades from filarial nematodes. In particular, strains from supergroup C (symbionts of O. volvulus and D. immitis) present a pattern of GC skew, conserved synteny and lack of transposable elements, unique in the Wolbachia genus. These features could be the consequence of a distinct symbiotic relationship between C Wolbachia strains and their hosts, highlighting underappreciated differences between the mutualistic supergroups found within filarial nematodes. PMID:26631376

  16. Structure and possible function of a G-quadruplex in the long terminal repeat of the proviral HIV-1 genome.

    Science.gov (United States)

    De Nicola, Beatrice; Lech, Christopher J; Heddi, Brahim; Regmi, Sagar; Frasson, Ilaria; Perrone, Rosalba; Richter, Sara N; Phan, Anh Tuân

    2016-07-27

    The long terminal repeat (LTR) of the proviral human immunodeficiency virus (HIV)-1 genome is integral to virus transcription and host cell infection. The guanine-rich U3 region within the LTR promoter, previously shown to form G-quadruplex structures, represents an attractive target to inhibit HIV transcription and replication. In this work, we report the structure of a biologically relevant G-quadruplex within the LTR promoter region of HIV-1. The guanine-rich sequence designated LTR-IV forms a well-defined structure in physiological cationic solution. The nuclear magnetic resonance (NMR) structure of this sequence reveals a parallel-stranded G-quadruplex containing a single-nucleotide thymine bulge, which participates in a conserved stacking interaction with a neighboring single-nucleotide adenine loop. Transcription analysis in a HIV-1 replication competent cell indicates that the LTR-IV region may act as a modulator of G-quadruplex formation in the LTR promoter. Consequently, the LTR-IV G-quadruplex structure presented within this work could represent a valuable target for the design of HIV therapeutics. PMID:27298260

  17. 77 FR 75448 - Welded Tube-Berkeley Including On-Site Leased Workers From Snelling, Aerotek and Express...

    Science.gov (United States)

    2012-12-20

    ... Employment and Training Administration Welded Tube--Berkeley Including On-Site Leased Workers From Snelling... Worker Adjustment Assistance on October 10, 2012, applicable to workers of Welded Tube--Berkeley... Register on October 29, 2012 (77 FR 65583). At the request of South Carolina State, the Department...

  18. Searching the "Nuclear Science Abstracts" Data Base by Use of the Berkeley Mass Storage System

    Science.gov (United States)

    Herr, J. Joanne; Smith, Gloria L.

    1972-01-01

    Advantages of the Berkeley Mass Storage System (MSS) for information retrieval other than its size are: high serial-read rate, archival data storage; and random-access capability. By use of this device, the search cost in an SDI system based on the Nuclear Science Abstracts" data base was reduced by 20 percent. (6 references) (Author/NH)

  19. The Berkeley Puppet Interview: A Screening Instrument for Measuring Psychopathology in Young Children

    Science.gov (United States)

    Stone, Lisanne L.; van Daal, Carlijn; van der Maten, Marloes; Engels, Rutger C. M. E.; Janssens, Jan M. A. M.; Otten, Roy

    2014-01-01

    Background: While child self-reports of psychopathology are increasingly accepted, little standardized instruments are utilized for these practices. The Berkeley Puppet Interview (BPI) is an age-appropriate instrument for self-reports of problem behavior by young children. Objective: Psychometric properties of the Dutch version of the BPI will be…

  20. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    International Nuclear Information System (INIS)

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954

  1. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Science.gov (United States)

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  2. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  3. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  4. Follow the Money: Engineering at Stanford and UC Berkeley during the Rise of Silicon Valley

    Science.gov (United States)

    Adams, Stephen B.

    2009-01-01

    A comparison of the engineering schools at UC Berkeley and Stanford during the 1940s and 1950s shows that having an excellent academic program is necessary but not sufficient to make a university entrepreneurial (an engine of economic development). Key factors that made Stanford more entrepreneurial than Cal during this period were superior…

  5. Information Access for a Digital Library: Cheshire II and the Berkeley Environmental Digital Library.

    Science.gov (United States)

    Larson, Ray R.; Carson, Chad

    1999-01-01

    Reviews the characteristics of the Cheshire II system that is being used to implement full-text and fielded searching of bibliographic information for the University of California Berkeley Digital Library Initiative. Examines its performance when applied to a collection of large full-text documents in the TREC Interactive Retrieval Track and its…

  6. Synteny and comparative analysis of miRNA retention, conservation, and structure across Brassicaceae reveals lineage- and sub-genome-specific changes.

    Science.gov (United States)

    Jain, Aditi; Das, Sandip

    2016-05-01

    The recent availability of genome sequences together with syntenic block information for Brassicaceae offers an opportunity to study microRNA (miRNA) evolution across this family. We employed a synteny-based comparative genomics strategy to unambiguously identify miRNA homologs from the genome sequence of members of Brassicaceae. Such an analysis of miRNA across Brassicaceae allowed us to classify miRNAs as conserved, lineage-, karyotype- and sub-genome-specific. The differential loss of miRNA from sub-genomes in polyploid genomes of Brassica rapa and Brassica oleracea shows that miRNA also follows the rules of gene fractionation as observed in the case of protein-coding genes. The study of mature and miR* region of precursors revealed instances of in-dels and SNPs which reflect the evolutionary history of the genomes. High level of conservation in miR* regions in some cases points to their functional relevance which needs to be further investigated. We further show that sequence and length variability in precursor sequences can affect the free energy and foldback structure of miRNA which may ultimately affect their biogenesis and expression in the biological system. PMID:26873704

  7. The Repeat Pattern Toolkit (RPT): Analyzing the structure and evolution of the C. elegans genome

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, P.; States, D.J. [Washington Univ., St. Louis, MO (United States)

    1994-12-31

    Over 3.6 million bases of DNA sequence from chromosome III of the C. elegans have been determined. The availability of this extended region of contiguous sequence has allowed us to analyze the nature and prevalence of repetitive sequences in the genome of a eukaryotic organism with a high gene density. We have assembled a Repeat Pattern Toolkit (RPT) to analyze the patterns of repeats occurring in DNA. The tools include identifying significant local alignments (utilizing both two-way and three-way alignments), dividing the set of alignments into connected components (signifying repeat families), computing evolutionary distance between repeat family members, constructing minimum spanning trees from the connected components, and visualizing the evolution of the repeat families. Over 7000 families of repetitive sequences were identified. The size of the families ranged from isolated pairs to over 1600 segments of similar sequence. Approximately 12.3% of the analyzed sequence participates in a repeat element.

  8. Cyclist safety on bicycle boulevards and parallel arterial routes in Berkeley, California.

    Science.gov (United States)

    Minikel, Eric

    2012-03-01

    This study compares the safety of bicyclists riding on bicycle boulevards to those riding on parallel arterial routes in Berkeley, California. Literature on the impact of motor vehicle traffic characteristics on cyclist safety shows that high motor vehicle speeds and volumes and the presence of heavy vehicles are all detrimental to cyclist safety. This suggests that cyclists may be safer on side streets than on busy arterials. Bicycle boulevards-traffic-calmed side streets signed and improved for cyclist use-purport to offer cyclists a safer alternative to riding on arterials. Police-reported bicycle collision data and manually collected cyclist count data from bicycle boulevards and parallel arterial routes in Berkeley, California from 2003 to 2010 are used to test the hypothesis that Berkeley's bicycle boulevards have lower cyclist collision rates and a lower proportion of bicycle collisions resulting in severe injury. While no significant difference is found in the proportion of collisions that are severe, results show that collision rates on Berkeley's bicycle boulevards are two to eight times lower than those on parallel, adjacent arterial routes. The difference in collision rate is highly statistically significant, unlikely to be caused by any bias in the collision and count data, and cannot be easily explained away by self-selection or safety in numbers. Though the used dataset is limited and the study design is correlational, this study provides some evidence that Berkeley's bicycle boulevards are safer for cyclists than its parallel arterial routes. The results may be suggestive that, more generally, properly implemented bicycle boulevards can provide cyclists with a safer alternative to riding on arterials. PMID:22269506

  9. Use of the Operon Structure of the C. elegans Genome as a Tool to Identify Functionally Related Proteins

    Directory of Open Access Journals (Sweden)

    Silvia Dossena

    2013-12-01

    Full Text Available One of the most pressing challenges in the post genomic era is the identification and characterization of protein-protein interactions (PPIs, as these are essential in understanding the cellular physiology of health and disease. Experimental techniques suitable for characterizing PPIs (X-ray crystallography or nuclear magnetic resonance spectroscopy, among others are usually laborious, time-consuming and often difficult to apply to membrane proteins, and therefore require accurate prediction of the candidate interacting partners. High-throughput experimental methods (yeast two-hybrid and affinity purification succumb to the same shortcomings, and can also lead to high rates of false positive and negative results. Therefore, reliable tools for predicting PPIs are needed. The use of the operon structure in the eukaryote Caenorhabditis elegans genome is a valuable, though underserved, tool for identifying physically or functionally interacting proteins. Based on the concept that genes organized in the same operon may encode physically or functionally related proteins, this algorithm is easy to be applied and, importantly, gives a limited number of candidate partners of a given protein, allowing for focused experimental verification. Moreover, this approach can be successfully used to predict PPIs in the human system, including those of membrane proteins.

  10. Genome Mapping in Plant Comparative Genomics.

    Science.gov (United States)

    Chaney, Lindsay; Sharp, Aaron R; Evans, Carrie R; Udall, Joshua A

    2016-09-01

    Genome mapping produces fingerprints of DNA sequences to construct a physical map of the whole genome. It provides contiguous, long-range information that complements and, in some cases, replaces sequencing data. Recent advances in genome-mapping technology will better allow researchers to detect large (>1kbp) structural variations between plant genomes. Some molecular and informatics complications need to be overcome for this novel technology to achieve its full utility. This technology will be useful for understanding phenotype responses due to DNA rearrangements and will yield insights into genome evolution, particularly in polyploids. In this review, we outline recent advances in genome-mapping technology, including the processes required for data collection and analysis, and applications in plant comparative genomics.

  11. Genetic diversity of near genome-wide hepatitis C virus sequences during chronic infection: evidence for protein structural conservation over time.

    Directory of Open Access Journals (Sweden)

    Hui Li

    Full Text Available Infection with hepatitis C virus (HCV is one of the leading causes of chronic hepatitis, liver cirrhosis and end-stage liver disease worldwide. The genetics of HCV infection in humans and the disease course of chronic hepatitis C are both remarkably variable. Although the response to interferon treatment is largely dependent on HCV genotypes, whether or not a relationship exists between HCV genome variability and clinical course of hepatitis C disease still remains unknown. To more thoroughly understand HCV genome evolution over time in association with disease course, near genome-wide HCV genomes present in 9 chronically infected participants over 83 total study years were sequenced. Overall, within HCV genomes, the number of synonymous substitutions per synonymous site (d(S significantly exceeded the number of non-synonymous substitutions per site (d(N. Although both d(S and d(N significantly increased with duration of chronic infection, there was a highly significant decrease in d(N/d(S ratio in HCV genomes over time. These results indicate that purifying selection acted to conserve viral protein structure despite persistence of high level of nucleotide mutagenesis inherent to HCV replication. Based on liver biopsy fibrosis scores, HCV genomes from participants with advanced fibrosis had significantly greater d(S values and lower d(N/d(S ratios compared to participants with mild liver disease. Over time, viral genomes from participants with mild disease had significantly greater annual changes in d(N, along with higher d(N/d(S ratios, compared to participants with advanced fibrosis. Yearly amino acid variations in the HCV p7, NS2, NS3 and NS5B genes were all significantly lower in participants with severe versus mild disease, suggesting possible pathogenic importance of protein structural conservation for these viral gene products.

  12. Effects of occupational exposure and non-radiation factors on the structure-functional state of blood cell genome

    International Nuclear Information System (INIS)

    Effects of non-radiation factors (smoking and vitamin therapy) on the structure-functional state of blood cell genome of nuclear professionals (workers of Nuclear Center) exposed to long-term external gamma-neutron radiation (108 persons) and control group (49 workers of Nuclear Center who had no concern to ionizing radiation) have been investigated. It has been shown that: prolonged occupational exposure leads to significant 2-3 fold growth (p≤ 0.001) of cytogenetic disorders; efficiency of cell systems of reparation of induced DNA damage in exposed persons is lower (p≤ 0.05) as compared with control group; frequency of cytogenetic disorders depends on the accumulated absorbed dose. (authors)

  13. From the genome to the phenome and back: linking genes with human brain function and structure using genetically informed neuroimaging

    DEFF Research Database (Denmark)

    Siebner, H R; Callicott, J H; Sommer, T;

    2009-01-01

    In recent years, an array of brain mapping techniques has been successfully employed to link individual differences in circuit function or structure in the living human brain with individual variations in the human genome. Several proof-of-principle studies provided converging evidence that brain...... imaging can establish important links between genes and behaviour. The overarching goal is to use genetically informed brain imaging to pinpoint neurobiological mechanisms that contribute to behavioural intermediate phenotypes or disease states. This special issue on "Linking Genes to Brain Function......, the integration of genetic and neuroimaging data also poses major methodological and conceptual challenges. Therefore, this special issue also focuses on how these challenges can be met to fully exploit the synergism of genetically informed brain imaging....

  14. Correlation between sequence conservation and structural thermodynamics of microRNA precursors from human, mouse, and chicken genomes

    Directory of Open Access Journals (Sweden)

    Wang Shengqi

    2010-10-01

    Full Text Available Abstract Background Previous studies have shown that microRNA precursors (pre-miRNAs have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear. Results We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability. Conclusions We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were

  15. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    Directory of Open Access Journals (Sweden)

    Franck Curk

    Full Text Available Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105 were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species

  16. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    Science.gov (United States)

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  17. Nuclear species-diagnostic SNP markers mined from 454 amplicon sequencing reveal admixture genomic structure of modern citrus varieties.

    Science.gov (United States)

    Curk, Franck; Ancillo, Gema; Ollitrault, Frédérique; Perrier, Xavier; Jacquemoud-Collet, Jean-Pierre; Garcia-Lor, Andres; Navarro, Luis; Ollitrault, Patrick

    2015-01-01

    Most cultivated Citrus species originated from interspecific hybridisation between four ancestral taxa (C. reticulata, C. maxima, C. medica, and C. micrantha) with limited further interspecific recombination due to vegetative propagation. This evolution resulted in admixture genomes with frequent interspecific heterozygosity. Moreover, a major part of the phenotypic diversity of edible citrus results from the initial differentiation between these taxa. Deciphering the phylogenomic structure of citrus germplasm is therefore essential for an efficient utilization of citrus biodiversity in breeding schemes. The objective of this work was to develop a set of species-diagnostic single nucleotide polymorphism (SNP) markers for the four Citrus ancestral taxa covering the nine chromosomes, and to use these markers to infer the phylogenomic structure of secondary species and modern cultivars. Species-diagnostic SNPs were mined from 454 amplicon sequencing of 57 gene fragments from 26 genotypes of the four basic taxa. Of the 1,053 SNPs mined from 28,507 kb sequence, 273 were found to be highly diagnostic for a single basic taxon. Species-diagnostic SNP markers (105) were used to analyse the admixture structure of varieties and rootstocks. This revealed C. maxima introgressions in most of the old and in all recent selections of mandarins, and suggested that C. reticulata × C. maxima reticulation and introgression processes were important in edible mandarin domestication. The large range of phylogenomic constitutions between C. reticulata and C. maxima revealed in mandarins, tangelos, tangors, sweet oranges, sour oranges, grapefruits, and orangelos is favourable for genetic association studies based on phylogenomic structures of the germplasm. Inferred admixture structures were in agreement with previous hypotheses regarding the origin of several secondary species and also revealed the probable origin of several acid citrus varieties. The developed species-diagnostic SNP

  18. Genomic and protein structural maps of adaptive evolution of human influenza A virus to increased virulence in the mouse.

    Directory of Open Access Journals (Sweden)

    Jihui Ping

    Full Text Available Adaptive evolution is characterized by positive and parallel, or repeated selection of mutations. Mouse adaptation of influenza A virus (IAV produces virulent mutants that demonstrate positive and parallel evolution of mutations in the hemagglutinin (HA receptor and non-structural protein 1 (NS1 interferon antagonist genes. We now present a genomic analysis of all 11 genes of 39 mouse adapted IAV variants from 10 replicate adaptation experiments. Mutations were mapped on the primary and structural maps of each protein and specific mutations were validated with respect to virulence, replication, and RNA polymerase activity. Mouse adapted (MA variants obtained after 12 or 20-21 serial infections acquired on average 5.8 and 7.9 nonsynonymous mutations per genome of 11 genes, respectively. Among a total of 115 nonsynonymous mutations, 51 demonstrated properties of natural selection including 27 parallel mutations. The greatest degree of parallel evolution occurred in the HA receptor and ribonucleocapsid components, polymerase subunits (PB1, PB2, PA and NP. Mutations occurred in host nuclear trafficking factor binding sites as well as sites of virus-virus protein subunit interaction for NP, NS1, HA and NA proteins. Adaptive regions included cap binding and endonuclease domains in the PB2 and PA polymerase subunits. Four mutations in NS1 resulted in loss of binding to the host cleavage and polyadenylation specificity factor (CPSF30 suggesting that a reduction in inhibition of host gene expression was being selected. The most prevalent mutations in PB2 and NP were shown to increase virulence but differed in their ability to enhance replication and demonstrated epistatic effects. Several positively selected RNA polymerase mutations demonstrated increased virulence associated with >300% enhanced polymerase activity. Adaptive mutations that control host range and virulence were identified by their repeated selection to comprise a defined model for

  19. Shotgun crystallization strategy for structural genomics: an optimized two-tiered crystallization screen against the Thermotoga maritima proteome.

    Science.gov (United States)

    Page, Rebecca; Grzechnik, Slawomir K; Canaves, Jaume M; Spraggon, Glen; Kreusch, Andreas; Kuhn, Peter; Stevens, Raymond C; Lesley, Scott A

    2003-06-01

    As the field of structural genomics continues to grow and new technologies are developed, novel strategies are needed to efficiently crystallize large numbers of protein targets, thus increasing output, not just throughput [Chayen & Saridakis (2002). Acta Cryst. D58, 921-927]. One strategy, developed for the high-throughput structure determination of the Thermotoga maritima proteome, is to quickly determine which proteins have a propensity for crystal formation followed by focused SeMet-incorporated protein crystallization attempts. This experimental effort has resulted in over 320 000 individual crystallization experiments. As such, it has provided one of the most extensive systematic data sets of commonly used crystallization conditions against a wide range of proteins to date. Analysis of this data shows that many of the original screening conditions are redundant, as all of the T. maritima proteins that crystallize readily could be identified using just 23% of the original conditions. It also shows that proteins that contain selenomethionine and are more extensively purified often crystallize in distinctly different conditions from those of their native less pure counterparts. Most importantly, it shows that the two-tiered strategy employed here is extremely successful for predicting which proteins will readily crystallize, as greater than 99% of the proteins identified as having a propensity to crystallize under non-optimal native conditions did so again as selenomethionine derivatives during the focused crystallization trials. This crystallization strategy can be adopted for both large-scale genomics programs and individual protein studies with multiple constructs and has the potential to significantly accelerate future crystallographic efforts. PMID:12777766

  20. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2007-08-01

    Full Text Available Abstract Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0. The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1 and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin

  1. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Tschaplinski, Timothy J [ORNL; Tsai, Chung-Jui [Michigan Technological University; Harding, Scott A [Michigan Technological University; Lindroth, richard L [University of Wisconsin, Madison; Yuan, Yinan [Michigan Technological University

    2006-01-01

    Salicin-based phenolic glycosides, hydroxycinnamate derivatives and flavonoid-derived condensed tannins comprise up to one-third of Populus leaf dry mass. Genes regulating the abundance and chemical diversity of these substances have not been comprehensively analysed in tree species exhibiting this metabolically demanding level of phenolic metabolism. Here, shikimate-phenylpropanoid pathway genes thought to give rise to these phenolic products were annotated from the Populus genome, their expression assessed by semiquantitative or quantitative reverse transcription polymerase chain reaction (PCR), and metabolic evidence for function presented. Unlike Arabidopsis, Populus leaves accumulate an array of hydroxycinnamoyl-quinate esters, which is consistent with broadened function of the expanded hydroxycinnamoyl-CoA transferase gene family. Greater flavonoid pathway diversity is also represented, and flavonoid gene families are larger. Consistent with expanded pathway function, most of these genes were upregulated during wound-stimulated condensed tannin synthesis in leaves. The suite of Populus genes regulating phenylpropanoid product accumulation should have important application in managing phenolic carbon pools in relation to climate change and global carbon cycling.

  2. Symbolic complexity for nucleotide sequences: a sign of the genome structure

    Science.gov (United States)

    Salgado-García, R.; Ugalde, E.

    2016-11-01

    We introduce a method for estimating the complexity function (which counts the number of observable words of a given length) of a finite symbolic sequence, which we use to estimate the complexity function of coding DNA sequences for several species of the Hominidae family. In all cases, the obtained symbolic complexities show the same characteristic behavior: exponential growth for small word lengths, followed by linear growth for larger word lengths. The symbolic complexities of the species we consider exhibit a systematic trend in correspondence with the phylogenetic tree. Using our method, we estimate the complexity function of sequences obtained by some known evolution models, and in some cases we observe the characteristic exponential-linear growth of the Hominidae coding DNA complexity. Analysis of the symbolic complexity of sequences obtained from a specific evolution model points to the following conclusion: linear growth arises from the random duplication of large segments during the evolution of the genome, while the decrease in the overall complexity from one species to another is due to a difference in the speed of accumulation of point mutations.

  3. Structural heterogeneity and functional diversity of topologically associating domains in mammalian genomes

    OpenAIRE

    Wang, Xiao-Tao; Dong, Peng-Fei; Zhang, Hong-Yu; Peng, Cheng

    2015-01-01

    Recent chromosome conformation capture (3C) derived techniques have revealed that topologically associating domain (TAD) is a pervasive element in chromatin three-dimensional (3D) organization. However, there is currently no parameter to quantitatively measure the structural characteristics of TADs, thus obscuring our understanding on the structural and functional differences among TADs. Based on our finding that there exist intrinsic chromatin interaction patterns in TADs, we define a theore...

  4. Genomic structure analysis of a set of Oryza nivara introgression lines and identification of yield-associated QTLs using whole-genome resequencing.

    Science.gov (United States)

    Ma, Xin; Fu, Yongcai; Zhao, Xinhui; Jiang, Liyun; Zhu, Zuofeng; Gu, Ping; Xu, Wenying; Su, Zhen; Sun, Chuanqing; Tan, Lubin

    2016-01-01

    Oryza nivara, an annual wild AA-genome species of rice, is an important gene pool for broadening the genetic diversity of cultivated rice (O. sativa L.). Towards identifying and utilizing favourable alleles from O. nivara, we developed a set of introgression lines (ILs) by introducing O. nivara segments into the elite indica rice variety 93-11 background through advanced backcrossing and repeated selfing. Using whole-genome resequencing, a high-density genetic map containing 1,070 bin-markers was constructed for the 131 ILs, with an average length of 349 kb per bin. The 131 ILs cover 95% of O. nivara genome, providing a relatively complete genomic library for introgressing O. nivara alleles for trait improvement. Using this high-density bin-map, QTL mapping for 13 yield-related traits was performed and a total of 65 QTLs were detected across two environments. At ~36.9% of detected QTLs, the alleles from O. nivara conferred improving effects on yield-associated traits. Six cloned genes, Sh4/SHA1, Bh4, Sd1, TE/TAD1, GS3 and FZP, colocalised in the peak intervals of 9 QTLs. In conclusion, we developed new genetic materials for exploration and use of beneficial alleles from wild rice and provided a basis for future fine mapping and cloning of the favourable O. nivara-derived QTLs. PMID:27251022

  5. Population structure and linkage disequilibrium in oat (Avena sativa L.): implications for genome-wide association studies.

    Science.gov (United States)

    Newell, M A; Cook, D; Tinker, N A; Jannink, J-L

    2011-02-01

    The level of population structure and the extent of linkage disequilibrium (LD) can have large impacts on the power, resolution, and design of genome-wide association studies (GWAS) in plants. Until recently, the topics of LD and population structure have not been explored in oat due to the lack of a high-throughput, high-density marker system. The objectives of this research were to survey the level of population structure and the extent of LD in oat germplasm and determine their implications for GWAS. In total, 1,205 lines and 402 diversity array technology (DArT) markers were used to explore population structure. Principal component analysis and model-based cluster analysis of these data indicated that, for the lines used in this study, relatively weak population structure exists. To explore LD decay, map distances of 2,225 linked DArT marker pairs were compared with LD (estimated as r²). Results showed that LD between linked markers decayed rapidly to r² = 0.2 for marker pairs with a map distance of 1.0 centi-Morgan (cM). For GWAS, we suggest a minimum of one marker every cM, but higher densities of markers should increase marker-QTL association and therefore detection power. Additionally, it was found that LD was relatively consistent across the majority of germplasm clusters. These findings suggest that GWAS in oat can include germplasm with diverse origins and backgrounds. The results from this research demonstrate the feasibility of GWAS and related analyses in oat.

  6. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data.

    Science.gov (United States)

    Kühnert, Denise; Stadler, Tanja; Vaughan, Timothy G; Drummond, Alexei J

    2016-08-01

    When viruses spread, outbreaks can be spawned in previously unaffected regions. Depending on the time and mode of introduction, each regional outbreak can have its own epidemic dynamics. The migration and phylodynamic processes are often intertwined and need to be taken into account when analyzing temporally and spatially structured virus data. In this article, we present a fully probabilistic approach for the joint reconstruction of phylodynamic history in structured populations (such as geographic structure) based on a multitype birth-death process. This approach can be used to quantify the spread of a pathogen in a structured population. Changes in epidemic dynamics through time within subpopulations are incorporated through piecewise constant changes in transmission parameters.We analyze a global human influenza H3N2 virus data set from a geographically structured host population to demonstrate how seasonal dynamics can be inferred simultaneously with the phylogeny and migration process. Our results suggest that the main migration path among the northern, tropical, and southern region represented in the sample analyzed here is the one leading from the tropics to the northern region. Furthermore, the time-dependent transmission dynamics between and within two HIV risk groups, heterosexuals and injecting drug users, in the Latvian HIV epidemic are investigated. Our analyses confirm that the Latvian HIV epidemic peaking around 2001 was mainly driven by the injecting drug user risk group. PMID:27189573

  7. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data

    Science.gov (United States)

    Kühnert, Denise; Stadler, Tanja; Vaughan, Timothy G.; Drummond, Alexei J.

    2016-01-01

    When viruses spread, outbreaks can be spawned in previously unaffected regions. Depending on the time and mode of introduction, each regional outbreak can have its own epidemic dynamics. The migration and phylodynamic processes are often intertwined and need to be taken into account when analyzing temporally and spatially structured virus data. In this article, we present a fully probabilistic approach for the joint reconstruction of phylodynamic history in structured populations (such as geographic structure) based on a multitype birth–death process. This approach can be used to quantify the spread of a pathogen in a structured population. Changes in epidemic dynamics through time within subpopulations are incorporated through piecewise constant changes in transmission parameters. We analyze a global human influenza H3N2 virus data set from a geographically structured host population to demonstrate how seasonal dynamics can be inferred simultaneously with the phylogeny and migration process. Our results suggest that the main migration path among the northern, tropical, and southern region represented in the sample analyzed here is the one leading from the tropics to the northern region. Furthermore, the time-dependent transmission dynamics between and within two HIV risk groups, heterosexuals and injecting drug users, in the Latvian HIV epidemic are investigated. Our analyses confirm that the Latvian HIV epidemic peaking around 2001 was mainly driven by the injecting drug user risk group. PMID:27189573

  8. Long span DNA paired-end-tag (DNA-PET sequencing strategy for the interrogation of genomic structural mutations and fusion-point-guided reconstruction of amplicons.

    Directory of Open Access Journals (Sweden)

    Fei Yao

    Full Text Available Structural variations (SVs contribute significantly to the variability of the human genome and extensive genomic rearrangements are a hallmark of cancer. While genomic DNA paired-end-tag (DNA-PET sequencing is an attractive approach to identify genomic SVs, the current application of PET sequencing with short insert size DNA can be insufficient for the comprehensive mapping of SVs in low complexity and repeat-rich genomic regions. We employed a recently developed procedure to generate PET sequencing data using large DNA inserts of 10-20 kb and compared their characteristics with short insert (1 kb libraries for their ability to identify SVs. Our results suggest that although short insert libraries bear an advantage in identifying small deletions, they do not provide significantly better breakpoint resolution. In contrast, large inserts are superior to short inserts in providing higher physical genome coverage for the same sequencing cost and achieve greater sensitivity, in practice, for the identification of several classes of SVs, such as copy number neutral and complex events. Furthermore, our results confirm that large insert libraries allow for the identification of SVs within repetitive sequences, which cannot be spanned by short inserts. This provides a key advantage in studying rearrangements in cancer, and we show how it can be used in a fusion-point-guided-concatenation algorithm to study focally amplified regions in cancer.

  9. Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen.

    Directory of Open Access Journals (Sweden)

    Guillaume Daverdin

    Full Text Available Modern agriculture favours the selection and spread of novel plant diseases. Furthermore, crop genetic resistance against pathogens is often rendered ineffective within a few years of its commercial deployment. Leptosphaeria maculans, the cause of phoma stem canker of oilseed rape, develops gene-for-gene interactions with its host plant, and has a high evolutionary potential to render ineffective novel sources of resistance in crops. Here, we established a four-year field experiment to monitor the evolution of populations confronted with the newly released Rlm7 resistance and to investigate the nature of the mutations responsible for virulence against Rlm7. A total of 2551 fungal isolates were collected from experimental crops of a Rlm7 cultivar or a cultivar without Rlm7. All isolates were phenotyped for virulence and a subset was genotyped with neutral genetic markers. Virulent isolates were investigated for molecular events at the AvrLm4-7 locus. Whilst virulent isolates were not found in neighbouring crops, their frequency had reached 36% in the experimental field after four years. An extreme diversity of independent molecular events leading to virulence was identified in populations, with large-scale Repeat Induced Point mutations or complete deletion of AvrLm4-7 being the most frequent. Our data suggest that increased mutability of fungal genes involved in the interactions with plants is directly related to their genomic environment and reproductive system. Thus, rapid allelic diversification of avirulence genes can be generated in L. maculans populations in a single field provided that large population sizes and sexual reproduction are favoured by agricultural practices.

  10. Basidiomycete DyPs: Genomic diversity, structural-functional aspects, reaction mechanism and environmental significance.

    Science.gov (United States)

    Linde, Dolores; Ruiz-Dueñas, Francisco J; Fernández-Fueyo, Elena; Guallar, Victor; Hammel, Kenneth E; Pogni, Rebecca; Martínez, Angel T

    2015-05-15

    The first enzyme with dye-decolorizing peroxidase (DyP) activity was described in 1999 from an arthroconidial culture of the fungus Bjerkandera adusta. However, the first DyP sequence had been deposited three years before, as a peroxidase gene from a culture of an unidentified fungus of the family Polyporaceae (probably Irpex lacteus). Since the first description, fewer than ten basidiomycete DyPs have been purified and characterized, but a large number of sequences are available from genomes. DyPs share a general fold and heme location with chlorite dismutases and other DyP-type related proteins (such as Escherichia coli EfeB), forming the CDE superfamily. Taking into account the lack of an evolutionary relationship with the catalase-peroxidase superfamily, the observed heme pocket similarities must be considered as a convergent type of evolution to provide similar reactivity to the enzyme cofactor. Studies on the Auricularia auricula-judae DyP showed that high-turnover oxidation of anthraquinone type and other DyP substrates occurs via long-range electron transfer from an exposed tryptophan (Trp377, conserved in most basidiomycete DyPs), whose catalytic radical was identified in the H2O2-activated enzyme. The existence of accessory oxidation sites in DyP is suggested by the residual activity observed after site-directed mutagenesis of the above tryptophan. DyP degradation of substituted anthraquinone dyes (such as Reactive Blue 5) most probably proceeds via typical one-electron peroxidase oxidations and product breakdown without a DyP-catalyzed hydrolase reaction. Although various DyPs are able to break down phenolic lignin model dimers, and basidiomycete DyPs also present marginal activity on nonphenolic dimers, a significant contribution to lignin degradation is unlikely because of the low activity on high redox-potential substrates. PMID:25637654

  11. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  12. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  13. Primary structure of the 5 S subunit of transcarboxylase as deduced from the genomic DNA sequence.

    Science.gov (United States)

    Thornton, C G; Kumar, G K; Shenoy, B C; Haase, F C; Phillips, N F; Park, V M; Magner, W J; Hejlik, D P; Wood, H G; Samols, D

    1993-09-13

    Transcarboxylase from Propionibacterium shermanii is a complex biotin-containing enzyme composed of 30 polypeptides of three different types. It is composed of six dimeric outer subunits associated with a central cylindrical hexameric subunit through 12 biotinyl subunits; three outer subunits on each face of the central hexamer. Each outer dimer is termed a 5 S subunit which associates with two biotinyl subunits. The enzyme catalyzes a two-step reaction in which methylmalonyl-CoA and pyruvate form propionyl-CoA and oxalacetate, the 5 S subunit specifically catalyzing one of these reactions. We report here the cloning, sequencing and expression of the monomer of the 5 S subunit. The gene was identified by matching amino acid sequences derived from isolated authentic 5 S peptides with the deduced sequence of an open reading frame present on a cloned P. shermanii genomic fragment known to contain the gene encoding the 1.3 S biotinyl subunit. The cloned 5 S gene encodes a protein of 519 amino acids, M(r) 57,793. The deduced sequence shows regions of extensive homology with that of pyruvate carboxylase and oxalacetate decarboxylase, two enzymes which catalyze the same or reverse reaction. A fragment was subcloned into pUC19 in an orientation such that the 5 S open reading frame could be expressed from the lac promoter of the vector. Crude extracts prepared from these cells contained an immunoreactive band on Western blots which co-migrated with authentic 5 S and were fully active in catalyzing the 5 S partial reaction. We conclude that we have cloned, sequenced and expressed the monomer of the 5 S subunit and that the expressed product is catalytically active. PMID:8365490

  14. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H[sub 2], and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO[sub 2], potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-[Tc] systems is reported under work for others. (DLC)

  15. [Lawrence Berkeley Laboratory] Chemical Sciences Division annual report 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    Summaries are given of research in the following fields: photochemistry of materials in stratosphere, energy transfer and structural studies of molecules on surfaces, laser sources and techniques, crossed molecular beams, molecular interactions, theory of atomic and molecular collision processes, selective photochemistry, photodissociation of free radicals, physical chemistry with emphasis on thermodynamic properties, chemical physics at high photon energies, high-energy atomic physics, atomic physics, high-energy oxidizers and delocalized-electron solids, catalytic hydrogenation of CO, transition metal-catalyzed conversion of CO, NO, H{sub 2}, and organic molecules to fuels and petrochemicals, formation of oxyacids of sulfur from SO{sub 2}, potentially catalytic and conducting organometallics, actinide chemistry, and molecular thermodynamics for phase equilibria in mixtures. Under exploratory R and D funds, the following are discussed: technical evaluation of beamlines and experimental stations for chemical cynamics applications at the ALS synchrotron, and molecular beam threshold time-of-flight spectroscopy of rare gas atoms. Research on normal and superconducting properties of high-{Tc} systems is reported under work for others. (DLC)

  16. Genome packaging in viruses

    OpenAIRE

    Sun, Siyang; Rao, Venigalla B.; Rossmann, Michael G.

    2010-01-01

    Genome packaging is a fundamental process in a viral life cycle. Many viruses assemble preformed capsids into which the genomic material is subsequently packaged. These viruses use a packaging motor protein that is driven by the hydrolysis of ATP to condense the nucleic acids into a confined space. How these motor proteins package viral genomes had been poorly understood until recently, when a few X-ray crystal structures and cryo-electron microscopy structures became available. Here we discu...

  17. Structural Maturation of HIV-1 Reverse Transcriptase—A Metamorphic Solution to Genomic Instability

    Science.gov (United States)

    London, Robert E.

    2016-01-01

    Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT)—a critical enzyme of the viral life cycle—undergoes a complex maturation process, required so that a pair of p66 precursor proteins can develop conformationally along different pathways, one evolving to form active polymerase and ribonuclease H (RH) domains, while the second forms a non-functional polymerase and a proteolyzed RH domain. These parallel maturation pathways rely on the structural ambiguity of a metamorphic polymerase domain, for which the sequence–structure relationship is not unique. Recent nuclear magnetic resonance (NMR) studies utilizing selective labeling techniques, and structural characterization of the p66 monomer precursor have provided important insights into the details of this maturation pathway, revealing many aspects of the three major steps involved: (1) domain rearrangement; (2) dimerization; and (3) subunit-selective RH domain proteolysis. This review summarizes the major structural changes that occur during the maturation process. We also highlight how mutations, often viewed within the context of the mature RT heterodimer, can exert a major influence on maturation and dimerization. It is further suggested that several steps in the RT maturation pathway may provide attractive targets for drug development. PMID:27690082

  18. Bioinformatical approaches to RNA structure prediction & Sequencing of an ancient human genome

    DEFF Research Database (Denmark)

    Lindgreen, Stinus

    Stinus Lindgreen has been working in two different fields during his Ph.D. The first part has been focused on computational approaches to predict the structure of non-coding RNA molecules at the base pairing level. This has resulted in the analysis of various measures of the base pairing potentia...

  19. An assessment of population structure in eight breeds of cattle using a whole genome SNP panel

    Science.gov (United States)

    Analyses of population structure and breed diversity have provided insight into the origin and evolution of cattle. Previously, these studies have used a low density of microsatellite markers, however, with the large number of single nucleotide polymorphism markers that are now available, it is poss...

  20. Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum

    DEFF Research Database (Denmark)

    Mourier, Tobias; Carret, Celine; Kyes, Sue;

    2008-01-01

    ncRNAs in P. falciparum and are not represented in any RNA databases. We provide supporting evidence for purifying selection acting on the experimentally verified ncRNAs by comparing the nucleotide substitutions in the predicted ncRNA candidate structures in P. falciparum with the closely related...

  1. National Academy of Sciences and Academy of Sciences of the USSR workshop on structure of the eucaryotic genome and regulation of its expression

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report provides a brief overview of the Workshop on Structure of the Eukaryotic Genome and Regulation of its Expression held in Tbilisi, Georgia, USSR. The report describes the presentations made at the meeting but also goes on to describe the state of molecular biology and genetics research in the Soviet Union and makes recommendations on how to improve future such meetings.

  2. National Academy of Sciences and Academy of Sciences of the USSR workshop on structure of the eucaryotic genome and regulation of its expression. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-31

    This report provides a brief overview of the Workshop on Structure of the Eukaryotic Genome and Regulation of its Expression held in Tbilisi, Georgia, USSR. The report describes the presentations made at the meeting but also goes on to describe the state of molecular biology and genetics research in the Soviet Union and makes recommendations on how to improve future such meetings.

  3. Population structure revealed by different marker types (SSR or DArT) has an impact on the results of genome-wide association mapping in European barley cultivars

    NARCIS (Netherlands)

    Matthies, I.E.; Hintum, van T.J.L.; Weise, S.; Röder, M.S.

    2012-01-01

    Diversity arrays technology (DArT) and simple sequence repeat (SSR) markers were applied to investigate population structure, extent of linkage disequilibrium and genetic diversity (kinship) on a genome-wide level in European barley (Hordeum vulgare L.) cultivars. A set of 183 varieties could be cle

  4. Leibniz's Infinitesimals: Their Fictionality, Their Modern Implementations, And Their Foes From Berkeley To Russell And Beyond

    CERN Document Server

    Katz, Mikhail G; 10.1007/s10670-012-9370-y

    2012-01-01

    Many historians of the calculus deny significant continuity between infinitesimal calculus of the 17th century and 20th century developments such as Robinson's theory. Robinson's hyperreals, while providing a consistent theory of infinitesimals, require the resources of modern logic; thus many commentators are comfortable denying a historical continuity. A notable exception is Robinson himself, whose identification with the Leibnizian tradition inspired Lakatos, Laugwitz, and others to consider the history of the infinitesimal in a more favorable light. Inspite of his Leibnizian sympathies, Robinson regards Berkeley's criticisms of the infinitesimal calculus as aptly demonstrating the inconsistency of reasoning with historical infinitesimal magnitudes. We argue that Robinson, among others, overestimates the force of Berkeley's criticisms, by underestimating the mathematical and philosophical resources available to Leibniz. Leibniz's infinitesimals are fictions, not logical fictions, as Ishiguro proposed, but ...

  5. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  6. A Community of Scientists and Educators: The Compass Project at UC Berkeley

    Science.gov (United States)

    Roth, Nathaniel; Schwab, Josiah

    2016-01-01

    The Berkeley Compass Project is a self-formed group of graduate and undergraduate students in the physical sciences at the University of California, Berkeley. Its goals are to improve undergraduate physics education, provide opportunities for professional development, and increase retention of students from populations underrepresented in the physical sciences. For undergraduate students, the core Compass experience consists of a summer program and several seminar courses. These programs are designed to foster a diverse, collaborative student community in which students engage in authentic research practices and regular self-reflection. Graduate students, together with upper-level undergraduates, design and run all Compass programs. Compass strives to incorporate best practices from the science education literature. Experiences in Compass leave participants poised to be successful students researchers, teachers, and mentors.

  7. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  8. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  9. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  10. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates.

    Directory of Open Access Journals (Sweden)

    Haisheng Nie

    Full Text Available BACKGROUND: The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. METHODOLOGY/PRINCIPAL FINDINGS: We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. CONCLUSIONS: The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems

  11. Identification of Bari Transposons in 23 Sequenced Drosophila Genomes Reveals Novel Structural Variants, MITEs and Horizontal Transfer.

    Directory of Open Access Journals (Sweden)

    Antonio Palazzo

    Full Text Available Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.

  12. Life-style and genome structure of marine Pseudoalteromonas siphovirus B8b isolated from the northwestern Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Elena Lara

    Full Text Available Marine viruses (phages alter bacterial diversity and evolution with impacts on marine biogeochemical cycles, and yet few well-developed model systems limit opportunities for hypothesis testing. Here we isolate phage B8b from the Mediterranean Sea using Pseudoalteromonas sp. QC-44 as a host and characterize it using myriad techniques. Morphologically, phage B8b was classified as a member of the Siphoviridae family. One-step growth analyses showed that this siphovirus had a latent period of 70 min and released 172 new viral particles per cell. Host range analysis against 89 bacterial host strains revealed that phage B8b infected 3 Pseudoalteromonas strains (52 tested, >99.9% 16S rRNA gene nucleotide identity and 1 non-Pseudoaltermonas strain belonging to Alteromonas sp. (37 strains from 6 genera tested, which helps bound the phylogenetic distance possible in a phage-mediated horizontal gene transfer event. The Pseudoalteromonas phage B8b genome size was 42.7 kb, with clear structural and replication modules where the former were delineated leveraging identification of 16 structural genes by virion structural proteomics, only 4 of which had any similarity to known structural proteins. In nature, this phage was common in coastal marine environments in both photic and aphotic layers (found in 26.5% of available viral metagenomes, but not abundant in any sample (average per sample abundance was 0.65% of the reads. Together these data improve our understanding of siphoviruses in nature, and provide foundational information for a new 'rare virosphere' phage-host model system.

  13. The design and implementation of Berkeley Lab's linuxcheckpoint/restart

    Energy Technology Data Exchange (ETDEWEB)

    Duell, Jason

    2005-04-30

    This paper describes Berkeley Linux Checkpoint/Restart (BLCR), a linux kernel module that allows system-level checkpoints on a variety of Linux systems. BLCR can be used either as a stand alone system for checkpointing applications on a single machine, or as a component by a scheduling system or parallel communication library for checkpointing and restoring parallel jobs running on multiple machines. Integration with Message Passing Interface (MPI) and other parallel systems is described.

  14. Status of the Berkeley small cyclotron AMS [accelerator mass spectrometry] project

    International Nuclear Information System (INIS)

    A small, low-energy cyclotron has been designed and built at Berkeley for direct detection dating of 14C. The system combines the use of a negative ion source to reject 14N with the high resolution of a cyclotron to reject other background ions. In order to allow the dating of old and small samples, the present system incorporates a high-current external ion source and injection beamline. The system is expected to be operational by mid-1987

  15. La critique du réalisme leibnizien dans le De Motu de Berkeley.

    Directory of Open Access Journals (Sweden)

    Luc Peterschmitt

    2005-04-01

    Full Text Available L’objet de Berkeley dans le De Motu est de marquer l’autonomie de la mécanique (ou dynamique et de la métaphysique, en montrant que le concept de force tel qu’on l’utilise en mécanique ne peut servir à déterminer ce qu’il en est de la nature des choses. Pour établir cette distinction entre ces deux domaines du savoir, Berkeley à la fois s’appuie sur et critique la notion leibnizienne de force : Leibniz assure la réalité de la force dérivative (concept mécanique en la fondant sur la forme substantielle des corps, ou force primitive (concept métaphysique, qui permet d’attribuer aux corps une efficace causale. En récusant la forme substantielle comme inconcevable, Berkeley ruine alors le réalisme leibnizien, en vertu du lien posé par Leibniz lui-même entre sa métaphysique et sa dynamique. Mais du coup, cela permet à Berkeley d’instaurer un nouveau rôle à la métaphysique face à la mécanique : non plus un rôle fondateur comme celui que lui assigne Leibniz, mais un rôle critique, celui d’une instance qui dit les conditions sous lesquelles l’usage des concept est valide en science.

  16. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    International Nuclear Information System (INIS)

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed

  17. Gilbert Newton Lewis: his influence on physical-organic chemists at Berkeley

    Energy Technology Data Exchange (ETDEWEB)

    Calvin, M.

    1982-03-01

    A review is presented of the historical contributions of Gilbert N. Lewis to science and a discussion of the influence of Lewis on the research of the members of the physical-organic staff at Berkeley, including Melvin Calvin, during the twenties, thirties and forties. Some specific examples are discussed. Also, the effect of Lewis, his science and administrative concepts in the creation of excellence in a department of chemistry are reviewed.

  18. An Introduction to the 2001 Issue of the Berkeley Planning Journa

    OpenAIRE

    Dowall, David

    2001-01-01

    Planners have always been deeply interested in and concerned about the effects of technology on human settlements. There is a rich and var­ ied literature on technics and civilization, to borrow from Mumford's brilliant account ( 193 4). Whether looking at machines, autos, comput­ ers or the Internet, this literature provides a rich treasure-trove of social and historical analysis. This issue of the Berkeley Planningjournal makes a contribution to this topic by examining the effects of techno...

  19. Progress Report on the Berkeley/Anglo-Australian Observatory High-redshift Supernova Search

    Science.gov (United States)

    Goldhaber, G.; Perlmutter, S.; Pennypacker, C.; Marvin, H.; Muller, R. A.; Couch, W.; Boyle, B.

    1990-11-01

    There are two main efforts related to supernovae in progress at Berkeley. The first is an automated supernova search for nearby supernovae, which was already discussed by Carl Pennypacker at this conference. The second is a search for distant supernovae, in the z = 0.3 to 0.5 region, aimed at measuring {Omega}. It is the latter that I want to discuss in this paper.

  20. Genome-Wide Mapping of Structural Variations Reveals a Copy Number Variant That Determines Reproductive Morphology in Cucumber.

    Science.gov (United States)

    Zhang, Zhonghua; Mao, Linyong; Chen, Huiming; Bu, Fengjiao; Li, Guangcun; Sun, Jinjing; Li, Shuai; Sun, Honghe; Jiao, Chen; Blakely, Rachel; Pan, Junsong; Cai, Run; Luo, Ruibang; Van de Peer, Yves; Jacobsen, Evert; Fei, Zhangjun; Huang, Sanwen

    2015-06-01

    Structural variations (SVs) represent a major source of genetic diversity. However, the functional impact and formation mechanisms of SVs in plant genomes remain largely unexplored. Here, we report a nucleotide-resolution SV map of cucumber (Cucumis sativas) that comprises 26,788 SVs based on deep resequencing of 115 diverse accessions. The largest proportion of cucumber SVs was formed through nonhomologous end-joining rearrangements, and the occurrence of SVs is closely associated with regions of high nucleotide diversity. These SVs affect the coding regions of 1676 genes, some of which are associated with cucumber domestication. Based on the map, we discovered a copy number variation (CNV) involving four genes that defines the Female (F) locus and gives rise to gynoecious cucumber plants, which bear only female flowers and set fruit at almost every node. The CNV arose from a recent 30.2-kb duplication at a meiotically unstable region, likely via microhomology-mediated break-induced replication. The SV set provides a snapshot of structural variations in plants and will serve as an important resource for exploring genes underlying key traits and for facilitating practical breeding in cucumber. PMID:26002866

  1. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Science.gov (United States)

    Qiu, Jie; Wang, Yu; Wu, Sanling; Wang, Ying-Ying; Ye, Chu-Yu; Bai, Xuefei; Li, Zefeng; Yan, Chenghai; Wang, Weidi; Wang, Ziqiang; Shu, Qingyao; Xie, Jiahua; Lee, Suk-Ha; Fan, Longjiang

    2014-01-01

    Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou) and a wild line (Lanxi 1) collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1) no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2) besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3) high heterozygous rates (0.19-0.49) were observed in several semi-wild lines; and (4) over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  2. Genome re-sequencing of semi-wild soybean reveals a complex Soja population structure and deep introgression.

    Directory of Open Access Journals (Sweden)

    Jie Qiu

    Full Text Available Semi-wild soybean is a unique type of soybean that retains both wild and domesticated characteristics, which provides an important intermediate type for understanding the evolution of the subgenus Soja population in the Glycine genus. In this study, a semi-wild soybean line (Maliaodou and a wild line (Lanxi 1 collected from the lower Yangtze regions were deeply sequenced while nine other semi-wild lines were sequenced to a 3-fold genome coverage. Sequence analysis revealed that (1 no independent phylogenetic branch covering all 10 semi-wild lines was observed in the Soja phylogenetic tree; (2 besides two distinct subpopulations of wild and cultivated soybean in the Soja population structure, all semi-wild lines were mixed with some wild lines into a subpopulation rather than an independent one or an intermediate transition type of soybean domestication; (3 high heterozygous rates (0.19-0.49 were observed in several semi-wild lines; and (4 over 100 putative selective regions were identified by selective sweep analysis, including those related to the development of seed size. Our results suggested a hybridization origin for the semi-wild soybean, which makes a complex Soja population structure.

  3. Geochip: A high throughput genomic tool for linking community structure to functions

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  4. The little-studied cluster Berkeley 90. II. The foreground ISM

    CERN Document Server

    Apellániz, J Maíz; Sota, A; Simón-Díaz, S

    2015-01-01

    Context: Nearly one century after their discovery, the carrier(s) of Diffuse Interstellar Bands is/are still unknown and there are few sightlines studied in detail for a large number of DIBs. Aims: We want to study the ISM sightlines towards LS III +46 11 and LS III +46 12, two early-O-type stellar systems, and LS III +46 11 B, a mid-B-type star. The three targets are located in the stellar cluster Berkeley 90 and have a high extinction. Methods: We use the multi-epoch high-S/N optical spectra presented in paper I (Ma\\'iz Apell\\'aniz et al. 2015), the extinction results derived there, and additional spectra. Results: We have measured equivalent widths, velocities, and FWHMs for a large number of absorption lines in the rich ISM spectrum in front of Berkeley 90. The absorbing ISM has at least two clouds at different velocities, one with a lower column density (thinner) in the K I lines located away from Berkeley 90 and another one with a higher column density (thicker) associated with the cluster. The first cl...

  5. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  6. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  7. Medicago truncatula, an intergenomic vehicle for the map-based cloning of pea (Pisum sativum) genes. Comparative structural genomic studies of the pea Sym2-Nod3 region

    OpenAIRE

    Gualtieri González-Latorre, G.S.

    2001-01-01

    To determine the usefulness of M. truncatula as intergenomic vehicle for the positional cloning of pea genes it was studied whether these legumes are microsyntenic. These studies were focused on the pea Sym2 and Nod3 genomic regions. The M. truncatula orthologous genomic regions have been cloned and it was shown that these regions of the two legumes are microsyntenic. Both Sym2 and Nod3 play a key role in the pea- Rhizobium symbiosis, controlling Nod factor-structure dependent infection and a...

  8. Mitochondrial genome diversity and population structure of the giant squid Architeuthis

    DEFF Research Database (Denmark)

    Winkelmann, Inger; Campos, Paula F; Strugnell, Jan;

    2013-01-01

    Despite its charismatic appeal to both scientists and the general public, remarkably little is known about the giant squid Architeuthis, one of the largest of the invertebrates. Although specimens of Architeuthis are becoming more readily available owing to the advancement of deep-sea fishing...... information to provide new and otherwise difficult to obtain insights into the life of this animal. The results show no detectable phylogenetic structure at the mitochondrial level and, furthermore, that the level of nucleotide diversity is exceptionally low. These observations are consistent...

  9. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    CERN Multimedia

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  10. Hayward Fault rate constraints at Berkeley: Evaluation of the 335-meter Strawberry Creek offset

    Science.gov (United States)

    Williams, P. L.

    2007-12-01

    At UC Berkeley the active channel of Strawberry Creek is offset 335 meters by the Hayward fault and two abandoned channels of Strawberry Creek are laterally offset 580 and 730 meters. These relationships record the displacement of the northern Hayward fault at Berkeley over a period of tens of millennia. The Strawberry Creek site has a similar geometry to the central San Andreas fault's Wallace Creek site, which arguably provides the best geological evidence of "millennial" fault kinematics in California (Sieh and Jahns, 1984). Slip rate determinations are an essential component of overall hazard evaluation for the Hayward fault, and this site is ripe to disclose a long-term form of this parameter, to contrast with geodetic and other geological rate evidence. Large offsets at the site may lower uncertainty in the rate equation relative to younger sites, as the affect of stream abandonment age, generally the greatest source of rate uncertainty, is greatly reduced. This is helpful here because it more-than-offsets uncertainties resulting from piercing projections to the fault. Strawberry Creek and its ancestral channels suggest west-side-up vertical deformation across the Hayward fault at this location. The development of the vertical deformation parameter will complement ongoing geodetic measurements, particularly InSAR, and motivate testing of other geological constraints. Up-to-the-west motion across the Hayward fault at Berkeley has important implications for the partitioning of strain and kinematics of the northern Hayward fault, and may explain anomalous up-on-the-west landforms elsewhere along the fault. For example, geological features of the western Berkeley Hills are consistent with rapid and recent uplift to the west of the fault. On the basis of a preliminary analysis of the offset channels of Strawberry Creek, up-to-the-west uplift is about 0.5mm/yr across the Hayward fault at Berkeley. If this is in fact the long-term rate, the 150 m height of the Hills

  11. targetTB: A target identification pipeline for Mycobacterium tuberculosis through an interactome, reactome and genome-scale structural analysis

    Directory of Open Access Journals (Sweden)

    Chandra Nagasuma

    2008-12-01

    Full Text Available Abstract Background Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion The pipeline developed provides

  12. The impact of genome-wide supported schizophrenia risk variants in the neurogranin gene on brain structure and function.

    Directory of Open Access Journals (Sweden)

    Esther Walton

    Full Text Available The neural mechanisms underlying genetic risk for schizophrenia, a highly heritable psychiatric condition, are still under investigation. New schizophrenia risk genes discovered through genome-wide association studies (GWAS, such as neurogranin (NRGN, can be used to identify these mechanisms. In this study we examined the association of two common NRGN risk single nucleotide polymorphisms (SNPs with functional and structural brain-based intermediate phenotypes for schizophrenia. We obtained structural, functional MRI and genotype data of 92 schizophrenia patients and 114 healthy volunteers from the multisite Mind Clinical Imaging Consortium study. Two schizophrenia-associated NRGN SNPs (rs12807809 and rs12541 were tested for association with working memory-elicited dorsolateral prefrontal cortex (DLPFC activity and surface-wide cortical thickness. NRGN rs12541 risk allele homozygotes (TT displayed increased working memory-related activity in several brain regions, including the left DLPFC, left insula, left somatosensory cortex and the cingulate cortex, when compared to non-risk allele carriers. NRGN rs12807809 non-risk allele (C carriers showed reduced cortical gray matter thickness compared to risk allele homozygotes (TT in an area comprising the right pericalcarine gyrus, the right cuneus, and the right lingual gyrus. Our study highlights the effects of schizophrenia risk variants in the NRGN gene on functional and structural brain-based intermediate phenotypes for schizophrenia. These results support recent GWAS findings and further implicate NRGN in the pathophysiology of schizophrenia by suggesting that genetic NRGN risk variants contribute to subtle changes in neural functioning and anatomy that can be quantified with neuroimaging methods.

  13. Costs, Culture, and Complexity: An Analysis of Technology Enhancements in a Large Lecture Course at UC Berkeley

    OpenAIRE

    Harley, Diane; Henke, Jonathan; Lawrence, Shannon; McMartin, Flora; Maher, Michael; Gawlik, Marytza; Muller, Parisa

    2003-01-01

    As colleges and universities nationwide anticipate enrolling more than two million new students over the next decade, UC Berkeley is exploring options for serving more students, more cost effectively, in large lecture courses. This research project analyzes economic and pedagogical questions related to the use of on-line lecture and laboratory material in a large introductory chemistry course at UC Berkeley. We undertook a quasi-experimental two-year study to determine if the utilization of o...

  14. A novel rat genomic simple repeat DNA with RNA-homology shows triplex (H-DNA)-like structure and tissue-specific RNA expression

    International Nuclear Information System (INIS)

    Mammalian genome contains a wide variety of repetitive DNA sequences of relatively unknown function. We report a novel 227 bp simple repeat DNA (3.3 DNA) with a d {(GA) 7A (AG) 7} dinucleotide mirror repeat from the rat (Rattus norvegicus) genome. 3.3 DNA showed 75-85% homology with several eukaryotic mRNAs due to (GA/CU) n dinucleotide repeats by nBlast search and a dispersed distribution in the rat genome by Southern blot hybridization with [32P]3.3 DNA. The d {(GA) 7A (AG) 7} mirror repeat formed a triplex (H-DNA)-like structure in vitro. Two large RNAs of 9.1 and 7.5 kb were detected by [32P]3.3 DNA in rat brain by Northern blot hybridization indicating expression of such simple sequence repeats at RNA level in vivo. Further, several cDNAs were isolated from a rat cDNA library by [32P]3.3 DNA probe. Three such cDNAs showed tissue-specific RNA expression in rat. pRT 4.1 cDNA showed strong expression of a 2.39 kb RNA in brain and spleen, pRT 5.5 cDNA showed strong expression of a 2.8 kb RNA in brain and a 3.9 kb RNA in lungs, and pRT 11.4 cDNA showed weak expression of a 2.4 kb RNA in lungs. Thus, genomic simple sequence repeats containing d (GA/CT) n dinucleotides are transcriptionally expressed and regulated in rat tissues. Such d (GA/CT) n dinucleotide repeats may form structural elements (e.g., triplex) which may be sites for functional regulation of genomic coding sequences as well as RNAs. This may be a general function of such transcriptionally active simple sequence repeats widely dispersed in mammalian genome

  15. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    Science.gov (United States)

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions. PMID:26996788

  16. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    belonging to the insect allatostatin neuropeptide family. In the present paper, we screened the Berkeley "Drosophila Genome Project" database with "electronic probes" corresponding to the conserved regions of the four rat (delta, kappa, mu, nociceptin/orphanin FQ) opioid receptors. This yielded alignment...

  17. Receptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception.

    Directory of Open Access Journals (Sweden)

    Natacha Roudnitzky

    Full Text Available The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R genes, such as the long-known association between genetic polymorphisms in TAS2R38 and bitter taste perception of phenylthiocarbamide. Yet, due to overlaps in specificities across receptors, such associations with a single TAS2R locus are uncommon. Therefore, to investigate more complex associations, we examined taste responses to six structurally diverse compounds (absinthin, amarogentin, cascarillin, grosheimin, quassin, and quinine in a sample of the Caucasian population. By sequencing all bitter receptor loci, inferring long-range haplotypes, mapping their effects on phenotype variation, and characterizing functionally causal allelic variants, we deciphered at the molecular level how a subjects' genotype for the whole-family of TAS2R genes shapes variation in bitter taste perception. Within each haplotype block implicated in phenotypic variation, we provided evidence for at least one locus harboring functional polymorphic alleles, e.g. one locus for sensitivity to amarogentin, one of the most bitter natural compounds known, and two loci for sensitivity to grosheimin, one of the bitter compounds of artichoke. Our analyses revealed also, besides simple associations, complex associations of bitterness sensitivity across TAS2R loci. Indeed, even if several putative loci harbored both high- and low-sensitivity alleles, phenotypic variation depended on linkage between these alleles. When sensitive alleles for bitter compounds were maintained in the same linkage phase, genetically driven perceptual differences were obvious, e.g. for grosheimin. On the contrary, when sensitive alleles were in opposite phase, only weak genotype

  18. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: genomic structure, chromosomal localization, and expression pattern.

    Science.gov (United States)

    Contos, J J; Chun, J

    2001-04-18

    The extracellular signaling molecule, lysophosphatidic acid (LPA), mediates proliferative and morphological effects on cells and has been proposed to be involved in several biological processes including neuronal development, wound healing, and cancer progression. Three mammalian G protein-coupled receptors, encoded by genes designated lp (lysophospholipid) receptor or edg (endothelial differentiation gene), mediate the effects of LPA, activating similar (e.g. Ca(2+) release) as well as distinct (neurite retraction) responses. To understand the evolution and function of LPA receptor genes, we characterized lp(A3)/Edg7 in mouse and human and compared the expression pattern with the other two known LPA receptor genes (lp(A1)/Edg2 and lp(A2)/Edg4non-mutant). We found mouse and human lp(A3) to have nearly identical three-exon genomic structures, with introns upstream of the coding region for transmembrane domain (TMD) I and within the coding region for TMD VI. This structure is similar to lp(A1) and lp(A2), indicating a common ancestral gene with two introns. We localized mouse lp(A3) to distal Chromosome 3 near the varitint waddler (Va) gene, in a region syntenic with the human lp(A3) chromosomal location (1p22.3-31.1). We found highest expression levels of each of the three LPA receptor genes in adult mouse testes, relatively high expression levels of lp(A2) and lp(A3) in kidney, and moderate expression of lp(A2) and lp(A3) in lung. All lp(A) transcripts were expressed during brain development, with lp(A1) and lp(A2) transcripts expressed during the embryonic neurogenic period, and lp(A3) transcript during the early postnatal period. Our results indicate both overlapping as well as distinct functions of lp(A1), lp(A2), and lp(A3). PMID:11313151

  19. The unique architecture and function of cellulose-interacting proteins in oomycetes revealed by genomic and structural analyses

    Directory of Open Access Journals (Sweden)

    Larroque Mathieu

    2012-11-01

    Full Text Available Abstract Background Oomycetes are fungal-like microorganisms evolutionary distinct from true fungi, belonging to the Stramenopile lineage and comprising major plant pathogens. Both oomycetes and fungi express proteins able to interact with cellulose, a major component of plant and oomycete cell walls, through the presence of carbohydrate-binding module belonging to the family 1 (CBM1. Fungal CBM1-containing proteins were implicated in cellulose degradation whereas in oomycetes, the Cellulose Binding Elicitor Lectin (CBEL, a well-characterized CBM1-protein from Phytophthora parasitica, was implicated in cell wall integrity, adhesion to cellulosic substrates and induction of plant immunity. Results To extend our knowledge on CBM1-containing proteins in oomycetes, we have conducted a comprehensive analysis on 60 fungi and 7 oomycetes genomes leading to the identification of 518 CBM1-containing proteins. In plant-interacting microorganisms, the larger number of CBM1-protein coding genes is expressed by necrotroph and hemibiotrophic pathogens, whereas a strong reduction of these genes is observed in symbionts and biotrophs. In fungi, more than 70% of CBM1-containing proteins correspond to enzymatic proteins in which CBM1 is associated with a catalytic unit involved in cellulose degradation. In oomycetes more than 90% of proteins are similar to CBEL in which CBM1 is associated with a non-catalytic PAN/Apple domain, known to interact with specific carbohydrates or proteins. Distinct Stramenopile genomes like diatoms and brown algae are devoid of CBM1 coding genes. A CBM1-PAN/Apple association 3D structural modeling was built allowing the identification of amino acid residues interacting with cellulose and suggesting the putative interaction of the PAN/Apple domain with another type of glucan. By Surface Plasmon Resonance experiments, we showed that CBEL binds to glycoproteins through galactose or N-acetyl-galactosamine motifs. Conclusions This study

  20. Genomic structure analysis of SNC6, a progesterone-receptor associated protein gene, and cloning and characterization of its 5'-flanking region . 

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective: To analyze the genomic structure of SNC6, a progesterone-receptor associated protein gene and its regulatory elements in its 5'-flanking region. Methods: Genomic sequence from GenBank database (accession number: Z98048) covering the whole SNC6 gene was used to analyze the genomic structure of SNC6 and design primers for PCR amplification of its 5'-flanking region. A 1894 bp fragment of the 5'-flanking region (-1814 to +75) was cloned by PCR using genomic DNA from a healthy donor peripheral blood lymphocyte as template. This fragment, as well as 3 shorter derivative fragments (1423 bp, 632 bp and 416 bp, which correspond to -1344 to +75, -552 to +75 and -337 to +75 respectively), were subcloned into pGL2 series luciferase reporter vectors. These constructs were introduced into colorectal cancer cell line SW620 for transient expression of reporter gene and luciferase activities were measured. Results: The genomic structure analysis showed there are 12 exons for SNC6 gene, which spans 32017 bp (nt71529 to nt39513 in Z98048 sequence). All transfected SW620 cells with the above 5-flanking region-containing constructs showed luciferase activities. The highest luciferase activities were measured in transfected cells with vectors containing 1894 bp fragments, and the lowest luciferase activities were measured in transfected cells with vectors containing 416 bp fragments. Luciferase activities were higher in transfected cells with vectors containing 632 bp fragments than that in transfected cells with vectors containing 1423 bp fragments. Conclusion: The basic transcription-promoting element (promoter) for SNC6 expression resides between 0 to -337, and two transcription-enhancing elements (enhancer) resides between -337 to -552 and -1344 to -1814, whereas one transcription-inhibiting element (silencer) exists between -552 to -1344.

  1. Genome Science and Personalized Cancer Treatment (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Gray, Joe

    2009-08-04

    Summer Lecture Series 2009: Results from the Human Genome Project are enabling scientists to understand how individual cancers form and progress. This information, when combined with newly developed drugs, can optimize the treatment of individual cancers. Joe Gray, director of Berkeley Labs Life Sciences Division and Associate Laboratory Director for Life and Environmental Sciences, will focus on this approach, its promise, and its current roadblocks — particularly with regard to breast cancer.

  2. Split photosystem protein, linear-mapping topology, and growth of structural complexity in the plastid genome of chromera velia

    KAUST Repository

    Janouškovec, Jan

    2013-08-22

    The canonical photosynthetic plastid genomes consist of a single circular-mapping chromosome that encodes a highly conserved protein core, involved in photosynthesis and ATP generation. Here, we demonstrate that the plastid genome of the photosynthetic relative of apicomplexans, Chromera velia, departs from this view in several unique ways. Core photosynthesis proteins PsaA and AtpB have been broken into two fragments, which we show are independently transcribed, oligoU-tailed, translated, and assembled into functional photosystem I and ATP synthase complexes. Genome-wide transcription profiles support expression of many other highly modified proteins, including several that contain extensions amounting to hundreds of amino acids in length. Canonical gene clusters and operons have been fragmented and reshuffled into novel putative transcriptional units. Massive genomic coverage by paired-end reads, coupled with pulsed-field gel electrophoresis and polymerase chain reaction, consistently indicate that the C. velia plastid genome is linear-mapping, a unique state among all plastids. Abundant intragenomic duplication probably mediated by recombination can explain protein splits, extensions, and genome linearization and is perhaps the key driving force behind the many features that defy the conventional ways of plastid genome architecture and function. © The Author 2013.

  3. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L. Genome

    Directory of Open Access Journals (Sweden)

    Navdeep Gill

    2014-04-01

    Full Text Available Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the genomic distribution of these repeats to that found in other food crops and model species. We also examine the expression of transposable element-related transcripts in EST databases for sunflower to determine the representation of repeats in the transcriptome and to measure their transcriptional activity. Our data confirm previous reports in suggesting that the sunflower genome is >78% repetitive. Sunflower repeats share very little similarity to other plant repeats such as those of Arabidopsis, rice, maize and wheat; overall 28% of repeats are “novel” to sunflower. The repetitive sequences appear to be randomly distributed within the sequenced BACs. Assuming the 96 BACs are representative of the genome as a whole, then approximately 5.2% of the sunflower genome comprises non TE-related genic sequence, with an average gene density of 18kbp/gene. Expression levels of these transposable elements indicate tissue specificity and differential expression in vegetative and reproductive tissues, suggesting that expressed TEs might contribute to sunflower development. The assembled BACs will also be useful for assessing the quality of several different draft assemblies of the sunflower genome and for annotating the reference sequence.

  4. Whole genome sequence comparison of ten diagnostic brucellaphages propagated on two Brucella abortus hosts

    OpenAIRE

    Tevdoradze, Ekaterine; Farlow, Jason; Kotorashvili, Adam; Skhirtladze, Natia; Antadze, Irina; Gunia, Sophio; Balarjishvili, Nana; Kvachadze, Leila; Kutateladze, Mzia

    2015-01-01

    Background Recently the genome sequences of two brucellaphages, isolated in Georgia (Tb) and Mexico (Pr) were reported revealing pronounced sequence homogeneity and the presence of two major indels discriminating the two phages. Subsequent genome sequencing of six diagnostic brucellaphages: Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C phages identified three major genetic groups. However, the propensity for fine-scale genetic variability of diverse brucellaphages gr...

  5. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  6. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  7. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  8. High energy nucleus--nucleus studies at the Berkeley Bevalac. [Survey

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, L.S.

    1976-09-01

    A survey of high-energy nucleus--nucleus experiments performed at the Berkeley Bevalac Facility is presented. Experimental results are divided into the general areas of peripheral and central collisions. Results on projectile and target fragmentation, total cross-section measurements, pion and photon production, and charged-particle multiplicities are stressed. Recently, there have been theoretical predictions concerning the possibility of observing new phenomena such as shock waves, pion condensates, or collapsed nuclear matter. Existing data relevant to some of these speculations are discussed. A brief discussion of future developments with high-energy nuclear beams is also presented. 27 figures, 1 table.

  9. Nongenetic functions of the genome.

    Science.gov (United States)

    Bustin, Michael; Misteli, Tom

    2016-05-01

    The primary function of the genome is to store, propagate, and express the genetic information that gives rise to a cell's architectural and functional machinery. However, the genome is also a major structural component of the cell. Besides its genetic roles, the genome affects cellular functions by nongenetic means through its physical and structural properties, particularly by exerting mechanical forces and by serving as a scaffold for binding of cellular components. Major cellular processes affected by nongenetic functions of the genome include establishment of nuclear structure, signal transduction, mechanoresponses, cell migration, and vision in nocturnal animals. We discuss the concept, mechanisms, and implications of nongenetic functions of the genome.

  10. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  11. Sequencing and analysis of the prolate-headed lactococcal bacteriophage c2 genome and identification of the structural genes.

    Science.gov (United States)

    Lubbers, M W; Waterfield, N R; Beresford, T P; Le Page, R W; Jarvis, A W

    1995-12-01

    The 22,163-bp genome of the lactococcal prolate-headed phage c2 was sequenced. Thirty-nine open reading frames (ORFs), early and late promoters, and a putative transcription terminator were identified. Twenty-two ORFs were in the early gene region, and 17 were in the late gene region. Putative genes for a DNA polymerase, a recombination protein, a sigma factor protein, a transcription regulatory protein, holin proteins, and a terminase were identified. Transcription of the early and late genes proceeded divergently from a noncoding 611-bp region. A 521-bp fragment contained within the 611-bp intergenic region could act as an origin of replication in Lactococcus lactis. Three major structural proteins, with sizes of 175, 90, and 29 kDa, and eight minor proteins, with sizes of 143, 82, 66, 60, 44, 42, 32, and 28 kDa, were identified. Several of these proteins appeared to be posttranslationally modified by proteolytic cleavage. The 175- and 90-kDa proteins were identified as the major phage head proteins, and the 29- and 60-kDa proteins were identified as the major tail protein and (possibly) the tail adsorption protein, respectively. The head proteins appeared to be covalently linked multimers of the same 30-kDa gene product. Phage c2 and prolate-headed lactococcal phage bIL67 (C. Schouler, S. D. Ehrlich, and M.-C. Chopin, Microbiology 140:3061-3069, 1994) shared 80% nucleotide sequence identity. However, several DNA deletions or insertions which corresponded to the loss or acquisition of specific ORFs, respectively, were noted. The identification of direct nucleotide repeats flanking these sequences indicated that recombination may be important in the evolution of these phages.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Synonymous Codon Usage Bias in the Plastid Genome is Unrelated to Gene Structure and Shows Evolutionary Heterogeneity.

    Science.gov (United States)

    Qi, Yueying; Xu, Wenjing; Xing, Tian; Zhao, Mingming; Li, Nana; Yan, Li; Xia, Guangmin; Wang, Mengcheng

    2015-01-01

    Synonymous codon usage bias (SCUB) is the nonuniform usage of codons, occurring often in nearly all organisms. Our previous study found that SCUB is correlated with intron number, is unequal among exons in the plant nuclear genome, and mirrors evolutionary specialization. However, whether this rule exists in the plastid genome has not been addressed. Here, we present an analysis of SCUB in the plastid genomes of 25 species from lower to higher plants (algae, bryophytes, pteridophytes, gymnosperms, and spermatophytes). We found NNA and NNT (A- and T-ending codons) are preferential in the plastid genomes of all plants. Interestingly, this preference is heterogeneous among taxonomies of plants, with the strongest preference in bryophytes and the weakest in pteridophytes, suggesting an association between SCUB and plant evolution. In addition, SCUB frequencies are consistent among genes with varied introns and among exons, indicating that the bias of NNA and NNT is unrelated to either intron number or exon position. Further, SCUB is associated with DNA methylation-induced conversion of cytosine to thymine in the vascular plants but not in algae or bryophytes. These data demonstrate that these SCUB profiles in the plastid genome are distinctly different compared with the nuclear genome.

  13. The major histocompatibility complex (Mhc class IIB region has greater genomic structural flexibility and diversity in the quail than the chicken

    Directory of Open Access Journals (Sweden)

    Kulski Jerzy K

    2006-12-01

    Full Text Available Abstract Background The quail and chicken major histocompatibility complex (Mhc genomic regions have a similar overall organization but differ markedly in that the quail has an expanded number of duplicated class I, class IIB, natural killer (NK-receptor-like, lectin-like and BG genes. Therefore, the elucidation of genetic factors that contribute to the greater Mhc diversity in the quail would help to establish it as a model experimental animal in the investigation of avian Mhc associated diseases. Aims and approaches The main aim here was to characterize the genetic and genomic features of the transcribed major quail MhcIIB (CojaIIB region that is located between the Tapasin and BRD2 genes, and to compare our findings to the available information for the chicken MhcIIB (BLB. We used four approaches in the study of the quail MhcIIB region, (1 haplotype analyses with polymorphic loci, (2 cloning and sequencing of the RT-PCR CojaIIB products from individuals with different haplotypes, (3 genomic sequencing of the CojaIIB region from the individuals with the different haplotypes, and (4 phylogenetic and duplication analysis to explain the variability of the region between the quail and the chicken. Results Our results show that the Tapasin-BRD2 segment of the quail Mhc is highly variable in length and in gene transcription intensity and content. Haplotypic sequences were found to vary in length between 4 to 11 kb. Tapasin-BRD2 segments contain one or two major transcribed CojaIIBs that were probably generated by segmental duplications involving c-type lectin-like genes and NK receptor-like genes, gene fusions between two CojaIIBs and transpositions between the major and minor CojaIIB segments. The relative evolutionary speed for generating the MhcIIBs genomic structures from the ancestral BLB2 was estimated to be two times faster in the quail than in the chicken after their separation from a common ancestor. Four types of genomic rearrangement

  14. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  15. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  16. Searching for multiple stellar populations in the massive, old open cluster Berkeley 39

    CERN Document Server

    Bragaglia, A; Carretta, E; D'Orazi, V; Sneden, C; Lucatello, S

    2012-01-01

    The most massive star clusters include several generations of stars with a different chemical composition (mainly revealed by an Na-O anti-correlation) while low-mass star clusters appear to be chemically homogeneous. We are investigating the chemical composition of several clusters with masses of a few 10^4 Msun to establish the lower mass limit for the multiple stellar population phenomenon. Using FLAMES@VLT spectra we determine abundances of Fe, O, Na, and several other elements (alpha, Fe-peak, and neutron-capture elements) in the old open cluster Berkeley 39. This is a massive open cluster: M~10^4 Msun, approximately at the border between small globular clusters and large open clusters. Our sample size of about 30 stars is one of the largest studied for abundances in any open cluster to date, and will be useful to determine improved cluster parameters, such as age, distance, and reddening when coupled with precise, well-calibrated photometry. We find that Berkeley 39 is slightly metal-poor, =-0.20, in ag...

  17. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  18. NGC 1817, NGC 2141, and Berkeley 81: three BOCCE clusters of intermediate age

    CERN Document Server

    Donati, P; Bragaglia, A; Cignoni, M; Tosi, M

    2013-01-01

    In this paper we analyse the evolutionary status of three open clusters: NGC 1817, NGC 2141, and Berkeley 81. They are all of intermediate age, two are located in the Galactic anti-centre direction while the third one is located in the Galactic centre direction. All of them were observed with LBC@LBT using the Bessel B, V, and I filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMDs with a library of synthetic CMDs generated with different evolutionary sets (Padova, FRANEC, and FST). This analysis shows that NGC 1817 has subsolar metallicity, age between 0.8 and 1.2 Gyr, reddening E(B-V) in the range 0.21 and 0.34, and distance modulus (m-M)_0 of about 10.9; NGC 2141 is older, with age in the range 1.25 and 1.9 Gyr, E(B-V) between 0.36 and 0.45, (m-M)_0 between 11.95 and 12.21, and subsolar metallicity; Berkeley~81 has metallicity about solar, with age between 0.75 and 1.0 Gyr, has reddening E(B-V)~0.90...

  19. The old anticentre open cluster Berkeley 32: membership and fundamental parameters

    CERN Document Server

    D'Orazi, V; Fabrizio, L D; Held, E V; Tosi, M

    2006-01-01

    We have obtained medium-low resolution spectroscopy and BVI CCD imaging of Berkeley 32, an old open cluster which lies in the anticentre direction. From the radial velocities of 48 stars in the cluster direction we found that 31 of them, in crucial evolutionary phases, are probable cluster members, with an average radial velocity of +106.7 (sigma = 8.5) km/s. From isochrone fitting to the colour magnitude diagrams of Berkeley 32 we have obtained an age of 6.3 Gyr, (m-M)0 = 12.48 and E(B-V) = 0.10. The best fit is obtained with Z=0.008. A consistent distance, (m-M)0 ~= 12.6 +/- 0.1, has been derived from the mean magnitude of red clump stars with confirmed membership; we may assume (m-M)0 ~= 12.55 +/- 0.1. The colour magnitude diagram of the nearby field observed to check for field stars contamination looks intriguingly similar to that of the Canis Major overdensity.

  20. Exploring functional elements and genomic variation in the noncoding genome

    NARCIS (Netherlands)

    van Heesch, S.A.A.C.

    2014-01-01

    Gene expression regulation is a delicate process that depends on multiple aspects including genome structure and transcription factor binding to DNA elements. The majority of our genome consists of noncoding DNA, which was shown to be crucial in providing the correct context for genome function. Alt

  1. The walnut (Juglans regia) genome sequence reveals diversity in genes coding for the biosynthesis of non-structural polyphenols.

    Science.gov (United States)

    Martínez-García, Pedro J; Crepeau, Marc W; Puiu, Daniela; Gonzalez-Ibeas, Daniel; Whalen, Jeanne; Stevens, Kristian A; Paul, Robin; Butterfield, Timothy S; Britton, Monica T; Reagan, Russell L; Chakraborty, Sandeep; Walawage, Sriema L; Vasquez-Gross, Hans A; Cardeno, Charis; Famula, Randi A; Pratt, Kevin; Kuruganti, Sowmya; Aradhya, Mallikarjuna K; Leslie, Charles A; Dandekar, Abhaya M; Salzberg, Steven L; Wegrzyn, Jill L; Langley, Charles H; Neale, David B

    2016-09-01

    The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-β-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-β-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.

  2. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  3. Molecular cloning, sequence analysis and expression of genome segment 7 (S7) of Antheraea mylitta cypovirus (AmCPV) that encodes a viral structural protein.

    Science.gov (United States)

    Chavali, Venkata Ramana Murthy; Ghosh, Ananta K

    2007-10-01

    The Genome segment 7 (S7) of the 11 double stranded RNA genomes from Antheraea mylitta cypovirus (AmCPV) was converted to cDNA, cloned and sequenced. The nucleotide sequence showed that segment 7 consisted of 1789 nucleotides with an ORF of 530 amino acids and could encode a protein of approximately 61 kDa, termed P61. The 5' terminal sequence, AGTAAT and the 3' terminal sequence, AGAGC of the plus strand was found to be the same as genome segment 10 of AmCPV encoding polyhedrin. No sequence similarity was found by searching nucleic acid and protein sequence databases using BLAST. The secondary structure prediction showed the presence of 17 alpha-helices, 18 extended beta-sheets along the entire length of P61. The ORF of segment 7 was expressed in E. coli as His-tagged fusion protein, purified through Ni-NTA chromatography, and polyclonal antibody was raised in rabbit indicating that P61 is immunogenic. Immunoblot analysis using this antibody on viral infected cells as well as purified polyhedra showed that P61 is a viral structural protein. Motif scan search showed some similarity of P61 with Inosine monophosphate dehydrogenase (IMPDH) cystathionine-beta-synthase (CBS) domain at the C-terminus and it was hypothesized that by binding to single stranded viral RNA through its CBS domain P61 may help in virus replication or transcription.

  4. Coevolution analysis of Hepatitis C virus genome to identify the structural and functional dependency network of viral proteins

    Science.gov (United States)

    Champeimont, Raphaël; Laine, Elodie; Hu, Shuang-Wei; Penin, Francois; Carbone, Alessandra

    2016-05-01

    A novel computational approach of coevolution analysis allowed us to reconstruct the protein-protein interaction network of the Hepatitis C Virus (HCV) at the residue resolution. For the first time, coevolution analysis of an entire viral genome was realized, based on a limited set of protein sequences with high sequence identity within genotypes. The identified coevolving residues constitute highly relevant predictions of protein-protein interactions for further experimental identification of HCV protein complexes. The method can be used to analyse other viral genomes and to predict the associated protein interaction networks.

  5. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren;

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximately...... 11.5-Mb (G+C content, 61.52 draft genome sequence of B. terrae BS001 with the aim of providing insight into the genomic basis of its ecological success in fungus-affected soil settings....

  6. GPCR-I-TASSER: A Hybrid Approach to G Protein-Coupled Receptor Structure Modeling and the Application to the Human Genome.

    Science.gov (United States)

    Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang

    2015-08-01

    Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins.

  7. Cloning of rat thymic stromal lymphopoietin receptor (TSLPR) and characterization of genomic structure of murine Tslpr gene

    DEFF Research Database (Denmark)

    Blagoev, Blagoy; Nielsen, Mogens M; Angrist, Misha;

    2002-01-01

    expressed in rats suggesting that TSLPR may have roles in signaling outside the hematopoietic system. A zooblot analysis revealed that TSLPR is expressed in all vertebrate species examined. The absence of TSLPR in Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans genomes...

  8. Crystal Structure of the Homing Endonuclease I-CvuI Provides a New Template for Genome Modification

    DEFF Research Database (Denmark)

    Molina, Rafael; Redondo, Pilar; López-Méndez, Blanca;

    2015-01-01

    Homing endonucleases recognize and generate a DNA double-strand break, which has been used to promote gene targeting. These enzymes recognize long DNA stretches; they are highly sequence-specific enzymes and display a very low frequency of cleavage even in complete genomes. Although a large numbe...

  9. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  10. Photometric study of W UMa type binaries in the old open cluster Berkeley 39

    Institute of Scientific and Technical Information of China (English)

    Kandulapati Sriram; Yellapragada Ravi Kiron; Pasagada Vivekananda Rao

    2009-01-01

    The study of W UMa binary systems gives a wealth of information about their nature as well as their parent bodies(if any).like clusters.In this paper,we present the Ⅰ passband photometric solutions of four W UMa binaries in the open cluster Berkeley 39 using the latest version of the W-D program.The result shows that two binary systems are W-subtype W UMa binary systems and the other two systems are H-subtype W UMa binary systems.No third body has been found in any of the four systems.we found a correlation between the period and mass-ratio as well as temperature and mass-ratio for the respective variables,which is similar to the relationship between mass ratio and total mass of the contact binaries as shown by van't Veer and Li et al.

  11. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    International Nuclear Information System (INIS)

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  12. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    Science.gov (United States)

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  13. Studies, Transport and Treatment Concept for Boilers from Berkeley NPP, England - 13599

    Energy Technology Data Exchange (ETDEWEB)

    Wirendal, Bo [Studsvik Nuclear AB (Sweden); Saul, David; Robinson, Joe; Davidson, Gavin [Studsvik UK Ltd (United Kingdom)

    2013-07-01

    In November 2011 Studsvik was awarded a contract to transport five decommissioned boilers from the Berkeley Nuclear Licensed Site in the UK to the Studsvik Nuclear Site in Sweden for metal treatment and recycling. A key objective of the project was to remove the boilers from the site by 31 March 2012 and this was successfully achieved with all boilers off site by 22 March and delivered to Studsvik on 6 April. Four boilers have been processed and the fifth is planned for completion by end of December 2012.The project had many challenges including a very tight timescale and has been successfully delivered to cost and ahead of the baseline programme. This paper describes the project and the experience gained from treatment of the first four boilers. It is the first UK project to send large components overseas for recycling and provides new insight into the processing of Magnox gas-circuit components. (authors)

  14. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server cedrcd.lbl.gov''. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill lbl.gov) if you wish to make use of the data.

  15. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-03-12

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 89 CD-ROM diskettes (approximately 45 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access.

  16. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server ``cedrcd.lbl.gov``. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill@lbl.gov) if you wish to make use of the data.

  17. A highly conserved gene island of three genes on chromosome 3B of hexaploid wheat: diverse gene function and genomic structure maintained in a tightly linked block

    Directory of Open Access Journals (Sweden)

    Ma Wujun

    2010-05-01

    Full Text Available Abstract Background The complexity of the wheat genome has resulted from waves of retrotransposable element insertions. Gene deletions and disruptions generated by the fast replacement of repetitive elements in wheat have resulted in disruption of colinearity at a micro (sub-megabase level among the cereals. In view of genomic changes that are possible within a given time span, conservation of genes between species tends to imply an important functional or regional constraint that does not permit a change in genomic structure. The ctg1034 contig completed in this paper was initially studied because it was assigned to the Sr2 resistance locus region, but detailed mapping studies subsequently assigned it to the long arm of 3B and revealed its unusual features. Results BAC shotgun sequencing of the hexaploid wheat (Triticum aestivum cv. Chinese Spring genome has been used to assemble a group of 15 wheat BACs from the chromosome 3B physical map FPC contig ctg1034 into a 783,553 bp genomic sequence. This ctg1034 sequence was annotated for biological features such as genes and transposable elements. A three-gene island was identified among >80% repetitive DNA sequence. Using bioinformatics analysis there were no observable similarity in their gene functions. The ctg1034 gene island also displayed complete conservation of gene order and orientation with syntenic gene islands found in publicly available genome sequences of Brachypodium distachyon, Oryza sativa, Sorghum bicolor and Zea mays, even though the intergenic space and introns were divergent. Conclusion We propose that ctg1034 is located within the heterochromatic C-band region of deletion bin 3BL7 based on the identification of heterochromatic tandem repeats and presence of significant matches to chromodomain-containing gypsy LTR retrotransposable elements. We also speculate that this location, among other highly repetitive sequences, may account for the relative stability in gene order and

  18. Genome structure and organization of a member of a novel and distinct species of the genus Caulimovirus associated with dahlia mosaic.

    Science.gov (United States)

    Pahalawatta, V; Druffel, K L; Wyatt, S D; Eastwell, K C; Pappu, H R

    2008-01-01

    The genome structure and organization of a new and distinct caulimovirus that is widespread in dahlia (Dahlia variabilis) was determined. The double-stranded DNA genome was ca. 7.0 kb in size and shared many of the features of the members of the genus Caulimovirus, such as the presence of genes potentially coding for the movement protein, the inclusion body protein, and the reverse transcriptase (RT), and an intergenic region consisting of a potential 35S promoter. However, the virus differed from the previously described dahlia mosaic caulimovirus and other known caulimoviruses in that the aphid transmission factor (ATF) was absent and the putative coat protein contained a C-terminal deletion and was fused in-frame with the RT. Sequence identity at the amino acid level with known caulimoviruses including a previously reported caulimovirus from dahlia was low and ranged from 32 to 72%. The absence of an ATF and the highly divergent nature of the genomic sequence are characteristics of this new caulimovirus that is widely associated with dahlia. PMID:18253696

  19. Heat Shock Protein 70 and 90 Genes in the Harmful Dinoflagellate Cochlodinium polykrikoides: Genomic Structures and Transcriptional Responses to Environmental Stresses

    Directory of Open Access Journals (Sweden)

    Ruoyu Guo

    2015-01-01

    Full Text Available The marine dinoflagellate Cochlodinium polykrikoides is responsible for harmful algal blooms in aquatic environments and has spread into the world’s oceans. As a microeukaryote, it seems to have distinct genomic characteristics, like gene structure and regulation. In the present study, we characterized heat shock protein (HSP 70/90 of C. polykrikoides and evaluated their transcriptional responses to environmental stresses. Both HSPs contained the conserved motif patterns, showing the highest homology with those of other dinoflagellates. Genomic analysis showed that the CpHSP70 had no intron but was encoded by tandem arrangement manner with separation of intergenic spacers. However, CpHSP90 had one intron in the coding genomic regions, and no intergenic region was found. Phylogenetic analyses of separate HSPs showed that CpHSP70 was closely related with the dinoflagellate Crypthecodinium cohnii and CpHSP90 with other Gymnodiniales in dinoflagellates. Gene expression analyses showed that both HSP genes were upregulated by the treatments of separate algicides CuSO4 and NaOCl; however, they displayed downregulation pattern with PCB treatment. The transcription of CpHSP90 and CpHSP70 showed similar expression patterns under the same toxicant treatment, suggesting that both genes might have cooperative functions for the toxicant induced gene regulation in the dinoflagellate.

  20. The Use of Targeted Marker Subsets to Account for Population Structure and Relatedness in Genome-Wide Association Studies of Maize (Zea mays L.)

    Science.gov (United States)

    Chen, Angela H.; Lipka, Alexander E.

    2016-01-01

    A typical plant genome-wide association study (GWAS) uses a mixed linear model (MLM) that includes a trait as the response variable, a marker as an explanatory variable, and fixed and random effect covariates accounting for population structure and relatedness. Although effective in controlling for false positive signals, this model typically fails to detect signals that are correlated with population structure or are located in high linkage disequilibrium (LD) genomic regions. This result likely arises from each tested marker being used to estimate population structure and relatedness. Previous work has demonstrated that it is possible to increase the power of the MLM by estimating relatedness (i.e., kinship) with markers that are not located on the chromosome where the tested marker resides. To quantify the amount of additional significant signals one can expect using this so-called K_chr model, we reanalyzed Mendelian, polygenic, and complex traits in two maize (Zea mays L.) diversity panels that have been previously assessed using the traditional MLM. We demonstrated that the K_chr model could find more significant associations, especially in high LD regions. This finding is underscored by our identification of novel genomic signals proximal to the tocochromanol biosynthetic pathway gene ZmVTE1 that are associated with a ratio of tocotrienols. We conclude that the K_chr model can detect more intricate sources of allelic variation underlying agronomically important traits, and should therefore become more widely used for GWAS. To facilitate the implementation of the K_chr model, we provide code written in the R programming language. PMID:27233668

  1. Genomic clones of Aspergillus nidulans containing alcA, the structural gene for alcohol dehydrogenase and alcR, a regulatory gene for ethanol metabolism.

    Science.gov (United States)

    Doy, C H; Pateman, J A; Olsen, J E; Kane, H J; Creaser, E H

    1985-04-01

    Our aim was to obtain from Aspergillus nidulans a genomic bank and then clone a region we expected from earlier genetic mapping to contain two closely linked genes, alcA, the structural gene for alcohol dehydrogenase (ADH) and alcR, a positive trans-acting regulatory gene for ethanol metabolism. The expression of alcA is repressed by carbon catabolites. A genomic restriction fragment characteristic of the alcA-alcR region was identified, cloned in pBR322, and used to select from a genomic bank in lambda EMBL3A three overlapping clones covering 24 kb of DNA. Southern genomic analysis of wild-type, alcA and alcR mutants showed that the mutants contained extra DNA at sites near the center of the cloned DNA and are close together, as expected for alcA and alcR. Transcription from the cloned DNA and hybridization with a clone carrying the Saccharomyces cerevisiae gene for ADHI (ADC1) are both confined to the alcA-alcR region. At least one of several species of mature mRNA is about 1 kb, the size required to code for ADH. For all species, carbon catabolite repression overrides control by induction. The overall characteristics of transcription, hybridization to ADC1 and earlier work suggest that alcA consists of a number of exons and/or that the alcA-alcR region represents a cluster of alcA-related genes or sequences.

  2. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award scientist's work on supernovae reveals accelerating universe

    CERN Multimedia

    2002-01-01

    "Saul Perlmutter, a member of Lawrence Berkeley National Laboratory's Physics Division and leader of the international Supernova Cosmology Project based there, has won the Department of Energy's 2002 E.O. Lawrence Award in the physics category" (1/2 page).

  3. Assessing Information Literacy among Undergraduates: A Discussion of the Literature and the University of California-Berkeley Assessment Experience.

    Science.gov (United States)

    Maughan, Patricia Davitt

    2001-01-01

    Since 1994, the Teaching Library at the University of California-Berkeley has conducted an ongoing Survey of Information Literacy Competencies in selected academic departments to measure the "lower-order" information literacy skills of graduating seniors. The survey reveals that students think they know more about accessing information and…

  4. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis.

    Directory of Open Access Journals (Sweden)

    Stephen B Goodwin

    2011-06-01

    Full Text Available The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed "mesosynteny" is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic

  5. Genome Structure of the Symbiont Bifidobacterium pseudocatenulatum CECT 7765 and Gene Expression Profiling in Response to Lactulose-Derived Oligosaccharides.

    Science.gov (United States)

    Benítez-Páez, Alfonso; Moreno, F Javier; Sanz, María L; Sanz, Yolanda

    2016-01-01

    Bifidobacterium pseudocatenulatum CECT 7765 was isolated from stools of a breast-fed infant. Although, this strain is generally considered an adult-type bifidobacterial species, it has also been shown to have pre-clinical efficacy in obesity models. In order to understand the molecular basis of its adaptation to complex carbohydrates and improve its potential functionality, we have analyzed its genome and transcriptome, as well as its metabolic output when growing in galacto-oligosaccharides derived from lactulose (GOS-Lu) as carbon source. B. pseudocatenulatum CECT 7765 shows strain-specific genome regions, including a great diversity of sugar metabolic-related genes. A preliminary and exploratory transcriptome analysis suggests candidate over-expression of several genes coding for sugar transporters and permeases; furthermore, five out of seven beta-galactosidases identified in the genome could be activated in response to GOS-Lu exposure. Here, we also propose that a specific gene cluster is involved in controlling the import and hydrolysis of certain di- and tri-saccharides, which seemed to be those primarily taken-up by the bifidobacterial strain. This was discerned from mass spectrometry-based quantification of different saccharide fractions of culture supernatants. Our results confirm that the expression of genes involved in sugar transport and metabolism and in the synthesis of leucine, an amino acid with a key role in glucose and energy homeostasis, was up-regulated by GOS-Lu. This was done using qPCR in addition to the exploratory information derived from the single-replicated RNAseq approach, together with the functional annotation of genes predicted to be encoded in the B. pseudocatenulatum CETC 7765 genome. PMID:27199952

  6. Genomic structure and sequence polymorphism of E,E-alphafarnesene synthase gene in apples (Malus domestica Borkh.)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Primer pairs were designed to amplify the genomic DNA sequence of the alpha-farnesene synthase (AFS) gene by PCR.The PCR products were sequenced,spliced and compared to Cdna sequences in the GenBank (accession No.AY182241).The genomic sequence and intron-exon organization of the AFS gene were thus obtained.The AFS genomic sequence has been registered in the GenBank (accession No.DQ901739).It has 6 introns and 7 exons,encoding a protein of 576 amino acids.The sizes of the 6 introns were 108 bp,113 bp,>1000 bp,125 bp,220 bp and 88 bp,and their phases were 0,1,2,2,0,0,respectively.The sizes of the deduced amino acids of the 7 exons were 57,89,127,73,48,83 and 99,respectively.The AFS protein contained three motifs:the RR(X8)W motif encoded by a sequence in exon 1,and the RxR motif and DDxxD motif encoded by two sequences in exon 4.After comparing the AFS genomic sequence (accession No.DQ901739) to the Cdna sequence (accession No.AY523409) in the GenBank,it was found that there were 6 single-nucleotide polymorphisms between the two sequences,four of which caused mutations at the amino acid level.Interestingly,one amino acid mutation (291R→G) was found in the RxR motif,and further investigation is needed to determine whether the alpha-farnesene synthesis ability and superficial scald susceptibility of apples are influenced by this amino acid mutation and other mutations.

  7. Genome Structure of the Symbiont Bifidobacterium pseudocatenulatum CECT 7765 and Gene Expression Profiling in Response to Lactulose-Derived Oligosaccharides

    Science.gov (United States)

    Benítez-Páez, Alfonso; Moreno, F. Javier; Sanz, María L.; Sanz, Yolanda

    2016-01-01

    Bifidobacterium pseudocatenulatum CECT 7765 was isolated from stools of a breast-fed infant. Although, this strain is generally considered an adult-type bifidobacterial species, it has also been shown to have pre-clinical efficacy in obesity models. In order to understand the molecular basis of its adaptation to complex carbohydrates and improve its potential functionality, we have analyzed its genome and transcriptome, as well as its metabolic output when growing in galacto-oligosaccharides derived from lactulose (GOS-Lu) as carbon source. B. pseudocatenulatum CECT 7765 shows strain-specific genome regions, including a great diversity of sugar metabolic-related genes. A preliminary and exploratory transcriptome analysis suggests candidate over-expression of several genes coding for sugar transporters and permeases; furthermore, five out of seven beta-galactosidases identified in the genome could be activated in response to GOS-Lu exposure. Here, we also propose that a specific gene cluster is involved in controlling the import and hydrolysis of certain di- and tri-saccharides, which seemed to be those primarily taken-up by the bifidobacterial strain. This was discerned from mass spectrometry-based quantification of different saccharide fractions of culture supernatants. Our results confirm that the expression of genes involved in sugar transport and metabolism and in the synthesis of leucine, an amino acid with a key role in glucose and energy homeostasis, was up-regulated by GOS-Lu. This was done using qPCR in addition to the exploratory information derived from the single-replicated RNAseq approach, together with the functional annotation of genes predicted to be encoded in the B. pseudocatenulatum CETC 7765 genome. PMID:27199952

  8. The Genome of the Obligately Intracellular Bacterium Ehrlichia canis Reveals Themes of Complex Membrane Structure and Immune Evasion Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Doyle, C Kuyler [Center for Biodenfense and Emerging Infectious Diseases; Lykidis, A [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Francino, M P [U.S. Department of Energy, Joint Genome Institute; Chain, Patrick S [ORNL; Shin, M [U.S. Department of Energy, Joint Genome Institute; Malfatti, Stephanie [Lawrence Livermore National Laboratory (LLNL); Larimer, Frank W [ORNL; Copeland, A [U.S. Department of Energy, Joint Genome Institute; Detter, J C [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Richardson, P M [U.S. Department of Energy, Joint Genome Institute; Yu, X J [Center for Biodenfense and Emerging Infectious Diseases; Walker, D H [Center for Biodenfense and Emerging Infectious Diseases; McBride, J W [Center for Biodenfense and Emerging Infectious Diseases; Kyripides, N C [U.S. Department of Energy, Joint Genome Institute

    2006-01-01

    Ehrlichia canis, a small obligately intracellular, tick-transmitted, gram-negative, {alpha}-proteobacterium, is the primary etiologic agent of globally distributed canine monocytic ehrlichiosis. Complete genome sequencing revealed that the E. canis genome consists of a single circular chromosome of 1,315,030 bp predicted to encode 925 proteins, 40 stable RNA species, 17 putative pseudogenes, and a substantial proportion of noncoding sequence (27%). Interesting genome features include a large set of proteins with transmembrane helices and/or signal sequences and a unique serine-threonine bias associated with the potential for O glycosylation that was prominent in proteins associated with pathogen-host interactions. Furthermore, two paralogous protein families associated with immune evasion were identified, one of which contains poly(G-C) tracts, suggesting that they may play a role in phase variation and facilitation of persistent infections. Genes associated with pathogen-host interactions were identified, including a small group encoding proteins (n = 12) with tandem repeats and another group encoding proteins with eukaryote-like ankyrin domains (n = 7).

  9. Induction, structural characterization, and genome sequence of Lv1, a prophage from a human vaginal Lactobacillus jensenii strain.

    Science.gov (United States)

    Martín, Rebeca; Escobedo, Susana; Suárez, Juan E

    2010-09-01

    The prophage Lv1, harbored by a vaginal Lactobacillus jensenii isolate, was induced by several different anticancer, antimicrobial, and antiseptic agents, suggesting that they contribute to the adverse vaginal effects associated with their therapeutic use. Of special interest with respect to its novelty was the inducing effect of nonoxynol-9, a non-ionic detergent commonly used as a spermicide. The Lv1 genome consists of a 38,934-bp dsDNA molecule with cohesive ends, in which 48 ORFs were recognized, and is organized into functional modules. Lv1 belongs to the family Siphoviridae and, more precisely, to the proposed Sfi21-like genus. The capsid-tail junction of the Lv1 virions is fragile such that most particles become disrupted, suggesting that the virus is defective and thus unable to generate fertile progeny. However, genome analysis did not provide evidence of the defective nature of the prophage, other than the finding that its genome is shorter than those of other, related, phages. Further analysis indicated that prophage Lv1 suffered deletions in its right half to the extent that it no longer fulfill the minimum packaging limits, thereby generating the observed unstable particles. PMID:20890845

  10. Cancer genomics

    DEFF Research Database (Denmark)

    Norrild, Bodil; Guldberg, Per; Ralfkiær, Elisabeth Methner

    2007-01-01

    Almost all cells in the human body contain a complete copy of the genome with an estimated number of 25,000 genes. The sequences of these genes make up about three percent of the genome and comprise the inherited set of genetic information. The genome also contains information that determines whe...

  11. Genome structures and halophyte-specific gene expression of the extremophile thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and arabidopsis

    KAUST Repository

    Oh, Dongha

    2010-09-10

    The genome of Thellungiella parvula, a halophytic relative of Arabidopsis (Arabidopsis thaliana), is being assembled using Roche-454 sequencing. Analyses of a 10-Mb scaffold revealed synteny with Arabidopsis, with recombination and inversion and an uneven distribution of repeat sequences. T. parvula genome structure and DNA sequences were compared with orthologous regions from Arabidopsis and publicly available bacterial artificial chromosome sequences from Thellungiella salsuginea (previously Thellungiella halophila). The three-way comparison of sequences, from one abiotic stress-sensitive species and two tolerant species, revealed extensive sequence conservation and microcolinearity, but grouping Thellungiella species separately from Arabidopsis. However, the T. parvula segments are distinguished from their T. salsuginea counterparts by a pronounced paucity of repeat sequences, resulting in a 30% shorter DNA segment with essentially the same gene content in T. parvula. Among the genes is SALT OVERLY SENSITIVE1 (SOS1), a sodium/proton antiporter, which represents an essential component of plant salinity stress tolerance. Although the SOS1 coding region is highly conserved among all three species, the promoter regions show conservation only between the two Thellungiella species. Comparative transcript analyses revealed higher levels of basal as well as salt-induced SOS1 expression in both Thellungiella species as compared with Arabidopsis. The Thellungiella species and other halophytes share conserved pyrimidine-rich 5\\' untranslated region proximal regions of SOS1 that are missing in Arabidopsis. Completion of the genome structure of T. parvula is expected to highlight distinctive genetic elements underlying the extremophile lifestyle of this species. © American Society of Plant Biologists.

  12. Evolution of plant genome architecture.

    Science.gov (United States)

    Wendel, Jonathan F; Jackson, Scott A; Meyers, Blake C; Wing, Rod A

    2016-01-01

    We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement. PMID:26926526

  13. Whole-exome/genome sequencing and genomics.

    Science.gov (United States)

    Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne

    2013-12-01

    As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.

  14. The influence of landscape configuration and environment on population genetic structure in a sedentary passerine: insights from loci located in different genomic regions.

    Science.gov (United States)

    Ferrer, E S; García-Navas, V; Bueno-Enciso, J; Barrientos, R; Serrano-Davies, E; Cáliz-Campal, C; Sanz, J J; Ortego, J

    2016-01-01

    The study of the factors structuring genetic variation can help to infer the neutral and adaptive processes shaping the demographic and evolutionary trajectories of natural populations. Here, we analyse the role of isolation by distance (IBD), isolation by resistance (IBR, defined by landscape composition) and isolation by environment (IBE, estimated as habitat and elevation dissimilarity) in structuring genetic variation in 25 blue tit (Cyanistes caeruleus) populations. We typed 1385 individuals at 26 microsatellite loci classified into two groups by considering whether they are located into genomic regions that are actively (TL; 12 loci) or not (NTL; 14 loci) transcribed to RNA. Population genetic differentiation was mostly detected using the panel of NTL. Landscape genetic analyses showed a pattern of IBD for all loci and the panel of NTL, but genetic differentiation estimated at TL was only explained by IBR models considering high resistance for natural vegetation and low resistance for agricultural lands. Finally, the absence for IBE suggests a lack of divergent selection pressures associated with differences in habitat and elevation. Overall, our study shows that markers located in different genomic regions can yield contrasting inferences on landscape-level patterns of realized gene flow in natural populations.

  15. Use of genome sequencing to assess nucleotide structure variation of Staphylococcus aureus strains cultured in spaceflight on Shenzhou-X, under simulated microgravity and on the ground.

    Science.gov (United States)

    Guo, Jun; Han, Na; Zhang, Yuanyuan; Wang, Haiyin; Zhang, Xuelin; Su, Longxiang; Liu, Chao; Li, Jia; Chen, Chen; Liu, Changting

    2015-01-01

    The extreme environment of space could affect microbial behavior and may increase the risk of infectious disease during spaceflight. However, the molecular genetic changes of methicillin-resistant Staphylococcus aureus (MRSA) in response to the spaceflight environment have not been fully clarified. In the present study, we determined the draft genome sequences for an ancestral S. aureus strain (LCT-SAO) isolated from a clinical sample and three derivative strains, LCT-SAS, LCT-SAM and LCT-SAG, cultured in parallel during the spaceflight Shenzhou-X, under simulated microgravity and on the ground, respectively. To evaluate the impact of short-term spaceflight on the MRSA strains, comparative genomic analysis was implemented. Genome-based mapping of toxin genes and antibiotic resistance genes confirmed that these strains have the conventional pathogenicity and resistance to drugs, as none of the strains showed significant changes in these regions after culturing in the three different environments; this result suggests that spaceflight may not change bacterial virulence or drug resistance. Thirty-nine strain-specific sequence variants (SVs) were identified throughout the genomes, and the three derivatives exhibited almost the same mutation rates. Fifty-nine percent of SVs were located in the intergenic regions of the genomes, indicating that S. aureus may have an extremely robust repair mechanism responsible for recognizing and repairing DNA replication mismatches. It is noteworthy that strain LCT-SAS, cultured in space, presented the most unique SVs (n=9) and shared the fewest SVs with LCT-SAM (n=5) and LCT-SAG (n=4). Furthermore, we identified 10 potential deletion regions and 2 potential insertion regions, with LCT-SAS appearing more fragile than other strains by this measure. These results suggest that the environment of space is inherently complicated, with multiple variables, and cannot be simulated in a simple manner. Our results represent the first analysis of

  16. Construction of a comparative genetic map in faba bean (Vicia faba L.; conservation of genome structure with Lens culinaris

    Directory of Open Access Journals (Sweden)

    Avila Carmen M

    2008-08-01

    Full Text Available Abstract Background The development of genetic markers is complex and costly in species with little pre-existing genomic information. Faba bean possesses one of the largest and least studied genomes among cultivated crop plants and no gene-based genetic maps exist. Gene-based orthologous markers allow chromosomal regions and levels of synteny to be characterised between species, reveal phylogenetic relationships and chromosomal evolution, and enable targeted identification of markers for crop breeding. In this study orthologous codominant cross-species markers have been deployed to produce the first exclusively gene-based genetic linkage map of faba bean (Vicia faba, using an F6 population developed from a cross between the lines Vf6 (equina type and Vf27 (paucijuga type. Results Of 796 intron-targeted amplified polymorphic (ITAP markers screened, 151 markers could be used to construct a comparative genetic map. Linkage analysis revealed seven major and five small linkage groups (LGs, one pair and 12 unlinked markers. Each LG was comprised of three to 30 markers and varied in length from 23.6 cM to 324.8 cM. The map spanned a total length of 1685.8 cM. A simple and direct macrosyntenic relationship between faba bean and Medicago truncatula was evident, while faba bean and lentil shared a common rearrangement relative to M. truncatula. One hundred and four of the 127 mapped markers in the 12 LGs, which were previously assigned to M. truncatula genetic and physical maps, were found in regions syntenic between the faba bean and M. truncatula genomes. However chromosomal rearrangements were observed that could explain the difference in chromosome numbers between these three legume species. These rearrangements suggested high conservation of M. truncatula chromosomes 1, 5 and 8; moderate conservation of chromosomes 2, 3, 4 and 7 and no conservation with M. truncatula chromosome 6. Multiple PCR amplicons and comparative mapping were suggestive of

  17. Chlorobium Tepidum: Insights into the Structure, Physiology, and Metabolism of a Green Sulfur Bacterium Derived from the Complete Genome Sequence

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Chew, Aline Gomez Maqueo; Li, Hui;

    2003-01-01

    Green sulfur bacteria are obligate, anaerobic photolithoautotrophs that synthesize unique bacteriochlorophylls (BChls) and a unique light-harvesting antenna structure, the chlorosome. One organism, Chlorobium tepidum, has emerged as a model for this group of bacteria primarily due to its relative...... within the last 3 years, most of which have been made based on analyses of the genome. This has allowed a nearly complete elucidation of the biosynthetic pathways for the carotenoids and BChls in Chl. tepidum, which include several novel enzymes specific for BChl c biosynthesis. Facilitating these...... analyses, both BChl c and carotenoid biosynthesis can be completely eliminated in Chl. tepidum. Based particularly on analyses of mutants lacking chlorosome proteins and BChl c, progress has also been made in understanding the structure and biogenesis of chlorosomes. In silico analyses of the presence and...

  18. Characterization of structural and free energy properties of promoters associated with Primary and Operon TSS in Helicobacter pylori genome and their orthologs

    Indian Academy of Sciences (India)

    Aditya Kumar; Manju Bansal

    2012-07-01

    Promoter regions in the genomes of all domains of life show similar trends in several structural properties such as stability, bendability, curvature, etc. In current study we analysed the stability and bendability of various classes of promoter regions (based on the recent identification of different classes of transcription start sites) of Helicobacter pylori 26695 strain. It is found that primary TSS and operon-associated TSS promoters show significantly strong features in their promoter regions. DNA free-energy-based promoter prediction tool PromPredict was used to annotate promoters of different classes, and very high recall values (∼80%) are obtained for primary TSS. Orthologous genes from other strains of H. pylori show conservation of structural properties in promoter regions as well as coding regions. PromPredict annotates promoters of orthologous genes with very high recall and precision.

  19. Identification of transcriptional signals in Encephalitozoon cuniculi widespread among Microsporidia phylum: support for accurate structural genome annotation

    Directory of Open Access Journals (Sweden)

    Wincker Patrick

    2009-12-01

    Full Text Available Abstract Background Microsporidia are obligate intracellular eukaryotic parasites with genomes ranging in size from 2.3 Mbp to more than 20 Mbp. The extremely small (2.9 Mbp and highly compact (~1 gene/kb genome of the human parasite Encephalitozoon cuniculi has been fully sequenced. The aim of this study was to characterize noncoding motifs that could be involved in regulation of gene expression in E. cuniculi and to show whether these motifs are conserved among the phylum Microsporidia. Results To identify such signals, 5' and 3'RACE-PCR experiments were performed on different E. cuniculi mRNAs. This analysis confirmed that transcription overrun occurs in E. cuniculi and may result from stochastic recognition of the AAUAAA polyadenylation signal. Such experiments also showed highly reduced 5'UTR's (E. cuniculi genes presented a CCC-like motif immediately upstream from the coding start. To characterize other signals involved in differential transcriptional regulation, we then focused our attention on the gene family coding for ribosomal proteins. An AAATTT-like signal was identified upstream from the CCC-like motif. In rare cases the cytosine triplet was shown to be substituted by a GGG-like motif. Comparative genomic studies confirmed that these different signals are also located upstream from genes encoding ribosomal proteins in other microsporidian species including Antonospora locustae, Enterocytozoon bieneusi, Anncaliia algerae (syn. Brachiola algerae and Nosema ceranae. Based on these results a systematic analysis of the ~2000 E. cuniculi coding DNA sequences was then performed and brings to highlight that 364 translation initiation codons (18.29% of total CDSs had been badly predicted. Conclusion We identified various signals involved in the maturation of E. cuniculi mRNAs. Presence of such signals, in phylogenetically distant microsporidian species, suggests that a common regulatory mechanism exists among the microsporidia. Furthermore

  20. Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus.

    Directory of Open Access Journals (Sweden)

    Eduardo P Cappa

    Full Text Available The promise of association genetics to identify genes or genomic regions controlling complex traits has generated a flurry of interest. Such phenotype-genotype associations could be useful to accelerate tree breeding cycles, increase precision and selection intensity for late expressing, low heritability traits. However, the prospects of association genetics in highly heterozygous undomesticated forest trees can be severely impacted by the presence of cryptic population and pedigree structure. To investigate how to better account for this, we compared the GLM and five combinations of the Unified Mixed Model ( UMM on data of a low-density genome-wide association study for growth and wood property traits carried out in a Eucalyptus globulus population (n = 303 with 7,680 Diversity Array Technology (DArT markers. Model comparisons were based on the degree of deviation from the uniform distribution and estimates of the mean square differences between the observed and expected p-values of all significant marker-trait associations detected. Our analysis revealed the presence of population and family structure. There was not a single best model for all traits. Striking differences in detection power and accuracy were observed among the different models especially when population structure was not accounted for. The UMM method was the best and produced superior results when compared to GLM for all traits. Following stringent correction for false discoveries, 18 marker-trait associations were detected, 16 for tree diameter growth and two for lignin monomer composition (S:G ratio, a key wood property trait. The two DArT markers associated with S:G ratio on chromosome 10, physically map within 1 Mbp of the ferulate 5-hydroxylase (F5H gene, providing a putative independent validation of this marker-trait association. This study details the merit of collectively integrate population structure and relatedness in association analyses in undomesticated, highly

  1. Characterization of gene rearrangements resulted from genomic structural aberrations in human esophageal squamous cell carcinoma KYSE150 cells.

    Science.gov (United States)

    Hao, Jia-Jie; Gong, Ting; Zhang, Yu; Shi, Zhi-Zhou; Xu, Xin; Dong, Jin-Tang; Zhan, Qi-Min; Fu, Song-Bin; Wang, Ming-Rong

    2013-01-15

    Chromosomal rearrangements and involved genes have been reported to play important roles in the development and progression of human malignancies. But the gene rearrangements in esophageal squamous cell carcinoma (ESCC) remain to be identified. In the present study, array-based comparative genomic hybridization (array-CGH) was performed on the ESCC cell line KYSE150. Eight disrupted genes were detected according to the obviously distinct unbalanced breakpoints. The splitting of these genes was validated by dual-color fluorescence in-situ hybridization (FISH). By using rapid amplification of cDNA ends (RACE), genome walking and sequencing analysis, we further identified gene disruptions and rearrangements. A fusion transcript DTL-1q42.2 was derived from an intrachromosomal rearrangement of chromosome 1. Highly amplified segments of DTL and PTPRD were self-rearranged. The sequences on either side of the junctions possess micro-homology with each other. FISH results indicated that the split DTL and PTPRD were also involved in comprising parts of the derivative chromosomes resulted from t(1q;9p;12p) and t(9;1;9). Further, we found that regions harboring DTL (1q32.3) and PTPRD (9p23) were also splitting in ESCC tumors. The data supplement significant information on the existing genetic background of KYSE150, which may be used as a model for studying these gene rearrangements.

  2. 双壳类线粒体基因组结构分析%Analysis of Mitochondrial Genomic Structures in Bivalves

    Institute of Scientific and Technical Information of China (English)

    孟学平; 申欣; 赵娜娜; 田美; 郑立波; 程汉良; 阎斌伦; 董志国

    2013-01-01

    自GenBank检索到双壳类线粒体基因组,对其进行基因结构比较分析,以揭示线粒体基因组的演化规律,为线粒体基因组在物种演化和鉴定上的应用研究提供资料。结果共获得45个物种线粒体基因组序列,分布于双壳类5个目中。多数种类线粒体基因组大小为15~32 kb。平均 A+ T =62.9%。多数种类基因分布在重链上,而蚌目的基因分布在2条链上;少数种类(蚌目13个、帘蛤目的2个、贻贝目的1个、海螂目的1个,巨蛎属的贝类)的线粒体基因组含有13种蛋白质基因,其余种类为12种,缺少atp8;文蛤属4个种类、巨蛎属中4个种类、蚌目的11个种类、贻贝属中的紫贻贝和地中海贻贝的PCGs、rRNA基因排序在同属内或科内相同;珍珠贝目牡蛎科的10个种类线粒体基因组可分为7种类型;扇贝科海湾扇贝2个线粒体基因组基因结构相似外,其余种类无共享基因块;贻贝科的紫贻贝和海湾贻贝基因结构极相似。绿贻贝的结构独特,co x 2为双拷贝;海螂目的北方钻岩蛤基因结构与其它目的相似性极低。多数双壳类线粒体基因组非编码区占7.64%~40.26%,主非编码区大小为374~4341 nt。基于12种PCGs核苷酸/氨基酸的属内种间最小分歧度分别为0.2~1.0/0~1.0(文蛤属)、0.4~2.0/0~3.2(贻贝属)和1.9~13.9/0~6.4(巨蛎属)。%Bivalves mitochondrial genomes (mtDNA ) were retrieved from GenBank , and then the comparative analysis of the genomic structures were conducted to reveal the evolution of mitochondrial genomes in bivalves ,and the application of mitochondrial genome in the evolution and identification of related species. A total of 45 mtDNA sequences obtained ,ranging from 15 to 32 kb ,with average A+T content of 62. 9% ,were distributed in 5 orders in bivalves. Genes of most species were found to be distributed in the heavy

  3. Genotoxicity and antigenotoxicity assessment of shiitake (Lentinula edodes (Berkeley Pegler using the Comet assay

    Directory of Open Access Journals (Sweden)

    CK Miyaji

    2004-01-01

    Full Text Available The mushroom shiitake (Lentinula edodes (Berkeley Pegler is been widely consumed in many countries, including Brazil, because of its pleasant flavor and reports of its therapeutic properties, although there is little available information on the genotoxicity and/or antigenotoxicity of this mushroom. We used the Comet assay and HEp-2 cells to evaluate the in vitro genotoxic and antigenotoxic activity of aqueous extracts of shiitake prepared in three different concentrations (0.5, 1.0 and 1.5 mg/mL and three different temperatures (4, 22 and 60 °C, using methyl methanesulfonate (MMS as a positive control and untreated cells as a negative control. Two concentrations (1.0 and 1.5 mg/mL of extract prepared at 4 °C and all of the concentrations prepared at 22 ± 2 and 60 °C showed moderate genotoxic activity. To test the protective effect of the three concentrations of the extracts against the genotoxicity induced by methyl methanesulfonate, three protocols were used: pre-treatment, simultaneous-treatment and post-treatment. Treatments were repeated for all combinations of preparation temperature and concentration. Two extracts (22 ± 2 °C 1.0 mg/mL (simultaneous-treatment and 4 °C 0.5 mg/mL (post-treatment showed antigenotoxic activity.

  4. Berkeley Supernova Ia Program II: Initial Analysis of Spectra Obtained Near Maximum Brightness

    CERN Document Server

    Silverman, Jeffrey M; Filippenko, Alexei V

    2012-01-01

    In this second paper in a series we present measurements of spectral features of 432 low-redshift (z < 0.1) optical spectra of 261 Type Ia supernovae (SNe Ia) within 20 d of maximum brightness. The data were obtained from 1989 through the end of 2008 as part of the Berkeley SN Ia Program (BSNIP) and are presented in BSNIP I (Silverman et al., submitted). We describe in detail our method of automated, robust spectral feature definition and measurement which expands upon similar previous studies. Using this procedure, we attempt to measure expansion velocities, pseudo-equivalent widths (pEW), spectral feature depths, and fluxes at the centre and endpoints of each of nine major spectral feature complexes. A sanity check of the consistency of our measurements is performed using our data (as well as a separate spectral dataset). We investigate how velocity and pEW evolve with time and how they correlate with each other. Various spectral classification schemes are employed and quantitative spectral differences a...

  5. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  6. Analysis, Design, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.

    2010-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and future directions for improvements. Copyright © 2010 by ASME.

  7. Design, Analysis, and Evaluation of the UC-Berkeley Wave-Energy Extractor

    KAUST Repository

    Yeung, Ronald W.

    2012-01-01

    This paper evaluates the technical feasibility and performance characteristics of an ocean-wave energy to electrical energy conversion device that is based on a moving linear generator. The UC-Berkeley design consists of a cylindrical floater, acting as a rotor, which drives a stator consisting of two banks of wound coils. The performance of such a device in waves depends on the hydrodynamics of the floater, the motion of which is strongly coupled to the electromagnetic properties of the generator. Mathematical models are developed to reveal the critical hurdles that can affect the efficiency of the design. A working physical unit is also constructed. The linear generator is first tested in a dry environment to quantify its performance. The complete physical floater and generator system is then tested in a wave tank with a computer-controlled wavemaker. Measurements are compared with theoretical predictions to allow an assessment of the viability of the design and the future directions for improvements. © 2012 American Society of Mechanical Engineers.

  8. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).

  9. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).

  10. Development of an accelerator-based BNCT facility at the Berkeley Lab

    International Nuclear Information System (INIS)

    An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the 7Li(p,n)7Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals

  11. Fisher: a program for the detection of H/ACA snoRNAs using MFE secondary structure prediction and comparative genomics – assessment and update

    Directory of Open Access Journals (Sweden)

    Tamas Ivica

    2008-07-01

    Full Text Available Abstract Background The H/ACA family of small nucleolar RNAs (snoRNAs plays a central role in guiding the pseudouridylation of ribosomal RNA (rRNA. In an effort to systematically identify the complete set of rRNA-modifying H/ACA snoRNAs from the genome sequence of the budding yeast, Saccharomyces cerevisiae, we developed a program – Fisher – and previously presented several candidate snoRNAs based on our analysis 1. Findings In this report, we provide a brief update of this work, which was aborted after the publication of experimentally-identified snoRNAs 2 identical to candidates we had identified bioinformatically using Fisher. Our motivation for revisiting this work is to report on the status of the candidate snoRNAs described in 1, and secondly, to report that a modified version of Fisher together with the available multiple yeast genome sequences was able to correctly identify several H/ACA snoRNAs for modification sites not identified by the snoGPS program 3. While we are no longer developing Fisher, we briefly consider the merits of the Fisher algorithm relative to snoGPS, which may be of use for workers considering pursuing a similar search strategy for the identification of small RNAs. The modified source code for Fisher is made available as supplementary material. Conclusion Our results confirm the validity of using minimum free energy (MFE secondary structure prediction to guide comparative genomic screening for RNA families with few sequence constraints.

  12. cDNA cloning, genomic structure, and chromosome mapping of the human epithelial membrane protein CL-20 gene (EMP1), a member of the PMP22 family.

    Science.gov (United States)

    Chen, Y; Medvedev, A; Ruzanov, P; Marvin, K W; Jetten, A M

    1997-04-01

    CL-20 is a novel gene encoding a protein that is structurally related to but distinct from the peripheral myelin protein PMP22. Like PMP22, CL-20 is likely to play important roles in the regulation of cell proliferation, differentiation, and cell death. In this study, we describe the cloning and sequencing of a cDNA encoding the human homologue of CL-20 and characterize the genomic structure of this gene. The hCL-20 gene (HGMW-approved symbol EMP1) encodes a protein of 157 amino acids that exhibits 76% identity to the rabbit CL-20 and to the rat EMP-1, which have been described recently, and 39% identity to human PMP22. CL-20 contains four hydrophobic domains, suggesting that it is an integral membrane protein. In particular the second hydrophobic domain encoded within the fourth exon is highly conserved among CL-20, EMP-1, and PMP22, suggesting a functional role for this region. CL-20 mRNA is abundant in squamous-differentiated bronchial epithelial cells; however, low levels of CL-20 mRNA can be detected in several human tissues by Northern analysis. Retinoic acid, which inhibits squamous differentiation, represses CL-20 expression in normal human bronchial epithelial cells. The genomic structure of the hCL-20 gene was analyzed using a P1 vector containing this gene. The hCL-20 gene contains five exons about 0.2, 0.12, 0.1, 0.14, and 2.2 kb and four introns about 15, 1.9, 0.1, and 0.7 kb. We have mapped the hCL-20 gene to chromosome 12p12 by fluorescence in situ hybridization. PMID:9126480

  13. Compte rendu de : Luc Peterschmitt, Berkeley et la chimie. Une philosophie pour la chimie au XVIIIe siècle

    Directory of Open Access Journals (Sweden)

    François Pépin

    2012-03-01

    Full Text Available Ce livre, issu d’une thèse de doctorat sur Berkeley et les sciences, constitue la première étude systématique des rapports entre Berkeley et la chimie. C’est aussi une tentative originale pour examiner la cohérence et la pertinence d’un des derniers textes de Berkeley, la Siris, souvent considérée comme un ouvrage mineur, voire comme une erreur de vieillesse. Ces deux projets novateurs se croisent, puisque c’est par la philosophie de la chimie que Luc Peterschmitt cherche à montrer l’intérêt ...

  14. Genomic inflation factors under polygenic inheritance

    NARCIS (Netherlands)

    Yang, Jian; Weedon, Michael N.; Purcell, Shaun; Lettre, Guillaume; Estrada, Karol; Willer, Cristen J.; Smith, Albert V.; Ingelsson, Erik; O'Connell, Jeffrey R.; Mangino, Massimo; Maegi, Reedik; Madden, Pamela A.; Heath, Andrew C.; Nyholt, Dale R.; Martin, Nicholas G.; Montgomery, Grant W.; Frayling, Timothy M.; Hirschhorn, Joel N.; McCarthy, Mark I.; Goddard, Michael E.; Visscher, Peter M.

    2011-01-01

    Population structure, including population stratification and cryptic relatedness, can cause spurious associations in genome-wide association studies (GWAS). Usually, the scaled median or mean test statistic for association calculated from multiple single-nucleotide-polymorphisms across the genome i

  15. Characterization of promoter region and genomic structure of the murine and human genes encoding Src like adapter protein.

    Science.gov (United States)

    Kratchmarova, I; Sosinowski, T; Weiss, A; Witter, K; Vincenz, C; Pandey, A

    2001-01-10

    Src-like adapter protein (SLAP) was identified as a signaling molecule in a yeast two-hybrid system using the cytoplasmic domain of EphA2, a receptor protein tyrosine kinase (Pandey et al., 1995. Characterization of a novel Src-like adapter protein that associates with the Eck receptor tyrosine kinase. J. Biol. Chem. 270, 19201-19204). It is very similar to members of the Src family of cytoplasmic tyrosine kinases in that it contains very homologous SH3 and SH2 domains (Abram and Courtneidge, 2000. Src family tyrosine kinases and growth factor signaling. Exp. Cell. Res. 254, 1-13.). However, instead of a kinase domain at the C-terminus, it contains a unique C-terminal region. In order to exclude the possibility that an alternative form exists, we have isolated genomic clones containing the murine Slap gene as well as the human SLA gene. The coding regions of murine Slap and human SLA genes contain seven exons and six introns. Absence of any kinase domain in the genomic region confirm its designation as an adapter protein. Additionally, we have cloned and sequenced approximately 2.6 kb of the region 5' to the initiator methionine of the murine Slap gene. When subcloned upstream of a luciferase gene, this fragment increased the transcriptional activity about 6-fold in a human Jurkat T cell line and approximately 52-fold in a murine T cell line indicating that this region contains promoter elements that dictate SLAP expression. We have also cloned the promoter region of the human SLA gene. Since SLAP is transcriptionally regulated by retinoic acid and by activation of B cells, the cloning of its promoter region will permit a detailed analysis of the elements required for its transcriptional regulation.

  16. Guidelines for generators to meet HWHF acceptance requirements for hazardous, radioactive, and mixed wastes at Berkeley Lab. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Albert, R.

    1996-06-01

    This document provides performance standards that one, as a generator of hazardous chemical, radioactive, or mixed wastes at the Berkeley Lab, must meet to manage their waste to protect Berkeley Lab staff and the environment, comply with waste regulations and ensure the continued safe operation of the workplace, have the waste transferred to the correct Waste Handling Facility, and enable the Environment, Health and Safety (EH and S) Division to properly pick up, manage, and ultimately send the waste off site for recycling, treatment, or disposal. If one uses and generates any of these wastes, one must establish a Satellite Accumulation Area and follow the guidelines in the appropriate section of this document. Topics include minimization of wastes, characterization of the wastes, containers, segregation, labeling, empty containers, and spill cleanup and reporting.

  17. Human retina-specific amine oxidase: genomic structure of the gene (AOC2), alternatively spliced variant, and mRNA expression in retina.

    Science.gov (United States)

    Imamura, Y; Noda, S; Mashima, Y; Kudoh, J; Oguchi, Y; Shimizu, N

    1998-07-15

    Previously, we reported the isolation of cDNA for human retina-specific amine oxidase (RAO) and the expression of RAO exclusively in retina. Bacterial artificial chromosome clones containing the human RAO gene (AOC2) were mapped to human chromosome 17q21 (Imamura et al., 1997, Genomics 40: 277-283). Here, we report the complete genomic structure of the RAO gene, including 5' flanking sequence, and mRNA expression in retina. The human RAO gene spans 6 kb and is composed of four exons corresponding to the amino acid sequence 1-530, 530-598, 598-641, and 642-729 separated by three introns of 3000, 310, and 351 bp. Screening of a human retina cDNA library revealed the existence of an alternatively spliced cDNA variant with an additional 81 bp at the end of exon 2. The sizes of exons and the locations of exon/intron boundaries in the human RAO gene showed remarkable similarity to those of the human kidney diamine oxidase gene (AOC1). In situ hybridization revealed that mRNA coding for RAO is expressed preferentially in the ganglion cell layer of the mouse retina. We designed four sets of PCR primers to amplify four exons, which will be valuable for analyzing mutations in patients with ocular diseases affecting the retinal ganglion cell layer.

  18. Enhanced functional and structural domain assignments using remote similarity detection procedures for proteins encoded in the genome of Mycobacterium tuberculosis H37Rv

    Indian Academy of Sciences (India)

    Seema Namboori; Natasha Mhatre; Sentivel Sujatha; Narayanaswamy Srinivasan; Shashi Bhushan Pandit

    2004-09-01

    The sequencing of the Mycobacterium tuberculosis (MTB) H37Rv genome has facilitated deeper insights into the biology of MTB, yet the functions of many MTB proteins are unknown. We have used sensitive profile-based search procedures to assign functional and structural domains to infer functions of gene products encoded in MTB. These domain assignments have been made using a compendium of sequence and structural domain families. Functions are predicted for 78% of the encoded gene products. For 69% of these, functions can be inferred by domain assignments. The functions for the rest are deduced from their homology to proteins of known function. Superfamily relationships between families of unknown and known structures have increased structural information by ∼ 11%. Remote similarity detection methods have enabled domain assignments for 1325 ‘hypothetical proteins’. The most populated families in MTB are involved in lipid metabolism, entry and survival of the bacillus in host. Interestingly, for 353 proteins, which we refer to as MTB-specific, no homologues have been identified. Numerous, previously unannotated, hypothetical proteins have been assigned domains and some of these could perhaps be the possible chemotherapeutic targets. MTB-specific proteins might include factors responsible for virulence. Importantly, these assignments could be valuable for experimental endeavors. The detailed results are publicly available at http://hodgkin.mbu.iisc.ernet.in/∼dots.

  19. A joint modeling approach for uncovering associations between gene expression, bioactivity and chemical structure in early drug discovery to guide lead selection and genomic biomarker development.

    Science.gov (United States)

    Perualila-Tan, Nolen; Kasim, Adetayo; Talloen, Willem; Verbist, Bie; Göhlmann, Hinrich W H; Shkedy, Ziv

    2016-08-01

    The modern drug discovery process involves multiple sources of high-dimensional data. This imposes the challenge of data integration. A typical example is the integration of chemical structure (fingerprint features), phenotypic bioactivity (bioassay read-outs) data for targets of interest, and transcriptomic (gene expression) data in early drug discovery to better understand the chemical and biological mechanisms of candidate drugs, and to facilitate early detection of safety issues prior to later and expensive phases of drug development cycles. In this paper, we discuss a joint model for the transcriptomic and the phenotypic variables conditioned on the chemical structure. This modeling approach can be used to uncover, for a given set of compounds, the association between gene expression and biological activity taking into account the influence of the chemical structure of the compound on both variables. The model allows to detect genes that are associated with the bioactivity data facilitating the identification of potential genomic biomarkers for compounds efficacy. In addition, the effect of every structural feature on both genes and pIC50 and their associations can be simultaneously investigated. Two oncology projects are used to illustrate the applicability and usefulness of the joint model to integrate multi-source high-dimensional information to aid drug discovery. PMID:27269248

  20. Evolution of the P-type II ATPase gene family in the fungi and presence of structural genomic changes among isolates of Glomus intraradices

    Directory of Open Access Journals (Sweden)

    Sanders Ian R

    2006-03-01

    that structural genomic changes, such as exonic indel mutations and gene duplications are less rare than previously thought and that these also occur within fungal populations.