WorldWideScience

Sample records for berkeley national laboratory

  1. Former Fermilab boss to lead Lawrence Berkeley National Laboratory

    Science.gov (United States)

    Gwynne, Peter

    2016-03-01

    Particle physicist Michael Witherell - current vice-chancellor for research at the University of California, Santa Barbara (UCSB) - has been appointed the next director of the Lawrence Berkeley National Laboratory (LBL).

  2. Lawrence Berkeley National Laboratory 1995 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    Balgobin, D.; Javandel, I.; Lackner, G.; Smith, C.; Thorson, P.; Tran, H.

    1996-07-01

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment.

  3. Lawrence Berkeley National Laboratory 1995 site environmental report

    International Nuclear Information System (INIS)

    The 1995 Site Environmental Report summarizes environmental activities at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) for the 1995 calendar year. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the environmental management programs. The report also discusses significant highlights and plans of these programs. Topics discussed include: environmental monitoring, environmental compliance programs, air quality, water quality, ground water protection, sanitary sewer monitoring, soil and sediment quality, vegetation and foodstuffs monitoring, and special studies which include preoperational monitoring of building 85 and 1995 sampling results, radiological dose assessment, and quality assessment

  4. Lawrence Berkeley National Laboratory 1997 Site Environmental Report Vol. I

    International Nuclear Information System (INIS)

    Each year, Ernest Orlando Lawrence Berkeley National Laboratory prepares an integrated report on its environmental programs to satisfy the requirements of U.S. Department of Energy Order 231.1. The Site Environmental Report for 1997 is intended to summarize Berkeley Lab's compliance with environmental standards and requirements, characterize environmental management efforts through surveillance and monitoring activities, and highlight significant programs and efforts for calendar year 1997. This report is structured into three basic areas that cover a general overview of the Laboratory, the status of environmental programs, and the results of the surveillance and monitoring activities, including air quality, surface water, groundwater, sanitary sewer, soil and sediment, vegetation and foodstuffs, radiation dose assessment, and quality assurance. The report is separated into two volumes. Volume I contains the body of the report, a list of references, a list of acronyms and abbreviations, a glossary, Appendix A (NESHAPS annual report), and Appendix B (distribution list for volume I). Volume II contains Appendix C, the individual data results from monitoring programs. Each chapter in volume I begins with an outline of the sections that follow

  5. Hydrogeology and tritium transport in Chicken Creek Canyon,Lawrence Berkeley National Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Preston D.; Javandel, Iraj

    2007-10-31

    This study of the hydrogeology of Chicken Creek Canyon wasconducted by the Environmental Restoration Program (ERP) at LawrenceBerkeley National Laboratory (LBNL). This canyon extends downhill fromBuilding 31 at LBNL to Centennial Road below. The leading edge of agroundwater tritium plume at LBNL is located at the top of the canyon.Tritium activities measured in this portion of the plume during thisstudy were approximately 3,000 picocuries/liter (pCi/L), which issignificantly less than the maximum contaminant level (MCL) for drinkingwaterof 20,000 pCi/L established by the Environmental ProtectionAgency.There are three main pathways for tritium migration beyond theLaboratory s boundary: air, surface water and groundwater flow. Thepurpose of this report is to evaluate the groundwater pathway.Hydrogeologic investigation commenced with review of historicalgeotechnical reports including 35 bore logs and 27 test pit/trench logsas well as existing ERP information from 9 bore logs. This was followedby field mapping of bedrock outcrops along Chicken Creek as well asbedrock exposures in road cuts on the north and east walls of the canyon.Water levels and tritium activities from 6 wells were also considered.Electrical-resistivity profiles and cone penetration test (CPT) data werecollected to investigate the extent of an interpreted alluvial sandencountered in one of the wells drilled in this area. Subsequent loggingof 7 additional borings indicated that this sand was actually anunusually well-sorted and typically deeply weathered sandstone of theOrinda Formation. Wells were installed in 6 of the new borings to allowwater level measurement and analysis of groundwater tritium activity. Aslug test and pumping tests were also performed in the wellfield.

  6. Ernest Orlando Lawrence Berkeley National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Chartock, Mike (ed.); Hansen, Todd (ed.)

    1999-08-01

    The FY 2000-2004 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab, the Laboratory) mission, strategic plan, initiatives, and the resources required to fulfill its role in support of national needs in fundamental science and technology, energy resources, and environmental quality. To advance the Department of Energy's ongoing efforts to define the Integrated Laboratory System, the Berkeley Lab Institutional Plan reflects the strategic elements of our planning efforts. The Institutional Plan is a management report that supports the Department of Energy's mission and programs and is an element of the Department of Energy's strategic management planning activities, developed through an annual planning process. The Plan supports the Government Performance and Results Act of 1993 and complements the performance-based contract between the Department of Energy and the Regents of the University of California. It identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by Berkeley Lab's scientific and support divisions.

  7. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    International Nuclear Information System (INIS)

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory

  8. Ernest Orlando Berkeley National Laboratory - Fundamental and applied research on lean premixed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Robert K.

    1999-07-07

    Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the nature of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.

  9. Ernest Orlando Lawrence Berkeley National Laboratory institutional plan, FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The FY 1996--2001 Institutional Plan provides an overview of the Ernest Orlando Lawrence Berkeley National Laboratory mission, strategic plan, core business areas, critical success factors, and the resource requirements to fulfill its mission in support of national needs in fundamental science and technology, energy resources, and environmental quality. The Laboratory Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Core Business Areas section identifies those initiatives that are potential new research programs representing major long-term opportunities for the Laboratory, and the resources required for their implementation. It also summarizes current programs and potential changes in research program activity, science and technology partnerships, and university and science education. The Critical Success Factors section reviews human resources; work force diversity; environment, safety, and health programs; management practices; site and facility needs; and communications and trust. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process. The plan identifies technical and administrative directions in the context of the national energy policy and research needs and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office of Planning and Communications from information contributed by the Laboratory`s scientific and support divisions.

  10. Analysis of background distributions of metals in the soil at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, David; Baskin, David; Brown, Dennis; Lund, Loren; Najita, Julie; Javandel, Iraj

    2009-03-15

    As part of its Resource Conservation and Recovery Act (RCRA) Corrective Action Program (CAP), the Lawrence Berkeley National Laboratory (LBNL) Environmental Restoration Program conducted an evaluation of naturally occurring metals in soils at the facility. The purpose of the evaluation was to provide a basis for determining if soils at specific locations contained elevated concentrations of metals relative to ambient conditions. Ambient conditions (sometimes referred to as 'local background') are defined as concentrations of metals in the vicinity of a site, but which are unaffected by site-related activities (Cal-EPA 1997). Local background concentrations of 17 metals were initially estimated by LBNL using data from 498 soil samples collected from borings made during the construction of 71 groundwater monitoring wells (LBNL 1995). These concentration values were estimated using the United States Environmental Protection Agency's (USEPA's) guidance that was available at that time (USEPA 1989). Since that time, many more soil samples were collected and analyzed for metals by the Environmental Restoration Program. In addition, the California Environmental Protection Agency (Cal-EPA) subsequently published a recommended approach for calculating background concentrations of metals at hazardous waste sites and permitted facilities (Cal-EPA 1997). This more recent approach differs from that recommended by the USEPA and used initially by LBNL (LBNL 2002). The purpose of the 2002 report was to apply the recommended Cal-EPA procedure to the expanded data set for metals that was available at LBNL. This revision to the 2002 report has been updated to include more rigorous tests of normality, revisions to the statistical methods used for some metals based on the results of the normality tests, and consideration of the depth-dependence of some sample results. As a result of these modifications, estimated background concentrations for some metals have been

  11. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P.

    1994-12-01

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects.

  12. Environmental health-risk assessment for tritium releases from the National Tritium Labeling Facility (NTLF) at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    This report is a health risk assessment that addresses continuous releases of tritium to the environment from the National Tritium Labeling Facility (NTLF) at the Lawrence Berkeley Laboratory (LBL). The NTLF contributes approximately 95% of all tritium releases from LBL. Transport and transformation models were used to determine the movement of tritium releases from the NRLF to the air, surface water, soils, and plants and to determine the subsequent doses to humans. These models were calibrated against environmental measurements of tritium levels in the vicinity of the NTLF and in the surrounding community. Risk levels were determined for human populations in each of these zones. Risk levels to both individuals and populations were calculated. In this report population risks and individual risks were calculated for three types of diseases--cancer, heritable genetic effects, and developmental and reproductive effects

  13. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1990-08-01

    The Lawrence Berkeley Laboratory (LBL) is a multiprogram national laboratory managed by the University of California (UC) for the US Department of Energy (DOE). LBL's major role is to conduct basic and applied science research that is appropriate for an energy research laboratory. The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1989 are presented, and general trends are discussed. 17 refs., 12 figs., 23 tabs.

  14. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Brand, K.P. [Lawrence Livermore National Lab., CA (United States). Health and Ecological Assessment Div.; Shan, C. [Lawrence Berkeley National Lab., CA (United States). Earth Sciences Div.

    1997-04-01

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime.

  15. Environmental health-risk assessment for tritium releases at the National Tritium Labeling Facility at Lawrence Berkeley National Laboratory

    International Nuclear Information System (INIS)

    This risk assessment calculates the probability of experiencing health effects, including cancer incidence due to tritium exposure for three groups of people: (1) LBNL workers near the LBNL facility--Building 75--that uses tritium; (2) other workers at LBNL and nearby neighbors; and (3) people who use the UC Berkeley campus area, and some Berkeley residents. All of these groups share the same probability of health effects from the background radiation from natural sources in the Berkeley area environment, including an increased risk of developing a cancer of 11,000 chances per million. In calculating risk the authors assumed continuous operation in Building 75 for at least a human lifetime. Under this assumption, LBNL workers located near Building 75 have an additional risk of 60 chances out of one million to suffer a cancer; other workers at LBNL and people who live near LBNL have an additional risk of six chances out of one million over a lifetime of exposure; and users of the UC Berkeley campus area and other residents of Berkeley have an additional risk of less than once chance out of one million over a lifetime

  16. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1988-07-01

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is no fault'' and is not an audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs.

  17. Environmental Survey preliminary report, Lawrence Berkeley Laboratory, Berkeley, California

    International Nuclear Information System (INIS)

    The purpose of this report is to present the preliminary findings made during the Environmental Survey, February 22--29, 1988, at the US Department of Energy (DOE) Lawrence Berkeley Laboratory (LBL) in Berkeley, California. The University of California operates the LBL facility for DOE. The LBL Survey is part of the larger DOE-wide Environmental Survey announced by Secretary John S. Herrington on September 18, 1985. The purpose of this effort is to identify, via ''no fault'' baseline Surveys, existing environmental problems and areas of environmental risk at DOE facilities, and to rank them on a DOE wide basis. This ranking will enable DOE to more effectively establish priorities for addressing environmental problems and allocate the resources necessary to correct them. Because the Survey is ''no fault'' and is not an ''audit,'' it is not designed to identify specific isolated incidents of noncompliance or to analyze environmental management practices. Such incidents and/or management practices will, however, be used in the Survey as a means of identifying existing and potential environmental problems. The LBL Survey was conducted by a multidisciplinary team of technical specialists headed and managed by a Team Leader and Assistant Team Leader from DOE's Office of Environmental Audit. A complete list of the LBL Survey participants and their affiliations is provided in Appendix A. 80 refs., 27 figs., 37 tabs

  18. Lawrence Berkeley Laboratory 1993 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    This annual Site Environmental Report summarizes Lawrence Berkeley Laboratory`s (LBL`s) environmental activities in calendar year (CY) 1993. The purpose of this report is to characterize site environmental management performance, confirm compliance status with environmental standards and requirements, and highlight significant programs and efforts. Its format and content are consistent with the requirements of the US Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  19. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  20. Lawrence Berkeley Laboratory 1994 site environmental report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory`s environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program.

  1. Lawrence Berkeley Laboratory 1994 site environmental report

    International Nuclear Information System (INIS)

    The 1994 Site Environmental Report summarizes environmental activities at Lawrence Berkeley Laboratory (LBL) for the calendar year (CY) 1994. The report strives to present environmental data in a manner that characterizes the performance and compliance status of the Laboratory's environmental management programs when measured against regulatory standards and DOE requirements. The report also discusses significant highlight and planning efforts of these programs. The format and content of the report are consistent with the requirements of the U.S. Department of Energy (DOE) Order 5400.1, General Environmental Protection Program

  2. Life sciences: Lawrence Berkeley Laboratory, 1988

    Energy Technology Data Exchange (ETDEWEB)

    1989-07-01

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs.

  3. Life sciences: Lawrence Berkeley Laboratory, 1988

    International Nuclear Information System (INIS)

    Life Sciences Research at LBL has both a long history and a new visibility. The physics technologies pioneered in the days of Ernest O. Lawrence found almost immediate application in the medical research conducted by Ernest's brother, John Lawrence. And the tradition of nuclear medicine continues today, largely uninterrupted for more than 50 years. Until recently, though, life sciences research has been a secondary force at the Lawrence Berkeley Laboratory (LBL). Today, a true multi-program laboratory has emerged, in which the life sciences participate as a full partner. The LBL Human Genome Center is a contribution to the growing international effort to map the human genome. Its achievements represent LBL divisions, including Engineering, Materials and Chemical Sciences, and Information and Computing Sciences, along with Cell and Molecular Biology and Chemical Biodynamics. The Advanced Light Source Life Sciences Center will comprise not only beamlines and experimental end stations, but also supporting laboratories and office space for scientists from across the US. This effort reflects a confluence of scientific disciplines --- this time represented by individuals from the life sciences divisions and by engineers and physicists associated with the Advanced Light Source project. And finally, this report itself, the first summarizing the efforts of all four life sciences divisions, suggests a new spirit of cooperation. 30 figs

  4. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1981-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed.

  5. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1980

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data on air and water sampling and continuous radiation monitoring for 1980 are presented, and general trends are discussed

  6. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    Chew, Joseph T.; Stroh, Suzanne C.; Maio, Linda R.; Olson, Karl R.; Grether, Donald F.; Clary, Mary M.; Smith, Brian M.; Stevens, David F.; Ross, Loren; Alper, Mark D.; Dairiki, Janis M.; Fong, Pauline L.; Bartholomew, James C.

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The plan is an institutional management report for integration with the Department of Energy`s strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy`s program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory`s scientific and support divisions.

  7. Lawrence Berkeley Laboratory, Institutional Plan FY 1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. For FY 1994-1999 the Institutional Plan reflects significant revisions based on the Laboratory`s strategic planning process. The Strategic Plan section identifies long-range conditions that will influence the Laboratory, as well as potential research trends and management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory, and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation`s scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff diversity and development program. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The new section on Information Resources reflects the importance of computing and communication resources to the Laboratory. The Resource Projections are estimates of required budgetary authority for the Laboratory`s ongoing research programs. The Institutional Plan is a management report for integration with the Department of Energy`s strategic planning activities, developed through an annual planning process.

  8. Hazards analysis for the E.O. Lawrence Berkeley National Laboratory x-ray absorption experiments to be performed at Stanford Synchrotron Radiation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Edelstein, N.M.; Shuh, D.K.; Bucher, J.B. [Lawrence Berkeley National Lab., CA (United States). Chemical Sciences Div.

    1995-04-01

    The objective of this experiment is to determine the oxidation state(s) of neptunium (Np) in mouse skeleton and in soft tissue by X-ray Absorption Near Edge Structure (XANES). If Np is present in sufficient concentration, X-ray Absorption Fine Structure (XAFS) data will be obtained in order to further identify the Np species present. These data will be crucial in understanding the metabolic pathway of Np in mammals which will help in the design of reagents which can eliminate Np from mammals in the event of accidental exposure. It is proposed to run these experiments at the Standard Synchrotron Radiation Laboratory (SSRL). This laboratory is a DOE national user facility located at the Stanford Linear Accelerator Center (SLAC). The {sup 237}Np nucleus decays by the emission of an alpha particle and this particle emission is the principal hazard in handling Np samples. This hazard is mitigated by physical containment of the sample which stops the alpha particles within the containment. The total amount of Np material that will be shipped to and be at SSRL at any one time will be less than 1 gram. This limit on the amount of Np will ensure that SLAC remains a low hazard, non-nuclear facility. The Np samples will be solids or Np ions in aqueous solution. The Np samples will be shipped to SSRL/SLAC OHP. SLAC OHP will inventory the samples and swipe the containers holding the triply contained samples, and then bring them to the SSRL Actinide trailer located outside building 131. The QA counting records from the samples, as measured at LBNL, will be provided to SSRL and SLAC OHP prior to the arrival of the samples at SLAC OHP. In addition, strict monitoring of the storage and experimental areas will be performed in accordance with SLAC/OHP radiation protection procedures to ensure against the release of contamination.

  9. Lawrence Berkeley Laboratory Institutional Plan, FY 1993--1998

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    The FY 1993--1998 Institutional Plan provides an overview of the Lawrence Berkeley Laboratory mission, strategic plan, scientific initiatives, research programs, environment and safety program plans, educational and technology transfer efforts, human resources, and facilities needs. The Strategic Plan section identifies long-range conditions that can influence the Laboratory, potential research trends, and several management implications. The Initiatives section identifies potential new research programs that represent major long-term opportunities for the Laboratory and the resources required for their implementation. The Scientific and Technical Programs section summarizes current programs and potential changes in research program activity. The Environment, Safety, and Health section describes the management systems and programs underway at the Laboratory to protect the environment, the public, and the employees. The Technology Transfer and Education programs section describes current and planned programs to enhance the nation's scientific literacy and human infrastructure and to improve economic competitiveness. The Human Resources section identifies LBL staff composition and development programs. The section on Site and Facilities discusses resources required to sustain and improve the physical plant and its equipment. The Resource Projections are estimates of required budgetary authority for the Laboratory's ongoing research programs. The plan is an institutional management report for integration with the Department of Energy's strategic planning activities that is developed through an annual planning process. The plan identifies technical and administrative directions in the context of the National Energy Strategy and the Department of Energy's program planning initiatives. Preparation of the plan is coordinated by the Office for Planning and Development from information contributed by the Laboratory's scientific and support divisions.

  10. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1987-04-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs.

  11. Lawrence Berkeley Laboratory Institutional Plan FY 1995--2000

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This report presents the details of the mission and strategic plan for Lawrence Berkeley Laboratory during the fiscal years of 1995--2000. It presents summaries of current programs and potential changes; critical success factors such as human resources; management practices; budgetary allowances; and technical and administrative initiatives.

  12. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1986

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1986 are presented and general trends are discussed. Topics include radiation monitoring, wastewater discharge monitoring, dose distribution estimates, and ground water monitoring. 9 refs., 8 figs., 20 tabs

  13. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    International Nuclear Information System (INIS)

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division

  14. Annual site environmental report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E.; Pauer, R.O. (eds.)

    1991-05-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory is described. Data for 1990 are presented, and general trends are discussed. The report is organized under the following topics: Environmental Program Overview; Environmental Permits; Environmental Assessments; Environmental Activities; Penetrating Radiation; Airborne Radionuclides; Waterborne Radionuclides; Public Doses Resulting from LBL Operations; Trends -- LBL Environmental Impact; Waterborne Pollutants; Airborne Pollutants; Groundwater Protection; and Quality Assurance. 20 refs., 26 figs., 23 tabs.

  15. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  16. Lawrence Berkeley Laboratory Institutional Plan FY 1987-1992

    Energy Technology Data Exchange (ETDEWEB)

    Various

    1986-12-01

    The Lawrence Berkeley Laboratory, operated by the University of California for the Department of Energy, provides national scientific leadership and supports technological innovation through its mission to: (1) Perform leading multidisciplinary research in general sciences and energy sciences; (2) Develop and operate unique national experimental facilities for use by qualified investigators; (3) Educate and train future generations of scientists and engineers; and (4) Foster productive relationships between LBL research programs and industry. The following areas of research excellence implement this mission and provide current focus for achieving DOE goals. GENERAL SCIENCES--(1) Accelerator and Fusion Research--accelerator design and operation, advanced accelerator technology development, accelerator and ion source research for heavy-ion fusion and magnetic fusion, and x-ray optics; (2) Nuclear Science--relativistic heavy-ion physics, medium- and low-energy nuclear physics, nuclear theory, nuclear astrophysics, nuclear chemistry, transuranium elements studies, nuclear data evaluation, and detector development; (3) Physics--experimental and theoretical particle physics, detector development, astrophysics, and applied mathematics. ENERGY SCIENCES--(1) Applied Science--building energy efficiency, solar for building systems, fossil energy conversion, energy storage, and atmospheric effects of combustion; (2) Biology and Medicine--molecular and cellular biology, diagnostic imaging, radiation biophysics, therapy and radiosurgery, mutagenesis and carcinogenesis, lipoproteins, cardiovascular disease, and hemopoiesis research; (3) Center for Advanced Materials--catalysts, electronic materials, ceramic and metal interfaces, polymer research, instrumentation, and metallic alloys; (4) Chemical Biodynamics--molecular biology of nucleic acids and proteins, genetics of photosynthesis, and photochemistry; (5) Earth Sciences--continental lithosphere properties, structures and

  17. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs

  18. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1989-06-01

    The Environmental Monitoring Program of the Lawrence Berkeley Laboratory (LBL) is described. Data for 1988 are presented and general trends are discussed. In order to establish whether LBL research activities produced any impact on the population surrounding the laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1988, as in the previous several years, dose equivalents attributable to LBL radiological operations were a small fraction of both the relevant radiation protection guidelines (RPG) and of the natural radiation background. 16 refs., 7 figs., 21 tabs.

  19. USING DOE-2.1 AT LAWRENCE BERKELEY LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Building Energy Analysis Group.; Authors, Various

    1980-09-01

    The purpose of this manual is to assist the DOE-2 user to run DOE-2 and its utility programs at Lawrence Berkeley Laboratory (LBL). It is organized to reflect the facts that every DOE-2 job run at LBL requires certain steps, and that there are options related to DOE-2 job runs available to any DOE-2 user. The standard steps for running a DOE-2 job are as follows: 1. Prepare a job deck 2. Process a job deck 3. Obtain standard output reports.

  20. Community Relations Plan for Lawrence Berkeley Laboratory. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The Lawrence Berkeley Laboratory (LBL) has applied to the California Environmental Protection Agency, Department of Toxic Substances Control (DTSC), for renewal of its Hazardous Waste Handling Facility Permit. A permit is required under Resource Conservation and Recovery Act (RCRA) regulations. The permit will allow LBL to continue using its current hazardous waste handling facility, upgrade the existing facility, and construct a replacement facility. The new facility is scheduled for completion in 1995. The existing facility will be closed under RCRA guidelines by 1996. As part of the permitting process, LBL is required to investigate areas of soil and groundwater contamination at its main site in the Berkeley Hills. The investigations are being conducted by LBL`s Environmental Restoration Program and are overseen by a number of regulatory agencies. The regulatory agencies working with LBL include the California Environmental Protection Agency`s Department of Toxic Substances Control, the California Regional Water Quality Control Board, the Bay Area Air Quality Management District, the East Bay Municipal Utilities District, and the Berkeley Department of Environmental Health. RCRA requires that the public be informed of LBL`s investigations and site cleanup, and that opportunities be available for the public to participate in making decisions about how LBL will address contamination issues. LBL has prepared this Community Relations Plan (CRP) to describe activities that LBL will use to keep the community informed of environmental restoration progress and to provide for an open dialogue with the public on issues of importance. The CRP documents the community`s current concerns about LBL`s Environmental Restoration Program. Interviews conducted between February and April 1993 with elected officials, agency staff, environmental organizations, businesses, site neighbors, and LBL employees form the basis for the information contained in this document.

  1. National laboratories

    International Nuclear Information System (INIS)

    The foundation of a 'National Laboratory' which would support a Research center in synchrotron radiation applications is proposed. The essential features of such a laboratory differing of others centers in Brazil are presented. (L.C.)

  2. Catalog of Research Abstracts, 1993: Partnership opportunities at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The 1993 edition of Lawrence Berkeley Laboratory`s Catalog of Research Abstracts is a comprehensive listing of ongoing research projects in LBL`s ten research divisions. Lawrence Berkeley Laboratory (LBL) is a major multi-program national laboratory managed by the University of California for the US Department of Energy (DOE). LBL has more than 3000 employees, including over 1000 scientists and engineers. With an annual budget of approximately $250 million, LBL conducts a wide range of research activities, many that address the long-term needs of American industry and have the potential for a positive impact on US competitiveness. LBL actively seeks to share its expertise with the private sector to increase US competitiveness in world markets. LBL has transferable expertise in conservation and renewable energy, environmental remediation, materials sciences, computing sciences, and biotechnology, which includes fundamental genetic research and nuclear medicine. This catalog gives an excellent overview of LBL`s expertise, and is a good resource for those seeking partnerships with national laboratories. Such partnerships allow private enterprise access to the exceptional scientific and engineering capabilities of the federal laboratory systems. Such arrangements also leverage the research and development resources of the private partner. Most importantly, they are a means of accessing the cutting-edge technologies and innovations being discovered every day in our federal laboratories.

  3. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL's existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required

  4. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  5. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES H awareness at all staff levels and in identifying ES H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES H program. 4 figs., 24 tabs.

  6. Tiger Team assessment of the Lawrence Berkeley Laboratory, Washington, DC

    International Nuclear Information System (INIS)

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment of the Lawrence Berkeley Laboratory (LBL) conducted from January 14 through February 15, 1991. The purpose of the assessment was to provide the Secretary of Energy with the status of environment, safety, and health (ES ampersand H) programs at LBL. The Tiger Team concluded that curtailment of cessation of any operations at LBL is not warranted. However, the number and breadth of findings and concerns from this assessment reflect a serious condition at this site. In spite of its late start, LBL has recently made progress in increasing ES ampersand H awareness at all staff levels and in identifying ES ampersand H deficiencies. Corrective action plans are inadequate, however, many compensatory actions are underway. Also, LBL does not have the technical expertise or training programs nor the tracking and followup to effectively direct and control sitewide guidance and oversight by DOE of ES ampersand H activities at LBL. As a result of these deficiencies, the Tiger Team has reservations about LBL's ability to implement effective actions in a timely manner and, thereby, achieve excellence in their ES ampersand H program. 4 figs., 24 tabs

  7. Annual environmental monitoring report of the Lawrence Berkeley Laboratory, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, L.D. (ed.)

    1978-03-01

    The data obtained from the Environmental Monitoring Program of the Lawrence Berkeley Laboratory for the Calendar year 1977 are described and general trends are discussed. The general trend of decreasing radiation levels at our site boundary due to accelerator operation during past years has leveled off during 1977 and in some areas shows a slight but not statistically significant increase as predicted in last year's summary. There were changes in both ion beams as well as current which have resulted in shifts in maxima at the monitoring stations. The gamma levels are once again reported as zero. There is only one period of detectable gamma radiation due to accelerator operation. The annual dose equivalent are reported from the environmental monitoring stations since they have been established. Radiation levels at the Olympus Gate Station have shown a steady decline since 1959 when estimates were first made. The Olympus Gate Station is in direct view of the Bevatron and most directly influenced by that accelerator. Over the past several years the atmospheric sampling program has, with the exception of occasional known releases, yielded data which are within the range of normal background. The surface water program always yields results within the range of normal background. As no substantial changes in the quantities of radionuclides used are anticipated, no changes are expected in these observations.

  8. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schleimer, G.E. (ed.)

    1983-04-01

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations during 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population.

  9. Annual environmental monitoring report of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    In order to establish whether LBL research activities produces any impact on the population surrounding the Laboratory, a program of environmental air and water sampling and continuous radiation monitoring was carried on throughout the year. For 1982, as in the previous several years, doses attributable to LBL radiological operations were a small fraction of the relevant radiation protection guidelines (RPG). The maximum perimeter dose equivalent was less than or equal to 24.0 mrem (the 1982 dose equivalent measured at the Building 88 monitoring station B-13A, about 5% of the RPG). The total population dose equivalent attributable to LBL operations during 1982 was less than or equal to 16 man-rem, about 0.002% of the RPG of 170 mrem/person to a suitable sample of the population

  10. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Levy, R.P.; Fabrikant, J.I.; Lyman, J.T.; Frankel, K.A.; Phillips, M.H.; Lawrence, J.H.; Tobias, C.A.

    1989-12-01

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs.

  11. Clinical results of stereotactic hellium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The first therapeutic clinical trial using accelerated heavy-charged particles in humans was performed at Lawrence Berkeley Laboratory (LBL) for the treatment of various endocrine and metabolic disorders of the pituitary gland, and as suppressive therapy for adenohypophyseal hormone-responsive carcinomas and diabetic retinopathy. In acromegaly, Cushing's disease, Nelson's syndrome and prolactin-secreting tumors, the therapeutic goal in the 433 patients treated has been to destroy or inhibit the growth of the pituitary tumor and control hormonal hypersecretion, while preserving a functional rim of tissue with normal hormone-secreting capacity, and minimizing neurologic injury. An additional group of 34 patients was treated for nonsecreting chromophobe adenomas. This paper discusses the methods and results of stereotactic helium-ion radiosurgery of the pituitary gland at Lawrence Berkeley Laboratory. 11 refs

  12. Exploratory Research and Development Fund, FY 1990. Report on Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1992-05-01

    The Lawrence Berkeley Laboratory Exploratory R&D Fund FY 1990 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of an Exploratory R&D Fund (ERF) planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The research areas covered in this report are: Accelerator and fusion research; applied science; cell and molecular biology; chemical biodynamics; chemical sciences; earth sciences; engineering; information and computing sciences; materials sciences; nuclear science; physics and research medicine and radiation biophysics.

  13. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  14. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-07-02

    In connection with the Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 67 CD-ROM diskettes (approximately 35 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. This paper contains a list of the CD-ROMs available.

  15. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  16. Fifty Years of Progress, 1937-1987 [Lawrence Berkeley Laboratory (LBL, LBNL)

    Science.gov (United States)

    Budinger, T. F. (ed.)

    1987-01-01

    This booklet was prepared for the 50th anniversary of medical and biological research at the Donner Laboratory and the Lawrence Berkeley Laboratory of the University of California. The intent is to present historical facts and to highlight important facets of fifty years of accomplishments in medical and biological sciences. A list of selected scientific publications from 1937 to 1960 is included to demonstrate the character and lasting importance of early pioneering work. The organizational concept is to show the research themes starting with the history, then discoveries of medically important radionuclides, then the use of accelerated charged particles in therapy, next human physiology studies then sequentially studies of biology from tissues to macromolecules; and finally studies of the genetic code.

  17. Sandia National Laboratories

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 60 years, Sandia has delivered essential science and technology to resolve the nation[HTML_REMOVED]s most challenging security issues. Sandia National...

  18. Seismic Protection of Laboratory Contents: The UC Berkeley Science Building Case Study

    OpenAIRE

    Comerio, Mary C.

    2003-01-01

    The research described in this report is a part of the Disaster Resistant University (DRU) initiative funded by the Federal Emergency Management Agency (FEMA) and the University of California, Berkeley. The first phase of the Disaster Resistant University initiative produced a study of potential earthquake losses at UC Berkeley together with an analysis of the economic impacts. In that report, Comerio (2000) found that despite the extraordinary building retrofit program, the UC Berkeley cam...

  19. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server cedrcd.lbl.gov''. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill lbl.gov) if you wish to make use of the data.

  20. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-03-12

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 89 CD-ROM diskettes (approximately 45 gigabytes) are on line via the Unix file server cedrcd.lbl.gov. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access.

  1. Public census data on CD-ROM at Lawrence Berkeley Laboratory. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1993-01-16

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socioeconomic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 72 CD-ROM diskettes (approximately 37 gigabytes) are on line via the Unix file server ``cedrcd.lbl.gov``. Most of the files are from the US Bureau of the Census, and many of these pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. In addition, printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), tel. (510) 642-6571, or the UC Documents Library, tel. (510) 642-2569, both located on the UC Berkeley Campus. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. LBL is grateful to UC DATA and the UC Documents Library for the use of their CD-ROM diskettes. Shared access to LBL facilities may be restricted in the future if costs become prohibitive. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s). Due to the size of the files, this access method is preferred over File Transfer Protocol (FTP) access. Please contact Deane Merrill (dwmerrill@lbl.gov) if you wish to make use of the data.

  2. A chaotic-dynamical conceptual model to describe fluid flow and contaminant transport in a fractured vadose zone. 1997 progress report and presentations at the annual meeting, Ernest Orlando Lawrence Berkeley National Laboratory, December 3--4, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Faybishenko, B.; Doughty, C.; Geller, J. [and others

    1998-07-01

    Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report.

  3. Environmental assessment for the proposed construction and operation of a Genome Sequencing Facility in Building 64 at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This document is an Environmental Assessment (EA) for a proposed project to modify 14,900 square feet of an existing building (Building 64) at Lawrence Berkeley Laboratory (LBL) to operate as a Genome Sequencing Facility. This EA addresses the potential environmental impacts from the proposed modifications to Building 64 and operation of the Genome Sequencing Facility. The proposed action is to modify Building 64 to provide space and equipment allowing LBL to demonstrate that the Directed DNA Sequencing Strategy can be scaled up from the current level of 750,000 base pairs per year to a facility that produces over 6,000,000 base pairs per year, while still retaining its efficiency.

  4. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL`s computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user`s application program(s).

  5. Public census data on CD-ROM at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Merrill, D.W.

    1992-10-01

    The Comprehensive Epidemiologic Data Resource (CEDR) and Populations at Risk to Environmental Pollution (PAREP) projects, of the Information and Computing Sciences Division (ICSD) at Lawrence Berkeley Laboratory (LBL), are using public socio-economic and geographic data files which are available to CEDR and PAREP collaborators via LBL's computing network. At this time 70 CD-ROM diskettes (approximately 36 gigabytes) are on line via the Unix file server cedrcd. lbl. gov. Most of the files are from the US Bureau of the Census, and most pertain to the 1990 Census of Population and Housing. All the CD-ROM diskettes contain documentation in the form of ASCII text files. Printed documentation for most files is available for inspection at University of California Data and Technical Assistance (UC DATA), or the UC Documents Library. Many of the CD-ROM diskettes distributed by the Census Bureau contain software for PC compatible computers, for easily accessing the data. Shared access to the data is maintained through a collaboration among the CEDR and PAREP projects at LBL, and UC DATA, and the UC Documents Library. Via the Sun Network File System (NFS), these data can be exported to Internet computers for direct access by the user's application program(s).

  6. Berkeley Low Background Facility

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K. J.; Norman, E. B. [Department of Nuclear Engineering, University of California-Berkeley, CA 94720 (United States); Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Smith, A. R.; Poon, A. W. P.; Chan, Y. D. [Nuclear Science Division, Lawrence Berkeley National Laboratory, CA 94720 (United States); Lesko, K. T. [Physics Division, Lawrence Berkeley National Laboratory, CA 94720 (United States)

    2015-08-17

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects.

  7. Berkeley Low Background Facility

    International Nuclear Information System (INIS)

    The Berkeley Low Background Facility (BLBF) at Lawrence Berkeley National Laboratory (LBNL) in Berkeley, California provides low background gamma spectroscopy services to a wide array of experiments and projects. The analysis of samples takes place within two unique facilities; locally within a carefully-constructed, low background laboratory on the surface at LBNL and at the Sanford Underground Research Facility (SURF) in Lead, SD. These facilities provide a variety of gamma spectroscopy services to low background experiments primarily in the form of passive material screening for primordial radioisotopes (U, Th, K) or common cosmogenic/anthropogenic products; active screening via neutron activation analysis for U,Th, and K as well as a variety of stable isotopes; and neutron flux/beam characterization measurements through the use of monitors. A general overview of the facilities, services, and sensitivities will be presented. Recent activities and upgrades will also be described including an overview of the recently installed counting system at SURF (recently relocated from Oroville, CA in 2014), the installation of a second underground counting station at SURF in 2015, and future plans. The BLBF is open to any users for counting services or collaboration on a wide variety of experiments and projects

  8. Heavy ion facilities and heavy ion research at Lawrence Berkeley Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-10-01

    Lawrence Berkeley Laboratory has been heavily involved since 1956 in the construction and adaptation of particle accelerators for the acceleration of heavy ions. At the present time it has the most extensive group of accelerators with heavy-ion capability in the United States: The SuperHILAC, the 88-Inch Cyclotron, and the Bevatron/Bevalac. An extensive heavy-ion program in nuclear and particle physics, in nuclear chemistry, and in the study of biological effects of heavy-ion irradiations has been supported in the past; and the Laboratory has a strong interest in expanding both its capabilities for heavy-ion acceleration and its participation in heavy-ion science. The first heavy-ion accelerator at LBL was the HILAC, which began operation in 1957. A vigorous program of research with ion beams of masses 4 through 40 began at that time and continued until the machine was shut down for modifications in February 1971. At that time, a grant of $3 M had been received from the AEC for a total reconstruction of the HILAC, to turn it into an upgraded accelerator, the SuperHILAC. This new machine is designed for the acceleration of all ions through uranium to an energy of 8.5 MeV/u. The SuperHILAC is equipped with two injectors. The lower energy injector, a 750-kV Cockcroft-Walton machine, was put into service in late 1972 for acceleration of ions up through {sup 40}Ar. By spring of 1973, operation of the SuperHILAC with this injector exceeded the performance of the original HILAC. The second injector, a 2.5-MV Dynamitron, was originally designed for the Omnitron project and built with $1 M of Omnitron R and D funds. Commissioning of this injector began in 1973 and proceeded to the point where nanoampere beams of krypton were available for a series of research studies in May and June. The first publishable new results with beams heavier than {sup 40}Ar were obtained at that time. Debugging and injector improvement projects will continue in FY 74.

  9. Environmental assessment for the recycling of slightly activated copper coil windings from the 184-Inch Cyclotron at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-02

    The proposed action is to recycle slightly activated copper that is currently stored in a warehouse leased by Lawrence Berkeley Laboratory (LBL) to a scrap metal dealer. Subsequent reutilization of the copper would be unrestricted. This document addresses the potential environmental effects of recycling and reutilizing the activated copper. In addition, the potential environmental effects of possible future uses by the dealer are addressed. Direct environmental effects from the proposed action are assessed, such as air emissions from reprocessing the activated copper, as well as indirect beneficial effects, such as averting air emissions that would result from mining and smelting an equivalent quantity of copper ore. Evaluation of the human health impacts of the proposed action focuses on the pertinent issues of radiological doses and protection of workers and the public. Five alternatives to the proposed action are considered, and their associated potential impacts are addressed. The no-action alternative is the continued storage of the activated copper at the LBL warehouse. Two recycling alternatives are considered: recycling the activated copper at the Scientific Ecology Group (SEG) facility for re-use at a DOE facility and selling or giving the activated copper to a foreign government. In addition, two disposal alternatives evaluate the impacts attributable to disposing of the activated copper either at a local sanitary landfill or at the Hanford Low-Level Waste Burial Site. The proposed project and alternatives include no new construction or development of new industry.

  10. The Advanced Light Source: A new 1.5 GeV synchrotron radiation facility at the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    The Advanced Light Source (ALS), presently under construction at the Lawrence Berkeley Laboratory, will be the world's brightest synchrotron-radiation source of ultraviolet and soft x-ray photons when it opens its doors to users in April 1993. The ALS is a third-generation source that is based on a low-emittance electron storage ring, optimized for operation at 1.5 GeV, with long straight sections for insertion devices. Its naturally short pulses are ideal for time-resolved measurements. Undulators will produce high-brightness beams from below 10 eV to above 2 keV; wigglers will produce high fluxes of harder x-rays to energies above 10 keV. The ALS will support an extensive research program in a broad spectrum of scientific and technological areas. The high brightness will open new areas of research in the materials sciences, such as spatially resolved spectroscopy (spectromicroscopy). Biological applications will include x-ray microscopy with element-specific sensitivity in the water window of the spectrum where water is much more transparent than protein. The ALS will be an excellent research tool for atomic physics and chemistry because the high flux will allow measurements to be made with tenuous gas-phase targets. Undulator radiation can excite the K shell of elements up to silicon and the L shell of elements up to krypton, and wiggler radiation can excite the L shell of nearly every element. The ALS will operate as a national user facility; interested scientists are encouraged to contact the ALS Scientific Program Coordinator to explore their scientific and technological research interests

  11. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, Appendix B, Part 11: Lawrence Berkeley Laboratory site assessment team report

    International Nuclear Information System (INIS)

    The Lawrence Berkeley Laboratory was founded in 1931 on the Berkeley campus of the University of California. The laboratory evolved from accelerator development and related nuclear physics programs to include energy production, atomic imaging, research medicine, and life sciences. The LBL research with actinide elements, including plutonium, focuses principally to develop methods to dispose of nuclear wastes. Also, LBL uses sources of plutonium to calibrate neutron detectors used at the laboratory. All radiological work at LBL is governed by Publication 3000. In accordance with the directive of Energy Secretary O'Leary open-quote Department of Energy Plutonium ES ampersand H Vulnerability Assessment: Project Plan,close-quote April 25, 19941. Sandia National Laboratories/New Mexico has conducted a site assessment of the SNL/NM site's plutonium environment, safety and health (ES ampersand H) vulnerabilities associated with plutonium and other transuranic material. The results are presented in this report

  12. Environmental research at Berkeley

    CERN Document Server

    1973-01-01

    The information concerning the Energy and Environment Programme at the Lawrence Berkeley Laboratory is based on a talk given at CERN by A.M. Sessler, one of the initiators of the Programme. (Dr. Sessler has been appointed Director of the Lawrence Berkeley Laboratory, in succession to Prof. E. M. McMillan, from 1 November.) Many of the topics mentioned merit an extended story in themselves but the purpose of this article is simply to give a sketch of what is happening.

  13. Bishop Berkeley

    OpenAIRE

    Bindon, Francis (Irish artist, 1690-1765)

    2008-01-01

    'Berkeley was born at his family home, Dysart Castle, near Thomastown, County Kilkenny, Ireland, the eldest son of William Berkeley, a cadet of the noble family of Berkeley. He was educated at Kilkenny College and attended Trinity College, Dublin, completing a Master's degree in 1707. He remained at Trinity College after completion of his degree as a tutor and Greek lecturer.' (en.wikipedia.org)

  14. The National Fire Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The National Fire Research Laboratory (NFRL) is adding a unique facility that will serve as a center of excellence for fireperformance of structures ranging in size...

  15. Challenges and Opportunities To Achieve 50% Energy Savings in Homes. National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marcus V.A. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-07-01

    This report summarizes the key opportunities, gaps, and barriers identified by researchers from four national laboratories (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes.

  16. Brookhaven National Laboratory

    Science.gov (United States)

    ... Sustainable Energy Technologies Environment, Biology, Nuclear Science & Nonproliferation Biology Environmental and Climate Sciences Department Nuclear Science and Technology Nonproliferation and National Security Nuclear & Particle Physics Collider-Accelerator Instrumentation Physics Superconducting ...

  17. Los Alamos National Laboratory A National Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  18. Design, fabrication, and calibration of curved integral coils for measuring transfer function, uniformity, and effective length of LBL ALS [Lawrence Berkeley Laboratory Advanced Light Source] Booster Dipole Magnets

    International Nuclear Information System (INIS)

    A matched pair of curved integral coils has been designed, fabricated and calibrated at Lawrence Berkeley Laboratory for measuring Advanced Light Source (ALS) Booster Dipole Magnets. Distinctive fabrication and calibration techniques are described. The use of multifilar magnet wire in fabrication integral search coils is described. Procedures used and results of AC and DC measurements of transfer function, effective length and uniformity of the prototype booster dipole magnet are presented in companion papers. 8 refs

  19. Argonne National Laboratory 1985 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  20. Argonne National Laboratory 1985 publications

    International Nuclear Information System (INIS)

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index

  1. Challenges and Opportunities To Achieve 50% Energy Savings in Homes: National Laboratory White Papers

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, M. V. A.

    2011-07-01

    In 2010, researchers from four of the national laboratories involved in residential research (Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Oak Ridge National Laboratory, and Pacific Northwest National Laboratory) were asked to prepare papers focusing on the key longer term research challenges, market barriers, and technology gaps that must be addressed to achieve the longer term 50% saving goal for Building America to ensure coordination with the Building America industry teams who are focusing their research on systems to achieve the near-term 30% savings goal. Although new construction was included, the focus of the effort was on deep energy retrofits of existing homes. This report summarizes the key opportunities, gaps, and barriers identified in the national laboratory white papers.

  2. Oak Ridge National Laboratory Review

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  3. Photometrics at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.Y.; Hill, R.A.; Hughes, R.L. (eds.)

    1990-07-01

    This report highlights Sandia National Laboratories' work in the following areas: photometrics and optical development; still and time-lapse photography; real-time motion photography; high-speed photography; image-motion photography; schlieren photography; ultra-high-speed photography; electronic imaging; shuttered video and high-speed video; infrared imaging radiometry; exoatmospheric photography and videography; microdensitometry and image analysis; and optical system design and development.

  4. 2009 SCDNR Berkeley County Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Sanborn Map Company completed the original classification of the multiple return LiDAR of Berkeley County, South Carolina in 2009. In 2013, Dewberry was tasked with...

  5. Argonne National Laboratory 1986 publications

    Energy Technology Data Exchange (ETDEWEB)

    Kopta, J.A.; Springer, C.J.

    1987-12-01

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  6. Argonne National Laboratory 1986 publications

    International Nuclear Information System (INIS)

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index

  7. Frederick National Laboratory for Cancer Research

    Data.gov (United States)

    Federal Laboratory Consortium — Among the many cancer research laboratories operated by NCI, the Frederick National Laboratory for Cancer Research(FNLCR) is unique in that it is a Federally Funded...

  8. UC-Berkeley-area citizens decry waste transfer from lab.

    CERN Multimedia

    Nakasato, L

    2002-01-01

    Residents are working to stop the transfer of potentially hazardous and radioactive material from Lawrence Berkeley National Laboratory. The lab has begun to dismantle the Bevatron which has been shut down since 1993 and says eight trucks per day will move material offsite (1 page).

  9. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award; scientist's work on supernovae reveals accelerating Universe

    CERN Multimedia

    2002-01-01

    Saul Perlmutter, from Lawrence Berkeley National Laboratory Physics Division and leader of the Supernova Cosmology Project based there, has won the DOE's 2002 E.O. Lawrence Award in the physics category (2 pages).

  10. Fermilab and Berkeley Lab Collaborate with Meyer Tool on Key Component for European Particle Accelerator

    CERN Multimedia

    2004-01-01

    Officials of the U.S. Department of Energy's Fermi National Accelerator Laboratory and Lawrence Berkeley National Laboratory announced yesterday the completion of a key component of the U.S. contribution to the Large Hadron Collider, a particle accelerator under construction at CERN, in Geneva, Switzerland

  11. Post-Irradiation Capabilities at the Idaho National Laboratory

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States of America. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory for nuclear energy, Idaho National Laboratory (INL) has a rich history, experience, workforce, and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and workload increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and advanced post- irradiation examination capability, these facilities are next generation PIE laboratories designed to perform the PIE work that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California Berkeley. (author)

  12. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Schulthess; K. E. Rosenberg

    2011-05-01

    The U.S. Department of Energy (DOE), Office of Nuclear Energy (NE) oversees the efforts to ensure nuclear energy remains a viable option for the United States. A significant portion of these efforts are related to post-irradiation examinations (PIE) of highly activated fuel and materials that are subject to the extreme environment inside a nuclear reactor. As the lead national laboratory, Idaho National Laboratory (INL) has a rich history, experience, workforce and capabilities for performing PIE. However, new advances in tools and techniques for performing PIE now enable understanding the performance of fuels and materials at the nano-scale and smaller level. Examination at this level is critical since this is the scale at which irradiation damage occurs. The INL is on course to adopt these advanced tools and techniques to develop a comprehensive nuclear fuels and materials characterization capability that is unique in the world. Because INL has extensive PIE capabilities currently in place, a strong foundation exist to build upon as new capabilities are implemented and work load increases. In the recent past, INL has adopted significant capability to perform advanced PIE characterization. Looking forward, INL is planning for the addition of two facilities that will be built to meet the stringent demands of advanced tools and techniques for highly activated fuels and materials characterization. Dubbed the Irradiated Materials Characterization Laboratory (IMCL) and Advanced Post Irradiation Examination Capability , these facilities are next generation PIE laboratories designed to perform the work of PIE that cannot be performed in current DOE facilities. In addition to physical capabilities, INL has recently added two significant contributors to the Advanced Test Reactor-National Scientific User Facility (ATR-NSUF), Oak Ridge National Laboratory and University of California, Berkeley.

  13. BROOKHAVEN NATIONAL LABORATORY WILDLIFE MANAGEMENT PLAN.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.

    2002-10-22

    The purpose of the Wildlife Management Plan (WMP) is to promote stewardship of the natural resources found at the Brookhaven National Laboratory (BNL), and to integrate their protection with pursuit of the Laboratory's mission.

  14. National High Magnetic Field Laboratory (NHMFL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Pulsed Field Program is located in Northern New Mexico at Los Alamos National Laboratory. The user program is designed to provide researchers with a balance of...

  15. National Standard on Laboratory Biosafety Officially Promulgated

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ On May 28, a press conference on national standards of the General Requirements on Laboratory Biosafety, which was sponsored by the Standardization Administration of China (SAC) and the Certification and Accreditation Administration of the People's Republic of China (CNCA) and undertaken by China National Accreditation Board for Laboratories, was held in Beijing.

  16. Structural health monitoring activities at National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, C.R.; Doebling, S.W. [Los Alamos National Lab., NM (United States); James, G.H.; Simmermacher, T. [Sandia National Labs., Albuquerque, NM (United States)

    1997-09-01

    Sandia National Laboratories and Los Alamos National Laboratory have on-going programs to assess damage in structures and mechanical systems from changes in their dynamic characteristics. This paper provides a summary of how both institutes became involved with this technology, their experience in this field and the directions that their research in this area will be taking in the future.

  17. Technology transfer at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Allen, M.S.; Arvizu, D.E.

    1993-10-01

    Transferring technology to the private sector to help improve the competitiveness of key US industries is now an official mission of the US Department of Energy`s (DOE) defense program national laboratories. We believe that national laboratories can play an important role in addressing US industrial competitiveness. Sandia is seeking to match laboratory strengths with industry-defined market needs in targeted industrial sectors. Sandia, like other national and federal laboratories, is developing an aggressive technology transfer program. This paper provides a brief review of our program and provides a snap-shot of where we are at today.

  18. SCFA lead lab technical assistance at Lawrence Berkeley National Laboratory: Baseline review of three groundwater plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry; et al.

    2002-09-26

    During the closeout session, members of the technical assistance team conveyed to the site how impressed they were at the thoroughness of the site's investigation and attempts at remediation. Team members were uniformly pleased at the skilled detection work to identify sources, make quick remediation decisions, and change course when a strategy did not work well. The technical assistance team also noted that, to their knowledge, this is the only DOE site at which a world-class scientist has had primary responsibility for the environmental restoration activities. This has undoubtedly contributed to the successes observed and DOE should take careful note. The following overall recommendations were agreed upon: (1) The site has done a phenomenal job of characterization and identifying and removing source terms. (2) Technologies selected to date are appropriate and high impact, e.g. collection trenches are an effective remedial strategy for this complicated geology. The site should continue using technology that is adapted to the site's unique geology, such as the collection trenches. (3) The site should develop a better way to determine the basis of cleanup for all sites. (4) The sentinel well system should be evaluated and modified, if needed, to assure that the sentinel wells provide coverage to the current site boundary. Potential modifications could include installation, abandonment or relocation of wells based on the large amount of data collected since the original sentinel well system was designed. (5) Modeling to assist in remedial design and communication should continue. (6) The site should develop a plan to ensure institutional memory. (7) The most likely possibility for improving closure to 2006 is by removing the residual source of the Old Town plume and establishing the efficacy of remediation for the 51/64 plume.

  19. Advancing Space Sciences through Undergraduate Research Experiences at UC Berkeley's Space Sciences Laboratory - a novel approach to undergraduate internships for first generation community college students

    Science.gov (United States)

    Raftery, C. L.; Davis, H. B.; Peticolas, L. M.; Paglierani, R.

    2015-12-01

    The Space Sciences Laboratory at UC Berkeley launched an NSF-funded Research Experience for Undergraduates (REU) program in the summer of 2015. The "Advancing Space Sciences through Undergraduate Research Experiences" (ASSURE) program recruited heavily from local community colleges and universities, and provided a multi-tiered mentorship program for students in the fields of space science and engineering. The program was focussed on providing a supportive environment for 2nd and 3rd year undergraduates, many of whom were first generation and underrepresented students. This model provides three levels of mentorship support for the participating interns: 1) the primary research advisor provides academic and professional support. 2) The program coordinator, who meets with the interns multiple times per week, provides personal support and helps the interns to assimilate into the highly competitive environment of the research laboratory. 3) Returning undergraduate interns provided peer support and guidance to the new cohort of students. The impacts of this program on the first generation students and the research mentors, as well as the lessons learned will be discussed.

  20. Job cuts loom at National Physical Laboratory

    Science.gov (United States)

    Extance, Andy

    2016-09-01

    The UK's National Physical Laboratory (NPL) – the country's standards lab – is consulting on making up to 50 compulsory redundancies as it prepares to shift its research priorities towards quantum technologies and big data.

  1. Berkeley Lab Laser Accelerator (BELLA) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Berkeley Lab Laser Accelerator (BELLA) facility (formerly LOASIS) develops advanced accelerators and radiation sources. High gradient (1-100 GV/m) laser-plasma...

  2. Sandia National Laboratories 1979 environmental monitoring report

    International Nuclear Information System (INIS)

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are released from five technical areas from the Laboratories' resarch activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of local background in 1979. The Albuquerque population receives only 0.076 person-rem (estimated) from airborne radioactive releases. While national security research is the laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  3. Brookhaven highlights - Brookhaven National Laboratory 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    This report highlights research conducted at Brookhaven National Laboratory in the following areas: alternating gradient synchrotron; physics; biology; national synchrotron light source; department of applied science; medical; chemistry; department of advanced technology; reactor; safety and environmental protection; instrumentation; and computing and communications.

  4. Plutonium working group report on environmental, safety and health vulnerabilities associated with the department's plutonium storage. Volume II, part 11: Lawrence Berkeley Laboratory working group assessment team report

    International Nuclear Information System (INIS)

    President Clinton has directed an Interagency Working Group to initiate a comprehensive review of long-term options for the disposition of surplus plutonium. As part of this initiative, Secretary of Energy, Hazel O'Leary, has directed that a Department of Energy project be initiated to develop options and recommendations for the safe storage of these materials in the interim. A step in the process is a plutonium vulnerability assessment of facilities throughout the Department. The Plutonium Vulnerability Working Group was formed to produce the Project and Assessment Plans, to manage the assessments and to produce a final report for the Secretary by September 30, 1994. The plans established the approach and methodology for the assessment. The Project Plan specifies a Working Group Assessment Team (WGAT) to examine each of the twelve DOE sites with significant holdings of plutonium. The Assessment Plan describes the methodology that the Site Assessment Team (SAT) used to report on the plutonium holdings for each specific site.This report provides results of the assessment of the Lawrence Berkeley Laboratory

  5. Idaho National Laboratory Research & Development Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Stricker, Nicole [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  6. Database activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory is a multi-disciplinary lab in the DOE system of research laboratories. Database activities are correspondingly diverse within the restrictions imposed by the dominant relational database paradigm. The authors discuss related activities and tools used in RHIC and in the other major projects at BNL. The others are the Protein Data Bank being maintained by the Chemistry department, and a Geographical Information System (GIS)--a Superfund sponsored environmental monitoring project under development in the Office of Environmental Restoration

  7. ISO 14001 IMPLEMENTATION AT A NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    BRIGGS,S.L.K.

    2001-06-01

    After a tumultuous year discovering serious lapses in environment, safety and health management at Brookhaven National Laboratory, the Department of Energy established a new management contract. It called for implementation of an IS0 14001 Environmental Management System and registration of key facilities. Brookhaven Science Associates, the managing contractor for the Laboratory, designed and developed a three-year project to change culture and achieve the goals of the contract. The focus of its efforts were to use IS0 14001 to integrate environmental stewardship into all facets of the Laboratory's mission, and manage its programs in a manner that protected the ecosystem and public health. A large multidisciplinary National Laboratory with over 3,000 employees and 4,000 visiting scientists annually posed significant challenges for IS0 14001 implementation. Activities with environmental impacts varied from regulated industrial waste generation, to soil activation from particle accelerator operations, to radioactive groundwater contamination from research reactors. A project management approach was taken to ensure project completion on schedule and within budget. The major work units for the Environmental Management System Project were as follows: Institutional EMS Program Requirements, Communications, Training, Laboratory-wide Implementation, and Program Assessments. To minimize costs and incorporate lessons learned before full-scale deployment throughout the Laboratory, a pilot process was employed at three facilities. Brookhaven National Laboratory has completed its second year of the project in the summer of 2000, successfully registering nine facilities and self-declaring conformance in all remaining facilities. Project controls, including tracking and reporting progress against a model, have been critical to the successful implementation. Costs summaries are lower than initial estimates, but as expected legal requirements, training, and assessments are key

  8. ORNL [Oak Ridge National Laboratory] 89

    International Nuclear Information System (INIS)

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory

  9. ORNL (Oak Ridge National Laboratory) 89

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, T.D.; Appleton, B.R.; Jefferson, J.W.; Merriman, J.R.; Mynatt, F.R.; Richmond, C.R.; Rosenthal, M.W.

    1989-01-01

    This is the inaugural issues of an annual publication about the Oak Ridge National Laboratory. Here you will find a brief overview of ORNL, a sampling of our recent research achievements, and a glimpse of the directions we want to take over the next 15 years. A major purpose of ornl 89 is to provide the staff with a sketch of the character and dynamics of the Laboratory.

  10. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  11. Mobile robotics research at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  12. Lawrence Livermore National Laboratory Summer Employment Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A J

    2002-08-06

    This document will serve as a summary of my work activities as a summer employee for the Lawrence Livermore National Laboratory (LLNL). The intent of this document is to provide an overview of the National Ignition Facility (NIF) project, to explain the role of the department that I am working for, and to discuss my specific assigned tasks and their impact on the NIF project as a whole.

  13. Biomedical engineering at Sandia National Laboratories

    Science.gov (United States)

    Zanner, Mary Ann

    1994-12-01

    The potential exists to reduce or control some aspects of the U.S. health care expenditure without compromising health care delivery by developing carefully selected technologies which impact favorably on the health care system. A focused effort to develop such technologies is underway at Sandia National Laboratories. As a DOE National Laboratory, Sandia possesses a wealth of engineering and scientific expertise that can be readily applied to this critical national need. Appropriate mechanisms currently exist to allow transfer of technology from the laboratory to the private sector. Sandia's Biomedical Engineering Initiative addresses the development of properly evaluated, cost-effective medical technologies through team collaborations with the medical community. Technology development is subjected to certain criteria including wide applicability, earlier diagnoses, increased efficiency, cost-effectiveness and dual-use. Examples of Sandia's medical technologies include a noninvasive blood glucose sensor, computer aided mammographic screening, noninvasive fetal oximetry and blood gas measurement, burn diagnostics and laser debridement, telerobotics and ultrasonic scanning for prosthetic devices. Sandia National Laboratories has the potential to aid in directing medical technology development efforts which emphasize health care needs, earlier diagnosis, cost containment and improvement of the quality of life.

  14. Applied programs at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-09-01

    This document overviews the areas of current research at Brookhaven National Laboratory. Technology transfer and the user facilities are discussed. Current topics are presented in the areas of applied physics, chemical science, material science, energy efficiency and conservation, environmental health and mathematics, biosystems and process science, oceanography, and nuclear energy. (GHH)

  15. Lawrence Livermore National Laboratory Environmental Report 2013

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dibley, V. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Doman, J. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Heidecker, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kumamoto, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Veseliza, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-01

    Lawrence Livermore National Laboratory (LLNL) is a premier research laboratory that is part of the National Nuclear Security Administration (NNSA) within the U.S. Department of Energy (DOE). As a national security laboratory, LLNL is responsible for ensuring that the nation’s nuclear weapons remain safe, secure, and reliable. The Laboratory also meets other pressing national security needs, including countering the proliferation of weapons of mass destruction and strengthening homeland security, and conducting major research in atmospheric, earth, and energy sciences; bioscience and biotechnology; and engineering, basic science, and advanced technology. The Laboratory is managed and operated by Lawrence Livermore National Security, LLC (LLNS), and serves as a scientific resource to the U.S. government and a partner to industry and academia. LLNL operations have the potential to release a variety of constituents into the environment via atmospheric, surface water, and groundwater pathways. Some of the constituents, such as particles from diesel engines, are common at many types of facilities while others, such as radionuclides, are unique to research facilities like LLNL. All releases are highly regulated and carefully monitored. LLNL strives to maintain a safe, secure and efficient operational environment for its employees and neighboring communities. Experts in environment, safety and health (ES&H) support all Laboratory activities. LLNL’s radiological control program ensures that radiological exposures and releases are reduced to as low as reasonably achievable to protect the health and safety of its employees, contractors, the public, and the environment. LLNL is committed to enhancing its environmental stewardship and managing the impacts its operations may have on the environment through a formal Environmental Management System. The Laboratory encourages the public to participate in matters related to the Laboratory’s environmental impact on the

  16. PYROPROCESSING PROGRESS AT IDAHO NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Solbrig, Chuck; B. R. Westphal; Johnson, T.; Li, S.; Marsden, K.; Goff, K. M.

    2007-09-01

    At the end of May 2007, 830 and 2600 kilograms of EBR-II driver and blanket metal fuel have been treated by a pyroprocess since spent fuel operations began in June 1996. A new metal waste furnace has completed out-of-cell testing and is being installed in the Hot Fuel Examination Facility. Also, ceramic waste process development and qualification is progressing so integrated nuclear fuel separations and high level waste processes will exist at Idaho National Laboratory. These operations have provided important scale-up and performance data on engineering scale operations. Idaho National Laboratory is also increasing their laboratory scale capabilities so new process improvements and new concepts can be tested before implementation at engineering scale. This paper provides an overview of recent achievements and provides the interested reader references for more details.

  17. Nuclear Forensics at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Podlesak, David W [Los Alamos National Laboratory; Steiner, Robert E. [Los Alamos National Laboratory; Burns, Carol J. [Los Alamos National Laboratory; LaMont, Stephen P. [Los Alamos National Laboratory; Tandon, Lav [Los Alamos National Laboratory

    2012-08-09

    The overview of this presentation is: (1) Introduction to nonproliferation efforts; (2) Scope of activities at Los Alamos National Laboratory; (3) Facilities for radioanalytical work at LANL; (4) Radiochemical characterization capabilities; and (5) Bulk chemical and materials analysis capabilities. Some conclusions are: (1) Analytical chemistry measurements on plutonium and uranium matrices are critical to numerous defense and non-defense programs including safeguards accountancy verification measurements; (2) Los Alamos National Laboratory operates capable actinide analytical chemistry and material science laboratories suitable for nuclear material forensic characterization; (3) Actinide analytical chemistry uses numerous means to validate and independently verify that measurement data quality objectives are met; and (4) Numerous LANL nuclear facilities support the nuclear material handling, preparation, and analysis capabilities necessary to evaluate samples containing nearly any mass of an actinide (attogram to kilogram levels).

  18. Scientific Openness and National Security at the National Laboratories

    Science.gov (United States)

    McTague, John

    2000-04-01

    The possible loss to the People's Republic of China of important U.S. nuclear-weapons-related information has aroused concern about interactions of scientists employed by the national laboratories with foreign nationals. As a result, the National Academies assembled a committee to examine the roles of the national laboratories, the contribution of foreign interactions to the fulfillment of those roles, the risks and benefits of scientific openness in this context, and the merits and liabilities of the specific policies being implemented or proposed with respect to contacts with foreign nationals. The committee concluded that there are many aspects of the work at the laboratories that benefit from or even demand the opportunity for foreign interactions. The committee recommended five principles for guiding policy: (1) Maintain balance. Policy governing international dialogue by laboratory staff should seek to encourage international engagement in some areas, while tightly controlling it in others. (2) Educate staff. Security procedures should be clear, easy to follow, and serve an understandable purpose. (3) Streamline procedures. Good science is compatible with good security if there is intelligent line management both at the labs and in Washington, which applies effective tools for security in a sensible fashion. (4) Focus efforts. DOE should focus its efforts governing tightened security for information. The greatest attention should obviously be provided to the protection of classified information by appropriate physical and cybersecurity measures, and by personnel procedures and training. (5) Beware of prejudice against foreigners. Over the past half-century foreign-born individuals have contributed broadly and profoundly to national security through their work at the national laboratories.

  19. Chemical research at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  20. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun Williams

    2013-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at Idaho National Laboratory in southeastern Idaho. The Idaho National Laboratory is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable, bear valuable physical and intangible legacies, and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through regular reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices

  1. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  2. Sandia National Laboratories analysis code data base

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, C.W.

    1994-11-01

    Sandia National Laboratories, mission is to solve important problems in the areas of national defense, energy security, environmental integrity, and industrial technology. The Laboratories` strategy for accomplishing this mission is to conduct research to provide an understanding of the important physical phenomena underlying any problem, and then to construct validated computational models of the phenomena which can be used as tools to solve the problem. In the course of implementing this strategy, Sandia`s technical staff has produced a wide variety of numerical problem-solving tools which they use regularly in the design, analysis, performance prediction, and optimization of Sandia components, systems and manufacturing processes. This report provides the relevant technical and accessibility data on the numerical codes used at Sandia, including information on the technical competency or capability area that each code addresses, code ``ownership`` and release status, and references describing the physical models and numerical implementation.

  3. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2009-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  4. Idaho National Laboratory Cultural Resource Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Lowrey, Diana Lee

    2011-02-01

    As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of

  5. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  6. Environmental report 1997, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1997. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  7. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). PMID:22573532

  8. Frederick National Laboratory Celebrates 40 Years | Poster

    Science.gov (United States)

    By Ashley DeVine, Staff Writer Forty years ago, what we now call the Frederick National Laboratory for Cancer Research was born. Here are some highlights in the facility’s history. October 19, 1971 – President Richard Nixon announced that Fort Detrick would be converted from a biological warfare facility to a cancer research center (Covert, Norman M., Cutting Edge: A History of Fort Detrick, Maryland, 1943–1993, pp. 85–87).

  9. Environmental report 1996, Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report summarizes the environmental program activities at the Lawrence Livermore National Laboratory (LLNL) for 1996. This report accurately summarizes the results of environmental monitoring, compliance, impacts assessment, and the restoration program at LLNL. It features individual chapters on monitoring of air, sewage, surface water, ground water, soil and sediment, vegetation and foodstuff, and environmental radiation. It also contains chapters on site overview, environmental program information, radiological dose assessment, and quality assurance

  10. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL).

  11. Oak Ridge National Laboratory Waste Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  12. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  13. Lawrence Livermore National Laboratory Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2007-05-24

    For the Laboratory and staff, 2006 was a year of outstanding achievements. As our many accomplishments in this annual report illustrate, the Laboratory's focus on important problems that affect our nation's security and our researchers breakthroughs in science and technology have led to major successes. As a national laboratory that is part of the Department of Energy's National Nuclear Security Administration (DOE/NNSA), Livermore is a key contributor to the Stockpile Stewardship Program for maintaining the safety, security, and reliability of the nation's nuclear weapons stockpile. The program has been highly successful, and our annual report features some of the Laboratory's significant stockpile stewardship accomplishments in 2006. A notable example is a long-term study with Los Alamos National Laboratory, which found that weapon pit performance will not sharply degrade from the aging effects on plutonium. The conclusion was based on a wide range of nonnuclear experiments, detailed simulations, theoretical advances, and thorough analyses of the results of past nuclear tests. The study was a superb scientific effort. The continuing success of stockpile stewardship enabled NNSA in 2006 to lay out Complex 2030, a vision for a transformed nuclear weapons complex that is more responsive, cost efficient, and highly secure. One of the ways our Laboratory will help lead this transformation is through the design and development of reliable replacement warheads (RRWs). Compared to current designs, these warheads would have enhanced performance margins and security features and would be less costly to manufacture and maintain in a smaller, modernized production complex. In early 2007, NNSA selected Lawrence Livermore and Sandia National Laboratories-California to develop ''RRW-1'' for the U.S. Navy. Design efforts for the RRW, the plutonium aging work, and many other stockpile stewardship accomplishments rely on computer

  14. Oak Ridge National Laboratory Core Competencies

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.B.; Anderson, T.D.; Berven, B.A.; Hildebrand, S.G.; Hartman, F.C.; Honea, R.B.; Jones, J.E. Jr.; Moon, R.M. Jr.; Saltmarsh, M.J.; Shelton, R.B. [and others

    1994-12-01

    A core competency is a distinguishing integration of capabilities which enables an organization to deliver mission results. Core competencies represent the collective learning of an organization and provide the capacity to perform present and future missions. Core competencies are distinguishing characteristics which offer comparative advantage and are difficult to reproduce. They exhibit customer focus, mission relevance, and vertical integration from research through applications. They are demonstrable by metrics such as level of investment, uniqueness of facilities and expertise, and national impact. The Oak Ridge National Laboratory (ORNL) has identified four core competencies which satisfy the above criteria. Each core competency represents an annual investment of at least $100M and is characterized by an integration of Laboratory technical foundations in physical, chemical, and materials sciences; biological, environmental, and social sciences; engineering sciences; and computational sciences and informatics. The ability to integrate broad technical foundations to develop and sustain core competencies in support of national R&D goals is a distinguishing strength of the national laboratories. The ORNL core competencies are: 9 Energy Production and End-Use Technologies o Biological and Environmental Sciences and Technology o Advanced Materials Synthesis, Processing, and Characterization & Neutron-Based Science and Technology. The distinguishing characteristics of each ORNL core competency are described. In addition, written material is provided for two emerging competencies: Manufacturing Technologies and Computational Science and Advanced Computing. Distinguishing institutional competencies in the Development and Operation of National Research Facilities, R&D Integration and Partnerships, Technology Transfer, and Science Education are also described. Finally, financial data for the ORNL core competencies are summarized in the appendices.

  15. Lawrence Livermore National Laboratory 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P; Walter, K

    2008-04-25

    Lawrence Livermore National Laboratory's many outstanding accomplishments in 2007 are a tribute to a dedicated staff, which is shaping the Laboratory's future as we go through a period of transition and transformation. The achievements highlighted in this annual report illustrate our focus on the important problems that affect our nation's security and global stability, our application of breakthrough science and technology to tackle those problems, and our commitment to safe, secure, and efficient operations. In May 2007, the Department of Energy (DOE) awarded Lawrence Livermore National Security, LLC (LLNS), a new public-private partnership, the contract to manage and operate the Laboratory starting in October. Since its inception in 1952, the Laboratory had been managed by the University of California (UC) for the DOE's National Nuclear Security Administration (NNSA) and predecessor organizations. UC is one of the parent organizations that make up LLNS, and UC's presence in the new management entity will help us carry forward our strong tradition of multidisciplinary science and technology. 'Team science' applied to big problems was pioneered by the Laboratory's co-founder and namesake, Ernest O. Lawrence, and has been our hallmark ever since. Transition began fully a year before DOE's announcement. More than 1,600 activities had to be carried out to transition the Laboratory from management by a not-for-profit to a private entity. People, property, and procedures as well as contracts, formal agreements, and liabilities had to be transferred to LLNS. The pre-transition and transition teams did a superb job, and I thank them for their hard work. Transformation is an ongoing process at Livermore. We continually reinvent ourselves as we seek breakthroughs that impact emerging national needs. An example is our development in the late 1990s of a portable instrument that could rapidly detect DNA signatures, research that

  16. National Storage Laboratory: a collaborative research project

    Science.gov (United States)

    Coyne, Robert A.; Hulen, Harry; Watson, Richard W.

    1993-01-01

    The grand challenges of science and industry that are driving computing and communications have created corresponding challenges in information storage and retrieval. An industry-led collaborative project has been organized to investigate technology for storage systems that will be the future repositories of national information assets. Industry participants are IBM Federal Systems Company, Ampex Recording Systems Corporation, General Atomics DISCOS Division, IBM ADSTAR, Maximum Strategy Corporation, Network Systems Corporation, and Zitel Corporation. Industry members of the collaborative project are funding their own participation. Lawrence Livermore National Laboratory through its National Energy Research Supercomputer Center (NERSC) will participate in the project as the operational site and provider of applications. The expected result is the creation of a National Storage Laboratory to serve as a prototype and demonstration facility. It is expected that this prototype will represent a significant advance in the technology for distributed storage systems capable of handling gigabyte-class files at gigabit-per-second data rates. Specifically, the collaboration expects to make significant advances in hardware, software, and systems technology in four areas of need, (1) network-attached high performance storage; (2) multiple, dynamic, distributed storage hierarchies; (3) layered access to storage system services; and (4) storage system management.

  17. The National Laboratory Gene Library Project

    Energy Technology Data Exchange (ETDEWEB)

    Deaven, L.L.; Van Dilla, M.A.

    1988-01-01

    The two National Laboratories at Livermore and Los Alamos have played a prominent role in the development and application of flow cytometry and sorting to chromosome classification and purification. Both laboratories began to receive numerous requests for specific human chromosomal types purified by flow sorting for gene library construction, but these requests were difficult to satisfy due to time and personnel constraints. The Department of Energy, through its Office of Health and Environmental Research, has a long-standing interest in the human genome in general and in the mutagenic and carcinogenic effects of energy-related environmental pollutants in particular. Hence, it was decided in 1983 to use the flow construct chromosome-specific gene libraries to be made available to the genetic research community. The National Laboratory Gene Library Project was envisioned as a practical way to deal with requests for sorted chromosomes, and also as a way to promote increased understanding of the human genome and the effects of mutagens and carcinogens on it. The strategy for the project was developed with the help of an advisory committee as well as suggestions and advice from many other geneticists. 4 refs., 2 tabs.

  18. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  19. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.

    1995-12-31

    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  20. Idaho national laboratory - a nuclear research center

    International Nuclear Information System (INIS)

    Full text: The Idaho National Laboratory (INL) is committed to providing international nuclear leadership for the 21st Century, developing and demonstrating compelling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multi program national laboratories. INL runs three major programs - Nuclear, Security and Science. Nuclear programs covers the Advanced test reactor, Six Generation IV technology concepts selected for Rand D, targeting tumors - Boron Neutron Capture therapy. Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (INSE) under the Center for Advanced Energy Studies (CAES) and the Idaho State University (ISU). INSE will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer INSE is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'. (author)

  1. Idaho National Laboratory - Nuclear Research Center

    International Nuclear Information System (INIS)

    Full text: The Idaho National Laboratory is committed to the providing international nuclear leadership for the 21st Century, developing and demonstrating compiling national security technologies, and delivering excellence in science and technology as one of the United States Department of Energy's (DOE) multiprogram national laboratories. INL runs three major programs - Nuclear, Security and Science. nuclear programs covers the Advanced test reactor, Six Generation technology concepts selected for R and D, Targeting tumors - Boron Neutron capture therapy. Homeland security - Homeland Security establishes the Control System Security and Test Center, Critical Infrastructure Test Range evaluates technologies on a scalable basis, INL conducts high performance computing and visualization research and science - INL facility established for Geocentrifuge Research, Idaho Laboratory, a Utah company achieved major milestone in hydrogen research and INL uses extremophile bacteria to ease bleaching's environmental cost. To provide leadership in the education and training, INL has established an Institute of Nuclear Science and Engineering (Inset). The institute will offer a four year degree based on a newly developed curriculum - two year of basic science course work and two years of participation in project planning and development. The students enrolled in this program can continue to get a masters or a doctoral degree. This summer Inset is the host for the training of the first international group selected by the World Nuclear University (WNU) - 75 fellowship holders and their 30 instructors from 40 countries. INL has been assigned to provide future global leadership in the field of nuclear science and technology. Here, at INL, we keep safety first above all things and our logo is 'Nuclear leadership synonymous with safety leadership'

  2. Idaho National Engineering Laboratory site development plan

    International Nuclear Information System (INIS)

    This plan briefly describes the 20-year outlook for the Idaho National Engineering Laboratory (INEL). Missions, workloads, worker populations, facilities, land, and other resources necessary to fulfill the 20-year site development vision for the INEL are addressed. In addition, the plan examines factors that could enhance or deter new or expanded missions at the INEL. And finally, the plan discusses specific site development issues facing the INEL, possible solutions, resources required to resolve these issues, and the anticipated impacts if these issues remain unresolved

  3. The National High Magnetic Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schneider-Muntau, H.J.; Brandt, B.L.; Brunel, L.C.; Cross, T.A.; Edison, A.S.; Marshall, A.G.; Reyes, A.P

    2004-04-30

    We describe two of the main user facilities of the National High Magnetic Field Laboratory (NHMFL): (a) the General Purpose DC Field Facility with nine resistive and hybrid magnet stations with continuous fields between 20 and 45 T, and (b) the CIMAR Facilities with 17 spectrometers for the NMR Spectroscopy and Imaging Program, the Fourier Transform ICR Mass Spectrometry Program and the Electron Magnetic Resonance Spectroscopy Program. The facilities are located in Tallahassee, and Gainesville, FL. Members of the worldwide science and engineering communities can access NHMFL facilities, generally without cost, through a peer-reviewed proposal process.

  4. National Renewable Energy Laboratory 2005 Research Review

    Energy Technology Data Exchange (ETDEWEB)

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  5. Lawrence Livermore National Laboratory Environmental Report 2014

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bertoldo, N. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Blake, R. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Buscheck, W. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Byrne, J. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Cerruti, S. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bish, C. B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratanduono, M. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Grayson, A. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); MacQueen, D. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montemayor, W. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ottaway, H. L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Paterson, L. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Revelli, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosene, C. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swanson, K. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Terrill, A. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wegrecki, A. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wilson, K. R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Woollett, J. S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-29

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2014 are to record Lawrence Livermore National Laboratory’s (LLNL’s) compliance with environmental standards and requirements, describe LLNL’s environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites—the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL’s Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, “Environment, Safety and Health Reporting,” and DOE Order 458.1, “Radiation Protection of the Public and Environment.”

  6. National Environmental Policy Act (NEPA) Compliance Guide, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1995-08-01

    This report contains a comprehensive National Environmental Policy Act (NEPA) Compliance Guide for the Sandia National Laboratories. It is based on the Council on Environmental Quality (CEQ) NEPA regulations in 40 CFR Parts 1500 through 1508; the US Department of Energy (DOE) N-EPA implementing procedures in 10 CFR Part 102 1; DOE Order 5440.1E; the DOE ``Secretarial Policy Statement on the National Environmental Policy Act`` of June 1994- Sandia NEPA compliance procedures-, and other CEQ and DOE guidance. The Guide includes step-by-step procedures for preparation of Environmental Checklists/Action Descriptions Memoranda (ECL/ADMs), Environmental Assessments (EAs), and Environmental Impact Statements (EISs). It also includes sections on ``Dealing With NEPA Documentation Problems`` and ``Special N-EPA Compliance Issues.``

  7. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  8. El idealismo de Berkeley

    Directory of Open Access Journals (Sweden)

    David Sobrevilla

    1995-12-01

    Full Text Available En esta conferencia se examina en qué consiste el idealismo de Berkeley. Para ello se sigue el mismo camino propuesto por G .J. Warnock: se indaga contra qué se opone Berkeley, el materialismo, y cómo lo entiende, y por qué está en contra del mismo. A continuación se reexamina el idealismo berkeleyano, y en la consideración final se juzgan sus virtudes y defectos: algunas de las críticas fundadas que se le han formulado y la visión de la ciencia que se desprende de los escritos de Berkeley. A este respecto se pone en conexión las ideas del autor con algunos planteamientos del último Husserl y con una interpretación de Popper sobre la sorprendente modernidad de algunas de las ideas berkeleyanas sobre la ciencia.

  9. Pressure safety program Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Borzileri, C.; Traini, M.

    1992-10-01

    The Lawrence Livermore National Laboratory (LLNL) is a Research and Development facility. Programs include research in: nuclear weapons, energy, environmental, biomedical, and other DOE funded programs. LLNL is managed by the University of California for the Department of Energy. Many research and development programs require the use of pressurized fluid systems. In the early 1960`s, courses were developed to train personnel to safely work with pressurized systems. These courses served as a foundation for the Pressure Safety Program. The Pressure Safety Program is administered by the Pressure Safety Manager through the Hazards Control Department, and responsibilities include: (1) Pressure Safety course development and training, (2) Equipment documentation, tracking and inspections/retests, (3) Formal and informal review of pressure systems. The program uses accepted codes and standards and closely follows the DOE Pressure Safety Guidelines Manual. This manual was developed for DOE by Lawrence Livermore National Laboratory. The DOE Pressure Safety Guidelines Manual defines five (5) basic elements which constitute this Pressure Safety Program. These elements are: (1) A Pressure Safety Manual, (2) A Safety Committee, (3) Personnel who are trained and qualified, (4) Documentation and accountability for each pressure vessel or system, (5) Control of the selection and the use of high pressure hardware.

  10. Oak Ridge National Laboratory Waste Management Plan

    International Nuclear Information System (INIS)

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented

  11. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram; and Vol. 3, Technology Evaluation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B,and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA, and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2. The data sheets are arranged alphanumerically by the TEDS code number in the upper right comer of each sheet

  12. The case for National Environmental Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1970-02-01

    We suggest the establishment of several large generalized National Environmental Laboratories (NELs), each containing interacting groups of natural and social scientists, engineers, and information specialists. The field of action is the whole environment, both urban and rural, both present and future. By their organization and outlook, NELs would take a different cut across the fabric of environmental problems than has been possible hitherto. However, we must realize that NELs will not per se create instant Paradise; all we propose are instrumentalities designed to match the true scope of problems and perhaps stimulate a willing and charitable spirit. The tasks hitherto separately considered -- the retrospective ones of restoring and preserving the environment and the prospective one of future technology assessment -- are joined in NELS, because (1) environmental restoration and preservation involve prior and present technology decisions; assessment of future technology is the forward equivalent; (2) one of the activities tends to be conservationist, the other expansionist, and the two provide useful balance. We believe that these structures and roles are what is really required to implement both the recommendations of the National Academy of Sciences Panel on Technology Assessment, and the requirements implicit in the National Environmental Policy Act.

  13. Oak Ridge National Laboratory Institutional Plan, FY 1995--FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years (1995-2000). Included in this report are the: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; and resource projections.

  14. Berkeley mini-collider

    International Nuclear Information System (INIS)

    The Berkeley Mini-Collider, a heavy-ion collider being planned to provide uranium-uranium collisions at T/sub cm/ less than or equal to 4 GeV/nucleon, is described. The central physics to be studied at these energies and our early ideas for a collider detector are presented

  15. Nuclear Accident Dosimetry at Argonne National Laboratory

    International Nuclear Information System (INIS)

    This report summarizes current planning at Argonne National Laboratory with respect to dose determination following a criticality incident. The discussion relates chiefly to two types of commercially obtained dosimeter packages, and includes the results of independent calibrations performed at the Laboratory. The primary dosimeter system incorporates threshold detectors developed at Oak Ridge National Laboratory for neutron spectrum measurement. Fission foil decay calibration curves have been determined experimentally for scintillation counting equipment routinely used at Argonne. This equipment also has been calibrated for determination of sodium-24 activity in blood. Dosimeter units of the type designed at Savannah River Laboratory are deployed as secondary stations. Data from the neutron activation components of these units will be used to make corrections to, the neutron spectrum for intermediate as well as thermal energies. The epicadmium copper foil activation, for a given fluence of intermediate energy neutrons, has been shown relatively insensitive to neutron spectrum variations within the region, and a meaningful average of copper cross-section has been determined. Counter calibration factors determined at Argonne are presented for the copper, indium, and sulphur components. The total neutron fluence is computed using the corrected spectrum in conjunction with a capture probability function and the blood sodium result. One or more specifications of neutron dose then may be calculated by applying the spectral information to the appropriate conversion function. The gamma portion of the primary dosimeter package contains fluorescent rods and a thermoluminescent dosimeter in addition to a two-phase chemical dosimeter. The gamma dosimeter in the secondary package is a polyacrylamide solution which is degraded by exposure to gamma radiation. The absorbed dose is derived from a measured change insolution viscosity. Difficulties in evaluation, placement, and

  16. Berkeley Lab's Saul Perlmutter wins E.O. Lawrence Award scientist's work on supernovae reveals accelerating universe

    CERN Multimedia

    2002-01-01

    "Saul Perlmutter, a member of Lawrence Berkeley National Laboratory's Physics Division and leader of the international Supernova Cosmology Project based there, has won the Department of Energy's 2002 E.O. Lawrence Award in the physics category" (1/2 page).

  17. Idaho National Laboratory Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2008-04-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  18. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2010-10-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  19. Fleet Tools; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-04-01

    From beverage distributors to shipping companies and federal agencies, industry leaders turn to the National Renewable Energy Laboratory (NREL) to help green their fleet operations. Cost, efficiency, and reliability are top priorities for fleets, and NREL partners know the lab’s portfolio of tools can pinpoint fuel efficiency and emissions-reduction strategies that also support operational the bottom line. NREL is one of the nation’s foremost leaders in medium- and heavy-duty vehicle research and development (R&D) and the go-to source for credible, validated transportation data. NREL developers have drawn on this expertise to create tools grounded in the real-world experiences of commercial and government fleets. Operators can use this comprehensive set of technology- and fuel-neutral tools to explore and analyze equipment and practices, energy-saving strategies, and other operational variables to ensure meaningful performance, financial, and environmental benefits.

  20. Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gavel, D T

    2003-03-10

    Adaptive optics enables high resolution imaging through the atmospheric by correcting for the turbulent air's aberrations to the light waves passing through it. The Lawrence Livermore National Laboratory for a number of years has been at the forefront of applying adaptive optics technology to astronomy on the world's largest astronomical telescopes, in particular at the Keck 10-meter telescope on Mauna Kea, Hawaii. The technology includes the development of high-speed electrically driven deformable mirrors, high-speed low-noise CCD sensors, and real-time wavefront reconstruction and control hardware. Adaptive optics finds applications in many other areas where light beams pass through aberrating media and must be corrected to maintain diffraction-limited performance. We describe systems and results in astronomy, medicine (vision science), and horizontal path imaging, all active programs in our group.

  1. Push technology at Argonne National Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Noel, R. E.; Woell, Y. N.

    1999-04-06

    Selective dissemination of information (SDI) services, also referred to as current awareness searches, are usually provided by periodically running computer programs (personal profiles) against a cumulative database or databases. This concept of pushing relevant content to users has long been integral to librarianship. Librarians traditionally turned to information companies to implement these searches for their users in business, academia, and the science community. This paper describes how a push technology was implemented on a large scale for scientists and engineers at Argonne National Laboratory, explains some of the challenges to designers/maintainers, and identifies the positive effects that SDI seems to be having on users. Argonne purchases the Institute for Scientific Information (ISI) Current Contents data (all subject areas except Humanities), and scientists no longer need to turn to outside companies for reliable SDI service. Argonne's database and its customized services are known as ACCESS (Argonne-University of Chicago Current Contents Electronic Search Service).

  2. Solar activities at Sandia National Laboratories

    Science.gov (United States)

    Klimas, Paul C.; Hasti, David E.

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing and deploying many of these technologies over the last two decades. A common but special aspect of all of these activities is that they are all conducted in cooperation with various types of partners. Some of these partners have an interest in seeing these systems grow in the marketplace, while others are primarily concerned with economic benefits that can come from immediate use of these renewable energy systems. This paper describes solar thermal and photovoltaic technology activities at Sandia that are intended to accelerate the commercialization of these solar systems.

  3. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Joanne L. Knight

    2012-08-01

    This plan describes environmental monitoring as required by U.S. Department of Energy (DOE) Order 450.1, “Environmental Protection Program,” and additional environmental monitoring currently performed by other organizations in and around the Idaho National Laboratory (INL). The objective of DOE Order 450.1 is to implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations. This plan describes the organizations responsible for conducting environmental monitoring across the INL, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. This plan presents a summary of the overall environmental monitoring performed in and around the INL without duplicating detailed information in the various monitoring procedures and program plans currently used to conduct monitoring.

  4. Idaho National Laboratory Quarterly Occurrence Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Lisbeth Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 85 reportable events (18 from the 4th Qtr FY-15 and 67 from the prior three reporting quarters), as well as 25 other issue reports (including events found to be not reportable and Significant Category A and B conditions) identified at INL during the past 12 months (8 from this quarter and 17 from the prior three quarters).

  5. Idaho National Engineering Laboratory installation roadmap document

    International Nuclear Information System (INIS)

    The roadmapping process was initiated by the US Department of Energy's office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included

  6. National Laboratory of Hydraulics. 1996 progress report

    International Nuclear Information System (INIS)

    This progress report of the National Laboratory of Hydraulics (LNH) of Electricite de France (EdF) summarizes, first, the research and development studies carried out in 1996 for the development of research tools for industrial fluid mechanics and environmental hydraulics and for the development of computer tools (computer codes and softwares for fluid mechanics modeling, modeling of reactive, compressible, two-phase and turbulent flows and of complex chemical kinetics using finite elements and finite volume methods). A second parts describes the research studies performed for other services of EdF, concerning: the functioning of nuclear reactors (thermohydraulic studies of the reactor vessel and of the primary coolant circuit, gas flows following severe accidents, fluid-structure thermal coupling etc...), fossil fuel power plants, the equipment and operation of thermal power plants and hydraulic power plants, the use of electric power. A third part summarizes the river and marine hydraulic studies carried out for other companies. (J.S.)

  7. Idaho National Laboratory Quarterly Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lisbeth Mitchell

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  8. Neutronics Code Development at Argonne National Laboratory

    International Nuclear Information System (INIS)

    As part of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program of U.S. DOE, a suite of modern fast reactor simulation tools is being developed at Argonne National Laboratory. The general goal is to reduce the uncertainties and biases in various areas of reactor design activities by providing enhanced prediction capabilities. Under this fast reactor simulation program, a high-fidelity deterministic neutron transport code named UNIC is being developed. The end goal of this development is to produce an integrated neutronics code that enables the high fidelity description of a nuclear reactor and simplifies the multi-step design process by direct and accurate coupling with thermal-hydraulics and structural mechanics calculations. (author)

  9. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  10. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1, Technology Evaluation; Vol. 2, Technology Logic Diagram and Vol. 3, Technology EvaLuation Data Sheets. Part A of Vols. 1 and 2 focuses on RA. Part B of Vols. 1 and 2 focuses on the D ampersand D of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TM, an explanation of the problems facing the volume-specific program, a review of identified technologies, and rankings of technologies applicable to the site. Volume 2 (Pts. A. B. and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A. B, and C) contains the TLD data sheets. This volume provides the technology evaluation data sheets (TEDS) for ER/WM activities (D ampersand D, RA and WM) that are referenced by a TEDS code number in Vol. 2 of the TLD. Each of these sheets represents a single logic trace across the TLD. These sheets contain more detail than is given for the technologies in Vol. 2

  11. Oak Ridge National Laboratory Technology Logic Diagram

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory Technology Logic Diagram (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D ampersand D), remedial action (RA), and WM activities. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Part A of Vols. 1 and 2 focuses on D ampersand D. Part B of Vols. 1 and 2 focuses on RA of contaminated facilities. Part C of Vols. 1 and 2 focuses on WM. Each part of Vol. 1 contains an overview of the TLD, an explanation of the program-specific responsibilities, a review of identified technologies, and the ranking os remedial technologies. Volume 2 (Pts. A, B, and C) contains the logic linkages among EM goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 3 (Pts. A, B, and C) contains the TLD data sheets. The focus of Vol. 1, Pt. B, is RA, and it has been divided into six chapters. The first chapter is an introduction, which defines problems specific to the ER Program for ORNL. Chapter 2 provides a general overview of the TLD. Chapters 3 through 5 are organized into necessary subelement categories: RA, characterization, and robotics and automation. The final chapter contains regulatory compliance information concerning RA

  12. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  13. Idaho National Laboratory Site Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Jenifer Nordstrom

    2014-02-01

    This plan provides a high-level summary of environmental monitoring performed by various organizations within and around the Idaho National Laboratory (INL) Site as required by U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management, and DOE Order 458.1, Radiation Protection of the Public and the Environment, Guide DOE/EH-0173T, Environmental Regulatory Guide for Radiological Effluent Monitoring and Environmental Surveillance, and in accordance with 40 Code of Federal Regulations (CFR) 61, National Emission Standards for Hazardous Air Pollutants. The purpose of these orders is to 1) implement sound stewardship practices that protect the air, water, land, and other natural and cultural resources that may be impacted by DOE operations, and 2) to establish standards and requirements for the operations of DOE and DOE contractors with respect to protection of the environment and members of the public against undue risk from radiation. This plan describes the organizations responsible for conducting environmental monitoring across the INL Site, the rationale for monitoring, the types of media being monitored, where the monitoring is conducted, and where monitoring results can be obtained. Detailed monitoring procedures, program plans, or other governing documents used by contractors or agencies to implement requirements are referenced in this plan. This plan covers all planned monitoring and environmental surveillance. Nonroutine activities such as special research studies and characterization of individual sites for environmental restoration are outside the scope of this plan.

  14. Brookhaven National Laboratory site environmental report for calendar year 1996

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, G.L.; Paquette, D.E.; Naidu, J.R.; Lee, R.J.; Briggs, S.L.K.

    1998-01-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1996. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and non-radiological emissions and effluents to the environment.

  15. Power source evaluation capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  16. Oak Ridge National Laboratory institutional plan, FY 1996--FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report discusses the institutional plan for Oak Ridge National Laboratory for the next five years. Included in the report are: laboratory director`s statement; laboratory mission, vision, and core competencies; laboratory strategic plan; major laboratory initiatives; scientific and technical programs; critical success factors; summaries of other plans; resource projections; appendix which contains data for site and facilities, user facility, science and mathematic education and human resources; and laboratory organization chart.

  17. Lawrence Livermore National Laboratory Environmental Report 2010

    Energy Technology Data Exchange (ETDEWEB)

    Jones, H E; Bertoldo, N A; Campbell, C G; Cerruti, S J; Coty, J D; Dibley, V R; Doman, J L; Grayson, A R; MacQueen, D H; Wegrecki, A M; Armstrong, D H; Brigdon, S L; Heidecker, K R; Hollister, R K; Khan, H N; Lee, G S; Nelson, J C; Paterson, L E; Salvo, V J; Schwartz, W W; Terusaki, S H; Wilson, K R; Woods, J M; Yimbo, P O; Gallegos, G M; Terrill, A A; Revelli, M A; Rosene, C A; Blake, R G; Woollett, J S; Kumamoto, G

    2011-09-14

    The purposes of the Lawrence Livermore National Laboratory Environmental Report 2010 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.llnl.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2010: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff

  18. Biosafety Practices and Emergency Response at the Idaho National Laboratory and Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto; Dina M. Matz

    2008-03-01

    Strict federal regulations govern the possession, use, and transfer of pathogens and toxins with potential to cause harm to the public, either through accidental or deliberate means. Laboratories registered through either the Centers for Disease Control and Prevention (CDC), the U.S. Dept. of Agriculture (USDA), or both, must prepare biosafety, security, and incident response plans, conduct drills or exercises on an annual basis, and update plans accordingly. At the Idaho National Laboratory (INL), biosafety, laboratory, and emergency management staff have been working together for 2 years to satisfy federal and DOE/NNSA requirements. This has been done through the establishment of plans, training, tabletop and walk-through exercises and drills, and coordination with local and regional emergency response personnel. Responding to the release of infectious agents or toxins is challenging, but through familiarization with the nature of the hazardous biological substances or organisms, and integration with laboratory-wide emergency response procedures, credible scenarios are being used to evaluate our ability to protect workers, the public, and the environment from agents we must work with to provide for national biodefense.

  19. Transportation Deployment; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    Automakers, commercial fleet operators, component manufacturers, and government agencies all turn to the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) to help put more green vehicles on the road. The lab’s independent analysis and evaluation pinpoint fuel-efficient and low-emission strategies to support economic and operational goals, while breaking down barriers to widespread adoption. Customized assessment of existing equipment and practices, energy-saving alternatives, operational considerations, and marketplace realities factor in the multitude of variables needed to ensure meaningful performance, financial, and environmental benefits. NREL provides integrated, unbiased, 360-degree sustainable transportation deployment expertise encompassing alternative fuels, advanced vehicles, and related infrastructure. Hands-on support comes from technical experts experienced in advanced vehicle technologies, fleet operations, and field data collection coupled with extensive modeling and analysis capabilities. The lab’s research team works closely with automakers and vehicle equipment manufacturers to test, analyze, develop, and evaluate high-performance fuel-efficient technologies that meet marketplace needs.

  20. Sandia National Laboratories Medical Isotope Reactor concept.

    Energy Technology Data Exchange (ETDEWEB)

    Coats, Richard Lee; Dahl, James J.; Parma, Edward J., Jr.

    2010-04-01

    This report describes the Sandia National Laboratories Medical Isotope Reactor and hot cell facility concepts. The reactor proposed is designed to be capable of producing 100% of the U.S. demand for the medical isotope {sup 99}Mo. The concept is novel in that the fuel for the reactor and the targets for the {sup 99}Mo production are the same. There is no driver core required. The fuel pins that are in the reactor core are processed on a 7 to 21 day irradiation cycle. The fuel is low enriched uranium oxide enriched to less than 20% {sup 235}U. The fuel pins are approximately 1 cm in diameter and 30 to 40 cm in height, clad with Zircaloy (zirconium alloy). Approximately 90 to 150 fuel pins are arranged in the core in a water pool {approx}30 ft deep. The reactor power level is 1 to 2 MW. The reactor concept is a simple design that is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days. The fuel fabrication, reactor design and operation, and {sup 99}Mo production processing use well-developed technologies that minimize the technological and licensing risks. There are no impediments that prevent this type of reactor, along with its collocated hot cell facility, from being designed, fabricated, and licensed today.

  1. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  2. Vircator studies at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    A high power, pulsed microwave generator is in operation of Lawrence Livermore National Laboratory. The microwave source uses a Virtual Cathode Oscillator (VIRCATOR) which is driven by a 500 kV, 11 ohm electron beam diode. In a VIRCATOR, an electron beam, having a current well above the space charge limiting current, is injected into a drift tube. A virtual cathode forms due to the electron space charge and electrons are reflected back towards the diode. This action couples electron energy into microwave energy. At present, the authors have obtained a microwave output of 600 MW in the range of 5.5 GHz to 15 GHz (an efficiency of 2.5%) and 300 MW between 6.75 and 7.25 GHz. Microwave diagnostics include a calorimeter for power measurements and D field probes for frequency measurements. Diagnostics are calibrated using a low power CW microwave source. In order to further understand basic VIRCATOR operation, tests are being done to determine the effects of beam emittance, beam voltage and anode material on the microwave frequency spectrum and power output

  3. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  4. Partnering at the National Laboratories: Catalysis as a Case Study

    Energy Technology Data Exchange (ETDEWEB)

    JACKSON,NANCY B.

    1999-09-14

    The role of the national laboratories, particularly the defense program laboratories, since the end of the cold war, has been a topic of continuing debate. The relationship of national laboratories to industry spurred debate which ranged from designating the labs as instrumental to maintaining U.S. economic competitiveness to concern over the perception of corporate welfare to questions regarding the industrial globalization and the possibility of U.S. taxpayer dollars supporting foreign entities. Less debated, but equally important, has been the national laboratories' potential competition with academia for federal research dollars and discussions detailing the role of each in the national research enterprise.

  5. The Berkeley TRIGA Mark III research reactor

    International Nuclear Information System (INIS)

    The Berkeley Research Reactor went critical on August 10, 1966, and achieved licensed operating power of 1000 kW shortly thereafter. Since then, the reactor has operated, by and large, trouble free on a one-shift basis. The major use of the reactor is in service irradiations, and many scientific programs are accommodated, both on and off campus. The principal off-campus user is the Lawrence Radiation Laboratory at Berkeley. The reactor is also an important instructional tool in the Nuclear Engineering Department reactor experiments laboratory course, and as a source of radioisotopes for two other laboratory courses given by the Department. Finally, the reactor is used in several research programs conducted within the Department, involving studies with neutron beams and in reactor kinetics

  6. Idaho National Laboratory Mission Accomplishments, Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Todd Randall [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Virginia Latta [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    A summary of mission accomplishments for the research organizations at the Idaho National Laboratory for FY 2015. Areas include Nuclear Energy, National and Homeland Security, Science and Technology Addressing Broad DOE Missions; Collaborations; and Stewardship and Operation of Research Facilities.

  7. Idaho National Engineering Laboratory: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities.

  8. Idaho National Engineering Laboratory: Annual report, 1986

    International Nuclear Information System (INIS)

    The INEL underwent a year of transition in 1986. Success with new business initiatives, the prospects of even better things to come, and increased national recognition provided the INEL with a glimpse of its promising and exciting future. Among the highlights were: selection of the INEL as the preferred site for the Special Isotope Separation Facility (SIS); the first shipments of core debris from the Three Mile Island Unit 2 reactor to the INEL; dedication of three new facilities - the Fluorinel Dissolution Process, the Remote Analytical Laboratory, and the Stored Waste Experimental Pilot Plant; groundbreaking for the Fuel Processing Restoration Facility; and the first IR-100 award won by the INEL, given for an innovative machine vision system. The INEL has been assigned project management responsibility for the SDI Office-sponsored Multimegawatt Space Reactor and the Air Force-sponsored Multimegawatt Terrestrial Power Plant Project. New Department of Defense initiatives have been realized in projects involving development of prototype defense electronics systems, materials research, and hazardous waste technology. While some of our major reactor safety research programs have been completed, the INEL continues as a leader in advanced reactor technologies development. In April, successful tests were conducted for the development of the Integral Fast Reactor. Other 1986 highlights included the INEL's increased support to the Office of Civilian Radioactive Waste Management for complying with the Nuclear Waste Policy Act of 1982. Major INEL activities included managing a cask procurement program, demonstrating fuel assembly consolidation, and testing spent fuel storage casks. In addition, the INEL supplied the Tennessee Valley Authority with management and personnel experienced in reactor technology, increased basic research programs at the Idaho Research Center, and made numerous outreach efforts to assist the economies of Idaho communities

  9. 60 Years of Great Science (Oak Ridge National Laboratory)

    Science.gov (United States)

    2003-01-01

    This issue of Oak Ridge National Laboratory Review (vol. 36, issue 1) highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  10. National Bio-fuel Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jezierski, Kelly

    2010-12-27

    The National Biofuel Energy Laboratory or NBEL was a consortia consisting of non-profits, universities, industry, and OEM’s. NextEnergy Center (NEC) in Detroit, Michigan was the prime with Wayne State University as the primary subcontractor. Other partners included: Art Van Furniture; Biodiesel Industries Inc. (BDI); Bosch; Clean Emission Fluids (CEF); Delphi; Oakland University; U.S. TARDEC (The Army); and later Cummins Bridgeway. The program was awarded to NextEnergy by U.S. DOE-NREL on July 1, 2005. The period of performance was about five (5) years, ending June 30, 2010. This program was executed in two phases: 1.Phase I focused on bench-scale R&D and performance-property-relationships. 2.Phase II expanded those efforts into further engine testing, emissions testing, and on-road fleet testing of biodiesel using additional types of feedstock (i.e., corn, and choice white grease based). NextEnergy – a non-profit 501(c)(3) organization based in Detroit was originally awarded a $1.9 million grant from the U.S. Dept. of Energy for Phase I of the NBEL program. A few years later, NextEnergy and its partners received an additional $1.9MM in DOE funding to complete Phase II. The NBEL funding was completely exhausted by the program end date of June 30, 2010 and the cost share commitment of 20% minimum has been exceeded nearly two times over. As a result of the work performed by the NBEL consortia, the following successes were realized: 1.Over one hundred publications and presentations have been delivered by the NBEL consortia, including but not limited to: R&D efforts on algae-based biodiesel, novel heterogeneous catalysis, biodiesel properties from a vast array of feedstock blends, cold flow properties, engine testing results (several Society of Automotive Engineers [SAE] papers have been published on this research), emissions testing results, and market quality survey results. 2.One new spinoff company (NextCAT) was formed by two WSU Chemical Engineering professors

  11. Californium Electrodepositions at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boll, Rose Ann [ORNL

    2015-01-01

    Electrodepositions of californium isotopes were successfully performed at Oak Ridge National Laboratory (ORNL) during the past year involving two different types of deposition solutions, ammonium acetate (NH4C2H3O2) and isobutanol ((CH3)2CHCH2OH). A californium product that was decay enriched in 251Cf was recovered for use in super-heavy element (SHE) research. This neutron-rich isotope, 251Cf, provides target material for SHE research for the potential discovery of heavier isotopes of Z=118. The californium material was recovered from aged 252Cf neutron sources in storage at ORNL. These sources have decayed for over 30 years, thus providing material with a very high 251Cf-to-252Cf ratio. After the source capsules were opened, the californium was purified and then electrodeposited using the isobutanol method onto thin titanium foils for use in an accelerator at the Joint Institute for Nuclear Research in Dubna, Russia. Another deposition method, ammonium acetate, was used to produce a deposition containing 1.7 0.1 Ci of 252Cf onto a stainless steel substrate. This was the largest single electrodeposition of 252Cf ever prepared. The 252Cf material was initially purified using traditional ion exchange media, such as AG50-AHIB and AG50-HCl, and further purified using a TEVA-NH4SCN system to remove any lanthanides, resulting in the recovery of 3.6 0.1 mg of purified 252Cf. The ammonium acetate deposition was run with a current of 1.0 amp, resulting in a 91.5% deposition yield. Purification and handling of the highly radioactive californium material created additional challenges in the production of these sources.

  12. Idaho National Laboratory Site Pollution Prevention Plan

    Energy Technology Data Exchange (ETDEWEB)

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  13. Idaho National Laboratory Site Pollution Prevention Plan

    International Nuclear Information System (INIS)

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  14. Pacific Northwest National Laboratory Institutional Plan FY 2004-2008

    Energy Technology Data Exchange (ETDEWEB)

    Quadrel, Marilyn J.

    2004-04-15

    This Institutional Plan for FY 2004-2008 is the principal annual planning document submitted to the Department of Energy's Office of Science by Pacific Northwest National Laboratory in Richland, Washington. This plan describes the Laboratory's mission, roles, and technical capabilities in support of Department of Energy priorities, missions, and plans. It also describes the Laboratory strategic plan, key planning assumptions, major research initiatives, and program strategy for fundamental science, energy resources, environmental quality, and national security.

  15. Brookhaven National Laboratory Institutional Plan FY2001--FY2005

    Energy Technology Data Exchange (ETDEWEB)

    Davis, S.

    2000-10-01

    Brookhaven National Laboratory is a multidisciplinary laboratory in the Department of Energy National Laboratory system and plays a lead role in the DOE Science and Technology mission. The Laboratory also contributes to the DOE missions in Energy Resources, Environmental Quality, and National Security. Brookhaven strives for excellence in its science research and in facility operations and manages its activities with particular sensitivity to environmental and community issues. The Laboratory's programs are aligned continuously with the goals and objectives of the DOE through an Integrated Planning Process. This Institutional Plan summarizes the portfolio of research and capabilities that will assure success in the Laboratory's mission in the future. It also sets forth BNL strategies for our programs and for management of the Laboratory. The Department of Energy national laboratory system provides extensive capabilities in both world class research expertise and unique facilities that cannot exist without federal support. Through these national resources, which are available to researchers from industry, universities, other government agencies and other nations, the Department advances the energy, environmental, economic and national security well being of the US, provides for the international advancement of science, and educates future scientists and engineers.

  16. Establishment of national laboratory standards in public and private hospital laboratories.

    Science.gov (United States)

    Anjarani, Soghra; Safadel, Nooshafarin; Dahim, Parisa; Amini, Rana; Mahdavi, Saeed; Mirab Samiee, Siamak

    2013-01-01

    In September 2007 national standard manual was finalized and officially announced as the minimal quality requirements for all medical laboratories in the country. Apart from auditing laboratories, Reference Health Laboratory has performed benchmarking auditing of medical laboratory network (surveys) in provinces. 12(th) benchmarks performed in Tehran and Alborz provinces, Iran in 2010 in three stages. We tried to compare different processes, their quality and accordance with national standard measures between public and private hospital laboratories. The assessment tool was a standardized checklist consists of 164 questions. Analyzing process show although in most cases implementing the standard requirements are more prominent in private laboratories, there is still a long way to complete fulfillment of requirements, and it takes a lot of effort. Differences between laboratories in public and private sectors especially in laboratory personnel and management process are significant. Probably lack of motivation, plays a key role in obtaining less desirable results in laboratories in public sectors.

  17. Pacific Northwest National Laboratory institutional plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This report contains the operation and direction plan for the Pacific Northwest National Laboratory of the US Department of Energy. The topics of the plan include the laboratory mission and core competencies, the laboratory strategic plan; the laboratory initiatives in molecular sciences, microbial biotechnology, global environmental change, complex modeling of physical systems, advanced processing technology, energy technology development, and medical technologies and systems; core business areas, critical success factors, and resource projections.

  18. Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

    CERN Multimedia

    1969-01-01

    Around the laboratories: Rutherford: Successful tests on bubble chamber target technique; Stanford (SLAC): New storage rings proposal; Berkeley: The HAPPE project to examine cosmic rays with superconducting magnets; The 60th birthday of Professor N.N. Bogolyubov; Argonne: Performance of the automatic film measuring system POLLY II

  19. Technical Assistance Guide: Working with DOE National Laboratories (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    A fact sheet that provides an overview of FEMP's technical assistance through the Department of Energy's National Laboratories. The Federal Energy Management Program (FEMP) facilitates the Federal Government's implementation of sound, cost-effective energy management and investment practices to enhance the nation's energy security and environmental stewardship. To advance that mission, FEMP fosters collaboration between Federal agencies and U.S. Department of Energy (DOE) national laboratories. This guide outlines technical assistance capabilities and expertise at DOE national laboratories. Any laboratory assistance must be in accordance with Federal Acquisition Regulation (FAR) Subpart 35.017 requirements and the laboratory's designation as Federal Funded Research and Development Center (FFRDC) facilities.

  20. Accreditation of testing laboratories in CNEA (National Atomic Energy Commission)

    International Nuclear Information System (INIS)

    The recognition of the technical capability of a testing laboratory is carried out by Laboratory Accreditation Bodies as the result of a satisfactory evaluation and the systematic follow up of the certified qualification. In Argentina the creation of a National Center for the Accreditation of Testing Laboratories, as a first step to assess a National Accreditation System is currently projected. CNEA, as an institution involved in technological projects and in the development and production of goods and services, has adopted since a long time ago quality assurance criteria. One of their requirements is the qualification of laboratories. Due to the lack of a national system, a Committee for the Qualification of Laboratories was created jointly by the Research and Development and Nuclear Fuel Cycle Areas with the responsibility of planning and management of the system evaluation and the certification of the quality of laboratories. The experience in the above mentioned topics is described in this paper. (author)

  1. Result of China National Accreditation for Laboratories Achieving Good Credit

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ With the efforts of the past 10 years, the accreditation system for laboratories, which is complete in range, integrate on function and normative on operation, has been set up in China, and has achieved good reputation home and abroad. The result of laboratories accreditation is widely admitted and used in the international. Since the China national accreditation system for laboratories entering the international multilateral mutual recognition arrangement, the accreditation for laboratories has been playing an increasingly important role in the international trade. The testing result provided by the accreditation laboratories is required by many international-famous enterprises when they purchase in China, and there have been 37 economic systems admitting the result of China national accreditation for laboratories. More and more governmental departments require using accreditation for laboratories in the administrative management and law enforcement.

  2. National strategic challenges and the role of Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ayat, R.A.; Chrzanowski, P.L.; Werne, R.W.

    1995-01-01

    The end of the Cold War was a water-shed event in history--an event that calls for re-evaluation of the basic assumptions and priorities of US national security that have gone essentially unchallenged for nearly 50 years. Central to this re-evaluation are the changing needs for federal Science and Technology (S and T) investment to underpin national and economic security and the role of the Department of Energy (DOE) national laboratories in fulfilling those needs. The three nuclear weapons laboratories-Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratory (SNL)-are major constituents of DOE`s national laboratory system. They helped win the Cold War, and will undoubtedly continue to support US security S and T requirements. This paper discusses of the role these three laboratories, and LLNL in particular, can play in supporting the nation`s S and T priorities. The paper also highlights some of the changes that are necessary for the laboratories to effectively support the national S and T and economic competitiveness agenda. These issues are important to DOE and laboratory managers responsible for the development of strategic direction and implementation plans.

  3. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  4. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  5. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories` operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment.

  6. NATIONAL ENVIRONMENTAL LABORATORY ACCREDITATION CONFERENCE (NELAC): CONSTITUTION, BYLAWS, AND STANDARDS

    Science.gov (United States)

    The principles and operating procedures for the National Environmental Laboratory Accreditation Conference (NELAC) are contained in the NELAC Constitution and Bylaws. The major portion of this document (standards) contains detailed requirements for accrediting environmental labo...

  7. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  8. DEMONSTRATION BULLETIN: IN SITU ELECTROKINETIC EXTRACTION SYSTEM - SANDIA NATIONAL LABORATORIES

    Science.gov (United States)

    Sandia National Laboratories (SNL) has developed an in situ soil remediation system that uses electrokinetic principles to remediate hexavalent chromium-contaminated unsaturated or partially saturated soils. The technology involves the in situ application of direct current to the...

  9. 60 years of great science [Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-01-01

    This issue highlights Oak Ridge National Laboratory's contributions in more than 30 areas of research and related activities during the past 60 years and provides glimpses of current activities that are carrying on this heritage.

  10. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K. [and others

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  11. Argonne National Laboratory research offers clues to Alzheimer's plaques

    CERN Multimedia

    2003-01-01

    Researchers from Argonne National Laboratory and the University of Chicago have developed methods to directly observe the structure and growth of microscopic filaments that form the characteristic plaques found in the brains of those with Alzheimer's Disease (1 page).

  12. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  13. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  14. Human factors at the Department of Energy National Laboratories

    International Nuclear Information System (INIS)

    After World War II, a system of national laboratories was created to foster a suitable environment for scientific research. This paper reports that today, human factors activities are in evidence at most of the nine U.S. Department of Energy multi-program national laboratories as well as at a number of special program facilities. This paper provides historical and future perspectives on the DOE's human factors programs

  15. 2020 Foresight Forging the Future of Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Chrzanowski, P.

    2000-01-01

    The Lawrence Livermore National Laboratory (LLNL) of 2020 will look much different from the LLNL of today and vastly different from how it looked twenty years ago. We, the members of the Long-Range Strategy Project, envision a Laboratory not defined by one program--nuclear weapons research--but by several core programs related to or synergistic with LLNL's national security mission. We expect the Laboratory to be fully engaged with sponsors and the local community and closely partnering with other research and development (R&D) organizations and academia. Unclassified work will be a vital part of the Laboratory of 2020 and will visibly demonstrate LLNL's international science and technology strengths. We firmly believe that there will be a critical and continuing role for the Laboratory. As a dynamic and versatile multipurpose laboratory with a national security focus, LLNL will be applying its capabilities in science and technology to meet the needs of the nation in the 21st century. With strategic investments in science, outstanding technical capabilities, and effective relationships, the Laboratory will, we believe, continue to play a key role in securing the nation's future.

  16. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-12-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National Laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  17. Partnering with Sandia National Laboratories through alliances or consortia

    Energy Technology Data Exchange (ETDEWEB)

    Winchell, B.M.

    1994-04-01

    To better facilitate working with industry, groups of industrial participants, and partners in alliances or consortia, Sandia National laboratories presents information helpful to those outside groups as to the forms of arrangements that may be used to better facilitate partnering relationships between Sandia National Laboratories and consortia or alliances of outside parties. It is expected that these alliances and consortia will include both large and small for-profit industrial concerns, as well as not-for-profit entities such as universities, institutes, other research facilities, and other nonprofit institutions or consortia containing institutions. The intent of this report is to provide such outside groups with information that will facilitate rapid interactions with Sandia National Laboratories through some of these forms of business which will be discussed in this report. These are not the only approaches to facilitating business interactions with Sandia National Laboratories and it is not intended that this report be legal advice or required approaches to doing business with Sandia National Laboratories. The intent of this report is merely to suggest ways in which Sandia National Laboratories can work with outside parties in the most expeditious manner.

  18. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  19. 1980 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are potentially released from five technical areas from the Laboratories' research activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of that found in local background in 1980. The Albuquerque population receives only 0.11 person-rem (estimated) from airborne radioactive releases. While national security research is the Laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases

  20. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  1. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  2. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  3. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  4. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  5. National Hydraulic Laboratory. Progress Report 1980

    International Nuclear Information System (INIS)

    The activities of the Laboratoire National d'Hydraulique in 1980 are in keeping with continuity: (a) in the distribution of the work concerning Electricite de France (70%) and that pursued in liaison with outside organizations, government departments, public and private firms (30%) and (b) on the methodological level, in the development of the means of calculation applied in various domains. Amongst these should be noted the permanence of the operational problems of production facilities, particularly those arising from the cooling towers and the site studies of nuclear power plants

  6. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included

  7. 1995 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Duncan, D. [eds.; Sanchez, R.

    1996-09-01

    This 1995 report contains data from routine radiological and non-radiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration and various waste management programs at Sandia National Laboratories in Albuquerque, New Mexico, are included.

  8. Brookhaven National Laboratory site environmental report for calendar year 1995

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Paquette, D.E.; Schroeder, G.L. [eds.] [and others

    1996-12-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and summarizes information about environmental compliance for 1995. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and of a variety of radionuclides and chemical compounds in the ambient air, soil, sewage effluent, surface water, groundwater, fauna, and vegetation were made at the Brookhaven National Laboratory site and at adjacent sites. The report also evaluates the Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment. Areas of known contamination are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement established by the Department of Energy, Environmental Protection Agency and the New York Department of Environmental Conservation. Except for identified areas of soil and groundwater contamination, the environmental monitoring data has continued to demonstrate that compliance was achieved with the applicable environmental laws and regulations governing emission and discharge of materials to the environment. Also, the data show that the environmental impacts at Brookhaven National Laboratory are minimal and pose no threat to the public nor to the environment. This report meets the requirements of Department of Energy Orders 5484.1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  9. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  10. A History of Building 828, Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Rebecca

    1999-08-01

    This report documents the history of Building 828 in Sandia National Laboratories' Technical Area I. Building 828 was constructed in 1946 as a mechanical test laboratory for Los Alamos' Z-Division (later Sandia) as it moved to Sandia Base. The building has undergone significant remodeling over the years and has had a variety of occupants. The building was evaluated in compliance with the National Historic Preservation Act, but was not eligible for the National Register of Historic Places. Nevertheless, for many Labs employees, it was a symbol of Sandia's roots in World War II and the Manhattan Project.

  11. Pacific Northwest National Laboratory Institutional Plan FY 2001-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Darrell R.; Pearson, Erik W.

    2000-12-29

    The Pacific Northwest National Laboratory Institutional Plan for FY 2001-2005 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; managaement procatices and standards; and communications and trust.

  12. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. (ed.)

    1991-01-01

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  13. Oak Ridge National Laboratory Review: Volume 24, No. 2, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C. [ed.

    1991-12-31

    The Oak Ridge National Laboratory (ORNL) is a multiprogram, multipurpose laboratory that conducts research in the physical, chemical, and life sciences; in fusion, fission, and fossil energy; and in energy conservation and other energy-related technologies. This review outlines some current endeavors of the lab. A state of the laboratory presentation is given by director, Alvin Trivelpiece. Research of single crystals for welding is described. The Science Alliance, a partnership between ORNL and the University of Tennessee, is chronicled. And several incites into distinguished personnel at the laboratory are given. (GHH)

  14. Pacific Northwest National Laboratory Institutional Plan FY 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Erik W.

    2000-03-01

    The Pacific Northwest National Laboratory Institutional Plan for FY 2000-2004 sets forth the laboratory's mission, roles, technical capabilities, and laboratory strategic plan. In the plan, major initiatives also are proposed and the transitioning initiatives are discussed. The Programmatic Strategy section details our strategic intent, roles, and research thrusts in each of the U.S. Department of Energy's mission areas. The Operations/Infrastructure Strategic Plan section includes information on the laboratory's human resources; environment, safety, and health management; safeguards and security; site and facilities management; information resources management; management practices and standards; and communications and trust.

  15. Pathfinder radar development at Sandia National Laboratories

    Science.gov (United States)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  16. Pacific Northwest National Laboratory institutional plan FY 1997--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research fundamental knowledge is created of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. Legacy environmental problems are solved by delivering technologies that remedy existing environmental hazards, today`s environmental needs are addressed with technologies that prevent pollution and minimize waste, and the technical foundation is being laid for tomorrow`s inherently clean energy and industrial processes. Pacific Northwest National Laboratory also applies its capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. Brief summaries are given of the various tasks being carried out under these broad categories.

  17. Evaluation of Radiometers in Full-Time Use at the National Renewable Energy Laboratory Solar Radiation Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wilcox, S. M.; Myers, D. R.

    2008-12-01

    This report describes the evaluation of the relative performance of the complement of solar radiometers deployed at the National Renewable Energy Laboratory (NREL) Solar Radiation Research Laboratory (SRRL).

  18. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    1991-02-01

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R D). To be able to meet these R D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES H regulations. The Laboratory conducts applied R D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs.

  19. Oak Ridge National Laboratory Institutional Plan, FY 1991--FY 1996

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory -- one of DOE's major multiprogram laboratories -- focuses its resources on energy research and development (R ampersand D). To be able to meet these R ampersand D challenges, the Laboratory must achieve excellence in its operations relative to environmental, safety, and health (ES ampersand H) protection and to restore its aging facility infrastructure. ORNL's missions are carried out in compliance with all applicable ES ampersand H regulations. The Laboratory conducts applied R ampersand D in energy technologies -- in conservation; fission; magnetic fusion; health and environmental protection; waste management; renewable resources; and fossil energy. Experimental and theoretical research is undertaken to investigate fundamental problems in physical, chemical, materials, computational, biomedical, earth, and environmental sciences; to advance scientific knowledge; and to support energy technology R ampersand D. ORNL designs, builds, and operates unique research facilities for the benefit of university, industrial, and national laboratory researchers. The Laboratory serves as a catalyst in bringing national and international research elements together for important scientific and technical collaborations. ORNL helps to prepare the scientific and technical work force of the future by offering innovative and varied learning and R ampersand D experiences at the Laboratory for students and faculty from preschool level through postdoctoral candidates. The transfer of science and technology to US industries and universities is an integral component of ORNL's R ampersand D missions. ORNL also undertakes research and development for non-DOE sponsors when such work is synergistic with DOE mission. 66 figs., 55 tabs

  20. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10-4 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories' operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  1. 1994 Site Environmental Report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, L.J.; Wiggins, T.; White, B.B. [eds.] [and others

    1995-09-01

    This 1994 report contains data from routine radiological and nonradiological environmental monitoring activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum off-site dose impact from air emissions was calculated to be 1.5 x 10{sup -4} millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.012 person-rem during 1994 from the laboratories` operations. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1.

  2. 76 FR 37650 - Safety Zone; 4th of July Festival Berkeley Marina Fireworks Display Berkeley, CA

    Science.gov (United States)

    2011-06-28

    ... SECURITY Coast Guard 33 CFR Part 165 RIN 1625-AA00 Safety Zone; 4th of July Festival Berkeley Marina... Berkeley Pier, Berkeley, CA in support of the 4th of July Festival Berkeley Marina Fireworks Display... used in the fireworks display. Background and Purpose The City of Berkeley Marina will sponsor the...

  3. The pressing energy innovation challenge of the US National Laboratories

    Science.gov (United States)

    Anadon, Laura Diaz; Chan, Gabriel; Bin-Nun, Amitai Y.; Narayanamurti, Venkatesh

    2016-10-01

    Accelerating the development and deployment of energy technologies is a pressing challenge. Doing so will require policy reform that improves the efficacy of public research organizations and strengthens the links between public and private innovators. With their US$14 billion annual budget and unique mandates, the US National Laboratories have the potential to critically advance energy innovation, yet reviews of their performance find several areas of weak organizational design. Here, we discuss the challenges the National Laboratories face in engaging the private sector, increasing their contributions to transformative research, and developing culture and management practices to better support innovation. We also offer recommendations for how policymakers can address these challenges.

  4. Photographic as-builts for Argonne National Laboratory-West

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, E.K.; Wiegand, C.V.

    1995-04-19

    Located 35 miles West of Idaho Falls, Idaho, Argonne National Laboratory-West operates a number of nuclear facilities for the Department of Energy (DOE) through the University of Chicago. Part of the present mission of Argonne National Laboratory-West includes shutdown of the EBR-II Reactor. In order to accomplish this task the Engineering-Drafting Department is exploring cost effective methods of providing as-building services. A new technology of integrating photographic images and AUTOCAD drawing files is considered one of those methods that shows promise.

  5. The changing role of the National Laboratories in materials research

    Energy Technology Data Exchange (ETDEWEB)

    Wadsworth, J.; Fluss, M.

    1995-06-02

    The role of the National Laboratories is summarized from the era of post World War II to the present time. The U.S. federal government policy for the National Laboratories and its influence on their materials science infrastructure is reviewed with respect to: determining overall research strategies, various initiatives to interact with industry (especially in recent years), building facilities that serve the nation, and developing leading edge research in the materials sciences. Despite reductions in support for research in the U.S. in recent years, and uncertainties regarding the specific policies for R&D in the U.S., there are strong roles for materials research at the National Laboratories. These roles will be centered on the abilities of the National Laboratories to field multidisciplinary teams, the use of unique cutting edge facilities, a focus on areas of strength within each of the labs, increased teaming and partnerships, and the selection of motivated research areas. It is hoped that such teaming opportunities will include new alliances with China, in a manner similar, perhaps, to those recently achieved between the U.S. and other countries.

  6. Defense programs industrial partnerships at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Freese, K.B. [Los Alamos National Lab., NM (United States). Industrial Partnership Office

    1996-10-01

    The US Department of Energy`s Defense Programs face unprecedented challenges of stewardship for an aging nuclear stockpile, cessation of nuclear testing, reduced federal budgets, and a smaller manufacturing complex. Partnerships with industry are essential in developing technology, modernizing the manufacturing complex, and maintaining the safety and reliability of the nation`s nuclear capability. The past decade of federal support for industrial partnerships has promoted benefits to US industrial competitiveness. Recent shifts in government policy have re-emphasized the importance of industrial partnerships in accomplishing agency missions. Nevertheless, abundant opportunities exist for dual-benefit, mission-driven partnerships between the national laboratories and industry. Experience at Los Alamos National Laboratory with this transition is presented.

  7. The Berkeley Digital Seismic Network

    Science.gov (United States)

    Romanowicz, B.; Dreger, D.; Neuhauser, D.; Karavas, W.; Hellweg, M.; Uhrhammer, R.; Lombard, P.; Friday, J.; Lellinger, R.; Gardner, J.; McKenzie, M. R.; Bresloff, C.

    2007-05-01

    Since it began monitoring earthquakes in northern California 120 years ago, the Berkeley Seismological Laboratory (BSL) has been striving to produce the highest quality and most complete seismic data possible in the most modern way. This goal has influenced choices in instrumentation, installation and telemetry, as well as the investment in expertise and manpower. Since the transition to broadband (BB) instrumentation in the mid- 1980s and to a fully digitally telemetered network in the early 1990s, we have continued these efforts. Each of our 25 BB installations includes three component BB seismometers (STS-1s or STS-2) and digital accelerometers to capture the full range of ground motion from distant teleseisms to large, nearby earthquakes (almost 250 dB). The ground motion is recorded on-site by 24 bit dataloggers. Additional environmental parameters, such as temperature and pressure, are also monitored continuously. Many stations record also C-GPS data that is transmitted continuously to the BSL via shared real-time telemetry. The BDSN's first stations were installed in abandoned mines. In the last 15 years, we developed installations using buried shipping containers to reduce environmental noise and provide security and easy access to the equipment. Data are transmitted in real-time at several sampling rates to one or more processing centers, using frame relay, radio, microwave, and/or satellite. Each site has 7-30 days of onsite data storage to guard against data loss during telemetry outages. Each station is supplied with backup batteries to provide power for 3 days. The BDSN real-time data acquisition, earthquake analysis and archiving computers are housed in a building built to "emergency grade" seismic standards, with air conditioning and power backed up by a UPS and a large generator. Data latency and power are monitored by automated processes that alert staff via pager and email. Data completeness and timing quality are automatically assessed on a daily

  8. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  9. List of selected publications 1978 Risoe National Laboratory

    International Nuclear Information System (INIS)

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1978. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  10. List of selected publications 1981. Risoe National Laboratory

    International Nuclear Information System (INIS)

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1981. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply, Environmental and Safety Reseach, Materials Research, Biotechnology and Radiation Research,Experimental Methods and Analyses, Major Research Facilities, General. (author)

  11. Waste management study: Process development at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes.

  12. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  13. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  14. Risoe National Laboratory. List of selected publications 1980

    International Nuclear Information System (INIS)

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1980. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, and Radiation Technology, Agricultural Research, Non-Nuclear Research, General. (author)

  15. Recent developments in the target facilities at Argonne National Laboratory

    International Nuclear Information System (INIS)

    A description is given of recent developments in the target facility at Argonne National Laboratory. Highlights include equipment upgrades which enables us to provide enhanced capabilities for support of the Argonne Heavy-Ion ATLAS Accelerator Project. Also future plans and additional equipment acquisitions will be discussed. 3 refs., 3 tabs

  16. Waste management study: Process development at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes

  17. Successful neural network projects at the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cordes, G.A.

    1991-01-01

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs.

  18. Successful neural network projects at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    This paper presents recent and current projects at the Idaho National Engineering Laboratory (INEL) that research and apply neural network technology. The projects are summarized in the paper and their direct application to space reactor power and propulsion systems activities is discussed. 9 refs., 10 figs., 3 tabs

  19. List of selected publications 1982. Risoe National Laboratory

    International Nuclear Information System (INIS)

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1982. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Radiation Research, Technical and Administrative Services, General. (author)

  20. Aqueous Nitrate Recovery Line at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Finstad, Casey Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-15

    This powerpoint is part of the ADPSM Plutonium Engineering Lecture Series, which is an opportunity for new hires at LANL to get an overview of work done at TA55. It goes into detail about the aqueous nitrate recovery line at Los Alamos National Laboratory.

  1. List of selected publications 1983. Risoe National Laboratory

    International Nuclear Information System (INIS)

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting Technology, Environmental and Safety Research, Materials Research, Biotechnology and Tradiation Research, Technical Support, General. (author)

  2. List of Selected Publications 1983. Risø National Laboratory

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The list comprises a selection of scientific and technical publications of Risø National Laboratory and its staff during 1983. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Energy Supply and Supporting...

  3. Transport Energy Impact Analysis; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    Gonder, J.

    2015-05-13

    Presented at the Sustainable Transportation Energy Pathways Spring 2015 Symposium on May 13, 2015, this presentation by Jeff Gonder of the National Renewable Energy Laboratory (NREL) provides information about NREL's transportation energy impact analysis of connected and automated vehicles.

  4. Risoe National Laboratory. List of selected publications 1979

    International Nuclear Information System (INIS)

    The list comprises a selection of scientific and technical publications of Risoe National Laboratory and its staff during 1979. Journal articles, conference papers, and reports are included. The publications are arranged in the following broad subject categories: Reactor Safety and Technology, The Nuclear Fuel Cycle, Environmental and General Safety Research, Materials Research, Radiation Technology, Agricultural Research, Non-Nuclear Energy Research, General. (author)

  5. Brookhaven National Laboratory moves to the fast lane

    CERN Multimedia

    2006-01-01

    "The U.S. Department of Energy's energy sciences network (ESnet) continues to roll out its next-generation architecture on schedule with the March 14 completion of the Long Island Metropolitan Area Network, connecting Brookhaven National Laboratory (BNL) to the ESnet point of presente (PO) 60 miles away in New York City." (1 page)

  6. Airbags to Martian Landers: Analyses at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Gwinn, K.W.

    1994-03-01

    A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.

  7. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-01-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  8. Ergonomic assessments of three Idaho National Engineering Laboratory cafeterias

    Energy Technology Data Exchange (ETDEWEB)

    Ostrom, L.T.; Romero, H.A.; Gilbert, B.G.; Wilhelmsen, C.A.

    1993-05-01

    The Idaho National Engineering Laboratory is a Department of Energy facility that performs a variety of engineering and research projects. EG&G Idaho is the prime contractor for the laboratory and, as such, performs the support functions in addition to technical, research, and development functions. As a part of the EG&G Idaho Industrial Hygiene Initiative, ergonomic assessments were conducted at three Idaho National Engineering Laboratory Cafeterias. The purposes of the assessments were to determine whether ergonomic problems existed in the work places and, if so, to make recommendations to improve the work place and task designs. The study showed there were ergonomic problems in all three cafeterias assessed. The primary ergonomic stresses observed included wrist and shoulder stress in the dish washing task, postural stress in the dish washing and food preparation tasks, and back stress in the food handling tasks.

  9. 1980 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Millard, G.C.; Simmons, T.N.; Gray, C.E.; O' Neal, B.L.

    1981-04-01

    Sandia National Laboratories in Albuquerque is located south of the city on two broad mesas. The local climate is arid continental. Radionuclides are potentially released from five technical areas from the Laboratories' research activities. Sandia's environmental monitoring program searches for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. No activity was found in public areas in excess of that found in local background in 1980. The Albuquerque population receives only 0.11 person-rem (estimated) from airborne radioactive releases. While national security research is the Laboratories' major responsibility, energy research is a major area of activity. Both these research areas cause radioactive releases.

  10. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community.

  11. National Laboratory Planning: Developing Sustainable Biocontainment Laboratories in Limited Resource Areas.

    Science.gov (United States)

    Yeh, Kenneth B; Adams, Martin; Stamper, Paul D; Dasgupta, Debanjana; Hewson, Roger; Buck, Charles D; Richards, Allen L; Hay, John

    2016-01-01

    Strategic laboratory planning in limited resource areas is essential for addressing global health security issues. Establishing a national reference laboratory, especially one with BSL-3 or -4 biocontainment facilities, requires a heavy investment of resources, a multisectoral approach, and commitments from multiple stakeholders. We make the case for donor organizations and recipient partners to develop a comprehensive laboratory operations roadmap that addresses factors such as mission and roles, engaging national and political support, securing financial support, defining stakeholder involvement, fostering partnerships, and building trust. Successful development occurred with projects in African countries and in Azerbaijan, where strong leadership and a clear management framework have been key to success. A clearly identified and agreed management framework facilitate identifying the responsibility for developing laboratory capabilities and support services, including biosafety and biosecurity, quality assurance, equipment maintenance, supply chain establishment, staff certification and training, retention of human resources, and sustainable operating revenue. These capabilities and support services pose rate-limiting yet necessary challenges. Laboratory capabilities depend on mission and role, as determined by all stakeholders, and demonstrate the need for relevant metrics to monitor the success of the laboratory, including support for internal and external audits. Our analysis concludes that alternative frameworks for success exist for developing and implementing capabilities at regional and national levels in limited resource areas. Thus, achieving a balance for standardizing practices between local procedures and accepted international standards is a prerequisite for integrating new facilities into a country's existing public health infrastructure and into the overall international scientific community. PMID:27559843

  12. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Wolff, T.A. [Sandia National Labs., Albuquerque, NM (United States). Community Involvement and Issues Management Dept.; Hansen, R.P. [Hansen Environmental Consultants, Englewood, CO (United States)

    1998-08-01

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors.

  13. National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM)

    International Nuclear Information System (INIS)

    This report on National Environmental Policy Act (NEPA) compliance at Sandia National Laboratories/New Mexico (SNL/NM) chronicles past and current compliance activities and includes a recommended strategy that can be implemented for continued improvement. This report provides a list of important references. Attachment 1 contains the table of contents for SAND95-1648, National Environmental Policy Act (NEPA) Compliance Guide Sandia National Laboratories (Hansen, 1995). Attachment 2 contains a list of published environmental assessments (EAs) and environmental impact statements (EISs) prepared by SNL/NM. Attachment 3 contains abstracts of NEPA compliance papers authored by SNL/NM and its contractors

  14. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  15. Pacific Northwest National Laboratory institutional plan FY 1998--2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Pacific Northwest National Laboratory`s core mission is to deliver environmental science and technology in the service of the nation and humanity. Through basic research the lab creates fundamental knowledge of natural, engineered, and social systems that is the basis for both effective environmental technology and sound public policy. They solve legacy environmental problems by delivering technologies that remedy existing environmental hazards, they address today`s environmental needs with technologies that prevent pollution and minimize waste, and they are laying the technical foundation for tomorrow`s inherently clean energy and industrial processes. The lab also applies their capabilities to meet selected national security, energy, and human health needs; strengthen the US economy; and support the education of future scientists and engineers. The paper summarizes individual research activities under each of these areas.

  16. Los Alamos National Laboratory support to IAEA environmental safeguards

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, Robert E [Los Alamos National Laboratory; Dry, Don E [Los Alamos National Laboratory; Roensch, Fred R [Los Alamos National Laboratory; Kinman, Will S [Los Alamos National Laboratory; Roach, Jeff L [Los Alamos National Laboratory; La Mont, Stephen P [Los Alamos National Laboratory

    2010-12-01

    The nuclear and radiochemistry group provides sample preparation and analysis support to the International Atomic Energy Agency (IAEA) Network of Analytical Laboratories (NWAL). These analyses include both non-destructive (alpha and gamma-ray spectrometry) and destructive (thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry) methods. On a bi-annual basis the NWAL laboratories are invited to meet to discuss program evolution and issues. During this meeting each participating laboratory summarizes their efforts over the previous two years. This presentation will present Los Alamos National Laboratories efforts in support of this program. Data showing results from sample and blank analysis will be presented along with capability enhancement and issues that arose over the previous two years.

  17. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  18. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  19. 78 FR 66964 - International Space Station National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2013-11-07

    ... SPACE ADMINISTRATION International Space Station National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal of the charter of the International Space Station National Laboratory Advisory Committee. SUMMARY: Pursuant to...

  20. Brookhaven National Laboratory site environmental report for calendar year 1990

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1992-01-01

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance.

  1. Brookhaven National Laboratory site environmental report for calendar year 1990

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory (BNL) carries out basic and applied research in the following fields: high-energy nuclear and solid state physics; fundamental material and structure properties and the interactions of matter; nuclear medicine, biomedical and environmental sciences; and selected energy technologies. In conducting these research activities, it is Laboratory policy to protect the health and safety of employees and the public, and to minimize the impact of BNL operations on the environment. This document is the BNL environmental report for the calendar year 1990 for the safety and Environmental Protection division and corners topics on effluents, surveillance, regulations, assessments, and compliance

  2. Brookhaven National Laboratory site report for calendar year 1988

    Energy Technology Data Exchange (ETDEWEB)

    Miltenberger, R.P.; Royce, B.A.; Naidu, J.R.

    1989-06-01

    Brookhaven National Laboratory (BNL) is managed by Associated Universities Inc. (AUI). AUI was formed in 1946 by a group of nine universities whose purpose was to create and manage a laboratory in the Northeast in order to advance scientific research in areas of interest to universities, industry, and government. On January 31, 1947, the contract for BNL was approved by the Manhattan District of the Army Corps of Engineers and BNL was established on the former Camp Upton army camp. 54 refs., 21 figs., 78 tabs.

  3. Sandia National Laboratories Institutional Plan FY1994--1999

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    This report presents a five year plan for the laboratory. This plan takes advantage of the technical strengths of the lab and its staff to address issues of concern to the nation on a scope much broader than Sandia`s original mission, while maintaining the general integrity of the laboratory. The plan proposes initiatives in a number of technologies which overlap the needs of its customers and the strengths of its staff. They include: advanced manufacturing technology; electronics; information and computational technology; transportation energy technology and infrastructure; environmental technology; energy research and technology development; biomedical systems engineering; and post-cold war defense imperatives.

  4. Oak Ridge National Laboratory Next Generation Safeguards Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

    2011-12-01

    In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together

  5. Customer satisfaction assessment at the Pacific Northwest National Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists of nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input-answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data

  6. Customer satisfaction assessment at the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    DN Anderson; ML Sours

    2000-03-23

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. This report presents the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of two major sections: Strategic Value and Project Performance. Both sections contain a set of questions that can be answered with a 5-point Likert scale response. The strategic value section consists of five questions that are designed to determine if a project directly contributes to critical future national needs. The project Performance section consists of nine questions designed to determine PNNL performance in meeting customer expectations. A statistical model for customer survey data is developed and this report discusses how to analyze the data with this model. The properties of the statistical model can be used to establish a gold standard or performance expectation for the laboratory, and then to assess progress. The gold standard is defined using laboratory management input--answers to four questions, in terms of the information obtained from the customer survey: (1) What should the average Strategic Value be for the laboratory project portfolio? (2) What Strategic Value interval should include most of the projects in the laboratory portfolio? (3) What should average Project Performance be for projects with a Strategic Value of about 2? (4) What should average Project Performance be for projects with a Strategic Value of about 4? To be able to provide meaningful answers to these questions, the PNNL customer survey will need to be fully implemented for several years, thus providing a link between management perceptions of laboratory performance and customer survey data.

  7. Nuclear energy related capabilities at Sandia National Laboratories.

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y.

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  8. Nuclear energy related capabilities at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Pickering, Susan Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-02-01

    Sandia National Laboratories' technology solutions are depended on to solve national and global threats to peace and freedom. Through science and technology, people, infrastructure, and partnerships, part of Sandia's mission is to meet the national needs in the areas of energy, climate and infrastructure security. Within this mission to ensure clean, abundant, and affordable energy and water is the Nuclear Energy and Fuel Cycle Programs. The Nuclear Energy and Fuel Cycle Programs have a broad range of capabilities, with both physical facilities and intellectual expertise. These resources are brought to bear upon the key scientific and engineering challenges facing the nation and can be made available to address the research needs of others. Sandia can support the safe, secure, reliable, and sustainable use of nuclear power worldwide by incorporating state-of-the-art technologies in safety, security, nonproliferation, transportation, modeling, repository science, and system demonstrations.

  9. The laboratory efficiencies initiative: partnership for building a sustainable national public health laboratory system.

    Science.gov (United States)

    Ridderhof, John C; Moulton, Anthony D; Ned, Renée M; Nicholson, Janet K A; Chu, May C; Becker, Scott J; Blank, Eric C; Breckenridge, Karen J; Waddell, Victor; Brokopp, Charles

    2013-01-01

    Beginning in early 2011, the Centers for Disease Control and Prevention and the Association of Public Health Laboratories launched the Laboratory Efficiencies Initiative (LEI) to help public health laboratories (PHLs) and the nation's entire PHL system achieve and maintain sustainability to continue to conduct vital services in the face of unprecedented financial and other pressures. The LEI focuses on stimulating substantial gains in laboratories' operating efficiency and cost efficiency through the adoption of proven and promising management practices. In its first year, the LEI generated a strategic plan and a number of resources that PHL directors can use toward achieving LEI goals. Additionally, the first year saw the formation of a dynamic community of practitioners committed to implementing the LEI strategic plan in coordination with state and local public health executives, program officials, foundations, and other key partners.

  10. Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

    International Nuclear Information System (INIS)

    The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents

  11. Argonne National Laboratory institutional plan FY 2002 - FY 2007

    International Nuclear Information System (INIS)

    The national laboratory system provides a unique resource for addressing the national needs inherent in the mission of the Department of Energy. Argonne, which grew out of Enrico Fermi's pioneering work on the development of nuclear power, was the first national laboratory and, in many ways, has set the standard for those that followed. As the Laboratory's new director, I am pleased to present the Argonne National Laboratory Institutional Plan for FY 2002 through FY 2007 on behalf of the extraordinary group of scientists, engineers, technicians, administrators, and others who re responsible for the Laboratory's distinguished record of achievement. Like our sister DOE laboratories, Argonne uses a multifaceted approach to advance U.S. R and D priorities. First, we assemble interdisciplinary teams of scientists and engineers to address complex problems. For example, our initiative in Functional Genomics will bring together biologists, computer scientists, environmental scientists, and staff of the Advanced Photon Source to develop complete maps of cellular function. Second, we cultivate specific core competencies in science and technology; this Institutional Plan discusses the many ways in which our core competencies support DOE's four mission areas. Third, we serve the scientific community by designing, building, and operating world-class user facilities, such as the Advanced Photon Source, the Intense Pulsed Neutron Source, and the Argonne Tandem-Linac Accelerator System. This Plan summarizes the visions, missions, and strategic plans for the Laboratory's existing major user facilities, and it explains our approach to the planned Rare Isotope Accelerator. Fourth, we help develop the next generation of scientists and engineers through educational programs, many of which involve bright young people in research. This Plan summarizes our vision, objectives, and strategies in the education area, and it gives statistics on student and faculty participation. Finally, we

  12. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Dena Tomchak

    2014-03-01

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program proves its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.

  13. Sandia National Laboratories, California proposed CREATE facility environmental baseline survey.

    Energy Technology Data Exchange (ETDEWEB)

    Catechis, Christopher Spyros

    2013-10-01

    Sandia National Laboratories, Environmental Programs completed an environmental baseline survey (EBS) of 12.6 acres located at Sandia National Laboratories/California (SNL/CA) in support of the proposed Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) Facility. The survey area is comprised of several parcels of land within SNL/CA, County of Alameda, California. The survey area is located within T 3S, R 2E, Section 13. The purpose of this EBS is to document the nature, magnitude, and extent of any environmental contamination of the property; identify potential environmental contamination liabilities associated with the property; develop sufficient information to assess the health and safety risks; and ensure adequate protection for human health and the environment related to a specific property.

  14. BROOKHAVEN NATIONAL LABORATORY SITE ENVIRONMENTAL REPORT FOR CALENDAR YEAR 1994.

    Energy Technology Data Exchange (ETDEWEB)

    NAIDU,J.R.; ROYCE,B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions and effluents to the environment were evaluated. Among the permitted facilities, two instances of pH exceedances were observed at recharge basins, possibly related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant to the Peconic River exceeded. on ten occasions, one each for fecal coliform and 5-day Biochemical Oxygen Demand (avg.) and eight for ammonia nitrogen. The ammonia and Biochemical Oxygen Demand exceedances were attributed to the cold winter and the routine cultivation of the sand filter beds which resulted in the hydraulic overloading of the filter beds and the possible destruction of nitrifying bacteria. The on-set of warm weather and increased aeration of the filter beds via cultivation helped to alleviate this condition. The discharge of fecal coliform may also be linked to this occurrence, in that the increase in fecal coliform coincided with the increased cultivation of the sand filter beds. The environmental monitoring data has identified site-specific contamination of groundwater and soil. These areas are subject to Remedial Investigation/Feasibility Studies under the Inter Agency Agreement. Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with

  15. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  16. Resonance ionization mass spectrometry at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Two approaches to Resonance Ionization Mass Spectrometry (RIMS) at Los Alamos National Laboratory are discussed. The first is the use of continuous-wave dye lasers as the ionization source, and the use of pulse counting detection; and results are presented for lutetium and technetium. The second approach is the use of multiphoton resonances in the pulsed laser excitation of atoms. Experiments with 2 + 1 [photons to resonance plus photons to ionize] RIMS schemes for several elements are discussed. (author)

  17. Astronomy applications of adaptive optics at Lawrence Livermore National Laboratory

    Science.gov (United States)

    Bauman, Brian J.; Gavel, Donald T.

    2003-06-01

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  18. Astronomy Applications of Adaptive Optics at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, B J; Gavel, D T

    2003-04-23

    Astronomical applications of adaptive optics at Lawrence Livermore National Laboratory (LLNL) has a history that extends from 1984. The program started with the Lick Observatory Adaptive Optics system and has progressed through the years to lever-larger telescopes: Keck, and now the proposed CELT (California Extremely Large Telescope) 30m telescope. LLNL AO continues to be at the forefront of AO development and science.

  19. Implementing a lessons learned process at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Fosshage, Erik D.; Drewien, Celeste A.; Eras, Kenneth; Hartwig, Ronald Craig; Post, Debra S.; Stoecker, Nora Kathleen

    2016-01-01

    The Lessons Learned Process Improvement Team was tasked to gain an understanding of the existing lessons learned environment within the major programs at Sandia National Laboratories, identify opportunities for improvement in that environment as compared to desired attributes, propose alternative implementations to address existing inefficiencies, perform qualitative evaluations of alternative implementations, and recommend one or more near-term activities for prototyping and/or implementation. This report documents the work and findings of the team.

  20. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R. [Oak Ridge National Laboratory, TN (United States)

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  1. Oak Ridge National Laboratory Review. Volume 25, No. 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Krause, C.; Pearce, J.; Zucker, A. [eds.

    1992-10-01

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  2. Idaho National Engineering Laboratory installation roadmap assumptions document

    International Nuclear Information System (INIS)

    This document is a composite of roadmap assumptions developed for the Idaho National Engineering Laboratory (INEL) by the US Department of Energy Idaho Field Office and subcontractor personnel as a key element in the implementation of the Roadmap Methodology for the INEL Site. The development and identification of these assumptions in an important factor in planning basis development and establishes the planning baseline for all subsequent roadmap analysis at the INEL

  3. Idaho National Laboratory (INL) Sitewide Institutional Controls Plan

    Energy Technology Data Exchange (ETDEWEB)

    W. L. Jolley

    2006-07-27

    On November 9, 2002, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and the Idaho Department of Environmental Quality approved the Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites, which requires a Sitewide Institutional Controls Plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. The revision is needed to provide an update as remedial actions are completed and new areas of concern are found. This Sitewide Institutional Controls Plan is based on guidance in the May 3, 1999, EPA Region 10 Final Policy on the Use of Institutional Controls at Federal Facilities; the September 29, 2000, EPA guidance Institutional Controls: A Site Manager's Guide to Identifying, Evaluating, and Selecting Institutional Controls at Superfund and RCRA Corrective Action Cleanups; and the April 9, 2003, DOE Policy 454.1, "Use of Institutional Controls." These policies establish measures that ensure short- and long-term effectiveness of institutional controls that protect human health and the environment at federal facility sites undergoing remedial action pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and/or corrective action pursuant to the Resource Conservation and Recovery Act (RCRA). The site-specific institutional controls currently in place at the Idaho National Laboratory are documented in this Sitewide Institutional Controls Plan. This plan is being updated, along with the Idaho National Engineering and Environmental Laboratory Comprehensive Facilities and Land Use Plan, to reflect the progress of remedial activities and changes in CERCLA sites.

  4. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  5. Argonne National Laboratory's photooxidation organic mixed-waste treatment system

    International Nuclear Information System (INIS)

    This paper describes the installation and startup testing of the Argonne National Laboratory-East (ANL-E) photo-oxidation organic mixed-waste treatment system. This system will treat organic mixed (i.e., radioactive and hazardous) waste by oxidizing the organics to carbon dioxide and inorganic salts in an aqueous media. The residue will be treated in the existing radwaste evaporators. The system is installed in the waste management facility at the ANL-E site in Argonne, Illinois

  6. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  7. Welcome to Los Alamos National Laboratory: A premier national security science laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, Terry [Los Alamos National Laboratory

    2012-06-25

    Dr Wallace presents visitors with an overview of LANL's national security science mission: stockpile stewardship, protecting against the nuclear threat, and energy security & emerging threats, which are underpinned by excellence in science/technology/engineering capabilities. He shows visitors a general Lab overview of budget, staff, and facilities before providing a more in-depth look at recent Global Security accomplishments and current programs.

  8. MIT Lincoln Laboratory: Physics and Technology in the National Interest

    Science.gov (United States)

    Ralston, Richard

    2001-03-01

    This year, MIT is celebrating the 50th anniversary of the founding of Lincoln Laboratory, which was formed at the request of the DoD with the initial goal of developing a national air defense system. In its 50 years, the Laboratory staff have made significant contributions in diverse areas including radar imaging, satellite communications, digital signal processing, computer science, semiconductor materials and solid state physics. The Laboratory has been true to its mission statement, which places strong emphasis on the application of advanced electronics to R&D in the national interest. Much of the technology is transitioned to U.S. industry for both government and commercial use. Annually more than 500 publications and meeting speeches are given, and cooperative developments with industry have targeted technology transitions ranging from next-generation photolithographic tools to microchip lasers. The Laboratory staff have been granted over 400 patents, and license to this intellectual property is at the core of many of the over 70 spin-off companies. MIT employs 2,300 people at Lincoln, including 1,200 professionals with degrees in physics, math, computer science, materials science and the engineering disciplines. Two-fifths of the professional staff are at the doctoral level; over two-thirds hold advanced degrees. This presentation will describe recent examples of research challenges for physicists in a multidisciplinary project-oriented environment.

  9. Microscale chemistry technology exchange at Argonne National Laboratory - east.

    Energy Technology Data Exchange (ETDEWEB)

    Pausma, R.

    1998-06-04

    The Division of Educational Programs (DEP) at Argonne National Laboratory-East interacts with the education community at all levels to improve science and mathematics education and to provide resources to instructors of science and mathematics. DEP conducts a wide range of educational programs and has established an enormous audience of teachers, both in the Chicago area and nationally. DEP has brought microscale chemistry to the attention of this huge audience. This effort has been supported by the U.S. Department of Energy through the Environmental Management Operations organization within Argonne. Microscale chemistry is a teaching methodology wherein laboratory chemistry training is provided to students while utilizing very small amounts of reagents and correspondingly small apparatus. The techniques enable a school to reduce significantly the cost of reagents, the cost of waste disposal and the dangers associated with the manipulation of chemicals. The cost reductions are achieved while still providing the students with the hands-on laboratory experience that is vital to students who might choose to pursue careers in the sciences. Many universities and colleges have already begun to switch from macroscale to microscale chemistry in their educational laboratories. The introduction of these techniques at the secondary education level will lead to freshman being better prepared for the type of experimentation that they will encounter in college.

  10. Oak Ridge National Laboratory institutional plan, FY 1990--FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    The Oak Ridge National Laboratory is one of DOE's major multiprogram energy laboratories. ORNL's program missions are (1) to conduct applied research and engineering development in support of DOE's programs in fusion, fission, fossil, renewables (biomass), and other energy technologies, and in the more efficient conversion and use of energy (conservation) and (2) to perform basic scientific research in selected areas of the physical and life sciences. These missions are to be carried out in compliance with environmental, safety, and health regulations. Transfer of science and technology is an integral component of our missions. A complementary mission is to apply the Laboratory's resources to other nationally important tasks when such work is synergistic with the program missions. Some of the issues addressed include education, international competitiveness, hazardous waste research and development, and selected defense technologies. In addition to the R D missions, ORNL performs important service roles for DOE; these roles include designing, building, and operating user facilities for the benefit of university and industrial researchers and supplying radioactive and stable isotopes that are not available from private industry. Scientific and technical efforts in support of the Laboratory's missions cover a spectrum of activities. In fusion, the emphasis is on advanced studies of toroidal confinement, plasma heating, fueling systems, superconducting magnets, first-wall and blanket materials, and applied plasma physics. 69 figs., 49 tabs.

  11. Customer Satisfaction Assessment at the Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Dale N.; Sours, Mardell L.

    2000-03-20

    The Pacific Northwest National Laboratory (PNNL) is developing and implementing a customer satisfaction assessment program (CSAP) to assess the quality of research and development provided by the laboratory. We present the customer survey component of the PNNL CSAP. The customer survey questionnaire is composed of 2 major sections, Strategic Value and Project Performance. The Strategic Value section of the questionnaire consists of 5 questions that can be answered with a 5 point Likert scale response. These questions are designed to determine if a project is directly contributing to critical future national needs. The Project Performance section of the questionnaire consists of 9 questions that can be answered with a 5 point Likert scale response. These questions determine PNNL performance in meeting customer expectations. Many approaches could be used to analyze customer survey data. We present a statistical model that can accurately capture the random behavior of customer survey data. The properties of this statistical model can be used to establish a "gold standard'' or performance expectation for the laboratory, and then assess progress. The gold standard is defined from input from laboratory management --- answers to 4 simple questions, in terms of the information obtained from the CSAP customer survey, define the standard: *What should the average Strategic Value be for the laboratory project portfolio? *What Strategic Value interval should include most of the projects in the laboratory portfolio? *What should average Project Performance be for projects with a Strategic Value of about 2? *What should average Project Performance be for projects with a Strategic Value of about 4? We discuss how to analyze CSAP customer survey data with this model. Our discussion will include "lessons learned" and issues that can invalidate this type of assessment.

  12. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs.

  13. University and national laboratory roles in nuclear engineering

    International Nuclear Information System (INIS)

    Nuclear engineering education is being significantly challenged in the US. The decline in enrollment generally and the reduction of the number of nuclear engineering departments has been well documented. These declines parallel a lack of new construction for nuclear power plants and a decline in research and development to support new plant design. Precisely at a time when innovation is needed to deal with the many issues facing nuclear power, the number of qualified people to do so is being reduced. It is important that the university and national laboratory communities cooperate to address these issues. To be drawn into the technology, the best students must see a future, a need, and must identify challenges to meet. The university community can provide that vision with help from the national laboratories. It has been a major goal within the reactor development program at Argonne National Laboratory to establish the kind of program that can help accomplish this. The integral fast reactor (IFR) program represents opportunities for joint research in fuel technology, fuel reprocessing, and waste handling, reactor-plant design to emphasize passive response to upsets, development and testing of advanced diagnostic and control-system technology core designs to enhance breeding while minimizing sodium void effects and reducing the magnitude of reactivity changes with burnup, development of approaches to the probabilistic risk assessment that fully integrate passive responses, and many others. To involve students and faculty, they have established the IFR fellows program

  14. Idaho National Laboratory Site Long-Term Stewardship Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    B. E. Olaveson

    2006-07-27

    The U.S. Department of Energy has established long-term stewardship programs to protect human health and the environment at sites where residual contamination remains after site cleanup. At the Idaho National Laboratory Site, Comprehensive Environmental Response, Compensation, and Liability Act (CERLA) long-term stewardship activities performed under the aegis of regulatory agreements, the Federal Facility Agreement and Consent Order for the Idaho National Laboratory, and state and federal requirements are administered primarily under the direction of the Idaho Cleanup Project. It represents a subset of all on-going environmental activity at the Idaho National Laboratory Site. This plan provides a listing of applicable CERCLA long-term stewardship requirements and their planned and completed implementation goals. It proffers the Long-Term Stewardship Environmental Data Warehouse for Sitewide management of environmental data. This plan will be updated as needed over time, based on input from the U.S. Department of Energy, its cognizant subcontractors, and other local and regional stakeholders.

  15. Environmental Survey preliminary report, Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    This report presents the preliminary findings of the first phase of the Environmental Survey of the United States Department of Energy's (DOE) Argonne National Laboratory (ANL), conducted June 15 through 26, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. The team includes outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with ANL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at ANL, and interviews with site personnel. The Survey team developed a Sampling and Analysis (S ampersand A) Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The S ampersand A Plan will be executed by the Oak Ridge National Laboratory (ORNL). When completed, the S ampersand A results will be incorporated into the Argonne National Laboratory Environmental Survey findings for inclusion in the Environmental Survey Summary Report. 75 refs., 24 figs., 60 tabs

  16. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  17. Post Irradiation Capabilities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Schulthess, J.L.; Robert D. Mariani; Rory Kennedy; Doug Toomer

    2011-08-01

    The U.S. Department of Energy (DOE) Office of Nuclear Energy (NE) oversees the research, development, and demonstration activities that ensure nuclear energy remains a viable energy option for the United States. Fuel and material development through fabrication, irradiation, and characterization play a significant role in accomplishing the research needed to support nuclear energy. All fuel and material development requires the understanding of irradiation effects on the fuel performance and relies on irradiation experiments ranging from tests aimed at targeted scientific questions to integral effects under representative and prototypic conditions. The DOE recently emphasized a solution-driven, goal-oriented, science-based approach to nuclear energy development. Nuclear power systems and materials were initially developed during the latter half of the 20th century and greatly facilitated by the United States’ ability and willingness to conduct large-scale experiments. Fifty-two research and test reactors with associated facilities for performing fabrication and pre and post irradiation examinations were constructed at what is now Idaho National Laboratory (INL), another 14 at Oak Ridge National Laboratory (ORNL), and a few more at other national laboratory sites. Building on the scientific advances of the last several decades, our understanding of fundamental nuclear science, improvements in computational platforms, and other tools now enable technological advancements with less reliance on large-scale experimentation.

  18. Oak Ridge National Laboratory Technology Logic Diagram. Indexes

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The Decontamination and Decommissioning (D&D) Index provides a comprehensive list of site problems, problem area/constituents, remedial technologies, and regulatory terms discussed in the D&D sections of the Oak Ridge National Laboratory Technology Logic Diagram. All entries provide specific page numbers, or cross-reference entries that provide specific page numbers, in the D&D volumes (Vol. 1, Pt. A; Vol. 2, Pt. A; and appropriate parts of Vol. 3). The Oak Ridge National Laboratory Technology (TLD) was developed to provide a decision-support tool that relates environmental restoration (ER) and waste management (WM) problems at Oak Ridge National Laboratory (ORNL) to potential technologies that can remediate these problems. The TLD identifies the research, development, demonstration, testing, and evaluation needed to develop these technologies to a state that allows technology transfer and application to decontamination and decommissioning (D&D), remedial action (RA) and WM activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk.

  19. 78 FR 29022 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2013-05-17

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA... enforce the safety zone for the Berkeley Marina Fourth of July Fireworks display in the Captain of the...'19'' W (NAD 83) for the Berkeley Marina Fourth of July Fireworks display listed in 33 CFR...

  20. Energy and Water Conservation Assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Stephanie R.; Koehler, Theresa M.; Boyd, Brian K.

    2014-05-31

    This report summarizes the results of an energy and water conservation assessment of the Radiochemical Processing Laboratory (RPL) at Pacific Northwest National Laboratory (PNNL). The assessment was performed in October 2013 by engineers from the PNNL Building Performance Team with the support of the dedicated RPL staff and several Facilities and Operations (F&O) department engineers. The assessment was completed for the Facilities and Operations (F&O) department at PNNL in support of the requirements within Section 432 of the Energy Independence and Security Act (EISA) of 2007.

  1. Pacific Northwest National Laboratory FY1996 midyear self-evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    As stated in our mission, the Laboratory is concentrated on DOE`s environmental quality mission and the scientific research required to support that mission. The Laboratory also supports the energy resources and national security missions in areas where an overlap between our core competencies and DOE`s goals exists. Our intent for fiscal year l996 is to focus our efforts on the critical outcomes necessary for us to meet DOE`s needs. Six Critical Outcomes were established and substantial progress has been made against five of those outcomes during the first half of the fiscal year. A summary of progress and key issues is provided. The Critical Outcomes are: Environmental Molecular Sciences Laboratory; Environmental Management; Scientific Excellence and Productivity; ES&H/Conduct of Operations; Leadership; and Economic Development. The Laboratory has also made a significant commitment to the implementation of a fully integrated self-assessment program. Efforts during the first half of the fiscal year have been focused on developing an approach for the overall program and implementation in selected organizations. The approach is holistic and focuses assessment on activities important to the successful completion of our critical outcomes. Progress towards full implementation of the integrated assessment program is meeting expectations in general, but significant effort still needs to be applied to obtain effective implementation across the Laboratory and to ensure integration with the business planning process.

  2. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  3. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The purpose of the Safety and Health (S ampersand H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG ampersand G Idaho, Inc. (EG ampersand G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S ampersand H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety

  4. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Barbara J.; West, Stephanie G.; Jones, Olga G.; Kerr, Dorothy A.; Bieri, Rita A.; Sanderson, Nancy L.

    1991-08-01

    The purpose of the Safety and Health (S H) Subteam assessment was to determine the effectiveness of representative safety and health programs at the Idaho National Engineering Laboratory (INEL) site. Four Technical Safety Appraisal (TSA) Teams were assembled for this purpose by the US Department of Energy (DOE), Deputy Assistant Secretary for Safety and Quality Assurance, Office of Safety Appraisals (OSA). Team No. 1 reviewed EG G Idaho, Inc. (EG G Idaho) and the Department of Energy Field Office, Idaho (ID) Fire Department. Team No. 2 reviewed Argonne National Laboratory-West (ANL-W). Team No. 3 reviewed selected contractors at the INEL; specifically, Morrison Knudsen-Ferguson of Idaho Company (MK-FIC), Protection Technology of Idaho, Inc. (PTI), Radiological and Environmental Sciences Laboratory (RESL), and Rockwell-INEL. Team No. 4 provided an Occupational Safety and Health Act (OSHA)-type compliance sitewide assessment of INEL. The S H Subteam assessment was performed concurrently with assessments conducted by Environmental and Management Subteams. Performance was appraised in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Medical Services, and Firearms Safety.

  5. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  6. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES ampersand H/quality assurance programs was conducted

  7. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  8. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Edward S.; Keating, John J.

    1991-08-01

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG G Idaho, Inc. (EG G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes.

  9. Tiger Team assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-01

    This report documents the Tiger Team Assessment of the Idaho National Engineering Laboratory (INEL) located in Idaho Falls, Idaho. INEL is a multiprogram, laboratory site of the US Department of Energy (DOE). Overall site management is provided by the DOE Field Office, Idaho; however, the DOE Field Office, Chicago has responsibility for the Argonne National Laboratory-West facilities and operations through the Argonne Area Office. In addition, the Idaho Branch Office of the Pittsburgh Naval Reactors Office has responsibility for the Naval Reactor Facility (NRF) at the INEL. The assessment included all DOE elements having ongoing program activities at the site except for the NRF. In addition, the Safety and Health Subteam did not review the Westinghouse Idaho Nuclear Company, Inc. facilities and operations. The Tiger Team Assessment was conducted from June 17 to August 2, 1991, under the auspices of the Office of Special Projects, Office of the Assistant Secretary for Environment, Safety and Health, Headquarters, DOE. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal INEL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors management of ES H/quality assurance programs was conducted.

  10. Tiger Team assessment of the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The Management Subteam conducted a management assessment of Environment, Safety, and Health (ES ampersand H) programs and their implementation of Idaho National Engineering Laboratory (INEL). The objectives of the assessment were to: (1) evaluate the effectiveness of existing management functions and processes in terms of ensuring environmental compliance, and the health and safety of workers and the general public; and (2) identify probable root causes for ES ampersand H findings and concerns. Organizations reviewed were DOE-Headquarters: DOE Field Offices, Chicago (CH) and Idaho (ID); Argonne Area Offices, East (AAO-E) and West (AAO-W); Radiological and Environmental Sciences Laboratory (RESL); Argonne National Laboratory (ANL); EG ampersand G Idaho, Inc. (EG ampersand G); Westinghouse Idaho Nuclear Company, Inc. (WINCO); Rockwell-INEL; MK-Ferguson of Idaho Company (MK-FIC); and Protection Technology of Idaho, Inc. (PTI). The scope of the assessment covered the following ES ampersand H management issues: policies and procedures; roles, responsibilities, and authorities; management commitment; communication; staff development, training, and certification; recruitment; compliance management; conduct of operations; emergency planning and preparedness; quality assurance; self assessment; oversight activities; and cost plus award fee processes

  11. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  12. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  13. The Role of a National Biocontainment Laboratory in Emergencies.

    Science.gov (United States)

    Le Duc, James W; Ksiazek, Thomas G

    2015-01-01

    Over a decade ago, the National Institutes of Health awarded partial support for the construction and operation of 2 National Biocontainment Laboratories, with the condition that they would be available to assist in the event of public health emergencies-although how a biocontainment facility located on an academic campus might contribute was not defined. Here we offer examples of how one of these laboratories has contributed to a coordinated response to 2 recent international public health emergencies. Essential assets for success include highly trained and experienced staff, access to reference pathogens and reagents, cutting-edge knowledge of the field, appropriate biocontainment facilities, robust biosafety and biosecurity programs, and availability of modern instrumentation. The ability to marry the strengths of academia in basic and applied research with access to appropriate biocontainment facilities while drawing on a highly skilled cadre of experienced experts has proven extremely valuable in the response to recent national emergencies and will continue to do so in the future. Areas where additional planning and preparation are needed have also been identified through these experiences.

  14. International Space Station: National Laboratory Education Concept Development Report

    Science.gov (United States)

    2006-01-01

    The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.

  15. Brookhaven National Laboratory 2008 Site Environment Report Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Brookhaven National Laboratory

    2009-10-01

    Brookhaven National Laboratory (BNL) prepares an annual Site Environmental Report (SER) in accordance with DOE Order 231.1A, Environment, Safety and Health Reporting of the U.S. Department of Energy. The report is written to inform the public, regulators, employees, and other stakeholders of the Laboratory's environmental performance during the calendar year in review. Volume I of the SER summarizes environmental data; environmental management performance; compliance with applicable DOE, federal, state, and local regulations; and performance in restoration and surveillance monitoring programs. BNL has prepared annual SERs since 1971 and has documented nearly all of its environmental history since the Laboratory's inception in 1947. Volume II of the SER, the Groundwater Status Report, also is prepared annually to report on the status of and evaluate the performance of groundwater treatment systems at the Laboratory. Volume II includes detailed technical summaries of groundwater data and its interpretation, and is intended for internal BNL users, regulators, and other technically oriented stakeholders. A brief summary of the information contained in Volume II is included in this volume in Chapter 7, Groundwater Protection. Both reports are available in print and as downloadable files on the BNL web page at http://www.bnl.gov/ewms/ser/. An electronic version on compact disc is distributed with each printed report. In addition, a summary of Volume I is prepared each year to provide a general overview of the report, and is distributed with a compact disc containing the full report.

  16. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    International Nuclear Information System (INIS)

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed

  17. Oak Ridge National Laboratory Institutional Plan FY 1984-FY 1989

    Energy Technology Data Exchange (ETDEWEB)

    1983-11-01

    In this plan, Oak Ridge National Laboratory (ORNL) continues to be committed to scientific and technological research that is based on technical excellence and innovation and that provides a foundation for and a stimulus to broader and more sustained economic growth. DOE is being asked to assist in establishing a new program for Laboratory cooperation with industry, beginning with an initial focus on materials science. The current Institutional Plan thus projects growth in the materials science area as well as in other basic physical science areas and suggests a new initiative designed to extend the various technology transfer activities and to make them more effective by using ORNL as the trial Laboratory for some of these different approaches. This Institutional Plan projects a stable future for ORNL, with only modest amounts of growth in selected areas of research for the FY 1984-FY 1989 planning cycle. Summaries of the overall picture of the proposed budget and personnel levels for the current planning cycle are included. Scientific programs, laboratory resource development, and private sector interactions are discussed.

  18. Draft environmental assessment of Argonne National Laboratory, East

    International Nuclear Information System (INIS)

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs

  19. Draft environmental assessment of Argonne National Laboratory, East

    Energy Technology Data Exchange (ETDEWEB)

    1975-10-01

    This environmental assessment of the operation of the Argonne National Laboratory is related to continuation of research and development work being conducted at the Laboratory site at Argonne, Illinois. The Laboratory has been monitoring various environmental parameters both offsite and onsite since 1949. Meteorological data have been collected to support development of models for atmospheric dispersion of radioactive and other pollutants. Gaseous and liquid effluents, both radioactive and non-radioactive, have been measured by portable monitors and by continuous monitors at fixed sites. Monitoring of constituents of the terrestrial ecosystem provides a basis for identifying changes should they occur in this regime. The Laboratory has established a position of leadership in monitoring methodologies and their application. Offsite impacts of nonradiological accidents are primarily those associated with the release of chlorine and with sodium fires. Both result in releases that cause no health damage offsite. Radioactive materials released to the environment result in a cumulative dose to persons residing within 50 miles of the site of about 47 man-rem per year, compared to an annual total of about 950,000 man-rem delivered to the same population from natural background radiation. 100 refs., 17 figs., 33 tabs.

  20. Lawrence Livermore National Laboratory Surface Water Protection: A Watershed Approach

    Energy Technology Data Exchange (ETDEWEB)

    Coty, J

    2009-03-16

    This surface water protection plan (plan) provides an overview of the management efforts implemented at Lawrence Livermore National Laboratory (LLNL) that support a watershed approach to protect surface water. This plan fulfills a requirement in the Department of Energy (DOE) Order 450.1A to demonstrate a watershed approach for surface water protection that protects the environment and public health. This plan describes the use of a watershed approach within which the Laboratory's current surface water management and protections efforts have been structured and coordinated. With more than 800 million acres of land in the U.S. under federal management and stewardship, a unified approach across agencies provides enhanced resource protection and cost-effectiveness. The DOE adopted, along with other federal agencies, the Unified Federal Policy for a Watershed Approach to Federal Land and Resource Management (UFP) with a goal to protect water quality and aquatic ecosystems on federal lands. This policy intends to prevent and/or reduce water pollution from federal activities while fostering a cost-effective watershed approach to federal land and resource management. The UFP also intends to enhance the implementation of existing laws (e.g., the Clean Water Act [CWA] and National Environmental Policy Act [NEPA]) and regulations. In addition, this provides an opportunity for the federal government to serve as a model for water quality stewardship using a watershed approach for federal land and resource activities that potentially impact surface water and its uses. As a federal land manager, the Laboratory is responsible for a small but important part of those 800 million acres of land. Diverse land uses are required to support the Laboratory's mission and provide an appropriate work environment for its staff. The Laboratory comprises two sites: its main site in Livermore, California, and the Experimental Test Site (Site 300), near Tracy, California. The main site

  1. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL's Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed

  2. High field magnet program at Brookhaven National Laboratory

    CERN Document Server

    Ghosh, A; Muratore, J; Parker, B; Sampson, W; Wanderer, P J; Willen, E

    2000-01-01

    The magnet program at Brookhaven National Laboratory (BNL) is focussed on superconducting magnets for particle accelerators. The effort includes magnet production at the laboratory and in industry, magnet R&D, and test facilities for magnets and superconductors. Nearly 2000 magnets-dipoles, quadrupoles, sextupoles and correctors for the arc and insertion regions-were produced for the Relativistic Heavy Ion Collider (RHIC), which is being commissioned. Currently, production of helical dipoles for the polarized proton program at RHIC, insertion region dipoles for the Large Hadron Collider (LHC) at CERN, and an insertion magnet system for the Hadron-Elektron-Ring- Analage (HERA) collider at Deutsches Elektronen-Synchrotron (DESY) is underway. The R&D effort is exploring dipoles with fields above 10 T for use in post-LHC colliders. Brittle superconductors-Nb/sub 3/Sn or HTS-are being used for these magnets. The superconductor test facility measures short-sample currents and other characteristics of sample...

  3. Deriving cleanup guidelines for radionuclides at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Meinhold, A.F.; Morris, S.C.; Dionne, B.; Moskowitz, P.D.

    1997-01-01

    Past activities at Brookhaven National Laboratory (BNL) resulted in soil and groundwater contamination. As a result, BNL was designated a Superfund site under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). BNL`s Office of Environmental Restoration (OER) is overseeing environmental restoration activities at the Laboratory. With the exception of radium, there are no regulations or guidelines to establish cleanup guidelines for radionuclides in soils at BNL. BNL must derive radionuclide soil cleanup guidelines for a number of Operable Units (OUs) and Areas of Concern (AOCs). These guidelines are required by DOE under a proposed regulation for radiation protection of public health and the environment as well as to satisfy the requirements of CERCLA. The objective of this report is to propose a standard approach to deriving risk-based cleanup guidelines for radionuclides in soil at BNL. Implementation of the approach is briefly discussed.

  4. Alternative futures for the Department of Energy National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This Task Force was asked to propose alternate futures for the Department of Energy laboratories noted in the report. The authors` intensive ten months` study revealed multiple missions and sub-missions--traditional missions and new missions--programs and projects--each with factors of merit. They respectively suggest that the essence of what the Department, and particularly the laboratories, should and do stand for: the energy agenda. Under the overarching energy agenda--the labs serving the energy opportunities--they comment on their national security role, the all important energy role, all related environmental roles, the science and engineering underpinning for all the above, a focused economic role, and conclude with governance/organization change recommendations.

  5. BROOKHAVEN NATIONAL LABORATORY INSTITUTIONAL PLAN FY2003-2007.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-10

    This document presents the vision for Brookhaven National Laboratory (BNL) for the next five years, and a roadmap for implementing that vision. Brookhaven is a multidisciplinary science-based laboratory operated for the U.S. Department of Energy (DOE), supported primarily by programs sponsored by the DOE's Office of Science. As the third-largest funding agency for science in the U.S., one of the DOE's goals is ''to advance basic research and the instruments of science that are the foundations for DOE's applied missions, a base for U.S. technology innovation, and a source of remarkable insights into our physical and biological world, and the nature of matter and energy'' (DOE Office of Science Strategic Plan, 2000 http://www.osti.gov/portfolio/science.htm). BNL shapes its vision according to this plan.

  6. The Computation Directorate at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cook, L

    2006-09-07

    The Computation Directorate at Lawrence Livermore National Laboratory has four major areas of work: (1) Programmatic Support -- Programs are areas which receive funding to develop solutions to problems or advance basic science in their areas (Stockpile Stewardship, Homeland Security, the Human Genome project). Computer scientists are 'matrixed' to these programs to provide computer science support. (2) Livermore Computer Center (LCC) -- Development, support and advanced planning for the large, massively parallel computers, networks and storage facilities used throughout the laboratory. (3) Research -- Computer scientists research advanced solutions for programmatic work and for external contracts and research new HPC hardware solutions. (4) Infrastructure -- Support for thousands of desktop computers and numerous LANs, labwide unclassified networks, computer security, computer-use policy.

  7. Status of the Advanced Photon Source at Argonne National Laboratory

    International Nuclear Information System (INIS)

    The Advanced Photon Source at Argonne National Laboratory is a third-generation light source optimized for production of high-brilliance undulator radiation in the hard x-ray portion of the spectrum. A user community representing all major centers of synchrotron research, including universities, industry, and federal laboratories, will utilize these x-ray beams for investigations across a diverse range of disciplines. All technical facilities and components required for operations have been completed and installed, and are well along in the commissioning process. Major design goals and Department of Energy milestones have been met or exceeded. Project funds have been maximized to construct a number of beamline components and user facilities over and above those called for in the original project scope. Research teams preparing experimental apparatus at the Advanced Photon Source have procured strong funding support. copyright 1996 American Institute of Physics

  8. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  10. Final Report - Advanced Ion Trap Mass Spectrometry Program - Oak Ridge National Laboratory - Sandia National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, W.B.

    2002-12-18

    This report covers the three main projects that collectively comprised the Advanced Ion Trap Mass Spectrometry Program. Chapter 1 describes the direct interrogation of individual particles by laser desorption within the ion trap mass spectrometer analyzer. The goals were (1) to develop an ''intelligent trigger'' capable of distinguishing particles of biological origin from those of nonbiological origin in the background and interferent particles and (2) to explore the capability for individual particle identification. Direct interrogation of particles by laser ablation and ion trap mass spectrometry was shown to have good promise for discriminating between particles of biological origin and those of nonbiological origin, although detailed protocols and operating conditions were not worked out. A library of more than 20,000 spectra of various types of biological particles has been assembled. Methods based on multivariate analysis and on neural networks were used to discriminate between particles of biological origin and those of nonbiological origin. It was possible to discriminate between at least some species of bacteria if mass spectra of several hundred similar particles were obtained. Chapter 2 addresses the development of a new ion trap mass analyzer geometry that offers the potential for a significant increase in ion storage capacity for a given set of analyzer operating conditions. This geometry may lead to the development of smaller, lower-power field-portable ion trap mass spectrometers while retaining laboratory-scale analytical performance. A novel ion trap mass spectrometer based on toroidal ion storage geometry has been developed. The analyzer geometry is based on the edge rotation of a quadrupolar ion trap cross section into the shape of a torus. Initial performance of this device was poor, however, due to the significant contribution of nonlinear fields introduced by the rotation of the symmetric ion-trapping geometry. These

  11. Argonne National Laboratory institutional plan FY 2001--FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    Beggs, S.D.

    2000-12-07

    This Institutional Plan describes what Argonne management regards as the optimal future development of Laboratory activities. The document outlines the development of both research programs and support operations in the context of the nation's R and D priorities, the missions of the Department of Energy (DOE) and Argonne, and expected resource constraints. The Draft Institutional Plan is the product of many discussions between DOE and Argonne program managers, and it also reflects programmatic priorities developed during Argonne's summer strategic planning process. That process serves additionally to identify new areas of strategic value to DOE and Argonne, to which Laboratory Directed Research and Development funds may be applied. The Draft Plan is provided to the Department before Argonne's On-Site Review. Issuance of the final Institutional Plan in the fall, after further comment and discussion, marks the culmination of the Laboratory's annual planning cycle. Chapter II of this Institutional Plan describes Argonne's missions and roles within the DOE laboratory system, its underlying core competencies in science and technology, and six broad planning objectives whose achievement is considered critical to the future of the Laboratory. Chapter III presents the Laboratory's ''Science and Technology Strategic Plan,'' which summarizes key features of the external environment, presents Argonne's vision, and describes how Argonne's strategic goals and objectives support DOE's four business lines. The balance of Chapter III comprises strategic plans for 23 areas of science and technology at Argonne, grouped according to the four DOE business lines. The Laboratory's 14 major initiatives, presented in Chapter IV, propose important advances in key areas of fundamental science and technology development. The ''Operations and Infrastructure Strategic Plan'' in Chapter V includes

  12. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  13. 1983 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Sandia National Laboratories (SNL) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released from its research activities, SNL has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1983. The Albuquerque population received an estimated 0.250 person-rem from airborne radioactive releases, whereas it received greater than 49,950 person-rem from naturally occurring radionuclides. 23 references, 6 figures, 15 tables

  14. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  15. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  16. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  17. Association Euratom - Risoe National Laboratory annual progress report 2004

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  18. Association Euratom - Risoe National Laboratory annual progress report 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N. (eds.)

    2006-11-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2005. (au)

  19. Association Euratom - Risoe National Laboratory annual progress report 2003

    International Nuclear Information System (INIS)

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  20. Pump and valve research at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Over the last several years, the Oak Ridge National Laboratory (ORNL) has carried out several aging assessments on pumps and valves under the NRC's Nuclear Plant Aging Research (NPAR) Program. In addition, ORNL has established an Advanced Diagnostic Engineering Research and Development Center (ADEC) in order to play a key role in the field of diagnostic engineering. Initial ADEC research projects have addressed problems that were identified, at least in part, by the NPAR and other NRC-sponsored programs. This paper summarizes the pump and valve related research that has been done at ORNL and describes in more detail several diagnostic techniques developed at ORNL which are new commercially available

  1. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services

  2. Association Euratom - Risoe National Laboratory annual progress report 1999

    Energy Technology Data Exchange (ETDEWEB)

    Lynov, J.P.; Singh, B.N. [eds.

    2001-01-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within development of laser diagnostics for fusion plasmas and studies of nonlinear dynamical processes related to electrostatic turbulence and turbulent transport in magnetised plasmas. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 1999. (au)

  3. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    Energy Technology Data Exchange (ETDEWEB)

    Bullock, M.

    1992-04-01

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER&WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG&G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL`s roadmapping efforts.

  4. Association Euratom - Risoe National Laboratory annual progress report 2003

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N.

    2004-05-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2003. (au)

  5. Brookhaven National Laboratory site environmental report for calendar year 1991

    International Nuclear Information System (INIS)

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively

  6. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    Science.gov (United States)

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  7. Optical Design Capabilities at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, J K

    2002-12-30

    Optical design capabilities continue to play the same strong role at Lawrence Livermore National Laboratory (LLNL) that they have played in the past. From defense applications to the solid-state laser programs to the Atomic Vapor Laser Isotope Separation (AVLIS), members of the optical design group played critical roles in producing effective system designs and are actively continuing this tradition. This talk will explain the role optical design plays at LLNL, outline current capabilities and summarize a few activities in which the optical design team has been recently participating.

  8. Technical Safety Appraisal of the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-12-01

    This report documents the results of the Technical Safety Appraisal (TSA) of the Lawrence Livermore National Laboratory (LLNL) (including the Site 300 area), Livermore, California, conducted from February 26 to April 5, 1990. The purpose of the assessment was to provide the Secretary of Energy with the status of Environment, Safety and Health (ES H) Programs at LLNL. LLNL is operated by the University of California for the Department of Energy (DOE), and is a multi-program, mission-oriented institution engaged in fundamental and applied research programs that require a multidisciplinary approach. 1 fig.

  9. Idaho National Laboratory Emergency Readiness Assurance Plan - Fiscal Year 2015

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, Carl J. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Department of Energy Order 151.1C, Comprehensive Emergency Management System requires that each Department of Energy field element documents readiness assurance activities, addressing emergency response planning and preparedness. Battelle Energy Alliance, LLC, as prime contractor at the Idaho National Laboratory (INL), has compiled this Emergency Readiness Assurance Plan to provide this assurance to the Department of Energy Idaho Operations Office. Stated emergency capabilities at the INL are sufficient to implement emergency plans. Summary tables augment descriptive paragraphs to provide easy access to data. Additionally, the plan furnishes budgeting, personnel, and planning forecasts for the next 5 years.

  10. Proceedings of Brookhaven National Laboratory's fusion/synfuel workshop

    International Nuclear Information System (INIS)

    The fusion synfuels workshop held at Brookhaven National Laboratory (BNL) on August 27-29, 1979 examined the current status of candidate synfuel processes and the R and D required to develop the capability for fusion synfuel production. Participants divided into five working groups, covering the following areas: (1) economics and applications; (2) high-temperature electrolysis; (3) thermochemical processes (including hybrid thermo-electrochemical); (4) blanket and materials; and (5) high-efficiency power cycles. Each working group presented a summary of their conclusions and recommendations to all participants during the third day of the Workshop. These summaries are given

  11. Robotic applications at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig

  12. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included

  13. Groundwater level status report for 2009, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  14. Groundwater level status report for 2010, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  15. Mac configuration management at the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Allan B [Los Alamos National Laboratory

    2010-01-01

    The Los Alamos National Laboratory (LANL) had a need for central configuration management of non-Windows computers. LANL has three to five thousand Macs and an equal number of Linux based systems. The primary goal was to be able to inventory all non-windows systems and patch Mc OS X systems. LANL examined a number of commercial and open source solutions and ultimately selected Puppet. This paper will discuss why we chose Puppet, how we implemented it, and some lessons we learned along the way.

  16. 1995 Annual epidemiologic surveillance report for Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The US Department of Energy`s (DOE) conduct of epidemiologic surveillance provides an early warning system for health problems among workers. This program monitors illnesses and health conditions that result in an absence of five or more consecutive workdays, occupational injuries and illnesses, and disabilities and deaths among current workers. This report summarizes epidemiologic surveillance data collected from Brookhaven National Laboratory (BNL) from January 1, 1995 through December 31, 1995. The data were collected by a coordinator at BNL and submitted to the Epidemiologic Surveillance Data Center, located at Oak Ridge Institute for Science and Education, where quality control procedures and data analyses were carried out.

  17. 1983 environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Millard, G.C.; Gray, C.E.; O' Neal, B.L.

    1984-04-01

    Sandia National Laboratories (SNL) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released from its research activities, SNL has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1983. The Albuquerque population received an estimated 0.250 person-rem from airborne radioactive releases, whereas it received greater than 49,950 person-rem from naturally occurring radionuclides. 23 references, 6 figures, 15 tables.

  18. Idaho National Engineering Laboratory Waste Management Operations Roadmap Document

    International Nuclear Information System (INIS)

    At the direction of the Department of Energy-Headquarters (DOE-HQ), the DOE Idaho Field Office (DOE-ID) is developing roadmaps for Environmental Restoration and Waste Management (ER ampersand WM) activities at Idaho National Engineering Laboratory (INEL). DOE-ID has convened a select group of contractor personnel from EG ampersand G Idaho, Inc. to assist DOE-ID personnel with the roadmapping project. This document is a report on the initial stages of the first phase of the INEL's roadmapping efforts

  19. Argonne National Laboratory monthly progress report, April 1952

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1952-04-01

    This progress report from the Argonne National Laboratory covers the work in Biological and Medical Research, Radiological Physics, and Health services for the quarterly period ending March 31, 1952. Numerous experiments were conducted in an attempt to answer some of the questions arising from exposure to ionizing radiation, especially X radiation. Some of the research involved the radiosensitivity of cells and some involved animals. The effects of radium in humans was also evaluated. Other studies were performed in biology, such as the effect of photoperiodism on plant growth and the biological of beryllium.

  20. Association Euratom - Risoe National Laboratory annual progress report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Bindslev, H.; Singh, B.N (eds.)

    2005-06-01

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2004. (au)

  1. Association Euratom - Risoe National Laboratory annual progress report 1994

    International Nuclear Information System (INIS)

    The program of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory covers work in fusion plasma physics and in fusion technology. The fusion plasma physics group has activities within (a) studies of nonlinear dynamical processes in magnetized plasmas, (b) development of laser diagnostics for fusion plasmas, and (c) development of pellet injectors for fusion experiments. The activities in technology cover (a) radiation damage of fusion reactor materials and (b) water radiolysis under ITER conditions. A summary of the activities in 1994 is presented. (au) 20 ills., 19 refs

  2. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL`s environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  3. Brookhaven National Laboratory site environmental report for calendar year 1991

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A.; Miltenberger, R.P.

    1992-09-01

    This publication presents the results of BNL's environmental monitoring and compliance effort and provides an assessment of the impact of Brookhaven National Laboratory (BNL) operations on the environment. This document is the responsibility of the Environmental Protection Section of the Safety and Envirorunental Protection Division. Within this Section, the Environmental Monitoring Group (EMG) sample the environment, interpreted the results, performed the impact analysis of the emissions from BNL, and compiled the information presented here. In this effort, other groups of the Section: Compliance; Analytical; Ground Water; and Quality played a key role in addressing the regulatory aspects and the analysis and documentation of the data, respectively.

  4. DOE Los Alamos National Laboratory – PV Feasibility Assessment, 2015 Update, NREL Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dean, Jesse [National Renewable Energy Lab. (NREL), Golden, CO (United States); Witt, Monica Rene [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-06

    This report summarizes solar and wind potential for Los Alamos National Laboratory (LANL). This report is part of the “Los Alamos National Laboratory and Los Alamos County Renewable Generation” study.

  5. The DOE/NOAA meteorological program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has recently upgraded the U.S. Department of Energy's (DOE's) Idaho National Engineering Laboratory (INEL) Meteorological Measuring Network. This has allowed the entire service system to be modernized

  6. 76 FR 4133 - National Environmental Policy Act; Mars Science Laboratory (MSL) Mission

    Science.gov (United States)

    2011-01-24

    ... SPACE ADMINISTRATION National Environmental Policy Act; Mars Science Laboratory (MSL) Mission AGENCY... consideration of possible changes in the potential environmental impacts of the Mars Science Laboratory (MSL...) for MSL Final Environmental Impact Statement (EIS). SUMMARY: Pursuant to the National...

  7. The engineering institute of Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles R [Los Alamos National Laboratory; Park, Gyuhae [Los Alamos National Laboratory; Cornwell, Phillip J [Los Alamos National Laboratory; Todd, Michael D [UCSD

    2008-01-01

    Los Alamos National Laboratory (LANL) and the University of California, San Diego (UCSD) have taken the unprecedented step of creating a collaborative, multi-disciplinary graduate education program and associated research agenda called the Engineering Institute. The mission of the Engineering Institute is to develop a comprehensive approach for conducting LANL mission-driven, multidisciplinary engineering research and to improve recruiting, revitalization, and retention of the current and future staff necessary to support the LANL' s national security responsibilities. The components of the Engineering Institute are (1) a joint LANL/UCSD degree program, (2) joint LANL/UCSD research projects, (3) the Los Alamos Dynamic Summer School, (4) an annual workshop, and (5) industry short courses. This program is a possible model for future industry/government interactions with university partners.

  8. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 x 10-3 mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs

  9. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, envirorunental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 x 10-3 mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment

  10. 1991 Environmental monitoring report Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Culp, T.; Cox, W.; Hwang, S.; Jones, A.; Longley, S.; Parsons, A.; Wolff, T.; Fish, J.; Ward, S.

    1992-11-01

    This 1991 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration (ER), and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 1.3 {times} 10{sup {minus}3} mrem. The total population within a 50-mile radius of SNL, Albuquerque, received a collective dose of 0.53 person-rem during 1991 from SNL, Albuquerque, operations. As in the previous year, the 1991 operations at SNL, Albuquerque, had no discernible impact on the general public or on the environment.

  11. 1989 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Chavez, G.; Phelan, J.; Parsons, A.; Yeager, G.; Dionne, D.; Schwartz, B.; Wolff, T.; Fish, J.; Gray, C.; Thompson, D.

    1990-05-01

    This 1989 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 8.8 {times} 10{sup {minus}4} mrem. The total Albuquerque population received a collective dose of 0.097 person-rem during 1989 from SNL, Albuquerque, operations. As in the previous year, SNL, Albuquerque, operations in 1989 had no adverse impact on the general public or on the environment. 46 refs., 20 figs., 31 tabs.

  12. 1990 Environmental Monitoring Report, Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, S.; Yeager, G.; Wolff, T.; Parsons, A.; Dionne, D.; Massey, C.; Schwartz, B.; Fish, J.; Thompson, D. (Sandia National Labs., Albuquerque, NM (United States)); Goodrich, M. (GRAM, Inc., Albuquerque, NM (United States))

    1991-05-01

    This 1990 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress such as National Environmental Policy Act (NEPA) documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque (SNL, Albuquerque) are included. The maximum offsite dose impact was calculated to be 2.0 {times} 10{sup {minus}3} mrem. The total 50-mile population received a collective dose of 0.82 person-rem during 1990 from SNL, Albuquerque, operations. As in the previous year, the 1990 SNL operations had no adverse impact on the general public or on the environment. This report is prepared for the US Department of Energy in compliance with DOE Order 5400.1. 97 refs., 30 figs., 137 tabs.

  13. Environmental restoration at the Lawrence Livermore National Laboratory Livermore Site

    International Nuclear Information System (INIS)

    Ground water beneath Lawrence Livermore National Laboratory (LLNL) near Livermore California, contains 19 compounds in concentrations exceeding regulatory standards. These include volatile organic compounds (VOCs), dissolved fuel hydrocarbons, free product gasoline, cadmium, chromium, lead, and tritium. VOCs are the most widespread hazardous materials in the ground water, covering an area of about 1.4 square miles. The other compounds occur sporadically around the site. The LLNL site was added to the National Priorities (Superfund) List in 1987. This paper describes the technology developed at LLNL to remediate soil and ground water contamination. Included in this paper are methods in which site characterization has been aided by using a drilling technique developed at LLNL to evaluate the vertical distribution of VOCs in multiple water-bearing zones in single borehole. The paper also describes the development and implementation of a comprehensive three-step program to investigate and evaluate potential sources of hazardous materials in soil and ground water

  14. Two amateur astronomers at Berkeley

    CERN Document Server

    Sparavigna, Amelia Carolina

    2012-01-01

    The book on Mechanics of the Physics at Berkeley, by C. Kittel, W.D. Knight and M.A. Ruderman, is proposing at the end of its first chapter some problems of simple astronomy within the solar system. The discussion begins with two amateur astronomers who set for themselves the goal of determining the diameter and mass of the Sun. Here we discuss the problems proposed by the book and some other matters on ancient and modern astronomical studies of the solar system.

  15. 75 FR 81592 - National Energy Technology Laboratory; Notice of Intent To Grant Exclusive License

    Science.gov (United States)

    2010-12-28

    ... National Energy Technology Laboratory; Notice of Intent To Grant Exclusive License AGENCY: National Energy Technology Laboratory, Department of Energy. ACTION: Notice of Intent To Grant Exclusive License. SUMMARY.... Department of Energy, National Energy Technology Laboratory, P.O. Box 10940, Pittsburgh, PA 15236;...

  16. 77 FR 68752 - Notice of Intent To Grant Exclusive License Between National Energy Technology Laboratory and...

    Science.gov (United States)

    2012-11-16

    ... of Intent To Grant Exclusive License Between National Energy Technology Laboratory and Corrosion Solutions AGENCY: National Energy Technology Laboratory, Department of Energy. ACTION: Notice of Intent To... CFR 404.7(a)(1)(i). The National Energy Technology Laboratory (NETL) hereby gives notice of its...

  17. Environmental Survey preliminary report, Lawrence Livermore National Laboratory, Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    1987-12-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the Department of Energy (DOE) Lawrence Livermore National Laboratory (LLNL), conducted December 1 through 19, 1986. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with LLNL. The Survey covers all environmental media all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at LLNL, and interviews with site personnel. A Sampling and Analysis Plan was developed to assist in further assessing certain of the environmental problems identified during performance of on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory. When completed, the results will be incorporated into the LLNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the LLNL Survey. 70 refs., 58 figs., 52 tabs.,

  18. Feasibility study of medical isotope production at Sandia National Laboratories

    International Nuclear Information System (INIS)

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for 99Mo, the parent of 99mTc, in the event of an interruption in the current Canadian supply. 99mTc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for 99Mo and to identify and examine all issues with potential for environmental impact

  19. Tiger Team Assessment of the Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    This draft report documents the Tiger Team Assessment of the Fermi National Accelerator Laboratory (Fermilab) located in Batavia, Illinois. Fermilab is a program-dedicated national laboratory managed by the Universities Research Association, Inc. (URA) for the US Department of Energy (DOE). The Tiger Team Assessment was conducted from May 11 to June 8, 1992, under the auspices of DOE's Office of Special Projects (OSP) under the Office of the Assistant Secretary for Environment, Safety and Health (EH). The assessment was comprehensive, encompassing environmental, safety and health (ES ampersand H), and quality assurance (QA) disciplines; site remediation; facilities management; and waste management operations. Compliance with applicable Federal , State of Illinois, and local regulations; applicable DOE Orders; best management practices; and internal Fermilab requirements was addressed. In addition, an evaluation of the effectiveness of DOE and Fermilab management of the ES ampersand H/QA and self-assessment programs was conducted. The Fermilab Tiger Team Assessment is part a larger, comprehensive DOE Tiger Team Independent Assessment Program planned for DOE facilities. The objective of the initiative is to provide the Secretary of Energy with information on the compliance status of DOE facilities with regard to ES ampersand H requirements, root causes for noncompliance, adequacy of DOE and contractor ES ampersand H management programs, response actions to address the identified problem areas, and DOE-wide ES ampersand H compliance trends and root causes

  20. Feasibility study of medical isotope production at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Massey, C.D.; Miller, D.L.; Carson, S.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Regulatory Assessment Dept.] [and others

    1995-12-01

    In late 1994, Sandia National Laboratories in Albuquerque, New Mexico, (SNL/NM), was instructed by the Department of Energy (DOE) Isotope Production and Distribution Program (IPDP) to examine the feasibility of producing medically useful radioisotopes using the Annular Core Research Reactor (ACRR) and the Hot Cell Facility (HCF). Los Alamos National Laboratory (LANL) would be expected to supply the targets to be irradiated in the ACRR. The intent of DOE would be to provide a capability to satisfy the North American health care system demand for {sup 99}Mo, the parent of {sup 99m}Tc, in the event of an interruption in the current Canadian supply. {sup 99m}Tc is used in 70 to 80% of all nuclear medicine procedures in the US. The goal of the SNL/NM study effort is to determine the physical plant capability, infrastructure, and staffing necessary to meet the North American need for {sup 99}Mo and to identify and examine all issues with potential for environmental impact.

  1. National CW GeV Electron Microtron laboratory

    International Nuclear Information System (INIS)

    Rising interest in the nuclear physics community in a CW GeV electron accelerator reflects the growing importance of high-resolution short-range nuclear physics to future advances in the field. To meet this need, Argonne National Laboratory proposes to build a CW GeV Electron Microtron (GEM) laboratory as a national user facility. The microtron accelerator has been chosen as the technology to generate the electron beams required for the research discussed because of the advantages of superior beam quality, low capital and operating costs and capability of furnishing beams of several energies and intensities simultaneously. A complete technical description of the conceptual design for a six-sided CW microtron (hexatron) is presented. The hexatron and three experimental areas will be housed in a well-shielded complex of existing buildings that provide all utilities and services required for an advanced accelerator and an active research program at a savings of $30 to 40 million. Beam lines have been designed to accommodate the transport of polarized beams to each area. The total capital cost of the facility will be $78.6 million and the annual budget for accelerator operations will be $12.1 million. Design and construction of the facility will require four and one half years. Staged construction with a 2 GeV phase costing $65.9 million is also discussed

  2. Oak Ridge National Laboratory Waste Management Plan. Rev. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  3. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs

  4. Pacific Northwest National Laboratory Catalysis Highlights for FY2007

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.

    2007-11-15

    To reduce the nation’s dependence on imported oil, the U.S. Department of Energy (DOE) and other federal and private agencies are investing in understanding catalysis. This report focuses on catalysis research conducted by Pacific Northwest National Laboratory (PNNL) and its collaborators. Using sophisticated instruments in DOE’s Environmental Molecular Sciences Laboratory, a national scientific user facility, research was conducted to answer key questions related to the nation’s use of automotive fuels. Research teams investigated how hydrogen can be safely stored and efficiently released, critical questions to use this alternative fuel. Further, they are answering key questions to design molecular catalysts to control the transfer of hydrogen atoms, hydrides, and protons important to hydrogen production. In dealing with today’s fuels, researchers examined adsorption of noxious nitrous oxides in automotive exhaust. Beyond automotive fuel, researchers worked on catalysts to harness solar power. These catalysts include the rutile and anatase forms of titanium dioxide. Basic research was conducted on designing catalysts for these and other applications. Our scientists examined how to build catalysts with the desired properties atom by atom and molecule by molecule. In addition, this report contains brief descriptions of the outstanding accomplishments of catalysis experts at PNNL.

  5. Lawrence Livermore National Laboratory Working Reference Material Production Pla

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Amy; Thronas, Denise; Marshall, Robert

    1998-11-04

    This Lawrence Livermore National Laboratory (LLNL) Working Reference Material Production Plan was written for LLNL by the Los Alamos National Laboratory to address key elements of producing seven Pu-diatomaceous earth NDA Working Reference Materials (WRMS). These WRMS contain low burnup Pu ranging in mass from 0.1 grams to 68 grams. The composite Pu mass of the seven WRMS was designed to approximate the maximum TRU allowable loading of 200 grams Pu. This document serves two purposes: first, it defines all the operations required to meet the LLNL Statement of Work quality objectives, and second, it provides a record of the production and certification of the WRMS. Guidance provided in ASTM Standard Guide C1128-89 was used to ensure that this Plan addressed all the required elements for producing and certifying Working Reference Materials. The Production Plan was written to provide a general description of the processes, steps, files, quality control, and certification measures that were taken to produce the WRMS. The Plan identifies the files where detailed procedures, data, quality control, and certification documentation and forms are retained. The Production Plan is organized into three parts: a) an initial section describing the preparation and characterization of the Pu02 and diatomaceous earth materials, b) middle sections describing the loading, encapsulation, and measurement on the encapsulated WRMS, and c) final sections describing the calculations of the Pu, Am, and alpha activity for the WRMS and the uncertainties associated with these quantities.

  6. Sandia National Laboratories/California site environmental report for 1997

    Energy Technology Data Exchange (ETDEWEB)

    Condouris, R.A. [ed.] [Sandia National Labs., Livermore, CA (United States); Holland, R.C. [Science Applications International Corp. (United States)

    1998-06-01

    Sandia National Laboratories (SNL) is committed to conducting its operations in an environmentally safe and sound manner. It is mandatory that activities at SNL/California comply with all applicable environmental statutes, regulations, and standards. Moreover, SNL/California continuously strives to reduce risks to employees, the public, and the environment to the lowest levels reasonably possible. To help verify effective protection of public safety and preservation of the environment, SNL/California maintains an extensive, ongoing environmental monitoring program. This program monitors all significant effluents and the environment at the SNL/California site perimeter. Lawrence Livermore National Laboratory (LLNL) performs off-site external radiation monitoring for both sites. These monitoring efforts ensure that emission controls are effective in preventing contamination of the environment. As part of SNL/California`s Environmental Monitoring Program, an environmental surveillance system measures the possible presence of hazardous materials in groundwater, stormwater, and sewage. The program also includes an extensive environmental dosimetry program, which measures external radiation levels around the Livermore site and nearby vicinity. The Site Environmental Report describes the results of SNL/California`s environmental protection activities during the calendar year. It also summarizes environmental monitoring data and highlights major environmental programs. Overall, it evaluates SNL/California`s environmental management performance and documents the site`s regulatory compliance status.

  7. Oak Ridge National Laboratory Waste Management Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Forgy, Jr., J. R.

    1991-12-01

    The goal of the Oak Ridge National Laboratory (ORNL) Waste Management Program is the protection of workers, the public, and the environment. A vital aspect of this goal is to comply with all applicable state, federal, and DOE requirements. Waste management requirements for DOE radioactive wastes are detailed in DOE Order 5820.2A, and the ORNL Waste Management Program encompasses all elements of this order. The requirements of this DOE order and other appropriate DOE orders, along with applicable Tennessee Department of Environment and Conservation (TDEC) and US Environmental Protection Agency (EPA) rules and regulations, provide the principal source of regulatory guidance for waste management operations at ORNL. The objective of the Oak Ridge National Laboratory Waste Management Plan is to compile and to consolidate information annually on how the ORNL Waste Management is to compile and to consolidate information annually on how the ORNL Waste Management Program is conducted, which waste management facilities are being used to manage wastes, what forces are acting to change current waste management systems, what activities are planned for the forthcoming fiscal year (FY), and how all of the activities are documented.

  8. Neutron generator production mission in a national laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Larry E.

    2007-08-01

    In the late 1980's the Department of Energy (DOE) faced a future budget shortfall. By the spring of 1991, the DOE had decided to manage this problem by closing three production plants and moving production capabilities to other existing DOE sites. As part of these closings, the mission assignment for fabrication of War Reserve (WR) neutron generators (NGs) was transferred from the Pinellas Plant (PP) in Florida to Sandia National Laboratories, New Mexico (SNL/NM). The DOE directive called for the last WR NG to be fabricated at the PP before the end of September 1994 and the first WR NG to be in bonded stores at SNL/NM by October 1999. Sandia National Laboratories successfully managed three significant changes to project scope and schedule and completed their portion of the Reconfiguration Project on time and within budget. The PP was closed in October 1995. War Reserve NGs produced at SNL/NM were in bonded stores by October 1999. The costs of the move were recovered in just less than five years of NG production at SNL/NM, and the annual savings today (in 1995 dollars) is $47 million.

  9. Sandia National Laboratories Institutional Plan: FY 1999-2004

    Energy Technology Data Exchange (ETDEWEB)

    Garber, D.P.

    1999-01-06

    This Institutional Plan is the most comprehensive yearly "snapshot" available of Sandia National Laboratories' major programs, facilities, human resources, and budget. The document also includes overviews of our missions, organization, capabilities, planning functions, milestones, and accomplishments. The document's purpose is to provide the above information to the US Department of Energy, key congressional committees, Sandia management, and other present and potential customers. Chapter 2 presents information about Sandia's mission and summarizes our recent revision of Sandia's Strategic Plan. Chapter 3 presents an overview of Sandia's strategic objectives, chapter 4 lists laboratory goals and milestones for FY 1999, and chapter 5 presents our accomplishments during FY 1998. Chapters 3 through 5 are organized around our eight strategic objectives. The four primary objectives cover nuclear weapons responsibilities, nonproliferation and materials control, energy and critical infrastructures, and emerging national security threats. The major programmatic initiatives are presented in chapter 7. However, the programmatic descriptions in chapter 6 and the Associated funding tables in chapter 9 continue to be presented by DOE Budget and Reporting Code, as in previous Sandia institutional plans. As an aid to the reader, the four primary strategic objectives in chapter 3 are cross-referenced to the program information in chapter 6.

  10. Environmental Survey preliminary report, Brookhaven National Laboratory, Upton, New York

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) Brookhaven National Laboratory (BNL) conducted April 6 through 17, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with BNL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations carried on at BNL, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing specific environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by Oak Ridge National Laboratory. When completed, the results will be incorporated into the BNL Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the BNL Survey. 80 refs., 24 figs., 48 tabs.

  11. Proposal for the establishment of a national underground physics laboratory

    International Nuclear Information System (INIS)

    Advances in elementary particles physics and astrophysics during the past decade have indicated certain areas in those fields in which experiments of high potential significance, albeit great difficulty, need to be done. In general, these are experiments that seek to uncover rare, new physical phenomena, or to study quantitatively phenomena that are especially difficult to observe. Among them are: (1) the study of solar and other cosmic neutrinos; (2) the search for nucleon instability; (3) the search for non-zero neutrino mass through the study of neutrino stability and double beta-decay; and (4) intensive searches for and attempts to measure accurately very energetic, rare elementary particle interactions such as may be manifested, for example, in the so-called Centauro events. The nature of these experiments requires that they be shielded from the intense flux of cosmic ray muons and air showers on the earth's surface, and therefore that the experimental apparatus be located deep underground or in the deep sea. However, for most of the experiments, and the apparatus also needs to be very large in mass and volume, and highly instrumented to achieve the necessary measurement capability. It is proposed to establish a laboratory deep underground of sufficient scope to be capable of housing and maintaining a variety of experiments that employ the most advanced technology. A specific channel is discussed whereby a national underground physics laboratory might be formed. The desirable characteristics of such a laboratory are described, and a possible location is recommended. Detailed cost estimates are provided

  12. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

  13. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the Laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL.

  14. TESTING OF THE RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Foley, T.

    2010-02-10

    The United Kingdom's National Nuclear Laboratory (NNL) has developed a remote, nonelectrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. Positive results from initial deployment trials in nuclear waste reprocessing plants at Sellafield in the United Kingdom and the anticipated future potential use of RadBall throughout the U.S. Department of Energy Complex have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further test, underpin, and strengthen the technical performance of the technology. The study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of this testing was to characterize a hot cell with unknown radiation sources. The RadBall calibration experiments and hot cell deployment were successful in that for each trial radiation tracks were visible. The deployment of RadBall can be accomplished in different ways depending on the size and characteristics of the contaminated area (e.g., a hot cell that already has a crane/manipulator available or highly contaminated room that requires the use of a remote control device with sensor and video equipment to position RadBall). This report also presents SRNL-designed RadBall accessories for future RadBall deployment (a harness, PODS, and robot).

  15. Organizational Cultural Assessment of the Idaho National Engineering Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-06-01

    An Organizational Cultural Assessment (OCA) was performed at the Idaho National Engineering Laboratory (INEL) by administering an Organizational Culture Survey (OCS) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental concerns, hazardous nature of work, safety and overall job satisfaction. Many of these subjects are assessed in the OCS through highly developed and validated scales that have been administered in many different types of organizations. The purpose of the OCS is to measure in a quantitative and objective way the notion of culture;'' that is, the values, attitudes, and beliefs of the individuals working within the organization. In addition, through the OCS, a broad sample of individuals can be reached that would probably not be interviewed or observed during the course of a typical assessment. The OCS also provides a descriptive profile of the organization at one point in time that can then be compared to a profile taken at a different point in time to assess changes in the culture of the organization. The OCS administration at the INEL was the sixth to occur at a Department of Energy (DOE) facility. The INEL Organization is somewhat different from other DOE facilities are which the OCS was administered, due to the presence of six different major operating contractors. The seven organizations assessed at the INEL are: (1) Argonne National Laboratory -- West; (2) DOE Fire Department/Radiological and Environmental Sciences Laboratory; (3) EG G Idaho Incorporated; (4) MK Ferguson; (5) Protection Technology Incorporated; (6) Rockwell; and (7) Westinghouse Idaho Nuclear Company Incorporated. All data from the OCS is presented in group summaries by organization, Supervisory Level, Staff Classification, and department within organization. Statistically significant differences between groups are identified and discussed.

  16. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  17. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  18. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cheesbrough, Kate; Bader, Meghan

    2016-08-26

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing access to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.

  19. Sandia National Laboratories Institutional Plan: FY 1996--2001

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Sandia`s Institutional Plan is by necessity a large document. As their missions have grown and diversified over the past decades, the variety of technical and site activities has increased. The programs and activities described here cover an enormous breadth of scientific and technological effort--from the creation of new materials to the development of a Sandia-wide electronic communications system. Today, there are three major themes that greatly influence this work. First, every federally funded institution is being challenged to find ways to become more cost effective, as the US seeks to reduce the deficit and achieve a balanced federal spending plan. Sandia is evaluating its business and operational processes to reduce the overall costs. Second, in response to the Galvin Task Force`s report ``Alternative Futures for the Department of Energy National Laboratories``, Sandia and the Department of Energy are working jointly to reduce the burden of administrative and compliance activities in order to devote more of the total effort to their principal research and development missions. Third, they are reevaluating the match between their missions and the programs they will emphasize in the future. They must demonstrate that Sandia`s roles--in national security, energy security, environmental integrity, and national scientific and technology agenda support--fit their special capabilities and skills and thus ensure their place in these missions for the longer planning horizon. The following areas are covered here: Sandia`s mission; laboratory directives; programmatic activities; technology partnerships and commercialization; Sandia`s resources; and protecting resources and the community.

  20. NATURAL RESOURCE MANAGEMENT PLAN FOR BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GREEN,T.ET AL.

    2003-12-31

    Brookhaven National Laboratory (BNL) is located near the geographic center of Long Island, New York. The Laboratory is situated on 5,265 acres of land composed of Pine Barrens habitat with a central area developed for Laboratory work. In the mid-1990s BNL began developing a wildlife management program. This program was guided by the Wildlife Management Plan (WMP), which was reviewed and approved by various state and federal agencies in September 1999. The WMP primarily addressed concerns with the protection of New York State threatened, endangered, or species of concern, as well as deer populations, invasive species management, and the revegetation of the area surrounding the Relativistic Heavy Ion Collider (RHIC). The WMP provided a strong and sound basis for wildlife management and established a basis for forward motion and the development of this document, the Natural Resource Management Plan (NRMP), which will guide the natural resource management program for BNL. The body of this plan establishes the management goals and actions necessary for managing the natural resources at BNL. The appendices provide specific management requirements for threatened and endangered amphibians and fish (Appendices A and B respectively), lists of actions in tabular format (Appendix C), and regulatory drivers for the Natural Resource Program (Appendix D). The purpose of the Natural Resource Management Plan is to provide management guidance, promote stewardship of the natural resources found at BNL, and to integrate their protection with pursuit of the Laboratory's mission. The philosophy or guiding principles of the NRMP are stewardship, adaptive ecosystem management, compliance, integration with other plans and requirements, and incorporation of community involvement, where applicable.

  1. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  2. Change in argonne national laboratory: a case study.

    Science.gov (United States)

    Mozley, A

    1971-10-01

    , William B. Cannon, who is vice president of programs and projects of the University of Chicago, and a small selection of staff members believe that the Laboratory is going through a natural and inevitable process of change consonant with altered missions and objectives in an atomic energy laboratory. The general mood, however, demonstrates the Jeffersonian insight, as relevant in science as in politics, that only democratic governance provides salutary checks and balances when things go wrong. The point deserves close scrutiny when Argonne's tripartite contract comes up for renegotiation in October 1971. Fundamentally Argonne's relations with its sponsoring agency remain at the center of its progress and future plans. Despite administrative and management changes, there is little doubt that he who pays the piper calls the tune. In common with other federal contract research and development adjuncts, Argonne has undoubtedly undergone tightening and winnowing away of flexibility in the past 6 years. In the nuclear reactor program the consequences have been strongly felt, and stringent national budgets have widened the tendency in the research domain. The impact of these changes and of AEC's attitude to basic research raise large questions for the future of the national laboratories. Few doubt that these "major national assets," with their outstanding scientific and technical personnel and equipment, fulfill a unique function and are here to stay, though their missions may undergo some change; the question of their most effective direction and handling, however, remains crucial for those concerned with priorities and decision-making for science. A recent review of 40 national federal adjuncts (30,31) has indicated that the primary sponsoring agency obtains better performance from a center that has a relatively high degree of independence than from one that is tightly controlled. The point is confirmed at Argonne where the present tendency (particularly on the nuclear reactor

  3. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Fink, C.H. [ed.] [Sandia National Labs., Albuquerque, NM (United States); Duncan, D. [ed.] [GRAM, Inc., Albuquerque, NM (United States); Sanchez, R. [Jobs Plus, Albuquerque, NM (United States)

    1997-08-01

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R&D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES&H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL`s line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection.

  4. 1996 Site environmental report Sandia National Laboratories Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Sandia National Laboratories/New Mexico (SNL/NM) is operated in support of the U.S. Department of Energy (DOE) mission to provide weapon component technology and hardware for national security needs, and to conduct fundamental research and development (R ampersand D) to advance technology in energy research, computer science, waste management, electronics, materials science, and transportation safety for hazardous and nuclear components. In support of this mission, the Environmental Safety and Health (ES ampersand H) Center at SNL/NM conducts extensive environmental monitoring, surveillance, and compliance activities to assist SNL's line organizations in meeting all applicable environmental regulations applicable to the site including those regulating radiological and nonradiological effluents and emissions. Also herein are included, the status of environmental programs that direct and manage activities such as terrestrial surveillance; ambient air and meteorological monitoring; hazardous, radioactive, and solid waste management; pollution prevention and waste minimization; environmental restoration (ER); oil and chemical spill prevention; and National Environmental Policy Act (NEPA) documentation. This report has been prepared in compliance with DOE order 5400.1, General Environmental Protection

  5. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... SPACE ADMINISTRATION International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and... Relations, (202) 358-0550, National Aeronautics and Space Administration, Washington, DC 20546-0001....

  6. Managing Spent Nuclear Fuel at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Hill; Denzel L. Fillmore

    2005-10-01

    The Idaho National Laboratory (INL) has a large inventory of diverse types of spent nuclear fuel (SNF). This legacy derives from the history of the INL as the National Reactor Testing Station, and from its mission to recover HEU from SNF and to test and examine SNF after irradiation. The INL also has a large diversity of SNF storage facilities, some 50 years old. SNF at INL has many forms—from intact assemblies down to metallurgical mounts, and some fuel has been wet stored for over 40 years. SNF is stored bare or in metal cans under water, or dry in vaults, caissons or casks. Inspection shows varying corrosion and degradation of the SNF and its storage cans. SNF has been stored in 10 different facilities: 5 pools, one cask storage pad, one vault, two generations of caisson facilities, and one modular Independent Spent Fuel Storage Installation (ISFSI). The pools range in age from 40 years old to the most modern in the US Department of Energy (DOE) complex. The near-term objective is to move SNF from older pools to interim dry storage, allowing shutdown and decommissioning of the older facilities. This move involves drying methods that are dependent on fuel type. The long-term objective is to have INL SNF in safe dry storage and ready to be shipped to the National Repository. The unique features of the INL SNF requires special treatments and packaging to meet the proposed repository acceptance criteria and SNF will be repackaged in standardized canisters for shipment and disposal in the National Repository. Disposal will use the standardized canisters that can be co-disposed with High Level Waste glass logs to limit the total fissile material in a repository waste package. The DOE standardized canister also simplifies the repository handling of the multitude of DOE SNF sizes and shapes.

  7. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    International Nuclear Information System (INIS)

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D and D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the

  8. An inventory of wells of Oak Ridge National Laboratory 1992

    International Nuclear Information System (INIS)

    The well inventory described in this report is a database of well information being developed for the Oak Ridge National Laboratory (ORNL) Groundwater Coordinator and the ORNL Groundwater Protection Program. Data are presented on 2071 ORNL wells as maps and as tabular data. A table of well identification aliases is given to permit correlation with earlier reports. Information is incomplete for many of the wells, and a form is provided for readers to provide missing or updated data. The goal of the developers of this data base is to produce a comprehensive inventory of wells at ORNL. This data base is being maintained to provide current information for the operational management of the ORNL groundwater monitoring system and for various users of groundwater data at ORNL

  9. Summary of failure analysis activities at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed

  10. Current Reactor Physics Benchmark Activities at the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Margaret A. Marshall; Mackenzie L. Gorham; Joseph Christensen; James C. Turnbull; Kim Clark

    2011-11-01

    The International Reactor Physics Experiment Evaluation Project (IRPhEP) [1] and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) [2] were established to preserve integral reactor physics and criticality experiment data for present and future research. These valuable assets provide the basis for recording, developing, and validating our integral nuclear data, and experimental and computational methods. These projects are managed through the Idaho National Laboratory (INL) and the Organisation for Economic Co-operation and Development Nuclear Energy Agency (OECD-NEA). Staff and students at the Department of Energy - Idaho (DOE-ID) and INL are engaged in the development of benchmarks to support ongoing research activities. These benchmarks include reactors or assemblies that support Next Generation Nuclear Plant (NGNP) research, space nuclear Fission Surface Power System (FSPS) design validation, and currently operational facilities in Southeastern Idaho.

  11. Emergency preparedness at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Emergency preparedness for industry was commonly believed to be an essential responsibility on the part of management. Therefore, this study was conducted to research and accumulate information and data on emergency preparedness at Oak Ridge National Laboratory (ORNL). The objective of this study was to conduct a thorough evaluation of emergency preparedness knowledge among employees to determine if they were properly informed or if they needed more training. Also, this study was conducted to provide insight to management as to what their responsibility was concerning this training. To assess employee emergency preparedness knowledge, a questionnaire was developed and administered to 100 employees at ORNL. The data was analyzed using frequencies and percentages of response and was displayed through the use of graphs within the report. 22 refs., 22 figs

  12. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  13. Epidemiologic surveillance. Annual report for Sandia National Laboratories 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, 1994 morbidity data for the Sandia National Laboratories are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 15-76 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  14. Environmental monitoring at Argonne National Laboratory. Annual report for 1983

    International Nuclear Information System (INIS)

    The results of the environmental monitoring program at Argonne National Laboratory for 1983 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in air, surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 19 references, 8 figures, 49 tables

  15. Tiger Team Assessment of the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES ampersand H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES ampersand H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment

  16. Weld Tests Conducted by the Idaho National Laboratory

    International Nuclear Information System (INIS)

    During the fiscal year of 2006, the Idaho National Laboratory (INL) performed many tests and work relating to the Mobile Melt-Dilute (MMD) Project components. Tests performed on the Staubli quick disconnect fittings showed promising results, but more tests were needed validate the fittings. Changes were made to the shield plug design--reduced the closure groove weld depth between the top of the canister and the top plate of the shielding plug from 0.5-in to 0.375-in deep. Other changes include a cap to cover the fitting, lifting pintle and welding code citations on the prints. Tests conducted showed stainless steel tubing, with 0.25-in, 0.375-in, and 0.5-in diameters, all with 0.035-in wall thickness, could be pinch seal welded using commercially available resistance welding equipment. Subsequent testing showed that these welds could be real-time inspected with ultrasonic inspection methods

  17. Lawrence Livermore National Laboratory environmental report for 1990

    International Nuclear Information System (INIS)

    This report documents the results of the Environmental Monitoring Program at the Lawrence Livermore National Laboratory (LLNL) and presents summary information about environmental compliance for 1990. To evaluate the effect of LLNL operations on the local environment, measurements of direct radiation and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent surface water, groundwater, vegetation, and foodstuff were made at both the Livermore site and at Site 300 nearly. LLNL's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment was evaluated. Aside from an August 13 observation of silver concentrations slightly above guidelines for discharges to the sanitary sewer, all the monitoring data demonstrated LLNL compliance with environmental laws and regulations governing emission and discharge of materials to the environment. In addition, the monitoring data demonstrated that the environmental impacts of LLNL are minimal and pose no threat to the public to or to the environment. 114 refs., 46 figs., 79 tabs

  18. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    International Nuclear Information System (INIS)

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES ampersand H). The assessment was comprehensive, encompassing ES ampersand H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES ampersand H programs was conducted

  19. Association Euratom - Risoe National Laboratory annual progress report 2006

    Energy Technology Data Exchange (ETDEWEB)

    Michelsen, P.K.; Singh, B.N. (eds.)

    2007-09-15

    The programme of the Research Unit of the Fusion Association Euratom - Risoe National Laboratory, Technical University of Denmark, covers work in fusion plasma physics and in fusion technology. The fusion plasma physics research focuses on turbulence and transport, and its interaction with the plasma equilibrium and particles. The effort includes both first principles based modelling, and experimental observations of turbulence and of fast ion dynamics by collective Thomson scattering. The activities in technology cover investigations of radiation damage of fusion reactor materials. These activities contribute to the Next Step, the Long-term and the Underlying Fusion Technology programme. A summary is presented of the results obtained in the Research Unit during 2006. (au)

  20. Californium-252 sales and loans at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    The production and distribution in the United States of 252Cf has recently been consolidated at the Oak Ridge National Laboratory (ORNL). The 252Cf Industrial Sales/Loan Program and the 252Cf University Load Program, which were formerly located at the Savannah River Plant (SRP), have been combined with the californium production and distribution activities of the Transuranium Element Production Program at ORNL. Californium-252 is sold to commercial users in the form of bulk californium oxide, palladium-californium alloy pellets, or alloy wires. Neutron source capsules, which are fabricated for loans to DOE or other US government agencies, are still available in all forms previously available. The consolidation of all 252Cf distribution activities at the production site is expected to result in better service to users. In particular, customers for neutrons sources will be ale to select from a wider range of neutron source forms, including custom designs, through a single contact point

  1. Idaho National Engineering Laboratory installation roadmap document. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-30

    The roadmapping process was initiated by the US Department of Energy`s office of Environmental Restoration and Waste Management (EM) to improve its Five-Year Plan and budget allocation process. Roadmap documents will provide the technical baseline for this planning process and help EM develop more effective strategies and program plans for achieving its long-term goals. This document is a composite of roadmap assumptions and issues developed for the Idaho National Engineering Laboratory (INEL) by US Department of Energy Idaho Field Office and subcontractor personnel. The installation roadmap discusses activities, issues, and installation commitments that affect waste management and environmental restoration activities at the INEL. The High-Level Waste, Land Disposal Restriction, and Environmental Restoration Roadmaps are also included.

  2. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    This report documents the Tiger Team Assessment of the Los Alamos National Laboratory (LANL) located in Los Alamos, New Mexico. LANL is operated for the US Department of Energy (DOE) by the University of California. The Tiger Team Assessment was conducted from September 23 to November 8, 1991, under the auspices of the DOE Office of Special Projects, Office of Assistant Secretary for Environment, Safety and Health. The assessment was comprehensive, encompassing environmental, safety, and health (ES H) disciplines; management; and contractor and DOE self-assessments. Compliance with applicable Federal, state, and local regulations; applicable DOE Orders; best management practices; and internal LANL site requirements was assessed. In addition, an evaluation of the adequacy and effectiveness of the DOE and the site contractors' management of ES H/quality assurance programs was conducted. This volume discusses findings concerning the environmental assessment.

  3. Tiger Team Assessment of the Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-01

    The Management Subteam conducted a management and organization assessment of environment, safety, and health (ES H) activities performed by the Los Alamos National Laboratory (LANL) and onsite contractor personnel. The objectives of the assessment were to (1) evaluate the effectiveness of management systems and practices in terms of ensuring environmental compliance and the safety and health of workers and the general public, (2) identify key findings, and (3) identify root causes for all ES H findings and concerns. The scope of the assessment included examinations of the following from an ES H perspective: (1) strategic and program planning; (2) organizational structure and management configuration; (3) human resource management, including training and staffing; (4) management systems, including performance monitoring and assessment; (5) conduct of operations; (6) public and institutional interactions; and (7) corporate'' parent support.

  4. Idaho National Engineering Laboratory historical dose evaluation: Volume 2, Appendices

    International Nuclear Information System (INIS)

    The methodology and results are presented for an evaluation of potential radiation doses to a hypothetical individual who may have resided at an offsite location with the highest concentration of airborne radionuclides near the Idaho National Engineering Laboratory (INEL). Volume 2 contains more detailed discussions of methods, data, results, assumptions, and citations of reports and reference material. The years of INEL operations from 1952 to 1989 were evaluated. Radiation doses to an adult, child, and infant were estimated for both operational (annual) and episodic (short-term) airborne releases from INEL facilities. Atmospheric dispersion of operational releases was modeled using annual average meteorological conditions. Dispersion of episodic releases was generally modeled using actual hourly wind speed and direction data at the time of release. 270 refs., 57 figs., 100 tabs

  5. Development of H/sup -/ sources at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Prelec, K.

    1977-01-01

    Negative hydrogen ion sources have been developed at Brookhaven National Laboratory for several years, with the initial goal to design a source for accelerator applications and later on to design a large unit for applications in neutral beam injectors of magnetic fusion devices. Three types of sources were investigated, a hollow discharge duoplasmatron yielding H/sup -/currents up to 60 mA, a Penning source yielding H/sup -/ currents up to 440 mA, and a magnetron source yielding H/sup -/ currents up to 1 A. All sources operate with a mixture of hydrogen gas and cesium vapors, and H/sup -/ ions are most likely produced on cesium covered electrode surfaces. A larger model of a Penning/magnetron source was constructed and will be tested soon; it incorporates among other new features a system for the cooling of the cathode.

  6. Helium recovery at the National High Magnetic Field Laboratory

    Science.gov (United States)

    Barrios, M.; Kynoch, J.

    2015-12-01

    Helium conservation is becoming increasingly important as helium availability is on the decline and prices are on the rise. The Florida State University National High Magnetic Field Laboratory has taken several steps over the past five years to increase the percentage of helium recovered. These include the installation of a standalone purifier, recovery flow meters, contamination meters, and a new piping system. The improvements to the recovery system have reduced the amount of helium purchased by the Mag Lab by 60% while helium usage has increased by roughly 40%. This article will provide details about the recovery system as a whole and describe some of the main components. There will also be some examples of the problems we've had to overcome, and some that we are still working on. Finally, there will be an update on the current status of the recovery system and a description of our plans for the future.

  7. Organizational cultural assessment of the Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    An Organizational Cultural Assessment (OCA) was performed at the Sandia National Laboratories (SNL) by administering an Organizational Culture Survey (OCS) that queried employees on the subjects of organizational culture, various aspects of communications, employee commitment, work group cohesion, coordination of work, environmental concerns, hazardous nature of work, safety, and overall job satisfaction. The purpose of the OCS is to measure in a quantitative and objective way the values, attitudes, and beliefs of the individuals working within the organization. The OCS administration at SNL was the fifth to occur at a DOE facility. The sample was randomly selected from each Vice Presidency group, the largest organizational unit at SNL. Scores and significance are discussed and statistically significant differences between groups are identified and discussed.

  8. Neutron radiography of irradiated nuclear fuel at Idaho National Laboratory

    International Nuclear Information System (INIS)

    Neutron radiography of irradiated nuclear fuel provides more comprehensive information about the internal condition of irradiated nuclear fuel than any other non-destructive technique to date. Idaho National Laboratory (INL) has multiple nuclear fuels research and development programs that routinely evaluate irradiated fuels using neutron radiography. The Neutron Radiography reactor (NRAD) sits beneath a shielded hot cell facility where neutron radiography and other evaluation techniques are performed on these highly radioactive objects. The NRAD currently uses the foil-film transfer technique for imaging fuel that is time consuming but provides high spatial resolution. This study describes the NRAD and hot cell facilities, the current neutron radiography capabilities available at INL, planned upgrades to the neutron imaging systems, and new facilities being brought online at INL related to neutron imaging

  9. Sandia National Laboratories corporate mentor program : program review, May 2004.

    Energy Technology Data Exchange (ETDEWEB)

    Tibbetts, Tiffany; Tarro, Talitha; Dudeck, William; Bristol, Colette; Stephens, Jim

    2005-01-01

    The Sandia National Laboratories Corporate Mentor Program provides a mechanism for the development and retention of Sandia's people and knowledge. The relationships formed among staff members at different stages in their careers offer benefits to all. These relationships can provide experienced employees with new ideas and insight and give less experienced employees knowledge of Sandia's culture, strategies, and programmatic direction. The program volunteer coordinators are dedicated to the satisfaction of the participants, who come from every area of Sandia. Since its inception in 1995, the program has sustained steady growth and excellent customer satisfaction. This report summarizes the accomplishments, activities, enhancements, and evaluation data for the Corporate Mentor Program for the 2003/2004 program year ending May 1, 2004.

  10. Summary of failure analysis activities at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, M.G.; Czajkowski, C.J.; Franz, E.M.

    1996-10-01

    Brookhaven National Laboratory has for many years conducted examinations related to the failures of nuclear materials and components. These examinations included the confirmation of root cause analyses, the determination of the causes of failure, identification of the species that accelerate corrosion, and comparison of the results of nondestructive examinations with those obtained by destructive examination. The results of those examinations, which had previously appeared in various formats (formal and informal reports, journal articles, etc.), have been collected together and summarized in the present report. The report is divided into sections according to the general subject matter (for example, corrosion, fatigue, etc.). Each section presents summaries of the information contained in specific reports and publications, all of which are fully identified as to title, authors, report number or journal reference, date of publication, and FIN number under which the work was performed.

  11. Weld Tests Conducted by the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Larry Zirker; Lance Lauerhass; James Dowalo

    2007-02-01

    During the fiscal year of 2006, the Idaho National Laboratory (INL) performed many tests and work relating to the Mobile Melt-Dilute (MMD) Project components. Tests performed on the Staubli quick disconnect fittings showed promising results, but more tests were needed validate the fittings. Changes were made to the shield plug design—reduced the closure groove weld depth between the top of the canister and the top plate of the shielding plug from 0.5-in to 0.375-in deep. Other changes include a cap to cover the fitting, lifting pintle and welding code citations on the prints. Tests conducted showed stainless steel tubing, with 0.25-in, 0.375-in, and 0.5-in diameters, all with 0.035-in wall thickness, could be pinch seal welded using commercially available resistance welding equipment. Subsequent testing showed that these welds could be real-time inspected with ultrasonic inspection methods.

  12. Baseline ecological footprint of Sandia National Laboratories, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Coplen, Amy K.; Mizner, Jack Harry,; Ubechel, Norion M.

    2009-01-01

    The Ecological Footprint Model is a mechanism for measuring the environmental effects of operations at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM). This analysis quantifies environmental impact associated with energy use, transportation, waste, land use, and water consumption at SNL/NM for fiscal year 2005 (FY05). Since SNL/NM's total ecological footprint (96,434 gha) is greater than the waste absorption capacity of its landholdings (338 gha), it created an ecological deficit of 96,096 gha. This deficit is equal to 886,470lha, or about 3,423 square miles of Pinyon-Juniper woodlands and desert grassland. 89% of the ecological footprint can be attributed to energy use, indicating that in order to mitigate environmental impact, efforts should be focused on energy efficiency, energy reduction, and the incorporation of additional renewable energy alternatives at SNL/NM.

  13. Environmental monitoring at Argonne National Laboratory. Annual report for 1980

    Energy Technology Data Exchange (ETDEWEB)

    Golchert, N. W.; Duffy, T. L.; Sedlet, J.

    1981-03-01

    The results of the environmental monitoring program at Argonne National Laboratory for 1980 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated.

  14. Sodium carbonate facility at Argonne National Laboratory-West

    International Nuclear Information System (INIS)

    The Sodium Carbonate Facility, located at Argonne National Laboratory - West (ANL-W) in Idaho, was designed and built as an addition to the existing Sodium Processing Facility. The Sodium Process and Sodium Carbonate Facilities will convert radioactive sodium into a product that is acceptable for land disposal in Idaho. The first part of the process occurs in the Sodium Process Facility where radioactive sodium is converted into sodium hydroxide (caustic). The second part of the process occurs in the Sodium Carbonate Facility where the caustic solution produced in the Sodium Process Facility is converted into a dry sodium carbonate waste suitable for land disposal. Due to the radioactivity in the sodium, shielding, containment, and HEPA filtered off-gas systems are required throughout both processes

  15. Prehistoric Rock Structures of the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Brenda R Pace

    2007-04-01

    Over the past 13,500 years, human populations have lived in and productively utilized the natural resources offered by the cold desert environment of the northeastern Snake River Plain in eastern Idaho. Within an overall framework of hunting and gathering, groups relied on an intimate familiarity with the natural world and developed a variety of technologies to extract the resources that they needed to survive. Useful items were abundant and found everywhere on the landscape. Even the basaltic terrain and the rocks, themselves, were put to productive use. This paper presents a preliminary classification scheme for rock structures built on the Idaho National Laboratory landscape by prehistoric aboriginal populations, including discussions of the overall architecture of the structures, associated artifact assemblages, and topographic placement. Adopting an ecological perspective, the paper concludes with a discussion of the possible functions of these unique resources for the desert populations that once called the INL home.

  16. Tiger Team assessment of the Sandia National Laboratories, Albuquerque

    Energy Technology Data Exchange (ETDEWEB)

    1991-05-01

    This report documents the Tiger Team Assessment of Sandia National Laboratories (SNL), Albuquerque, located in Albuquerque, New Mexico. SNL, Albuquerque, is operated by the Sandia Corporation (a wholly owned subsidiary of the American Telephone and Telegraph Company) for the US Department of Energy (DOE). The environmental assessment also included DOE tenant facilities at Ross Aviation, Albuquerque Microelectronics Operation, and the Central Training Academy. The assessment was conducted from April 15 to May 24, 1991, under the auspices of DOE's Office of Special Projects under the Assistant Secretary for Environment, Safety and Health (ES H). The assessment was comprehensive, encompassing ES H disciplines, management, self-assessments, and quality assurance; transportation; and waste management operations. Compliance with applicable federal, state, and local regulations; applicable DOE Orders; best management practices; and internal SNL, Albuquerque, requirements were assessed. In addition, an evaluation of the adequacy and effectiveness of DOE and SNL, Albuquerque management of ES H programs was conducted.

  17. Savannah River National Laboratory Involvement in the European ENSEMBLE Program

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, R. L.; Addies, Robert P.

    2005-10-24

    Many atmospheric transport and dispersion models now exist to provide consequence assessment during emergency response to near-field releases. One way of estimating the uncertainty for a given forecast is to statistically analyze an ensemble of results from several models. ENSEMBLE is a European Union program that utilizes an internet-based system to ingest transport results from numerous modeling agencies. This paper addresses the involvement of the Savannah River National Laboratory (SRNL) in ENSEMBLE, and the resulting improvements in SRNL modeling capabilities. SRNL, the only United States agency involved in the ENSEMBLE program, uses a prognostic atmospheric numerical model (the Regional Atmospheric Modeling System, RAMS) to provide three-dimensional and time-varying meteorology as input to a stochastic Lagrangian particle mode . The model design used by SRNL is discussed, including recent upgrades to the system using parallel processing which allows for finer grid resolution in the generation of the meteorology.

  18. Epidemiologic surveillance. Annual report for Idaho National Engineering Laboratory 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    Epidemiologic surveillance at DOE facilities consists of regular and systematic collection, analysis, and interpretation of data on absences due to illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. In this annual report, the 1994 morbidity data for the Idaho National Engineering Laboratory are summarized. These analyses focus on absences of 5 or more consecutive workdays occurring among workers aged 17-85 years. They are arranged in five sets of tables that present: (1) the distribution of the labor force by occupational category and pay status; (2) the absences per person, diagnoses per absence, and diagnosis rates for the whole work force; (3) diagnosis rates by type of disease or injury; (4) diagnosis rates by occupational category; and (5) relative risks for specific types of disease or injury by occupational category.

  19. 1985 environmental monitoring report: Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Sandia National Laboratories Albuquerque (SNLA) is located south of Albuquerque on Kirtland Air Force Base. Because radionuclides are potentially released from its research activities, SNLA has a continuing environmental monitoring program which analyzes for cesium-137, tritium, uranium, alpha emitters, and beta emitters in water, soil, air, and vegetation. Measured radiation levels in public areas were consistent with local background in 1985. A total of 9.3 curies of argon-41 were released as a result of SNLA operations in 1985. The Albuquerque population received an estimated 0.071 person-rem from airborne radioactive releases, whereas it received greater than 42,300 person-rem from naturally occurring radionuclides. A nonradioactive effluent monitoring program has been started at SNLA which includes five groundwater monitoring wells. Results of this new monitoring program will be included in the 1986 environmental monitoring report

  20. Environmental monitoring at Argonne National Laboratory. Annual report for 1984

    International Nuclear Information System (INIS)

    The results of the environmental monitoring program at Argonne National Laboratory for 1984 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, ground water, soil, grass, bottom sediment, and milk; for a variety of chemical constituents in surface water, ground water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made on the site, at the site boundary, and off the Argonne site for comparison purposes. The potential radiation dose to off-site population groups is also estimated. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. 20 refs., 8 figs., 46 tabs

  1. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    International Nuclear Information System (INIS)

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs

  2. A History of Classified Activities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Quist, A.S.

    2001-01-30

    The facilities that became Oak Ridge National Laboratory (ORNL) were created in 1943 during the United States' super-secret World War II project to construct an atomic bomb (the Manhattan Project). During World War II and for several years thereafter, essentially all ORNL activities were classified. Now, in 2000, essentially all ORNL activities are unclassified. The major purpose of this report is to provide a brief history of ORNL's major classified activities from 1943 until the present (September 2000). This report is expected to be useful to the ORNL Classification Officer and to ORNL's Authorized Derivative Classifiers and Authorized Derivative Declassifiers in their classification review of ORNL documents, especially those documents that date from the 1940s and 1950s.

  3. Environmental monitoring at Argonne National Laboratory. Annual report for 1980

    International Nuclear Information System (INIS)

    The results of the environmental monitoring program at Argonne National Laboratory for 1980 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environmental penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measurements were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances (natural, fallout, Argonne, and other) and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  4. Environmental monitoring at Argonne National Laboratory. Annual report for 1979

    International Nuclear Information System (INIS)

    The results of the environmental monitoring program at Argonne National Laboratory for 1979 are presented and discussed. To evaluate the effect of Argonne operations on the environment, measurements were made for a variety of radionuclides in air, surface water, Argonne effluent water, soil, grass, bottom sediment, and foodstuffs; for a variety of chemical constituents in air, surface water, and Argonne effluent water; and of the environemetal penetrating radiation dose. Sample collections and measurements were made at the site boundary and off the Argonne site for comparison purposes. Some on-site measuremenets were made to aid in the interpretation of the boundary and off-site data. The results of the program are interpreted in terms of the sources and origin of the radioactive and chemical substances and are compared with applicable environmental quality standards. The potential radiation dose to off-site population groups is also estimated

  5. Case Study: Sandia National Laboratories Center for Integrated Nanotechnologies (CINT)

    Science.gov (United States)

    Toussaint, Norm; Gerbo, Tom

    2005-08-01

    The Center for Integrated Nanotechnologies (CINT), located at Sandia National Laboratories in Albuquerque, New Mexico, is one of five new Department of Energy Nanoscale Science Research Centers (NSRC). The CINT vision is to become a world leader in nanoscale science by developing the scientific principles that govern the design, performance, and integration of nanoscale materials, with emphasis on exploring the path from scientific discovery to the integration of nanostructures into the micro and macro worlds. The CINT design team faced the challenge of creating a state-of-the art research facility that is functional, flexible, and reflects the local history and environment. Drawing inspiration from Pre-Columbian Chacoan culture, the resulting design integrates scientific spaces with "communal" spaces to encourage the cross-discipline interaction that is essential to scientific research, particularly in the area of nanotechnology. Careful attention to design also produced a facility that conserves resources in the demanding Southwestern climate.

  6. Oak Ridge National Laboratory Transuranic Waste Certification Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs.

  7. Oak Ridge National Laboratory's philosophy and approach to NEPA

    International Nuclear Information System (INIS)

    At Oak Ridge National Laboratory (ORNL), the overall responsibility for compliance with the National Environmental Policy Act (NEPA) resides with Environmental Review and Documentations Section that is within the Office of Environmental Compliance and Documentation (OECD). Organizationally, OECD is a line-management division reporting to the Director for Environmental, Safety and Health Compliance. The cornerstone for NEPA compliance at ORNL is the Internal Environmental Assessment (IEA), which is designed to provide a basis for NEPA review and documentation. The Standard Operating Procedures provide for evaluation and documentation records management and training, and auditing. The IEA provides a project description and a review of environmental, health and safety issues. The completed IEA is used to make recommendations to DOE regarding the appropriate level of NEPA documentation required for the action. NEPA documents which may be prepared include the Categorical Exclusion, Abbreviated Environmental Assessment, and Environmental Assessment; actions requiring Environmental Impact Statements are prepared by US Department of Energy (US DOE). The relatively recent DOE initiative for agency-wide compliance with NEPA has created areas in which ORNL has found itself lacking adequate resources and expertise. These are discussed in this paper. Throughout ORNL, there is strong management support for compliance with NEPA which has resulted in enhanced awareness and implementation of the NEPA requirements. Guidance is being provided and Laboratory divisions are factoring early integration of NEPA into their project planning with the goal of ensuring that their activities are carried out in full compliance with the letter and the spirit of NEPA and the other environmental statutes and regulations

  8. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  9. Los Alamos National Laboratory 1995 self assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results.

  10. Cleanup at Los Alamos National Laboratory - the challenges - 9493

    Energy Technology Data Exchange (ETDEWEB)

    Stiger, Susan G [Los Alamos National Laboratory; Hargis, Kenneth M [Los Alamos National Laboratory; Graham, Michael J [Los Alamos National Laboratory; Rael, George J [NNSL/LASO

    2008-01-01

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy Laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup -- the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: Plans to retrieve buried waste at Material Disposal Area B, across the street from oen of Los Alamos' commercial districts and the local newspaper; Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL.

  11. Los Alamos National Laboratory 1995 self assessment report

    International Nuclear Information System (INIS)

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results

  12. Flow Induced Vibration Program at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  13. Cleanup at the Los Alamos National Laboratory - The Challenges

    International Nuclear Information System (INIS)

    This paper provides an overview of environmental cleanup at the Los Alamos National Laboratory (LANL) and some of the unique aspects and challenges. Cleanup of the 65-year old Department of Energy laboratory is being conducted under a RCRA Consent Order with the State of New Mexico. This agreement is one of the most recent cleanup agreements signed in the DOE complex and was based on lessons learned at other DOE sites. A number of attributes create unique challenges for LANL cleanup - the proximity to the community and pueblos, the site's topography and geology, and the nature of LANL's on-going missions. This overview paper will set the stage for other papers in this session, including papers that present: - Plans to retrieve buried waste at Material Disposal Area B, across the street from one of Los Alamos' commercial districts and the local newspaper; - Progress to date and joint plans with WIPP for disposal of the remaining inventory of legacy transuranic waste; - Reviews of both groundwater and surface water contamination and the factors complicating both characterization and remediation; - Optimizing the disposal of low-level radioactive waste from ongoing LANL missions; - A stakeholder environmental data transparency project (RACER), with full public access to all available information on contamination at LANL, and - A description of the approach to waste processing cost recovery from the programs that generate hazardous and radioactive waste at LANL. (authors)

  14. Oak Ridge National Laboratory Facilities Revitalization Project - Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Myrick, T.E.

    2000-06-06

    The Facilities Revitalization Project (FRP) has been established at Oak Ridge National Laboratory (ORNL) to provide new and/or refurbished research and support facilities for the Laboratory's science mission. The FRP vision is to provide ORNL staff with world-class facilities, consolidated at the X-10 site, with the first phase of construction to be completed within five years. The project will utilize a combination of U.S. Department of Energy (DOE), State of Tennessee, and private-sector funds to accomplish the new construction, with the facilities requirements to be focused on support of the ORNL Institutional Plan. This FRP Project Management Plan has been developed to provide the framework under which the project will be conducted. It is intended that the FRP will be managed as a programmatic office, with primary resources for execution of the project to be obtained from the responsible organizations within ORNL (Engineering, Procurement, Strategic Planning, etc.). The FRP Project Management Plan includes a definition of the project scope, the organizational responsibilities, and project approach, including detailed Work Breakdown Structure (WBS), followed by more detailed discussions of each of the main WBS elements: Project Planning Basis, Facility Deactivation and Consolidation, and New Facilities Development. Finally, a general discussion of the overall project schedule and cost tracking approach is provided.

  15. Seismic attenuation studies at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Five high explosive shots ranging in size from 1,005-16,005 lbs (M/sub L/ of -0.1 to 2.0) were detonated at the Idaho National Engineering Laboratory (INEL) between May 15 and October 17, 1974. These detonations were part of INEL's program, conducted by the United States Geological Survey, to determine the seismic attenuation characteristics in the vicinity of the laboratory. Particle velocity time histories generated by the 5 shots were recorded by L-7 systems deployed at 22 of the 23 temporary locations having a distance range of 0.42-62.9 km from the energy source. In addition, a magnitude (m/sub b/) 6.1 teleseism in the Kuril Islands was recorded at 7 locations. Two important results which have a bearing on the features of the design earthquake response spectra for INEL were obtained: (1) the experimental data suggest that peak particle velocity (and probably acceleration) attenuates more rapidly (i.e., as R-2.18 in the vicinity of INEL than in other geographic areas of the United States and (2) the seismic response of sites off-Snake River Plain is significantly greater over a wide range of frequencies than the response of sites on-Snake River Plain. Additional experimental data are needed to improve the precision of these preliminary results

  16. Earthquake safety program at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Within three minutes on the morning of January 24, 1980, an earthquake and three aftershocks, with Richter magnitudes of 5.8, 5.1, 4.0, and 4.2, respectively, struck the Livermore Valley. Two days later, a Richter magnitude 5.4 earthquake occurred, which had its epicenter about 4 miles northwest of the Lawrence Livermore National Laboratory (LLNL). Although no one at the Lab was seriously injured, these earthquakes caused considerable damage and disruption. Masonry and concrete structures cracked and broke, trailers shifted and fell off their pedestals, office ceilings and overhead lighting fell, and bookcases overturned. The Laboratory was suddenly immersed in a site-wide program of repairing earthquake-damaged facilities, and protecting our many employees and the surrounding community from future earthquakes. Over the past five years, LLNL has spent approximately $10 million on its earthquake restoration effort for repairs and upgrades. The discussion in this paper centers upon the earthquake damage that occurred, the clean-up and restoration efforts, the seismic review of LLNL facilities, our site-specific seismic design criteria, computer-floor upgrades, ceiling-system upgrades, unique building seismic upgrades, geologic and seismologic studies, and seismic instrumentation. 10 references

  17. Brookhaven National Laboratory site environmental report for calendar year 1993

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1994-05-01

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory`s compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs.

  18. 2010 Ecological Survey of the Pacific Northwest National Laboratory Site

    Energy Technology Data Exchange (ETDEWEB)

    Chamness, Michele A.; Perry, Christopher; Downs, Janelle L.; Powell, Sylvia D.

    2011-02-16

    The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL Site comply with applicable laws, policies, and DOE orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed project activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL Site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL Site is described in Larson and Downs (2009). There are currently two facilities on the PNNL Site: the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), and the recently completed Physical Sciences Facility (PSF). This report describes the results of the annual survey of the biological resources found on the undeveloped portions of the PNNL Site in 2010. A brief description of the methods PNNL ecologists used to conduct the surveys and the results of the surveys are presented. Actions taken to fully delineate noxious weed populations discovered in 2009 and efforts in 2010 to control those weeds also are described. Appendix A provides a list of plant and

  19. 77 FR 37604 - Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA

    Science.gov (United States)

    2012-06-22

    ... SECURITY Coast Guard 33 CFR Part 165 Safety Zone; Fourth of July Fireworks, Berkeley Marina, Berkeley, CA... enforce the safety zone for the Berkeley Marina Fourth of July Fireworks display in the Captain of the... Marina Fourth of July Fireworks display in 33 CFR 165.1191. This safety zone will be in effect from...

  20. Berkeley High-Resolution Ball

    International Nuclear Information System (INIS)

    Criteria for a high-resolution γ-ray system are discussed. Desirable properties are high resolution, good response function, and moderate solid angle so as to achieve not only double- but triple-coincidences with good statistics. The Berkeley High-Resolution Ball involved the first use of bismuth germanate (BGO) for anti-Compton shield for Ge detectors. The resulting compact shield permitted rather close packing of 21 detectors around a target. In addition, a small central BGO ball gives the total γ-ray energy and multiplicity, as well as the angular pattern of the γ rays. The 21-detector array is nearly complete, and the central ball has been designed, but not yet constructed. First results taken with 9 detector modules are shown for the nucleus 156Er. The complex decay scheme indicates a transition from collective rotation (prolate shape) to single- particle states (possibly oblate) near spin 30 h, and has other interesting features

  1. Environmental Management Assessment of the National Renewable Energy Laboratory (NREL)

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This report documents the results of the environmental management assessment performed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. The onsite portion of the assessment was conducted from September 14 through September 27, 1993, by DOE`s Office of Environmental Audit (EH-24) located within the Office of the Assistant Secretary for Environment, Safety, and Health (EH-1). During this assessment, the activities conducted by the assessment team included reviews of internal documents and reports from previous audits and assessments; interviews with US Department of Energy (DOE) and NREL contractor personnel; and inspections and observations of selected facilities and operations. The environmental management assessment of NREL focused on the adequacy of environmental management systems and assessed the formality of programs employing an approach that recognizes the level of formality implementing environmental programs may vary commensurate with non-nuclear research and development operations. The Assessment Team evaluated environmental monitoring, waste management and National Environmental Policy Act (NEPA) activities at NREL, from a programmatic standpoint. The results of the evaluation of these areas are contained in the Environmental Protection Programs section of this report. The scope of the NREL Environmental Management Assessment was comprehensive and included all areas of environmental management. At the same time, environmental monitoring, waste management, and NEPA activities were evaluated to develop a programmatic understanding of these environmental disciplines, building upon the results of previous appraisals, audits, and reviews performed at the NREL.

  2. Open Science Grid: Linking Universities and Laboratories In National Cyberinfrastructure

    Science.gov (United States)

    Avery, Paul

    2011-10-01

    Open Science Grid is a consortium of researchers from universities and national laboratories that operates a national computing infrastructure serving large-scale scientific and engineering research. While OSG's scale has been primarily driven by the demands of the LHC experiments, it currently serves particle and nuclear physics, gravitational wave searches, digital astronomy, genomic science, weather forecasting, molecular modeling, structural biology and nanoscience. The OSG distributed computing facility links campus and regional computing resources and is a major component of the Worldwide LHC Computing Grid (WLCG) that handles the massive computing and storage needs of experiments at the Large Hadron Collider. This collaborative work has provided a wealth of results, including powerful new software tools and services; a uniform packaging scheme (the Virtual Data Toolkit) that simplifies software deployment across many sites in the US and Europe; integration of complex tools and services in large science applications; multiple education and outreach projects; and new approaches to integrating advanced network infrastructure in scientific computing applications. More importantly, OSG has provided unique collaborative opportunities between researchers in a variety of research disciplines.

  3. Wildlife use of NPDES outfalls at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.; Blea-Edeskuty, B.

    1995-09-01

    From July through October of 1991, the Biological Resources Evaluation Team (BRET) surveyed 133 of the 140 National Pollutant Discharge and Elimination System outfalls at Los Alamos National Laboratory (LANL). The purpose of the survey was to determine the use of these wastewater outfalls by wildlife. BRET observed wildlife or evidence of wildlife (scat, tracks, or bedding) by 35 vertebrate species in the vicinity of the outfalls, suggesting these animals could be using water from outfalls. Approximately 56% of the outfalls are probably used or are suitable for use by large mammals as sources of drinking water. Additionally, hydrophytic vegetation grows in association with approximately 40% of the outfalls-a characteristic that could make these areas eligible for wetland status. BRET recommends further study to accurately characterize the use of outfalls by small and medium-sized mammals and amphibians. The team also recommends systematic aquatic macroinvertebrate studies to provide information on resident communities and water quality. Wetland assessments may be necessary to ensure compliance with wetland regulations if LANL activities affect any of the outfalls supporting hydrophytic vegetation.

  4. Idaho National Laboratory Cultural Resource Management Annual Report FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Julie Braun; Hollie Gilbert; Dino Lowrey; Clayton Marler; Brenda Pace

    2008-03-01

    The Idaho National Laboratory (INL) Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human land use in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The BEA professional staff is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office (CRMO) staff during fiscal year 2007. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  5. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule

  6. Instructor qualification for radiation safety training at a national laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Trinoskey, P.A.

    1994-10-01

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department of Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities.

  7. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required.

  8. Proposed environmental remediation at Argonne National Laboratory, Argonne, Illinois

    International Nuclear Information System (INIS)

    The Department of Energy (DOE) has prepared an Environmental Assessment evaluating proposed environmental remediation activity at Argonne National Laboratory-East (ANL-E), Argonne, Illinois. The environmental remediation work would (1) reduce, eliminate, or prevent the release of contaminants from a number of Resource Conservation and Recovery Act (RCRA) Solid Waste Management Units (SWMUs) and two radiologically contaminated sites located in areas contiguous with SWMUs, and (2) decrease the potential for exposure of the public, ANL-E employees, and wildlife to such contaminants. The actions proposed for SWMUs are required to comply with the RCRA corrective action process and corrective action requirements of the Illinois Environmental Protection Agency; the actions proposed are also required to reduce the potential for continued contaminant release. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required

  9. Idaho National Laboratory Cultural Resource Management Annual Report FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Clayton F. Marler; Julie Braun; Hollie Gilbert; Dino Lowrey; Brenda Ringe Pace

    2007-04-01

    The Idaho National Laboratory Site is home to vast numbers and a wide variety of important cultural resources representing at least a 13,500-year span of human occupation in the region. As a federal agency, the Department of Energy Idaho Operations Office has legal responsibility for the management and protection of those resources and has delegated these responsibilities to its primary contractor, Battelle Energy Alliance (BEA). The INL Cultural Resource Management Office, staffed by BEA professionals, is committed to maintaining a cultural resource management program that accepts these challenges in a manner reflecting the resources’ importance in local, regional, and national history. This annual report summarizes activities performed by the INL Cultural Resource Management Office staff during Fiscal Year 2006. This work is diverse, far-reaching and though generally confined to INL cultural resource compliance, also includes a myriad of professional and voluntary community activities. This document is intended to be both informative to internal and external stakeholders, and to serve as a planning tool for future cultural resource management work to be conducted on the INL.

  10. Instructor qualification for radiation safety training at a national laboratory

    International Nuclear Information System (INIS)

    Prior to 1993, Health Physics Training (HPT) was conducted by the Lawrence Livermore National Laboratory (LLNL) health physics group. The job requirements specified a Masters Degree and experience. In fact, the majority of Health Physicists in the group were certified by the American Board of Health Physics. Under those circumstances, it was assumed that individuals in the group were technically qualified and the HPT instructor qualification stated that. In late 1993, the Health Physics Group at the LLNL was restructured and the training function was assigned to the training group. Additional requirements for training were mandated by the Department of Energy (DOE), which would necessitate increasing the existing training staff. With the need to hire, and the policy of reassignment of employees during downsizing, it was imperative that formal qualification standards be developed for technical knowledge. Qualification standards were in place for instructional capability. In drafting the new training qualifications for instructors, the requirements of a Certified Health Physicists had to be modified due to supply and demand. Additionally, for many of the performance-based training courses, registration by the National Registry of Radiation Protection Technologists is more desirable. Flexibility in qualification requirements has been incorporated to meet the reality of ongoing training and the compensation for desirable skills of individuals who may not meet all the criteria. The qualification requirements for an instructor rely on entry-level requirements and emphasis on goals (preferred) and continuing development of technical and instructional capabilities

  11. A High Intensity Multi-Purpose D-D Neutron Generator for Nuclear Engineering Laboratories

    International Nuclear Information System (INIS)

    This NEER project involves the design, construction and testing of a low-cost high intensity D-D neutron generator for teaching nuclear engineering students in a laboratory environment without radioisotopes or a nuclear reactor. The neutron generator was designed, fabricated and tested at Lawrence Berkeley National Laboratory (LBNL)

  12. Risk-based prioritization of the Idaho National Engineering Laboratory Environmental Programs

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.G. [Los Alamos National Lab., NM (United States); Merkhofer, M.W.; Voth, M. [Applied Decision Analysis, Inc., Menlo Park, CA (United States); Sire, D. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-03-01

    This paper describes an application of a formal prioritization system to help the Idaho National Engineering Laboratory (INEL) allocate funds for environmental projects. The system, known as the Laboratory Integration and Prioritization System (LIPS), was jointly developed by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and the US Department of Energy (DOE). LIPS is based on a formal approach for multi-criteria decision-making known as multiattribute utility analysis. The system is designed to provide a logical, practical, and equitable means for estimating and comparing the benefits to be obtained from funding project work.

  13. Structural biology facilities at Brookhaven National Laboratory`s high flux beam reactor

    Energy Technology Data Exchange (ETDEWEB)

    Korszun, Z.R.; Saxena, A.M.; Schneider, D.K. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The techniques for determining the structure of biological molecules and larger biological assemblies depend on the extent of order in the particular system. At the High Flux Beam Reactor at the Brookhaven National Laboratory, the Biology Department operates three beam lines dedicated to biological structure studies. These beam lines span the resolution range from approximately 700{Angstrom} to approximately 1.5{Angstrom} and are designed to perform structural studies on a wide range of biological systems. Beam line H3A is dedicated to single crystal diffraction studies of macromolecules, while beam line H3B is designed to study diffraction from partially ordered systems such as biological membranes. Beam line H9B is located on the cold source and is designed for small angle scattering experiments on oligomeric biological systems.

  14. Assessment of Eligibility to National Register of Historic Places Building 431 Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, M A; Ullrich, R A

    2003-05-07

    Lawrence Livermore National Laboratory (LLNL) proposes to demolish the original sections of Building 431 at its main site in Livermore, California. As this action will constitute an undertaking within the regulatory constraints of the National Historic Preservation Act, LLNL arranged for an assessment of the building's historic significance. This report provides a brief history of the magnetic fusion energy research activities housed in Building 431 and a historic assessment of the building. The final recommendation of the report is that, although Building 431 housed some significant breakthroughs in accelerator technology and magnetic mirror plasma confinement, it lacks integrity for the periods of significance of those developments. It is, therefore, not eligible to the National Register of Historic Places.

  15. CONTROL TESTING OF THE UK NATIONAL NUCLEAR LABORATORY'S RADBALL TECHNOLOGY AT SAVANNAH RIVER NATIONAL LABORATORY

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-11-23

    The UK National Nuclear Laboratory (NNL) has developed a remote, non-electrical, radiation-mapping device known as RadBall (patent pending), which offers a means to locate and quantify radiation hazards and sources within contaminated areas of the nuclear industry. To date, the RadBall has been deployed in a number of technology trials in nuclear waste reprocessing plants at Sellafield in the UK. The trials have demonstrated the successful ability of the RadBall technology to be deployed and retrieved from active areas. The positive results from these initial deployment trials and the anticipated future potential of RadBall have led to the NNL partnering with the Savannah River National Laboratory (SRNL) to further underpin and strengthen the technical performance of the technology. RadBall consists of a colander-like outer shell that houses a radiation-sensitive polymer sphere. It has no power requirements and can be positioned in tight or hard-to reach places. The outer shell works to collimate radiation sources and those areas of the polymer sphere that are exposed react, becoming increasingly less transparent, in proportion to the absorbed dose. The polymer sphere is imaged in an optical-CT scanner which produces a high resolution 3D map of optical attenuation coefficients. Subsequent analysis of the optical attenuation maps provides information on the spatial distribution and strength of the sources in a given area forming a 3D characterization of the area of interest. This study completed at SRNL addresses key aspects of the testing of the RadBall technology. The first set of tests was performed at Savannah River Nuclear Solutions Health Physics Instrument Calibration Laboratory (HPICL) using various gamma-ray sources and an x-ray machine with known radiological characteristics. The objective of these preliminary tests was to identify the optimal dose and collimator thickness. The second set of tests involved a highly contaminated hot cell. The objective of

  16. Idaho National Laboratory Directed Research and Development FY-2009

    Energy Technology Data Exchange (ETDEWEB)

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are

  17. Brookhaven National Laboratory site environmental report for calendar year 1993

    International Nuclear Information System (INIS)

    This report documents the results of the Environmental Monitoring Program at BNL and presents summary information about environmental compliance for 1993. To evaluate the effect of BNL operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, ground water and vegetation were made at the BNL site and at sites adjacent to the Laboratory. Brookhaven National Laboratory's compliance with all applicable guides, standards, and limits for radiological and nonradiological emissions to the environment were evaluated. Among the permitted facilities, two instances, of pH exceedances were observed at recharge basins, possible related to rain-water run-off to these recharge basins. Also, the discharge from the Sewage Treatment Plant (STP) to the Peconic River exceeded on five occasions, three for residual chlorine and one each for iron and ammonia nitrogen. The chlorine exceedances were related to a malfunctioning hypochlorite dosing pump and ceased when the pump was repaired. While the iron and ammonia-nitrogen could be the result of disturbances to the sand filter beds during maintenance. The environmental monitoring data has identified site-specific contamination of ground water and soil. These areas are subject to Remedial Investigation/Feasibility Studies (RI/FS) under the Inter Agency Agreement (IAG). Except for the above, the environmental monitoring data has continued to demonstrate that compliance was achieved with applicable environmental laws and regulations governing emission and discharge of materials to the environment, and that the environmental impacts at BNL are minimal and pose no threat to the public or to the environment. This report meets the requirements of DOE Orders 5484. 1, Environmental Protection, Safety, and Health Protection Information reporting requirements and 5400.1, General Environmental Protection Programs

  18. 2011 Annual Ecological Survey: Pacific Northwest National Laboratory Site

    Energy Technology Data Exchange (ETDEWEB)

    Becker, James M.; Chamness, Michele A.

    2012-02-27

    The U.S. Department of Energy (DOE) Pacific Northwest Site Office (PNSO) oversees and manages the DOE contract for the Pacific Northwest National Laboratory (PNNL), a DOE Office of Science multi-program laboratory located in Richland, Washington. PNSO is responsible for ensuring that all activities conducted on the PNNL site comply with applicable laws, policies, and DOE Orders. The DOE Pacific Northwest Site Office Cultural and Biological Resources Management Plan (DOE/PNSO 2008) addresses the requirement for annual surveys and monitoring for species of concern and to identify and map invasive species. In addition to the requirement for an annual survey, proposed project activities must be reviewed to assess any potential environmental consequences of conducting the project. The assessment process requires a thorough understanding of the resources present, the potential impacts of a proposed action to those resources, and the ultimate consequences of those actions. The PNNL site is situated on the southeastern corner of the DOE Hanford Site, located at the north end of the city of Richland in south-central Washington. The site is bordered on the east by the Columbia River, on the west by Stevens Drive, and on the north by the Hanford Site 300 Area (Figure 1). The environmental setting of the PNNL site is described in Larson and Downs (2009). There are currently two facilities on the PNNL site: the William R. Wiley Environmental Molecular Sciences Laboratory and the Physical Sciences Facility. This report describes the annual survey of biological resources found on the undeveloped upland portions of the PNNL site. The annual survey is comprised of a series of individual field surveys conducted on various days in late May and throughout June 2011. A brief description of the methods PNNL ecologists used to conduct the baseline surveys and a summary of the results of the surveys are presented. Appendix A provides a list of plant and animal species identified in the

  19. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  20. A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization

    Energy Technology Data Exchange (ETDEWEB)

    Currie, J.W.; Wilfert, G.L.; March, F.

    1990-01-01

    The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.