WorldWideScience

Sample records for benzyl isothiocyanate bitc

  1. Optimized Formation of Benzyl Isothiocyanate by Endogenous ...

    African Journals Online (AJOL)

    The formed benzyl isothiocyanate was extracted by steam distillation method and purified by thin-layer chromatography (TLC). Relevant process variables were also studied. Finally, the purified benzyl isothiocyanate was analyzed by gas chromatography-mass spectrometer (GC-MS) and compared to BITC standard.

  2. Optimized Formation of Benzyl Isothiocyanate by Endogenous ...

    African Journals Online (AJOL)

    Purpose: To use endogenous myrosinase in Carica papaya seed to convert benzyl glucosinolate (BG) to benzyl isothiocyanate (BITC) and then extract it for further studies. Methods: Process variables including seed powder particle size, sample-to-solvent ratio, pH of buffer solution, enzymolysis temperature, enzymolysis ...

  3. Nanoemulsions of cancer chemopreventive agent benzyl isothiocyanate display enhanced solubility, dissolution, and permeability.

    Science.gov (United States)

    Qhattal, Hussaini Syed Sha; Wang, Shu; Salihima, Tri; Srivastava, Sanjay K; Liu, Xinli

    2011-12-14

    Benzyl isothiocyanate (BITC), a compound found in cruciferous vegetables, is an effective chemopreventive agent. The objective of this study was to develop nanoemulsion formulations for the oral delivery of BITC. Optimized oil-in-water BITC nanoemulsions were prepared by a spontaneous self-nanoemulsification method and a homogenization-sonication method. Both nanoemulsions entrapped high amounts of BITC (15-17 mg/mL), with low polydispersity and good colloidal stability. The BITC nanoemulsions showed enhanced solubility and dissolution compared to pure BITC. These formulations markedly increased the apical to basolateral transport of BITC in Caco-2 cell monolayers. The apparent permeability values were 3.6 × 10(-6) cm/s for pure BITC and (1.1-1.3) × 10(-5) cm/s for BITC nanoemulsions. The nanoemulsions were easily taken up by human cancer cells A549 and SKOV-3 and inhibited tumor growth in vitro. This work shows for the first time that BITC can be formulated into nanoemulsions and may show promise in enhancing absorption and bioavailability.

  4. BITC Sensitizes Pancreatic Adenocarcinomas to TRAIL-induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Christina A. Wicker

    2009-01-01

    Full Text Available Pancreatic adenocarcinoma is an aggressive cancer with a greater than 95% mortality rate and short survival after diagnosis. Chemotherapeutic resistance hinders successful treatment. This resistance is often associated with mutations in codon 12 of the K-Ras gene (K-Ras 12, which is present in over 90% of all pancreatic adenocarcinomas. Codon 12 mutations maintain Ras in a constitutively active state leading to continuous cellular proliferation. Our study determined if TRAIL resistance in pancreatic adenocarcinomas with K-Ras 12 mutations could be overcome by first sensitizing the cells with Benzyl isothiocyanate (BITC. BITC is a component of cruciferous vegetables and a cell cycle inhibitor. BxPC3, MiaPaCa2 and Panc-1 human pancreatic adenocarcinoma cell lines were examined for TRAIL resistance. Our studies show BITC induced TRAIL sensitization by dual activation of both the extrinsic and intrinsic apoptotic pathways.

  5. Benzyl isothiocyanate causes FoxO1-mediated autophagic death in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Dong Xiao

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, inhibits growth of breast cancer cells but the mechanisms underlying growth inhibitory effect of BITC are not fully understood. Here, we demonstrate that BITC treatment causes FoxO1-mediated autophagic death in cultured human breast cancer cells. The BITC-treated breast cancer cells (MDA-MB-231, MCF-7, MDA-MB-468, BT-474, and BRI-JM04 and MDA-MB-231 xenografts from BITC-treated mice exhibited several features characteristic of autophagy, including appearance of double-membrane vacuoles (transmission electron microscopy and acidic vesicular organelles (acridine orange staining, cleavage of microtubule-associated protein 1 light chain 3 (LC3, and/or suppression of p62 (p62/SQSTM1 or sequestosome 1 expression. On the other hand, a normal human mammary epithelial cell line (MCF-10A was resistant to BITC-induced autophagy. BITC-mediated inhibition of MDA-MB-231 and MCF-7 cell viability was partially but statistically significantly attenuated in the presence of autophagy inhibitors 3-methyl adenine and bafilomycin A1. Stable overexpression of Mn-superoxide dismutase, which was fully protective against apoptosis, conferred only partial protection against BITC-induced autophagy. BITC treatment decreased phosphorylation of mTOR and its downstream targets (P70s6k and 4E-BP1 in cultured MDA-MB-231 and MCF-7 cells and MDA-MB-231 xenografts, but activation of mTOR by transient overexpression of its positive regulator Rheb failed to confer protection against BITC-induced autophagy. Autophagy induction by BITC was associated with increased expression and acetylation of FoxO1. Furthermore, autophagy induction and cell growth inhibition resulting from BITC exposure were significantly attenuated by small interfering RNA knockdown of FoxO1. In conclusion, the present study provides novel insights into the molecular circuitry of BITC-induced cell death involving FoxO1-mediated autophagy.

  6. Determinação de isotiocianato de benzila em Carica papaya utilizando cromatografia gasosa com detectores seletivos Determination of benzyl isothiocyanate in Carica papaya using gas chromatography with selectives detectors

    Directory of Open Access Journals (Sweden)

    Izabela Miranda de Castro

    2008-01-01

    Full Text Available In the present work, a method was developed and validated for the quantification of benzyl isothiocyanate (BITC in the fruits of Carica papaya. The quantification of this compound was carried out by gas chromatography (GC with selective detectors - nitrogen phosphorus detector (NPD and flame photometric detector (FPD. The performance of these detectors showed a higher sensitivity of the NPD with a broader linear range of detection. The LOD/LOQ were 0.038/0.100 µg/mL for NPD and 5.78/19.29 µg/mL for FPD. The recovery of the method for BITC was 90,64%. An average value of BITC concentration in all the analyzed samples was 16,23 µg BITC/g.

  7. Critical role of p53 upregulated modulator of apoptosis in benzyl isothiocyanate-induced apoptotic cell death.

    Directory of Open Access Journals (Sweden)

    Marie Lue Antony

    Full Text Available Benzyl isothiocyanate (BITC, a constituent of edible cruciferous vegetables, decreases viability of cancer cells by causing apoptosis but the mechanism of cell death is not fully understood. The present study was undertaken to determine the role of Bcl-2 family proteins in BITC-induced apoptosis using MDA-MB-231 (breast, MCF-7 (breast, and HCT-116 (colon human cancer cells. The B-cell lymphoma 2 interacting mediator of cell death (Bim protein was dispensable for proapoptotic response to BITC in MCF-7 and MDA-MB-231 cells as judged by RNA interference studies. Instead, the BITC-treated MCF-7 and MDA-MB-231 cells exhibited upregulation of p53 upregulated modulator of apoptosis (PUMA protein. The BITC-mediated induction of PUMA was relatively more pronounced in MCF-7 cells due to the presence of wild-type p53 compared with MDA-MB-231 with mutant p53. The BITC-induced apoptosis was partially but significantly attenuated by RNA interference of PUMA in MCF-7 cells. The PUMA knockout variant of HCT-116 cells exhibited significant resistance towards BITC-induced apoptosis compared with wild-type HCT-116 cells. Attenuation of BITC-induced apoptosis in PUMA knockout HCT-116 cells was accompanied by enhanced G2/M phase cell cycle arrest due to induction of p21 and down regulation of cyclin-dependent kinase 1 protein. The BITC treatment caused a decrease in protein levels of Bcl-xL (MCF-7 and MDA-MB-231 cells and Bcl-2 (MCF-7 cells. Ectopic expression of Bcl-xL in MCF-7 and MDA-MB-231 cells and that of Bcl-2 in MCF-7 cells conferred protection against proapoptotic response to BITC. Interestingly, the BITC-treated MDA-MB-231 cells exhibited induction of Bcl-2 protein expression, and RNA interference of Bcl-2 in this cell line resulted in augmentation of BITC-induced apoptosis. The BITC-mediated inhibition of MDA-MB-231 xenograft growth in vivo was associated with the induction of PUMA protein in the tumor. In conclusion, the results of the present study

  8. Benzyl isothiocyanate suppresses pancreatic tumor angiogenesis and invasion by inhibiting HIF-α/VEGF/Rho-GTPases: pivotal role of STAT-3.

    Directory of Open Access Journals (Sweden)

    Srinivas Reddy Boreddy

    Full Text Available Our previous studies have shown that benzyl isothiocyanate (BITC suppresses pancreatic tumor growth by inhibiting STAT-3; however, the exact mechanism of tumor growth suppression was not clear. Here we evaluated the effects and mechanism of BITC on pancreatic tumor angiogenesis. Our results reveal that BITC significantly inhibits neovasularization on rat aorta and Chicken-Chorioallantoic membrane. Furthermore, BITC blocks the migration and invasion of BxPC-3 and PanC-1 pancreatic cancer cells in a dose dependant manner. Moreover, secretion of VEGF and MMP-2 in normoxic and hypoxic BxPC-3 and PanC-1 cells was significantly suppressed by BITC. Both VEGF and MMP-2 play a critical role in angiogenesis and metastasis. Our results reveal that BITC significantly suppresses the phosphorylation of VEGFR-2 (Tyr-1175, and expression of HIF-α. Rho-GTPases, which are regulated by VEGF play a crucial role in pancreatic cancer progression. BITC treatment reduced the expression of RhoC whereas up-regulated the expression of tumor suppressor RhoB. STAT-3 over-expression or IL-6 treatment significantly induced HIF-1α and VEGF expression; however, BITC substantially suppressed STAT-3 as well as STAT-3-induced HIF-1α and VEGF expression. Finally, in vivo tumor growth and matrigel-plug assay show reduced tumor growth and substantial reduction of hemoglobin content in the matrigel plugs and tumors of mice treated orally with 12 µmol BITC, indicating reduced tumor angiogenesis. Immunoblotting of BITC treated tumors show reduced expression of STAT-3 phosphorylation (Tyr-705, HIF-α, VEGFR-2, VEGF, MMP-2, CD31 and RhoC. Taken together, our results suggest that BITC suppresses pancreatic tumor growth by inhibiting tumor angiogenesis through STAT-3-dependant pathway.

  9. Benzyl Isothiocyanate Inhibits Prostate Cancer Development in the Transgenic Adenocarcinoma Mouse Prostate (TRAMP Model, Which Is Associated with the Induction of Cell Cycle G1 Arrest

    Directory of Open Access Journals (Sweden)

    Han Jin Cho

    2016-02-01

    Full Text Available Benzyl isothiocyanate (BITC is a hydrolysis product of glucotropaeolin, a compound found in cruciferous vegetables, and has been shown to have anti-tumor properties. In the present study, we investigated whether BITC inhibits the development of prostate cancer in the transgenic adenocarcinoma mouse prostate (TRAMP mice. Five-week old, male TRAMP mice and their nontransgenic littermates were gavage-fed with 0, 5, or 10 mg/kg of BITC every day for 19 weeks. The weight of the genitourinary tract increased markedly in TRAMP mice and this increase was suppressed significantly by BITC feeding. H and E staining of the dorsolateral lobes of the prostate demonstrated that well-differentiated carcinoma (WDC was a predominant feature in the TRAMP mice. The number of lobes with WDC was reduced by BITC feeding while that of lobes with prostatic intraepithelial neoplasia was increased. BITC feeding reduced the number of cells expressing Ki67 (a proliferation marker, cyclin A, cyclin D1, and cyclin-dependent kinase (CDK2 in the prostatic tissue. In vitro cell culture results revealed that BITC decreased DNA synthesis, as well as CDK2 and CDK4 activity in TRAMP-C2 mouse prostate cancer cells. These results indicate that inhibition of cell cycle progression contributes to the inhibition of prostate cancer development in TRAMP mice treated with BITC.

  10. Benzyl isothiocyanate alters the gene expression with cell cycle regulation and cell death in human brain glioblastoma GBM 8401 cells.

    Science.gov (United States)

    Tang, Nou-Ying; Chueh, Fu-Shin; Yu, Chien-Chih; Liao, Ching-Lung; Lin, Jen-Jyh; Hsia, Te-Chun; Wu, King-Chuen; Liu, Hsin-Chung; Lu, Kung-Wen; Chung, Jing-Gung

    2016-04-01

    Glioblastoma multiforme (GBM) is a highly malignant devastating brain tumor in adults. Benzyl isothiocyanate (BITC) is one of the isothiocyanates that have been shown to induce human cancer cell apoptosis and cell cycle arrest. Herein, the effect of BITC on cell viability and apoptotic cell death and the genetic levels of human brain glioblastoma GBM 8401 cells in vitro were investigated. We found that BITC induced cell morphological changes, decreased cell viability and the induction of cell apoptosis in GBM 8401 cells was time-dependent. cDNA microarray was used to examine the effects of BITC on GBM 8401 cells and we found that numerous genes associated with cell death and cell cycle regulation in GBM 8401 cells were altered after BITC treatment. The results show that expression of 317 genes was upregulated, and two genes were associated with DNA damage, the DNA-damage-inducible transcript 3 (DDIT3) was increased 3.66-fold and the growth arrest and DNA-damage-inducible α (GADD45A) was increased 2.34-fold. We also found that expression of 182 genes was downregulated and two genes were associated with receptor for cell responses to stimuli, the EGF containing fibulin-like extracellular matrix protein 1 (EFEMP1) was inhibited 2.01-fold and the TNF receptor-associated protein 1 (TRAP1) was inhibited 2.08-fold. BITC inhibited seven mitochondria ribosomal genes, the mitochondrial ribosomal protein; tumor protein D52 (MRPS28) was inhibited 2.06-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein L23 (MRPL23) decreased 2.08-fold, the mitochondria ribosomal protein S2 (MRPS2) decreased 2.07-fold, the mitochondria ribosomal protein S12 (MRPS12) decreased 2.08-fold, the mitochondria ribosomal protein L12 (MRPL12) decreased 2.25-fold and the mitochondria ribosomal protein S34 (MRPS34) was decreased 2.30-fold in GBM 8401 cells. These changes of gene expression can provide the effects of BITC on the genetic level and are

  11. Antimicrobial activities of isothiocyanates against Campylobacter jejuni isolates

    Directory of Open Access Journals (Sweden)

    Virginie eDufour

    2012-04-01

    Full Text Available Food-borne human infection with Campylobacter jejuni is a medical concern in both industrialized and developing countries. Efficient eradication of C. jejuni reservoirs within live animals and processed foods is limited by the development of antimicrobial resistances and by practical problems related to the use of conventional antibiotics in food processes.We have investigated the bacteriostatic and bactericidal activities of two phytochemicals, allyl-isothiocyanate (AITC and benzyl-isothiocyanate (BITC, against 24 C. jejuni isolates from chicken feces, human infections and contaminated foods, as well as two reference strains NCTC11168 and 81-176.Both AITC and BITC displayed a potent antibacterial activity against C. jejuni. BITC showed a higher overall antibacterial effect (MIC of 2.5 to 5 g mL-1 compared to AITC (MIC of 50 to 200 g mL-1. Interestingly, the 24 C. jejuni isolates could be classified in 3 groups according to their sensitivity levels to both compounds, suggesting that AITC and BITC shared identical activity mechanisms and consequently faced similar resistance processes in bacterial cells.The sensitivity levels of C. jejuni strains against isothiocyanates were neither correlated with the presence of a GGT (-Glutamyl Transpeptidase encoding gene in the genome nor with the origin of the biological sample. However the ggt mutant of C. jejuni 81-176 displayed a decreased survival rate compared to WT when exposed to ITC.

  12. Dietary agent, benzyl isothiocyanate inhibits signal transducer and activator of transcription 3 phosphorylation and collaborates with sulforaphane in the growth suppression of PANC-1 cancer cells

    Directory of Open Access Journals (Sweden)

    Deangelis Stephanie

    2009-08-01

    Full Text Available Abstract The Signal Transducer and Activator of Transcription (STAT proteins comprise a family of latent transcription factors with diverse functions. STAT3 has well established roles in cell proliferation, growth and survival, and its persistent activation has been detected with high frequency in many human cancers. As constitutive activation of STAT3 appears to be vital for the continued survival of these cancerous cells, it has emerged as an attractive target for chemotherapeutics. We examined whether the inhibitory activities of bioactive compounds from cruciferous vegetables, such as Benzyl isothiocyanate (BITC and sulforaphane, extended to STAT3 activation in PANC-1 human pancreatic cancer cells. BITC and sulforaphane were both capable of inhibiting cell viability and inducing apoptosis in PANC-1. Sulforaphane had minimal effect on the direct inhibition of STAT3 tyrosine phosphorylation, however, suggesting its inhibitory activities are most likely STAT3-independent. Conversely, BITC was shown to inhibit the tyrosine phosphorylation of STAT3, but not the phosphorylation of ERK1/2, MAPK and p70S6 kinase. These results suggest that STAT3 may be one of the targets of BITC-mediated inhibition of cell viability in PANC-1 cancer cells. In addition, we show that BITC can prevent the induction of STAT3 activation by Interleukin-6 in MDA-MB-453 breast cancer cells. Furthermore, combinations of BITC and sulforaphane inhibited cell viability and STAT3 phosphorylation more dramatically than either agent alone. These findings suggest that the combination of the dietary agents BITC and sulforaphane has potent inhibitory activity in pancreatic cancer cells and that they may have translational potential as chemopreventative or therapeutic agents.

  13. In vitro assessment of antiproliferative action selectivity of dietary isothiocyanates for tumor versus normal human cells

    Directory of Open Access Journals (Sweden)

    Konić-Ristić Aleksandra

    2016-01-01

    Full Text Available Background/Aim. Numerous epidemiological studies have shown beneficial effects of cruciferous vegetables consumption in cancer chemoprevention. Biologically active compounds of different Brassicaceae species with antitumor potential are isothiocyanates, present in the form of their precursors - glucosinolates. The aim of this study was to determine the selectivity of antiproliferative action of dietary isothiocyanates for malignant versus normal cells. Methods. Antiproliferative activity of three isothiocyanates abundant in human diet: sulforaphane, benzyl isothiocyanate (BITC and phenylethyl isothiocyanate, on human cervix carcinoma cell line - HeLa, melanoma cell line - Fem-x, and colon cancer cell line - LS 174, and on peripheral blood mononuclear cells (PBMC, with or without mitogen, were determined by MTT colorimetric assay 72 h after their continuous action. Results. All investigated isothiocyanates inhibited the proliferation of HeLa, Fem-x and LS 174 cells. On all cell lines treated, BITC was the most potent inhibitor of cell proliferation with half-maximum inhibitory concentration (IC50 values of 5.04 mmoL m-3 on HeLa cells, 2.76 mmol m-3 on Fem-x, and 14.30 mmol m-3 on LS 174 cells. Antiproliferative effects on human PBMC were with higher IC50 than on malignant cells. Indexes of selectivity, calculated as a ratio between IC50 values obtained on PBMC and malignant cells, were between 1.12 and 16.57, with the highest values obtained for the action of BITC on melanoma Fem-x cells. Conclusion. Based on its antiproliferative effects on malignant cells, as well as the selectivity of the action to malignant vs normal cells, benzyl isothiocyanate can be considered as a promising candidate in cancer chemoprevention. In general, the safety of investigated compounds, in addition to their antitumor potential, should be considered as an important criterion in cancer chemoprevention. Screening of selectivity is a plausible approach to the evaluation

  14. Benzylglucosinolate Derived Isothiocyanate from Tropaeolum majus Reduces Gluconeogenic Gene and Protein Expression in Human Cells.

    Directory of Open Access Journals (Sweden)

    Valentina Guzmán-Pérez

    Full Text Available Nasturtium (Tropaeolum majus L. contains high concentrations of benzylglcosinolate. We found that a hydrolysis product of benzyl glucosinolate-the benzyl isothiocyanate (BITC-modulates the intracellular localization of the transcription factor Forkhead box O 1 (FOXO1. FoxO transcription factors can antagonize insulin effects and trigger a variety of cellular processes involved in tumor suppression, longevity, development and metabolism. The current study evaluated the ability of BITC-extracted as intact glucosinolate from nasturtium and hydrolyzed with myrosinase-to modulate i the insulin-signaling pathway, ii the intracellular localization of FOXO1 and, iii the expression of proteins involved in gluconeogenesis, antioxidant response and detoxification. Stably transfected human osteosarcoma cells (U-2 OS with constitutive expression of FOXO1 protein labeled with GFP (green fluorescent protein were used to evaluate the effect of BITC on FOXO1. Human hepatoma HepG2 cell cultures were selected to evaluate the effect on gluconeogenic, antioxidant and detoxification genes and protein expression. BITC reduced the phosphorylation of protein kinase B (AKT/PKB and FOXO1; promoted FOXO1 translocation from cytoplasm into the nucleus antagonizing the insulin effect; was able to down-regulate the gene and protein expression of gluconeogenic enzymes; and induced the gene expression of antioxidant and detoxification enzymes. Knockdown analyses with specific siRNAs showed that the expression of gluconeogenic genes was dependent on nuclear factor (erythroid derived-like2 (NRF2 and independent of FOXO1, AKT and NAD-dependent deacetylase sirtuin-1 (SIRT1. The current study provides evidence that BITC might have a role in type 2 diabetes T2D by reducing hepatic glucose production and increasing antioxidant resistance.

  15. Relationship between Chemical Structure and Antimicrobial Activities of Isothiocyanates from Cruciferous Vegetables against Oral Pathogens.

    Science.gov (United States)

    Ko, Mi-Ok; Kim, Mi-Bo; Lim, Sang-Bin

    2016-12-28

    We evaluated the potentials of 10 isothiocyanates (ITCs) from cruciferous vegetables and radish root hydrolysate for inhibiting the growth of oral pathogens, with an emphasis on assessing any structure-function relationship. Structural differences in ITCs impacted their antimicrobial activities against oral pathogens differently. The indolyl ITC (indol-3-carbinol) was the most potent inhibitor of the growth of oral pathogens, followed by aromatic ITCs (benzyl ITC (BITC) and phenylethyl ITC (PEITC)) and aliphatic ITCs (erucin, iberin, and sulforaphene). Sulforaphene, which is similar in structure, but has one double bond, showed higher antimicrobial activity than sulforaphane. Erucin, which has a thiol group, showed higher antimicrobial activity than sulforaphane, which has a sulfinyl group. BITC and iberin with a short chain exhibited higher antimicrobial potential than PEITC and sulforaphane with a longer chain, respectively. ITCs have strong antimicrobial activities and may be useful in the prevention and management of dental caries.

  16. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Abier Sofrata

    Full Text Available Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate.

  17. Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro.

    Science.gov (United States)

    Waterman, Carrie; Cheng, Diana M; Rojas-Silva, Patricio; Poulev, Alexander; Dreifus, Julia; Lila, Mary Ann; Raskin, Ilya

    2014-07-01

    Moringa (Moringa oleifera Lam.) is an edible plant used as both a food and medicine throughout the tropics. A moringa concentrate (MC), made by extracting fresh leaves with water, utilized naturally occurring myrosinase to convert four moringa glucosinolates into moringa isothiocyanates. Optimum conditions maximizing MC yield, 4-[(α-L-rhamnosyloxy)benzyl]isothiocyanate, and 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate content were established (1:5 fresh leaf weight to water ratio at room temperature). The optimized MC contained 1.66% isothiocyanates and 3.82% total polyphenols. 4-[(4'-O-acetyl-α-L-rhamnosyloxy)benzyl]isothiocyanate exhibited 80% stability at 37°C for 30 days. MC, and both of the isothiocyanates described above significantly decreased gene expression and production of inflammatory markers in RAW macrophages. Specifically, both attenuated expression of iNOS and IL-1β and production of nitric oxide and TNFα at 1 and 5 μM. These results suggest a potential for stable and concentrated moringa isothiocyanates, delivered in MC as a food-grade product, to alleviate low-grade inflammation associated with chronic diseases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Beyond benzyl grignards: facile generation of benzyl carbanions from styrenes.

    Science.gov (United States)

    Grigg, R David; Rigoli, Jared W; Van Hoveln, Ryan; Neale, Samuel; Schomaker, Jennifer M

    2012-07-23

    Benzylic functionalization is a convenient approach towards the conversion of readily available aromatic hydrocarbon feedstocks into more useful molecules. However, the formation of carbanionic benzyl species from benzyl halides or similar precursors is far from trivial. An alternative approach is the direct reaction of a styrene with a suitable coupling partner, but these reactions often involve the use of precious-metal transition-metal catalysts. Herein, we report the facile and convenient generation of reactive benzyl anionic species from styrenes. A Cu(I)-catalyzed Markovnikov hydroboration of the styrenic double bond by using a bulky pinacol borane source is followed by treatment with KOtBu to facilitate a sterically induced cleavage of the C-B bond to produce a benzylic carbanion. Quenching this intermediate with a variety of electrophiles, including CO(2), CS(2), isocyanates, and isothiocyanates, promotes C-C bond formation at the benzylic carbon atom. The utility of this methodology was demonstrated in a three-step, two-pot synthesis of the nonsteroidal anti-inflammatory drug (±)-flurbiprofen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Antimicrobial Activity of Isothiocyanates from Cruciferous Plants against Methicillin-Resistant Staphylococcus aureus (MRSA

    Directory of Open Access Journals (Sweden)

    Carla Dias

    2014-10-01

    Full Text Available Purified isothiocyanates from cruciferous plants (Brassicacea, Syn. Cruciferae plants were evaluated against 15 isolates of methicillin-resistant S. aureus isolated from diabetic foot-ulcer patients aiming the study of the potential usage of allyl-isothiocyanate, benzyl-isothiocyanate and 2-phenylethyl-isothiocyanate against this important bacteria. Disc diffusion and minimum inhibitory concentration methods were used to access the antimicrobial activity. The index (Ia and rate (Ra of the antibacterial activity for each compound were calculated. The results showed a highly dose-dependent compound and chemical structure antibacterial effectiveness. The results showed a strong relation between the chemical structure of isothiocyanates and its antibacterial effectiveness. The benzyl-isothiocyanate was the most effective with a minimum inhibitory concentration varying between 2.9 and 110 µg·mL−1 with an antibacterial activity rate up to 87%. Moreover, their antibacterial activity was mainly bactericidal. This study provides scientific evidence that isothiocyanates have an interesting biological value and must be considered as an important tool to be used against MRSA.

  20. Synthesis of 2-(2-R1-Hydrazino-5-(R2-benzyl-2-thiazolines on the Basis of Meerweins Arylation Products of Allyl Isothiocyanate

    Directory of Open Access Journals (Sweden)

    Mykola I. Ganushchak

    2003-02-01

    Full Text Available 3-Aryl-2-chloropropylisothiocyanates (1 are formed by interaction of arenediazonium chlorides with allyl isothiocyanate. Adducts 1 react with monoacylhydrazines to form 1-acyl-4-(3-aryl-2-chloropropylthiosemicarbazides (2a–d. Thiosemicarbazides 2a–d in the presence of bases selectively transform into 2-(2-R1-hydrazino-5-(R2-benzyl-2-thiazolines (3a–d.

  1. Investigations of a Possible Chemical Effect of Salvadora persica Chewing Sticks

    Directory of Open Access Journals (Sweden)

    Reham Albabtain

    2017-01-01

    Full Text Available Salvadora persica is commonly used chewing sticks in many parts of the world as an oral hygiene tool. This study measured the amount of benzyl isothiocyanate (BITC released into the mouth and assessed its retention time in saliva. The study also tested if the released amount of BITC could potentially be antibacterial or cytotoxic. Twelve subjects brushed their teeth with fresh Miswak once, twice, and four times. The amount of BITC in the saliva and in the used brushes was quantified using gas chromatography-mass spectrometry. The antibacterial effect of BITC and Miswak essential oil (MEO was tested against Haemophilus influenzae, Aggregatibacter actinomycetemcomitans, and Porphyromonas gingivalis. The cytotoxic effect on gingival fibroblasts and keratinocytes was tested using MTT. The highest amount of the active compounds was detected in saliva after using the Miswak tip for once and immediately. It significantly decreased when the Miswak tip was used more than once and thus after 10 min. The growth of the tested bacteria was inhibited by MEO and BITC in a dose dependent manner, P. gingivalis being the most sensitive. MTT assay showed that BITC and MEO were cytotoxic towards gingival fibroblasts while oral keratinocytes showed resistance. This study suggests that the Miswak tip should be cut before each use to ensure the maximum effect.

  2. Contact and fumigant toxicity of Armoracia rusticana essential oil, allyl isothiocyanate and related compounds to Dermatophagoides farinae.

    Science.gov (United States)

    Yun, Yeon-Kyeong; Kim, Hyun-Kyung; Kim, Jun-Ran; Hwang, Kumnara; Ahn, Young-Joon

    2012-05-01

    The toxicity to adult Dermatophagoides farinae of allyl isothiocyanate identified in horseradish, Armoracia rusticana, oil and another 27 organic isothiocyanates was evaluated using contact + fumigant and vapour-phase mortality bioassays. Results were compared with those of two conventional acaricides, benzyl benzoate and dibutyl phthalate. Horseradish oil (24 h LC(50), 1.54 µg cm(-2)) and allyl isothiocyanate (2.52 µg cm(-2)) were highly toxic. Benzyl isothiocyanate (LC(50) , 0.62 µg cm(-2)) was the most toxic compound, followed by 4-chlorophenyl, 3-bromophenyl, 3,5-bis(trifluoromethyl)phenyl, cyclohexyl, 2-chlorophenyl, 4-bromophenyl and 2-bromophenyl isothiocyanates (0.93-1.41 µg cm(-2)). All were more effective than either benzyl benzoate (LC(50) , 4.58 µg cm(-2)) or dibutyl phthalate (24.49 µg cm(-2)). The structure-activity relationship indicates that types of functional group and chemical structure appear to play a role in determining the isothiocyanate toxicities to adult D. farinae. In the vapour-phase mortality bioassay, these isothiocyanates were consistently more toxic in closed versus open containers, indicating that their mode of delivery was, in part, a result of vapour action. In the light of global efforts to reduce the level of highly toxic synthetic acaricides in indoor environments, the horseradish oil-derived compounds and the isothiocyanates described herein merit further study as potential acaricides for the control of house dust mite populations as fumigants with contact action. Copyright © 2011 Society of Chemical Industry.

  3. Natural isothiocyanates express antimicrobial activity against developing and mature biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Kaiser, Stefan J; Mutters, Nico T; Blessing, Brigitte; Günther, Frank

    2017-06-01

    The antimicrobial properties of natural isothiocyanates (ITCs) found in plants such as nasturtium (Tropaeolum majus) and horseradish (Armoracia rusticana), and the need of new chemotherapeutic options for treatment of infections caused by multidrug-resistant and biofilm-forming Gram-negative bacteria such as Pseudomonas aeruginosa (Pa), led us to evaluate the effects of three major ITCs, allylisothiocyanate (AITC), benzylisothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC), and a mixture (ITCM) adapted to the ITC composition after release of active components out of natural sources. Out of 105Pa isolates 27 isolates with increased biofilm formation were selected for testing. The effects of ITCs on Pa were evaluated regarding (1) planktonic bacterial proliferation, (2) biofilm formation, (3) metabolic activity in mature biofilms, and (4) synergism of ITCs and antibiotics. (1) Each ITC had anti-Pa activity. Mean minimum inhibitory concentrations (MICs) were (μg/ml, mean±standard deviation): AITC 103±6.9; BITC, 2145±249; PEITC 29,423±1652; and ITCM, 140±5. (2) Treating bacteria with PEITC and ITCM in concentrations below the MIC significantly inhibited biofilm formation. Particularly, ITCM reduced biofilm mass and bacterial proliferation. (3) ITCs significantly inhibited metabolic activity in mature biofilms. (4) Combining ITCs with meropenem synergistically increased antimicrobial efficacy on Pa biofilms. ITCs represent a promising group of natural anti-infective compounds with activity against Pa biofilms. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Antitrypanosomal isothiocyanate and thiocarbamate glycosides from Moringa peregrina.

    Science.gov (United States)

    Ayyari, Mahdi; Salehi, Peyman; Ebrahimi, Samad Nejad; Zimmermann, Stefanie; Portmann, Lena; Krauth-Siegel, R Luise; Kaiser, Marcel; Brun, Reto; Rezadoost, Hassan; Rezazadeh, Shamsali; Hamburger, Matthias

    2014-01-01

    O-Methyl (1), O-ethyl (2), and O-butyl (3) 4-[(α-L-rhamnosyloxy) benzyl] thiocarbamate (E), along with 4-(α-L-rhamnosyloxy) benzyl isothiocyanate (4) have been isolated from the aerial parts of Moringa peregrina. The compounds were tested for in vitro activity against Trypanosoma brucei rhodesiense and cytotoxicity in rat skeletal myoblasts (L6 cells). The most potent compound was 4 with an IC50 of 0.10 µM against T.b. rhodesiense and a selectivity index of 73, while the thiocarbamate glycosides 1, 2, and 3 showed only moderate activity. Intraperitoneal administration of 50 mg/kg body weight/day of 4 in the T.b. rhodesiense STIB 900 acute mouse model revealed significant in vivo toxicity. Administration of 10 mg/kg body weight/day resulted in a 95% reduction of parasitemia on day 7 postinfection, but did not cure the animals. Because of its high in vitro activity and its ability to irreversibly inhibit trypanothione reductase, an attractive parasite-specific target enzyme, 4-[(α-L-rhamnosyloxy) benzyl] isothiocyanate (4), can be considered as a lead structure for the development and characterization of novel antitrypanosomal drugs. Georg Thieme Verlag KG Stuttgart · New York.

  5. Aerial parts of maca (Lepidium meyenii Walp.) as functional vegetables with gastrointestinal prokinetic efficacy in vivo.

    Science.gov (United States)

    Jin, Wenwen; Chen, Xuemin; Huo, Qing; Cui, Yajie; Yu, Zejun; Yu, Longjiang

    2018-06-20

    Lepidium meyenii Walp. (maca) has been utilized in the Andean region because of its edibleness and medicinal value. The aerial parts of maca (APM) were analyzed for protein, total sugar, vitamins, amino acids, and minerals and its characteristic active ingredients at five different growth stages. The results showed the high protein, total sugar, vitamin C, niacin, potassium, and calcium contents of APM. All 17 amino acids and the characteristic active ingredients, namely, macamide, glucosinolates, adenosine, and total saponins, were detected. We examined the effects of maca plant powders on gastric emptying and intestinal propulsion and the levels of serum motilin and gastrin in atropine-treated mice. Benzyl isothiocyanate (BITC) was investigated to identify the potential active material in APM. The results revealed that both maca plant powders and BITC can promote the gastrointestinal prokinetic efficacy. Thus, APM feature potential as new functional vegetable sources.

  6. Direct and indirect antioxidant activity of polyphenol- and isothiocyanate-enriched fractions from Moringa oleifera.

    Science.gov (United States)

    Tumer, Tugba Boyunegmez; Rojas-Silva, Patricio; Poulev, Alexander; Raskin, Ilya; Waterman, Carrie

    2015-02-11

    Moringa oleifera Lam. is a fast-growing, tropical tree with various edible parts used as nutritious food and traditional medicine. This study describes an efficient preparatory strategy to extract and fractionate moringa leaves by fast centrifugal partition chromatography (FCPC) to produce polyphenol and isothiocyanate (ITC) rich fractions. Characterization and further purification of these fractions showed that moringa polyphenols were potent direct antioxidants assayed by oxygen radical absorbance capacity (ORAC), whereas moringa ITCs were effective indirect antioxidants assayed by induction of NAD(P)H quinone oxidoreductase 1 (NQO1) activity in Hepa1c1c7 cells. In addition, purified 4-[(α-l-rhamnosyloxy)benzyl]isothiocyanate and 4-[(4'-O-acetyl-α-l-rhamnosyloxy)benzyl]isothiocyanate were further evaluated for their ORAC and NQO1 inducer potency in comparison with sulforaphane (SF). Both ITCs were as potent as SF in inducing NQO1 activity. These findings suggest that moringa leaves contain a potent mixture of direct and indirect antioxidants that can explain its various health-promoting effects.

  7. Differing mechanisms of simple nitrile formation on glucosinolate degradation in Lepidium sativum and Nasturtium officinale seeds.

    Science.gov (United States)

    Williams, David J; Critchley, Christa; Pun, Sharon; Chaliha, Mridusmita; O'Hare, Timothy J

    2009-01-01

    Glucosinolates are sulphur-containing glycosides found in brassicaceous plants that can be hydrolysed enzymatically by plant myrosinase or non-enzymatically to form primarily isothiocyanates and/or simple nitriles. From a human health perspective, isothiocyanates are quite important because they are major inducers of carcinogen-detoxifying enzymes. Two of the most potent inducers are benzyl isothiocyanate (BITC) present in garden cress (Lepidium sativum), and phenylethyl isothiocyanate (PEITC) present in watercress (Nasturtium officinale). Previous studies on these salad crops have indicated that significant amounts of simple nitriles are produced at the expense of the isothiocyanates. These studies also suggested that nitrile formation may occur by different pathways: (1) under the control of specifier protein in garden cress and (2) by an unspecified, non-enzymatic path in watercress. In an effort to understand more about the mechanisms involved in simple nitrile formation in these species, we analysed their seeds for specifier protein and myrosinase activities, endogenous iron content and glucosinolate degradation products after addition of different iron species, specific chelators and various heat treatments. We confirmed that simple nitrile formation was predominantly under specifier protein control (thiocyanate-forming protein) in garden cress seeds. Limited thermal degradation of the major glucosinolate, glucotropaeolin (benzyl glucosinolate), occurred when seed material was heated to >120 degrees C. In the watercress seeds, however, we show for the first time that gluconasturtiin (phenylethyl glucosinolate) undergoes a non-enzymatic, iron-dependent degradation to a simple nitrile. On heating the seeds to 120 degrees C or greater, thermal degradation of this heat-labile glucosinolate increased simple nitrile levels many fold.

  8. Assessing Natural Isothiocyanate Air Emissions after Field Incorporation of Mustard Cover Crop

    Energy Technology Data Exchange (ETDEWEB)

    Trott, Donna M.; LePage, Jane; Hebert, Vincent

    2012-01-01

    A regional air assessment was performed to characterize volatile natural isothiocyanate (NITC) compounds in air during soil incorporation of mustard cover crops in Washington State. Field air sampling and analytical methods were developed specific to three NITCs known to be present in air at appreciable concentrations during/after field incorporation. The maximum observed concentrations in air for the allyl, benzyl, and phenethyl isothiocyanates were respectively 188, 6.1, and 0.7 lg m-3 during mustard incorporation. Based on limited inhalation toxicity information, airborne NITC concentrations did not appear to pose an acute human inhalation exposure concern to field operators and bystanders.

  9. ynthesis and Characterization of 1-Aryl-5-hepta-O-acetyl-β-D-maltosyl-2-S-benzyl-2,4-isodithiobiurets

    Directory of Open Access Journals (Sweden)

    R. D. Ghuge

    2012-01-01

    Full Text Available The facile synthesis of 1-aryl-5-hepta-o-acetyl-β-D-maltosyl-2-S-benzyl-2,4-isodithiobiurets (IIIa-g has been achieved by the interaction of 1-hepta-O-acetyl-β–D-maltosyl isothiocyanate (I with various1-aryl-S-benzyl isothiocarbamides (IIa-g. All the newly synthesized N-maltosylated compounds characterized by elemental analysis, IR, NMR and Mass spectral studies.

  10. Administration of 4-(α-L-Rhamnosyloxy-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Maria Galuppo

    2015-01-01

    Full Text Available 4-(α-L-Rhamnosyloxy-benzyl glucosinolate (glucomoringin, GMG is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy-benzyl isothiocyanate (GMG-ITC. The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg bioactivated with myrosinase (20 µL/rat via intraperitoneal (i.p. injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.

  11. Antimicrobial Activity and Chromatographic Analysis of Extracts from Tropaeolum pentaphyllum Lam. Tubers

    Directory of Open Access Journals (Sweden)

    Ritiel Corrêa da Cruz

    2016-04-01

    Full Text Available Background: Tropaeolum pentaphyllum Lam. tubers (Tropaeolaceae are known and used as a condiment and for the treatment of skin infections in Southern Brazil. However, its activity and composition has not yet been investigated. Thus, different extracts and the essential oil from the tubers were tested against a range of microorganisms. The most active extracts were submitted to chromatographic analysis. Methods: Hydroalcoholic extract (70%, fractions of it, and the essential oil from the tubers were tested against several bacteria, yeasts and molds, furnishing the corresponding inhibitory, bactericidal and fungicidal minimal concentration values. The most active extracts were submitted to GC-MS investigation. Results: The strongest effects against different strains of microorganisms, such as Gram-positive and negative bacteria, Candida spp. and dermatophytes were observed for the essential oil and the chloroform fraction, with minimal inhibitory concentrations (MICs well below 200 µg/mL. GC-MS analysis revealed that the major essential oil constituent is benzyl isothiocyanate (BITC, while the chloroform fraction is constituted of BITC, amides, sulfur, fatty acids and its esters, all compounds that may be related to the demonstrated activity. Conclusions: Overall, the results support the popular use of the plant for the treatment of skin infections, and revealed the main active compounds.

  12. Isothiocyanates: a review

    Directory of Open Access Journals (Sweden)

    Chandra Kala*

    2018-04-01

    Full Text Available Isothiocyanates (ITCs are naturally occurring molecules belonging to highly reactive organosulphur synthons, with the general structure R–N=C=S. The precursor molecule glucosinolate anions are hydrolyzed enzymatically (under the effect of myrosinase enzymes or unenzymatically to produce nitriles or isothiocyanates depending upon conditions such as pH and temperature. Brassicaceae  Family is known to contain abundant ITCs. A significant number of isothiocyanates has been isolated from different plant sources and some of them have been synthesized. Several isothiocyanates have demonstrated significant pharmacological activities including anti-cancer, anti-inflammatory, anti-microbial activities, etc. Pharmacokinetic profiles of these sulphur containing compounds are well established. However, safety profiles of ITCs need consideration and a well-designed study with appropriate control, for their production as lead compounds. This review summarises the chemistry, sources, pharmacokinetics, pharmacological activity and toxicity profiles of the isothiocyanates.

  13. Effects of seven chemicals on DNA damage in the rat urinary bladder: a comet assay study.

    Science.gov (United States)

    Wada, Kunio; Yoshida, Toshinori; Takahashi, Naofumi; Matsumoto, Kyomu

    2014-07-15

    The in vivo comet assay has been used for the evaluation of DNA damage and repair in various tissues of rodents. However, it can give false-positive results due to non-specific DNA damage associated with cell death. In this study, we examined whether the in vivo comet assay can distinguish between genotoxic and non-genotoxic DNA damage in urinary bladder cells, by using the following seven chemicals related to urinary bladder carcinogenesis in rodents: N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN), glycidol, 2,2-bis(bromomethyl)-1,3-propanediol (BMP), 2-nitroanisole (2-NA), benzyl isothiocyanate (BITC), uracil, and melamine. BBN, glycidol, BMP, and 2-NA are known to be Ames test-positive and they are expected to produce DNA damage in the absence of cytotoxicity. BITC, uracil, and melamine are Ames test-negative with metabolic activation but have the potential to induce non-specific DNA damage due to cytotoxicity. The test chemicals were administered orally to male Sprague-Dawley rats (five per group) for each of two consecutive days. Urinary bladders were sampled 3h after the second administration and urothelial cells were analyzed by the comet assay and subjected to histopathological examination to evaluate cytotoxicity. In the urinary bladders of rats treated with BBN, glycidol, and BMP, DNA damage was detected. In contrast, 2-NA induced neither DNA damage nor cytotoxicity. The non-genotoxic chemicals (BITC, uracil, and melamine) did not induce DNA damage in the urinary bladders under conditions where some histopathological changes were observed. The results indicate that the comet assay could distinguish between genotoxic and non-genotoxic chemicals and that no false-positive responses were obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Isothiocyanates: a review

    OpenAIRE

    Chandra Kala*; Syed Salman Ali; Nabeel Ahmad; Sadaf Jamal Gilani; Najam Ali Khan

    2018-01-01

    Isothiocyanates (ITCs) are naturally occurring molecules belonging to highly reactive organosulphur synthons, with the general structure R–N=C=S. The precursor molecule glucosinolate anions are hydrolyzed enzymatically (under the effect of myrosinase enzymes) or unenzymatically to produce nitriles or isothiocyanates depending upon conditions such as pH and temperature. Brassicaceae  Family is known to contain abundant ITCs. A significant number of isothiocyanates has been isolated from differ...

  15. Unexpected side products in the conjugation of an amine-derivatized morpholino oligomer with p-isothiocyanate benzyl DTPA and their removal

    Energy Technology Data Exchange (ETDEWEB)

    Liu Guozheng, E-mail: guozheng.liu@umassmed.ed [Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Dou Shuping; Liu Yuxia; Liang Minmin; Chen Ling; Cheng Dengfeng [Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Greiner, Dale [Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655 (United States); Rusckowski, Mary; Hnatowich, Donald J. [Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655 (United States)

    2011-02-15

    In connection with pretargeting, an amine-derivatized morpholino phosphorodiamidate oligomer (NH{sub 2}-cMORF) was conjugated conventionally with p-isothiocyanate benzyl-DTPA (p-SCN-Bn-DTPA). However, after {sup 111}In radiolabeling, unexpected label instability was observed. To understand this instability, the NH{sub 2}-cMORF and, as control, the native cMORF without the amine were conjugated in the conventional manner. Surprisingly, the {sup 111}In labeling of the native cMORF conjugate was equally effective as that of the NH{sub 2}-cMORF conjugate (>95%) despite the absence of the amine group. Furthermore, heating the radiolabeled NH{sub 2}-cMORF and native cMORF conjugates resulted in a 35% loss and a complete loss of the label, respectively. Since the {sup 111}In labeled DTPA is known to be stable, the instability in both cases must be due to some unstable association of DTPA to the cMORF, presumably unstable association to some endogenous sites in cMORF. Based on this assumption, a postconjugation-prepurification heating step was introduced, and labeling efficiency and stability were again investigated. By introducing the heating step, the side products were dissociated, and after purification and labeling, the NH{sub 2}-cMORF conjugate provided a stable label and high labeling efficiency with no need for postlabeling purification. The biodistribution of this radiolabeled conjugate in normal mice showed significantly lower backgrounds compared with the labeled unstable native cMORF conjugate. In conclusion, the conventional conjugation procedure to attach the p-SCN-Bn-DTPA to NH{sub 2}-cMORF resulted in side product(s) that were responsible for the {sup 111}In label instability. Adding a postconjugation-prepurification heating step dissociated the side products, improved the label stability and lowered tissue backgrounds in mice.

  16. Compound list: naphthyl isothiocyanate [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available naphthyl isothiocyanate ANIT 00009 ftp://ftp.biosciencedbc.jp/archive/open-tggates/...LATEST/Human/in_vitro/naphthyl_isothiocyanate.Human.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/op...en-tggates/LATEST/Rat/in_vitro/naphthyl_isothiocyanate.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/arc...hive/open-tggates/LATEST/Rat/in_vivo/Liver/Single/naphthyl_isothiocyanate.Rat.in_...vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liver/Repeat/naphthyl_isothiocyanate.Rat.in_vivo.Liver.Repeat.zip ...

  17. Raman spectroscopy, electronic microscopy and SPME-GC-MS to elucidate the mode of action of a new antimicrobial food packaging material.

    Science.gov (United States)

    Clemente, Isabel; Aznar, Margarita; Salafranca, Jesús; Nerín, Cristina

    2017-02-01

    One critical challenge when developing a new antimicrobial packaging material is to demonstrate the mode of action of the antimicrobials incorporated into the packaging. For this task, several analytical techniques as well as microbiology are required. In this work, the antimicrobial properties of benzyl isothiocyanate, allyl isothiocyanate and essential oils of cinnamon and oregano against several moulds and bacteria have been evaluated. Benzyl isothiocyanate showed the highest antimicrobial activity and it was selected for developing the new active packaging material. Scanning electron microscopy and Raman spectroscopy were successfully used to demonstrate the mode of action of benzyl isothiocyanate on Escherichia coli. Bacteria exhibited external modifications such as oval shape and the presence of septum surface, but they did not show any disruption or membrane damage. To provide data on the in vitro action of benzyl isothiocyanate and the presence of inhibition halos, the transfer mechanism to the cells was assessed using solid-phase microextraction-gas chromatography-mass spectrometry. Based on the transfer system, action mechanism and its stronger antimicrobial activity, benzyl isothiocyanate was incorporated to two kinds of antimicrobial labels. The labels were stable and active for 140 days against two mould producers of ochratoxin A; Penicillium verrucosum is more sensitive than Aspergillus ochraceus. Details about the analytical techniques and the results obtained are shown and discussed. Graphical Abstract Antimicrobial evaluation of pure compounds, incorporation in the packaging and study for mode of action on S. coli by Raman, SEM and SPME-GC-MS.

  18. Potential anti-inflammatory phenolic glycosides from the medicinal plant Moringa oleifera fruits

    Science.gov (United States)

    Bioassay-guided isolation and purification of the ethyl acetate extract of Moringa oleifera fruits yielded three new phenolic glycosides; 4-[(2'-O-acetyl-a-L-rhamnosyloxy) benzyl]isothiocyanate (1), 4-[(3'-O-acetyl-a-L-rhamnosyloxy)benzyl]isothiocyanate (2), and S-methyl-N-{4-[(a-L-rhamnosyloxy)benz...

  19. Benzyl Alcohol Topical

    Science.gov (United States)

    Benzyl alcohol lotion is used to treat head lice (small insects that attach themselves to the skin) in adults ... children less than 6 months of age. Benzyl alcohol is in a class of medications called pediculicides. ...

  20. Cytotoxicity, Antioxidant and Apoptosis Studies of Quercetin-3-O Glucoside and 4-(β-D-Glucopyranosyl-1→4-α-L-Rhamnopyranosyloxy)-Benzyl Isothiocyanate from Moringa oleifera.

    Science.gov (United States)

    Maiyo, Fiona C; Moodley, Roshila; Singh, Moganavelli

    2016-01-01

    Moringa oleifera, from the family Moringaceae, is used as a source of vegetable and herbal medicine and in the treatment of various cancers in many African countries, including Kenya. The present study involved the phytochemical analyses of the crude extracts of M.oleifera and biological activities (antioxidant, cytotoxicity and induction of apoptosis in-vitro) of selected isolated compounds. The compounds isolated from the leaves and seeds of the plant were quercetin-3-O-glucoside (1), 4-(β-D-glucopyranosyl-1→4-α-L-rhamnopyranosyloxy)-benzyl isothiocyanate (2), lutein (3), and sitosterol (4). Antioxidant activity of compound 1 was significant when compared to that of the control, while compound 2 showed moderate activity. The cytotoxicity of compounds 1 and 2 were tested in three cell lines, viz. liver hepatocellular carcinoma (HepG2), colon carcinoma (Caco-2) and a non-cancer cell line Human Embryonic Kidney (HEK293), using the MTT cell viability assay and compared against a standard anticancer drug, 5-fluorouracil. Apoptosis studies were carried out using the acridine orange/ethidium bromide dual staining method. The isolated compounds showed selective in vitro cytotoxic and apoptotic activity against human cancer and non-cancer cell lines, respectively. Compound 1 showed significant cytotoxicity against the Caco-2 cell line with an IC50 of 79 μg mL(-1) and moderate cytotoxicity against the HepG2 cell line with an IC50 of 150 μg mL(-1), while compound 2 showed significant cytotoxicity against the Caco- 2 and HepG2 cell lines with an IC50 of 45 μg mL(-1) and 60 μg mL(-1), respectively. Comparatively both compounds showed much lower cytotoxicity against the HEK293 cell line with IC50 values of 186 μg mL(-1) and 224 μg mL(-1), respectively.

  1. Peptide Reactivity of Isothiocyanates - Implications for Skin Allergy

    Science.gov (United States)

    Karlsson, Isabella; Samuelsson, Kristin; Ponting, David J.; Törnqvist, Margareta; Ilag, Leopold L.; Nilsson, Ulrika

    2016-02-01

    Skin allergy is a chronic condition that affects about 20% of the population of the western world. This disease is caused by small reactive compounds, haptens, able to penetrate into the epidermis and modify endogenous proteins, thereby triggering an immunogenic reaction. Phenyl isothiocyanate (PITC) and ethyl isothiocyanate (EITC) have been suggested to be responsible for allergic skin reactions to chloroprene rubber, the main constituent of wetsuits, orthopedic braces, and many types of sports gear. In the present work we have studied the reactivity of the isothiocyanates PITC, EITC, and tetramethylrhodamine-6-isothiocyanate (6-TRITC) toward peptides under aqueous conditions at physiological pH to gain information about the types of immunogenic complexes these compounds may form in the skin. We found that all three compounds reacted quickly with cysteine moieties. For PITC and 6-TRITC the cysteine adducts decomposed over time, while stable adducts with lysine were formed. These experimental findings were verified by DFT calculations. Our results may suggest that the latter are responsible for allergic reactions to isothiocyanates. The initial adduct formation with cysteine residues may still be of great importance as it prevents hydrolysis and facilitates the transport of isothiocyanates into epidermis where they can form stable immunogenic complexes with lysine-containing proteins.

  2. Metal-doped inorganic nanoparticles for multiplex detection of biomarkers by a sandwich-type ICP-MS immunoassay.

    Science.gov (United States)

    Ko, Jung Aa; Lim, H B

    2016-09-28

    Metal-doped inorganic nanoparticles were synthesized for the multiplex detection of biomarkers by a sandwich-type inductively coupled plasma mass spectrometry (ICP-MS) immunoassay. The synthesized Cs-doped multicore magnetic nanoparticles (MMNPs) were used not only for magnetic extraction of targets but also for ratiometric measurement in ICP-MS. In addition, three different metal/dye-doped silica nanoparticles (SNPs) were synthesized as probes for multiplex detection: Y/RhBITC (rhodamine B isothiocyanate)-doped SNPs for CRP (cardiovascular disease), Cd/RhBITC-doped SNPs for AFP (tumor), and Au/5(6)-XRITC (X-rhodamine-5-(and-6)-isothiocyanate)-doped SNPs for NSE (heart disease). For quantification, the doped metals of SNPs were measured by ICP-MS and then the signal ratio to Cs of MMNPs was plotted with respect to the concentration of targets by a ratiometry. Limits of detection (LOD) of 0.35 ng/mL to 77 ng mL(-1) and recoveries of 83%-125% were obtained for serum samples spiked with the biomarkers. Since no sample treatment was necessary prior to the extraction, the proposed method provided short analysis time and convenience for the multiplex determination of biomarkers, which will be valuable for clinical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Benzyl 2-((E-Tosyliminomethylphenylcarbamate

    Directory of Open Access Journals (Sweden)

    Kwang Min Ko

    2016-10-01

    Full Text Available Benzyl 2-((E-tosyliminomethylpenylcarbamate was prepared in good yield and characterized by the condensation reaction of benzyl 2-formylphenylcarbamate with p-toluenesulfonyl amine. The structure of the newly synthesized compound was determined using 1H, 13C-NMR, IR and mass spectral data.

  4. Enhanced catalytic properties of mesoporous mordenite for benzylation of benzene with benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Sandeep K.; Viswanadham, Nagabhatla, E-mail: nagabhatla.viswanadham@gmail.com

    2017-01-15

    Graphical abstract: The nano size pores (∼10 nm) created in the microporous mordenite zeolite facilitated enhanced catalytic activity to produce as high as 97 wt.% yield of di-phenyl methane in the benzylation of benzene with benzyl alcohol at solvent-free liquid phase reaction conditions. - Highlights: • Nano pores of ∼10 nm size have been created in microporous mordenite. • Dealumination at optimized conditions resulted in enhanced properties of mordenite. • Hierarchically porous mordenite enhanced bulky catalytic reactions. • As high as 97% selectivity to Di-phenyl methane obtained. • Solvent-free, liquid phase alkylation catalyst with stable activity for reusability. - Abstract: Zeolite mordenite has been treated with nitric acid at different severities so as to facilitate the framework dealumination and optimization of the textural properties such as acidity and porosity. The samples obtained have been characterized by X-ray diffraction, FTIR, SEM, TEM, surface area, porosity by N{sub 2} adsorption and ammonia TPD. The resultant samples have been evaluated towards the bulky alkylation reaction of benzylation of benzene with benzyl alcohol. The studies indicated the improvement in the textural properties such as surface area, pore volume and acidity of the samples after the acid treatment. While, the phenomenon of enhancement in properties was exhibited by all the acid treated mordenite samples, the highest improvement in properties was observed at a particular condition of acid treatment (SM-2 sample). This particular sample also exhibited highest acidity and the presence of ∼10 nm size pores that resulted in the effective catalytic activity towards the bulky alkylation reaction of benzene with benzyl alcohol to produce high yields of di-phenyl methane.

  5. Ultraviolet photodissociation dynamics of the benzyl radical.

    Science.gov (United States)

    Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong

    2011-05-14

    Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy, , is ∼0.3. The P(E(T))s indicate the production of fulvenallene + H, which was suggested by recent theoretical studies. The H-atom product angular distribution is isotropic, with the anisotropy parameter β ≈ 0. The H/D product ratios from isotope labeling studies using C(6)H(5)CD(2) and C(6)D(5)CH(2) are reasonably close to the statistical H/D ratios, suggesting that the H/D atoms are scrambled in the photodissociation of benzyl. The dissociation mechanism is consistent with internal conversion of the electronically excited benzyl followed by unimolecular decomposition of the hot benzyl radical on the ground state.

  6. The rapid generation of isothiocyanates in flow

    Directory of Open Access Journals (Sweden)

    Marcus Baumann

    2013-08-01

    Full Text Available Isothiocyanates are versatile starting materials for a wide range of chemical reactions. However, their high nucleophilic susceptibility means they are best prepared and used immediately. We report here on a flow platform for the fast and efficient formation of isothiocyanates by the direct conversion of easily prepared chloroximes. To expedite this chemistry a flow insert cartridge containing two immobilised reagents is used to affect the chemical transformation which typically eliminates the requirements for any conventional work-up or purification of the reaction stream.

  7. Resonance Raman study of benzyl radical

    DEFF Research Database (Denmark)

    Langkilde, F.W.; Bajdor, K.; Wilbrandt, R.

    1992-01-01

    Time-resolved resonance Raman spectra are obtained of benzyl radicals created by laser flash photolysis of benzylchloride and diphenylacetone in solution. The spectra are obtained in resonance with the intense 2 2A2-1 B-2(2) transition of benzyl. The strong Raman bands are assigned to totally...... symmetric a1 modes. The remaining observed bands are tentatively assigned to fundamental modes of b1, a2, and b2 symmetry, and to overtones and combinations. The resonance Raman spectra are found to be quite different from previous fluorescence spectra of benzyl, and the origins of these differences...

  8. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2

    Directory of Open Access Journals (Sweden)

    Pedro T.W. Barroso

    2016-09-01

    Full Text Available Among the most important tropical fruit grown in the world today and in Brazil, papaya occupies a prominent place. Native to tropical America, papaya has spread to several regions of the world, and Brazil accounts for 12.74% of the world production, followed by Mexico, Nigeria and India. The culture reached a harvested area of 441,042 ha and production of 12,420,585 t worldwide. The largest interest in this fruit relies on its main constituent compounds, like vitamins A, B and C, alkaloids (carpaine and pseudocarpaine, proteolytic enzymes (papain and quimiopapain and benzyl isothiocyanate, more known as BITC, which has anthelmintic activity. Because of that, the present work has as objective the evaluation of the efficiency and composition of the oil extracted from Carica papaya L. seeds with supercritical carbon dioxide. The experiments were performed in a unit containing mainly a high-pressure pump and a stainless steel extractor with 42 mL of volume. The sampling was performed at each 20 min until the saturation of the process. About 6.5 g of sample were fed for each experiment done at 40, 60 and 80 °C under the pressures of 100, 150 and 200 bar. Samples of the Carica papaya L. fruit were acquired in a popular market and free for personal use intended for the study. After collection, the seeds were crushed with the help of a pestle, and dried at 60 °C for 60 min. For each operational condition, the extraction curves were constructed relating cumulative mass of oil extracted in function of the operational time. The better efficiencies were found at 40 °C and 200 bar (1.33% followed by 80 °C and 200 bar (2.56%. Gas chromatography and NMR analysis could identify an insecticide component (BITC that enables new applications of this residue in pharmaceutical and chemical industries.

  9. Evaluation of the composition of Carica papaya L. seed oil extracted with supercritical CO2.

    Science.gov (United States)

    Barroso, Pedro T W; de Carvalho, Pedro P; Rocha, Thiago B; Pessoa, Fernando L P; Azevedo, Debora A; Mendes, Marisa F

    2016-09-01

    Among the most important tropical fruit grown in the world today and in Brazil, papaya occupies a prominent place. Native to tropical America, papaya has spread to several regions of the world, and Brazil accounts for 12.74% of the world production, followed by Mexico, Nigeria and India. The culture reached a harvested area of 441,042 ha and production of 12,420,585 t worldwide. The largest interest in this fruit relies on its main constituent compounds, like vitamins A, B and C, alkaloids (carpaine and pseudocarpaine), proteolytic enzymes (papain and quimiopapain) and benzyl isothiocyanate, more known as BITC, which has anthelmintic activity. Because of that, the present work has as objective the evaluation of the efficiency and composition of the oil extracted from Carica papaya L. seeds with supercritical carbon dioxide. The experiments were performed in a unit containing mainly a high-pressure pump and a stainless steel extractor with 42 mL of volume. The sampling was performed at each 20 min until the saturation of the process. About 6.5 g of sample were fed for each experiment done at 40, 60 and 80 °C under the pressures of 100, 150 and 200 bar. Samples of the Carica papaya L. fruit were acquired in a popular market and free for personal use intended for the study. After collection, the seeds were crushed with the help of a pestle, and dried at 60 °C for 60 min. For each operational condition, the extraction curves were constructed relating cumulative mass of oil extracted in function of the operational time. The better efficiencies were found at 40 °C and 200 bar (1.33%) followed by 80 °C and 200 bar (2.56%). Gas chromatography and NMR analysis could identify an insecticide component (BITC) that enables new applications of this residue in pharmaceutical and chemical industries.

  10. Chemo-predictive assay for targeting cancer stem-like cells in patients affected by brain tumors.

    Directory of Open Access Journals (Sweden)

    Sarah E Mathis

    Full Text Available Administration of ineffective anticancer therapy is associated with unnecessary toxicity and development of resistant clones. Cancer stem-like cells (CSLCs resist chemotherapy, thereby causing relapse of the disease. Thus, development of a test that identifies the most effective chemotherapy management offers great promise for individualized anticancer treatments. We have developed an ex vivo chemotherapy sensitivity assay (ChemoID, which measures the sensitivity of CSLCs as well as the bulk of tumor cells to a variety of chemotherapy agents. Two patients, a 21-year old male (patient 1 and a 5-month female (patient 2, affected by anaplastic WHO grade-III ependymoma were screened using the ChemoID assay. Patient 1 was found sensitive to the combination of irinotecan and bevacizumab, which resulted in a prolonged disease progression free period of 18 months. Following recurrence, the combination of various chemotherapy drugs was tested again with the ChemoID assay. We found that benzyl isothiocyanate (BITC greatly increased the chemosensitivity of the ependymoma cells to the combination of irinotecan and bevacizumab. After patient 1 was treated for two months with irinotecan, bevacizumab and supplements of cruciferous vegetable extracts containing BITC, we observed over 50% tumoral regression in comparison with pre-ChemoID scan as evidenced by MRI. Patient 2 was found resistant to all treatments tested and following 6 cycles of vincristine, carboplatin, cyclophosphamide, etoposide, and cisplatin in various combinations, the tumor of this patient rapidly progressed and proton beam therapy was recommended. As expected animal studies conducted with patient derived xenografts treated with ChemoID screened drugs recapitulated the clinical observation. This assay demonstrates that patients with the same histological stage and grade of cancer may vary considerably in their clinical response, suggesting that ChemoID testing which measures the sensitivity

  11. Electron impact study of molecular ions of some benzyl derivatives

    International Nuclear Information System (INIS)

    Selim, E.T.; Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The ionization energies at threshold and values of higher energy levels for the molecular ions of benzyl alcohol, benzyl amine and benzyl cyanide are reported using electron impact technique. The first ionization energy values are found to be 8.26 eV (benzyl alcohol), 8.49 eV(benzyl amine)and 9.32 eV (benzyl cyanide). Some of the reported higher energy levels for the molecular ions are tentatively explained. The differences in the relative abundances for the main fragment ions are discussed and attributed to the effect of the different substituents - OH, -NH2 and -CN groups

  12. Effect of allyl isothiocyanate on developmental toxicity in exposed Xenopus laevis embryos

    Directory of Open Access Journals (Sweden)

    John Russell Williams

    2015-01-01

    Full Text Available The pungent natural compound allyl isothiocyanate isolated from the seeds of Cruciferous (Brassica plants such as mustard is reported to exhibit numerous beneficial health-promoting antimicrobial, antifungal, anticarcinogenic, cardioprotective, and neuroprotective properties. Because it is also reported to damage DNA and is toxic to aquatic organisms, the objective of the present study was to determine whether it possesses teratogenic properties. The frog embryo teratogenesis assay-Xenopus (FETAX was used to determine the following measures of developmental toxicity of the allyl isothiocyanate: (a 96-h LC50, defined as the median concentration causing 50% embryo lethality; (b 96-h EC50, defined as the median concentration causing 50% malformations of the surviving embryos; and (c teratogenic malformation index (TI, equal to 96-h LC50/96-h EC50. The quantitative results and the photographs of embryos before and after exposure suggest that allyl isothiocyanate seems to exhibit moderate teratogenic properties. The results also indicate differences in the toxicity of allyl isothiocyanate toward exposed embryos observed in the present study compared to reported adverse effects of allyl isothiocyanate in fish, rodents, and humans. The significance of the results for food safety and possible approaches to protect against adverse effects of allyl isothiocyanate are discussed.

  13. Benzylation of Toluene over Iron Modified Mesoporous Ceria

    Directory of Open Access Journals (Sweden)

    K.J. Rose Philo

    2012-12-01

    Full Text Available Green chemistry has been looked upon as a sustainable science which accomplishes both economical and environmental goals, simultaneously.With this objective, we developed an alternative process to obtain the industrially important benzyl aromatics by benzylation of aromatics using benzyl chloride, catalysed by mesoporous solid acid catalysts. In this work mesoporous ceria is prepared using neutral surfactant which helped the calcination possible at a lower temperature enabling a higher surface area. Mesoporous ceria modified with Fe can be successfully utilized for the selective benzylation of toluene to more desirable product methyl diphenyl methane with 100% conversion and selectivity in 2 hours using only 50mg of the catalyst under milder condition. The reusability, regenerability, high selectivity, 100% conversion, moderate reaction temperature and absence of solvent, etc. make these catalysts to be used in a truly heterogeneous manner and make the benzylation reaction an environment friendly one. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 30th June 2012; Revised: 7th November 2012; Accepted: 10th November 2012[How to Cite: K.J. Rose Philo, S. Sugunan. (2012. Benzylation of Toluene over Iron Modified Mesoporouxs Ceria. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 158-164. (doi:10.9767/bcrec.7.2.3759.158-164][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3759.158-164 ] | View in 

  14. The α-cyclodextrin complex of the Moringa isothiocyanate suppresses lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells through Akt and p38 inhibition.

    Science.gov (United States)

    Giacoppo, Sabrina; Rajan, Thangavelu Soundara; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2017-06-01

    In the last decades, a growing need to discover new compounds for the prevention and treatment of inflammatory diseases has led researchers to consider drugs derived from natural products as a valid option in the treatment of inflammation-associated disorders. The purpose of the present study was to investigate the anti-inflammatory effects of a new formulation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl isothiocyanate as a complex with alpha-cyclodextrin (moringin + α-CD) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells, a common model used for inflammation studies. In buffered/aqueous solution, the moringin + α-CD complex has enhanced the water solubility and stability of this isothiocyanate by forming a stable inclusion system. Our results showed that moringin + α-CD inhibits the production of inflammatory mediators in LPS-stimulated macrophages by down-regulation of pro-inflammatory cytokines (TNF-α and IL-1β), by preventing IκB-α phosphorylation, translocation of the nuclear factor-κB (NF-κB), and also via the suppression of Akt and p38 phosphorylation. In addition, as a consequence of upstream inhibition of the inflammatory pathway following treatment with moringin + α-CD, the modulation of the oxidative stress (results focused on the expression of iNOS and nitrotyrosine) and apoptotic pathway (Bax and Bcl-2) was demonstrated. Therefore, moringin + α-CD appears to be a new relevant helpful tool to use in clinical practice for inflammation-associated disorders.

  15. Highly Selective Liquid-Phase Benzylation of Anisole with Solid-Acid Zeolite Catalysts

    DEFF Research Database (Denmark)

    Poreddy, Raju; Shunmugavel, Saravanamurugan; Riisager, Anders

    2015-01-01

    Zeolites were evaluated as solid acid catalysts for the liquid-phase benzylation of anisole with benzyl alcohol, benzyl bromide, and benzyl chloride at 80 °C. Among the examined zeolites, H-mordenite-10 (H-MOR-10) demonstrated particular high activity (>99 %) and excellent selectivity (>96...

  16. Conformational Studies on γ - Benzyl- L- Glutamate and L- Valine Containing Block Copolypeptides

    OpenAIRE

    Kumar, Ajay

    2010-01-01

    Conformational studies on γ - benzyl-L- glutamate and L- valine containing block copolypeptides are reported using IR and CD spectra. The block copolypeptides contain valine block in the center and on both sides of the valine are γ - benzyl- L- glutamate blocks. The changes in conformation with increase in chain length of γ - benzyl- L- glutamate blocks are observed. When the chain length of γ - benzyl-L- glutamate block is 13, the block copolypeptide crystallized into beta conformation. With...

  17. Glucosinolates and isothiocyanates from broccoliseed extractsuppressproteinglycationand carbonylation

    Directory of Open Access Journals (Sweden)

    Marina Hirano,

    2018-01-01

    Full Text Available Background: Glucosinolates from brassica plants are hydrolyzed by internal or salivary myrosinase to produce isothiocyanates. Glucoraphanin, a major glucosinolate in broccoli, is hydrolyzed to sulforaphane (SFN, which exhibits antitumor and detoxification activities. Regarding the influence of broccoli and its constituents on the skin, a few studies have reported anti-inflammatory and antioxidant effects. Recently, advanced glycation end products (AGEs and carbonyl proteins have been reported to accelerate skin aging. Objective: We evaluated the effects of broccoli seed extract (BSE and glucosinolates on protein glycation and carbonylation in vitro. Methods: To evaluate the effects of BSE and its constituents, protein glycation and carbonylation were induced by mixing fructose with bovine serum albumin (BSA and then measuring production of AGEs, fructosamine, and carbonyl proteins (CP. Production of CP after mixing fatty acids with BSA was also assessed. Furthermore, the effect of BSE and its constituents on CP production by human fibroblasts (TIG103 was examined. Results: BSE suppressed the production of AGEs, fructosamine, and CP after mixing fructose and BSA. BSE also suppressed production of CP when oxidized linoleic acid was mixed with BSA. Isothiocyanates, including SFN and iberin, suppressed fructose-based CP production, but SFN had no effect on CP production stimulated by oxidized linoleic acid. In contrast, glucosinolates from BSE did not suppress fructose-based CP production, but suppressed CP production due to oxidized linoleic acid. Among the glucosinolates in BSE, glucoberteroin showed the strongest suppression of CP production. CP production in fibroblasts was also suppressed by glucosinolates, including glucoiberin and glucoberteroin. Conclusions: BSE demonstrated anti-glycation and anti-carbonylation effects on protein reactions with fructose and oxidized fatty acids. Isothiocyanates suppressed protein carbonylation induced by

  18. Dietary isothiocyanate sulforaphene induces reactive oxygen ...

    African Journals Online (AJOL)

    Purpose: To investigate the apoptotic activity, cell proliferation inhibition and different signaling protein expressions after treatment with a new isothiocyanate, sulforaphene, in human cervical cancer (HeLa) cells. Methods: Cytotoxicity was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay ...

  19. Urease from Helicobacter pylori is inactivated by sulforaphane and other isothiocyanates

    Science.gov (United States)

    Fahey, Jed W.; Stephenson, Katherine K.; Wade, Kristina L.; Talalay, Paul

    2013-01-01

    Infections by Helicobacter pylori are very common, causing gastroduodenal inflammation including peptic ulcers, and increasing the risk of gastric neoplasia. The isothiocyanate (ITC) sulforaphane [SF; 1-isothiocyanato-4-(methylsulfinyl)butane] derived from edible crucifers such as broccoli is potently bactericidal against Helicobacter, including antibiotic-resistant strains, suggesting a possible dietary therapy. Gastric H. pylori infections express high urease activity which generates ammonia, neutralizes gastric acidity, and promotes inflammation. The finding that SF inhibits (inactivates) urease (jack bean and Helicobacter) raised the issue of whether these properties might be functionally related. The rates of inactivation of urease activity depend on enzyme and SF concentrations and show first order kinetics. Treatment with SF results in time-dependent increases in the ultraviolet absorption of partially purified Helicobacter urease in the 280–340 nm region. This provides direct spectroscopic evidence for the formation of dithiocarbamates between the ITC group of SF and cysteine thiols of urease. The potencies of inactivation of Helicobacter urease by isothiocyanates structurally related to SF were surprisingly variable. Natural isothiocyanates closely related to SF, previously shown to be bactericidal (berteroin, hirsutin, phenethyl isothiocyanate, alyssin, and erucin), did not inactivate urease activity. Furthermore, SF is bactericidal against both urease positive and negative H. pylori strains. In contrast, some isothiocyanates such as benzoyl-ITC, are very potent urease inactivators, but are not bactericidal. The bactericidal effects of SF and other ITC against Helicobacter are therefore not obligatorily linked to urease inactivation, but may reduce the inflammatory component of Helicobacter infections. PMID:23583386

  20. In situ activation of benzyl alcohols with XtalFluor-E: formation of 1,1-diarylmethanes and 1,1,1-triarylmethanes through Friedel-Crafts benzylation.

    Science.gov (United States)

    Desroches, Justine; Champagne, Pier Alexandre; Benhassine, Yasmine; Paquin, Jean-François

    2015-02-28

    The Friedel-Crafts benzylation of arenes using benzyl alcohols activated in situ with XtalFluor-E is described. A wide range of 1,1-diarylmethanes and 1,1,1-triarylmethanes were prepared under experimentally simple and mild conditions, without the need for a transition metal or a strong Lewis acid. Notably, the reactivity observed demonstrates the potential of XtalFluor-E to induce C-OH bond ionization and SN1 reactivity of benzylic alcohols.

  1. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation

    Directory of Open Access Journals (Sweden)

    Ping eHu

    2015-01-01

    Full Text Available The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs. Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs. To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments. Bacterial populations were less impacted by ITCs, although there was atransient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms.

  2. One-pot sequential synthesis of O-(halo-substituted benzyl hydroxylammonium salts

    Directory of Open Access Journals (Sweden)

    Saeed Emami

    2017-02-01

    Full Text Available In this study, we described a simple one-pot preparation of O-(halo-substituted benzyl hydroxylamine derivatives by O-benzylation of N-hydroxyurethane, followed by basic N-deprotection. The advantages of the method were the chemo- and regio-selectivity in obtaining the desired O-benzyl hydroxylammonium salts in a high yield as well as the simplicity of the purification process.

  3. Selective methylation of kaempferol via benzylation and deacetylation of kaempferol acetates

    OpenAIRE

    Mei, Qinggang; Wang, Chun; Yuan, Weicheng; Zhang, Guolin

    2015-01-01

    A strategy for selective mono-, di- and tri-O-methylation of kaempferol, predominantly on the basis of selective benzylation and controllable deacetylation of kaempferol acetates, was developed. From the selective deacetylation and benzylation of kaempferol tetraacetate (1), 3,4′,5,-tri-O-acetylkaempferol (2) and 7-O-benzyl-3,4′5,-tri-O-acetylkaempferol (8) were obtained, respectively. By controllable deacetylation and followed selective or direct methylation of these two intermediates, eight...

  4. Radiolysis of benzyl alcohol in aqueous solution by external gamma-irradiation

    International Nuclear Information System (INIS)

    Ikebuchi, Hideharu; Kido, Yasumasa; Urakubo, Goro

    1977-01-01

    Radiolysis of 0.05% aqueous solution of benzyl alcohol with 60 Co γ-rays ranging from 1 x 10 4 to 7 x 10 5 rad was investigated, in order to presume the change of it contained in radiopharmaceuticals. For both O 2 free and oxygenated solutions, an approximately linear relationship holds between the retaining benzyl alcohol and dose in the range from 1 x 10 5 to 7 x 10 5 rads. The G(-M) values of benzyl alcohol calculated from the relation were 2.34 in the absence and 1.92 in presence of oxygen. In the presence of oxygen, a main product was benzaldehyde and its G value was 0.87. In the absence of oxygen, the main products of the radiolysis were dibenzyl, benzyl phenylcalbinol and hydrobenzoin, which were regarded as the radical-reaction products of PhCH 2 and PhCHOH, and the yield of benzaldehyde was negligible. Irrespective of the presence of oxygen, o- and p-hydroxylated products of benzyl alcohol were found only in small quantity. (auth.)

  5. Copper-Catalyzed Synthesis of Trifluoroethylarenes from Benzylic Bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Zhu, Lingui; Altman, Ryan A

    2015-08-21

    Trifluoroethylarenes are found in a variety of biologically active molecules, and strategies for accessing this substructure are important for developing therapeutic candidates and biological probes. Trifluoroethylarenes can be directly accessed via nucleophilic trifluoromethylation of benzylic electrophiles; however, current catalytic methods do not effectively transform electron-deficient substrates and heterocycles. To address this gap, we report a Cu-catalyzed decarboxylative trifluoromethylation of benzylic bromodifluoroacetates. To account for the tolerance of sensitive functional groups, we propose an inner-sphere mechanism of decarboxylation.

  6. 1D AND 2D NMR STUDIES OF BENZYL O–VANILLIN

    Directory of Open Access Journals (Sweden)

    Mohammed Hadi Al–Douh

    2010-06-01

    Full Text Available The reaction of o-vanillin A with benzyl bromide B2 in acetone as the solvent and K2CO3 as a base in the presence of tetra-n-butylammonium iodide (TBAI as catalyst formed benzyl o-vanillin, C. The complete assignments of C using PROTON, APT, DEPT-135, COSY, NOESY, HMQC and HMBC NMR in both CDCl3 and acetone-d6 are discussed, and the coupling constants J are reported in Hertz (Hz.     Keywords: 1H NMR; 13C NMR; 2D NMR; Benzyl o-Vanillin

  7. Fragrance material review on benzyl alcohol.

    Science.gov (United States)

    Scognamiglio, J; Jones, L; Vitale, D; Letizia, C S; Api, A M

    2012-09-01

    A toxicologic and dermatologic review of benzyl alcohol when used as a fragrance ingredient is presented. Benzyl alcohol is a member of the fragrance structural group Aryl Alkyl Alcohols and is a primary alcohol. The AAAs are a structurally diverse class of fragrance ingredients that includes primary, secondary, and tertiary alkyl alcohols covalently bonded to an aryl (Ar) group, which may be either a substituted or unsubstituted benzene ring. The common structural element for the AAA fragrance ingredients is an alcohol group -C-(R1)(R2)OH and generically the AAA fragrances can be represented as an Ar-C-(R1)(R2)OH or Ar-Alkyl-C-(R1)(R2)OH group. This review contains a detailed summary of all available toxicology and dermatology papers related to this individual fragrance ingredient and is not intended as a stand-alone document. Available data for benzyl alcohol were evaluated then summarized and includes physical properties, acute toxicity, skin irritation, mucous membrane (eye) irritation, skin sensitization, elicitation, phototoxicity, photoallergy, toxicokinetics, repeated dose, reproductive toxicity, genotoxicity, and carcinogenicity data. A safety assessment of the entire Aryl Alkyl Alcohols will be published simultaneously with this document; please refer to Belsito et al. (2012) for an overall assessment of the safe use of this material and all Aryl Alkyl Alcohols in fragrances. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Crystal structure of chlorido(η2-phenyl isothiocyanate-κ2C,S-mer-tris(trimethylphosphane-κPiridium(I

    Directory of Open Access Journals (Sweden)

    Joseph S. Merola

    2014-11-01

    Full Text Available The molecule of the title compound, [IrCl(C7H5NS(C3H9P3], is a distorted octahedral iridium complex with three PMe3 ligands arranged in a meridional geometry, a chloride ion cis to all three PMe3 groups and the phenyl isothiocyanate ligand bonded in an η2-fashion through the C and S atoms. The C atom is trans to the chloride ion and the S atom is responsible for a significant deviation from an ideal octahedral geometry. The geometric parameters for the metal-complexing phenyl isothiocyanate group are compared with other metal-complexed phenyl isothiocyanates, as well as with examples of uncomplexed aryl isothiocyanates.

  9. Glucosinolate-derived isothiocyanates impact mitochondrial function in fungal cells and elicit an oxidative stress response necessary for growth recovery

    Directory of Open Access Journals (Sweden)

    Benoit eCalmes

    2015-06-01

    Full Text Available Glucosinolates are brassicaceous secondary metabolites that have long been considered as chemical shields against pathogen invasion. Isothiocyanates, are glucosinolate-breakdown products that have negative effects on the growth of various fungal species. We explored the mechanism by which isothiocyanates could cause fungal cell death using Alternaria brassicicola, a specialist Brassica pathogens, as model organism. Exposure of the fungus to isothiocyanates led to a decreased oxygen consumption rate, intracellular accumulation of reactive oxygen species and mitochondrial-membrane depolarization. We also found that two major regulators of the response to oxidative stress, i.e. the MAP kinase AbHog1 and the transcription factor AbAP1, were activated in the presence of isothiocyanates. Once activated by isothiocyanate-derived reactive oxygen species, AbAP1 was found to promote the expression of different oxidative-response genes. This response might play a significant role in the protection of the fungus against isothiocyanates as mutants deficient in AbHog1 or AbAP1 were found to be hypersensitive to these metabolites. Moreover, the loss of these genes was accompanied by a significant decrease in aggressiveness on Brassica. We suggest that the robust protection response against isothiocyanate-derived oxidative stress might be a key adaptation mechanism for successful infection of host plants by Brassicaceae-specialist necrotrophs like A. brassicicola.

  10. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  11. Primary amino acid derivatives: substitution of the 4'-N'-benzylamide site in (R)-N'-benzyl 2-amino-3-methylbutanamide, (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide, and (R)-N'-benzyl 2-amino-3-methoxypropionamide provides potent anticonvulsants with pain-attenuating properties.

    Science.gov (United States)

    King, Amber M; Salomé, Christophe; Salomé-Grosjean, Elise; De Ryck, Marc; Kaminski, Rafal; Valade, Anne; Stables, James P; Kohn, Harold

    2011-10-13

    Recently, we reported that select N'-benzyl 2-substituted 2-amino acetamides (primary amino acid derivatives (PAADs)) exhibited pronounced activities in established whole animal anticonvulsant (i.e., maximal electroshock seizure (MES)) and neuropathic pain (i.e., formalin) models. The anticonvulsant activities of C(2)-hydrocarbon N'-benzyl 2-amino acetamides (MES ED(50) = 13-21 mg/kg) exceeded those of phenobarbital (ED(50) = 22 mg/kg). Two additional studies defining the structure-activity relationship of PAADs are presented in this issue of the journal. In this study, we demonstrated that the anticonvulsant activities of (R)-N'-benzyl 2-amino-3-methylbutanamide and (R)-N'-benzyl 2-amino-3,3-dimethylbutanamide were sensitive to substituents at the 4'-N'-benzylamide site; electron-withdrawing groups retained activity, electron-donating groups led to a loss of activity, and incorporating either a 3-fluorobenzyloxy or 3-fluorophenoxymethyl group using a rationally designed multiple ligand approach improved activity. Additionally, we showed that substituents at the 4'-N'-benzylamide site of (R)-N'-benzyl 2-amino-3-methoxypropionamide also improved anticonvulsant activity, with the 3-fluorophenoxymethyl group providing the largest (∼4-fold) increase in activity (ED(50) = 8.9 mg/kg), a value that surpassed phenytoin (ED(50) = 9.5 mg/kg). Collectively, the pharmacological findings provided new information that C(2)-hydrocarbon PAADs represent a novel class of anticonvulsants.

  12. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    Science.gov (United States)

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were evaluated in accessions of Brassica rapa, Brassica oleracea, and Arabidopsis thaliana. Mathematical modelling was performed to determine optimal isothiocyanate formation conditions and to obtain knowledge on the kinetics of the reactions. At 22 °C and endogenous plant pH, nearly all investigated plants formed nitriles and epithionitriles instead of health-promoting isothiocyanates. Response surface models, however, clearly demonstrated that upon change in pH to domestic acidic (pH 4) or basic pH values (pH 8), isothiocyanate formation considerably increases. While temperature also affects this process, the pH value has the greatest impact. Further, a kinetic model showed that isothiocyanate formation strongly increases due to dilution. Finally, the results show that isothiocyanate intake can be strongly increased by optimizing the conditions of preparation of Brassicales vegetables.

  13. Solid-state conformation of copolymers of ß-benzyl-L-aspartate with L-alanine, L-leucine, L-valine, γ-benzyl-L-glutamate, or ε-carbobenzoxy-L-lysine

    NARCIS (Netherlands)

    Sederel, Willem L.; Bantjes, Adriaan; Feijen, Jan; Anderson, James M.

    1980-01-01

    The solid-state conformation of copolymers of ß-benzyl-L-aspartate [L-Asp(OBzl)] with L-leucine (L-Leu), L-alanine (L-Ala), L-valine (L-Val), γ-benzyl-L-glutamate [L-Glu(OBzl)], or ε-carbobenzoxy-L-lysine (Cbz-L-Lys) has been studied by ir spectroscopy and circular dichroism (CD). The ir spectra in

  14. Synthesis, anticancer and antibacterial activity of salinomycin N-benzyl amides.

    Science.gov (United States)

    Antoszczak, Michał; Maj, Ewa; Napiórkowska, Agnieszka; Stefańska, Joanna; Augustynowicz-Kopeć, Ewa; Wietrzyk, Joanna; Janczak, Jan; Brzezinski, Bogumil; Huczyński, Adam

    2014-11-25

    A series of 12 novel monosubstituted N-benzyl amides of salinomycin (SAL) was synthesized for the first time and characterized by NMR and FT-IR spectroscopic methods. Molecular structures of three salinomycin derivatives in the solid state were determined using single crystal X-ray method. All compounds obtained were screened for their antiproliferative activity against various human cancer cell lines as well as against the most problematic bacteria strains such as methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis (MRSE), and Mycobacterium tuberculosis. Novel salinomycin derivatives exhibited potent anticancer activity against drug-resistant cell lines. Additionally, two N-benzyl amides of salinomycin revealed interesting antibacterial activity. The most active were N-benzyl amides of SAL substituted at -ortho position and the least anticancer active derivatives were those substituted at the -para position.

  15. Field ion emission from tungsten wires covered with organic micro needles of benzyl nitrile

    International Nuclear Information System (INIS)

    Helal, A.I.; Zahran, N.F.

    1986-01-01

    Benzyl nitrile micro needles are grown on the surface of a 10 um tungsten wire. The activated wires are used as field anodes in field ionization source. The activation time using benzyl nitrile as an activator is much shorter than the corresponding time required for benzo nitrile activation. Field ionization mass spectra of benzo- and benzyl-nitriles are measured by the new emitters

  16. Synthesis of benzyl chlorides and cycloveratrylene macrocycles using benzylic alcohols under homogeneous catalysis by HCl/dioxane

    Directory of Open Access Journals (Sweden)

    Yolanda Marina Vargas-Rodríguez

    2012-01-01

    Full Text Available The synthesis of benzyl chlorides, cyclic derivatives cyclotriveratrylene and cyclotripiperotrylene were carried out in using the HCl/dioxane system as a catalyst. The reaction proceeded with high selectivity and is sensitive to the number of alkyl and methoxy substituent on the aromatic ring.

  17. Moringa isothiocyanate complexed with α-cyclodextrin: a new perspective in neuroblastoma treatment.

    Science.gov (United States)

    Giacoppo, Sabrina; Iori, Renato; Rollin, Patrick; Bramanti, Placido; Mazzon, Emanuela

    2017-07-14

    Several lines of evidence suggest the consume of natural products for cancer prevention or treatment. In particular, isothiocyanates (ITCs) exerting anti-cancer properties, have received great interest as potential chemotherapeutic agents. This study was designed to assess the anti-proliferative activities of a new preparation of Moringa oleifera-derived 4-(α-L-rhamnopyranosyloxy)benzyl ITC (moringin) complexed with alpha-cyclodextrin (moringin + α-CD; MAC) on SH-SY5Y human neuroblastoma cells. This new formulation arises in the attempt to overcome the poor solubility and stability of moringin alone in aqueous media. SH-SY5Y cells were cultured and exposed to increasing concentrations of MAC (1.0, 2.5 and 5.0 μg). Cell proliferation was examined by MTT and cell count assays. The cytotoxic activity of the MAC complex was assessed by lactate dehydrogenase (LDH) assay and trypan blue exclusion test. In addition, western blotting analyses for the main apoptosis-related proteins were performed. Treatment of SH-SY5Y cells with the MAC complex reduced cell growth in concentration dependent manner. Specifically, MAC exhibited a potent action in inhibiting the PI3K/Akt/mTOR pathway, whose aberrant activation was found in many types of cancer. MAC was also found to induce the nuclear factor-κB (NF-κB) p65 activation by phosphorylation and its translocation into the nucleus. Moreover, treatment with MAC was able to down-regulate MAPK pathway (results focused on JNK and p38 expression). Finally, MAC was found to trigger apoptotic death pathway (based on expression levels of cleaved-caspase 3, Bax/Bcl-2 balance, p53 and p21). These findings suggest that use of MAC complex may open novel perspectives to improve the poor prognosis of patients with neuroblastoma.

  18. Propargylamine-isothiocyanate reaction: efficient conjugation chemistry in aqueous media

    DEFF Research Database (Denmark)

    Viart, Helene Marie-France; Larsen, T. S.; Tassone, Chiara

    2014-01-01

    A coupling reaction between secondary propargyl amines and isothiocyanates in aqueous media is described. The reaction is high-yielding and affords cyclized products within 2-24 h. A functionalized ether lipid was synthesized in 8 steps, formulated as liposomes with POPC and conjugated to FITC un...

  19. Poly-benzyl domains grown on porous silicon and their I-V rectification

    International Nuclear Information System (INIS)

    Chao Jie; Han Huanmei; Xia Bing; Ba Long; Liu Hongbo; Xiao Shoujun

    2007-01-01

    Microwave-irradiated polymerization of benzyl chloride and triphenyl chloromethane on hydride-terminated porous silicon (PS) was achieved through the use of Zn powder as a catalyst. Transmission infrared Fourier-transform spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the poly-benzyl membranes grafted on PS. Topographical images by AFM revealed crystal-like domains rather than homogenous monolayers on the surface. The current-voltage measurements in nano-scale by current sensing atomic force microscopy (CS-AFM) showed the rectification behavior of this polymer membrane. Finally, mechanism of a radical initiation on the surface and a following Friedel-Crafts alkylation was proposed for the covalent assembly of poly-benzyl domains

  20. t-3-Benzyl-r-2,c-6-diphenylpiperidin-4-one oxime

    Directory of Open Access Journals (Sweden)

    R. Arulraj

    2016-12-01

    Full Text Available In the title compound, C24H24N2O [systematic name: (E-3-benzyl-2,6-diphenylpiperidin-4-one oxime], the piperidine ring adopts a slightly distorted chair conformation and the phenyl rings and the benzyl group substituents are attached equatorially. The oxime group makes a dihedral angle of 42.88 (12° with the piperidine ring. The dihedral angle between the phenyl rings is 71.96 (8°. The benzyl ring makes dihedral angles of 63.01 (8 and 59.35 (8° with the two phenyl rings. In the crystal, molecules are linked by O—H...N hydrogen bonds, forming C(7 chains along the c axis. The chains are linked by C—H...π interactions, forming slabs lying parallel to the bc plane.

  1. Effect of Betong Watercress and Phenethyl Isothiocyanate on N ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of Betong watercress and phenethyl isothiocyanate (PEITC) on the N-demethylation of caffeine (CF) in rats. Methods: Male Wistar rats were subjected to 2 phases of experiment. Phase I, they received a single oral dose of CF (10 mg/kg), while in phase II, they were pretreated with the ...

  2. Microbial- and isothiocyanate-mediated control of Phytophthora and Pythium species

    Science.gov (United States)

    M.F. Cohen; E. Yamamoto; E. Condeso; B.L. Anacker; N. Rank; M. Mazzola

    2008-01-01

    Plant pathogens of the oomycete lineage share common susceptibilities to many biotic and abiotic stresses. We are investigating the potential of antagonistic bacteria, isothiocyanates, and mycophagous amoebae to control diseases caused by Phytophthora spp., including the etiologic agent of sudden oak death, Phytophthora ramorum (...

  3. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera) seed extract.

    Science.gov (United States)

    Jaja-Chimedza, Asha; Graf, Brittany L; Simmler, Charlotte; Kim, Youjin; Kuhn, Peter; Pauli, Guido F; Raskin, Ilya

    2017-01-01

    Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE), and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1) with a curcuminoid-enriched turmeric extract (CTE), and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM). MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1) comparable to aspirin (27% at 300 mg/kg), whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO) and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS) and interleukins 1β and 6 (IL-1β and IL-6), whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM) was also more effective at upregulating the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) target genes NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase pi 1 (GSTP1), and heme oxygenase 1 (HO1) than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.

  4. Biochemical characterization and anti-inflammatory properties of an isothiocyanate-enriched moringa (Moringa oleifera seed extract.

    Directory of Open Access Journals (Sweden)

    Asha Jaja-Chimedza

    Full Text Available Moringa oleifera Lam. is a tropical plant, used for centuries as food and traditional medicine. The aim of this study was to develop, validate and biochemically characterize an isothiocyanate-enriched moringa seed extract (MSE, and to compare the anti-inflammatory effects of MSE-containing moringa isothiocyanate-1 (MIC-1 with a curcuminoid-enriched turmeric extract (CTE, and a material further enriched in its primary phytochemical, curcumin (curcumin-enriched material; CEM. MSE was prepared by incubating ground moringa seeds with water to allow myrosinase-catalyzed enzymatic formation of bioactive MIC-1, the predominant isothiocyanate in moringa seeds. Optimization of the extraction process yielded an extract of 38.9% MIC-1. Phytochemical analysis of MSE revealed the presence of acetylated isothiocyanates, phenolic glycosides unique to moringa, flavonoids, fats and fatty acids, proteins and carbohydrates. MSE showed a reduction in the carrageenan-induced rat paw edema (33% at 500 mg/kg MIC-1 comparable to aspirin (27% at 300 mg/kg, whereas CTE did not have any significant effect. In vitro, MIC-1 at 1 μM significantly reduced the production of nitric oxide (NO and at 5 μM, the gene expression of LPS-inducible nitric oxide synthase (iNOS and interleukins 1β and 6 (IL-1β and IL-6, whereas CEM did not show any significant activity at all concentrations tested. MIC-1 (10μM was also more effective at upregulating the nuclear factor (erythroid-derived 2-like 2 (Nrf2 target genes NAD(PH:quinone oxidoreductase 1 (NQO1, glutathione S-transferase pi 1 (GSTP1, and heme oxygenase 1 (HO1 than the CEM. Thus, in contrast to CTE and CEM, MSE and its major isothiocyanate MIC-1 displayed strong anti-inflammatory and antioxidant properties in vivo and in vitro, making them promising botanical leads for the mitigation of inflammatory-mediated chronic disorders.

  5. Experimental and theoretical investigation of benzyl-N ...

    Indian Academy of Sciences (India)

    Experimental and theoretical investigation of benzyl-N-pyrrolylketene, one- step procedure for preparing of new β-lactams by [2+2] cycloaddition reaction. MASOUMEH BEHZADI, KAZEM SAIDI. ∗. , MOHAMMAD REZA ISLAMI and. HOJATOLLAH KHABAZZADEH. Department of Chemistry, Shahid Bahonar University of ...

  6. Friedel-Crafts reaction of benzyl fluorides: selective activation of C-F bonds as enabled by hydrogen bonding.

    Science.gov (United States)

    Champagne, Pier Alexandre; Benhassine, Yasmine; Desroches, Justine; Paquin, Jean-François

    2014-12-08

    A Friedel-Crafts benzylation of arenes with benzyl fluorides has been developed. The reaction produces 1,1-diaryl alkanes in good yield under mild conditions without the need for a transition metal or a strong Lewis acid. A mechanism involving activation of the C-F bond through hydrogen bonding is proposed. This mode of activation enables the selective reaction of benzylic C-F bonds in the presence of other benzylic leaving groups. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The retro Grignard addition reaction revisited: the reversible addition of benzyl reagents to ketones

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    transformation. The retro benzyl reaction was shown by the addition of benzylmagnesium chloride to di-tert-butyl ketone followed by exchange of both the benzyl and the ketone moiety with another substrate. Similar experiments were performed with phenylmagnesium bromide and tert-butylmagnesium chloride...

  8. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates

    Directory of Open Access Journals (Sweden)

    Xiaoji Liu

    2017-03-01

    Full Text Available Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(PH: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible.

  9. Dietary Broccoli Alters Rat Cecal Microbiota to Improve Glucoraphanin Hydrolysis to Bioactive Isothiocyanates.

    Science.gov (United States)

    Liu, Xiaoji; Wang, Yanling; Hoeflinger, Jennifer L; Neme, Bárbara P; Jeffery, Elizabeth H; Miller, Michael J

    2017-03-10

    Broccoli consumption brings many health benefits, including reducing the risk of cancer and inflammatory diseases. The objectives of this study were to identify global alterations in the cecal microbiota composition using 16S rRNA sequencing analysis and glucoraphanin (GRP) hydrolysis to isothiocyanates ex vivo by the cecal microbiota, following different broccoli diets. Rats were randomized to consume AIN93G (control) or different broccoli diets; AIN93G plus cooked broccoli, a GRP-rich powder, raw broccoli, or myrosinase-treated cooked broccoli. Feeding raw or cooked broccoli for four days or longer both changed the cecal microbiota composition and caused a greater production of isothiocyanates ex vivo. A more than two-fold increase in NAD(P)H: quinone oxidoreductase 1 activity of the host colon mucosa after feeding cooked broccoli for seven days confirmed the positive health benefits. Further studies revealed that dietary GRP was specifically responsible for the increased microbial GRP hydrolysis ex vivo, whereas changes in the cecal microbial communities were attributed to other broccoli components. Interestingly, a three-day withdrawal from a raw broccoli diet reversed the increased microbial GRP hydrolysis ex vivo. Findings suggest that enhanced conversion of GRP to bioactive isothiocyanates by the cecal microbiota requires four or more days of broccoli consumption and is reversible.

  10. Thermodynamic and fluorescence studies of the underlying factors in benzyl alcohol-induced lipid interdigitated phase.

    Science.gov (United States)

    Chen, C H; Hoye, K; Roth, L G

    1996-09-15

    To further investigate factors contributing to the action of alcohol in the solute-induced lipid interdigitation phase, thermodynamic and fluorescence polarization measurements were carried out to study the interaction of benzyl alcohol with dipalmitoyl phosphatidylcholine bilayer vesicles. The obtained results were compared with those previously reported for ethanol and cyclohexanol (L. G. Roth and C-H. Chen, Arch. Biochem. Biophys. 296, 207, 1992). Similar to ethanol, benzyl alcohol was found to exhibit a biphasic effect on the enthalpy (delta Hm) and the temperature (tm) of the lipid-phase transition and the steady-state fluorescence polarization (P) monitored by 1,6-diphenyl-1,3,5-hexatriene. At a total concentration of benzyl alcohol delta Hm and P, which were correlated with the formation of a lipid interdigitated phase, as evidenced by reported X-ray diffraction data. Combining the results with benzyl alcohol and ethanol suggested that simultaneously large changes in delta Hm and P can be used as an indication of the occurrence of a solute-induced lipid interdigitated phase. The overall interacting force in the formation of this lipid phase, as derived from the interactions of the hydroxyl portion of an alcohol with the lipid phosphate head group and the hydrophobic portion of an alcohol with the lipid hydrocarbon chains, may or may not be dominated by hydrophobic interaction. Although lipid/water partition coefficients and the contribution of hydrophobic interaction to the overall interacting force were comparable between benzyl alcohol and cyclohexanol, benzyl alcohol induced lipid interdigitated phase, but not for cyclohexanol. This was due to the ability of benzyl alcohol to be more effective than cyclohexanol in simultaneously interacting with the phosphate head group and the hydrocarbon chains of lipid.

  11. Synthesis of Cycloveratrylene Macrocycles and Benzyl Oligomers Catalysed by Bentonite under Microwave/Infrared and Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Manuel Salmón

    2013-10-01

    Full Text Available Tonsil Actisil FF, which is a commercial bentonitic clay, promotes the formation of cycloveratrylene macrocycles and benzyl oligomers from the corresponding benzyl alcohols in good yields under microwave heating and infrared irradiation in the absence of solvent in both cases. The catalytic reaction is sensitive to the type of substituent on the aromatic ring. Thus, when benzyl alcohol was substituted with a methylenedioxy, two methoxy or three methoxy groups, a cyclooligomerisation process was induced. Unsubstituted, methyl and methoxy benzyl alcohols yielded linear oligomers. In addition, computational chemistry calculations were performed to establish a validated mechanistic pathway to explain the growth of the obtained linear oligomers.

  12. Synthesis and Anti-HIV-1 Activity of New MKC-442 Analogues with an Alkynyl-Substituted 6-Benzyl Group

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo

    2007-01-01

    Synthesis and antiviral activities are reported of a series of 6-(3-alkynyl benzyl)-substituted analogues of MKC-442 (6-benzyl-1-(ethoxymethyl)-5-isopropyluracil), a highly potent agent against HIV. The 3-alkynyl group is assumed to give a better stacking of the substituted benzyl group to reverse...... transcriptase (RT) and this was believed to improve antiviral activity against HIV-1. The bromo derivatives, 5-alkyl-6-(3-bromo-benzyl)-1-ethoxymethyl derivatives 7a, b and 5-alkyl-6-(3-bromobenzyl)-1-allyloxymethyl derivatives 9a, b, showed activity against HIV on the same level as their corresponding...

  13. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels

    NARCIS (Netherlands)

    Oliviero, Teresa; Lamers, Simone; Capuano, Edoardo; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Scope: Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and

  14. No metabolic effects of mustard allyl-isothiocyanate compared with placebo in men

    NARCIS (Netherlands)

    Langeveld, Mirjam; Tan, Chong Yew; Soeters, Maarten R.; Virtue, Samuel; Watson, Laura Pe; Murgatroyd, Peter R.; Ambler, Graeme K.; Vidal-Puig, Santiago; Chatterjee, Krishna V.; Vidal-Puig, Antonio

    2017-01-01

    Background: Induction of nonshivering thermogenesis can be used to influence energy balance to prevent or even treat obesity. The pungent component of mustard, allyl-isothiocyanate (AITC), activates the extreme cold receptor transient receptor potential channel, subfamily A, member 1 and may thus

  15. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  16. In vitro stability of EDTA and DTPA immunoconjugates of monoclonal antibody 2G3 labeled with indium-111

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, R.; Lee, N.; Houle, S. (The Toronto Hospital (Canada)); Law, J.; Marks, A. (Toronto Univ., ON (Canada))

    1992-08-01

    Monoclonal antibody 2G3 directed against a high molecular weight glycoprotein on breast and ovarian cancer cells was conjugated with bicyclic DTPA (or EDTA) anhydride or benzyl isothiocyanate DTPA (benzyl DTPA) and labeled with {sup 111}In. DTPA anhydride was more reactive with the antibody than benzyl DTPA, and kinetics of labeling with {sup 111}In were more rapid for DTPA substituted 2G3 than for benzyl DTPA substituted 2G3. On the other hand, {sup 111}In-2G3 conjugates prepared using DTPA anhydride were subject to more extensive dimerization and higher losses in immunoreactivity than those prepared using benzyl DTPA. On the basis of measurement of transchelation to transferrin, the stability of {sup 111}In-2G3 prepared using DTPA anhydride or benzyl DTPA did not differ during incubation in human plasma for 6 days at 37{sup o}C. These results suggest that an important advantage of benzyl DTPA over DTPA anhydride for preparing {sup 111}In-labeled antibodies is the prevention of intermolecular (and intramolecular) crosslinking during conjugation which ultimately leads to alterations in conformation and losses in immunoreactivity of the radioimmunoconjugate. (author).

  17. Kinetics and Mechanism of Oxidation of Benzyl Alcohol by Benzimidazolium Fluorochromate

    Directory of Open Access Journals (Sweden)

    J. Dharmaraja

    2008-01-01

    Full Text Available The kinetics of oxidation of benzyl alcohol (BzOH by benzimidazolium fluorochromate (BIFC has been studied in 50% aqueous acetic acid medium at 308 K. The reaction is first order with respect to [oxidant] and [benzyl alcohol]. The reaction is catalysed by hydrogen ions. The decrease in dielectric constant of the medium increases the rate of the reaction. Addition of sodium perchlorate increases the rate of the reaction appreciably. No polymerization with acrylonitrile. The reaction has been conducted at four different temperature and the activation parameters were calculated. From the observed kinetic results a suitable mechanism was proposed.

  18. Bis(1-benzyl-1H-benzimidazole-κN3dichloridozinc

    Directory of Open Access Journals (Sweden)

    Rachid Bouhfid

    2014-03-01

    Full Text Available In the title compound, [ZnCl2(C14H12N22], the ZnII atom exhibits a distorted tetrahedral coordination geometry involving two chloride anions and two N-atom donors from 1-benzyl-1H-benzimidazole ligands. In both ligands, the benzyl and benzimidazole rings are nearly perpendicular [dihedral angles = 81.7 (2 and 81.5 (2°]. The two benzimidazole systems are essentially planar [maximum deviations = 0.015 (3 and 0.020 (2 Å] and form a dihedral angle of 78.09 (8°. In the crystal, centrosymmetrically related molecules are linked by pairs of C—H...Cl hydrogen bonds into chains parallel to the a axis.

  19. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Nieves Baenas

    2016-02-01

    Full Text Available We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo, a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus.

  20. Metabolic Activity of Radish Sprouts Derived Isothiocyanates in Drosophila melanogaster

    Science.gov (United States)

    Baenas, Nieves; Piegholdt, Stefanie; Schloesser, Anke; Moreno, Diego A.; García-Viguera, Cristina; Rimbach, Gerald; Wagner, Anika E.

    2016-01-01

    We used Drosophila melanogaster as a model system to study the absorption, metabolism and potential health benefits of plant bioactives derived from radish sprouts (Raphanus sativus cv. Rambo), a Brassicaceae species rich in glucosinolates and other phytochemicals. Flies were subjected to a diet supplemented with lyophilized radish sprouts (10.6 g/L) for 10 days, containing high amounts of glucoraphenin and glucoraphasatin, which can be hydrolyzed by myrosinase to the isothiocyanates sulforaphene and raphasatin, respectively. We demonstrate that Drosophila melanogaster takes up and metabolizes isothiocyanates from radish sprouts through the detection of the metabolite sulforaphane-cysteine in fly homogenates. Moreover, we report a decrease in the glucose content of flies, an upregulation of spargel expression, the Drosophila homolog of the mammalian PPARγ-coactivator 1 α, as well as the inhibition of α-amylase and α-glucosidase in vitro. Overall, we show that the consumption of radish sprouts affects energy metabolism in Drosophila melanogaster which is reflected by lower glucose levels and an increased expression of spargel, a central player in mitochondrial biogenesis. These processes are often affected in chronic diseases associated with aging, including type II diabetes mellitus. PMID:26901196

  1. Nutrition Frontiers - Winter 2018 | Division of Cancer Prevention

    Science.gov (United States)

    Dear Colleague, The winter issue of Nutrition Frontiers showcases the chemopreventive activity of sulforaphane, how a high fat, high cholesterol diet may impact hepatocellular carcinoma, and p53 activation from benzyl isothiocyanate. Meet our spotlight investigator, Dr. John Groopman, and his research on detoxication of air pollutants with a broccoli supplement. Learn about

  2. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the inducers of phase II enzymes in the regulation of cellular stress. The cellular responses were observed in U937 cells (human monocyte/macrophage cell line) at the ...

  3. Synthesis and Lateral Root-Inducing Activity of N-Benzyl-3-Substituted-2-Piperidones

    OpenAIRE

    Tsukada, Hidetaka; Itamura, Tomoaki; Ishii, Rika; Taniguchi, Eiji; Kuwano, Eiichi

    1999-01-01

    Thirty N-benzyl-3-substituted-2-piperidones were synthesized, and their plant growth regulatory activity was evaluated by using a lettuce seedling test. Most of the compounds at 100 ppm caused lateral root formation. Of the series of compounds tested, N-benzyl-3-[1-hydroxy-1-(4-quinolyl)methyl]-2-piperidone (30) showed the highest activity. When 1ppm of compound 30 was supplied to seedlings, 29% of the primary roots formed at least one lateral root.

  4. Selective oxidation of benzyl alcohol with tert-butylhydroperoxide ...

    Indian Academy of Sciences (India)

    the solvent and in this case, acetonitrile gives the best conversion results. The kinetic of ... Experimental. 2.1 Materials ... Subsequently, the products were filtered, washed thoroughly ..... mesh; benzyl alcohol 30 mmol; TBHP 30 mmol; 15 ml ace- tonitrile ... vent was changed for each run while the other condi- tions, (0.2 g of ...

  5. Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis

    Science.gov (United States)

    Jun Fan; Casey Crooks; Gary Creissen; Lionel Hill; Shirley Fairhurst; Peter Doerner; Chris Lamb

    2011-01-01

    Most plant-microbe interactions do not result in disease; natural products restrict non-host pathogens. We found that sulforaphane (4-methylsulfinylbutyl isothiocyanate), a natural product derived from aliphatic glucosinolates, inhibits growth in Arabidopsis of non-host Pseudomonas bacteria in planta. Multiple sax genes (saxCAB/F/D/G) were identified in Pseudomonas...

  6. Synthesis of selected 5-thio-substituted tetrazole derivatives and evaluation of their antibacterial and antifungal activities

    Directory of Open Access Journals (Sweden)

    NALILU SUCHETHA KUMARI

    2011-02-01

    Full Text Available Several 5-thio-substituted tetrazole derivatives were efficiently synthesized by a three-step process. The substituted tetrazol-5-thiol, namely, 1-benzyl-1H-tetrazole-5-thiol (2 was prepared by refluxing commercially available benzyl isothiocyanate (1 with sodium azide in water. The second step was the synthesis of 1-benzyl-5-[(3-bromopropylthio]-1H-tetrazole (3 by thioalkylation of tetrazole-5-thiol 2 with 1,3-dibromopropane in tetrahydrofuran. Finally, the 5-thio-substituted tetrazole derivatives 4a–i were prepared by condensation of 3 with the corresponding amine or thiol. The structures of the newly synthesized compounds were characterized by NMR, LC/MS/MS, IR spectral data and elemental analysis. All the synthesized compounds were screened for their antibacterial and antifungal activities.

  7. Effect of Wasabi Component 6-(Methylsulfinylhexyl Isothiocyanate and Derivatives on Human Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yu-Jen Chen

    2014-01-01

    Full Text Available The naturally occurring compound 6-(methylsulfinylhexyl isothiocyanate (6-MITC was isolated from Wasabia japonica (Wasabi, a pungent spice used in Japanese food worldwide. The synthetic derivatives 6-(methylsulfenylhexyl isothiocyanate (I7447 and 6-(methylsulfonylhexyl isothiocyanate (I7557 are small molecule compounds derived from 6-MITC. This study aimed to evaluate the effect of these compounds on human pancreatic cancer cells. Human pancreatic cancer cell lines PANC-1 and BxPC-3 were used to perform an MTT assay for cell viability and Liu’s stain for morphological observation. The cell cycle was analyzed by DNA histogram. Aldehyde dehydrogenase (ALDH activity was used as a marker for cancer stem cells (CSC. Western blotting was performed for the expression of proteins related to CSC signaling. The results showed that compounds 6-MITC and I7557, but not I7447, inhibited viability of both PANC-1 and BxPC-3 cells. Morphological observation showed mitotic arrest and apoptosis in 6-MITC- and I7557-treated cells. These two compounds induced G2/M phase arrest and hypoploid population. Percentages of ALDH-positive PANC-1 cells were markedly reduced by 6-MITC and I7557 treatment. The expression of CSC signaling molecule SOX2, but not NOTCH1, ABCG2, Sonic hedgehog, or OCT4, was inhibited by 6-MITC and I7557. In conclusion, wasabi compounds 6-MITC and I7557 may possess activity against the growth and CSC phenotypes of human pancreatic cancer cells.

  8. Synthesis, physical-chemical and biological properties of 7-benzyl-3-methyl-8-thioxanthine derivatives

    Directory of Open Access Journals (Sweden)

    D. H. Ivanchenko

    2017-12-01

    Full Text Available Introduction . Interest to the problem of creating new effective antimicrobial agents among xanthine derivatives does not decrease. Primarily, this is due to the increasing of microbial resistance to conventional antimicrobial agents and the emergence of their new strains. In recent years interest to the therapeutic use of antioxidants in the treatment of diseases associated with oxidative stress has increased. The aim of this work is to elaborate simple laboratory methods of 7-benzyl-3-methyl-8-thioxanthine derivatives synthesis, unspecified in scientific papers earlier, and to study their physical, chemical and biological properties. Materials and methods. The melting point has been determined with the help of an open capillary method with PTP-M device. Elemental analysis has been performed with the help of the instrument Elementar Vario L cube, NMR-spectra have been taken on a spectrometer Bruker SF-400 (operating frequency of 400 MHz, solvent DMSO, internal standard – TMS. Study of antimicrobial and antifungal activity of synthesized compounds has been performed by two-fold serial dilution method. Standard test strains have been used for the study: Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 885-653. Dimethylsulfoxide was used as the solvent of the compounds. Results. Under short-time heating up of the initial 7-benzyl-3-methyl-8-thioxanthine with alkyl, alkenyl, benzyl halides or heteroalkylchlorides in a water-propanol-2 mixture in the presence of an equimolar amount of sodium hydroxide leads to the formation of 8-S-substituted of 7-benzyl-3-methylxanthines. Structure of synthesized compounds was definitely proved by NMR-spectroscopy. We conducted primary screening research of antimicrobial activity of 7-benzyl-3-methyl-8-thioxanthine derivatives, which revealed moderate and weak activity in concentrations 50-100 mcg/ml. Most of the obtained compounds showed a

  9. Endophytic fungi from the roots of horseradish (Armoracia rusticana) and their interactions with the defensive metabolites of the glucosinolate - myrosinase - isothiocyanate system.

    Science.gov (United States)

    Szűcs, Zsolt; Plaszkó, Tamás; Cziáky, Zoltán; Kiss-Szikszai, Attila; Emri, Tamás; Bertóti, Regina; Sinka, László Tamás; Vasas, Gábor; Gonda, Sándor

    2018-05-09

    The health of plants is heavily influenced by the intensively researched plant microbiome. The microbiome has to cope with the plant's defensive secondary metabolites to survive and develop, but studies that describe this interaction are rare. In the current study, we describe interactions of endophytic fungi with a widely researched chemical defense system, the glucosinolate - myrosinase - isothiocyanate system. The antifungal isothiocyanates are also of special interest because of their beneficial effects on human consumers. Seven endophytic fungi were isolated from horseradish roots (Armoracia rusticana), from the genera Fusarium, Macrophomina, Setophoma, Paraphoma and Oidiodendron. LC-ESI-MS analysis of the horseradish extract incubated with these fungi showed that six of seven strains could decompose different classes of glucosinolates. Aliphatic, aromatic, thiomethylalkyl and indolic glucosinolates were decomposed by different strains at different rates. SPME-GC-MS measurements showed that two strains released significant amounts of allyl isothiocyanate into the surrounding air, but allyl nitrile was not detected. The LC-ESI-MS analysis of many strains' media showed the presence of allyl isothiocyanate - glutathione conjugate during the decomposition of sinigrin. Four endophytic strains also accepted sinigrin as the sole carbon source. Isothiocyanates inhibited the growth of fungi at various concentrations, phenylethyl isothiocyanate was more potent than allyl isothiocyanate (mean IC 50 was 2.30-fold lower). As a control group, ten soil fungi from the same soil were used. They decomposed glucosinolates with lower overall efficiency: six of ten strains had insignificant or weak activities and only three could use sinigrin as a carbon source. The soil fungi also showed lower AITC tolerance in the growth inhibition assay: the median IC 50 values were 0.1925 mM for endophytes and 0.0899 mM for soil fungi. The host's glucosinolates can be used by the tested

  10. Isothiocyanates, Nitriles, and Epithionitriles from Glucosinolates Are Affected by Genotype and Developmental Stage in Brassica oleracea Varieties.

    Science.gov (United States)

    Hanschen, Franziska S; Schreiner, Monika

    2017-01-01

    Vegetables of the Brassica oleracea group, such as broccoli, cauliflower, and cabbage, play an important role for glucosinolate consumption in the human diet. Upon maceration of the vegetable tissue, glucosinolates are degraded enzymatically to form volatile isothiocyanates, nitriles, and epithionitriles. However, only the uptake of isothiocyanates is linked to the cancer-preventive effects. Thus, it is of great interest to evaluate especially the isothiocyanate formation. Here, we studied the formation of glucosinolates and their respective hydrolysis products in sprouts and fully developed vegetable heads of different genotypes of the five B. oleracea varieties: broccoli, cauliflower as well as white, red, and savoy cabbages. Further, the effect of ontogeny (developmental stages) during the head development on the formation of glucosinolates and their respective hydrolysis products was evaluated at three different developmental stages (mini, fully developed, and over-mature head). Broccoli and red cabbage were mainly rich in 4-(methylsulfinyl)butyl glucosinolate (glucoraphanin), whereas cauliflower, savoy cabbage and white cabbage contained mainly 2-propenyl (sinigrin) and 3-(methylsulfinyl)propyl glucosinolate (glucoiberin). Upon hydrolysis, epithionitriles or nitriles were often observed to be the main hydrolysis products, with 1-cyano-2,3-epithiopropane being most abundant with up to 5.7 μmol/g fresh weight in white cabbage sprouts. Notably, sprouts often contained more than 10 times more glucosinolates or their hydrolysis products compared to fully developed vegetables. Moreover, during head development, both glucosinolate concentrations as well as hydrolysis product concentrations changed and mini heads contained the highest isothiocyanate concentrations. Thus, from a cancer-preventive point of view, consumption of mini heads of the B. oleracea varieties is recommended.

  11. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    Science.gov (United States)

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  12. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    OpenAIRE

    Hanschen, Franziska S.; Klopsch, Rebecca; Oliviero, Teresa; Schreiner, Monika; Verkerk, Ruud; Dekker, Matthijs

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and epithionitriles. Domestic processing conditions, such as changes in pH value, temperature or dilution, might also affect isothiocyanate formation. Therefore, the influences of these three factors were eva...

  13. Facile synthesis of aliphatic isothiocyanates and thioureas on solid phase using peptide coupling reagents

    DEFF Research Database (Denmark)

    Boas, Ulrik; Andersen, Heidi Gertz; Christensen, Jørn B.

    2004-01-01

    Peptide coupling reagents can be used as versatile reagents for the formation of aliphatic isothiocyanates and thioureas on solid phase from the corresponding solid-phase anchored aliphatic primary amines. The formation of the thioureas is fast and highly chemoselective, and proceeds via formatio...

  14. A new efficient synthesis of isothiocyanates from amines using di-tert-butyl dicarbonate

    DEFF Research Database (Denmark)

    Munch, Henrik; Hansen, Jon S.; Pittelkow, Michael

    2008-01-01

    Alkyl and aryl amines are converted smoothly to the corresponding isothiocyanates via the dithiocarbamates in good to excellent yields using di-tert-butyl dicarbonate (Boc(2)O) and 1-3 mol% of DMAP or DABCO as catalyst. As most of the byproducts are volatile, the work-up involves simple evaporation...

  15. Nuclear magnetic resonance of D(-)-α-amino-benzyl penicillin

    International Nuclear Information System (INIS)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S.; Menezes, Sonia M.C.

    1995-01-01

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-α-amino-benzyl penicillin were analysed using 13 C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed

  16. Synthesis and Properties of Shape Memory Poly(γ-Benzyl-l-Glutamate-b-Poly(Propylene Glycol-b-Poly(γ-Benzyl-l-Glutamate

    Directory of Open Access Journals (Sweden)

    Lin Gu

    2017-12-01

    Full Text Available Shape memory polymers (SMPs have attracted much attention as an important class of stimuli-responsive materials for biomedical applications. For SMP-based biomaterials, in addition to suitable shape recovery performances, their mechanical properties, biodegradability, biocompatibility, and sterilizability needs to be considered. Polypeptides can satisfy the requirements outlined above. However, there are few reports on shape memory polypeptides. In this paper, shape memory poly(γ-benzyl-l-glutamate (PBLG-PPG-PBLG was synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydrides (BLG-NCA with poly(propylene glycol bis(2-aminopropyl ether as the macroinitiator. 1H Nuclear Magnetic Resonance (NMR and Fourier-Transform Infrared Spectroscopy (FTIR were used to characterize the structure of the obtained PBLG-PPG-PBLG. The FTIR analysis showed that PBLG-PPG-PBLG has α-helical and β-sheet structures. PBLG-PPG-PBLG has good shape memory properties, its shape recovery time is less than 120 s, and its shape recovery rate is 100%. In this study, we reported a simple synthetic method to obtain intelligent polypeptide materials, which will be used in many biomedical applications.

  17. A convenient procedure for the synthesis of allyl and benzyl ethers ...

    Indian Academy of Sciences (India)

    Unknown

    Department of Chemistry, Pondicherry University, Pondicherry 605 014, .... organic synthesis we hope that the procedure described in this paper will find ... Allyl bromide (Fluka) and benzyl bromide (E Merck) were freshly distilled before use.

  18. 1-O-Acetyl-3,4,6-tri-O-benzyl-2-C-bromomethyl-2-deoxy-α-d-glucopyranose

    Directory of Open Access Journals (Sweden)

    Henok H. Kinfe

    2013-01-01

    Full Text Available In the title compound, C30H33BrO6, the pyranose ring adopts a chair conformation. Two of the O-benzyl phenyl rings lie almost perpendicular to C/C/C/O plane formed by the ring atoms not attached to these O-benzyl phenyl rings, and form dihedral angles of 85.1 (2 and 64.6 (2°, while the third O-benzyl phenyl ring is twisted so that it makes a dihedral angle 34.9 (2° to this C/C/C/O plane. This twist is ascribed to the formation of an S(8 loop stabilized by a weak intramolecular C—H...O hydrogen bond.

  19. Fluorescein isothiocyanate: Molecular characterization by theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Casanovas, Jordi [Departament de Quimica, Escola Politecnica Superior, Universitat de Lleida, c/Jaume II No 69, Lleida E-25001 (Spain); Jacquemin, Denis [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium)], E-mail: denis.jacquemin@fundp.ac.be; Perpete, Eric A. [Laboratoire de Chimie Theorique Appliquee, Facultes Universitaires Notre-Dame de la Paix, rue de Bruxelles, 61, B-5000 Namur (Belgium); Aleman, Carlos [Departament d' Enginyeria Quimica, E. T. S. d' Enginyeria Industrial de Barcelona, Universitat Politecnica de Catalunya, Diagonal 647, Barcelona E-08028 (Spain)], E-mail: carlos.aleman@upc.edu

    2008-12-10

    Quantum mechanical calculations have been used to investigate the conformation, molecular geometry, basicity and spectroscopic properties of fluorescein isothiocyanate in both the gas-phase and aqueous solution. Specifically, calculations have been performed considering the neutral, monoanionic and dianionic forms of this important fluorescent compound. Results reveal that for the neutral form multiple conformational states are possible, all them with significant contributions, and the stability of the different conformers is similar in the gas-phase and aqueous solution. Calculation of the excitation energies revealed that spectroscopic properties are very sensitive to the relaxation effect in solution. A good agreement has been reached obtained between the experimental and theoretical values derived from time-dependent density functional theory methods for the neutral form, whereas for charged species the calculations fail to accurately reproduce the measured trends.

  20. Synthesis, Characterization, and Nonlinear Optical Properties of P-Substituted Poly Gamma-Benzyl

    Science.gov (United States)

    Choi, Dong-Hoon

    Poly gamma-benzyl-L-glutamate (PBLG), poly gamma-p-fluorobenzyl -L-glutamate (PGLU(pFB)), poly gamma -p-nitrobenzyl-L-glutamate (PGLU(pNB)), and poly gamma-p-trifluoromethylbenzyl-L-glutamate (PGLU(pTFMB)) have been synthesized. These PBLG polymers show variations in the side chain conformations in the solid state and solution state. In the solid state, the side chain orientation was assigned to a longitudinal or transverse direction by virtue of the polarized infrared spectrum of each PBLG analogue. The characteristics of the lyotropic liquid crystalline behavior could be observed. The optical waveguiding property of these polymers facilitated measurement of the refractive index and the thickness of each polymer film. Poling the polymer films and using the simple reflection technique, the electro -optic coefficients of the PBLG analogues could be determined. The effect of the para substitution on benzyl ester as it effected the electro-optic coefficient and the relation between the dielectric properties and the electro-optic effect of each polymer were investigated. These studies were able to demonstrate which conformation of the side chain in para substituted poly gamma-benzyl -L-glutamates is a more favorable conformation for enhancing the electro-optic behavior of these polymers.

  1. catalysed selective oxidation of benzyl alcohols using TEMPO and ...

    Indian Academy of Sciences (India)

    A general scheme for the oxidation of benzyl alcohols catalyzed by silica functionalized copper (II) has been designed. TEMPO, a free radical, assists this oxidation that was initiated by molecular oxygen which converts it to a primary oxidant. This catalytic combination i.e. SiO2 -Cu(II) in presence of TEMPO and oxygen ...

  2. Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2017-11-01

    Full Text Available Nickel–manganese mixed oxides doped with 1, 3, 5 mol% ytterbia have been prepared by co-precipitation method and used in the catalytic oxidation of benzyl alcohol. Catalytic activity of these oxides calcined at 400 °C and 500 °C was studied for selective oxidation of benzyl alcohol to the corresponding aldehyde using molecular oxygen as an oxidizing agent. The results showed that thermally stable 5 mol% ytterbia doped nickel–manganese oxide [Yb2O3-(5%-Ni6MnO8] exhibited highest catalytic performance when it was calcined at 400 °C. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a reaction period of 5 h at 100 °C. The mixed oxide prepared has been characterized by scanning election microscopy (SEM and energy dispersive X-ray analysis (EDXA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET and temperature programed reduction (H2-TPR.

  3. Spin-Center Shift-Enabled Direct Enantioselective α-Benzylation of Aldehydes with Alcohols.

    Science.gov (United States)

    Nacsa, Eric D; MacMillan, David W C

    2018-03-07

    Nature routinely engages alcohols as leaving groups, as DNA biosynthesis relies on the removal of water from ribonucleoside diphosphates by a radical-mediated "spin-center shift" (SCS) mechanism. Alcohols, however, remain underused as alkylating agents in synthetic chemistry due to their low reactivity in two-electron pathways. We report herein an enantioselective α-benzylation of aldehydes using alcohols as alkylating agents based on the mechanistic principle of spin-center shift. This strategy harnesses the dual activation modes of photoredox and organocatalysis, engaging the alcohol by SCS and capturing the resulting benzylic radical with a catalytically generated enamine. Mechanistic studies provide evidence for SCS as a key elementary step, identify the origins of competing reactions, and enable improvements in chemoselectivity by rational photocatalyst design.

  4. Rapid field multiplication of plantains using benzyl adenine or ...

    African Journals Online (AJOL)

    Une technique appropriee et moins chere pour la multiplication rapide sur Ie terrain de deux varietes locales de plantain Apantu (une corne fausse) et Asamienu (une come veritable) a ete obtenue par injection de 6 ou 8 ml du jus de noix de coco mur sec apres L' ebullition et la filtration ou de 4 ml 10-2 M benzyle adenine ...

  5. Hydroxyl and methoxyl derivatives of benzylglucosinolate in Lepidium densiflorum with hydrolysis to isothiocyanates and non-isothiocyanate products

    DEFF Research Database (Denmark)

    Pagnotta, Eleonora; Agerbirk, Niels; Olsen, Carl Erik

    2017-01-01

    A system of benzylic glucosinolates was found and characterized in common pepperweed, Lepidium densiflorum Schrad. The major glucosinolate was the novel 4-hydroxy-3,5-dimethoxybenzylglucosinolate (3,5-dimethoxysinalbin), present at high levels in seeds, leaves, and roots. Medium......-level glucosinolates were 3,4-dimethoxybenzylglucosinolate and 3,4,5-trimethoxybenzylglucosinolate. Minor glucosinolates included benzylglucosinolate, 3-hydroxy- and 3-methoxybenzylglucosinolate, 4-hydroxybenzylglucosinolate (sinalbin), the novel 4-hydroxy-3-methoxybenzylglucosinolate (3-methoxysinalbin), and indole......-type glucosinolates. A biosynthetic connection is suggested. NMR, UV, and ion trap MS/MS spectral data are reported, showing contrasting MS fragmentation of p-hydroxyls and p-methoxyls. Additional investigations by GC-MS focused on glucosinolate hydrolysis products. Whereas glucosinolates generally yielded...

  6. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  7. Selective Tandem Synthesis of Oximes from Benzylic Alcohols Catalyzed with 2, 3-Dichloro-5, 6-dicyanobenzoquinone

    Energy Technology Data Exchange (ETDEWEB)

    Aghapour, Ghasem; Mohamadian, Samaneh [Damghan University, Damghan (Iran, Islamic Republic of)

    2012-04-15

    In spite of many reports in the literature concerning with oxidation of benzylic alcohols to carbonyl compounds with 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) in stoichiometric amounts or even more, we surprisingly found that benzylic alcohols are directly oxidized to oximes using a catalytic amount of DDQ in the presence of hydroxylamine hydrochloride under solvent-free conditions. The present tandem catalytic method can be efficiently used for preparation of oximes in the presence of some other functional groups with excellent chemoselectivity

  8. Bioavailability of Isothiocyanates From Broccoli Sprouts in Protein, Lipid, and Fiber Gels

    OpenAIRE

    Oliviero, Teresa; Lamers, Simone; Capuano, Edoardo; Dekker, Matthijs; Verkerk, Ruud

    2018-01-01

    Scope: Optimization of bioavailability of dietary bioactive health-beneficial compounds is as important as increasing their concentration in foods. The aim of this study is to explore the change in bioavailability of isothiocyanates (ITCs) in broccoli sprouts incorporated in protein, fiber, and lipid gels. Methods and results: Five participants took part in a cross-over study and collected timed urine samples up to 24 h after consumption of proteins, dietary fibers, and lipid gels containing ...

  9. Taste detection of the non-volatile isothiocyanate moringin results in deterrence to glucosinolate-adapted insect larvae

    NARCIS (Netherlands)

    Müller, Caroline; Loon, Van Joop; Ruschioni, Sara; Nicola, De Gina Rosalinda; Olsen, Carl Erik; Iori, Renato; Agerbirk, Niels

    2015-01-01

    Isothiocyanates (ITCs), released from Brassicales plants after hydrolysis of glucosinolates, are known for their negative effects on herbivores but mechanisms have been elusive. The ITCs are initially present in dissolved form at the site of herbivore feeding, but volatile ITCs may subsequently

  10. Homocoupling of benzyl halides catalyzed by POCOP-nickel pincer complexes

    KAUST Repository

    Chen, Tao

    2012-08-01

    Two types of POCOP-nickel(II) pincer complexes were prepared by mixing POCOP pincer ligands and NiX 2 in toluene at reflux. The resulting nickel complexes efficiently catalyze the homocoupling reactions of benzyl halides in the presence of zinc. The coupled products were obtained in excellent to quantitative yields. © 2012 Elsevier Ltd. All rights reserved.

  11. Inactivation of Salmonella in tomato stem scars by organic acid wash and chitosan-allyl isothiocyanate coating

    Science.gov (United States)

    The objective of this study was to evaluate inactivation of inoculated Salmonella enterica on tomato stem scars exploiting integrated treatment of organic acid wash (AW) followed by chitosan-allyl isothiocyanate (CT-AIT) coating. The treatment effect on microbial loads and fruit quality during 21 d...

  12. Effect of gamma-irradiation on the plasticization of nylon 6 with benzyl alcohol

    International Nuclear Information System (INIS)

    Jamdagni, R.P.; Chaudhuri, N.K.

    1980-01-01

    The effect of γ-irradiation on the plasticization of nylon 6 monofilaments with benzyl alcohol by monitoring the glass transition temperature Tg after γ-irradiation has been studied. The method applied for determining the Tg is thermomechanical. The longitudinal deformation was determined with nylon 6 monofilaments immersed in benzyl alcohol, carrying a negligible weight to keep it taut. The temperature was varied in the range 3deg - 90deg C. Samples were prepared at different irradiation doses between 0 and 16 Mrad using a Cobalt-60 source. At each irradiation dose, a percentage extension vs temperature plot was made from the data obtained, and the Tg of the irradiated filament was determined from this plot. It was observed that the Tg started increasing very slowly upto 4 Mrad. The rate is appreciably faster after 8 Mrad. At 16 Mrad the Tg rises from its value in unirradiated nylon 6 monofilaments plasticized with benzyl alcohol, that is, the control, by about 13deg C. This upward shift of Tg is an antiplasticization effect and is accompanied with change of other mechanical properties, such as extensibility and tensile strength. The paper discusses the implication of these results in terms of previously known behaviour of scission and crosslinking due to γ-irradiation in nylon 6 and explores the possibility of application of the effect in processing. (author)

  13. 5-Alkyl-6-benzyl-2-(2-oxo-2-phenylethylsulfanyl)pyrimidin-4(3H)-ones, a series of anti-HIV-1 agents of the dihydro-alkoxy-benzyl-oxopyrimidine family with peculiar structure-activity relationship profile.

    Science.gov (United States)

    Nawrozkij, Maxim B; Rotili, Dante; Tarantino, Domenico; Botta, Giorgia; Eremiychuk, Alexandre S; Musmuca, Ira; Ragno, Rino; Samuele, Alberta; Zanoli, Samantha; Armand-Ugón, Mercedes; Clotet-Codina, Imma; Novakov, Ivan A; Orlinson, Boris S; Maga, Giovanni; Esté, José A; Artico, Marino; Mai, Antonello

    2008-08-14

    A series of dihydro-alkylthio-benzyl-oxopyrimidines (S-DABOs) bearing a 2-aryl-2-oxoethylsulfanyl chain at pyrimidine C2, an alkyl group at C5, and a 2,6-dichloro-, 2-chloro-6-fluoro-, and 2,6-difluoro-benzyl substitution at C6 (oxophenethyl- S-DABOs, 6-8) is here described. The new compounds showed low micromolar to low nanomolar (in one case subnanomolar) inhibitory activity against wt HIV-1. Against clinically relevant HIV-1 mutants (K103N, Y181C, and Y188L) as well as in enzyme (wt and K103N, Y181I, and L100I mutated RTs) assays, compounds carrying an ethyl/ iso-propyl group at C5 and a 2,6-dichloro-/2-chloro-6-fluoro-benzyl moiety at C6 were the most potent derivatives, also characterized by low fold resistance ratio. Interestingly, the structure-activity relationship (SAR) data drawn from this DABO series are more related to HEPT than to DABO derivatives. These findings were at least in part rationalized by the description of a fair superimposition between the 6-8 and TNK-651 (a HEPT analogue) binding modes in both WT and Y181C RTs.

  14. Quantitative Structure-Activity Relationship of Insecticidal Activity of Benzyl Ether Diamidine Derivatives

    Science.gov (United States)

    Zhai, Mengting; Chen, Yan; Li, Jing; Zhou, Jun

    2017-12-01

    The molecular electrongativity distance vector (MEDV-13) was used to describe the molecular structure of benzyl ether diamidine derivatives in this paper, Based on MEDV-13, The three-parameter (M 3, M 15, M 47) QSAR model of insecticidal activity (pIC 50) for 60 benzyl ether diamidine derivatives was constructed by leaps-and-bounds regression (LBR) . The traditional correlation coefficient (R) and the cross-validation correlation coefficient (R CV ) were 0.975 and 0.971, respectively. The robustness of the regression model was validated by Jackknife method, the correlation coefficient R were between 0.971 and 0.983. Meanwhile, the independent variables in the model were tested to be no autocorrelation. The regression results indicate that the model has good robust and predictive capabilities. The research would provide theoretical guidance for the development of new generation of anti African trypanosomiasis drugs with efficiency and low toxicity.

  15. Metal-free oxidative olefination of primary amines with benzylic C-H bonds through direct deamination and C-H bond activation.

    Science.gov (United States)

    Gong, Liang; Xing, Li-Juan; Xu, Tong; Zhu, Xue-Ping; Zhou, Wen; Kang, Ning; Wang, Bin

    2014-09-14

    An oxidative olefination reaction between aliphatic primary amines and benzylic sp(3) C-H bonds has been achieved using N-bromosuccinimide as catalyst and tert-butyl hydroperoxide as oxidant. The olefination proceeds under mild metal-free conditions through direct deamination and benzylic C-H bond activation, and provides easy access to biologically active 2-styrylquinolines with (E)-configuration.

  16. 1-Benzyl-5-bromoindoline-2,3-dione

    Directory of Open Access Journals (Sweden)

    Yassine Kharbach

    2016-04-01

    Full Text Available In the title compound, C15H10BrNO2, the indoline ring system, the two ketone O atoms and the Br atom lie in a common plane, with the largest deviation from the mean plane being 0.073 (1 Å for the Br atom. The fused-ring system is nearly perpendicular to the benzyl ring, as indicated by the dihedral angle between them of 74.58 (10°. In the crystal, molecules are linked by weak C—H...O hydrogen bonds and by π–π interactions [inter-centroid distance = 3.625 (2 Å], forming a two-dimensional structure.

  17. Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiayue; Lu, Lu; Zhao, Chen; Mei, Donghai; Lercher, Johannes A.

    2014-03-01

    Catalytic pathways for the cleavage of ether bonds in benzyl phenyl ether (BPE) in liquid phase using Ni- and zeolite-based catalysts are explored. In the absence of catalysts, the C-O bond is selectively cleaved in water by hydrolysis, forming phenol and benzyl alcohol as intermediates, followed by alkylation. The hydronium ions catalyzing the reactions are provided by the dissociation of water at 523 K. Upon addition of HZSM-5, rates of hydrolysis and alkylation are markedly increased in relation to proton concentrations. In the presence of Ni/SiO2, the selective hydrogenolysis dominates for cleaving the Caliphatic-O bond. Catalyzed by the dual-functional Ni/HZSM-5, hydrogenolysis occurs as the major route rather than hydrolysis (minor route). In apolar undecane, the non-catalytic thermal pyrolysis route dominates. Hydrogenolysis of BPE appears to be the major reaction pathway in undecane in the presence of Ni/SiO2 or Ni/HZSM-5, almost completely suppressing radical reactions. Density functional theory (DFT) calculations strongly support the proposed C-O bond cleavage mechanisms on BPE in aqueous and apolar phases. These calculations show that BPE is initially protonated and subsequently hydrolyzed in the aqueous phase. Finally, DFT calculations suggest that the radical reactions in non-polar solvents lead to primary benzyl and phenoxy radicals in undecane, which leads to heavier condensation products as long as metals are absent for providing dissociated hydrogen.

  18. The addition of organotin hydrides to isocyanates and isothiocyanates: synthesis and structure of some organotin-substituted amides

    NARCIS (Netherlands)

    Noltes, J.G.; Janssen, M.J.

    Organotin hydrides add across the carbon---nitrogen double bond of aryl isocyanates (tin---nitrogen bond formation) and hexyl isocyanate (tin---carbon bond formation) and across the carbon---sulfur double bond of phenyl isothiocyanate (tin---sulfur bond formation) to afford in excellent yield 1:1

  19. Redetermination of 1-benzyl-3-furoyl-1-phenylthiourea

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, C19H16N2O2S, was synthesized from furoyl isothiocyanate and N-benzylaniline in dry acetone and the structure redetermined. The structure [Otazo-Sánchez et al. (2001. J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218] has been re-determined in order to establish the intramolecular and intermolecular interactions. The thiourea group is in the thioamide form. The thiourea group makes a dihedral angle of 29.2 (6° with the furoyl group. In the crystal structure, molecules are linked by intermolecular C—H...O interactions, forming one-dimensional chains along the a axis. An intramolecular N—H...O hydrogen bond is also present.

  20. Use of cyclodextrins as a cosmetic delivery system for fragrance materials: linalool and benzyl acetate.

    Science.gov (United States)

    Numanoğlu, Ulya; Sen, Tangül; Tarimci, Nilüfer; Kartal, Murat; Koo, Otilia M Y; Onyüksel, Hayat

    2007-10-19

    The aim of this study was to increase the stability and water solubility of fragrance materials, to provide controlled release of these compounds, and to convert these substances from liquid to powder form by preparing their inclusion complexes with cyclodextrins (CDs). For this purpose, linalool and benzyl acetate were chosen as the fragrance materials. The use of beta-cyclodextrin (beta CD) and 2-hydroxypropyl-beta-cyclodextrin (2-HP beta CD) for increasing the solubility of these 2 fragrance materials was studied. Linalool and benzyl acetate gave a B-type diagram with beta CD, whereas they gave an A(L)-type diagram with 2-HP beta CD. Therefore, complexes of fragrance materials with 2-HP beta CD at 1:1 and 1:2 molar ratios (guest:host) were prepared. The formation of inclusion complexes was confirmed using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy and circular dichroism spectroscopy. The results of the solubility studies showed that preparing the inclusion complex with 2-HP beta CD at a 1:1 molar ratio increased the solubility of linalool 5.9-fold and that of benzyl acetate 4.2-fold, whereas the complexes at a 1:2 molar ratio increased the solubility 6.4- and 4.5-fold for linalool and benzyl acetate, respectively. The stability and in vitro release studies were performed on the gel formulations prepared using uncomplexed fragrance materials or inclusion complexes of fragrance materials at a 1:1 molar ratio. It was observed that the volatility of both fragrance materials was decreased by preparing the inclusion complexes with 2-HP beta CD. Also, in vitro release data indicated that controlled release of fragrances could be possible if inclusion complexes were prepared.

  1. Design, synthesis and biological activity of novel peptidyl benzyl ketone FVIIa inhibitors

    DEFF Research Database (Denmark)

    Storgaard, Morten; Henriksen, Signe Teuber; Zaragoza, Florencio

    2011-01-01

    Herein is described the synthesis of a novel class of peptidyl FVIIa inhibitors having a C-terminal benzyl ketone group. This class is designed to be potentially suitable as stabilization agents of liquid formulations of rFVIIa, which is a serine protease used for the treatment of hemophilia...

  2. Correlation of quinone reductase activity and allyl isothiocyanate formation among different genotypes and grades of horseradish roots.

    Science.gov (United States)

    Ku, Kang-Mo; Jeffery, Elizabeth H; Juvik, John A; Kushad, Mosbah M

    2015-03-25

    Horseradish (Armoracia rusticana) is a perennial crop and its ground root tissue is used in condiments because of the pungency of the glucosinolate (GS)-hydrolysis products allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC) derived from sinigrin and gluconasturtiin, respectively. Horseradish roots are sold in three grades: U.S. Fancy, U.S. No. 1, and U.S. No. 2 according to the USDA standards. These grading standards are primarily based on root diameter and length. There is little information on whether root grades vary in their phytochemical content or potential health promoting properties. This study measured GS, GS-hydrolysis products, potential anticancer activity (as quinone reductase inducing activity), total phenolic content, and antioxidant activities from different grades of horseradish accessions. U.S. Fancy showed significantly higher sinigrin and AITC concentrations than U.S. No. 1 ,whereas U.S. No. 1 showed significantly higher concentrations of 1-cyano 2,3-epithiopropane, the epithionitrile hydrolysis product of sinigrin, and significantly higher total phenolic concentrations than U.S. Fancy.

  3. Analysis of residual products in benzyl chloride used for the industrial synthesis of quaternary compounds by liquid chromatography with diode-array detection.

    Science.gov (United States)

    Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D

    2009-02-01

    In industrial and pharmaceutical processes, the study of residual products becomes essential to guarantee the quality of compounds and to eliminate or minimize toxic residual products. Knowledge about the origin of impurities (raw materials, processes, the contamination of industrial plants, etc.) is necessary in preventive treatment and in the control of a product's lifecycle. Benzyl chloride is used as raw material to synthesize several quaternary ammonium compounds, such as benzalkonium chloride, which may have pharmaceutical applications. Benzaldehyde, benzyl alcohol, toluene, chloro derivatives of toluene, and dibenzyl ether are compounds that may be found as impurities in technical benzyl chloride. We proposed a high-performance liquid chromatography method for the separation of these compounds, testing two stationary phases with different dimensions and particle sizes, with the application of photodiode array-detection. The linearity for four possible impurities (benzaldehyde, toluene, alpha,alpha-dichlorotoluene, and 2-chlorotoluene) ranged from 0.1 to 10 microg/mL, limits of detection from 11 to 34 ng/mL, and repeatability from 1% to 2.9% for a 0.3-1.2 microg/mL concentration range. The method was applied to samples of technical benzyl chloride, and alpha,alpha-dichlorotoluene and benzaldehyde were identified by spectral analysis and quantitated. The selection of benzyl chloride with lower levels of impurities is important to guarantee the reduction of residual products in further syntheses.

  4. 1-Benzyl-3-methylquinoxalin-2(1H-one

    Directory of Open Access Journals (Sweden)

    Youssef Ramli

    2018-03-01

    Full Text Available The asymmetric unit of the title compound, C16H14N2O, contains three independent molecules differing primarily in the orientations of the benzyl groups. Each independent molecule forms inversion related dimers via offset π-stacking interactions. For two of these dimers, stacks are formed approximately along the a-axis direction by a combinations of C—H...N and C—H...π(ring contacts, in addition to the offset π-stacking interactions. The third set of dimers are also stacked in the same direction but only by pairwise C—H...N hydrogen bonds.

  5. Therapeutic Efficacy of Allyl Isothiocyanate Evaluated on N-Nitrosodiethylamine/Phenobarbitol induced Hepatocarcinogenesis in Wistar Rats

    Directory of Open Access Journals (Sweden)

    G. Thiyagarajan

    2010-07-01

    Full Text Available N-nitrosodiethylamine (NDEA is a potential carcinogenic agent that induces liver cancer. To evaluate the chemotherapeutic effect of Allyl isothiocyanate in the experimental model, Wistar male rats were administered single dose of intraperitoneal (IP injection of NDEA. Two weeks after administration of NDEA, Phenobarbital at the concentration of 0.05% was incorporated in rat chow for up to 14 successive weeks to promote liver cancer. Allyl isothiocyanate (AITC (2mg/kg body weight in addition with 0.5ml of corn oil was given orally on a daily basis. At the end of this experimental period, the rats were sacrificed and the blood samples were taken for biochemical studies. The levels of the marker enzymes for liver function were measured in serum. The results of the biochemical studies showed that NDEA administration followed by phenobarbital induces macro and microscopic liver tumors that increase the levels of marker enzymes and decreases the level of antioxidant in the serum in addition to loss of body weight. Conclusively, the administration of AITC as therapeutic treatment for hepatocarcinoma has significantly reduced the tumor development and counteracted all the biochemical effects induced by NDEA.

  6. Development of new apple beverages rich in isothiocyanates by using extracts obtained from ultrasound-treated cauliflower by-products

    DEFF Research Database (Denmark)

    Amofa-Diatuo, Tracy; Anang, Daniel M.; Barba Orellana, Francisco Jose

    2017-01-01

    The objective of this study was to develop a new apple juice beverage enriched with isothiocyanates (ITC) - rich extracts obtained from cauliflower by-products. Ultrasound-assisted extraction (UAE) at different amplitudes (20-100%) and extraction times (0-10. min) at a frequency of 24. kHz was em......The objective of this study was to develop a new apple juice beverage enriched with isothiocyanates (ITC) - rich extracts obtained from cauliflower by-products. Ultrasound-assisted extraction (UAE) at different amplitudes (20-100%) and extraction times (0-10. min) at a frequency of 24. k......) and UAE (20%, 3. min), respectively. Moreover, the highest recovery of total phenolic compounds (TPC) (≈105. mg gallic acid equivalent (GAE)/L) μM) was found after UAE (100% amplitude, 3. min) of TPC from stems. ITC-rich extracts obtained from caulifower by-products at the optimum UAE conditions were...

  7. The effect of benzyl alcohol on pulsed laser polymerization of styrene and methylmethacrylate

    NARCIS (Netherlands)

    O'Driscoll, K.F.; Monteiro, M.J.; Klumperman, B.

    1997-01-01

    The homo- and copolymerizations of styrene (STY) and methylmethacrylate (MMA) have been studied in the presence of several levels of benzyl alcohol (BA). From pulsed laser polymerizations it has been found that the apparent propagation rate constant increased with increasing BA for all systems. In

  8. DFT study of benzyl alcohol/TiO2 interfacial surface complex: reaction pathway and mechanism of visible light absorption.

    Science.gov (United States)

    Zhao, Lei; Gu, Feng Long; Kim, Minjae; Miao, Maosheng; Zhang, Rui-Qin

    2017-09-24

    We propose a new pathway for the adsorption of benzyl alcohol on the surface of TiO 2 and the formation of interfacial surface complex (ISC). The reaction free energies and reaction kinetics were thoroughly investigated by density functional calculations. The TiO 2 surfaces were modeled by clusters consisting of 4 Ti atoms and 18 O atoms passivated by H, OH group and H 2 O molecules. Compared with solid-state calculations utilizing the periodicity of the materials, such cluster modeling allows inclusion of the high-order correlation effects that seem to be essential for the adsorption of organic molecules onto solid surfaces. The effects of both acidity and solvation are included in our calculations, which demonstrate that the new pathway is competitive with a previous pathway. The electronic structure calculations based on the relaxed ISC structures reveal that the chemisorption of benzyl alcohol on the TiO 2 surface greatly alters the nature of the frontier molecular orbitals. The resulted reduced energy gap in ISC matches the energy of visible light, showing how the adsorption of benzyl alcohol sensitizes the TiO 2 surface. Graphical Abstract The chemisorption of benzyl alcohol on TiO 2 surface greatly alters the nature of the frontier molecular orbitals and the formed interfacial surface complex can be sensitized by visible light.

  9. On the role of resonantly stabilized radicals in polycyclic aromatic hydrocarbon (PAH) formation: pyrene and fluoranthene formation from benzyl-indenyl addition.

    Science.gov (United States)

    Sinha, Sourab; Rahman, Ramees K; Raj, Abhijeet

    2017-07-26

    Resonantly stabilized radicals, such as propargyl, cyclopentadienyl, benzyl, and indenyl, play a vital role in the formation and growth of polycyclic aromatic hydrocarbons (PAHs) that are soot precursors in engines and flames. Pyrene is considered to be an important PAH, as it is thought to nucleate soot particles, but its formation pathways are not well known. This paper presents a reaction mechanism for the formation of four-ring aromatics, pyrene and fluoranthene, through the combination of benzyl and indenyl radicals. The intermediate species and transition structures involved in the elementary reactions of the mechanism were studied using density functional theory, and the reaction kinetics were evaluated using transition state theory. The barrierless addition of benzyl and indenyl to form the adduct, 1-benzyl-1H-indene, was found to be exothermic with a reaction energy of 204.2 kJ mol -1 . The decomposition of this adduct through H-abstraction and H 2 -loss was studied to determine the possible products. The rate-of-production analysis was conducted to determine the most favourable reactions for pyrene and fluoranthene formation. The premixed laminar flames of toluene, ethylbenzene, and benzene were simulated using a well-validated hydrocarbon fuel mechanism with detailed PAH chemistry after adding the proposed reactions to it. The computed and experimentally observed species profiles were compared to determine the effect of the new reactions for pyrene and fluoranthene formation on their concentration profiles. The role of benzyl and indenyl combination in PAH formation and growth is highlighted.

  10. The Effects of Foliar Application of Benzyl Adenine, Ascorbic Acid and Thiamine on Some Morphological and Biochemical Characteristics of Petunia (Petunia hybrida

    Directory of Open Access Journals (Sweden)

    M. Salehi

    2016-05-01

    Full Text Available The improvement of growth and flowering of petunia as one of the most popular and cultivated bedding plants in Iran, is of significant importance. Thus, a CRD experiment with five replications was conducted at the Research Greenhouse of Shahid Bahonar University, Kerman, Iran.  From 48 days after sowing, when the seedlings had 5-6 true leaves, the seedlings were sprayed with  thiamine (0 and 100 mgL-1, ascorbic acid (0 and 100 mg L-1 and benzyl adenine (0 and 200 mg L-1 at 4 steps during  growth and development. The results indicated that the treatment of ascorbic acid with thiamine and benzyl adenine led to 2.5 and 3.5-fold increases in the number and length of lateral shoots compared to control treatment. The greatest fresh weight was obtained with ascorbic acid with thiamine and benzyl adenine treatment which led to a 2.5-fold increase in this trait, compared to the control. The highest dry weight was achieved in benzyl adenine treatment. The greatest vase-life and flower diameter were found with ascorbic acid (100 mg L-1, thiamine (100 mg L-1 and benzyl adenine (200 mg L-1 treatments in an extent that the flower longevity and diameter were increased by 83% and 72%, respectively, in comparison to control. Furthermore, chlorophyll a, chlorophyll b, total chlorophyll, carotenoids and reduced sugars concentrations were significantly increased by the foliar-applied compounds compared to control.

  11. Contents of Sulforaphane and Total Isothiocyanates, Antimutagenic Activity, and Inhibition of Clastogenicity in Pulp Juices from Cruciferous Plants

    Czech Academy of Sciences Publication Activity Database

    Totušek, J.; Tříska, Jan; Lefnerová, D.; Strohalm, J.; Vrchotová, Naděžda; Zendulka, O.; Průchová, J.; Chaloupková, J.; Novotná, P.; Houška, M.

    2011-01-01

    Roč. 29, č. 5 (2011), s. 548-556 ISSN 1212-1800 R&D Projects: GA MZe QF3287 Institutional research plan: CEZ:AV0Z60870520 Keywords : cruciferous vegetables * juice * antimutagenic effects * sulforaphane * isothiocyanates Subject RIV: GM - Food Processing Impact factor: 0.522, year: 2011

  12. Novel Synthesis and Anti-HIV-1 Activity of 2-Arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (Aryl S-DABOs)

    DEFF Research Database (Denmark)

    Aly, Youssef L.; Pedersen, Erik Bjerreg.; La Colla, Paolo

    2007-01-01

    The synthesis and the anti-HIV-1 activity of a series of 2-arylthio-6-benzyl-2,3-dihydro-1H-pyrimidin-4-ones (aryl S-DABOs) are reported. These compounds were synthesized via a coupling reaction of the corresponding 6-benzyl-2-thiouracils with aryl iodides in the presence of neocuproine hydrate...

  13. Radiation cross-linking of ethylene vinyl alcohol copolymer functionalized with m-isopropenyl-α,α-dimethyl benzyl isocyanate

    International Nuclear Information System (INIS)

    Ekman, K.B.; Naesman, J.H.

    1993-01-01

    An ethylene vinyl alcohol copolymer was functionalized with m-isopropenyl-α,α-dimethyl benzyl isocyanate using reactive processing in a mixer. The functionalization introduces pendant unsaturation to the polymer, which allows radiation cross-linked to gel contents >70% at radiation doses below 100 kGy. Unfunctionalized ethylene vinyl alcohol copolymer, on the other hand, forms no gel upon irradiation. The functionalization was completed within a few minutes of reactive mixing, which was confirmed with both FTIR and 13 C-NMR measurements. The oxygen permeability of ethylene vinyl alcohol copolymer increased with increasing degree of functionalization, and irradiation of the samples formed trapped radicals, which act as oxygen scavengers. Consequently no oxygen permeability was detected. However, radical activity was inhibited by annealing the samples at 110 C resulting in a 24% higher oxygen permeability value for the irradiated unfunctionalized copolymer. The oxygen permeability values of the irradiated functionalized samples were approximately 13% lower. Laminates of m-isopropenyl-α,α-dimethyl benzyl isocyanate functionalized ethylene vinyl alcohol copolymer and m-isopropenyl-α,α-dimethyl benzyl isocyanate functionalized ethylene hydroxyethyl methacrylate copolymer acquired improved adhesive strength both at dry and wet conditions as well as at elevated temperature upon exposure to radiation

  14. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    Science.gov (United States)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  15. Substituted thiobenzoic acid S-benzyl esters as potential inhibitors of a snake venom phospholipase A2: Synthesis, spectroscopic and computational studies

    Science.gov (United States)

    Henao Castañeda, I. C.; Pereañez, J. A.; Jios, J. L.

    2012-11-01

    4-Chlorothiobenzoic acid S-benzyl ester (I), 3-nitrothiobenzoic acid S-benzyl ester (II), 4-nitrothiobenzoic acid S-benzyl ester (III) and 4-methylthiobenzoic acid S-benzyl ester (IV) were prepared and characterized by 1H and 13C NMR, Mass spectrometry and IR spectroscopy. Quantum chemical calculations were performed with Gaussian 09 to calculate the geometric parameters and vibrational spectra. Phospholipase A2 (PLA2) was purified from Crotalus durissus cumanensis venom by molecular exclusion chromatography, followed by reverse phase-high performance liquid chromatography. Two studies of the inhibition of phospholipase A2 activity were performed using phosphatidilcholine and 4-nitro-3-octanoyloxybenzoic acid as substrates, in both cases compound II showed the best inhibitory ability, with 74.89% and 69.91% of inhibition, respectively. Average percentage of inhibition was 52.49%. Molecular docking was carried out with Autodock Vina using as ligands the minimized structures of compounds (I-IV) and as protein PLA2 (PDB code 2QOG). The results suggest that compounds I-IV could interact with His48 at the active site of PLA2. In addition, all compounds showed Van der Waals interactions with residues from hydrophobic channel of the enzyme. This interaction would impede normal catalysis cycle of the PLA2.

  16. Phytomedicinal value of moringa oleifera with special reference to antiparasitics

    International Nuclear Information System (INIS)

    Fatima, T.; Sajid, M.S.; Hassan, M.J.; Iqbal, Z.

    2014-01-01

    Plants are claimed as folk medicine for their therapeutic activity. Moringa (M.) oleifera, known as the 'miracle tree' is greatly esteemed for its unique nutritional and medicinal value. Nutritively, it contains essential, disease-preventing nutrients. The methanolic and ethanolic extracts of plants have anthelmintic activity through paralysis of helminths. The compounds found responsible so far for their anthelmintic activities include: niazirinin, glycoside, niazirin and three glycosides from mustard oil, niaziminin A, B and 4- (4'-O-acetyl- alpha -L-rhamnosyloxy) benzyl) isothiocyanate isolated from leaves; D-glucose, D-mannose, ascorbic acid, protein and polysaccharide isolated from mature flowers; 0-(2'-hydroxy-3'-(2'-heptenyloxy)) propylundecanoate, methyl-p-hydroxybenzoate, thiocarbanates, isothiocyanate, nitriles, 0-ethyl-4-((alpha-1-rhamnosyloxy)-benzyl) carbamate, and beta-sitosterol isolated from whole pods of M. oleifera. Parasites are one of the major causes of diseases in human and animals. Due to parasitic infections livestock industry suffers from huge conomic losses. The parasites which have been treated using different parts of M. oleifera include: Dracunculiasis (guinea worm), schistosomes and trypanosomes. Plant extracts may serve as potential candidates in future to exterminate helminthiasis in human and livestock populations. Hence, isolation, characterization and in vivo and in vitro efficacy trials of M. oleifera derivatives on scientific grounds are direly needed to elucidate it as a noteworthy candidate as neutraceutical and anthelmintic. (author)

  17. Use of Fluorescein Isothiocyanate-Inulin as a Marker for Intestinal Ischemic Injury.

    Science.gov (United States)

    AlKukhun, Abedalrazaq; Caturegli, Giorgio; Munoz-Abraham, Armando Salim; Judeeba, Sami; Patron-Lozano, Roger; Morotti, Raffaella; Rodriguez-Davalos, Manuel I; Geibel, John P

    2017-06-01

    Intestinal ischemia is observed in conditions such as mesenteric ischemia, or during traumatic events such as intestinal transplantation. Intestinal ischemia leads to pathophysiologic disruptions that present as increased fluid secretion into the intestinal lumen. We propose a novel method to detect real-time ischemic injury that is used in an in vitro model applicable to intestinal transplantation. Small intestine segments from rats were procured. The segments were attached to customized perfusion chambers. Both intestines were perfused on the vascular side with a Ringer buffer solution. The experimental buffer solution was bubbled with 100% nitrogen to mimic ischemia. Both lumens were perfused with 3 mL HEPES-Ringer solution containing 50 μM fluorescein isothiocyanate (FITC)-inulin. Intraluminal samples were collected at 15-minute intervals to measure FITC-inulin concentration using a nanofluorospectrophotometer. Intestinal tissue samples were processed and evaluated by a blinded pathologist using the Park/Chiu scoring system for grading intestinal ischemia. Samples collected from the ischemic intestine showed a significant decrease in FITC-inulin fluorescence compared with the control intestine, indicating enhanced fluid secretion. Histopathologic samples from the experimental arm exhibited higher scores of ischemic injury in comparison with the control arm, confirming the FITC-inulin as a correlation to ischemia. Fluorescein isothiocyanate-inulin can be used as a real-time volume marker to monitor the ischemic state of intestinal tissue. A positive correlation between the degree of fluid shift and presence of ischemic injury. The changes in fluorescence signal provide a potential selective method to measure real-time fluid changes inside an intestinal graft to evaluate viability. Copyright © 2016 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Synthesis, crystal structure, and photoluminescence of a lithium isothiocyanate compound with 18-crown-6

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shan; Fu, Bo; Zhao, Zhen; Liu, Xi [Chongqing Normal Univ. (China). Chongqing Key Lab. of Inorganic Functional Materials

    2018-04-01

    The investigation of the supramolecular interactions between the lithium isothiocyanate salt and 18-crown-6 (18C-6) in commercial tetrahydrofuran leads to the formation of a lithium compound, LiNCS(H{sub 2}O)(18C-6) (1). In the crystal structure the asymmetric unit contains two similar LiNCS(H{sub 2}O)(18C-6) molecules. Solid-state photoluminescence experiments have shown that compound 1 emits violet luminescence, and its possible emission mechanism was investigated in detail based on theoretical calculations.

  19. Synthesis and physical-chemical properties of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives

    Directory of Open Access Journals (Sweden)

    E. K. Mikhalchenko

    2017-04-01

    Full Text Available Introduction. Heterocyclic compounds play an important role in the metabolic processes of human organism. Structures of vitamins, nucleotides, chromoproteins are based on Nitrogen-containing heterocycles (purine, pyrimidine, thiazole etc. Thus, it was obvious to use these organic substances as basic molecules for synthetic research of biologically active compounds which could be used for treatment of different pathological processes. In their research, some scientist pay special attention to xanthine derivatives that are well-known low toxic natural compounds with wide spectrum of pronounced pharmacological properties (antioxidant, diuretic, antibacterial, anti-inflammatory etc. Insertion of carboxyl group in the structure of xanthine molecule is a prospective ability of its synthetic potential increasing. Aim of our research was the development of method of 3-benzyl-8-propylxanthinyl-7-acetic acid and its derivatives synthesis and studying their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian», USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Results and discussion. We selected 3-benzyl-8-propyl xanthine as initial compound for our study. By its interaction with chloroacetic acid, chloroacetamide or propyl chloroacetate in DMF in the presence of calculated amount of NaHCO3 we synthesized 3-benzyl-8-propylxanthinyl-7-acetic acid its ester and amide. At the same time we found that obtaining of xanthinyl-7-acetic acid by hydrolysis of its ester produced with higher yield. On the next stage of our research we synthesized a number of water-soluble salts of 3-benzyl-8-propylxanthinyl-7-acetic acid by reaction of acid with different primary and secondary amines. The structures of all obtained compounds were

  20. Postprocedural pain in shoulder arthrography: differences between using preservative-free normal saline and normal saline with benzyl alcohol as an intraarticular contrast diluent.

    Science.gov (United States)

    Storey, Troy F; Gilbride, George; Clifford, Kelly

    2014-11-01

    The purpose of this study was to prospectively evaluate the effect of benzyl alcohol, a common preservative in normal saline, on postprocedural pain after intraarticular injection for direct shoulder MR arthrography. From April 2011 through January 2013, 138 patients underwent direct shoulder MR arthrography. Using the Wong-Baker Faces Pain Scale, patients were asked to report their shoulder pain level immediately before and immediately after the procedure and then were contacted by telephone 6, 24, and 48 hours after the procedure. Fourteen patients did not receive the prescribed amount of contrast agent for diagnostic reasons or did not complete follow-up. Sixty-two patients received an intraarticular solution including preservative-free normal saline (control group) and 62 patients received an intraarticular solution including normal saline with 0.9% benzyl alcohol as a contrast diluent (test group). Patients were randomized as to which intraarticular diluent they received. Fluoroscopic and MR images were reviewed for extracapsular contrast agent administration or extravasation, full-thickness rotator cuff tears, and adhesive capsulitis. The effect of preservative versus control on pain level was estimated with multiple regression, which included time after procedure as the covariate and accounted for repeated measures over patients. Pain scale scores were significantly (p = 0.0382) higher (0.79 units; 95% CI, 0.034-1.154) with benzyl alcohol preservative compared with control (saline). In both study arms, the pain scale scores decreased slightly after the procedure, increased by roughly 1 unit over baseline for the test group and 0.3 unit over baseline for the control group by 6 hours after the procedure, were 0.50 unit over baseline for the test group and 0.12 unit over baseline for the control group at 24 hours, then fell to be slightly greater than baseline at 48 hours with benzyl alcohol and slightly less than baseline without benzyl alcohol. These trends

  1. Concentration- and Time-Dependent Effects of Isothiocyanates Produced from Brassicaceae Shoot Tissues on the Pea Root Rot Pathogen Aphanomyces euteiches

    NARCIS (Netherlands)

    Hossain, S.; Bergkvist, G.; Berglund, K.; Glinwood, R.; Kabouw, P.; Martensson, A.; Persson, P.

    2014-01-01

    Isothiocyanates (ITCs) hydrolyzed from glucosinolates (GSLs) in Brassicaceae tissue are toxic to soil organisms. In this study, the effect of aliphatic and aromatic ITCs from hydrated dry Brassicaceae shoot tissues on the mycelium and oospores of the pea root rot pathogen Aphanomyces euteiches was

  2. Effects of Brassicaceae Isothiocyanates on Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Silvia Novío

    2016-05-01

    Full Text Available Despite the major progress made in the field of cancer biology, cancer is still one of the leading causes of mortality, and prostate cancer (PCa is one of the most encountered malignancies among men. The effective management of this disease requires developing better anticancer agents with greater efficacy and fewer side effects. Nature is a large source for the development of chemotherapeutic agents, with more than 50% of current anticancer drugs being of natural origin. Isothiocyanates (ITCs are degradation products from glucosinolates that are present in members of the family Brassicaceae. Although they are known for a variety of therapeutic effects, including antioxidant, immunostimulatory, anti-inflammatory, antiviral and antibacterial properties, nowadays, cell line and animal studies have additionally indicated the chemopreventive action without causing toxic side effects of ITCs. In this way, they can induce cell cycle arrest, activate apoptosis pathways, increase the sensitivity of resistant PCa to available chemodrugs, modulate epigenetic changes and downregulate activated signaling pathways, resulting in the inhibition of cell proliferation, progression and invasion-metastasis. The present review summarizes the chemopreventive role of ITCs with a particular emphasis on specific molecular targets and epigenetic alterations in in vitro and in vivo cancer animal models.

  3. Optimizing isothiocyanate formation during enzymatic glucosinolate breakdown by adjusting pH value, temperature and dilution in Brassica vegetables and Arabidopsis thaliana

    NARCIS (Netherlands)

    Hanschen, F.; Klopsch, R.; Oliviero, T.; Schreiner, M.; Verkerk, R.; Dekker, M.

    2017-01-01

    Consumption of glucosinolate-rich Brassicales vegetables is associated with a decreased risk of cancer with enzymatic hydrolysis of glucosinolates playing a key role. However, formation of health-promoting isothiocyanates is inhibited by the epithiospecifier protein in favour of nitriles and

  4. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage

    International Nuclear Information System (INIS)

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-01-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25±5 °C, Relative Humidity 90±2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar, non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control. (author)

  5. Molecular origin of the selectivity differences between palladium and gold-palladium in benzyl alcohol oxidation: Different oxygen adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Savara, Aditya Ashi [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Chan-Thaw, Carine E. [Univ. degli Studi di Milano, Milano (Italy); Sutton, Jonathan E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wang, Di [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany); Prati, Laura [Univ. degli Studi di Milano, Milano (Italy); Villa, Alberto [Univ. degli Studi di Milano, Milano (Italy)

    2016-12-22

    The same mechanism and microkinetic model used for benzyl alcohol oxidation over Pd/C was shown to apply to benzyl alcohol oxidation over AuPd/C. Almost all of the selectivity differences could be explained by a decrease in oxygen adsorption on AuPd. After isolating oxygen adsorption as being the origin of the selectivity differences, density functional theory was used to investigate the oxygen adsorption properties of a pure Pd surface, a pure Au surface, and an alloyed AuPd surface. Finally, the calculations showed that Au–Pd alloying decreased the oxygen adsorption properties relative to pure Pd, which explained the selectivity differences, consistent with the microkinetic modeling.

  6. THE STUDY OF HYPOGLYCEMIC ACTIVITY OF 3-BENZYL-8-METHYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    I. М. Bilay

    2015-04-01

    Full Text Available Diabetes mellitus is a chronic endocrine disease. It etiology is the impact of both endogenous (genetic and exogenous factors that cause absolute or relative shortage of insulin or not effective use of it, which in turn leads to disruption of all kinds of substances exchange. The study of this problem is actual due to the high prevalence of diabetes, chronic disease, the tendency to increase the number of patients, their high morbidity and mortality. Diabetes is characterized by high blood glucose levels, which eventually leads to various complications associated with many human systems damage. Hormones (insulin and its analogues and synthetic drugs (sulfonylureas, biguanides etc. are used For the treatment of diabetes, but their high toxicity, cumulativeness, various side effects (autoimmunization, cutaneous allergic reactions, disturbance of the micro flora of the digestive tract, and the formation of insulin resistance restrict the use of these drugs in clinical practice. On this aspect the attention of researchers is attracted to xanthine derivatives, which are known as substances with wide range of biological activities including hypoglycemic. Based on the above, the search and development of new drugs among new 3-R-substituted xanthine, which would have hypoglycemic effect and would be deprived of most side effects is an acute problem of modern medical and pharmaceutical sciences. The aim of this study was to investigate the hypoglycemic activity of newly synthesized derivatives of 3-benzyl-8-methylxanthine and establish certain patterns "structure-activity" relationship. Materials and methods As objects of study for hypoglycemic activity we used derivatives of 3-benzyl-8-methylxanthine synthesized at the Department of Biochemistry and LaboratoryDiagnostics ofZaporizhzhyaStateMedicalUniversity. Hypoglycemic action of xanthine derivatives evaluated by intraperitoneal glucose tolerance test, which was reproduced by injection to animals

  7. Organocatalytic Enantioselective Pictet-Spengler Approach to Biologically Relevant 1-Benzyl-1,2,3,4-Tetrahydroisoquinoline Alkaloids

    NARCIS (Netherlands)

    Ruiz-Olalla, A.; Würdemann, M.A.; Wanner, M.J.; Ingemann, S.; van Maarseveen, J.H.; Hiemstra, H.

    2015-01-01

    A general procedure for the synthesis of 1-benzyl-1,2,3,4-tetrahydroisoquinolines was developed, based on organocatalytic, regio- and enantioselective Pictet-Spengler reactions (86-92% ee) of N-(o-nitrophenylsulfenyl)-2-arylethyl-amines with arylacetaldehydes. The presence of the

  8. Structure and dynamics at the liquid surface of benzyl alcohol

    International Nuclear Information System (INIS)

    Dietter, J.; Morgner, H.

    1999-01-01

    A molecular dynamics simulation of a liquid layer of benzyl alcohol has been performed in order to compare the results with those obtained in experimental studies of our group. The main result of the experimental work was a strong orientational ordering of the benzyl alcohol molecules in the surface as well as an exceptionally large surface potential of ca. 0.6 V. According to the experiments the surface molecules orientate in such a way that the benzene ring points toward the vapor phase while the CH 2 group and the OH group are directed towards the bulk of the liquid. The simulation confirms this orientation of the surface molecules. The surface potential resulting from the simulation is 350 mV. The simulation reveals that the rather large surface potential can be understood as a consequence of the mean orientation of the molecular dipole moment in the surface region. The mean orientation of the molecules themselves in the surface is due to the tendency of the system to maintain the hydrogen bonding structure of the bulk in the surface region as well. The preferential orientation of the surface molecules causes a change of the dynamics of the individual components of the molecules when switching from bulk to surface which depends on the separation of these components from the polar group. This becomes most obvious in case of the reorientation dynamics of the molecular axes, e.g. the reorientation of the benzene ring is faster than the reorientation of the OH group. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  9. Antioxidant activity of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate, from Petiveria alliacea L.

    Science.gov (United States)

    Okada, Youji; Tanaka, Kaoru; Sato, Eisuke; Okajima, Haruo

    2008-03-21

    The antioxidant effects of the new thiosulfinate derivative, S-benzyl phenylmethanethiosulfinate (BPT), against the oxidation of cumene and methyl linoleate (ML) in chlorobenzene were studied in detail using HPLC. The results showed that BPT provided effective inhibition with a well-defined induction period under these oxidation conditions, and it was found that the stoichiometric factor (n), the number of peroxyl radicals trapped by one antioxidant molecule, of BPT is about 2. We then undertook a thorough investigation aimed at elucidating the active structural site of BPT. Various model compounds, such as diphenyl disulfide, dibenzyl disulfide, S-phenyl benzenethiosulfinate and S-ethyl phenylmethanethiosulfinate, were used which provided evidence that the benzylic hydrogen of BPT is mainly associated with the peroxyl radical scavenging. Moreover, we measured the rate constant for the reaction of BPT with peroxyl radicals derived from cumene and ML in chlorobenzene, and based on these measurements, BPT reacts with these peroxyl radicals with a rate constant of k(inh) = 8.6 x 10(3) and 6.2 x 10(4) M(-1) s(-1), respectively.

  10. New Mild and Simple Approach to Isothiocyanates: A Class of Potent Anticancer Agents

    Directory of Open Access Journals (Sweden)

    Bingling Luo

    2017-06-01

    Full Text Available In our current work, acetyl chloride-mediated synthesis of phenethyl isothiocyanate (PEITC derivatives proves to be convenient and provides the expected products at good to excellent yields. Biological evaluation and structure-activity relationship analysis found that the novel compound 7 showed the best anticancer activity against human cancer cell line Panc1 and HGC27 compared with PEITC. Compounds 6 and 7 induced more apoptosis in pancreatic cancer cells but less toxicity in non-cancer cells. Further biological study demonstrated that 7 substantially increased intracellular reactive oxygen species (ROS and depleted glutathione (GSH, leading to an oxidative stress to kill cancer cell.

  11. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    Science.gov (United States)

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  12. Influence of gamma irradiation and benzyl adenine on keeping quality of custard apple fruits during storage.

    Science.gov (United States)

    Chouksey, Swati; Singh, Alpana; Thakur, Rajendra Singh; Deshmukh, Reena

    2013-10-01

    The custard apple (Annona squamosa) fruits were procured from local market, irradiated with radiation doses 0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 kGy and then treated with benzyl adenine (50 and 100 part per million) and stored at ambient temperature (25 ± 5 °C, Relative Humidity 90 ± 2%) for 12 days. The treated fruits were evaluated for sensory (viz; flavour, texture, internal and external colour) and chemical constituents (viz; Total Soluble Solids, titrable acidity, ascorbic acid, free soluble sugar, reducing sugar. non reducing sugar, carbohydrate) during storage. The study concluded that radiation dose of 1.5 kilo Gray along with 50 ppm benzyl adenine enhanced in shelf-life of custard apple fruits by 6 days at ambient temperature with good pulp texture, flavour, colour and nutritional quality as compared to control.

  13. Optimization of Microencapsulation Composition of Menthol, Vanillin, and Benzyl Acetate inside Polyvinyl Alcohol with Coacervation Method for Application in Perfumery

    Science.gov (United States)

    Sahlan, Muhamad; Raihani Rahman, Mohammad

    2017-07-01

    One of many applications of essential oils is as fragrance in perfumery. Menthol, benzyl acetate, and vanillin, each represents olfactive characteristic of peppermint leaves, jasmine flowers, and vanilla beans, are commonly used in perfumery. These components are highly volatile, hence the fragrance components will quickly evaporate resulting in short-lasting scent and low shelf life. In this research, said components have been successfully encapsulated simultaneously inside Polyvinyl Alcohol (PVA) using simple coacervation method to increase its shelf life. Optimization has been done using Central Composite Diagram with 4 independent variables, i.e. composition of menthol, benzyl acetate, vanillin, and tergitol 15-S-9 (as emulsifier). Encapsulation efficiency, loading capacity, and microcapsule size have been measured. In optimized composition of menthol (13.98 %w/w), benzyl acetate (14.75 %w/w), vanillin (17.84 %w/w), and tergitol 15-S-9 (13.4 %w/w) encapsulation efficiency of 97,34% and loading capacity of 46,46% have been achieved. Mean diameter of microcapsule is 20,24 μm and within range of 2,011-36,24 μm. Final product was achieved in the form of cross linked polyvinyl alcohol with hydrogel consistency and orange to yellow in color.

  14. Structure and properties of poly(benzyl acrylate) synthesized under microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Oberti, Tamara G. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina); Laboratorio de Estudio de Compuestos Organicos (LADECOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Schiavoni, M. Mercedes [Laboratorio de Estudio de Compuestos Organicos (LADECOR), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900 La Plata (Argentina); Cortizo, M. Susana [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, Universidad Nacional de La Plata-CONICET Casilla de Correo 16, Sucursal 4, 1900 La Plata (Argentina)], E-mail: gcortizo@inifta.unlp.edu.ar

    2008-05-15

    Benzyl acrylate was polymerized under microwave irradiation using radical initiation (benzoyl peroxide, BP). The effect of the concentration of BP and power irradiation on the conversion, average molecular weights and the polydispersity index (M{sub w}/M{sub n}) were investigated. The {sup 1}H NMR and {sup 13}C NMR spectra analysis showed tendency to syndiotacticity and branched polymers were obtained at high conversion of reactions. A significant enhancement of the rates of polymerization and similar thermodynamic behavior, as compared with those obtained under thermal conditions was found.

  15. Synthesis, characterization, computational studies and biological evaluation of S-benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate

    Science.gov (United States)

    Bhat, Rayees A.; Kumar, D.; Malla, Manzoor A.; Bhat, Sami U.; Khan, Md Shahzad; Manzoor, Ovais; Srivastava, Anurag; Naikoo, Rawoof A.; Mohsin, Mohd; Mir, Muzzaffar A.

    2018-03-01

    S-Benzyl-β-N-[3-(4-hydroxy-3-methoxy-phenylallylidene)]dithiocarbazate (HL1), Schiff base of S-benzyl dithiocarbazate, was synthesized by 1:1 condensation between S-benzyl dithiocarbazate and 4-hydroxy-3-methoxy cinnamaldehyde. The nitrogen-sulfur Schiff base (HL1) was characterized by Mass, FT-IR, H1-NMR, Raman, and UV-VIS spectroscopic techniques. Theoretical quantum chemical calculations were performed using DFT in combination with B3LYP exchange correlation functional and 6-311++ G (d, p) basis sets level. The calculated values of chemical potential (μ), HOMO-LUMO energy gap, chemical hardness, softness (S), ionization energy (IE), electron affinity (EA), dipole moment (D) and relative stabilization energy of the compound were 0.14881 eV, 0.12542 eV, 0.06271 eV, 3.37299 eV, -0.21152 eV, -0.08610 eV, 4.4090 Debye and -1753.350 eV respectively. Theoretically calculated parameters like H1-NMR, FT-IR, UV-VIS, Raman, electrostatic potential and HOMO-LUMO energy gap are in good agreement with experimental results. Also, in-vitro cytotoxicity studies were done against two habitually infection causing bacteria strains including gram-positive (S. aureus) and gram-negative (E. coli) for antibacterial activity. The results showed appreciable biological activity and the activity increased with increase in dose.

  16. Allyl isothiocyanate enhances shelf life of minimally processed shredded cabbage.

    Science.gov (United States)

    Banerjee, Aparajita; Penna, Suprasanna; Variyar, Prasad S

    2015-09-15

    The effect of allyl isothiocyanate (AITC), in combination with low temperature (10°C) storage on post harvest quality of minimally processed shredded cabbage was investigated. An optimum concentration of 0.05μL/mL AITC was found to be effective in maintaining the microbial and sensory quality of the product for a period of 12days. Inhibition of browning was shown to result from a down-regulation (1.4-fold) of phenylalanine ammonia lyase (PAL) gene expression and a consequent decrease in PAL enzyme activity and o-quinone content. In the untreated control samples, PAL activity increased following up-regulation in PAL gene expression that could be linearly correlated with enhanced o-quinone formation and browning. The efficacy of AITC in extending the shelf life of minimally processed shredded cabbage and its role in down-regulation of PAL gene expression resulting in browning inhibition in the product is reported here for the first time. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Improved synthesis methods of standards used for quantitative determination of total isothiocyanates from broccoli in human urine

    DEFF Research Database (Denmark)

    Kristensen, Mette; Krogholm, Kirstine Suszkiewicz; Frederiksen, Hanne

    2007-01-01

    A well-known method for quantification of isothiocyanates (ITCs) and their metabolites is the condensation reaction with 1,2-benzenedithiole to produce 1,3-benzodithiole-2-thione, which can be quantified by high-performance liquid chromatography. Standards of an ITC metabolite and 1,3-benzodithio...... excretion of ITCs from 10 healthy subjects who consumed 350 g broccoli. The excretion was investigated throughout 48 h showing a cumulative urinary ITC excretion of 49.1 +/- 25.2% of the dose....

  18. Isothiocyanate-enriched moringa seed extract alleviates ulcerative colitis symptoms in mice.

    Science.gov (United States)

    Kim, Youjin; Wu, Alex G; Jaja-Chimedza, Asha; Graf, Brittany L; Waterman, Carrie; Verzi, Michael P; Raskin, Ilya

    2017-01-01

    Moringa (Moringa oleifera Lam.) seed extract (MSE) has anti-inflammatory and antioxidant activities. We investigated the effects of MSE enriched in moringa isothiocyanate-1 (MIC-1), its putative bioactive, on ulcerative colitis (UC) and its anti-inflammatory/antioxidant mechanism likely mediated through Nrf2-signaling pathway. Dextran sulfate sodium (DSS)-induced acute (n = 8/group; 3% DSS for 5 d) and chronic (n = 6/group; cyclic rotations of 2.5% DSS/water for 30 d) UC was induced in mice that were assigned to 4 experimental groups: healthy control (water/vehicle), disease control (DSS/vehicle), MSE treatment (DSS/MSE), or 5-aminosalicyic acid (5-ASA) treatment (positive control; DSS/5-ASA). Following UC induction, water (vehicle), 150 mg/kg MSE, or 50 mg/kg 5-ASA were orally administered for 1 or 2 wks. Disease activity index (DAI), spleen/colon sizes, and colonic histopathology were measured. From colon and/or fecal samples, pro-inflammatory biomarkers, tight-junction proteins, and Nrf2-mediated enzymes were analyzed at protein and/or gene expression levels. Compared to disease control, MSE decreased DAI scores, and showed an increase in colon lengths and decrease in colon weight/length ratios in both UC models. MSE also reduced colonic inflammation/damage and histopathological scores (modestly) in acute UC. MSE decreased colonic secretions of pro-inflammatory keratinocyte-derived cytokine (KC), tumor necrosis factor (TNF)-α, nitric oxide (NO), and myeloperoxidase (MPO) in acute and chronic UC; reduced fecal lipocalin-2 in acute UC; downregulated gene expression of pro-inflammatory interleukin (IL)-1, IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) in acute UC; upregulated expression of claudin-1 and ZO-1 in acute and chronic UC; and upregulated GSTP1, an Nrf2-mediated phase II detoxifying enzyme, in chronic UC. MSE was effective in mitigating UC symptoms and reducing UC-induced colonic pathologies, likely by suppressing pro-inflammatory biomarkers

  19. Apoptotic role of natural isothiocyanate from broccoli (Brassica oleracea italica) in experimental chemical lung carcinogenesis.

    Science.gov (United States)

    Kalpana Deepa Priya, D; Gayathri, R; Gunassekaran, G R; Murugan, S; Sakthisekaran, D

    2013-05-01

    Sulforaphane (SFN) [1-isothiocyanato-4-(methylsulfinyl)butane] is a naturally occurring isothiocyanate found in cruciferous vegetables such as broccoli [Brassica oleracea L. var. italica Plenck. (Brassicaceae)]. Since it is among the most potent bioactive components with antioxidant and antitumor properties, it has received intense attention in the recent years for its chemopreventive properties. The present work determined the rehabilitating role in alleviating the oxidative damage caused by benzo(a)pyrene [B(a)P] to biomolecules and the apoptotic cascade mediated by orally administered isothiocyanate-SFN (9 µmol/mouse/day) against B(a)P (100 mg/kg body weight, i.p.) induced pulmonary carcinogenesis in Swiss albino mice. Oxidative damage was assessed by measuring lipid peroxidation, 8-hydroxydeoxyguanosine, hydrogen peroxide (H2O2) production, glycoprotein components, protein carbonyl levels and DNA-protein crosslinks. DNA fragmentation by agarose gel electrophoresis and caspase-3 activity by ELISA proved apoptotic induction by SFN along with the protein expression of Bcl-2, Bax and Cyt c. SFN treatment was found to decrease the H2O2 production (p < 0.001) in cancer induced animals, proving its antioxidant potential. Apoptosis was induced by increasing the release of Cyt c (p < 0.001) from mitochondria, decreasing and increasing the expression of Bcl-2 (p < 0.01) and Bax (p < 0.001), respectively. Caspase-3 activity was also enhanced (p < 0.001) which leads to DNA fragmentation in SFN treated groups. Our results reflect the rehabilitating role of SFN in B(a)P induced lung carcinogenesis.

  20. Synthesis and physical-chemical properties of functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid

    Directory of Open Access Journals (Sweden)

    E. K. Mikhal’chenko

    2017-08-01

    Full Text Available Introduction. Synthetic research of new biologically active compounds occupies an important place in modern pharmaceutical science.Thus it is important to develop techniques for the biologically active substances functionalization. Esters and amides take special place among the variety of functional derivatives of organic acids,. These fragments are well-known pharmacophores and could be found in a wide range of drugs. Thus, the nootropic agent pyracetam is 2-oxo-1-pyrolidineacetamide, and is the selective antagonist of β-adrenoreceptores; atenolol is a derivative of benzeneacetamide. Substituted acetamide and ester fragments are also present in the structures of aprofen, spasmolitin, acetylidine and β-lactam cephalosporins and penicillins antibiotics.Aim of our research was the synthetic method development for functional derivatives of 3-benzyl-8-propylxanthinyl-7-acetic acid and the study of their physical-chemical properties. Materials and methods. Melting points were determined using capillary method on DMP (M. 1Н NMR-spectra were recorded by Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standard – ТМS. Elemental analysis of obtained compounds was produced on device Elementar Vario L cube. Chemical shifts were reported in ppm (parts per million values. Infrared (IR spectra were measured on a Bruker Alpha instrument using a potassium bromide (KBr disk, scanning from 400 to 4000 cm-1. Results and discussion. We selected 3-benzyl-8-propylxanthinyl-7-acetic acid as initial compound for our study. For synthesis of hexyl, heptyl, octyl, nonyl, decyl and benzyl esters of 3-benzyl-8-propylxanthinyl-7-acetic acid we used alternative method, that included alkylation of sodium salts of acids with alkyl halogens. Reaction was made at DMF medium by reflux of reagents. Next stage of our research was the synthesis of amides of 3-beznyl-8-propylxanthinyl-7-acetic acid by the reaction of ethyl or propyl esters

  1. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy.

    Science.gov (United States)

    Radulović, Niko S; Zlatković, Dragan B; Ilić-Tomić, Tatjana; Senerović, Lidija; Nikodinovic-Runic, Jasmina

    2014-04-11

    Reseda lutea L. (Resedaceae) or Wild Mignonette is a widely distributed plant species. Pliny the Elder (AD 23-AD 79), a Roman scholar and naturalist, reported the use of R. lutea for reducing tumors in his Historia naturalis. Accounts of the beneficial effects of R. lutea in tumor treatment could also be found in the works of later authors, such as Étienne François Geoffroy (1672-1731) and Samuel Frederick Gray (1766-1828). However, to date no in vivo or in vitro evidence exists in support of the alleged tumor healing properties of R. lutea. The composition of autolysates obtained from different organs (root, flower and fruit) of R. lutea was investigated by GC and GC-MS analyses and IR, 1D and 2D NMR spectroscopy. These analyses led to the discovery of a new compound isolated in pure form from the flower autolysate. Autolysates and their major constituents were submitted to MTT-dye reduction cytotoxic assay on human A375 (melanoma) and MRC5 (fibroblast) cell lines. Mechanism of the cytotoxic effects was studied by cell cycle analysis and Annexin V assay. Benzyl isothiocyanate and 2-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate were identified as the major constituents of the root and flower autolysates, respectively (the later represents a new natural product). These compounds showed significant antiproliferative effects against both cell lines, which could also explain the observed high cytotoxic activity of the tested autolysates. Cell cycle analysis revealed apoptosis as the probable mechanism of cell death. Tumor healing properties attributed to R. lutea in the pre-modern texts were substantiated by the herein obtained results. Two isothiocyanates were found to be the major carriers of the observed activity. Although there was a relatively low differential effect of the plant metabolites on transformed and non-transformed cell lines, one can argue that the noted strong cytotoxicity provides first evidence that could explain the long forgotten use of this

  2. Antinociceptive, anti-inflammatory and toxicological evaluation of semi-synthetic molecules obtained from a benzyl-isothiocyanate isolated from Moringa oleifera Lam. in a temporomandibular joint inflammatory hypernociception model in rats.

    Science.gov (United States)

    Dos Santos, Alain Oliveira; do Val, Danielle Rocha; da Silveira, Felipe Dantas; Gomes, Francisco Isaac Fernandes; Freitas, Hermany Capistrano; de Assis, Ellen Lima; de Almeida, Diana Kelly Castro; da Silva, Igor Iuco Castro; Barbosa, Francisco Geraldo; Mafezoli, Jair; da Silva, Marcos Reinaldo; de Castro Brito, Gerly Anne; Clemente-Napimoga, Juliana Trindade; de Paulo Teixera Pinto, Vicente de Paulo Teixeira; Filho, Gerardo Cristino; Bezerra, Mirna Marques; Chaves, Hellíada Vasconcelos

    2018-02-01

    Inflammation is a key component of many clinical conditions that affect the temporomandibular joint (TMJ) and Moringa oleifera Lam. has been used to treat inflammatory diseases. Here, we evaluated the toxicological effects on mice of a naturally-occurring isothiocyanate from M. oleifera and its seven analogue molecules. Further, the anti-nociceptive and anti-inflammatory effects on a rat model of TMJ inflammatory hypernociception were assessed. The systemic toxicological profile was determined in mice over a 14-day period: MC-1 1 μg/kg; MC-D1 1 μg/kg, MC-D3 100 μg/kg, MC-D6 1 μg/kg, MC-D7 1 μg/kg, MC-D8 1 μg/kg, MC-D9 10 μg/kg, and MC-H 1 μg/kg. The safest molecules were assayed for anti-nociceptive efficacy in the formalin (1.5%, 50 μL) and serotonin (255 mg) induced TMJ inflammatory hypernociception tests. The anti-inflammatory effect was evaluated through the vascular permeability assay using Evans blue. Further, the rota-rod test evaluated any motor impairment. Among the tested molecules, MC-D7, MC-D9, and MC-H were not toxic at the survival rate test, biochemical, and hystological analysis. They reduced the formalin-induced TMJ inflammatory hypernociception, but only MC-H decreased the serotonin-induced TMJ inflammation, suggesting an adrenergic receptor-dependent effect. They diminished the plasmatic extravasation, showing anti-inflammatory activity. At the rota-rod test, no difference was observed in comparison with control groups, reinforcing the hypothesis of anti-nociceptive effetc without motor impairment in animals. The analogues MC-D7, MC-D9, and MC-H were safe at the tested doses and efficient in reducing the formalin-induced TMJ hypernociception in rats. Our next steps include determining their mechanisms of anti-nociceptive action. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. (1S,3S,4S-tert-Butyl N-[1-benzyl-3-hydroxy-5-phenyl-4-(picolinamidopentyl]carbamate

    Directory of Open Access Journals (Sweden)

    Jian-Feng Zheng

    2008-07-01

    Full Text Available The title compound, C29H35N3O4, was obtained by the reaction of (2S,4S,5S-tert-butyl N-(4-amino-1-benzyl-3-hydroxy-5-phenylpentylcarbamate and picolinic acid using oxalyl chloride as a chlorinating reagent to activate the carboxyl group. In the crystal structure there are two molecules in the asymmetric unit, which are aligned edge-to-face. In one molecule, the pyridyl ring forms a dihedral angle of 22.0 (1° with the phenyl ring of the terminal benzyl group and 14.3 (1° with the other phenyl ring; in the other molecule, the corresponding angles are 12.1 (1 and 10.6 (1°, respectively. The packing is stabilized by intermolecular hydrogen bonds and C—H...π interactions.

  4. Developmental and testicular toxicity of butyl benzyl phthalate in the rat and the impact of study design

    NARCIS (Netherlands)

    Piersma AH; Verhoef A; Dormans JAMA; Elvers LH; Valk V de; Biesebeek JD te; Pieters MN; Slob W; LEO

    1999-01-01

    The developmental toxicity of butyl benzyl phthalate was investigated in the rat in an alternative study design using ten treatment groups. The effect of exposure period was studied, and a comparison of reaction to treatment in pregnant versus non-pregnant females was made. The classical data

  5. Rate and Product Studies of Solvolyses of Benzyl Fluoroformate

    Directory of Open Access Journals (Sweden)

    Dennis N. Kevill

    2006-07-01

    Full Text Available The specific rates of solvolysis of benzyl fluoroformate have been measured inseveral hydroxylic solvents at 25.0 °C. For methanolysis, the solvent deuterium isotopeeffect and activation parameters were determined and activation parameters were alsodetermined for solvolyses in ethanol and 80% ethanol. For several of the binary hydroxylicsolvents, measurement of product ratios allowed selectivity values to be determined. Anextended Grunwald–Winstein treatment of the data led to sensitivities to changes in solventnucleophilicity and ionizing power. Comparison with previously determined specific ratesfor solvolysis of the chloroformate gave fluorine/chlorine rate ratios greater than unity. Allof the determinations made were consistent with an addition–elimination (association–dissociation mechanism, with addition rate-determining.

  6. Isothiocyanates: An Overview of Their Antimicrobial Activity against Human Infections

    Directory of Open Access Journals (Sweden)

    Letizia Romeo

    2018-03-01

    Full Text Available The use of plant-derived products as antimicrobial agents has been investigated in depth. Isothiocyanates (ITCs are bioactive products resulting from enzymatic hydrolysis of glucosinolates (GLs, the most abundant secondary metabolites in the botanical order Brassicales. Although the antimicrobial activity of ITCs against foodborne and plant pathogens has been well documented, little is known about their antimicrobial properties against human pathogens. This review collects studies that focus on this topic. Particular focus will be put on ITCs’ antimicrobial properties and their mechanism of action against human pathogens for which the current therapeutic solutions are deficient and therefore of prime importance for public health. Our purpose was the evaluation of the potential use of ITCs to replace or support the common antibiotics. Even though ITCs appear to be effective against the most important human pathogens, including bacteria with resistant phenotypes, the majority of the studies did not show comparable results and thus it is very difficult to compare the antimicrobial activity of the different ITCs. For this reason, a standard method should be used and further studies are needed.

  7. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    International Nuclear Information System (INIS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  8. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K. (Abbott Laboratories, Department 90M, Abbott Park, IL (United States))

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates.

  9. Characterization of antibody-chelator conjugates: Determination of chelator content by terbium fluorescence titration

    International Nuclear Information System (INIS)

    Brandt, K.D.; Schnobrich, K.E.; Johnson, D.K.

    1991-01-01

    Fluorescence titrations were performed by adding varying mole ratios of terbium(III) to antibody conjugates formed by benzyl isothiocyanate derivatives of three different polyaminopolycarboxylate chelators (NTA, EDTA, and DTPA) and the results compared to values for average chelator content obtained by cobalt-57 binding assays. For two different murine monoclonal antibodies, the average chelator content obtained by terbium fluorescence titration correlated closely with that measured by the cobalt-57 binding assay. It is concluded that lanthanide fluorescence titrations provide a useful alternative to radiometal binding assays for the determination of chelator content in protein-chelator conjugates

  10. Effect of allyl isothiocyanate on ultra-structure and the activities of four enzymes in adult Sitophilus zeamais.

    Science.gov (United States)

    Wu, Hua; Liu, Xue-ru; Yu, Dong-dong; Zhang, Xing; Feng, Jun-tao

    2014-02-01

    Rarefaction and vacuolization of the mitochondrial matrix of AITC-treated (allyl isothiocyanate-treated) adult Sitophilus zeamais were evident according to the ultra-structural by TEM. Four important enzymes in adult S. zeamais were further studied after fumigation treatment with allyl isothiocyanate (AITC) extracted from Armoracia rusticana roots and shoots. The enzymes were glutathione S-transferase (GST), catalase (CAT), cytochrome c oxidase, and acetylcholinesterase (AChE). The results indicated that the activities of the four enzymes were strongly time and dose depended. With prolonged exposure time, treatment with 0.74μg/mL AITC inhibited the activities of cytochrome c oxidase, AChE, and CAT, but induced the activity of GST. The activities of cytochrome c oxidase, AChE, and CAT were remarkably induced at a low AITC dosage (0.25μg/mL), but were restrained with increased AITC dosage. The activity of GST was inhibited at a low AITC dosage (0.5μg/mL), but was induced at a high AITC dosage (1.5μg/mL). According to the results of TEM, toxic symptoms and enzymes activities, it suggested that mitochondrial maybe the one site of action of AITC against the adult S. zeamais and it also suggested that cytochrome c oxidase maybe one target protein of AITC against the adult S. zeamais, which need to further confirmed by protein function tested. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Architecture of the hydrophobic and hydrophilic layers as found from crystal structure analysis of N-benzyl-N,N-dimethylalkylammonium bromides.

    Science.gov (United States)

    Hodorowicz, Maciej; Stadnicka, Katarzyna; Czapkiewicz, Jan

    2005-10-01

    The molecular and crystal structures of N-benzyl-N,N-dimethylalkylammonium bromides monohydrates with chain length n=8-10 have been determined. The crystals are isostructural with the N-benzyl-N,N-dimethyldodecylammonium bromide monohydrate. The structures consist of alternated hydrophobic and hydrophilic layers perpendicular to [001]. The attraction between N+ of the cation head-groups and Br- anions is achieved through weak C_H...Br interactions. The water molecules incorporated into ionic layers are donors for two O_H...Br hydrogen bonds and serve as the acceptors in two weak interactions of C_H...O type. The methylene chains, with the slightly curved general shape, have the extended all-trans conformation. The mutual packing of the chains in the hydrophobic layers is governed by weak C_H...pi interactions.

  12. Complexes of (III) lanthanides isothiocyanate and (III) yttrium with 2,6-lutidine-n-oxide (2,6-LNO)

    International Nuclear Information System (INIS)

    Arico, E.M.

    1990-01-01

    The preparation and characterization of the complexes of yttrium and some lanthanides isothiocyanate with 2,6-lutidine-N-oxide (2,6-LNO) are described. The ligand employed in the synthesis of the compounds were prepared by the reaction of 2,6-lutidine with hydrogen peroxide in glacial acetic acid. The complexes were prepared using the relation 1:3 salt-ligand. Their characterization was made by elemental analysis, electrolytic conductance measurements, X-ray powder patterns, infrared spectra, electronic absorption spectra of the neodymium and fluorescence spectra of the europium compounds. (author)

  13. An Optimized Synthesis, Molecular Structure and Characterization of Benzylic Derivatives of 1,2,4-Triazin-3,5(2H,4H-dione

    Directory of Open Access Journals (Sweden)

    Long-Chih Hwang

    2017-11-01

    Full Text Available 4-Benzyl-1,2,4-triazin-3,5(2H,4H-dione (3-benzyl-6-azauracil, 2, and 2,4-dibenzyl-1,2,4-triazin-3,5(2H,4H-dione (1,3-dibenzyl-6-azauracil, 3 were synthesized by the reaction of 1,2,4-triazin-3,5(2H,4H-dione (6-azauracil, 1 with benzyl bromide and potassium carbonate in dry acetone via the 18-crown-6-ether catalysis. In these reaction methods, we developed more convenient and efficient methodologies to afford compounds 2 and 3 in good yields. These compounds were characterized by 1H- and 13C-NMR, MS spectrum, IR spectroscopy and elemental analysis. The structure of 2 was verified by 2D-NMR measurements, including gHSQC and gHMBC measurements. A single-crystal X-ray diffraction experiment indicated that compound 3, with the molecular formula C17H15N3O2, crystallized from a CH3OH/CH2Cl2 diffusion solvent system in a monoclinic space group P21/c with a = 13.7844(13, b = 8.5691(8, c = 13.0527(12 Å, β = 105.961(2°, V = 1482.3(2 Å3, Z = 4, resulting in a density Dcalc of 1.314 g/cm3. The crystal structure of compound 3 is tightly stabilized by contact with five other molecules from the six short contacts formed by intermolecular C−O···H−Car, C−H···Car, and weakly π···π stacking interactions. The dihedral angle 31.90° is formed by the mean planes of the benzene rings of the N-2 and N-4 benzyl groups.

  14. A Novel Strategy Towards the Asymmetric Synthesis of Orthogonally Funtionalised 2-N-Benzyl-N-α-methylbenzylamino- 5-carboxymethyl-cyclopentane-1-carboxylic acid.

    Directory of Open Access Journals (Sweden)

    Julio G. Urones

    2004-04-01

    Full Text Available The asymmetric synthesis of the orthogonally funtionalised compounds tert-butyl 2-N-benzyl-N-α-methylbenzylamino-5-methoxycarbonylmethylcyclopentane- 1-carboxylate and methyl 2-N-benzyl-N-α-methylbenzylamino-5–carboxymethylcyclo- pentane-1-carboxylate by a domino reaction of tert-butyl methyl (E,E-octa-2,6- diendioate with lithium N-α-methylbenzyl-N-benzylamide initiated by a Michael addition, subsequent 5-exo-trig intramolecular cyclisation and posterior selective hydrolysis with trifluoroacetic acid is reported.

  15. Primary and secondary kinetic deuterium isotope effects and transition-state structures for benzylic chlorination and bromination of toluene

    International Nuclear Information System (INIS)

    Hanzlik, R.P.; Schaefer, A.R.; Moon, J.B.; Judson, C.M.

    1987-01-01

    As a chemical model for benzylic hydroxylation effects by cytochrome P-450 enzymes, the chlorination of PhCH 3 , PhCH 2 D, PhCHD 2 , and PhCD 3 in a two-phase system of hypochlorite/CH 2 Cl 2 with a phase-transfer catalyst has been investigated. On the basis of the deuterium content of the product benzyl chlorides, relative rate constants were deduced for all possible H- and D-abstractions with these substrates. From this the primary (P) and secondary (S) KDIEs were found to be 5.90 +/- 0.41 and 1.03 +/- 0.02, respectively, and the rule of the geometric mean was found to be closely obeyed. For the analogous bromination of toluene by N-bromosuccinimide in CCl 4 , P and S were 6.37 +/- 0.43 and 1.05 +/- 0.01. The transition states of these processes must therefore involve extensive C-H bond breaking but relatively little rehybridization toward planarity at the reacting carbon

  16. Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Signe Elisabeth Åsberg

    2015-05-01

    Full Text Available Isothiocyanates (ITCs are degradation products of glucosinolates present in members of the Brassicaceae family acting as herbivore repellents and antimicrobial compounds. Recent results indicate that allyl ITC (AITC has a role in defense responses such as glutathione depletion, ROS generation and stomatal closure. In this study we show that exposure to non-lethal concentrations of AITC causes a shift in the cell cycle distribution of Arabidopsis thaliana leading to accumulation of cells in S-phases and a reduced number of cells in non-replicating phases. Furthermore, transcriptional analysis revealed an AITC-induced up-regulation of the gene encoding cyclin-dependent kinase A while several genes encoding mitotic proteins were down-regulated, suggesting an inhibition of mitotic processes. Interestingly, visualization of DNA synthesis indicated that exposure to AITC reduced the rate of DNA replication. Taken together, these results indicate that non-lethal concentrations of AITC induce cells of A. thaliana to enter the cell cycle and accumulate in S-phases, presumably as a part of a defensive response. Thus, this study suggests that AITC has several roles in plant defense and add evidence to the growing data supporting a multifunctional role of glucosinolates and their degradation products in plants.

  17. Effective oxidation of benzylic and alkane C-H bonds catalyzed by sodium o-iodobenzenesulfonate with Oxone as a terminal oxidant under phase-transfer conditions.

    Science.gov (United States)

    Cui, Li-Qian; Liu, Kai; Zhang, Chi

    2011-04-07

    Catalytic oxidation of benzylic C-H bonds could be efficiently realized using IBS as a catalyst which was generated in situ from the oxidation of sodium 2-iodobenzenesulfonate (1b) by Oxone in the presence of a phase-transfer catalyst, tetra-n-butylammonium hydrogen sulfate, in anhydrous acetonitrile at 60 °C. Various alkylbenzenes, including toluenes and ethylbenzenes, several oxygen-containing functionalities substituted alkylbenzenes, and a cyclic benzyl ether could be efficiently oxidized. And, the same reagent system of cat. 1b/Oxone/cat. n-Bu(4)NHSO(4) could be applied to the effective oxidation of alkanes as well.

  18. Comparative substoichiometric extraction and quantification of mercury in geological water samples with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar, R.P.; Rangamannar, B.

    1996-01-01

    The relative extent of extraction of mercury with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates has been studied employing a sensitive and rapid substoichiometric radiochemical method. The effect of pH on the extractability of mercury xanthate complexes into chloroform was investigated. Buffer solutions of pH 12, 11, 10, 9 and 5.5 were found to be suitable media for the maximum extraction of mercury as ethyl, propyl, butyl, pentyl and benzyl xanthate complexes, respectively. The procedures developed were utilized for the determination of mercury content in standard solutions and geological water samples collected in eight parts of Chittoor district of Andhra Pradesh. (author). 4 refs., 3 figs., 4 tabs

  19. The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain.

    Science.gov (United States)

    Ehrhardt, Katharina; Davioud-Charvet, Elisabeth; Ke, Hangjun; Vaidya, Akhil B; Lanzer, Michael; Deponte, Marcel

    2013-05-01

    Methylene blue and a series of recently developed 1,4-naphthoquinones, including 3-[4-(substituted)benzyl]-menadiones, are potent antimalarial agents in vitro and in vivo. The activity of these structurally diverse compounds against the human malaria parasite Plasmodium falciparum might involve their peculiar redox properties. According to the current theory, redox-active methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione are "subversive substrates." These agents are thought to shuttle electrons from reduced flavoproteins to acceptors such as hemoglobin-associated or free Fe(III)-protoporphyrin IX. The reduction of Fe(III)-protoporphyrin IX could subsequently prevent essential hemoglobin digestion and heme detoxification in the parasite. Alternatively, owing to their structures and redox properties, methylene blue and 1,4-naphthoquinones might also affect the mitochondrial electron transport chain. Here, we tested the latter hypothesis using an established system of transgenic P. falciparum cell lines and the antimalarial agents atovaquone and chloroquine as controls. In contrast to atovaquone, methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione do not inhibit the mitochondrial electron transport chain. A systematic comparison of the morphologies of drug-treated parasites furthermore suggests that the three drugs do not share a mechanism of action. Our findings support the idea that methylene blue and 3-[4-(trifluoromethyl)benzyl]-menadione exert their antimalarial activity as redox-active subversive substrates.

  20. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  1. Rate constants for some electrophilic reactions of benzyl, benzhydryl, and trityl cations in solution

    International Nuclear Information System (INIS)

    Ujdak, R.J.; Jones, R.L.; Dorfman, L.M.

    1976-01-01

    Absolute rate constants have been determined by the pulse radiolysis technique for several electrophilic reactions of the benzyl, the benzhydryl, and the trityl cation in 1,2-dichloroethane solution. The rate constants for the reactions of these carbonium ions with chloride ion, with bromide ion, and with iodide ion are all very nearly the same, namely 6 x 10 10 M -1 s -1 at 24 0 C. The values very likely represent the diffusion controlled limit for the ion combination reactions. The rate constants for the reactions with triethylamine, tri-n-propylamine, and tri-n-butylamine range from 2.0 x 10 9 to 7 x 10 6 M -1 s -1 at 24 0 C. With increasing phenyl substitution, the decreasing trend in the magnitude of the rate constant is consistent with the combined electronic and steric effects. With increasing size of the amine, the decrease in the value of the rate constant seems to indicate that the steric effect predominates. The values of the rate constants for reactions of benzyl and benzhydryl cation with methanol, ethanol, and 2-propanol indicate the following. The rate constant is higher for reaction with the alcohol dimer in solution than with alcohol monomer. The rate constants for reaction with alcohol monomer have values of 1 x 10 8 M -1 s -1 or lower

  2. Synthesis, growth and characterization of organic nonlinear optical material: N-benzyl-2-methyl-4-nitroaniline (BNA)

    Science.gov (United States)

    Kalaivanan, R.; Srinivasan, K.

    2017-05-01

    Synthesis of the organic nonlinear optical compound N-benzyl-2-methyl-4-nitroaniline (BNA) was carried out in a newer chemical environment using the mixture of benzyl chloride and 2-methl-4-nitroaniline by a preferred laboratory synthesis process. The synthesized BNA compound was separated by column chromatography (CC) with low pressure silica gell using petrollium benzine and purity of the separated resultant product was confirmed by thin layer chromatography (TLC). Further, the material was recrystallized atleast four times in methanol and the highly purified BNA was used for the growth of single crystals from solutions with selected solvents by slow evaporation method at room temperature. Single crystals having natural growth morphology were harvested and their different growth faces were identified by optical goniometry. The grown crystals were subjected to different characterization techniques such as powder x-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and UV-vis-Near IR spectroscopy. Further, the second harmonic generation (SHG) efficiency of the grown BNA crystal was studied by Kurtz and Perry powder technique using Nd:YAG laser as fundamental source and found to be twice that of inorganic standard KDP.

  3. Extraction of allyl isothiocyanate from horseradish (Armoracia rusticana) and its fumigant insecticidal activity on four stored-product pests of paddy.

    Science.gov (United States)

    Wu, Hua; Zhang, Guo-An; Zeng, Shuiyun; Lin, Kai-chun

    2009-09-01

    Isothiocyanates (ITCs) extracted from Armoracia rusticana Gaertn., May & Scherb. have been shown previously to have insecticidal activity. Allyl isothiocyanate (AITC), a major component of ITCs with high volatility, was therefore extracted using different methods and tested as a fumigant against four major pest species of stored products, maize weevil Sitophilus zeamais (Motsch.), lesser grain borer Rhizopertha dominica (F.), Tribolium ferrugineum (F.) and book louse Liposcelis entomophila (Enderlein). Whereas there was no significant difference between hydrodistillation and supercritical carbon dioxide fluid extraction in extraction rate for AITC from A. rusticana, both methods resulted in higher extraction efficiency than water extraction. AITC fumigation showed strong toxicity to the four species of stored-product pests. Adult mortality of 100% of all four pest species, recorded after 72 h exposure to AITC fumes at an atmospheric concentration of 3 microg mL(-1), showed no significant difference from that of insects exposed to phosphine at 5 microg mL(-1), the recommended dose for phosphine. The results suggest good insecticidal efficacy of AITC against the four stored-product pests, with non-gaseous residuals on stored products. AITC obtained from A. rusticana may be an alternative to phosphine and methyl bromide against the four pest species. Copyright 2009 Society of Chemical Industry.

  4. Allyl isothiocyanate induced stress response in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Saini AkalRachna K

    2011-11-01

    Full Text Available Abstract Background Allyl isothiocyanate (AITC from mustard is cytotoxic; however the mechanism of its toxicity is unknown. We examined the effects of AITC on heat shock protein (HSP 70 expression in Caenorhabditis elegans. We also examined factors affecting the production of AITC from its precursor, sinigrin, a glucosinolate, in ground Brassica juncea cv. Vulcan seed as mustard has some potential as a biopesticide. Findings An assay to determine the concentration of AITC in ground mustard seed was improved to allow the measurement of AITC release in the first minutes after exposure of ground mustard seed to water. Using this assay, we determined that temperatures above 67°C decreased sinigrin conversion to AITC in hydrated ground B. juncea seed. A pH near 6.0 was found to be necessary for AITC release. RT-qPCR revealed no significant change in HSP70A mRNA expression at low concentrations of AITC ( 1.0 μM resulted in a four- to five-fold increase in expression. A HSP70 ELISA showed that AITC toxicity in C. elegans was ameliorated by the presence of ground seed from low sinigrin B. juncea cv. Arrid. Conclusions • AITC induced toxicity in C. elegans, as measured by HSP70 expression. • Conditions required for the conversion of sinigrin to AITC in ground B. juncea seed were determined. • The use of C. elegans as a bioassay to test AITC or mustard biopesticide efficacy is discussed.

  5. Synchronous scanning derivative spectrofluorimetry for the determination of cadmium with benzyl-2-pyridylketone 2-quinolylhydrazone

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, F.G.; Navas, A.; Santiago, M. (Malaga Univ. (Spain). Dept. of Analytical Chemistry)

    1985-01-01

    Synchronous scanning derivative spectrofluorimetry is used to determine cadmium by means of the fluorescent chelate formed with benzyl-2-pyridylketone 2-quinolylhydrazone at an apparent pH of 11 in 80% (v/v) ethanol. The normal spectrofluorimetric method is also described. The limits of detection are 0.7 and 4.1 ng Cd/sup 2 +/ ml/sup -1/, for the first derivative and normal techniques, respectively. Interferences in both methods are reported.

  6. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2017-03-15

    Highlights: • Cu and Au on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k{sub app} was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles. Li{sub 2}O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N{sub 2} absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol

  7. Gold( i )-catalysed dehydrative formation of ethers from benzylic alcohols and phenols

    KAUST Repository

    Veenboer, Richard M. P.

    2015-01-01

    © The Royal Society of Chemistry 2015. We report the cross-dehydrative reaction of two alcohols to form unsymmetrical ethers using NHC-gold(i) complexes (NHC = N-heterocyclic carbene). Our progress in developing this reaction into a straightforward procedure is discussed in detail. The optimised methodology proceeds under mild reaction conditions and produces water as the sole by-product. The synthetic utility of this environmentally benign methodology is exemplified by the formation of a range of new ethers from readily available phenols bearing electron withdrawing substituents and secondary benzylic alcohols with various substituents. Finally, we present experimental results to account for the chemoselectivity obtained in these reactions.

  8. Ultrasonicated Synthesis of N-Benzyl-2,3-substituted Morpholines, via the Mitsunobu Diol Cyclisation

    Directory of Open Access Journals (Sweden)

    B. Jayachandra Reddy

    2010-01-01

    Full Text Available A facile five step synthesis of N-benzyl-2,3-substituted morpholines (i-iii was performed. The key steps were microwave assisted Friedel-crafts acylation and diol cyclization carried out via an ultra sonication of Mitsunobu reaction using DEAD (diethylazodicarboxylate, TPP in THF for 1 h. The morpholine products were generated as diasteriomers (ii andiii which has been separated by the column chromatography to good yield. The structure of compounds (i-iii has been characterized by the spectral and chemical studies.

  9. Study of the Cytotoxic Effects of the New Synthetic Isothiocyanate CM9 and Its Fullerene Derivative on Human T-Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Elena De Gianni

    2015-02-01

    Full Text Available One important strategy to develop effective anticancer agents is based on natural products. Many active phytochemicals are in human clinical trials and have been used for a long time, alone and in association with conventional anticancer drugs, for the treatment of various types of cancers. A great number of in vitro, in vivo and clinical reports document the multi-target anticancer activities of isothiocyanates and of compounds characterized by a naphthalenetetracarboxylic diimide scaffold. In order to search for new anticancer agents with a better pharmaco-toxicological profile, we investigated hybrid compounds obtained by inserting isothiocyanate group(s on a naphthalenetetracarboxylic diimide scaffold. Moreover, since water-soluble fullerene derivatives can cross cell membranes thus favoring the delivery of anticancer therapeutics, we explored the cytostatic and cytotoxic activity of hybrid compounds conjugated with fullerene. We studied their cytostatic and cytotoxic effects on a human T-lymphoblastoid cell line by using different flow cytometric assays. In order to better understand their pharmaco-toxicological potential, we also analyzed their genotoxicity. Our global results show that the synthesized compounds reduced significantly the viability of leukemia cells. However, the conjugation with a non-toxic vector did not increase their anticancer potential. This opens an interesting research pattern for certain fullerene properties.

  10. Spasmolytic, antimicrobial and cytotoxic activities of 5-phenylpentyl isothiocyanate, a new glucosinolate autolysis product from horseradish (Armoracia rusticana P. Gaertn., B. Mey. & Scherb., Brassicaceae).

    Science.gov (United States)

    Dekić, Milan S; Radulović, Niko S; Stojanović, Nikola M; Randjelović, Pavle J; Stojanović-Radić, Zorica Z; Najman, Stevo; Stojanović, Sanja

    2017-10-01

    Detailed analyses of horseradish autolysates led to the identification of a new natural product, 5-phenylpentyl isothiocyanate (PhPeITC). The structural assignment was corroborated by synthesis, and the identity unequivocally established by spectral means. The occurrence of PhPeITC is the first direct proof of the existence of a 5-phenylpentyl glucosinolate in the aerial parts of this species as one of the possible "mustard oil" precursors. To verify its possible contribution to the horseradish functional food status, horseradish above- and underground autolysates, together with five ω-phenylalkyl isothiocyanates were tested for their spasmolytic, cytotoxic and antimicrobial activities. Specifically, the cytotoxic effect on Caco-2, HeLa (cancer) and MDCK (non-cancer) cell lines was established. Additionally, the five tested ITCs exerted significant spasmolytic activity (on rat distal colon), with PhPeITC being almost 100 times more potent than papaverine. A non-selective antimicrobial activity of all ITCs was revealed in the case of 6 bacterial and 2 fungal strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  12. Chemical Composition of the Volatile Components of Tropaeolum majus L. (Garden Nasturtium from North Western Algeria

    Directory of Open Access Journals (Sweden)

    B. BENYELLES

    2015-11-01

    Full Text Available Essential oil from Tropaeolum majus L. aerial parts, a plant native to North Western Algeria, was obtained by hydrodistillation. The oil volatile components were identified by a combination of gas chromatography/flame ionization detection (GC/FID, GC-mass spectrometry (GC-MS techniques, and NMR spectroscopy. Nine components representing 92.0 % of the essential oil total (GC/FID chromatogram were identified. The most abundant compounds were benzyl isothiocyanate (82.5 %, benzene acetonitrile (3.9 % and 2-phenylethyl isovalerate (2.9 %. Higher content in nitrogen- and sulfur-containing compounds accounting to 86.4 % of the volatile fraction composition of T. majus were quantified.

  13. Substoichiometric extraction and quantification of cobalt with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, B.; Prasad, K.S.S.

    1999-01-01

    A rapid and sensitive substoichiometric radiochemical procedure has been developed for the extraction of cobalt with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates. The relative extractabilities of the cobalt-xanthate complexes into chloroform and carbon tetrachloride were studied. Substoichiometric quantification methods were developed in each case and utilised to determine the cobalt content present in standard solutions as well as biological samples. (author)

  14. Degradation of Biofumigant Isothiocyanates and Allyl Glucosinolate in Soil and Their Effects on the Microbial Community Composition.

    Directory of Open Access Journals (Sweden)

    Franziska S Hanschen

    Full Text Available Brassicales species rich in glucosinolates are used for biofumigation, a process based on releasing enzymatically toxic isothiocyanates into the soil. These hydrolysis products are volatile and often reactive compounds. Moreover, glucosinolates can be degraded also without the presence of the hydrolytic enzyme myrosinase which might contribute to bioactive effects. Thus, in the present study the stability of Brassicaceae plant-derived and pure glucosinolates hydrolysis products was studied using three different soils (model biofumigation. In addition, the degradation of pure 2-propenyl glucosinolate was investigated with special regard to the formation of volatile breakdown products. Finally, the influence of pure glucosinolate degradation on the bacterial community composition was evaluated using denaturing gradient gel electrophoresis of 16S rRNA gene amplified from total community DNA. The model biofumigation study revealed that the structure of the hydrolysis products had a significant impact on their stability in the soil but not the soil type. Following the degradation of pure 2-propenyl glucosinolate in the soils, the nitrile as well as the isothiocyanate can be the main degradation products, depending on the soil type. Furthermore, the degradation was shown to be both chemically as well as biologically mediated as autoclaving reduced degradation. The nitrile was the major product of the chemical degradation and its formation increased with iron content of the soil. Additionally, the bacterial community composition was significantly affected by adding pure 2-propenyl glucosinolate, the effect being more pronounced than in treatments with myrosinase added to the glucosinolate. Therefore, glucosinolates can have a greater effect on soil bacterial community composition than their hydrolysis products.

  15. Pharmacological synergism of bee venom and melittin with antibiotics and plant secondary metabolites against multi-drug resistant microbial pathogens.

    Science.gov (United States)

    Al-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen; Wink, Michael

    2015-02-15

    The goal of this study was to investigate the antimicrobial activity of bee venom and its main component, melittin, alone or in two-drug and three-drug combinations with antibiotics (vancomycin, oxacillin, and amikacin) or antimicrobial plant secondary metabolites (carvacrol, benzyl isothiocyanate, the alkaloids sanguinarine and berberine) against drug-sensitive and antibiotic-resistant microbial pathogens. The secondary metabolites were selected corresponding to the molecular targets to which they are directed, being different from those of melittin and the antibiotics. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic or additive interactions were assessed by checkerboard dilution and time-kill curve assays. Bee venom and melittin exhibited a broad spectrum of antibacterial activity against 51 strains of both Gram-positive and Gram-negative bacteria with strong anti-MRSA and anti-VRE activity (MIC values between 6 and 800 µg/ml). Moreover, bee venom and melittin showed significant antifungal activity (MIC values between 30 and 100 µg/ml). Carvacrol displayed bactericidal activity, while BITC exhibited bacteriostatic activity against all MRSA and VRE strains tested (reference strains and clinical isolates), both compounds showed a remarkable fungicidal activity with minimum fungicidal concentration (MFC) values between 30 and 200 µg/ml. The DNA intercalating alkaloid sanguinarine showed bactericidal activity against MRSA NCTC 10442 (MBC 20 µg/ml), while berberine exhibited bacteriostatic activity against MRSA NCTC 10442 (MIC 40 µg/ml). Checkerboard dilution tests mostly revealed synergism of two-drug combinations against all the tested microorganisms with FIC indexes between 0.24 and 0.50, except for rapidly growing mycobacteria in which combinations exerted an additive effect (FICI = 0.75-1). In time-kill assays all three

  16. Electrocarboxylation of benzyl chlorides at silver cathode at the preparative scale level

    Energy Technology Data Exchange (ETDEWEB)

    Scialdone, Onofrio [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)], E-mail: scialdone@dicpm.unipa.it; Galia, Alessandro; Errante, Giuseppina [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Isse, Abdirisak Ahmed; Gennaro, Armando [Dipartimento di Scienze Chimiche, Universita di Padova, Via Marzolo 1, 35131 Padova (Italy); Filardo, Giuseppe [Dipartimento di Ingegneria Chimica dei Processi e dei Materiali, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)

    2008-01-01

    The electrocarboxylation of benzyl chlorides to the corresponding carboxylic acids performed at silver cathodes was investigated both theoretically and experimentally in order to find the influence of the operative parameters on the selectivity and on the Faradic efficiency of the process. Theoretical considerations were confirmed by the electrocarboxylation of 1-phenyl-1-chloroethane performed in undivided cells equipped with sacrificial anodes both in a bench-scale electrochemical batch reactor and in a continuous batch recirculation reaction system equipped with a parallel plate electrochemical cell. Selectivity and Faradic yields higher than 80% and 70%, respectively, were obtained by working under anhydrous conditions both under amperostatic and potentiostatic alimentation at appropriate values of either current density or applied potential.

  17. Implications of the use of the labelled benzyl guanidine derivatives in nuclear medicine

    International Nuclear Information System (INIS)

    Zhagar, I.

    1994-01-01

    The development and synthesis of various labelled benzyl guanidine derivatives is described. After a brief outline of the tracer characteristics and the whole body imaging with 131- I -MIBG, 'pitfalls' of the visualization of sympathochromafine tissues and the possibilities of various pharmacological impacts on scintigraphy are discussed. Special emphasis is given to dosimetric and methodological aspects of MIBG scintigraphy in children, as well as to some new diagnostic applications of labelled benzyl guanidine in cardiology and pulmology. Whole body scintigraphy with 131-I-MIBG performed in groups of patients with pheochromocytoma, paraganglioma, neuroblastoma, medullary thyroid carcinoma, carcinoid and malignant insulinoma. Tumor, myocardial and salivary gland uptake of MIBG were estimated semi quantitatively, according to the method of Nakajo. The uptake of 131-I-MIBG was calculated from the activity measured prior and after the application and images acquired and was expressed as percent of dose administered.The results obtained confirm the high sensitivity and specificity of 131- I - MIBG in the scintigraphic evaluation of pheochromocytoma and euroblastoma. In medullary thyroid carcinoma it was found less sensitive than 99m Tc(V) -DMS A scan. The clinical evolution and uptake values were very well correlated. In patients developing bone marrow infiltration, uptake in primary tumor diminished. Good response to operative therapy in pheochromocytoma patients as well as to chemotherapy with neuroblastoma, was associated with an increase of myocardial MIBG uptake. There was highly significant negative correlation between myocardial uptake of MIBG and urinary catecholamine concentrations. Results obtained in determination 131- I -MIBG uptake in some neural crest tumors lead to the conclusion that the choice of background regions of interest can significantly influence the final results of quantification. (author)

  18. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    Science.gov (United States)

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Sulforaphane (SFN: An Isothiocyanate in a Cancer Chemoprevention Paradigm

    Directory of Open Access Journals (Sweden)

    Mohammad Fahad Ullah

    2015-07-01

    Full Text Available The International Agency for Research on Cancer (IARC in its latest World Cancer Report (2014 has projected the increase in the global cancer burden from 14 million (2012 to 22 million incidence annually within the next two decades. Such statistics warrant a collaborative engagement of conventional and complementary and alternative therapies to contain and manage cancer. In recent years, there has been a shift in the cancer chemoprevention paradigm with a significant focus turning towards bioactive components of human diets for their anticancer properties. Since diet is an integral part of lifestyle and given that an estimated one third of human cancers are believed to be preventable though appropriate lifestyle modification including dietary habits, the current shift in the conventional paradigm assumes significance. Several epidemiological studies have indicated that consumption of broccoli is associated with a lower risk of cancer incidence including breast, prostate, lung, stomach and colon cancer. The edible plant belonging to the family of cruciferae such as broccoli is a rich source of glucoraphanin, a precursor of isothiocyanate sulforaphane which is considered to be a potent anti-cancer agent. Plant-based dietary agents such as sulforaphane mimic chemotherapeutic drugs such as vorinostat, possessing histone deacetylase inhibition activity. Evidence from epidemiological and experimental studies have emerged, enhancing the clinical plausibility and translational value of sulforaphane in cancer chemoprevention. The present review provides the current understanding of the cancer chemopreventive pharmacology of sulforaphane towards its potential as an anticancer agent.

  20. α-deuterium isotope effects in benzyl halides. 2. Reaction of nucleophiles with substituted benzyl bromides. Evidence for a change in transition-state structure with electron-donating substituents

    International Nuclear Information System (INIS)

    Vitullo, V.P.; Grabowski, J.; Sridharan, S.

    1980-01-01

    Rates and α-D isotope effects have been determined for the following substrates and nucleophiles: p-methoxybenzyl bromide (Et 3 N, SCN - , N 3 - , OH - , S 2 O 3 2- ), benzyl bromide (Et 3 N, SCN - , N 3 - , OH - , S 2 O 3 2- ), and p-nitrobenzyl bromide (Et 3 N, SCN - , N 3 - , S 2 O 3 2- ). In nearly all cases the second-order rate constant for each nucleophile goes through a minimum for the unsubstituted compound while the α-D isotope increases monotonically in the squence p-NO 2 > p-H > p-OCH 3 . These results are consistent with an increasing looseness of the S/sub N/2 transition state as the substituent on the aromatic ring becomes more electron donating. 4 figures, 3 tables

  1. Alkylation of pyridines at their 4-positions with styrenes plus yttrium reagent or benzyl Grignard reagents.

    Science.gov (United States)

    Mizumori, Tomoya; Hata, Takeshi; Urabe, Hirokazu

    2015-01-02

    A new regioselective alkylation of pyridines at their 4-position was achieved with styrenes in the presence of yttrium trichloride, BuLi, and diisobutylaluminium hydride (DIBAL-H) in THF. Alternatively, similar products were more simply prepared from pyridines and benzyl Grignard reagents. These reactions are not only a useful preparation of 4-substituted pyridines but are also complementary to other relevant reactions usually giving 2-substituted pyridines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The influence of molecular architecture and solvent type on the size and structure of poly(benzyl ether) dendrimers by SANS

    NARCIS (Netherlands)

    Evmenenko, G.; Bauer, B.J.; Kleppinger, R.; Forier, B.; Dehaen, W.; Amis, E.J.; Mischenko, N.; Reynaers, H.

    2001-01-01

    The size of poly(benzyl ether) dendrimers with different molecular architectures was measured by small angle neutron scattering (SANS). Both polar and non-polar solvents were used to measure the effect of solvent type. The radius of gyration (Rg) of all of the dendrimers follows a scaling law of Rg

  3. 3-Benzyl-6-bromo-2-(2-furyl-3H-imidazo[4,5-b]pyridine

    Directory of Open Access Journals (Sweden)

    Younès Ouzidan

    2010-07-01

    Full Text Available In the title molecule, C17H12BrN3O, the imidazopyridine ring system is almost coplanar with the furan ring [dihedral angle = 2.0 (3°]. The benzyl phenyl ring is oriented at dihedral angles of 85.2 (2 and 85.5 (1°, respectively, with respect to the furan ring and the imidazopyridine ring system. In the crystal, molecules are linked into chains propagating along the b axis by C—H...N hydrogen bonds. Adjacent chains are linked via short Br...Br contacts [3.493 (1 Å].

  4. Synthesis of 1-benzyl-4-[(5,6-dimethoxy[2-14C]-1-indanon)-2-YL]-methylpiperidine hydrochloride (E2020-14C)

    International Nuclear Information System (INIS)

    Iimura, Youichi; Mishima, Mannen; Sugimoto, Hachiro

    1989-01-01

    1-Benzyl-4-[(5,6-dimethoxy[2- 14 C]-1-indanon)-2-yl]-methylpiperidine hydrochloride (E2020- 14 C), and acetylcholinesterase inhibitor for studying the pharmacokinetic profiles of E2020, was synthesized from 5,6-dimethoxy[2- 14 C]-1-indanone as the labelled starting material. (author)

  5. Benzyl alcohol induces a reversible fragmentation of the Golgi apparatus and inhibits membrane trafficking between endosomes and the trans-Golgi network

    DEFF Research Database (Denmark)

    Simm, Roger; Kvalvaag, Audun Sverre; van Deurs, Bo

    2017-01-01

    Benzyl alcohol (BnOH) is widely used as a component of foods, cosmetics, household products and medical products. It is generally considered to be safe for human use, however, it has been connected to a number of adverse effects, including hypersensitivity reactions and neonatal deaths. Bn...

  6. Low pressure carbonylation of benzyl chloride = Die carbonylierung von benzylchlorid bei niedrigen drücken

    OpenAIRE

    Luggenhorst, H.J.; Westerterp, K.R.

    1986-01-01

    For carbonylations, metal carbonyls, particularly cobalt and iron carbonyls, are often used as catalysts. These reactions take place under rather drastic reaction conditions, e.g. 200–300 °C and 60–100 MPa. In some patents it is stated that similar reactions using the same catalysts can also be carried out under rather mild reaction conditions, such as 0–100 °C and 0–2.5 MPa. We studied the conversion of benzyl chloride to phenyl acetic methyl ester in a semi-batch reactor in which one of the...

  7. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    International Nuclear Information System (INIS)

    Saint, C.; Gallo, I.; Kantorow, M.; Bailey, J.M.

    1986-01-01

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of 14 C-cholesteryl oleate with an I 50 of approximately 150 μM. The inactivation was time-dependent and characteristic of a suicide mechanism. The α pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM

  8. Benzyl Alcohol-Mediated Versatile Method to Fabricate Nonstoichiometric Metal Oxide Nanostructures.

    Science.gov (United States)

    Qamar, Mohammad; Adam, Alaaldin; Azad, Abdul-Majeed; Kim, Yong-Wah

    2017-11-22

    Nanostructured metal oxides with cationic or anionic deficiency find applications in a wide range of technological areas including the energy sector and environment. However, a facile route to prepare such materials in bulk with acceptable reproducibility is still lacking; many synthesis techniques are still only bench-top and cannot be easily scaled-up. Here, we report that the benzyl alcohol (BA)-mediated method is capable of producing a host of nanostructured metal oxides (MO x , where M = Ti, Zn, Ce, Sn, In, Ga, or Fe) with inherent nonstoichiometry. It employs multifunctional BA as a solvent, a reducing agent, and a structure-directing agent. Depending on the oxidation states of metal, elemental or nonstoichiometric oxide forms are obtained. Augmented photoelectrochemical oxidation of water under visible light by some of these nonstoichiometric oxides highlights the versatility of the BA-mediated synthesis protocol.

  9. Evaluation of the efficiency of Pd/H2 -catalyzed benzylic H/D exchange of dehydroabietinal with D(2) O and synthesis of a tritium-labeled analogue.

    Science.gov (United States)

    Petros, Robby A; Shah, Jyoti

    2014-01-01

    Dehydroabietinal (DA) has been identified as an important signaling molecule in systemic acquired resistance in plants. Deuterium and tritium-labeled DA were synthesized to confirm its role in signaling and to further elucidate the mechanism by which DA induces systemic acquired resistance. Pd/H2 -catalyzed exchange of benzylic hydrogen atoms of DA with (2) H-H2 O or (3) H-H2 O was conducted with >97% label incorporation for (2) H-DA and a specific activity of 12.6 mCi/mmol for (3) H-DA synthesized from 90 mCi/mmol (3) H-H2 O. The extent of deuterium labeling at each benzylic position was determined via an inverse-gated (13) C NMR experiment. C7 and C15 were 87% and 81% labeled, respectively. Isotope-induced chemical shift changes at C6 were used to approximate the amount of singly (66%) and doubly (17%) labeled (2) H-DA at C7. Results also indicated that two of the three benzylic protons in DA underwent facile exchange. Exchange at the remaining position was likely hampered by steric interactions of nearby methyl groups at the surface of the Pd catalyst. Copyright © 2013 John Wiley & Sons, Ltd.

  10. 3,3'-Diaryl-BINOL phosphoric acids as enantioselective extractants of benzylic primary amines.

    Science.gov (United States)

    Verkuijl, Bastiaan J V; de Vries, Johannes G; Feringa, Ben L

    2011-01-01

    We report that 3,3'-diaryl-BINOL phosphoric acids are effective enantioselective extractants in chiral separation methods based on reactive liquid-liquid extraction. These new extractants are capable of separating racemic benzylic primary amine substrates. The effect of the nature of the substituents at the 3,3'-positions of the host were examined as well as the structure of the substrate, together with important parameters such as the organic solvent, the pH of the aqueous phase, and the host stoichiometry. Titration of the substrate with the host was monitored by FTIR, NMR, UV-Vis, and CD spectroscopy, which provided insight into the structure of the host-guest complex involved in extraction. Copyright © 2010 Wiley-Liss, Inc.

  11. Electroluminescent properties of an electrochemically cross-linkable carbazole peripheral poly(benzyl ether) dendrimer.

    Science.gov (United States)

    Park, Jin Young; Kim, Dong-Eun; Ponnapati, Ramakrishna; Kim, Jong-Min; Kwon, Young-Soo; Advincula, Rigoberto C

    2011-04-04

    The electroluminescent (EL) properties of a cross-linkable carbazole-terminated poly(benzyl ether) dendrimer, G(3)-cbz DN, doped into a PVK:PBD host matrix with a double-layer device configuration are investigated. Different concentrations of the guest material can control device efficiency, related to chromaticity of white emission and the origin of excited-state complexes occurring between hole-transporting carbazole units (PVK or G(3)-cbz DN) and electron-transporting oxadiazole (PBD). Two excited states (exciplex and electroplex) generated at the interfaces of PVK/G(3)-cbz DN and PBD result in competitive emission, exhibiting a broad band in the EL spectra. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Reactions of 5-Aroylmethylene-3-benzyl-4-oxo-2-thioxo-1,3-thiazolidines with Nitrile Oxides

    Directory of Open Access Journals (Sweden)

    Ahmed S. A. Youssef

    2001-05-01

    Full Text Available E,Z-5-Aroylmethylene-3-benzyl-4-oxo-2-thioxo-1,3-thiazolidines (3a-c react with 4-methoxy and 4-chlorophenylnitrile oxides (4a and b in pyridine solution to afford one or more of the following compounds: Z-3, Z-2,4-dioxo analogues 5 and 3,6-diaryl-1,4,2,5-dioxadiazines (6a-b. The interconversion route is discussed and the structures of all of the synthesised compounds are proven by microanalytical and spectral data.

  13. The Synthesis of "N"-Benzyl-2-Azanorbornene via Aqueous Hetero Diels-Alder Reaction: An Undergraduate Project in Organic Synthesis and Structural Analysis

    Science.gov (United States)

    Sauvage, Xavier; Delaude, Lionel

    2008-01-01

    The synthesis of "N"-benzyl-2-azanorbornene via aqueous hetero Diels-Alder reaction of cyclopentadiene and benzyliminium chloride formed in situ from benzylamine hydrochloride and formaldehyde is described. Characterization of the product was achieved by IR and NMR spectroscopies. The spectral data acquired are thoroughly discussed. Numerous…

  14. Laboratory Measured Emission Losses of Methyl Isothiocyanate at Pacific Northwest Soil Surface Fumigation Temperatures.

    Science.gov (United States)

    Lu, Zhou; Hebert, Vincent R; Miller, Glenn C

    2017-02-01

    Temperature is a major environmental factor influencing land surface volatilization at the time of agricultural field fumigation. Cooler fumigation soil temperatures relevant to Pacific Northwest (PNW) application practices with metam sodium/potassium should result in appreciably reduced methyl isothiocyanate (MITC) emission rates, thus minimizing off target movement and bystander inhalation exposure. Herein, a series of laboratory controlled flow-through soil column assessments were performed evaluating MITC emissions over the range of cooler temperatures (2-13°C). Assessments were also conducted at the maximum allowed label application temperature of 32°C. All assessments were conducted at registration label-specified field moisture capacity, and no more than 50% cumulative MITC loss was observed over the 2-day post-fumigation timeframe. Three-fold reductions in MITC peak fluxes at cooler PNW application temperatures were observed compared to the label maximum temperature. This study supports current EPA metam sodium/potassium label language that indicates surface fumigations during warmer soil conditions should be discouraged.

  15. Development of Cholinesterase Inhibitors Using (a)-Lipoic Acid-benzyl Piperazine Hybrid Molecules

    International Nuclear Information System (INIS)

    Kim, Beomcheol; Lee, Seunghwan; Jang, Mi; Shon, Min Young; Park, Jeong Ho

    2013-01-01

    A series of hybrid molecules between (α)-lipoic acid (ALA) and benzyl piperazines were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibitory activities were evaluated. Even though the parent compounds did not show any inhibitory activity against cholinesterase (ChE), all hybrid molecules showed BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, ALA-1-(3-methylbenzyl)piperazine (15) was shown to be an effective inhibitor of both BuChE (IC 50 = 2.3 ± 0.7 μM) and AChE (IC 50 = 30.31 ± 0.64 μM). An inhibition kinetic study using compound 15 indicated a mixed inhibition type. Its binding affinity (K i ) value to BuChE is 2.91 ± 0.15 μM

  16. Comparative substoichiometric extraction of cadmium with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, B.

    1995-01-01

    A comparative study of the extractability of cadmium with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates into chloroform and a mixture of 1:4 pyridine and ethyl acetate from pH 1-7 buffers and sodium formate media, respectively, has been carried out employing an accurate and highly sensitive substoichiometric radiochemical method. The effect of foreign ions on the extractability was studied. The method developed was utilized for the determination of cadmium content in standard as well as in geological water samples. (author) 4 refs.; 5 figs.; 3 tabs

  17. Benzylic oxidation of gemfibrozil-1-O-beta-glucuronide by P450 2C8 leads to heme alkylation and irreversible inhibition.

    Science.gov (United States)

    Baer, Brian R; DeLisle, Robert Kirk; Allen, Andrew

    2009-07-01

    Gemfibrozil-1-O-beta-glucuronide (GEM-1-O-gluc), a major metabolite of the antihyperlipidemic drug gemfibrozil, is a mechanism-based inhibitor of P450 2C8 in vitro, and this irreversible inactivation may lead to clinical drug-drug interactions between gemfibrozil and other P450 2C8 substrates. In light of this in vitro finding and the observation that the glucuronide conjugate does not contain any obvious structural alerts, the current study was conducted to determine the potential site of GEM-1-O-gluc bioactivation and the subsequent mechanism of P450 2C8 inhibition (i.e., modification of apoprotein or heme). LC/MS analysis of a reaction mixture containing recombinant P450 2C8 and GEM-1-O-gluc revealed that the substrate was covalently linked to the heme prosthetic heme group during catalysis. A combination of mass spectrometry and deuterium isotope effects revealed that a benzylic carbon on the 2',5'-dimethylphenoxy group of GEM-1-O-gluc was covalently bound to the heme of P450 2C8. The regiospecificity of substrate addition to the heme group was not confirmed experimentally, but computational modeling experiments indicated that the gamma-meso position was the most likely site of modification. The metabolite profile, which consisted of two benzyl alcohol metabolites and a 4'-hydroxy-GEM-1-O-gluc metabolite, indicated that oxidation of GEM-1-O-gluc was limited to the 2',5'-dimethylphenoxy group. These results are consistent with an inactivation mechanism wherein GEM-1-O-gluc is oxidized to a benzyl radical intermediate, which evades oxygen rebound, and adds to the gamma-meso position of heme. Mechanism-based inhibition of P450 2C8 can be rationalized by the formation of the GEM-1-O-gluc-heme adduct and the consequential restriction of additional substrate access to the catalytic iron center.

  18. Efficient and convenient oxidation of benzyl halides to carbonyl compounds with sodium nitrate and acetic acid by phase transfer catalysis in aqueous media

    Directory of Open Access Journals (Sweden)

    Yu Lin Hu

    2010-08-01

    Full Text Available A variety of benzyl halides were converted to the corresponding aldehydes/ketones in good to high yields by phase transfer catalysis combined with sodium nitrate and acetic acid at reflux. As a result, a simple and high yield procedure has been developed.

  19. Toxicity of benzyl alcohol in adult and neonatal mice

    International Nuclear Information System (INIS)

    McCloskey, S.E.

    1987-01-01

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD 50 was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. 14 C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity

  20. Benzylic monooxygenation catalyzed by toluene dioxygenase from Pseudomonas putida

    International Nuclear Information System (INIS)

    Wackett, L.P.; Kwart, L.D.; Gibson, D.T.

    1988-01-01

    Toluene dioxygenase, a multicomponent enzyme system known to oxidize mononuclear aromatic hydrocarbons to cis-dihydrodiols, oxidized indene and indan to 1-indenol and 1-indanol, respectively. In addition, the enzyme catalyzed dioxygen addition to the nonaromatic double bond of indene to form cis-1,2-indandiol. The oxygen atoms in 1-indenol and cis-1,2-indandiol were shown to be derived from molecular oxygen, whereas 70% of the oxygen in 1-indanol was derived from water. All of the isolated products were optically active as demonstrated by 19 F NMR and HPLC discrimination of diastereomeric esters and by chiroptic methods. The high optical purity of (-)-(1R)-indanol (84% enantiomeric excess) and the failure of scavengers of reactive oxygen species to inhibit the monooxygenation reaction supported the contention that monooxygen insertion is mediated by an active-site process. Experiments with 3-[ 2 H] indene indicated that equilibration between C-1 and C-3 occurred prior to the formation of the carbon-oxygen bond to yield 1-indenol. Naphthalene dioxygenase also oxidized indan to 1-indanol, which suggested that benzylic monoxygenation may be typical of this group of dioxygenases

  1. Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Bjørnar Sporsheim

    2015-12-01

    Full Text Available Volatile allyl isothiocyanate (AITC derives from the biodegradation of the glucosinolate sinigrin and has been associated with growth inhibition in several plants, including the model plant Arabidopsis thaliana. However, the underlying cellular mechanisms of this feature remain scarcely investigated in plants. In this study, we present evidence of an AITC-induced inhibition of actin-dependent intracellular transport in A. thaliana. A transgenic line of A. thaliana expressing yellow fluorescent protein (YFP-tagged actin filaments was used to show attenuation of actin filament movement by AITC. This appeared gradually in a time- and dose-dependent manner and resulted in actin filaments appearing close to static. Further, we employed four transgenic lines with YFP-fusion proteins labeling the Golgi apparatus, endoplasmic reticulum (ER, vacuoles and peroxisomes to demonstrate an AITC-induced inhibition of actin-dependent intracellular transport of or, in these structures, consistent with the decline in actin filament movement. Furthermore, the morphologies of actin filaments, ER and vacuoles appeared aberrant following AITC-exposure. However, AITC-treated seedlings of all transgenic lines tested displayed morphologies and intracellular movements similar to that of the corresponding untreated and control-treated plants, following overnight incubation in an AITC-absent environment, indicating that AITC-induced decline in actin-related movements is a reversible process. These findings provide novel insights into the cellular events in plant cells following exposure to AITC, which may further expose clues to the physiological significance of the glucosinolate-myrosinase system.

  2. 17O NMR parameters of some substituted benzyl ethers components: Ab initio study

    Directory of Open Access Journals (Sweden)

    Mahdi Rezaei Sameti

    2016-09-01

    Full Text Available The 17O NMR chemical shielding tensors and chemical shift for a set of substituted benzyl ethers derivatives containing (methyl, ethyl, isopropyl, t-butyl, brome and lithium have been calculated. The molecular structures were fully optimized using B3LYP/6-31G(d,p. The calculation of the 17O shielding tensors employed the GAUSSIAN 98 implementation of the gauge-including atomic orbital (GIAO and continuous set of gauge transformations (CSGT by using 6-31G (d,p, 6-31++G(d,p and 6-311++G(d,p basis set methods at density functional levels of theories (DFT. The values determined using the GIAO and CSGT were found to give a good agreement with the experimental chemical shielding.

  3. Development of Cholinesterase Inhibitors Using (a)-Lipoic Acid-benzyl Piperazine Hybrid Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Beomcheol; Lee, Seunghwan; Jang, Mi; Shon, Min Young; Park, Jeong Ho [Hanbat National Univ., Daejeon (Korea, Republic of)

    2013-11-15

    A series of hybrid molecules between (α)-lipoic acid (ALA) and benzyl piperazines were synthesized and their in vitro cholinesterase [acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE)] inhibitory activities were evaluated. Even though the parent compounds did not show any inhibitory activity against cholinesterase (ChE), all hybrid molecules showed BuChE inhibitory activity. Some hybrid compounds also displayed AChE inhibitory activity. Specifically, ALA-1-(3-methylbenzyl)piperazine (15) was shown to be an effective inhibitor of both BuChE (IC{sub 50} = 2.3 ± 0.7 μM) and AChE (IC{sub 50} = 30.31 ± 0.64 μM). An inhibition kinetic study using compound 15 indicated a mixed inhibition type. Its binding affinity (K{sub i}) value to BuChE is 2.91 ± 0.15 μM.

  4. Iron depletion in HCT116 cells diminishes the upregulatory effect of phenethyl isothiocyanate on heme oxygenase-1

    International Nuclear Information System (INIS)

    Bolloskis, Michael P.; Carvalho, Fabiana P.; Loo, George

    2016-01-01

    Some of the health-promoting properties of cruciferous vegetables are thought to be partly attributed to isothiocyanates. These phytochemicals can upregulate the expression of certain cytoprotective stress genes, but it is unknown if a particular nutrient is involved. Herein, the objective was to ascertain if adequate iron is needed for enabling HCT116 cells to optimally express heme oxygenase-1 (HO-1) when induced by phenethyl isothiocyanate (PEITC). PEITC increased HO-1 expression and also nuclear translocation of Nrf2, which is a transcription factor known to activate the HO-1 gene. However, in HCT116 cells that were made iron-deficient by depleting intracellular iron with deferoxamine (DFO), PEITC was less able to increase HO-1 expression and nuclear translocation of Nrf2. These suppressive effects of DFO were overcome by replenishing the iron-deficient cells with the missing iron. To elucidate these findings, it was found that PEITC-induced HO-1 upregulation can be inhibited with thiol antioxidants (glutathione and N-acetylcysteine). Furthermore, NADPH oxidase inhibitors (diphenyleneiodonium and apocynin) and a superoxide scavenger (Tiron) each inhibited PEITC-induced HO-1 upregulation. In doing so, diphenyleneiodonium was the most potent and also inhibited nuclear translocation of redox-sensitive Nrf2. Collectively, the results imply that the HO-1 upregulation by PEITC involves an iron-dependent, oxidant signaling pathway. Therefore, it is concluded that ample iron is required to enable PEITC to fully upregulate HO-1 expression in HCT116 cells. As such, it is conceivable that iron-deficient individuals may not reap the full health benefits of eating PEITC-containing cruciferous vegetables that via HO-1 may help protect against multiple chronic diseases. - Highlights: • PEITC increased HO-1 expression in HCT116 cells. • PEITC-induced HO-1 upregulation was impaired in iron-depleted HCT116 cells. • Impairment of PEITC-induced HO-1 upregulation was

  5. Dietary Exposure to Benzyl Butyl Phthalate in China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; JIANG Ding Guo; SUI Hai Xia; WU Ping Gu; LIU Ai Dong; YANG Da Jin; LIU Zhao Ping; SONG Yan; LI Ning

    2016-01-01

    ObjectiveBenzyl butyl phthalate (BBP) is a plasticizer used in food contact materials. Dietary exposure to BBP might lead to reproduction and developmental damages to human. The present paper was aimed to assess the health risk of BBP dietary exposure in Chinese population. MethodsThe BBP contents were detected in 7409 food samples from 25 foodcategories by gas chromatography-mass spectrometry operated in selected ion monitoring (SIM) mode. The dietary exposures of BBP in different age and sex groups were estimated by combining the content data with food consumption data derived from 2002 China National Nutrient and Health Survey, and evaluated according to the tolerable daily intake (TDI) of BBP established by European Food safety Agency. ResultsIt was found that BBP was undetectable in most samples and the highest level was 1.69 mg/kg detected in a vegetable oil sample. The average dietary exposure of BBP in people aged≥2 years was 1.03 μg/kgbw perday and the highest average exposure was found in 2-6 years old children (1.98 μg/kg bw perday). The BBP exposure in 7-12 months old children excessed 10% of tolerable daily intake (TDI) in worst scenario. ConclusionThe health risk of BBP dietary exposure in Chinese population is low and, considering BBP alone, there is no safety concern.

  6. Synthesis, crystal structure and photophysical properties of (E)-4-(4-(2-hydroxybenzylideneamino)benzyl)oxazolidin-2-one

    International Nuclear Information System (INIS)

    Kumari, Rekha; Varghese, Anitha; George, Louis

    2016-01-01

    A new Schiff base, (4-(benzylideneamino)benzyl)oxazolidin-2-one has been synthesised from 4-(4-aminobenzyl)oxazolidin-2-one and salicylaldehyde by a simple condensation reaction. Single-crystal X-ray analysis of (E)-4-(4-(2-hydroxybenzylideneamino) benzyl)oxazolidin-2-one (HBOA) revealed that there is a 1-D, slipped, face-to-face motif with off-set, head-to-tail stacked columns. Detailed studies on photophysical properties of the synthesised compound in solutions indicate their potential applications in the field of organic light emitting devices and nonlinear optical materials. Absorption and fluorescence study of HBOA has been conducted in a series of solvents with increasing polarity at room temperature. Ground and excited state dipole moments have been determined experimentally by using Lippert–Mataga polarity function, Bakhshiev solvent polarity parameter, Kawskii–Chamma–Viallet solvent polarity parameter and RichardtГ—Віs microscopic solvent polarity parameter. Due to the considerable π-electron density redistribution, the excited state dipole moment was found to be larger than that of the ground state. The ground state dipole moment value was determined by quantum chemical method which was used to estimate excited state dipole moment through solvatochromic correlations. Kamlet–Taft and Catalan methods were used to get the information of both non-specific solute–solvent interactions and hydrogen bonding interactions. TD-DFT (B3LYP/6-311G(d,p)) has been used for the determination of HOMO–LUMO energies. Mulliken charges and Molecular electrostatic potential were also evaluated from DFT calculations.

  7. Active site diversification of P450cam with indole generates catalysts for benzylic oxidation reactions

    Directory of Open Access Journals (Sweden)

    Paul P. Kelly

    2015-09-01

    Full Text Available Cytochrome P450 monooxygenases are useful biocatalysts for C–H activation, and there is a need to expand the range of these enzymes beyond what is naturally available. A panel of 93 variants of active self-sufficient P450cam[Tyr96Phe]-RhFRed fusion enzymes with a broad diversity in active site amino acids was developed by screening a large mutant library of 16,500 clones using a simple, highly sensitive colony-based colorimetric screen against indole. These mutants showed distinct fingerprints of activity not only when screened in oxidations of substituted indoles but also for unrelated oxidations such as benzylic hydroxylations.

  8. Novel coumarin derivatives bearing N-benzyl pyridinium moiety: potent and dual binding site acetylcholinesterase inhibitors.

    Science.gov (United States)

    Alipour, Masoumeh; Khoobi, Mehdi; Foroumadi, Alireza; Nadri, Hamid; Moradi, Alireza; Sakhteman, Amirhossein; Ghandi, Mehdi; Shafiee, Abbas

    2012-12-15

    A novel series of coumarin derivatives linked to benzyl pyridinium group were synthesized and biologically evaluated as inhibitors of both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The enzyme inhibitory activity of synthesized compounds was measured using colorimetric Ellman's method. It was revealed that compounds 3e, 3h, 3l, 3r and 3s have shown higher activity compared with donepezil hydrochloride as standard drug. Most of the compounds in these series had nanomolar range IC(50) in which compound 3r (IC(50) = 0.11 nM) was the most active compound against acetylcholinesterase enzyme. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  10. Synthesis of 1-benzyl-4-((5,6-dimethoxy(2- sup 14 C)-1-indanon)-2-YL)-methylpiperidine hydrochloride (E2020- sup 14 C)

    Energy Technology Data Exchange (ETDEWEB)

    Iimura, Youichi; Mishima, Mannen; Sugimoto, Hachiro (Eisai Co., Ltd., Ibaraki (Japan). Tsukuba Research Labs.)

    1989-07-01

    1-Benzyl-4-((5,6-dimethoxy(2-{sup 14}C)-1-indanon)-2-yl)-methylpiperidine hydrochloride (E2020-{sup 14}C), and acetylcholinesterase inhibitor for studying the pharmacokinetic profiles of E2020, was synthesized from 5,6-dimethoxy(2-{sup 14}C)-1-indanone as the labelled starting material. (author).

  11. Antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root against oral microorganisms.

    Science.gov (United States)

    Park, Ho-Won; Choi, Kyu-Duck; Shin, Il-Shik

    2013-01-01

    The antimicrobial activity of isothiocyanates (ITCs) extracted from horseradish root was investigated against oral microorganisms: 6 strains of facultative anaerobic bacteria, Streptococcus mutans, Streptococcus sobrinus, Lactobacillus casei, Staphylococcus aureus, Enterococcus faecalis and Aggregatibacter actinomycetemcomitans; one strain of yeast, Candida albicans, and 3 strains of anaerobic bacteria, Fusobacterium nucleatum, Prevotella nigrescens, and Clostridium perfringens. The ITCs extracted from horseradish root showed antimicrobial activity against all oral microorganisms by the paper disk method. The minimum bactericidal concentration (MBC) of the ITCs extracted from horseradish root ranged from 1.25 to 5.00 mg/ml against 6 strains of facultative anaerobic bacteria and one strain of yeast, and 4.17 to 16.67 mg/ml against 3 strains of anaerobic bacteria. The ITCs extracted from horseradish root showed the strongest antimicrobial activity, with a MBC of 1.25 mg/ml, against C. albicans among facultative microorganisms, and 4.17 mg/ml against F. nucleatum among anaerobic bacteria. These results suggest that the ITCs extracted from horseradish root may be a candidate for use as an antimicrobial agent against oral microorganisms.

  12. The reduction of nitrate, nitrite and hydroxylamine to ammonia by enzymes from Cucurbita pepo L. in the presence of reduced benzyl viologen as electron donor

    Science.gov (United States)

    Cresswell, C. F.; Hageman, R. H.; Hewitt, E. J.; Hucklesby, D. P.

    1965-01-01

    1. Enzyme systems from Cucurbita pepo have been shown to catalyse the reduction of nitrite and hydroxylamine to ammonia in yields about 90–100%. 2. Reduced benzyl viologen serves as an efficient electron donor for both systems. Activity of the nitrite-reductase system is directly related to degree of dye reduction when expressed in terms of the function for oxidation–reduction potentials, but appears to decrease to negligible activity below about 9% dye reduction. 3. NADH and NADPH alone produce negligible nitrite loss, but NADPH can be linked to an endogenous diaphorase system to reduce nitrite to ammonia in the presence of catalytic amounts of benzyl viologen. 4. The NADH– or NADPH–nitrate-reductase system that is also present can accept electrons from reduced benzyl viologen, but shows relationships opposite to that for the nitrite-reductase system with regard to effect of degree of dye reduction on activity. The product of nitrate reduction may be nitrite alone, or nitrite and ammonia, or ammonia alone, according only to the degree of dye reduction. 5. The relative activities of nitrite-reductase and hydroxylamine-reductase systems show different relationships with degree of dye reduction and may become reversed in magnitude when effects of degree of dye reduction are tested over a suitable range. 6. Nitrite severely inhibits the rate of reduction of hydroxylamine without affecting the yield of ammonia as a percentage of total substrate loss, but hydroxylamine has a negligible effect on the activity of the nitrite-reductase system. 7. The apparent Km for nitrite (1 μm) is substantially less than that for hydroxylamine, for which variable values between 0·05 and 0·9mm (mean 0·51 mm) have been observed. 8. The apparent Km values for reduced benzyl viologen differ for the nitrite-reductase and hydroxylamine-reductase systems: 60 and 7·5 μm respectively. 9. It is concluded that free hydroxylamine may not be an intermediate in the reduction of nitrite

  13. Improved synthesis and application of [(11) C]benzyl iodide in positron emission tomography radiotracer production.

    Science.gov (United States)

    Pekošak, Aleksandra; Filp, Ulrike; Rotteveel, Lonneke; Poot, Alex J; Windhorst, Albert D

    2015-06-30

    Positron emission tomography has increased the demand for new carbon-11 radiolabeled tracers and building blocks. A promising radiolabeling synthon is [(11) C]benzyl iodide ([(11) C]BnI), because the benzyl group is a widely present functionality in biologically active compounds. Unfortunately, synthesis of [(11) C]BnI has received little attention, resulting in limited application. Therefore, we investigated the synthesis in order to significantly improve, automate, and apply it for labeling of the dopamine D2 antagonist [(11) C]clebopride as a proof of concept. [(11) C]BnI was synthesized from [(11) C]CO2 via a Grignard reaction and purified prior the reaction with desbenzyl clebopride. According to a one-pot procedure, [(11) C]BnI was synthesized in 11 min from [(11) C]CO2 with high yield, purity, and specific activity, 52 ± 3% (end of the cyclotron bombardment), 95 ± 3%, and 123 ± 17 GBq/µmol (end of the synthesis), respectively. Changes in the [(11) C]BnI synthesis are reduced amounts of reagents, a lower temperature in the Grignard reaction, and the introduction of a solid-phase intermediate purification. [(11) C]Clebopride was synthesized within 28 min from [(11) C]CO2 in an isolated decay-corrected yield of 11 ± 3% (end of the cyclotron bombardment) with a purity of >98% and specific activity (SA) of 54 ± 4 GBq/µmol (n = 3) at the end of the synthesis. Conversion of [(11) C]BnI to product was 82 ± 11%. The reliable synthesis of [(11) C]BnI allows the broad application of this synthon in positron emission tomography radiopharmaceutical development. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Reaction of 11 C-benzoyl chlorides with metalloid reagents: 11 C-labeling of benzyl alcohols, benzaldehydes, and phenyl ketones from [11 C]CO.

    Science.gov (United States)

    Roslin, Sara; Dahl, Kenneth; Nordeman, Patrik

    2018-01-26

    In this article, we describe the carbon-11 ( 11 C, t 1/2  = 20.4 minutes) labeling of benzyl alcohols, benzaldehydes, and ketones using an efficient 2-step synthesis in which 11 C-carbon monoxide is used in an initial palladium-mediated reaction to produce 11 C-benzoyl chloride as a key intermediate. In the second step, the obtained 11 C-benzoyl chloride is further treated with a metalloid reagent to furnish the final 11 C-labeled product. Benzyl alcohols were obtained in moderated to high non-isolated radiochemical yields (RCY, 35%-90%) with lithium aluminum hydride or lithium aluminum deuteride as metalloid reagent. Changing the metalloid reagent to either tributyltin hydride or sodium borohydride, allowed for the reliable syntheses of 11 C-benzaldehydes in RCYs ranging from 58% to 95%. Finally, sodium tetraphenylborate were utilized to obtain 11 C-phenyl ketones in high RCYs (77%-95%). The developed method provides a new and efficient route to 3 different classes of compounds starting from aryl iodides or aryl bromides. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Measurement and correlation of the solubility of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol in water and alcohols at temperatures from 292.15 K to 310.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shuqin [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiying [China Certification & Inspection (Group) Henan Co., Ltd., Zhengzhou, Henan 450000 (China); Shen, Le; Li, Huanxin; Mao, Zhendong [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China); Li, Huiping, E-mail: huipingli@zzu.edu.cn [School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, Henan 450001 (China)

    2016-04-20

    Highlights: • The (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was successfully synthesized and characterized by IR and NMR. • The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol in water and alcohols were measured. • The experimental solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation and λh equation model. • The dissolution enthalpy of (1-benzyl-1H-1,2,3-triazole-4-yl) methanol was calculated by using the modified Apelblat equation. • The solubility data, correlation models, and the thermodynamic parameters were discussed in detail. - Abstract: The solubilities of (1-benzyl-1H-1,2,3-triazole-4-yl)methanol (BTZM) in water, methanol, ethanol, n-propanol, isopropanol, and n-butanol were measured at temperatures ranging from 292.15 K to 310.15 K by a dynamic method under normal atmospheric pressure. The results showed that it increased with the increasing temperature and the order of solvents was: order: methanol > ethanol > n-propanol > n-butanol > isopropanol > water except three points. The solubility data were correlated with the Van’t Hoff equation, modified Apelblat equation, and λh equation. The average relative deviations (ARD) were 1.87%, 1.53%, and 1.71%, and the root-mean-square-deviations (RMSD) were 2.37 × 10{sup −2}, 1.51 × 10{sup −2}, and 2.12 × 10{sup −2}, respectively. It was found that the modified Apelblat equation gave the best correlation results. Furthermore, the dissolution enthalpy of BTZM was calculated by the modified Apelblat equation.

  16. Simultaneous determination of paracetamol, 4-Aminophenol, 4-Chloroacetanilid, Benzyl alcohol,Benzaldehyde and EDTA by HPLC methodin paracetamol injection ampoule

    Directory of Open Access Journals (Sweden)

    Ali Merrikhi Khosroshahi

    2016-06-01

    Full Text Available Paracetamol that is known as acetaminophen have the most consume as an analgesic and antipyretic drug in the world. That is formulated in single compound or mixture at many forms such as tablets, syrups, suspensions and drops. The last form is intravenous injections. Paracetamol derived from 4-minophenol which is synthesized by acylated the P-acetaminophenol and acetic anhydride. 4-aminophenol is the main impurity at manufacturing of paracetamol which could produce by hydrolysis during storage or synthesis under normal conditions (temperature, pH, etc.. Also, 4-chloroacetanilid may be observed as an impurity in the raw material of paracetamol synthesis. Benzyl alcohol is a preservative that used in Paracetamol for injection. It will be very important if there are analytical techniques to measuring paracetamol and its degradation products accurately and easily. Undoubtedly the most important and widely used, separation technique is chromatography. There are several reports about separation and quantitative determination of paracetamol lonely or simultaneous determination of paracetamol and 4-aminophenol. In this paper investigated simultaneous determination of paracetamol, 4-aminophenol, 4-chloroacetanilid, benzyl alcohol, benzaldehyde, and EDTA in paracetamol for injection ampoules by high performance liquid chromatography. By changing the ratio of mixing methanol and acetonitrile as mobile phase at the wavelength of 215 nm and pH=3 separation of all compounds were completely done.

  17. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study

    Science.gov (United States)

    Pereira, Lucília P.; Silva, Patrícia; Duarte, Marlene; Rodrigues, Liliana; Duarte, Catarina M. M.; Albuquerque, Cristina; Serra, Ana Teresa

    2017-01-01

    Colorectal cancer (CRC) recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs) that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs) derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/β-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G2/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as β-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential. PMID:28394276

  18. Targeting Colorectal Cancer Proliferation, Stemness and Metastatic Potential Using Brassicaceae Extracts Enriched in Isothiocyanates: A 3D Cell Model-Based Study

    Directory of Open Access Journals (Sweden)

    Lucília P. Pereira

    2017-04-01

    Full Text Available Colorectal cancer (CRC recurrence is often attributable to circulating tumor cells and/or cancer stem cells (CSCs that resist to conventional therapies and foster tumor progression. Isothiocyanates (ITCs derived from Brassicaceae vegetables have demonstrated anticancer effects in CRC, however little is known about their effect in CSCs and tumor initiation properties. Here we examined the effect of ITCs-enriched Brassicaceae extracts derived from watercress and broccoli in cell proliferation, CSC phenotype and metastasis using a previously developed three-dimensional HT29 cell model with CSC-like traits. Both extracts were phytochemically characterized and their antiproliferative effect in HT29 monolayers was explored. Next, we performed cell proliferation assays and flow cytometry analysis in HT29 spheroids treated with watercress and broccoli extracts and respective main ITCs, phenethyl isothiocyanate (PEITC and sulforaphane (SFN. Soft agar assays and relative quantitative expression analysis of stemness markers and Wnt/β-catenin signaling players were performed to evaluate the effect of these phytochemicals in stemness and metastasis. Our results showed that both Brassicaceae extracts and ITCs exert antiproliferative effects in HT29 spheroids, arresting cell cycle at G2/M, possibly due to ITC-induced DNA damage. Colony formation and expression of LGR5 and CD133 cancer stemness markers were significantly reduced. Only watercress extract and PEITC decreased ALDH1 activity in a dose-dependent manner, as well as β-catenin expression. Our research provides new insights on CRC therapy using ITC-enriched Brassicaceae extracts, specially watercress extract, to target CSCs and circulating tumor cells by impairing cell proliferation, ALDH1-mediated chemo-resistance, anoikis evasion, self-renewal and metastatic potential.

  19. Comparative studies on mitochondrial electron transport chain complexes of Sitophilus zeamais treated with allyl isothiocyanate and calcium phosphide.

    Science.gov (United States)

    Zhang, Chao; Wu, Hua; Zhao, Yuan; Ma, Zhiqing; Zhang, Xing

    2016-01-01

    With Sitophilus zeamais as the target organism, the present study for the first time attempted to elucidate the comparative effects between allyl isothiocyanate (AITC) and calcium phosphide (Ca3P2), exposure on mitochondrial electron transport chain (ETC.) complex I & IV and their downstream effects on enzymes relevant to reactive oxygen species (ROS). In vivo, both AITC and Ca3P2 inhibited complex I and IV with similar downstream effects. In contrast with Ca3P2, the inhibition of complex I caused by AITC was dependent on time and dose. In vitro, AITC inhibited complex IV more significantly than complex I. These results indicate that mitochondrial complex IV is the primary target of AITC, and that complex I is another potential target. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Purification of Active Myrosinase from Plants by Aqueous Two-Phase Counter-Current Chromatography

    Science.gov (United States)

    Wade, Kristina L.; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W. David; Fahey, Jed W.

    2014-01-01

    Introduction Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (frombroccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. Objective To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. Methods A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Results Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Conclusion Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. PMID:25130502

  1. Purification of active myrosinase from plants by aqueous two-phase counter-current chromatography.

    Science.gov (United States)

    Wade, Kristina L; Ito, Yoichiro; Ramarathnam, Aarthi; Holtzclaw, W David; Fahey, Jed W

    2015-01-01

    Myrosinase (thioglucoside glucohydrolase; E.C. 3.2.1.147), is a plant enzyme of increasing interest and importance to the biomedical community. Myrosinase catalyses the formation of isothiocyanates such as sulforaphane (from broccoli) and 4-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate (from moringa), which are potent inducers of the cytoprotective phase-2 response in humans, by hydrolysis of their abundant glucosinolate (β-thioglucoside N-hydroxysulphate) precursors. To develop an aqueous two-phase counter-current chromatography (CCC) system for the rapid, three-step purification of catalytically active myrosinase. A high-concentration potassium phosphate and polyethylene glycol biphasic aqueous two-phase system (ATPS) is used with a newly developed CCC configuration that utilises spiral-wound, flat-twisted tubing (with an ovoid cross-section). Making the initial crude plant extract directly in the ATPS and injecting only the lower phase permitted highly selective partitioning of the myrosinase complex before a short chromatography on a spiral disk CCC. Optimum phase retention and separation of myrosinase from other plant proteins afforded a 60-fold purification. Catalytically active myrosinase is purified from 3-day broccoli sprouts, 7-day daikon sprouts, mustard seeds and the leaves of field-grown moringa trees, in a CCC system that is predictably scalable. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Comparative substoichiometric extraction of zinc with potassium salts of ethyl, propyl, butyl, pentyl and benzyl xanthates

    International Nuclear Information System (INIS)

    Chandrasekhar Reddy, P.; Rangamannar, P.

    1995-01-01

    The comparative extractability of zinc with potassium salts of ethyl, propyl, butyl, pentyl, and benzyl xanthates from the pH range of 3.5-9.0 into chloroform has been studied, employing a sensitive and rapid substoichiometric radiochemical method. The extent of reproducibility was tested in each case. The effect of associated ions on the extraction was studied. The amount of zinc present in the standard solutions was determined employing each xanthate separately. The zinc content present in geological water samples in and around Tirupati was determined by the method developed and compared with the values obtained by Atomic Absorption Spectrophotometry. (author) 4 refs.; 3 figs.; 4 tabs

  3. Fluorescein isothiocyanate and rhodamine B dye encapsulated mesoporous SiO2 for applications of blue LED excited white LED

    Science.gov (United States)

    Das, Sourav; Manam, J.

    2018-05-01

    In this work, the fluorescein isothiocyanate (FITC) and rhodamine B (RhB) dyes were encapsulated in mesoporous silica nanoparticles (MSNp). The MSNp-FITC-RhB nanohybrids phosphor showed a dichromatic PL emission at green region and orange region when excited at 460 nm. A Forster Resonance Energy Transfer (FRET) was observed from FITC to RhB. The materials were further characterized by XRD, FTIR, TEM, and temperature dependent photoluminescence. The CIE coordinates were tuned from greenish yellow to the orange region and quantum yield was reached 52.04% based on FRET. So by combining the MSNp-FITC-RhB nanohybrids phosphor with the blue LED chip, the white light emission with flexible Color Correlated Temperature and improved Color Rendering Index can be obtained.

  4. Modification of Carboxymethyl Chitosan Film by Blending with Poly(benzyl L-glutamate)-block-poly(ethylene glycol) Copolymer

    International Nuclear Information System (INIS)

    Zhu, G.Z.; Gao, Q.C.; Liu, Y.Y.

    2013-01-01

    A series of water-soluble carboxymethyl chitosan (CMCS)/poly(benzyl L-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) blend films with various CMCS/PBLG-b-PEG mol ratios were prepared by pervaporation method. Morphologies of CMCS/PBLG-b-PEG blend films were researched by scanning electron microscopy (SEM). Thermal, mechanical, and chemical properties of CMCS/PBLG-b-PEG blend films were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile tests, and contact angle tests. It was revealed that the introduction of PBLG-b-PEG segments could greatly affect the morphology and the properties of CMCS films. (author)

  5. Watercress and Water Quality: The Effect of Phenethyl Isothiocyanate on the Mating Behaviour of Gammarus pulex

    Directory of Open Access Journals (Sweden)

    Melanie J. Dixon

    2011-01-01

    Full Text Available Watercress releases phenethyl isothiocyanate (PEITC upon wounding as a defence against herbivores. PEITC levels released from watercress farms are elevated due to cropping, washing, and processing and are thought to lead to adverse effects on Gammarus pulex in chalk streams. This study elucidates the sublethal effect of PEITC on reproductive behaviour of G. pulex, employing ex situ tests to investigate the disruption of precopular pairing under conditions simulating in situ exposure. Mean time to separation of precopular pairs was 89 ± 6 minutes for watercress wash water (1 g watercress per litre water and 81 ± 15 minutes for pure PEITC (1 μL/L. Re-exposure to watercress wash water to simulate the pulsed operation at a watercress farm did not alter behavioural response. The repeated interruption of reproductive behaviour under in situ conditions would impair long-term reproductive success and could explain in part low abundance of G. pulex downstream of watercress farms.

  6. Toxic effects of a horseradish extract and allyl isothiocyanate in the urinary bladder after 13-week administration in drinking water to F344 rats.

    Science.gov (United States)

    Hasumura, Mai; Imai, Toshio; Cho, Young-Man; Ueda, Makoto; Hirose, Masao; Nishikawa, Akiyoshi; Ogawa, Kumiko

    2011-01-01

    Subchronic toxicity of a horseradish extract (HRE), consisting mainly of a mixture of allyl isothiocyanate (AITC) and other isothiocyanates, was investigated with administration at concentrations of 0, 0.0125, 0.025 and 0.05% of HRE in drinking water for 13 weeks to male and female F344 rats. For comparison, treatment with 0.0425% of AITC was similarly performed. Body weight gain was reduced in the 0.05% HRE and AITC males as compared to the 0% controls, and the cause was considered at least partly related to decreased water consumption due to the acrid smell of the test substance and decreased food consumption. Serum biochemistry demonstrated increased urea nitrogen in 0.025 and 0.05% HRE and AITC males and 0.0125-0.05% HRE and AITC females, along with decreased total cholesterol in 0.0125-0.05% HRE females. On histopathological assessment, papillary/nodular hyperplasia of bladder mucosa was observed in 0.05% HRE and AITC males and females, in addition to simple mucosal hyperplasia found in all treated groups. Based on the above findings, no-observed-adverse-effect levels (NOAELs) were estimated to be below 0.0125% of HRE for both males and females, corresponding to 9.4 and 8.0 mg/kg body weight/day, respectively, and there appeared to be comparable toxicological properties of HRE to AITC, such as the inductive effect of significant proliferative lesions in the urinary bladder.

  7. Increased presevation of sliced mozzarella cheese by antimibrobial sachet incorporated with allyl isothiocyanate

    Directory of Open Access Journals (Sweden)

    Ana Clarissa dos Santos Pires

    2009-12-01

    Full Text Available There is an increasing tendency to add natural antimicrobials of plant origin into food. The objective of this work was to develop a microbial sachet incorporated with allyl isothiocyanate (AIT, a volatile compound of plant origin, and to test its efficiency against growth of yeasts and molds, Staphylococcus sp. and psychrotrophic bacteria on sliced mozzarella cheese. Another objective was to quantify the concentration of AIT in the headspace of cheese packaging. A reduction of 3.6 log cycles was observed in yeasts and molds counts in the mozzarella packed with the antimicrobial sachet over 15-day storage time. The sachet also showed an antibacterial effect on Staphylococcus sp., reducing 2.4 log cycles after 12-day storage. Psychrotrophic bacteria species were the most resistant to the antimicrobial action. The highest concentration of AIT (0.08µg.mL-1 inside the active packaging system was observed at the 6-day of storage at 12 ºC ± 2 ºC. At the end of the storage time, AIT concentration decreased to only 10% of the initial concentration. Active packaging containing antimicrobial sachet has a potential use for sliced mozzarella, with molds and yeasts being the most sensitive to the antimicrobial effects.

  8. Transition metal-free oxidation of benzylic alcohols to carbonyl compounds by hydrogen peroxide in the presence of acidic silica gel

    Directory of Open Access Journals (Sweden)

    Hossein Ghafuri

    2015-01-01

    Full Text Available Oxidation of alcohols to carbonyl compounds has become an important issue in the process industry as well as many other applications. In this method, various benzylic alcohols were successfully converted to corresponding aldehydes and ketones under transition metal-free condition using hydrogen peroxide in the presence of some amount of catalytic acidic silica gel. Silica gel is inexpensive and available. One of the most important features of this method is its short reaction time.

  9. Stimulation of phagocytosis by sulforaphane

    International Nuclear Information System (INIS)

    Suganuma, Hiroyuki; Fahey, Jed W.; Bryan, Kelley E.; Healy, Zachary R.; Talalay, Paul

    2011-01-01

    Research highlights: → Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. → This effect does not require Nrf2-dependent induction of phase 2 genes. → Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-μm diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2 -/- mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  10. Stimulation of phagocytosis by sulforaphane

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hiroyuki, E-mail: hsuganu1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Fahey, Jed W., E-mail: jfahey@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Bryan, Kelley E., E-mail: kbryanm1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Healy, Zachary R., E-mail: zhealy1@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States); Talalay, Paul, E-mail: ptalalay@jhmi.edu [Lewis B. and Dorothy Cullman Cancer Chemoprotection Center, Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205 (United States)

    2011-02-04

    Research highlights: {yields} Sulforaphane stimulates the phagocytosis of RAW 264.7 macrophages under conditions of serum deprivation. {yields} This effect does not require Nrf2-dependent induction of phase 2 genes. {yields} Inactivation of macrophage migration inhibitory factor (MIF) by sulforaphane may be involved in stimulation of phagocytosis by sulforaphane. -- Abstract: Sulforaphane, a major isothiocyanate derived from cruciferous vegetables, protects living systems against electrophile toxicity, oxidative stress, inflammation, and radiation. A major protective mechanism is the induction of a network of endogenous cytoprotective (phase 2) genes that are regulated by transcription factor Nrf2. To obtain a more detailed understanding of the anti-inflammatory and immunomodulatory effects of sulforaphane, we evaluated its effect on the phagocytosis activity of RAW 264.7 murine macrophage-like cells by measuring the uptake of 2-{mu}m diameter polystyrene beads. Sulforaphane raised the phagocytosis activity of RAW 264.7 cells but only in the absence or presence of low concentrations (1%) of fetal bovine serum. Higher serum concentrations depressed phagocytosis and abolished its stimulation by sulforaphane. This stimulation did not depend on the induction of Nrf2-regulated genes since it occurred in peritoneal macrophages of nrf2{sup -/-} mice. Moreover, a potent triterpenoid inducer of Nrf2-dependent genes did not stimulate phagocytosis, whereas sulforaphane and another isothiocyanate (benzyl isothiocyanate) had comparable inducer potencies. It has been shown recently that sulforaphane is a potent and direct inactivator of macrophage migration inhibitory factor (MIF), an inflammatory cytokine. Moreover, the addition of recombinant MIF to RAW 264.7 cells attenuated phagocytosis, but sulforaphane-inactivated MIF did not affect phagocytosis. The inactivation of MIF may therefore be involved in the phagocytosis-enhancing activity of sulforaphane.

  11. Noncovalent PEGylation: different effects of dansyl-, L-tryptophan-, phenylbutylamino-, benzyl- and cholesteryl-PEGs on the aggregation of salmon calcitonin and lysozyme.

    Science.gov (United States)

    Mueller, Claudia; Capelle, Martinus A H; Seyrek, Emek; Martel, Sophie; Carrupt, Pierre-Alain; Arvinte, Tudor; Borchard, Gerrit

    2012-06-01

    Protein aggregation is a major instability that can occur during all stages of protein drug production and development. Protein aggregates may compromise the safety and efficacy of the final protein formulation. In this paper, various new excipients [phenylbutylamino-, benzyl-, and cholesteryl-polyethylene glycols (PEGs)] and their use for the reduction of aggregation of salmon calcitonin (sCT) and hen egg-white lysozyme (HEWL) by noncovalent PEGylation are presented. The ability to suppress aggregation of sCT in various buffer systems at a 1:1 molar ratio was assessed by following changes in protein conformation and aggregation state over time. The results are compared with that of dansyl- and L-tryptophan (Trp)-PEGs described in earlier publications. Furthermore, the influence of the different PEG-based excipients on the aggregation of HEWL was measured. HEWL aggregation was completely suppressed in the presence of cholesteryl-PEGs (2 and 5 kDa), whereas deterioration was observed using benzyl-methoxy polyethylene glycols (mPEGs; 2 and 5 kDa). Phenylbutylamino- and Trp-mPEG (2 kDa), as well as dansyl-PEGs of different molecular weight prolonged the lag phase of aggregation and reduced the aggregation velocity of HEWL. Copyright © 2012 Wiley Periodicals, Inc.

  12. Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique

    DEFF Research Database (Denmark)

    Olliges‐Stadler, Inga; Stötzel, Jan; Koziej, Dorota

    2012-01-01

    Insight into the complex chemical mechanism for the formation of tungstite nanoparticles obtained by the reaction of tungsten hexachloride with benzyl alcohol is presented herein. The organic and inorganic species involved in the formation of the nanoparticles were studied by time‐dependent gas......‐scanning extended X‐ray absorption fine structure spectroscopy enabled the time‐dependent evolution of the starting compound, the intermediates and the product to be monitored over the full reaction period. The reaction starts with fast chlorine substitution and partial reduction during the dissolution...

  13. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  14. General synthesis of 2,1-benzisoxazoles (anthranils) from nitroarenes and benzylic C-H acids in aprotic media promoted by combination of strong bases and silylating agents.

    Science.gov (United States)

    Wiȩcław, Michał; Bobin, Mariusz; Kwast, Andrzej; Bujok, Robert; Wróbel, Zbigniew; Wojciechowski, Krzysztof

    2015-11-01

    Carbanions of phenylacetonitriles, benzyl sulfones, and dialkyl benzylphosphonates add nitroarenes at the ortho-position to the nitro group to form [Formula: see text]-adducts that, upon treatment with trialkylchlorosilane and additional base (t-BuOK or DBU), transform into 3-aryl-2,1-benzisoxazoles in moderate-to-good yields.

  15. Unusual C-C bond cleavage in the formation of amine-bis(phenoxy) group 4 benzyl complexes: Mechanism of formation and application to stereospecific polymerization

    KAUST Repository

    Gowda, Ravikumar R.

    2014-08-11

    Group 4 tetrabenzyl compounds MBn4 (M = Zr, Ti), upon protonolysis with an equimolar amount of the tetradentate amine-tris(phenol) ligand N[(2,4-tBu2C6H2(CH 2)OH]3 in toluene from -30 to 25 °C, unexpectedly lead to amine-bis(phenoxy) dibenzyl complexes, BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn2 (M = Zr (1), Ti (2)) in 80% (1) and 75% (2) yields. This reaction involves an apparent cleavage of the >NCH2-ArOH bond (loss of the phenol in the ligand) and formation of the >NCH 2-CH2Bn bond (gain of the benzyl group in the ligand). Structural characterization of 1 by X-ray diffraction analysis confirms that the complex formed is a bis(benzyl) complex of Zr coordinated by a newly derived tridentate amine-bis(phenoxy) ligand arranged in a mer configuration in the solid state. The abstractive activation of 1 and 2 with B(C6F 5)3·THF in CD2Cl2 at room temperature generates the corresponding benzyl cations {BnCH2N[(2,4- tBu2C6H2(CH2)O] 2MBn(THF)}+[BnB(C6F5) 3]- (M = Zr (3), Ti, (4)). These cationic complexes, along with their analogues derived from (imino)phenoxy tri- and dibenzyl complexes, [(2,6-iPr2C6H3)N=C(3,5- tBu2C6H2)O]ZrBn3 (5) and [2,4-Br2C6H2(O)(6-CH2(NC 5H9))CH2N=CH(2-adamantyl-4-MeC 6H2O)]ZrBn2 (6), have been found to effectively polymerize the biomass-derived renewable β-methyl-α-methylene- γ-butyrolactone (βMMBL) at room temperature into the highly stereoregular polymer PβMMBL with an isotacticity up to 99% mm. A combined experimental and DFT study has yielded a mechanistic pathway for the observed unusual C-C bond cleavage in the present protonolysis reaction between ZrBn4 and N[(2,4-tBu2C 6H2(CH2)OH]3 for the formation of complex 1, which involves the benzyl radical and the Zr(III) species, resulting from thermal and photochemical decomposition of ZrBn4, followed by a series of reaction sequences consisting of protonolysis, tautomerization, H-transfer, oxidation, elimination, and radical coupling. © 2014 American Chemical Society.

  16. Glucuronoyl Esterase Screening and Characterization Assays Utilizing Commercially Available Benzyl Glucuronic Acid Ester

    Directory of Open Access Journals (Sweden)

    Hampus Sunner

    2015-09-01

    Full Text Available Research on glucuronoyl esterases (GEs has been hampered by the lack of enzyme assays based on easily obtainable substrates. While benzyl d-glucuronic acid ester (BnGlcA is a commercially available substrate that can be used for GE assays, several considerations regarding substrate instability, limited solubility and low apparent affinities should be made. In this work we discuss the factors that are important when using BnGlcA for assaying GE activity and show how these can be applied when designing BnGlcA-based GE assays for different applications: a thin-layer chromatography assay for qualitative activity detection, a coupled-enzyme spectrophotometric assay that can be used for high-throughput screening or general activity determinations and a HPLC-based detection method allowing kinetic determinations. The three-level experimental procedure not merely facilitates routine, fast and simple biochemical characterizations but it can also give rise to the discovery of different GEs through an extensive screening of heterologous Genomic and Metagenomic expression libraries.

  17. Manganese-catalysed benzylic C(sp3)-H amination for late-stage functionalization.

    Science.gov (United States)

    Clark, Joseph R; Feng, Kaibo; Sookezian, Anasheh; White, M Christina

    2018-06-01

    Reactions that directly install nitrogen into C-H bonds of complex molecules are significant because of their potential to change the chemical and biological properties of a given compound. Although selective intramolecular C-H amination reactions are known, achieving high levels of reactivity while maintaining excellent site selectivity and functional-group tolerance remains a challenge for intermolecular C-H amination. Here, we report a manganese perchlorophthalocyanine catalyst [MnIII(ClPc)] for intermolecular benzylic C-H amination of bioactive molecules and natural products that proceeds with unprecedented levels of reactivity and site selectivity. In the presence of a Brønsted or Lewis acid, the [MnIII(ClPc)]-catalysed C-H amination demonstrates unique tolerance for tertiary amine, pyridine and benzimidazole functionalities. Mechanistic studies suggest that C-H amination likely proceeds through an electrophilic metallonitrene intermediate via a stepwise pathway where C-H cleavage is the rate-determining step of the reaction. Collectively, these mechanistic features contrast with previous base-metal-catalysed C-H aminations and provide new opportunities for tunable selectivities.

  18. Validation of a High-Performance Liquid Chromatography method for the determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in a veterinary oily injectable solution

    Directory of Open Access Journals (Sweden)

    Maria Neagu

    2015-06-01

    Full Text Available A new simple, rapid, accurate and precise high – performance liquid chromatography (HPLC method for determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in oily injectable solution was developed and validated. The method can be used for the detection and quantification of known and unknown impurities and degradants in the drug substance during routine analysis and also for stability studies in view of its capability to separate degradation products. The method was validated for accuracy, precision, specificity, robustness and quantification limits according to ICH Guidelines. The estimation of vitamin A, vitamin D3, vitamin E and benzyl alcohol was done by Waters HPLC system manager using gradient pump system. The chromatographic conditions comprised a reverse-phased C18 column (5 µm particle size, 250 mm×4.6 mm i.d. with a mobile phase consisting of tetrahydrofurane, acetonitrile and water in gradient elution. The flow rate was 0.8 ml/min and 2.0 ml/min. Standard curves were linear over the concentration range of 16.50 µg/ml to 11.00 mg/ml for vitamin A, 10.05 µg/ml to 6.70 mg/ml for vitamin E, 0.075 µg/ml to 0.050 mg/ml for vitamin D3 and 1.25 mg/ml to 5.00 mg/ml for benzylalcohol. Statistical analyses proved the method was precise, reproducible, selective, specific and accurate for analysis of vitamin A, vitamin D3, vitamin E, benzyl alcohol and impurities.

  19. Synthesis of 14C labelled electrophilic ligands of the colchicine binding site of tubulin: chloroacetates of demethylthiocolchicines and of N-acetylcolchinol; isothiocyanate of 9-deoxy-N-acetylcolchinol

    International Nuclear Information System (INIS)

    Boye, O.; Brossi, A.

    1993-01-01

    14 C-Chloroacetates of 2-demethylthiocolchicine 7 and of 3-demethylthiocolchicine 8 were synthesized and found to covalently bind with high specificity to the β-subunit of tubulin. The 14 C-chloroacetate of N-acetylcolchinol and the 14 C-isothiocyanate were also prepared and found to react covalently with tubulin but in a nonspecific manner. With the radiolabelled chloroacetates 7 and 8 two compounds are now available to further characterize the colchicine binding site on the β subunit of tubulin. (author)

  20. UAE-HPLC-UV: New Contribution for Fast Determination of Total Isothiocyanates in Brassicaceae Vegetables

    Directory of Open Access Journals (Sweden)

    Cecilia M. Fusari

    2015-01-01

    Full Text Available Total isothiocyanates content (ITC is considered a good indicator of bioactive compounds responsible for beneficial effects related to Brassicaceae vegetables. Analytical performance is a critical factor for routine analysis in plant tissues. The extraction technique for isolating phytochemicals from Brassicaceae vegetables is currently the bottleneck of the methodology. The aim of this work was to optimize this step in the analytical process. Fast and less expensive alternative, based on ultrasound-assisted extraction technique (UAE for direct extraction of GLS into an aqueous phase and further analysis of the hydrolysis product, was optimized. Full factorial (2k design followed by Central Composite Design (CCD was used to obtain the optimum extraction conditions. Selected conditions were homogenization time (9 min; ultrasound bath time (5 min; and sample-to-solvent ratio (1 : 5 w/v mg mL−1. The proposed analytical methodology exhibits satisfactory analytical performance in terms of linearity, precision (RSD < 2.4%, and limits of detection (26 nmol g−1 w.w.. The new analytical methodology was applied to cauliflower, cabbage, watercress, and broccoli samples with recoveries higher than 86%. The UAE extraction technique was showed to be efficient for real samples analysis leading to sensible, selective, and reproducible methodology for ITC analysis.

  1. Quantitative production of compound I from a cytochrome P450 enzyme at low temperatures. Kinetics, activation parameters, and kinetic isotope effects for oxidation of benzyl alcohol.

    Science.gov (United States)

    Wang, Qin; Sheng, Xin; Horner, John H; Newcomb, Martin

    2009-08-05

    Cytochrome P450 enzymes are commonly thought to oxidize substrates via an iron(IV)-oxo porphyrin radical cation transient termed Compound I, but kinetic studies of P450 Compounds I are essentially nonexistent. We report production of Compound I from cytochrome P450 119 (CYP119) in high conversion from the corresponding Compound II species at low temperatures in buffer mixtures containing 50% glycerol by photolysis with 365 nm light from a pulsed lamp. Compound I was studied as a reagent in oxidations of benzyl alcohol and its benzylic mono- and dideuterio isotopomers. Pseudo-first-order rate constants obtained at -50 degrees C with concentrations of substrates between 1.0 and 6.0 mM displayed saturation kinetics that gave binding constants for the substrate in the Compound I species (K(bind)) and first-order rate constants for the oxidation reactions (k(ox)). Representative results are K(bind) = 214 M(-1) and k(ox) = 0.48 s(-1) for oxidation of benzyl alcohol. For the dideuterated substrate C(6)H(5)CD(2)OH, kinetics were studied between -50 and -25 degrees C, and a van't Hoff plot for complexation and an Arrhenius plot for the oxidation reaction were constructed. The H/D kinetic isotope effects (KIEs) at -50 degrees C were resolved into a large primary KIE (P = 11.9) and a small, inverse secondary KIE (S = 0.96). Comparison of values extrapolated to 22 degrees C of both the rate constant for oxidation of C(6)H(5)CD(2)OH and the KIE for the nondeuterated and dideuterated substrates to values obtained previously in laser flash photolysis experiments suggested that tunneling could be a significant component of the total rate constant at -50 degrees C.

  2. Chemical Dynamics and Critical Phenomena: Electrical Conductivity and Reactivity of Benzyl Bromide in Triethylamine+Water Near its Consolute Point

    Science.gov (United States)

    Specker, Christopher D.; Ellis, Joel M.; Baird, James K.

    2007-06-01

    The binary liquid mixture of triethylamine+water has a lower consolute point at a critical composition of 32.27mass% triethylamine. Starting at a temperature within the one-phase region, the electrical conductivity of a sample of this mixture was measured and found to increase smoothly with increasing temperature before falling sharply at 291.24K (18.09°C). Since opalescence was visible at this temperature, it was identified with the critical solution temperature of the binary mixture. A solution of 90 μL of benzyl bromide dissolved in 90mL of 32.27mass% triethylamine+water was prepared, and the resulting Menschutkin reaction between benzyl bromide and triethylamine was allowed to come to equilibrium. The electrical conductivity of this equilibrium mixture was measured in the one-phase region and was found to increase smoothly with increasing temperature before rising sharply at 291.55K (18.40°C). This temperature was identified as the critical temperature of the ternary. The rate of approach of the ternary mixture to chemical equilibrium was also measured and shown to be governed by a first-order rate law. The temperature dependence of the rate coefficient followed the Arrhenius equation up to a temperature of about 290.74K (17.59°C). Above this temperature, the rate coefficient fell by as much as 22% below the value predicted by extrapolation of the Arrhenius equation. This suppression in the rate reaction in the vicinity of the critical temperature can be interpreted as evidence for the existence of critical slowing down.

  3. Synthesis,Characterization and Application of Benzyl-substituted Cyclopentadienyl lanthanide Complexes as Catalyst Precursors for the Syndiotactic Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    QIAN,Yan-Long(钱延龙); BALA,Muhammad D.; XIE,Xiao-Min(谢小敏); HUANG,Ji-Ling(黄吉玲)

    2004-01-01

    Benzyl-substituted cyclopentadienyl lanthanide complexes were synthesized and characterized by elemental analysis, MS and IR spectroscopy. The analytical data point out the formation of monomeric, unsolvated complexes.In conjunction with Al(Et)3 as co-catalyst, the title complexes are efficient catalysts for the syndiotactic polymerization of methyl methacrylate. For the complex (C6H5CH2C5H4)2YCI, under the optimum polymerization conditions (60 ℃, n(MMA):n(catalyst):n(co-catalyst)= 1000:1:10), a predominantly syndiotactic (rr=66%) polymer of high molecular weight (Mη = 105000) was obtained.

  4. The preparation of benzyl esters using stoichiometric niobium (V) chloride versus niobium grafted SiO2 catalyst: A comparison study

    OpenAIRE

    Sandro L. Barbosa; Camila D. Lima; Melina A.R. Almeida; Larissa S. Mourão; Myrlene Ottone; David L. Nelson; Stanlei I. Klein; Lucas D. Zanatta; Giuliano C. Clososki; Franco J. Caires; Eduardo J. Nassar; Gabriela R. Hurtado

    2018-01-01

    Two solvent free methods of a one-to-one alcohol/acid mol ratio synthesis of benzyl esters of the formic, acetic, benzoic, salicylic, nicotinic, and oxalic acids are described. The stoichiometric reactions used 1.5 mol ratio solid NbCl5 as the reagent and required from two to three hours for completion at room temperature; for the catalytic processes, NbCl5 was grafted directly, at room temperature, onto a silica gel of specific area of 507 m2g−1, produced from construction sand and sodium ca...

  5. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  6. Brown seaweed (Saccharina japonica) as an edible natural delivery matrix for allyl isothiocyanate inhibiting food-borne bacteria.

    Science.gov (United States)

    Siahaan, Evi Amelia; Pendleton, Phillip; Woo, Hee-Chul; Chun, Byung-Soo

    2014-01-01

    The edible, brown seaweed Saccharina japonica was prepared as powder in the size range 500-900 μm for the desorption release of allyl isothiocyanate (AITC). Powders were used as raw (containing lipids) and as de-oiled, where the lipid was removed. In general, de-oiled powders adsorbed larger masses of AITC after vapour or solution contact. Mass adsorbed due to solution contact exceeded vapour contact. Larger particles adsorbed more than smaller particles. No chemical bonding between AITC and the powder surface occurred. Release from vapour deposited particles reached 70-85% available within 72 h; solution deposited reached 70-90% available at 192 h. The larger amounts of AITC adsorbed via solution deposition resulted in greater vapour-phase concentrations at 72 h for antimicrobial activity studies. No loss of activity was detected against Escherichia coli, Salmonella Typhimurium or Bacillus cereus. Only a nominal activity against Staphylococcus aureus was demonstrated. S. japonica powder could be used as an edible, natural vehicle for AITC delivery. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Synthesis of [sup 14]C labelled electrophilic ligands of the colchicine binding site of tubulin: chloroacetates of demethylthiocolchicines and of N-acetylcolchinol; isothiocyanate of 9-deoxy-N-acetylcolchinol

    Energy Technology Data Exchange (ETDEWEB)

    Boye, O.; Brossi, A. (NIDDK (United States). Lab. of Structural Biology); Getahun, Z.; Grover, S.; Hamel, E. (National Inst. of Health, Bethesda, MD (United States))

    1993-01-01

    [sup 14]C-Chloroacetates of 2-demethylthiocolchicine 7 and of 3-demethylthiocolchicine 8 were synthesized and found to covalently bind with high specificity to the [beta]-subunit of tubulin. The [sup 14]C-chloroacetate of N-acetylcolchinol and the [sup 14]C-isothiocyanate were also prepared and found to react covalently with tubulin but in a nonspecific manner. With the radiolabelled chloroacetates 7 and 8 two compounds are now available to further characterize the colchicine binding site on the [beta] subunit of tubulin. (author).

  8. Effect of benzyl amino purine and indole-3-acetic acid on propagation of Sterculia foetida in vitro

    Science.gov (United States)

    Yuniastuti, E.; Widodo, C. E.; Samanhudi; Delfianti, M. N. I.

    2018-03-01

    Sterculia foetida is an oval seed plants that can be used as biofuel, which is one of the environmental friendly fuels. This plant is quite hard to find because not many peoples cultivate the plants. An in vitro propagation is one way to preserve the plant. This research aimed to determine optimum concentration of benzyl amino purine (BAP) and indole-3-acetic acid (IAA) to propagate S. foetida in vitro. The results showed that woody plant medium (WPM) added by 4 mg L BAP-1 and 0.5 mg L IAA-1 was able to produce complete plantlet, whereas those added by 4 mg L BAP-1 and 1 mg L IAA-1 generated the best growth of shoot and leaves.

  9. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    Science.gov (United States)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  10. Rigid Dipeptide Mimics: Synthesis of Enantiopure 5- and 7-Benzyl and 5,7-Dibenzyl Indolizidinone Amino Acids via Enolization and Alkylation of delta-Oxo alpha,omega-Di-[N-(9-(9-phenylfluorenyl))amino]azelate Esters.

    Science.gov (United States)

    Polyak, Felix; Lubell, William D.

    1998-08-21

    Azabicyclo[X.Y.0]alkane amino acids are tools for constructing mimics of peptide structure and templates for generating combinatorial libraries for drug discovery. Our methodology for synthesizing these conformationally rigid dipeptides has been elaborated such that alkyl groups can be appended onto the heterocycle to generate mimics of peptide backbone and side-chain structure. Inexpensive glutamic acid was employed as chiral educt in a Claisen condensation/ketone alkylation/reductive amination/lactam cyclization sequence that furnished alkyl-branched azabicyclo[4.3.0]alkane amino acid. Enantiopure 5-benzyl-, 7-benzyl-, and 5,7-dibenzylindolizidinone amino acids 2-4 were stereoselectively synthesized via efficient reaction sequences featuring the alkylation of di-tert-butyl alpha,omega-di-[N-(PhF)amino]azelate delta-ketone 5. A variety of alkyl halides were readily added to the enolate of ketone 5 to provide mono- and dialkylated ketones 6 and 7. Hydride additions to 6 and 7, methanesulfonations, and intramolecular S(N)2 displacements by the PhF amine gave 5-alkylprolines that were converted by lactam cyclizations into 7- and 5-benzyl-, as well as 5,7-dibenzyl-2-oxo-3-N-(BOC)amino-1-azabicyclo[4.3.0]nonane-9-carboxylate methyl esters 10, 11, and 14. Epimerization of the alkyl-branched stereocenter via an iminium-enaminium equilibrium proved effective for controlling diastereoselectivity in reductive aminations with 6 and 7 in order to furnish 5-alkylprolines that were similarly converted to 7- benzyl- and 5,7-dibenzylindolizidinone N-(BOC)amino esters 10 and 14. Ester hydrolysis with hydroxide ion and potassium trimethylsilanolate then gave enantiopure indolizidinone amino acids 2-4. Epimerization at C-9 of benzylindolizidinone amino esters was also used to provide alternative diastereomers of 10, 11, and 14. This practical methodology for introducing side-chain groups onto the heterocycle with regioselective and diastereoselective control is designed to enhance

  11. Benzyl alcohol and block copolymer micellar lithography: a versatile route to assembling gold and in situ generated titania nanoparticles into uniform binary nanoarrays.

    Science.gov (United States)

    Polleux, Julien; Rasp, Matthias; Louban, Ilia; Plath, Nicole; Feldhoff, Armin; Spatz, Joachim P

    2011-08-23

    Simultaneous synthesis and assembly of nanoparticles that exhibit unique physicochemical properties are critically important for designing new functional devices at the macroscopic scale. In the present study, we report a simple version of block copolymer micellar lithography (BCML) to synthesize gold and titanium dioxide (TiO(2)) nanoarrays by using benzyl alcohol (BnOH) as a solvent. In contrast to toluene, BnOH can lead to the formation of various gold nanopatterns via salt-induced micellization of polystyrene-block-poly(vinylpyridine) (PS-b-P2VP). In the case of titania, the use of BCML with a nonaqueous sol-gel method, the "benzyl alcohol route", enables the fabrication of nanopatterns made of quasi-hexagonally organized particles or parallel wires upon aging a (BnOH-TiCl(4)-PS(846)-b-P2VP(171))-containing solution for four weeks to grow TiO(2) building blocks in situ. This approach was found to depend mainly on the relative lengths of the polymer blocks, which allows nanoparticle-induced micellization and self-assembly during solvent evaporation. Moreover, this versatile route enables the design of uniform and quasi-ordered gold-TiO(2) binary nanoarrays with a precise particle density due to the absence of graphoepitaxy during the deposition of TiO(2) onto gold nanopatterns. © 2011 American Chemical Society

  12. Polyglutamate copolymers as a tissue-engineering platform: polymer scaffold modification through aminolysis of poly(.gamma.-benzyl-L-glutamate-co-2,2,2-.gamma.-trichlorethyl-L-glutamate)

    Czech Academy of Sciences Publication Activity Database

    Svobodová, Jana; Rypáček, František

    2012-01-01

    Roč. 48, č. 1 (2012), s. 183-190 ISSN 0014-3057 R&D Projects: GA AV ČR KJB400500904; GA ČR GAP108/11/1857; GA MŠk 1M0538 Institutional research plan: CEZ:AV0Z40500505 Keywords : poly(.gamma.-benzyl-L-glutamate) * 2,2,2-.gamma.-trichlorethyl-L-glutamate * fibres Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.562, year: 2012

  13. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite.

    Science.gov (United States)

    Tamizhdurai, P; Sakthinathan, Subramanian; Chen, Shen-Ming; Shanthi, K; Sivasanker, S; Sangeetha, P

    2017-04-13

    Cerium oxide nanoparticles (CeO 2 NPs) are favorable in nanotechnology based on some remarkable properties. In this study, the crystalline CeO 2 NPs are successfully prepared by an efficient microwave combustion (MCM) and conventional route sol-gel (CRSGM) methods. The structural morphology of the as-prepared CeO 2 NPs was investigated by various spectroscopic and analytical techniques. Moreover, the XRD pattern confirmed the formation of CeO 2 NPs as a face centered cubic structure. The magnetometer studies indicated the low saturation magnetization (23.96 emu/g) of CeO 2 NPs for weak paramagnetic and high saturation magnetization (32.13 emu/g) of CeO 2 NPs for super paramagnetic. After that, the oxidation effect of benzyl alcohol was investigated which reveals good conversion and selectivity. Besides, the CeO 2 NPs modified glassy carbon electrode (GCE) used for the detection of nitrite with linear concentration range (0.02-1200 μM), low limit of detection (0.21 μM) and higher sensitivity (1.7238 μAμM -1 cm -2 ). However, the CeO 2 NPs modified electrode has the fast response, high sensitivity and good selectivity. In addition, the fabricated electrode is applied for the determination of nitrite in various water samples. Eventually, the CeO 2 NPs can be regarded as an effective way to enhance the catalytic activity towards the benzyl alcohol and nitrite.

  14. Preliminary Investigation on the Use of Allyi Isothiocyanate to Increase the Shelf-Life of Gilthead Sea Bream (Sparus Aurata) Fillets.

    Science.gov (United States)

    Giarratana, Filippo; Crinò, Chiara; Muscolino, Daniele; Beninati, Chiara; Ziino, Graziella; Giuffrida, Alessandro; Panebianco, Antonio

    2015-06-30

    The aim of this work is to evaluate the activity of allyl isothiocyanate (AITC) against fish spoilage bacteria (specific spoilage organisms; SSOs) as well as its possible use in gilthead sea bream ( Sparus aurata ) fillets to extend their shelf-life. In this regard, in vitro tests are carried out in order to evaluate the inhibitory activity of AITC and its vapours on several strains of SSOs. The AITC effect on the shelf-life of sea bream fillets was made by putting them in plastic trays hermetically closed with the addition AITC. Microbiological and sensorial evaluations were made on fish fillets during storage. Treated fillets maintained microbial populations at a significantly lower level compared with the control samples during storage, showing better sensorial characteristics. Therefore, the use of AITC's vapours seems to be a new and interesting alternative way to increase fish product shelf-life.

  15. Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention.

    Directory of Open Access Journals (Sweden)

    Yongping Bao

    Full Text Available The isothiocyanate (ITC sulforaphane (SFN was shown at low levels (1-5 µM to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 µM it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 µM increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 µM promoted endothelial tube formation (118% of the control, whereas at 10-20 µM it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint.

  16. Benzyl alcohol increases voluntary ethanol drinking in rats.

    Science.gov (United States)

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated. Copyright © 2014 Elsevier Inc. All

  17. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    Energy Technology Data Exchange (ETDEWEB)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Bodipati, Naganjaneyulu; Krishna Peddinti, Rama [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India); Roy, Partha, E-mail: paroyfbs@iitr.ernet.in [Molecular Endocrinology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247 667, Uttarakhand (India)

    2014-01-15

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC{sub 50}=25±0.38) when compared to reference compound PTER (IC{sub 50}=65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene.

  18. Role of isothiocyanate conjugate of pterostilbene on the inhibition of MCF-7 cell proliferation and tumor growth in Ehrlich ascitic cell induced tumor bearing mice

    International Nuclear Information System (INIS)

    Nikhil, Kumar; Sharan, Shruti; Chakraborty, Ajanta; Bodipati, Naganjaneyulu; Krishna Peddinti, Rama; Roy, Partha

    2014-01-01

    Naturally occurring pterostilbene (PTER) and isothiocyanate (ITC) attract great attention due to their wide range of biological properties, including anti-cancer, anti-leukemic, anti-bacterial and anti-inflammatory activities. A novel class of hybrid compound synthesized by introducing an ITC moiety on PTER backbone was evaluated for its anti-cancer efficacy in hormone-dependent breast cancer cell line (MCF-7) in vitro and Ehrlich ascitic tumor bearing mice model in vivo. The novel hybrid molecule showed significant in vitro anti-cancer activity (IC 50 =25±0.38) when compared to reference compound PTER (IC 50 =65±0.42). The conjugate molecule induced both S and G2/M phase cell cycle arrest as indicated by flow cytometry analysis. In addition, the conjugate induced cell death was characterized by changes in cell morphology, DNA fragmentation, activation of caspase-9, release of cytochrome-c into cytosol and increased Bax: Bcl-2 ratio. The conjugate also suppressed the phosphorylation of Akt and ERK. The conjugate induced cell death was significantly increased in presence of A6730 (a potent Akt1/2 kinase inhibitor) and PD98059 (a specific ERK inhibitor). Moreover, the conjugated PTER inhibited tumor growth in Ehrlich ascitic cell induced tumor bearing mice as observed by reduction in tumor volume compared to untreated animals. Collectively, the pro-apoptotic effect of conjugate is mediated through the activation of caspases, and is correlated with the blockade of the Akt and ERK signaling pathways in MCF-7 cells. - Highlights: • Conjugate was prepared by appending isothiocyanate moiety on pterostilbene backbone. • Conjugate showed anticancer effects at comparatively lower dose than pterostilbene. • Conjugate caused blockage of the Akt and ERK signaling pathways in MCF-7 cells. • Conjugate significantly reduced solid tumor volume as compared to pterostilbene

  19. Isothiocyanate-rich Moringa oleifera extract reduces weight gain, insulin resistance, and hepatic gluconeogenesis in mice.

    Science.gov (United States)

    Waterman, Carrie; Rojas-Silva, Patricio; Tumer, Tugba Boyunegmez; Kuhn, Peter; Richard, Allison J; Wicks, Shawna; Stephens, Jacqueline M; Wang, Zhong; Mynatt, Randy; Cefalu, William; Raskin, Ilya

    2015-06-01

    Moringa oleifera (moringa) is tropical plant traditionally used as an antidiabetic food. It produces structurally unique and chemically stable moringa isothiocyanates (MICs) that were evaluated for their therapeutic use in vivo. C57BL/6L mice fed very high fat diet (VHFD) supplemented with 5% moringa concentrate (MC, delivering 66 mg/kg/d of MICs) accumulated fat mass, had improved glucose tolerance and insulin signaling, and did not develop fatty liver disease compared to VHFD-fed mice. MC-fed group also had reduced plasma insulin, leptin, resistin, cholesterol, IL-1β, TNFα, and lower hepatic glucose-6-phosphatase (G6P) expression. In hepatoma cells, MC and MICs at low micromolar concentrations inhibited gluconeogenesis and G6P expression. MICs and MC effects on lipolysis in vitro and on thermogenic and lipolytic genes in adipose tissue in vivo argued these are not likely primary targets for the anti-obesity and anti-diabetic effects observed. Data suggest that MICs are the main anti-obesity and anti-diabetic bioactives of MC, and that they exert their effects by inhibiting rate-limiting steps in liver gluconeogenesis resulting in direct or indirect increase in insulin signaling and sensitivity. These conclusions suggest that MC may be an effective dietary food for the prevention and treatment of obesity and type 2 diabetes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Transdermal delivery of fluorescein isothiocyanate-dextrans using the combination of microneedles and low-frequency sonophoresis

    Directory of Open Access Journals (Sweden)

    Boonnada Pamornpathomkul

    2015-10-01

    Full Text Available This study aimed to evaluate the patient-friendly methods that are used in the delivery of hydrophilic macromolecules into deep skin layers, in particular, the combination of microneedles patch (MNs patch and low-frequency sonophoresis (SN. The hydrophilic macromolecule drug fluorescein isothiocyanate (FITC-dextrans (FD-4: MW 4.4 kDa was used as the model drug in our experimental design. In this study, excised porcine skin was used to investigate and optimize the key parameters that determine effective MNs- and SN-facilitated FD-4 delivery. In vitro skin permeation experiments revealed that the combination of MNs patch with SN had a superior enhancing effect of skin permeation for FD-4 compared to MNs alone, SN alone or untreated skin, respectively. The optimal parameters for the combination of MNs and SN included the following: 10 N insertion force of MNs, 4 W/cm2 SN intensity, 6 mm radiation diameter of the SN probe, 2 min application time, and the continuous mode duty cycle of SN. In addition, vertical sections of skin, clearly observed under a confocal microscope, confirmed that the combination of MNs and SN enhanced permeation of FD-4 into the deep skin layers. These studies suggest that the combination of MNs and SN techniques could have great potential in the delivery of hydrophilic macromolecules into deep skin.

  1. Potential New Pharmacological Agents Derived From Medicinal Plants for the Treatment of Pancreatic Cancer.

    Science.gov (United States)

    Azimi, Haniye; Khakshur, Ali Asghar; Abdollahi, Mohammad; Rahimi, Roja

    2015-01-01

    In the present article, we reviewed plants and phytochemical compounds demonstrating beneficial effects in pancreatic cancer to find new sources of pharmaceutical agents. For this purpose, Scopus, PubMed, Web of Science, and Google scholar were searched for plants or herbal components with beneficial effects in the treatment of pancreatic cancer. Data were collected up to January 2013. The search terms were "plant," "herb," "herbal therapy," or "phytotherapy" and "pancreatic cancer" or "pancreas." All of the human in vivo and in vitro studies were included. According to studies, among diverse plants and phytochemicals, 12 compounds including apigenin, genistein, quercetin, resveratrol, epigallocatechin gallate, benzyl isothiocyanate, sulforaphane, curcumin, thymoquinone, dihydroartemisinin, cucurbitacin B, and perillyl alcohol have beneficial action against pancreatic cancer cells through 4 or more mechanisms. Applying their plausible synergistic effects can be an imperative approach for finding new efficient pharmacological agents in the treatment of pancreatic cancer.

  2. Pertumbuhan Plantlet Anggrek Cattleya sp. dengan Perlakuan Benzyl Amino Purine pada Media Dasar Pupuk Daun Modifikasi

    Directory of Open Access Journals (Sweden)

    HESTIN YUSWANTI

    2015-09-01

    Full Text Available Growth of Plantlets of Cattleya Orchid on The Fooliar Fertilizer-Based Medium added with Benzyl Amino Purine. The aim of the current research was to investigate the appropriate concentrationof plant growth regulator BAP on the growth of Cattleya plantlet. The experiment was utilized a Randomized Completely Design with five treatments and six replications. The basal medium used was modification of foliar fertilizer of Growmore (trade mark with addition of fish emulsion, Vitamin B1 and active charcoal. BAP concentration used as treatment were 0 ppm, 0.5 ppm, 1.0 ppm, 1.5 ppm and 2.0 ppm. Variables observed were height, leaf number, root number, root length, fresh weight and dry weight of plantlets. The result showed that concentration of 1 ppm BAP resulted in the highest value for plantlet height (5.67 cm, leaf number (4.67, root length (2.07 cm, fresh weight (0.36 g and dry weight (0.043 g.

  3. {sup 1} H and {sup 13} C NMR studies on the enoling of 5-benzyl barbituric acids; Estudos por H-1 e C-13 RMN da enolizacao de acidos 5-benzil barbituricos

    Energy Technology Data Exchange (ETDEWEB)

    Villar, Jose Daniel Figueroa; Santos, Nedina Lucia dos; Cruz, Elizabete Rangel [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Secao de Quimica

    1992-12-31

    This work shows that the derivatives of the 5-benzyl barbituric acids hydroxylated at the ortho position of the aromatic ring only exist in the enol form. and that the alkylation of this hydroxyl gives products which exist mainly in the ketone form of the DMSO 5 refs., 2 figs., 2 tabs.

  4. Fullerol-fluorescein isothiocyanate-concanavalin agglutinin phosphorescent sensor for the detection of alpha-fetoprotein and forecast of human diseases

    Science.gov (United States)

    Liu, Jia-ming; Lin, Li-ping; Jiang, Shu-Lian; Cui, Ma Lin; Jiao, Li; Zhang, Xiao Yang; Zhang, Li-hong; Zheng, Zhi Yong; Lin, Xuan; Lin, Shao-qin

    2013-11-01

    Based on the reaction of the active -OH group in fullerol (F) with the dissociated -COOH group in fluorescein isothiocyanate (FITC) to form an F-FITC and the enhanced effect of N, N-dimethylaniline (DMA) on phosphorescence signal of F-FITC, a new phosphorescent labeling reagent (DMA-F-FITC) was developed. What's more, a phosphorescent sensor for the determination of alpha-fetoprotein variant (AFP-V) has been designed via the coupling technique of the high sensitivity for affinity adsorption-solid substrate-room temperature phosphorimetry (AA-SS-RTP) with the strong specificity reaction between DMA-F-FITC-Con A and AFP-V. The DMA-F-FITC increased the number of luminescent molecules in the biological target which improved the sensitivity of phosphorescent sensor. The proposed sensor was responsive, simple, selective and sensitive, and it has been applied to the determination of trace AFP-V in human serum and the forecast of human diseases using phosphorescence emission wavelength of F or FITC, with the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Meanwhile, the mechanisms for the labeling reaction and the sensing detection of AFP-V were discussed.

  5. Responses of the L51781Y tk/sup +//tk/sup -/ mouse lymphoma cell forward mutation assay: III. 72 coded chemicals

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, D.B.; Brown, A.; Cattanach, P.; Edwards, I.; McBride, D.; Riach, C.; Caspary, W.J.

    1988-01-01

    Seventy-two chemicals were tested for their mutagenic potential in the L51781Y tk/sup +///sup -/ mouse lymphoma cell forward mutation assay, using procedures based upon those described previously. Cultures were exposed to the chemicals for 4 hr, then cultured for 2 days before planting in soft agar with or without trifluorothymidine (TFT), 3 ..mu..g/ml. The chemicals were tested at least twice. Significant responses were obtained with allyl isothiocyanate, p-benzoquinone dioxime, benzyl acetate, 2-biphenylamine HCl, bis(2-chloro-1-methylethyl)ether, cadmium chloride, chlordane, chlorobenzene, chlorobenzilate, 2-chloroethanol, chlorothalonil, cytarabine x HCl, p,p'-DDE, diazinon, 2,6-dichloro-p-phenylenediamine, N,N-diethylthiourea, diglycidylresorcinol ether, 2,4-dimethoxy aniline x HCl, disperse yellow 3, endosulfan, 1,2-epoxyhexadecane, ethyl acrylate, ethyl benzene, ethylene thiourea, F D and C yellow Number 6, furan, heptachlor, isophorone, mercuric chloride, 4,4'-methylenedianiline x 2 HCl, methyl viologen, nickel sulfate x 6H/sub 2/O, 4,4'-oxydianiline, pentachloroethane, piperonyl butoxide, propyl gallate, quinoline, rotenone, 2,4,5,6-tetrachloro-4-nitro-anisole, 1,1,1,2-tetrachloroethane, trichlorfon, 2,4,6-trichlorophenol, 2,4,5-trimethoxybenzaldehyde, 1,1,3-trimethyl-2-thiourea, 1-vinyl-3-cyclopetene dioxide, vinyl toluene, and ziram. The assay was incapable of providing a clear indication of whether some chemicals were mutagens; these benzyl alcohol, 1,4-dichlorobenzene, phenol, succinic acid-2,2-dimethyl hydrazide, and toluene.

  6. NMR and computer modelling conformational study of N-benzyl, N-n-propyl (2-methyl-3-nitrophenyl)acetamide

    International Nuclear Information System (INIS)

    Nicolle, E.; Benoit-Guyod, M.; Namil, A.; Cussac, M.; Leclerc, G.; Maldivi, P.

    1995-01-01

    The conformation of N-benzyl-N-n-propyl (2-methyl-3-nitrophenyl) acetamide 1 in dimethyl sulfoxide (DMSO-d 6 ) or chloroform (CDCL 3 ) solution was studied using 1 H and 13 CNMR analysis. In solution, 1 existed as two distinct Z and E isomers, which could not be separated at laboratory temperature. Both conformations were in equivalent proportions in chloroform whereas in a polar solvent (DMSO), the conformation Z was more usual with the aromatic rings in a transposition. Major and minor rotation isomers were assigned form the '1H and 13 C NMR chemical shifts determined at 293 K. Separate treatment of signals displayed by two different methylene groups gave comparable activation parameters (ΔG ∼ 16 kcal/mol). Conformational analysis and measurement of the rotational barrier between the E and Z conformers by molecular modeling (Sybyl program) were performed. (authors). 14 refs., 8 figs

  7. Changes in rocket salad phytochemicals within the commercial supply chain: Glucosinolates, isothiocyanates, amino acids and bacterial load increase significantly after processing.

    Science.gov (United States)

    Bell, Luke; Yahya, Hanis Nadia; Oloyede, Omobolanle Oluwadamilola; Methven, Lisa; Wagstaff, Carol

    2017-04-15

    Five cultivars of Eruca sativa and a commercial variety of Diplotaxis tenuifolia were grown in the UK (summer) and subjected to commercial growth, harvesting and processing, with subsequent shelf life storage. Glucosinolates (GSL), isothiocyanates (ITC), amino acids (AA), free sugars, and bacterial loads were analysed throughout the supply chain to determine the effects on phytochemical compositions. Bacterial load of leaves increased significantly over time and peaked during shelf life storage. Significant correlations were observed with GSL and AA concentrations, suggesting a previously unknown relationship between plants and endemic leaf bacteria. GSLs, ITCs and AAs increased significantly after processing and during shelf life. The supply chain did not significantly affect glucoraphanin concentrations, and its ITC sulforaphane significantly increased during shelf life in E. sativa cultivars. We hypothesise that commercial processing may increase the nutritional value of the crop, and have added health benefits for the consumer. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. 3-Benzyl-4-ethyl-1H-1,2,4-triazole-5(4H)-thione.

    Science.gov (United States)

    Karczmarzyk, Zbigniew; Pitucha, Monika; Wysocki, Waldemar; Pachuta-Stec, Anna; Stańczuk, Andrzej

    2013-02-01

    The title compound, C(11)H(13)N(3)S, exists in the 5-thioxo tautomeric form. The benzene ring exhibits disorder with a refined ratio of 0.77 (2):0.23 (2) for components A and B with a common bridgehead C atom. The 1,2,4-triazole ring is essentially planar, with a maximum deviation of 0.002 (3) Å for the benzyl-substituted C atom, and forms dihedral angles of 88.94 (18) and 86.56 (49)° with the benzene rings of components A and B, respectively. The angle between the plane of the ethyl chain and the mean plane of 1,2,4-triazole ring is 88.55 (15)° and this conformation is stabilized by an intra-molecular C-H⋯S contact. In the crystal, pairs of N-H⋯S hydrogen bonds link mol-ecules into inversion dimers. π-π inter-actions are observed between the triazole and benzene rings, with centroid-centroid separations of 3.547 (4) and 3.544 (12) Å for components A and B, and slippages of 0.49 (6) and 0.58 (15) Å, respectively.

  9. Induction of apoptosis in HT-29 cells by extracts from isothiocyanates-rich varieties of Brassica oleracea.

    Science.gov (United States)

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Deulofeu, Ramon; Molina, Rafael; Ballesta, Antonio; Kensler, Thomas W; Lafuente, Amalia

    2007-01-01

    Among the vegetables with anti-carcinogenic properties, members of the genus Brassica are the most effective at reducing the risk of cancer. This property may be explained by their principle bioactive compounds, isothiocyanates (ITCs). The aim of this study was to measure the amounts of ITCs in extracts from vegetables of the Brasssica genus and assay them for potency of induction of apoptosis in a colorectal cancer cell line (HT-29). ITCs were determined by the cyclocondensation assay with 1,2-benzenedithiol and induction of apoptosis by assessment of cell viability, caspase-3 activity and DNA fragmentation. Purple cabbage extract showed the highest ITC concentration per gram, fresh weight, followed by black cabbage and Romanesco cauliflower. At ITC concentrations of 7.08 microg/mL these extracts decreased cell viability and induced caspase-3 and DNA fragmentation at 48h. Brussels sprouts showed the strongest effects on cell viability and caspase-3 activity. Varieties of Brassica Oleracea are rich sources of ITCs that potently inhibit the growth of colon cancer cells by inducting apoptosis. All the extracts showed anticancer activity at ITC concentrations of between 3.54 to 7.08 mug/mL, which are achievable in vivo. Our results showed that ITC concentration and the chemopreventive responses of plant extracts vary among the varieties of Brassica Oleracea studied and among their cultivars.

  10. Proteasome-mediated degradation of cell division cycle 25C and cyclin-dependent kinase 1 in phenethyl isothiocyanate-induced G2-M-phase cell cycle arrest in PC-3 human prostate cancer cells.

    Science.gov (United States)

    Xiao, Dong; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V

    2004-05-01

    Phenethyl isothiocyanate (PEITC), a constituent of many cruciferous vegetables, offers significant protection against cancer in animals induced by a variety of carcinogens. The present study demonstrates that PEITC suppresses proliferation of PC-3 cells in a dose-dependent manner by causing G(2)-M-phase cell cycle arrest and apoptosis. Interestingly, phenyl isothiocyanate (PITC), which is a structural analogue of PEITC but lacks the -CH(2) spacers that link the aromatic ring to the -N=C=S group, neither inhibited PC-3 cell viability nor caused cell cycle arrest or apoptosis. These results indicated that even a subtle change in isothiocyanate (ITC) structure could have a significant impact on its biological activity. The PEITC-induced cell cycle arrest was associated with a >80% reduction in the protein levels of cyclin-dependent kinase 1 (Cdk1) and cell division cycle 25C (Cdc25C; 24 h after treatment with 10 micro M PEITC), which led to an accumulation of Tyr(15) phosphorylated (inactive) Cdk1. On the other hand, PITC treatment neither reduced protein levels of Cdk1 or Cdc25C nor affected Cdk1 phosphorylation. The PEITC-induced decline in Cdk1 and Cdc25C protein levels and cell cycle arrest were significantly blocked on pretreatment of PC-3 cells with proteasome inhibitor lactacystin. A 24 h exposure of PC-3 cells to 10 micro M PEITC, but not PITC, resulted in about 56% and 44% decrease in the levels of antiapoptotic proteins Bcl-2 and Bcl-X(L), respectively. However, ectopic expression of Bcl-2 failed to alter sensitivity of PC-3 cells to growth inhibition or apoptosis induction by PEITC. Treatment of cells with PEITC, but not PITC, also resulted in cleavage of procaspase-3, procaspase-9, and procaspase-8. Moreover, the PEITC-induced apoptosis was significantly attenuated in the presence of general caspase inhibitor and specific inhibitors of caspase-8 and caspase-9. In conclusion, our data indicate that PEITC-induced cell cycle arrest in PC-3 cells is likely due

  11. Diastereoisomers of 2-benzyl-2, 3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol: potential anti-inflammatory agents.

    Science.gov (United States)

    Sheridan, Helen; Walsh, John J; Cogan, Carina; Jordan, Michael; McCabe, Tom; Passante, Egle; Frankish, Neil H

    2009-10-15

    The synthesis and biological activity of the novel diastereoisomers of 2-benzyl-2,3-dihydro-2-(1H-inden-2-yl)-1H-inden-1-ol is reported. The 2,2-coupled indane dimers were synthesised by coupling of the silyl enol ether of 1-indanone with the dimethyl ketal of 2-indanone. The coupled product was directly alkylated to give the racemic ketone which was reduced to the diastereoisomeric alcohols. The alcohols were separated and their relative stereochemistry was established by X-ray crystallography. These molecules demonstrate significant anti-inflammatory activity in vivo and in vitro and may represent a new class of anti-inflammatory agent.

  12. Zeolite-encapsulated Co(II), Mn(II), Cu(II) and Cr(III) salen complexes as catalysts for efficient selective oxidation of benzyl alcohol

    Science.gov (United States)

    Li, F. H.; Bi, H.; Huang, D. X.; Zhang, M.; Song, Y. B.

    2018-01-01

    Co(II), Mn(II), Cu(II) and Cr(III) salen type complexes were synthesized in situ in Y zeolite by the reaction of ion-exchanged metal ions with the flexible ligand molecules that had diffused into the cavities. Data of characterization indicates the formation of metal salen complexes in the pores without affecting the zeolite framework structure, the absence of any extraneous species and the geometry of encapsulated complexes. The catalytic activity results show that Cosalcyen Y exhibited higher catalytic activity in the water phase selective oxidation of benzyl alcohol, which could be attributed to their geometry and the steric environment of the metal actives sites.

  13. Aerobic Oxidation of Benzyl Alcohol on a Strontium-Based Gold Material: Remarkable Intrinsic Basicity and Reusable Catalyst

    Directory of Open Access Journals (Sweden)

    Karla Patrícia R. Castro

    2018-02-01

    Full Text Available The development of stable and active gold catalysts has arisen as a significant strategy for oxidation of alcohols. Nano-size PVA-stabilized gold nanoparticles immobilized on Sr(OH2 by colloidal deposition presented high catalytic activity for benzyl alcohol oxidation. In 2.5 h, 2 bar of O2 and without extra-base addition, the calcined support reached 54.6% (100 °C and 67.4% (140 °C of conversion, presenting the remarkable and unexplored intrinsic basicity that strontium-based materials retain. With sub-stoichiometric K2CO3 adding, under the same catalytic conditions, the catalyst conducted the reaction with similar activity, but with excellent reusability in the process, without any gold leaching. We investigated the influence that the support synthesis method and the solvent used for the NPs stabilization have on the oxidation activity. The produced materials were fully characterized by XPS, Rietveld refinement, and TEM.

  14. Kinetics and reaction mechanism for aminolysis of benzyl 4-pyridyl carbonate in H2O: Effect of modification of nucleofuge from 2-pyridyl oxide to 4-pyridyl oxide on reactivity and reaction mechanism

    International Nuclear Information System (INIS)

    Kang, Ji Sun; Um, Ikhwan

    2012-01-01

    Pseudo-first-order rate constants k amine have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in H 2 O at 25.0.deg.C. The plots of k amine vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate T ± and its deprotonated form T - . This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The k amine values for the reactions of 6 have been dissected into the second-order rate constant Kk 2 and the third order rate constant Kk 3 . The Brφnsted-type plots are linear with β nuc = 0.94 and 1.18 for Kk 2 and Kk 3 , respectively. The Kk 2 for the reaction of 6 is smaller than the second-order rate constant k N for the corresponding reaction of 5, although 4-pyridyl oxide in 6 is less basic and a better nucleofuge than 2-pyridyl oxide in 5

  15. Ternary Interactions and Energy Transfer between Fluorescein Isothiocyanate, Adenosine Triphosphate, and Graphene Oxide Nanocarriers.

    Science.gov (United States)

    Ratajczak, Katarzyna; Stobiecka, Magdalena

    2017-07-20

    The interactions of fluorescent probes and biomolecules with nanocarriers are of key importance to the emerging targeted drug delivery systems. Graphene oxide nanosheets (GONs) as the nanocarriers offer biocompatibility and robust drug binding capacity. The interactions of GONs with fluorophores lead to strong fluorescence quenching, which may interfere with fluorescence bioimaging and biodetection. Herein, we report on the interactions and energy transfers in a model ternary system: GONs-FITC-ATP, where FITC is a model fluorophore (fluorescein isothiocyanate) and ATP is a common biomolecule (adenosine-5'-triphosphate). We have found that FITC fluorescence is considerably quenched by ATP (the quenching constant K SV = 113 ± 22 M -1 ). The temperature coefficient of K SV is positive (α T = 4.15 M -1 deg -1 ). The detailed analysis of a model for internal self-quenching of FITC indicates that the temperature dependence of the net quenching efficiency η for the FITC-ATP pair is dominated by FITC internal self-quenching modes with their contribution estimated at 79%. The quenching of FITC by GONs is much stronger (K SV = 598 ± 29 M -1 ) than that of FITC-ATP and is associated with the formation of supramolecular assemblies bound with hydrogen bonding and π-π stacking interactions. For the analysis of the complex behavior of the ternary system GONs-FITC-ATP, a model of chemisorption of ATP on GONs, with partial blocking of FITC quenching, has been developed. Our results indicate that ATP acts as a moderator for FITC quenching by GONs. The interactions between ATP, FITC, and GONs have been corroborated using molecular dynamics and quantum mechanical calculations.

  16. Synthesis and SAR studies of benzyl ether derivatives as potent orally active S1P₁ agonists.

    Science.gov (United States)

    Tsuji, Takashi; Suzuki, Keisuke; Nakamura, Tsuyoshi; Goto, Taiji; Sekiguchi, Yukiko; Ikeda, Takuya; Fukuda, Takeshi; Takemoto, Toshiyasu; Mizuno, Yumiko; Kimura, Takako; Kawase, Yumi; Nara, Futoshi; Kagari, Takashi; Shimozato, Takaichi; Yahara, Chizuko; Inaba, Shinichi; Honda, Tomohiro; Izumi, Takashi; Tamura, Masakazu; Nishi, Takahide

    2014-08-01

    We report herein the synthesis and structure-activity relationships (SAR) of a series of benzyl ether compounds as an S1P₁ receptor modulator. From our SAR studies, the installation of substituents onto the central benzene ring of 2a was revealed to potently influence the S1P₁ and S1P₃ agonistic activities, in particular, an ethyl group on the 2-position afforded satisfactory S1P₁/S1P₃ selectivity. These changes of the S1P₁ and S1P₃ agonistic activities caused by the alteration of substituents on the 2-position were reasonably explained by a docking study using an S1P₁ X-ray crystal structure and S1P₃ homology modeling. We found that compounds 2b and 2e had a potent in vivo immunosuppressive efficacy along with acceptable S1P₁/S1P₃ selectivity, and confirmed that these compounds had less in vivo bradycardia risk through the evaluation of heart rate change after oral administration of the compounds (30 mg/kg, p.o.) in rats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Demonstration of Improved Charge Transfer in Graphene/Au Nanorods Plasmonic Hybrids Stabilized by Benzyl Thiol Linkers

    Directory of Open Access Journals (Sweden)

    Giuseppe Valerio Bianco

    2016-01-01

    Full Text Available Hybrids based on graphene decorated with plasmonic gold (Au nanostructures are being investigated as possible materials combination to add to graphene functionalities of tunable plasmon resonance and enhanced absorption at selected wavelength in the visible-near-infrared region of the spectrum. Here, we report a solution drop-casting approach for fabricating stable hybrids based on chemical vapor deposition (CVD graphene and Au nanorods, which are able to activate effective charge transfer from graphene. We demonstrate that CVD graphene functionalization by benzyl thiol (BZT provides the linker to strong anchoring, via S-Au bonds, Au nanorods to graphene. Optical measurements by spectroscopic ellipsometry give evidence of the introduction of plasmon resonances at 1.85 and 2.25 eV in the Au nanorods/BZT/graphene hybrids, which enable surface enhanced Raman scattering (SERS detection. Furthermore, an effective electron transfer from graphene to Au nanorods, resulting in an enhancement of p-type doping of graphene with a consequent decrease of its sheet resistance, is probed by Raman spectroscopy and corroborated by electrical measurements.

  18. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Fan, Ruo-Jing; Guan, Qing; Zhang, Fang; Leng, Jia-Peng; Sun, Tuan-Qi; Guo, Yin-Long

    2016-01-01

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  19. Benzylic rearrangement stable isotope labeling for quantitation of guanidino and ureido compounds in thyroid tissues by liquid chromatography-electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Ruo-Jing [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Guan, Qing [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Zhang, Fang, E-mail: fzhang@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Leng, Jia-Peng [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China); Sun, Tuan-Qi, E-mail: tuanqisun@163.com [Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 (China); Guo, Yin-Long, E-mail: ylguo@sioc.ac.cn [State Key Laboratory of Organmetallic Chemistry and National Center for Organic Mass Spectrometry in Shanghai, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 (China)

    2016-02-18

    Benzylic rearrangement stable isotope labeling (BRSIL) was explored to quantify the guanidino and ureido compounds (GCs and UCs). This method employed a common reagent, benzil, to label the guanidino and ureido groups through nucleophilic attacking then benzylic migrating. The use of BRSIL was investigated in the analysis of five GCs (creatine, L-arginine, homoarginine, 4-guanidinobutyric acid, and methylguanidine) and two UCs (urea and citrulline). The labeling was found simple and specific. The introduction of bi-phenyl group and the generation of nitrogen heterocyclic ring in the benzil-d0/d5 labeled GCs and UCs improved the retention behaviors in liquid chromatography (LC) and increased the sensitivity of electrospray ionization mass spectrometry (ESI MS) detection. The fragment ion pairs of m/z 182/187 and m/z 210/215 from the benzil-d0/d5 tags facilitated the discovery of potential GCs and UCs candidates residing in biological matrices. The use of BRSIL combined with LC-ESI MS was applied for simultaneously quantitation of GCs and UCs in thyroid tissues. It was demonstrated that nine GCs and UCs were detected, six of which were further quantified based on corresponding standards. It was concluded that five GCs and UCs (L-arginine, homoarginine, 4-guanidinobutyric acid, methylguanidine, and citrulline) were statistically significantly different (p < 0.05) between the para-carcinoma and carcinoma thyroid tissue samples. - Highlights: • A common reagent, benzil-d0/d5 was employed to label the GCs and UCs through BRSIL. • The benzil-d0/d5 labeling improved the retention behavior in RPLC and increased the sensitivity by ESI MS detection. • BRSIL coupled with LC-ESI MS was applied to the qualitation and quantitation of GCs and UCs in thyroid tissues.

  20. Validation of a High-Performance Liquid Chromatography method for the determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in a veterinary oily injectable solution

    OpenAIRE

    Maria Neagu; Georgiana Soceanu; Ana Caterina Bucur

    2015-01-01

    A new simple, rapid, accurate and precise high – performance liquid chromatography (HPLC) method for determination of vitamin A, vitamin D3, vitamin E and benzyl alcohol in oily injectable solution was developed and validated. The method can be used for the detection and quantification of known and unknown impurities and degradants in the drug substance during routine analysis and also for stability studies in view of its capability to separate degradation products. The method was validate...

  1. Labelling of histone H5 and its interaction with DNA. 1. Histone H5 labelling with fluorescein isothiocyanate.

    Science.gov (United States)

    Favazza, M; Lerho, M; Houssier, C

    1990-06-01

    Histone H5 has been labelled with fluorescein isothiocyanate (FITC) with particular attention to the reaction conditions (pH, reaction time and input FITC/H5 molar ratio) and to the complete elimination of non-covalently bound dye. We preferred to use reaction conditions which yielded non-specific uniform labelling rather than specific alpha-NH2 terminal labelling, in order to obtain higher sensitivity in further studies dealing with the detection of perturbation at the binding sites of H5 on DNA. FITC-labelled H5 was further characterized by absorption and circular dichroism spectroscopy, and the fluorescein probe titrated in the 4-8 pH range. The structural integrity of H5 was found to be preserved after labelling. The positive electrostatic potential of the environment in which the FITC probe is embedded in the arginine/lysine-rich tails of H5 is believed to be responsible for the drop of pK of 1 unit found for H5-FITC as compared to free FITC. For the globular part of H5, the pK of covalently-bound FITC was only slightly lowered; this is a consequence of the much lower content in positively-charged amino-acid side chains in this region.

  2. Infrared matrix isolation and ab initio studies on isothiocyanic acid HNCS and its complexes with nitrogen and xenon

    International Nuclear Information System (INIS)

    Wierzejewska, Maria; Wieczorek, Robert

    2003-01-01

    The isothiocyanic acid HNCS (DNCS) and its complexes with nitrogen and xenon have been studied experimentally by FTIR matrix isolation technique and computationally with the use of ab initio calculations at the MP2 level. The spectra show that HNCS (DNCS) interacts specifically with nitrogen forming 1:1 hydrogen bonded complex in argon matrix while non-hydrogen bonded structure is probably formed in solid xenon. Two stable minima were localized on the potential energy surface. One of them involves an almost linear hydrogen bond from NH group of the acid molecule to nitrogen molecule lone pair (structure I) and has an interaction energy ΔE CP equal to -6.85 kJ/mol. The second structure (II) where the nitrogen molecule interacts with the sulfur atom of the HNCS was found to be weaker bound and is characterized by ΔE CP =-1.99 kJ/mol. A low energetic barrier of 5.86 kJ/mol between the structures I and II was found. Both experimental and theoretical results obtained for the Xe···HNCS system point to a structure with the NH group interacting with the xenon atom. An interaction energy ΔE CP for this complex is equal to -3.64 kJ/mol

  3. 3-Benzyl-4-ethyl-1H-1,2,4-triazole-5(4H-thione

    Directory of Open Access Journals (Sweden)

    Zbigniew Karczmarzyk

    2013-02-01

    Full Text Available The title compound, C11H13N3S, exists in the 5-thioxo tautomeric form. The benzene ring exhibits disorder with a refined ratio of 0.77 (2:0.23 (2 for components A and B with a common bridgehead C atom. The 1,2,4-triazole ring is essentially planar, with a maximum deviation of 0.002 (3 Å for the benzyl-substituted C atom, and forms dihedral angles of 88.94 (18 and 86.56 (49° with the benzene rings of components A and B, respectively. The angle between the plane of the ethyl chain and the mean plane of 1,2,4-triazole ring is 88.55 (15° and this conformation is stabilized by an intramolecular C—H...S contact. In the crystal, pairs of N—H...S hydrogen bonds link molecules into inversion dimers. π–π interactions are observed between the triazole and benzene rings, with centroid–centroid separations of 3.547 (4 and 3.544 (12 Å for components A and B, and slippages of 0.49 (6 and 0.58 (15 Å, respectively.

  4. (Benzyl isocyanide-κC1chlorido(2-chloro-3-dimethylamino-1-phenylprop-1-en-1-yl-κ2C1,Npalladium(II

    Directory of Open Access Journals (Sweden)

    Ana C. Mafud

    2013-01-01

    Full Text Available In the title compound, [Pd(C11H13ClNCl(C8H7N], which crystallized in the chiral space group P212121, the PdII atom is coordinated by two C atoms, a Csp2 atom of the 2-chloro-3-dimethylamino-1-phenylprop-1-en-1-yl ligand and a Csp atom from the benzyl isocyanide ligand, as well as an N atom of the ligand and a Cl atom, in a square-planar geometry. In the complex, there is a short C—H...Cl hydrogen bond and a C—H...π interaction. In the crystal, molecules are linked via C—H...Cl hydrogen bonds, forming chains along the a-axis direction.

  5. Meyer-Overton reforged: The origins of alcohol and anesthetic potency in membranes as determined by a new NMR partitioning probe, benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Janes, N.; Ma, L.; Hsu, J.W.; Rubin, E.; Taraschi, T.F. (Thomas Jefferson Univ., Philadelphia, PA (United States))

    1992-01-01

    The Meyer-Overton hypothesis--that anesthesia arises from the nonspecific action of solutes on membrane lipids--is reformulated using colligative thermodynamics. Configurational entropy, the randomness imparted by the solute through the partitioning process, is implicated as the energetic driving force that pertubs cooperative membrane equilibria. A proton NMR partitioning approach based on the anesthetic benzyl alcohol is developed to assess the reformulation. Ring resonances from the partitioned drug are shielded by 0.2 ppm and resolved from the free, aqueous drug. Free alcohol is quantitated in dilute lipid dispersions using an acetate internal standard. Cooperative equilibria in model dipalmitoyl lecithin membranes are examined with changes in temperature and alcohol concentration. The L[sub [beta][prime

  6. In Vitro/In Vivo Evaluation of Radiolabeled [(99m)Tc(CO)3](+)-Hydroxyurea and Fluorescein Isothiocyanate-Hydroxyurea.

    Science.gov (United States)

    Yilmaz, Baris; Teksoz, Serap; Kilcar, Ayfer Yurt; Ucar, Eser; Ichedef, Cigdem; Medine, Emin Ilker; Ari, Kadir

    2016-02-01

    The aim of current study is to examine hydroxyurea (HU), which is an antineoplastic drug used for the treatment of leukemia, sickle-cell disease, HIV, psoriasis, thrombocythemia, and various neoplastic diseases in two aspects. The active ingredient hydroxyurea was obtained by purification of the capsule form drug, commercially named as HYDREA. Then, [(99m)Tc(CO)3](+)core radiolabeling with HU was performed as first aspect. Quality control studies of (99m)Tc(CO)3-HU complex were performed by thin-layer radiochromatography and high-performance liquid radiochromatography methods. The results demonstrated that the radiolabeling yield was quite high (98.43% ± 2.29%). Also, (99m)Tc(CO)3-HU complex has good stability during the 24-hour period. Biological behavior of (99m)Tc(CO)3-HU complex is evaluated by biodistribution studies on Wistar Albino rats. Fluorescein isothiocyanate (FITC) labeling of HU was performed as second aspect. Fluorometric evaluation of binding efficacy and fluorescence imaging studies on MCF7 and Hela cell lines were carried out. It was thought that the knowledge achieved in this study would contribute to using (99m)Tc(CO)3-HU complex as an imaging agent, which inhibits the DNA synthesis selectively, by inhibiting ribonucleotide reductase enzyme. It was observed that FITC-HU has noteworthy incorporation on both cell lines.

  7. Extraction and Chromatographic Determination of Shikimic Acid in Chinese Conifer Needles with 1-Benzyl-3-methylimidazolium Bromide Ionic Liquid Aqueous Solutions

    Science.gov (United States)

    Chen, Fengli; Hou, Kexin; Li, Shuangyang; Zu, Yuangang; Yang, Lei

    2014-01-01

    An ionic liquids-based ultrasound-assisted extraction (ILUAE) method was successfully developed for extracting shikimic acid from conifer needles. Eleven 1-alkyl-3-methylimidazolium ionic liquids with different cations and anions were investigated and 1-benzyl-3-methylimidazolium bromide solution was selected as the solvent. The conditions for ILUAE, including the ionic liquid concentration, ultrasound power, ultrasound time, and liquid-solid ratio, were optimized. The proposed method had good recovery (99.37%–100.11%) and reproducibility (RSD, n = 6; 3.6%). ILUAE was an efficient, rapid, and simple sample preparation technique that showed high reproducibility. Based on the results, a number of plant species, namely, Picea koraiensis, Picea meyeri, Pinus elliottii, and Pinus banksiana, were identified as among the best resources of shikimic acid. PMID:24782942

  8. The crystal structures of 3-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-6-O-triphenylmethyl-α-d-glucofuranose and its azide displacement product

    Directory of Open Access Journals (Sweden)

    Zane Clarke

    2018-06-01

    Full Text Available The effect of different leaving groups on the substitution versus elimination outcomes with C-5 d-glucose derivatives was investigated. The stereochemical configurations of 3-O-benzyl-1,2-O-isopropylidene-5-O-methanesulfonyl-6-O-triphenylmethyl-α-d-glucofuranose, C36H38O8S (3 [systematic name: 1-[(3aR,5R,6S,6aR-6-benzyloxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxol-5-yl-2-(trityloxyethyl methanesulfonate], a stable intermediate, and 5-azido-3-O-benzyl-5-deoxy-1,2-O-isopropylidene-6-O-triphenylmethyl-β-l-idofuranose, C35H35N3O5 (4 [systematic name: (3aR,5S,6S,6aR-5-[1-azido-2-(trityloxyethyl]-6-benzyloxy-2,2-dimethyltetrahydrofuro[2,3-d][1,3]dioxole], a substitution product, were examined and the inversion of configuration for the azido group on C-5 in 4 was confirmed. The absolute structures of the molecules in the crystals of both compounds were confirmed by resonant scattering. In the crystal of 3, neighbouring molecules are linked by C—H...O hydrogen bonds, forming chains along the b-axis direction. The chains are linked by C—H...π interactions, forming layers parallel to the ab plane. In the crystal of 4, molecules are also linked by C—H...O hydrogen bonds, forming this time helices along the a-axis direction. The helices are linked by a number of C—H...π interactions, forming a supramolecular framework.

  9. Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures

    Directory of Open Access Journals (Sweden)

    Chan Daniel K

    2012-07-01

    Full Text Available Abstract Background High mortality rates in ovarian cancer are largely a result of resistance to currently used chemotherapies. Expanding therapies with a variety of drugs has the potential to reduce this high mortality rate. Metformin and phenethyl isothiocyanate (PEITC are both potentially useful in ovarian cancer, and they are particularly attractive because of their safety. Methods Cell proliferation of each drug and drug combination was evaluated by hemacytometry with Trypan blue exclusion or Sytox green staining for cell death. Levels of total and cleaved PARP were measured by Western blot. General cellular and mitochondrial reactive oxygen species were measured by flow cytometry and live cell confocal microscopy with the fluorescent dyes dihydroethidine and MitoSOX. Results Individually, metformin and PEITC each show inhibition of cell growth in multiple ovarian cancer cell lines. Alone, PEITC was also able to induce apoptosis, whereas metformin was primarily growth inhibitory. Both total cellular and mitochondrial reactive oxygen species were increased when treated with either metformin or PEITC. The growth inhibitory effects of metformin were reversed by methyl succinate supplementation, suggesting complex I plays a role in metformin's anti-cancer mechanism. PEITC's anti-cancer effect was reversed by N-acetyl-cysteine supplementation, suggesting PEITC relies on reactive oxygen species generation to induce apoptosis. Metformin and PEITC together showed a synergistic effect on ovarian cancer cell lines, including the cisplatin resistant A2780cis. Conclusions Here we show that when used in combination, these drugs are effective in both slowing cancer cell growth and killing ovarian cancer cells in vitro. Furthermore, the combination of these drugs remains effective in cisplatin resistant cell lines. Novel combinations such as metformin and PEITC show promise in expanding ovarian cancer therapies and overcoming the high incidence of

  10. The MMP inhibitor (R)-2-(N-benzyl-4-(2-[18F]fluoroethoxy)phenylsulphonamido) -N-hydroxy-3-methylbutanamide: Improved precursor synthesis and fully automated radiosynthesis

    International Nuclear Information System (INIS)

    Wagner, Stefan; Faust, Andreas; Breyholz, Hans-Joerg; Schober, Otmar; Schaefers, Michael; Kopka, Klaus

    2011-01-01

    Summary: The CGS 25966 derivative (R)-2-(N-Benzyl-4-(2-[ 18 F]fluoroethoxy)phenyl-sulphonamido) -N-hydroxy-3-methylbutanamide [ 18 F]9 represents a very potent radiolabelled matrix metalloproteinase inhibitor. For first human PET studies it is mandatory to have a fully automated radiosynthesis and a straightforward precursor synthesis available. The realisation of both requirements is reported herein. In particular, the corresponding precursor 8 was obtained in a reliable 7 step synthesis with an overall chemical yield of 2.3%. Furthermore, the target compound [ 18 F]9 was prepared with a radiochemical yield of 14.8±3.9% (not corrected for decay).

  11. Effects of intact glucosinolates and products produced from glucosinolates in myrosinase-catalyzed hydrolysis on the potato cyst nematode (Globodera rostochiensis Cv. Woll).

    Science.gov (United States)

    Buskov, S; Serra, B; Rosa, E; Sørensen, H; Sørensen, J C

    2002-02-13

    The potato cyst nematode (Globodera rostochiensis cv. Woll) is responsible for large yield losses in the potato crop, and opportunities for reducing the attack of these plant nematode species are, therefore, important. This study has been devoted to the testing of the in vitro effects on the potato cyst nematode of eight glucosinolates [prop-2-enyl-, but-3-enyl-, (R)-4-methylsulfinylbut-3-enyl-, benzyl-, phenethyl-, 4-hydroxybenzyl-, (2S)-2-hydroxybut-3-enyl-, and (2R)-2-hydroxy-2-phenylethylglucosinolate] as well as the effects of the products of this myrosinase-catalyzed hydrolysis. The glucosinolates were used at three concentrations, 0.05, 0.3, and 1.0 mg/mL, in the presence or absence of the enzyme myrosinase. The effects of the compounds on the mortality were monitored every 8 h for a 72 h period. No effects were found for any of the intact glucosinolates. However, when active myrosinase was included with 1 mg/mL phenethylglucosinolate at pH 6.5, 100% mortality was observed within just 16 h. A similar effect was achieved at the same concentration of benzyl- and prop-2-enylglucosinolates in the myrosinase-containing solutions, although longer exposures were required (24 and 40 h, respectively). The main aglucone products released from the glucosinolates with pronounced effects on the nematodes were shown to be the corresponding isothiocyanates. The results suggest that mixtures of these specific glucosinolates and active myrosinase or autolysis of plant materials containing these enzymes and glucosinolates might be used to control the potato cyst nematode in the soil.

  12. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    International Nuclear Information System (INIS)

    Cross, Janet V; Foss, Frank W; Rady, Joshua M; Macdonald, Timothy L; Templeton, Dennis J

    2007-01-01

    Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of 'Phase 2' enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. These results demonstrate that MEKK1 is directly modified and inhibited by

  13. Fermentation-Assisted Extraction of Isothiocyanates from Brassica Vegetable Using Box-Behnken Experimental Design

    Directory of Open Access Journals (Sweden)

    Amit K. Jaiswal

    2016-11-01

    Full Text Available Recent studies showed that Brassica vegetables are rich in numerous health-promoting compounds such as carotenoids, polyphenols, flavonoids, and glucosinolates (GLS, as well as isothiocyanates (ITCs and are involved in health promotion upon consumption. ITCs are breakdown products of GLS, and typically used in the food industry as a food preservative and colouring agent. They are also used in the pharmaceutical industry due to their several pharmacological properties such as antibacterial, antifungal, antiprotozoal, anti-inflammatory, and chemoprotective effects, etc. Due to their widespread application in food and pharmaceuticals, the present study was designed to extract ITCs from York cabbage. In order to optimise the fermentation-assisted extraction process for maximum yield of ITCs from York cabbage, Box-Behnken design (BBD combined with response surface methodology (RSM was applied. Additionally, the GLS content of York cabbage was quantified and the effect of lactic acid bacteria (LAB on GLS was evaluated. A range of GLS such as glucoraphanin, glucoiberin, glucobrassicin, sinigrin, gluconapin, neoglucobrassicin and 4-methoxyglucobrassicin were identified and quantified in fresh York cabbage. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis, and also examined by appropriate statistical methods. LAB facilitated the degradation of GLS, and the consequent formation of breakdown products such as ITCs. Results showed that the solid-to-liquid (S/L ratio, fermentation time and agitation rate had a significant effect on the yield of ITCs (2.2 times increment. The optimum fermentation conditions to achieve a higher ITCs extraction yield were: S/L ratio of 0.25 w/v, fermentation time of 36 h, and agitation rate of 200 rpm. The obtained yields of ITCs (45.62 ± 2.13 μM sulforaphane equivalent (SFE/mL were comparable to the optimised conditions, indicating the accuracy of the model

  14. Fermentation-Assisted Extraction of Isothiocyanates from Brassica Vegetable Using Box-Behnken Experimental Design.

    Science.gov (United States)

    Jaiswal, Amit K; Abu-Ghannam, Nissreen

    2016-11-04

    Recent studies showed that Brassica vegetables are rich in numerous health-promoting compounds such as carotenoids, polyphenols, flavonoids, and glucosinolates (GLS), as well as isothiocyanates (ITCs) and are involved in health promotion upon consumption. ITCs are breakdown products of GLS, and typically used in the food industry as a food preservative and colouring agent. They are also used in the pharmaceutical industry due to their several pharmacological properties such as antibacterial, antifungal, antiprotozoal, anti-inflammatory, and chemoprotective effects, etc. Due to their widespread application in food and pharmaceuticals, the present study was designed to extract ITCs from York cabbage. In order to optimise the fermentation-assisted extraction process for maximum yield of ITCs from York cabbage, Box-Behnken design (BBD) combined with response surface methodology (RSM) was applied. Additionally, the GLS content of York cabbage was quantified and the effect of lactic acid bacteria (LAB) on GLS was evaluated. A range of GLS such as glucoraphanin, glucoiberin, glucobrassicin, sinigrin, gluconapin, neoglucobrassicin and 4-methoxyglucobrassicin were identified and quantified in fresh York cabbage. The experimental data obtained were fitted to a second-order polynomial equation using multiple regression analysis, and also examined by appropriate statistical methods. LAB facilitated the degradation of GLS, and the consequent formation of breakdown products such as ITCs. Results showed that the solid-to-liquid (S/L) ratio, fermentation time and agitation rate had a significant effect on the yield of ITCs (2.2 times increment). The optimum fermentation conditions to achieve a higher ITCs extraction yield were: S/L ratio of 0.25 w / v , fermentation time of 36 h, and agitation rate of 200 rpm. The obtained yields of ITCs (45.62 ± 2.13 μM sulforaphane equivalent (SFE)/mL) were comparable to the optimised conditions, indicating the accuracy of the model for the

  15. Determination of neodymium(III) ions in soil and sediment samples by a novel neodymium(III) sensor based on benzyl bisthiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Behmadi, Hossein [Department of Applied Chemistry, Mashhad Branch, Islamic Azad University, Mashhad (Iran, Islamic Republic of); Zamani, Hassan Ali [Department of Chemistry, Quchan Branch, Islamic Azad University, Quchan (Iran, Islamic Republic of)], E-mail: haszamani@yahoo.com; Ganjali, Mohammad Reza; Norouzi, Parviz [Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran (Iran, Islamic Republic of); Endocrine and Metabolism Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2007-12-31

    The PVC membrane, containing benzyl bisthiosemicarbazone (BTC) as a suitable ionophore, exhibited a Nernstian response for the Nd{sup 3+} ions over a wide concentration range between 1.0 x 10{sup -2} and 1 x 10{sup -6} M, with a detection limit of 6.2 x 10{sup -7} M in the pH range of 3.7-8.3. It demonstrated a fast response time (<10 s) and it could be used for at least 7 weeks without any major potential deviation. Furthermore, the electrode revealed high selectivity with respect to all the common alkali, alkaline earth, transition and heavy metal ions, including the members of the lanthanide family other than Nd{sup 3+}. Concerning its applications, it was effectively employed for the determination of neodymium ions in soil and sediment samples and its validation with CRM.

  16. Catalytic Performance of Co3O4 on Different Activated Carbon Supports in the Benzyl Alcohol Oxidation

    Directory of Open Access Journals (Sweden)

    Misael Cordoba

    2017-12-01

    Full Text Available Co3O4 particles were supported on a series of activated carbons (G60, CNR, RX3, and RB3. Incipient wetness method was used to prepare these catalysts. The effect of the structural and surface properties of the carbonaceous supports during oxidation of benzyl alcohol was evaluated. The synthetized catalysts were characterized via IR, TEM, TGA/MS, XRD, TPR, AAS, XPS, and N2 adsorption/desorption isotherm techniques. Co3O4/G60 and Co3O4/RX3 catalysts have high activity and selectivity on the oxidation reaction reaching conversions above 90% after 6 h, without the presence of promoters. Catalytic performances show that differences in chemistry of support surface play an important role in activity and suggest that the presence of different ratios of species of cobalt and oxygenated groups on surface in Co3O4/G60 and Co3O4/RX3 catalysts, offered a larger effect synergic between both active phase and support increasing their catalytic activity when compared to the other tested catalysts.

  17. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    Energy Technology Data Exchange (ETDEWEB)

    Sávio, André Luiz Ventura, E-mail: savio.alv@gmail.com [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil); Nicioli da Silva, Glenda [UFOP – Universidade Federal de Ouro Preto, Escola de Farmácia, Departamento de Análises Clínicas, Ouro Preto, MG (Brazil); Salvadori, Daisy Maria Fávero [UNESP – Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Departamento de Patologia, Botucatu, SP (Brazil)

    2015-01-15

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  18. Inhibition of bladder cancer cell proliferation by allyl isothiocyanate (mustard essential oil)

    International Nuclear Information System (INIS)

    Sávio, André Luiz Ventura; Nicioli da Silva, Glenda; Salvadori, Daisy Maria Fávero

    2015-01-01

    Highlights: • AITC inhibits mutant and wild-type TP53 cell proliferation. • Morphological changes and cells debris were observed after AITC treatment in both cells. • BAX and BCL2 expression modulation was observed in wild-type TP53 cells. • BCL2, BAX and ANLN increased and S100P decreased expression was detected in mutated TP53 cells. • AITC effects in gene modulation are dependent TP53 gene status. - Abstract: Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is commonly referred to as mustard essential oil, exhibits promising antineoplastic activity against bladder cancer, although its mechanism of action is not fully understood. Therefore, the aim of this study was to investigate the effects of AITC activity on bladder cancer cell lines carrying a wild type (wt; RT4) or mutated (T24) TP53 gene. Morphological changes, cell cycle kinetics and CDK1, SMAD4, BAX, BCL2, ANLN and S100P gene expression were evaluated. In both cell lines, treatment with AITC inhibited cell proliferation (at 62.5, 72.5, 82.5 and 92.5 μM AITC) and induced morphological changes, including scattered and elongated cells and cellular debris. Gene expression profiles revealed increased S100P and BAX and decreased BCL2 expression in RT4 cells following AITC treatment. T24 cells displayed increased BCL2, BAX and ANLN and decreased S100P expression. No changes in SMAD4 and CDK1 expression were observed in either cell line. In conclusion, AITC inhibits cell proliferation independent of TP53 status. However, the mechanism of action of AITC differed in the two cell lines; in RT4 cells, it mainly acted via the classical BAX/BCL2 pathway, while in T24 cells, AITC modulated the activities of ANLN (related to cytokinesis) and S100P. These data confirm

  19. OSU-6: A Highly Efficient, Metal-Free, Heterogeneous Catalyst for the Click Synthesis of 5-Benzyl and 5-Aryl-1H-tetrazoles

    Directory of Open Access Journals (Sweden)

    Baskar Nammalwar

    2015-12-01

    Full Text Available OSU-6, an MCM-41 type hexagonal mesoporous silica with mild Brönsted acid properties, has been used as an efficient, metal-free, heterogeneous catalyst for the click synthesis of 5-benzyl and 5-aryl-1H-tetrazoles from nitriles in DMF at 90 °C. This catalyst offers advantages including ease of operation, milder conditions, high yields, and reusability. Studies are presented that demonstrate the robust nature of the catalyst under the optimized reaction conditions. OSU-6 promotes the 1,3-dipolar addition of azides to nitriles without significant degradation or clogging of the nanoporous structure. The catalyst can be reused up to five times without a significant reduction in yield, and it does not require treatment with acid between reactions.

  20. A new method to measure intestinal secretion using fluorescein isothiocyanate-inulin in small bowel of rats.

    Science.gov (United States)

    Munoz-Abraham, Armando Salim; Judeeba, Sami; Alkukhun, Abedalrazaq; Alfadda, Tariq; Patron-Lozano, Roger; Rodriguez-Davalos, Manuel I; Geibel, John P

    2015-08-01

    Small intestine ischemia can be seen in various conditions such as intestinal transplantation. To further understand the pathologic disruption in ischemia-reperfusion injury, we have developed a method to measure fluid changes in the intestinal lumen of rats. Two 10-cm rat intestine segments were procured, connected to the terminal apertures of a perfusion device, and continuously infused with 3 mL of HEPES solution (control solution) containing 50 μM of fluorescein isothiocyanate (FITC)-inulin. The perfusion device consists of concentric chambers that contain the perfused bowel segments, which are maintained at 37°C via H₂O bath. The individual chamber has four apertures as follows: two fill and/or drain the surrounding HEPES solution on the blood side of the tissue. The others provide flow of HEPES solution containing FITC-inulin through the lumens. The experimental intestine was infused with the same solution with 100 μM of Forskolin. A pump continuously circulated solutions at 6 mL/min. Samples were collected at 15-min intervals until 150 min and were measured by the nanoflourospectrometer. A mean of 6-μM decrease in the FITC-inulin concentration in the Forskolin-treated experimental intestine was observed in comparison with that in the control intestine. The FITC-inulin count dilution in the experimental intestine is a result of an increase of fluid secretion produced by the effect of Forskolin, with P values inulin to allow real-time determinations of fluid and/or electrolyte movement along the small intestine. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mollebenzylanols A and B, Highly Modified and Functionalized Diterpenoids with a 9-Benzyl-8,10-dioxatricyclo[5.2.1.01,5]decane Core from Rhododendron molle.

    Science.gov (United States)

    Zhou, Junfei; Liu, Junjun; Dang, Ting; Zhou, Haofeng; Zhang, Hanqi; Yao, Guangmin

    2018-04-06

    Two highly modified and functionalized diterpenoids, mollebenzylanols A (1) and B (2), and a known grayanane diterpenoid rhodojaponin III (3) were isolated from Rhododendron molle. Their structures were determined by spectroscopic data analysis, an electronic circular dichroism (ECD) exciton chirality method, ECD calculations, and X-ray diffraction analysis of the p-bromobenzoate ester of 1 (1a). Compounds 1 and 2 possess an unprecedented diterpene carbon skeleton featuring a unique 9-benzyl-8,10-dioxatricyclo[5.2.1.0 1,5 ]decane core, and their plausible biosynthetic pathways are proposed. Their PTP1B inhibitory activity and modes of action were investigated.

  2. 1-Benzyl-2-Phenylbenzimidazole (BPB, a Benzimidazole Derivative, Induces Cell Apoptosis in Human Chondrosarcoma through Intrinsic and Extrinsic Pathways

    Directory of Open Access Journals (Sweden)

    Ju-Fang Liu

    2012-12-01

    Full Text Available In this study, we investigated the anticancer effects of a new benzimidazole derivative, 1-benzyl-2-phenyl -benzimidazole (BPB, in human chondrosarcoma cells. BPB-mediated apoptosis was assessed by the MTT assay and flow cytometry analysis. The in vivo efficacy was examined in a JJ012 xenograft model. Here we found that BPB induced apoptosis in human chondrosarcoma cell lines (JJ012 and SW1353 but not in primary chondrocytes. BPB induced upregulation of Bax, Bad and Bak, downregulation of Bcl-2, Bid and Bcl-XL and dysfunction of mitochondria in chondrosarcoma. In addition, BPB also promoted cytosolic releases AIF and Endo G. Furthermore, it triggered extrinsic death receptor-dependent pathway, which was characterized by activating Fas, FADD and caspase-8. Most importantly, animal studies revealed a dramatic 40% reduction in tumor volume after 21 days of treatment. Thus, BPB may be a novel anticancer agent for the treatment of chondrosarcoma.

  3. Selective and sensitized spectrophotometric determination of trace amounts of Ni(II) ion using α-benzyl dioxime in surfactant media

    Science.gov (United States)

    Ghaedi, Mehrorang

    2007-02-01

    Highly sensitive and interference-free sensitized spectrophotometric method for the determination of Ni(II) ions is described. The method is based on the reaction between Ni(II) ion and benzyl dioxime in micellar media in the presence of sodium dodecyl sulfate (SDS). The absorbance is linear from 0.1 up to 25.0 μg mL -1 in aqueous solution with repeatability (RSD) of 1.0% at a concentration of 1 μg mL -1 and a detection limit of 0.12 ng mL -1 and molar absorption coefficient of 68,600 L mol -1 cm -1. The influence of reaction variables including type and amount of surfactant, pH, and amount of ligand and complexation time and the effect of interfering ions are investigated. The proposed procedure was applied to the determination of trace amounts of Ni(II) ion in tap water, river water, chocolate and vegetable without separation or organic solvent extraction.

  4. Molecular modeling and experimental studies on structure and NMR parameters of 9-benzyl-3,6-diiodo-9H-carbazole

    DEFF Research Database (Denmark)

    Radula-Janik, Klaudia; Kupka, Teobald; Ejsmont, Krzysztof

    2015-01-01

    A combined experimental and theoretical study has been performed on 9-benzyl-3,6-diiodo-9H-carbazole. Experimental X-ray (100.0 K) and room-temperature 13C NMR studies were supported by advanced density functional theory (DFT) calculations. The non relativistic structure optimization was performed...... and the 13C nuclear magnetic shieldings were predicted at the relativistic level of theory using the Zeroth Order Regular Approximation (ZORA). The changes in the benzene and pyrrole rings compared to the unsubstituted carbazole or the parent molecules were discussed in terms of aromaticity changes using...... the harmonic oscillator model of aromaticity (HOMA) and the nucleus independent chemical shift (NICS) indexes. Theoretical relativistic calculations of chemical shifts of carbons C3 and C6, directly bonded to iodine atoms, produced a reasonable agreement with experiment (initial deviation from experiment of 41...

  5. Defect-rich Ni-Ti layered double hydroxide as a highly efficient support for Au nanoparticles in base-free and solvent-free selective oxidation of benzyl alcohol.

    Science.gov (United States)

    Liu, Mengran; Fan, Guoli; Yu, Jiaying; Yang, Lan; Li, Feng

    2018-04-17

    Tuning the surface properties of supported metal catalysts is of vital importance for governing their catalytic performances in nanocatalysis. Here, we report highly dispersed nanometric gold nanoparticles (NPs) supported on Ni-Ti layered double hydroxides (NiTi-LDHs), which were employed in solvent-free and base-free selective oxidation of benzyl alcohol. A series of characterization techniques demonstrated that defect-rich NiTi-LDHs could efficiently stabilize Au NPs and decrease surface electron density of Au NPs. The as-formed Au/NiTi-LDH catalyst with a Ni/Ti molar ratio of 3 : 1 and an Au loading of 0.71 wt% yielded the highest turnover frequency value of ∼4981 h-1 at 120 °C among tested Au/NiTi-LDH catalysts with different Ni/Ti molar ratios, along with a high benzaldehyde selectivity of 98%. High catalytic efficiency of the catalyst was mainly correlated with surface cooperation between unique defects (i.e. defective Ti3+ species and oxygen vacancies) and abundant hydroxyl groups on the brucite-like layers of the NiTi-LDH support, which could lead to the preferential adsorption and activation of an alcohol hydroxyl moiety in benzyl alcohol and oxygen molecule, as well as the formation of more electron-deficient Ni3+ and Au0 species on the catalyst surface. Furthermore, the present Au/NiTi-LDH catalyst tolerated the oxidation of a wide variety of substrate structures into the corresponding aldehydes, acids or ketones. Our primary results illustrate that defect-rich NiTi-LDHs are promising supports which can efficiently modify surface structure and electronic properties of supported metal catalysts and consequently improve their catalytic performances.

  6. Allyl isothiocyanate that induces GST and UGT expression confers oxidative stress resistance on C. elegans, as demonstrated by nematode biosensor.

    Directory of Open Access Journals (Sweden)

    Koichi Hasegawa

    Full Text Available BACKGROUND: Electrophilic xenobiotics and endogenous products from oxidative stresses induce the glutathione S-transferases (GSTs, which form a large family within the phase II enzymes over both animal and plant kingdoms. The GSTs thus induced in turn detoxify these external as well as internal stresses. Because these stresses are often linked to ageing and damage to health, the induction of phase II enzymes without causing adverse effects would be beneficial in slowing down ageing and keeping healthy conditions. METHODOLOGY/PRINCIPAL FINDINGS: We have tested this hypothesis by choosing allyl isothiocyanate (AITC, a functional ingredient in wasabi, as a candidate food ingredient that induces GSTs without causing adverse effects on animals' lives. To monitor the GST induction, we constructed a gst::gfp fusion gene and used it to transform Caenorhabditis elegans for use as a nematode biosensor. With the nematode biosensor, we found that AITC induced GST expression and conferred tolerance on the nematode against various oxidative stresses. We also present evidence that the transcription factor SKN-1 is involved in regulating the GST expression induced by AITC. CONCLUSIONS/SIGNIFICANCE: We show the applicability of the nematode biosensor for discovering and evaluating functional food substances and chemicals that would provide anti-ageing or healthful benefits.

  7. Ratiometric, visual, dual-signal fluorescent sensing and imaging of pH/copper ions in real samples based on carbon dots-fluorescein isothiocyanate composites.

    Science.gov (United States)

    Zhu, Xinxin; Jin, Hui; Gao, Cuili; Gui, Rijun; Wang, Zonghua

    2017-01-01

    In this article, a facile aqueous synthesis of carbon dots (CDs) was developed by using natural kelp as a new carbon source. Through hydrothermal carbonization of kelp juice, fluorescent CDs were prepared and the CDs' surface was modified with polyethylenimine (PEI). The PEI-modified CDs were conjugated with fluorescein isothiocyanate (FITC) to fabricate CDs-FITC composites. To exploit broad applications, the CDs-FITC composites were developed as fluorescent sensing or imaging platforms of pH and Cu 2+ . Analytical performances of the composites-based fluorescence (FL) sensors were evaluated, including visual FL imaging of pH in glass bottle, ratiometric FL sensing of pH in yogurt samples, visual FL latent fingerprint and leaf imaging detection of [Cu 2+ ], dual-signal FL sensing of [Cu 2+ ] in yogurt and human serum samples. Experimental results from ratiometric, visual, dual-signal FL sensing and imaging applications confirmed the high feasibility, accuracy, stabilization and simplicity of CDs-FITC composites-based FL sensors for the detection of pH and Cu 2+ ions in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synthesis of 4-([{sup 18}F]fluoromethyl)-2-chlorophenylisothiocyanate: a novel bifunctional {sup 18}F-labelling agent

    Energy Technology Data Exchange (ETDEWEB)

    Wuest, F.; Mueller, M.; Bergmann, R. [Inst. fuer Bioanorganische und Radiopharmazeutische Chemie, FZ-Rossendorf e.V., Dresden (Germany)

    2004-07-01

    The one-step radiosynthesis of 4-([{sup 18}F]fluoromethyl)-2-chlorophenylisothiocyanate {sup 18}F-7 as a novel bifunctional {sup 18}F-labelling agent is described. Optimised reaction conditions in a remotely controlled synthesis module gave isothiocyanate {sup 18}F-7 in radiochemical yields of 45% (decay-corrected) within 40 min and high radiochemical purity of > 95% after solid-phase-extraction. Coupling of compound {sup 18}F-7 with the primary amine benzylamine as a model reaction afforded the corresponding ((4-[{sup 18}F]fluoromethyl)-2-chloro-phenyl)-benzyl thiourea {sup 18}F-8 in a high radiochemical yield of > 90%. Stability studies of thiourea {sup 18}F-8 in terms of radiodefluorination showed appreciable buffer stability at pH 7.4, whereas significant radiodefluorination was observed when {sup 18}F-8 was incubated in buffers at pH 3.6 and pH 9.4. Preliminary dynamic PET studies with thiourea {sup 18}F-8 in male Wistar rats showed high bone accumulation, indicative of high in vivo radiodefluorination. (orig.)

  9. The plasticizer butyl benzyl phthalate induces genomic changes in rat mammary gland after neonatal/prepubertal exposure

    Directory of Open Access Journals (Sweden)

    Lamartiniere Coral A

    2007-12-01

    Full Text Available Abstract Background Phthalate esters like n-butyl benzyl phthalate (BBP are widely used plasticizers. BBP has shown endocrine-disrupting properties, thus having a potential effect on hormone-sensitive tissues. The aim of this study is to determine the effect of neonatal/prepubertal exposure (post-natal days 2–20 to BBP on maturation parameters and on the morphology, proliferative index and genomic signature of the rat mammary gland at different ages of development (21, 35, 50 and 100 days. Results Here we show that exposure to BBP increased the uterine weight/body weight ratio at 21 days and decreased the body weight at time of vaginal opening. BBP did not induce significant changes on the morphology of the mammary gland, but increased proliferative index in terminal end buds at 35 days and in lobules 1 at several ages. Moreover, BBP had an effect on the genomic profile of the mammary gland mainly at the end of the exposure (21 days, becoming less prominent thereafter. By this age a significant number of genes related to proliferation and differentiation, communication and signal transduction were up-regulated in the glands of the exposed animals. Conclusion These results suggest that BBP has an effect in the gene expression profile of the mammary gland.

  10. Third-order nonlinearities and structural features in Langmuir-Blodgett films of 1-benzyl-9-hydrofullerene-60

    International Nuclear Information System (INIS)

    Shihong Ma; Liying Liu; Xingze Lu

    1995-01-01

    Third-order nonlinear susceptibilities χ xxxx (3) (-3ω; ω, ω, ω) have been deduced by measuring third-harmonic generation in Langmuir-Blodgett (LB) films of 1-benzyl-9-hydrofullerene-60 (C 60 -Be). The structural features of the condensed layer at the air-water interface and LB films of the C 60 -Be were investigated by small angle x-ray diffraction (SAXD) and optical measurements. The third-order nonlinear susceptibilities (χ (3) ) were obtained by measuring the THG intensities in LB films of C 60 -Be and comparing with that of CS 2 used as the reference. The value of χ xxxx (3) (2.1 x 10 -11 esu) was deduced at a 65 nm thick films. The χ (3) is attributed to a three-photon near resonance at the energy level of 29410 cm -1 . A new-type of two-chain amphiphilic molecule 1,10-bistearyl-4,6,13, 15-tetra-18-nitrogencrown-6 (NC) was used as insert material to construct mixed C 60 -Be/NC LB films. Our π-A, UV-visible absorption and SAXD measurements showed that the structural improvement in the mixed C 60 -Be/NC LB films was realized by insertion of the C 60 -Be molecules between the two hydrophobic chains of the NC molecules

  11. The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    Directory of Open Access Journals (Sweden)

    Macdonald Timothy L

    2007-09-01

    Full Text Available Abstract Background Dietary isothiocyanates (ITCs are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway. Methods The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases. Results ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected. Conclusion These results

  12. The preparation of benzyl esters using stoichiometric niobium (V chloride versus niobium grafted SiO2 catalyst: A comparison study

    Directory of Open Access Journals (Sweden)

    Sandro L. Barbosa

    2018-03-01

    Full Text Available Two solvent free methods of a one-to-one alcohol/acid mol ratio synthesis of benzyl esters of the formic, acetic, benzoic, salicylic, nicotinic, and oxalic acids are described. The stoichiometric reactions used 1.5 mol ratio solid NbCl5 as the reagent and required from two to three hours for completion at room temperature; for the catalytic processes, NbCl5 was grafted directly, at room temperature, onto a silica gel of specific area of 507 m2g−1, produced from construction sand and sodium carbonate, forming a 5.4% Nb w/w SiO2-Nb gel with a specific area of 412 m2g−1. At 10% w/w catalyst/alcohol ratio, this SiO2-Nb catalyst gave similarly very good yields but required from 6 to 9 hours at the reflux temperature of the slurry. The catalyst could be re-used three times. Keyword: Organic chemistry

  13. Development and application of a validated stability-indicating HPLC method for simultaneous determination of granisetron hydrochloride, benzyl alcohol and their main degradation products in parenteral dosage forms.

    Science.gov (United States)

    Hewala, Ismail; El-Fatatre, Hamed; Emam, Ehab; Mubrouk, Mokhtar

    2010-06-30

    A simple, rapid and sensitive reversed phase high performance liquid chromatographic method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, benzyl alcohol, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron) and benzaldehyde (the main degradation product of benzyl alcohol) in granisetron injections. The separation was achieved on Hypersil BDS C8 (250 mm x 4.6 mm i.d., 5 microm particle diameter) column using a mobile phase consisted of acetonitrile:0.05 M KH(2)PO(4):triethylamine (22:100:0.15) adjusted to pH 4.8. The column was maintained at 25 degrees C and 20 microL of solutions was injected. Photodiode array detector was used to test the peak purity and the chromatograms were extracted at 210 nm. Naphazoline hydrochloride was used as internal standard. The method was validated with respect to specificity, linearity, accuracy, precision, limit of quantitation and limit of detection. The validation acceptance criteria were met in all cases. Identification of the pure peaks was carried out using library match programmer and wavelengths of derivative optima of the spectrograms of the peaks. The method was successfully applied to the determination of the investigated drugs and their degradation products in different batches of granisetron injections. The method was proved to be sensitive for the determination down to 0.03 and 0.01% of granisetron degradation product and benzaldehyde, respectively, which are far below the compendia limits for testing these degradation products in their corresponding intact drugs. Copyright 2010 Elsevier B.V. All rights reserved.

  14. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    International Nuclear Information System (INIS)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu; Chou, Lingjun; Zhuo, Shuping

    2017-01-01

    Highlights: • A novel mesoporous ZrO_2/SO_4"2"− has been prepared via a facile one-pot EISA strategy. • The M-ZrO_2/SO_4"2"− exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO_2/SO_4"2"− exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO_2/SO_4"2"−) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N_2-physisorption and TEM characterization techniques indicated that M-ZrO_2/SO_4"2"− possessed distinct mesostructure with big specific surface area (133.5 m"2 g"−"1), large pore volume (0.18 cm"3 g"−"1) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N_2-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO_4"2"−, improved the textural properties of prepared materials. In addition, the NH_3-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO_2/SO_4"2"− even evacuated at 400 °C. Furthermore, the M-ZrO_2/SO_4"2"− was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  15. Chirality and helicity of poly-benzyl-L-glutamate in liquid crystals and a wave structure that mimics collagen helicity in crimp

    Directory of Open Access Journals (Sweden)

    Vidal Benedicto de Campos

    2001-01-01

    Full Text Available Ideal biocompatible polymers must show a mimetic superstructure with biological supra-organization. Collagen-rich structures like tendons and ligaments are materials with various levels of order, from molecules to bundles of fibers, which affect their biomechanical properties and cellular interactions. Poly-benzyl-L-glutamate (PBLG displaying helicity was used here to test the development of wave-like structures as those occurring in collagen fibers. Birefringence of PBLG under various crystallization conditions was studied with a lambda/4 compensator according to Sénarmont. Qualitative observations were plainly sufficient to conclude that the PBLG fibrils were supra-organized helically as a chiral object. During crystallization stretched PBLG formed a helical superstructure with characteristic striation resembling waves (crimp. Supported by optical anisotropy findings, a twisted grain boundary liquid crystal type is proposed as a transition phase in the formation of the PBLG chiral object. A similarity with the wavy organization (crimp of collagen bundles is proposed.

  16. Phenethyl isothiocyanate inhibits growth of human chronic myeloid leukemia K562 cells via reactive oxygen species generation and caspases.

    Science.gov (United States)

    Wang, Yating; Wei, Sixi; Wang, Jishi; Fang, Qin; Chai, Qixiang

    2014-07-01

    Phenethyl isothiocyanate (PEITC), a potential cancer chemopreventive constituent of cruciferous vegetables, including watercress, has been reported to inhibit cancer cell growth by arresting the cell cycle and inducing apoptosis in various human cancer cell models. However, the role of PEITC in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms have yet to be elucidated. In the present study, PEITC was found to induce cell death through the induction of reactive oxygen species (ROS) stress and oxidative damage. Heme oxygenase‑1 (HO‑1), which participates in the development of numerous tumors and the sensitivity of these tumors to chemotherapeutic drugs, plays a protective role by modulating oxidative injury. Therefore, the present study assessed the inhibitory effect of PEITC on K562 cells and whether HO‑1 facilitated cell apoptosis and ROS generation. PEITC was found to suppress cell growth and cause apoptosis by promoting Fas and Fas ligand expression, increasing ROS generation and by the successive release of cytochrome c as well as the activation of caspase‑9 and caspase‑3. PEITC was also combined with the HO‑1 inhibitor zinc protoporphyrin IX and the inducer hemin to assess whether HO‑1 determines cell survival and ROS generation. The results of the present study suggest that PEITC may be a potential anti‑tumor compound for CML therapy, and that HO‑1 has a critical function in PEITC‑induced apoptosis and ROS generation.

  17. Influence of the antimicrobial compound allyl isothiocyanate against the Aspergillus parasiticus growth and its aflatoxins production in pizza crust.

    Science.gov (United States)

    Quiles, Juan M; Manyes, Lara; Luciano, Fernando; Mañes, Jordi; Meca, Giuseppe

    2015-09-01

    Aflatoxins (AFs) are secondary metabolites produced by different species of Aspergillus, such as Aspergillus flavus and Aspergillus parasiticus, which possess mutagenic, teratogenic and carcinogenic activities in humans. In this study, active packaging devices containing allyl isothiocyanate (AITC) or oriental mustard flour (OMF) + water were tested to inhibit the growth of A. parasiticus and AFs production in fresh pizza crust after 30 d. The antimicrobial and anti-aflatoxin activities were compared to a control group (no antimicrobial treatment) and to a group added with commercial preservatives (sorbic acid + sodium propionate). A. parasiticus growth was only inhibited after 30 d by AITC in filter paper at 5 μL/L and 10 μL/L, AITC sachet at 5 μL/L and 10 μL/L and OMF sachet at 850 mg + 850 μL of water. However, AFs production was inhibited by all antimicrobial treatments in a dose-dependent manner. More importantly, AITC in a filter paper at 10 μL/L, AITC sachet at 10 μL/L, OMF sachet at 850 mg + 850 μL of water and sorbic acid + sodium propionate at 0.5-2.0 g/Kg completely inhibited AFs formation. The use of AITC in active packaging devices could be a natural alternative to avoid the growth of mycotoxinogenic fungi in refrigerated bakery products in substitution of common commercial preservatives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The Mechanism by Which Dodecyl Dimethyl Benzyl Ammonium Chloride Increased the Toxicity of Chlorpyrifos to Spodoptera exigua

    Directory of Open Access Journals (Sweden)

    Li Cui

    2017-07-01

    Full Text Available Beet armyworm, Spodoptera exigua (Hübner is one of the most destructive pests that causes significant losses in crops. Unfortunately, S. exigua have developed resistance toward the majority of insecticides. Synergists may provide an important choice to deal with the resistance problems. Dodecyl dimethyl benzyl ammonium chloride (DDBAC is a cationic surfactant, which displayed enhancement effect when combined with chlorpyrifos against S. exigua, giving enhancement factors of 1.50 and 1.57 at the concentrations of 90 and 810 mg L−1. In order to clarify the possible mechanisms, we investigate the effects of DDBAC on detoxification enzymes. However, DDBAC showed no inhibition on these enzymes activities. Meanwhile, scanning electron microscope images indicated DDBAC did not affect the cuticle super micro structure of S. exigua. The alterations in cuticular penetration rate have also been observed; indeed, it has been suggested that synergism is obtained by an acceleration of insecticide penetration through the cuticle. The chlorpyrifos penetration increased sharply when combined with 90 and 810 mg L−1 DDBAC, with only 12.6 and 8.5% of the initial chlorpyrifos recovered by external rinsing after 8 h. In contrast, when there was no DDBAC, more than 23.3% of the initial dose was recovered after 8 h.

  19. A novel mesoporous sulfated zirconium solid acid catalyst for Friedel-Crafts benzylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Zhichao; Zhou, Jin; Zhao, Jinping; Liu, Dandan; Bi, Xu [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China); Chou, Lingjun, E-mail: ljchou@licp.cas.cn [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com [School of Chemical Engineering, Shandong University of Technology, Zibo, 255049 (China)

    2017-07-31

    Highlights: • A novel mesoporous ZrO{sub 2}/SO{sub 4}{sup 2−} has been prepared via a facile one-pot EISA strategy. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent textural and acidic properties. • The introduced S species were homogeneously dispersed in mesoporous skeleton. • The M-ZrO{sub 2}/SO{sub 4}{sup 2−} exhibited excellent catalytic performance and reusability. - Abstract: In this paper, a novel mesoporous sulfated zirconium (M-ZrO{sub 2}/SO{sub 4}{sup 2−}) has been gotten by one-pot evaporation-induced self-assembly (one-pot EISA) strategy. The SXRD, N{sub 2}-physisorption and TEM characterization techniques indicated that M-ZrO{sub 2}/SO{sub 4}{sup 2−} possessed distinct mesostructure with big specific surface area (133.5 m{sup 2} g{sup −1}), large pore volume (0.18 cm{sup 3} g{sup −1}) and narrow pore size distribution (4.90 nm). Moreover, the existing states and the influence in mesostructure of introduced S species were detailedly investigated by the XRD, N{sub 2}-physisorption, TEM, TG-DSC, FT-IR and XPS techniques and the results showed that the S species, which existed as the type of SO{sub 4}{sup 2−}, improved the textural properties of prepared materials. In addition, the NH{sub 3}-TPD and IR spectra of adsorbed pyridine indicated the existence of strong Brønsted and Lewis acid sites in M-ZrO{sub 2}/SO{sub 4}{sup 2−} even evacuated at 400 °C. Furthermore, the M-ZrO{sub 2}/SO{sub 4}{sup 2−} was used as a promise solid acid catalyst and displayed excellent catalytic performance and reusability in Friedel-Crafts benzylation reaction.

  20. Acute and subacute effects of tobacco alkaloids, tobacco-specific nitrosamines and phenethyl isothiocyanate on N'-nitrosonornicotine metabolism in rats

    International Nuclear Information System (INIS)

    Tyroller, Stefan; Zwickenpflug, Wolfgang; Thalheim, Charlotte; Richter, Elmar

    2005-01-01

    N'-Nitrosonornicotine (NNN) was the first tobacco-specific nitrosamine (TSNA) identified as carcinogen in tobacco smoke, but no data exist on in vivo interactions between NNN and other tobacco alkaloids, TSNA or phenethyl isothiocyanate (PEITC) which have been demonstrated in various studies on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Acute effects on NNN metabolism were tested in male Fischer F344 rats injected s.c. with 30 nmol/kg body weight (bw) [5- 3 H]NNN either alone or simultaneously with 15 μmol/kg bw nicotine, nornicotine, anatabine, or anabasine, 150 μmol/kg bw cotinine, 3 μmol/kg bw myosmine, or 300 nmol/kg bw of either N'-nitrosoanatabine or N'-nitrosoanabasine. Another group of rats was fed a diet supplemented with PEITC at 1 μmol/g diet starting 24 h before NNN treatment. Within 24 h more than 80% and about 10% of the radioactivity was excreted with urine and feces, respectively. Urinary metabolites were separated by reversed-phase radio-HPLC and identified by co-chromatography with UV standards. In two sets of experiments with control rats treated with NNN only, 4-hydroxy-4-(3-pyridyl)butanoic acid (hydroxy acid, 44.4/44.8%), 4-oxo-4-(3-pyridyl)butanoic acid (keto acid, 32.4/31.5%), NNN-N-oxide (5.0/3.8%), 4-(3-pyridyl)butane-1,4-diol (diol, 1.1/1.0%) and norcotinine (2.3/1.0%) were consistently detected besides unmetabolised NNN (4.7/3.3%). Co-treatment with nicotine, cotinine, nornicotine and PEITC shifted the contribution of the two major metabolites significantly in favor of hydroxy acid (108-113% of control) as compared to keto acid (86-90% of control). The same treatments also increased norcotinine (135-170% of control). These changes are consistent with a decreased metabolic activation of NNN. In subacute studies rats received NNN in drinking water for 4 weeks at a daily dose of 30 nmol/kg bw with or without nornicotine at 15 μmol/kg bw or myosmine at 3 μmol/kg bw. On the last day of the experiment all rats received [5- 3 H

  1. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens

    Science.gov (United States)

    Baxter, Mikayla F. A.; Merino-Guzman, Ruben; Latorre, Juan D.; Mahaffey, Brittany D.; Yang, Yichao; Teague, Kyle D.; Graham, Lucas E.; Wolfenden, Amanda D.; Hernandez-Velasco, Xochitl; Bielke, Lisa R.; Hargis, Billy M.; Tellez, Guillermo

    2017-01-01

    Fluorescein isothiocyanate dextran (FITC-d) is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR), resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg); shortening the collection time of blood samples (1 versus 2.5 h); using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results. PMID:28470003

  2. Optimizing Fluorescein Isothiocyanate Dextran Measurement As a Biomarker in a 24-h Feed Restriction Model to Induce Gut Permeability in Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Guillermo Tellez

    2017-04-01

    Full Text Available Fluorescein isothiocyanate dextran (FITC-d is a 3–5 kDa marker used to measure tight junction permeability. We have previously shown that intestinal barrier function can be adversely affected by stress, poorly digested diets, or feed restriction (FR, resulting in increased intestinal inflammation-associated permeability. However, further optimization adjustments of the current FITC-d methodology are possible to enhance precision and efficacy of results in future. The objective of the present study was to optimize our current model to obtain a larger difference between control and treated groups, by optimizing the FITC-d measurement as a biomarker in a 24-h FR model to induce gut permeability in broiler chickens. One in vitro and four in vivo independent experiments were conducted. The results of the present study suggest that by increasing the dose of FITC-d (8.32 versus 4.16 mg/kg; shortening the collection time of blood samples (1 versus 2.5 h; using a pool of non-FITC-d serum as a blank, compared to previously used PBS; adding a standard curve to set a limit of detection and modifying the software’s optimal sensitivity value, it was possible to obtain more consistent and reliable results.

  3. Photoprotective Properties of Isothiocyanate and Nitrile Glucosinolate Derivatives From Meadowfoam (Limnanthes alba Against UVB Irradiation in Human Skin Equivalent

    Directory of Open Access Journals (Sweden)

    Evan L. Carpenter

    2018-05-01

    Full Text Available Exposure to ultraviolet B (UVB irradiation of the skin leads to numerous dermatological concerns including skin cancer and accelerated aging. Natural product glucosinolate derivatives, like sulforaphane, have been shown to exhibit chemopreventive and photoprotective properties. In this study, we examined meadowfoam (Limnanthes alba glucosinolate derivatives, 3-methoxybenzyl isothiocyanate (MBITC and 3-methoxyphenyl acetonitrile (MPACN, for their activity in protecting against the consequences of UV exposure. To that end, we have exposed human primary epidermal keratinocytes (HPEKs and 3D human skin reconstructed in vitro (EpiDermTM FT-400 to UVB insult and investigated whether MBITC and MPACN treatment ameliorated the harmful effects of UVB damage. Activity was determined by the compounds’ efficacy in counteracting UVB-induced DNA damage, matrix-metalloproteinase (MMP expression, and proliferation. We found that in monolayer cultures of HPEK, MBITC and MPACN did not protect against a UVB-induced loss in proliferation and MBITC itself inhibited cell proliferation. However, in human reconstructed skin-equivalents, MBITC and MPACN decrease epidermal cyclobutane pyrimidine dimers (CPDs and significantly reduce total phosphorylated γH2A.X levels. Both MBITC and MPACN inhibit UVB-induced MMP-1 and MMP-3 expression indicating their role to prevent photoaging. Both compounds, and MPACN in particular, showed activity against UVB-induced proliferation as indicated by fewer epidermal PCNA+ cells and prevented UVB-induced hyperplasia as determined by a reduction in reconstructed skin epidermal thickness (ET. These data demonstrate that MBITC and MPACN exhibit promising anti-photocarcinogenic and anti-photoaging properties in the skin microenvironment and could be used for therapeutic interventions.

  4. Erucin, the major isothiocyanate in arugula (Eruca sativa, inhibits proliferation of MCF7 tumor cells by suppressing microtubule dynamics.

    Directory of Open Access Journals (Sweden)

    Olga Azarenko

    Full Text Available Consumption of cruciferous vegetables is associated with reduced risk of various types of cancer. Isothiocyanates including sulforaphane and erucin are believed to be responsible for this activity. Erucin [1-isothiocyanato-4-(methylthiobutane], which is metabolically and structurally related to sulforaphane, is present in large quantities in arugula (Eruca sativa, Mill., kohlrabi and Chinese cabbage. However, its cancer preventive mechanisms remain poorly understood. We found that erucin inhibits proliferation of MCF7 breast cancer cells (IC50 = 28 µM in parallel with cell cycle arrest at mitosis (IC50 = 13 µM and apoptosis, by a mechanism consistent with impairment of microtubule dynamics. Concentrations of 5-15 µM erucin suppressed the dynamic instability of microtubules during interphase in the cells. Most dynamic instability parameters were inhibited, including the rates and extents of growing and shortening, the switching frequencies between growing and shortening, and the overall dynamicity. Much higher erucin concentrations were required to reduce the microtubule polymer mass. In addition, erucin suppressed dynamic instability of microtubules reassembled from purified tubulin in similar fashion. The effects of erucin on microtubule dynamics, like those of sulforaphane, are similar qualitatively to those of much more powerful clinically-used microtubule-targeting anticancer drugs, including taxanes and the vinca alkaloids. The results suggest that suppression of microtubule dynamics by erucin and the resulting impairment of critically important microtubule-dependent cell functions such as mitosis, cell migration and microtubule-based transport may be important in its cancer preventive activities.

  5. Curcumin inhibits adipogenesis induced by benzyl butyl phthalate in 3T3-L1 cells.

    Science.gov (United States)

    Sakuma, Satoru; Sumida, Maki; Endoh, Yukiko; Kurita, Ayaka; Yamaguchi, Ayana; Watanabe, Tomoki; Kohda, Tetsuya; Tsukiyama, Yui; Fujimoto, Yohko

    2017-08-15

    Phthalates are a group of endocrine disrupting chemicals and may have contributed to the recent global obesity health crisis. Increased adipogenesis via the peroxisome proliferator-activated receptor γ (PPARγ)-CCAAT-enhancer binding protein α (C/EBPα) pathway could be one critical mechanism responsible for phthalate-induced weight gain. On the other hand, curcumin has been shown to inhibit adipogenesis in cells and animal models. The present study was undertaken to evaluate, for the first time, whether curcumin could reduce adipogenesis induced by benzyl butyl phthalate (BBP) via downregulation of the PPARγ-C/EBPα pathway. 3T3-L1 preadipocytes were differentiated by treating them with insulin, dexamethasone, and 3-isobutyl-1-methylxanthine in the presence of BBP, with or without curcumin. Cells that were grown in the presence of BBP alone showed a significant increase in triacylglycerol (TG) levels. In addition, the number of Oil Red O-stained cells and the mRNA expression levels of PPARγ, C/EBPα, adiponectin, and tumor necrosis factor-α (TNFα) were significantly increased. However, treatment with BBP in combination with curcumin resulted in major reductions in TG levels, the numbers of Oil Red O-stained cells, and the mRNA expression levels of the four proteins. These results suggest that curcumin might be an inhibitor of BBP-induced weight gain and inflammation via stimulation of adipocyte differentiation and TNFα generation. Curcumin may, therefore, be a potential medication for preventing the harmful effects of phthalates. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. n-Butyl benzyl phthalate promotes breast cancer progression by inducing expression of lymphoid enhancer factor 1.

    Directory of Open Access Journals (Sweden)

    Tsung-Hua Hsieh

    Full Text Available Environmental hormones play important roles in regulating the expression of genes involved in cell proliferation, drug resistance, and breast cancer risk; however, their precise role in human breast cancer cells during cancer progression remains unclear. To elucidate the effect of the most widely used industrial phthalate, n-butyl benzyl phthalate (BBP, on cancer progression, we evaluated the results of BBP treatment using a whole human genome cDNA microarray and MetaCore software and selected candidate genes whose expression was changed by more than ten-fold by BBP compared with controls to analyze the signaling pathways in human breast cancer initiating cells (R2d. A total of 473 genes were upregulated, and 468 were downregulated. Most of these genes are involved in proliferation, epithelial-mesenchymal transition, and angiogenesis signaling. BBP induced the viability, invasion and migration, and tube formation in vitro, and Matrigel plug angiogenesis in vivo of R2d and MCF-7. Furthermore, the viability and invasion and migration of these cell lines following BBP treatment was reduced by transfection with a small interfering RNA targeting the mRNA for lymphoid enhancer-binding factor 1; notably, the altered expression of this gene consistently differentiated tumors expressing genes involved in proliferation, epithelial-mesenchymal transition, and angiogenesis. These findings contribute to our understanding of the molecular impact of the environmental hormone BBP and suggest possible strategies for preventing and treating human breast cancer.

  7. Radioiodination and biodistribution of NBNPQD ( 2-benzyl-1-oxo-1-2-dihydropyrido (4,3-b) quinoxaline 5,10- dioxide) in tumor bearing mice

    International Nuclear Information System (INIS)

    Ibrahim, I. T.; Habib, S. A.; Wally, H. A.; El-Shishtawy, M. M.

    2012-12-01

    NBNPQD (2-benzyl-1-oxo-1,2 dihydropyrido (quinoxaline 5,10-dioxide) is a new synthesized quinoxaline derivative. It could be labeled with Auger emitter iodine-125 successfully with yield about 90%. The labeled product was evaluated by electrophoresis and studied. 1 23I - NBNPQD was stable up to 48 h post labeling. Biodistribution study of 1 23I - NBNPQD in normal and tumor bearing mice was also conducted. The biodistribution data revealed that 1 23I -NBNPQD diffused rapidly to tumor sites in to both ascites and solid tumor bearing mice. 1 23I -NBNPQD was decline rapidly from most of organs but slowly from tumor sites. In-vitro radiotoxicity of 1 23I - NBNPQD increased with the increase of its radioactivity. This study encourages the possible use of 1 23I - NBNPQD in tumor imaging and treatment. It also encourages further studies on the chemotherapeutic activity of NBNPQD hoping to get a new potent antitumor agent. (Author)

  8. Dietary compounds that induce cancer preventive phase 2 enzymes activate apoptosis at comparable doses in HT29 colon carcinoma cells.

    Science.gov (United States)

    Kirlin, W G; Cai, J; DeLong, M J; Patten, E J; Jones, D P

    1999-10-01

    Dietary agents that induce glutathione S-transferases and related detoxification systems (Phase 2 enzyme inducers) are thought to prevent cancer by enhancing elimination of chemical carcinogens. The present study shows that compounds of this group (benzyl isothiocyanate, allyl sulfide, dimethyl fumarate, butylated hydroxyanisole) activated apoptosis in human colon carcinoma (HT29) cells in culture over the same concentration ranges that elicited increases in enzyme activity (5-25, 25-100, 10-100, 15-60 micromol/L, respectively). Pretreatment of cells with sodium butyrate, an agent that induces HT29 cell differentiation, resulted in parallel increases in Phase 2 enzyme activities and induction of apoptosis in response to the inducers. Cell death characteristics included apoptotic morphological changes, appearance of cells at sub-G1 phase on flow cytometry, caspase activation, DNA fragmentation and TUNEL-positive staining. The results suggest that dietary Phase 2 inducers may protect against cancer by a mechanism distinct from and in addition to that associated with enhanced elimination of carcinogens. If this occurs in vivo, diets high in such compounds could eliminate precancerous cells by apoptosis at time points well after initial exposure to chemical mutagens and carcinogens.

  9. Estudo de propriedades de PVC modificado com grupos alquila e benzila Study of the properties of PVC modified through substitution by alkyl and benzyl groups

    Directory of Open Access Journals (Sweden)

    G. M Vinhas

    2005-07-01

    variety of transformation processes. The resin is non toxic and inert, therefore the choice of additives having these properties allows for the fabrication of films for food packaging and medical products. On the other hand, the PVC properties can be altered by sterilization processes, in particular through gamma radiation. In this paper we present a study of the flexibility and stability to gamma radiation of chemically-modified PVC. PVC was modified through substitution of chlorine by alkyl and benzyl groups using Grignard reagents. Modified PVC samples were characterized by proton nuclear magnetic resonance (¹H NMR spectroscopy, infrared spectroscopy and differential scanning calorimetric analyses. Degradation of the polymers when submitted to gamma irradiation was evaluated by their viscometric parameters. The modified PVCs generally presented higher stability to gamma radiation than the original polymer. The benzyl substituted polymer exhibited the highest stability when submitted to the sterilization dosage of 25 kGy. The modified PVCs presented glass transition temperatures slightly lower than the original polymer pointing to an increase in flexibility due to the presence of alkyl and benzyl groups as substituents in the main chain.

  10. Evaluation of allyl isothiocyanate as a soil fumigant against soil-borne diseases in commercial tomato (Lycopersicon esculentum Mill.) production in China.

    Science.gov (United States)

    Ren, Zongjie; Li, Yuan; Fang, Wensheng; Yan, Dongdong; Huang, Bin; Zhu, Jiahong; Wang, Xiaoning; Wang, Xianli; Wang, Qiuxia; Guo, Meixia; Cao, Aocheng

    2018-03-12

    Root-knot nematodes (Meloidogyne spp.), soil-borne diseases and weeds seriously reduce the commercial yield of tomatoes grown under protected cultivation in China. Allyl isothiocyanate (AITC), a natural product obtained from damaged Brassica tissues, was evaluated as a potential replacement for the fumigant methyl bromide (MB) for use in the greenhouse production of tomatoes in China. The dose-response assay indicates that AITC has high biological activity against major bacterial and fungal pathogens (EC 50 of 0.225-4.199 mg L -1 ). The bioassay results indicate that AITC has good efficacy against root-knot nematodes (LC 50 of 18.046 mg kg -1 ), and moderate efficacy against fungal pathogens (LC 50 of 27.999-29.497 mg kg -1 ) and weeds (LC 50 of 17.300-47.660 mg kg -1 ). The potting test indicates that AITC significantly improved plant vigor. Field trials indicate that AITC showed good efficacy against Meloidogyne spp. and Fusarium spp. (both ∼ 80%) as well as Phytophthora spp. and Pythium spp. (both ∼ 70%), and improved plant vigor and marketable yield. AITC used as a soil fumigant (30-50 g m -2 ) effectively controlled major bacterial and fungal pathogens, root-knot nematode, weeds and increased plant vigor, yield and farmers' income in tomato cultivated under protected agriculture in China. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  11. Fluorescein isothiocyanate labeled, magnetic nanoparticles conjugated D-penicillamine-anti-metadherin and in vitro evaluation on breast cancer cells

    International Nuclear Information System (INIS)

    Akca, Ozlet; Unak, Perihan; Medine, E. Ylker; Sakarya, Serhan; Ozdemir, Caglar; Timur, Suna

    2011-01-01

    Silane modified magnetic nanoparticles were prepared after capped with silica generated from the hydrolyzation of tetraethyl orthosilicate (TEOS). Amino silane (SG-Si900) was added to this solution for surface modification of silica coated magnetic particles. Finally, D-penicillamine (D-PA)-antimetadherin (anti-MTDH) was covalently linked to the amine group using glutaraldehyde as cross-linker. Magnetic nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and atomic force microscopy (AFM). AFM results showed that particles are nearly monodisperse, and the average size of particles was 40 to 50 nm. An amino acid derivative D-PA was conjugated anti-MTDH, which results the increase of uptaking potential of a conjugated agent, labelled fluorescein isothiocyanate (FITC) and then conjugated to the magnetic nanoparticles. In vitro evaluation of the conjugated D-PA-anti-MTDH-FITC to magnetic nanoparticle was studied on MCF-7 breast cancer cell lines. Fluorescence microscopy images of cells after incubation of the sample were obtained to monitor the interaction of the sample with the cancerous cells. Incorporation on cells of FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH was found higher than FITC labeled D-PA-anti-MTDH. The results show that magnetic properties and application of magnetic field increased incorporation rates. The obtained D-PA-anti-MTDH-magnetic nanoparticles-FITC complex has been used for in vitro imaging of breast cancer cells. FITC labeled and magnetic nanoparticles conjugated D-PA-anti-MTDH may be useful as a new class of scintigraphic agents. Results of this study are sufficiently encouraging to bring about further evaluation of this and related compounds for ultraviolet magnetic resonance (UV-MR) dual imaging. (author)

  12. Isothiocyanate from Moringa oleifera seeds mitigates hydrogen peroxide-induced cytotoxicity and preserved morphological features of human neuronal cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Sani Jaafaru

    Full Text Available Reactive oxygen species are well known for induction of oxidative stress conditions through oxidation of vital biomarkers leading to cellular death via apoptosis and other process, thereby causing devastative effects on the host organs. This effect is believed to be linked with pathological alterations seen in several neurodegenerative disease conditions. Many phytochemical compounds proved to have robust antioxidant activities that deterred cells against cytotoxic stress environment, thus protect apoptotic cell death. In view of that we studied the potential of glucomoringin-isothiocyanate (GMG-ITC or moringin to mitigate the process that lead to neurodegeneration in various ways. Neuroprotective effect of GMG-ITC was performed on retinoic acid (RA induced differentiated neuroblastoma cells (SHSY5Y via cell viability assay, flow cytometry analysis and fluorescence microscopy by means of acridine orange and propidium iodide double staining, to evaluate the anti-apoptotic activity and morphology conservation ability of the compound. Additionally, neurite surface integrity and ultrastructural analysis were carried out by means of scanning and transmission electron microscopy to assess the orientation of surface and internal features of the treated neuronal cells. GMG-ITC pre-treated neuron cells showed significant resistance to H2O2-induced apoptotic cell death, revealing high level of protection by the compound. Increase of intracellular oxidative stress induced by H2O2 was mitigated by GMG-ITC. Thus, pre-treatment with the compound conferred significant protection to cytoskeleton and cytoplasmic inclusion coupled with conservation of surface morphological features and general integrity of neuronal cells. Therefore, the collective findings in the presence study indicated the potentials of GMG-ITC to protect the integrity of neuron cells against induced oxidative-stress related cytotoxic processes, the hallmark of neurodegenerative diseases.

  13. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P. E-mail: kunghf@sunmac.spect.upenn.edu; Acton, Paul D.; Kung, Hank F

    2000-02-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [{sup 125}I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[{sup 125}I]iodide, the radiolabeled [{sup 125}I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K{sub i}=2.8{+-}0.88 nM. Using LLC-PK{sub 1} cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K{sub i}=0.12{+-}0.02 nM). Inhibition constants for the other two transporters were lower (K{sub i}=3.9{+-}0.7 {mu}M and 20.0 {+-} 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [{sup 125}I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection

  14. A novel serotonin transporter ligand: (5-Iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol

    International Nuclear Information System (INIS)

    Zhuang, Z.-P.; Choi, S.-R.; Hou, Catherine; Mu Mu; Kung, M.-P.; Acton, Paul D.; Kung, Hank F.

    2000-01-01

    The serotonin transporters (SERT) are the primary binding sites for selective serotonin reuptake inhibitors, commonly used antidepressants such as fluoxetine, sertraline, and paroxetine. Imaging of SERT with positron emission tomography and single photon emission computed tomography in humans would provide a useful tool for understanding how alterations of this system are related to depressive illnesses and other psychiatric disorders. In this article the synthesis and characterization of [ 125 I]ODAM [(5-iodo-2-(2-dimethylaminomethylphenoxy)-benzyl alcohol, 9)] as an imaging agent in the evaluation of central nervous system SERT are reported. A new reaction scheme was developed for the preparation of compound 9, ODAM, and the corresponding tri-n-butyltin derivative 10. Upon reacting 10 with hydrogen peroxide and sodium[ 125 I]iodide, the radiolabeled [ 125 I]9 was obtained in good yield (94% yield, radiochemical purity >95%). In an initial binding study using cortical membrane homogenates of rat brain, ODAM displayed a good binding affinity with a value of K i =2.8±0.88 nM. Using LLC-PK 1 cells specifically expressing the individual transporter (i.e. dopamine [DAT], norepinephrine [NET], and SERT, respectively), ODAM showed a strong inhibition on SERT (K i =0.12±0.02 nM). Inhibition constants for the other two transporters were lower (K i =3.9±0.7 μM and 20.0 ± 1.9 nM for DAT and NET, respectively). Initial biodistribution study in rats after an intravenous (IV) injection of [ 125 I]ODAM showed a rapid brain uptake and washout (2.03, 1.49, 0.79, 0.27, and 0.07% dose/organ at 2, 30, 60, 120, and 240 min, respectively). The hypothalamus region where the serotonin neurons are located exhibited a high specific uptake. Ratios of hypothalamus-cerebellum/cerebellum based on percent dose per gram of these two regions showed values of 0.35, 0.86, 0.86, 0.63, and 0.34 at 2, 30, 60, 120, and 240 min, post-IV injection, respectively. The specific uptake in hypothalamus

  15. Foragers of sympatric Asian honey bee species intercept competitor signals by avoiding benzyl acetate from Apis cerana alarm pheromone.

    Science.gov (United States)

    Wen, Ping; Cheng, Yanan; Qu, Yufeng; Zhang, Hongxia; Li, Jianjun; Bell, Heather; Tan, Ken; Nieh, James

    2017-07-27

    While foraging, animals can form inter- and intraspecific social signalling networks to avoid similar predators. We report here that foragers of different native Asian honey bee species can detect and use a specialized alarm pheromone component, benzyl acetate (BA), to avoid danger. We analysed the volatile alarm pheromone produced by attacked workers of the most abundant native Asian honey bee, Apis cerana and tested the responses of other bee species to these alarm signals. As compared to nest guards, A. cerana foragers produced 3.38 fold higher levels of BA. In foragers, BA and (E)-dec-2-en-1-yl acetate (DA) generated the strongest antennal electrophysiological responses. BA was also the only compound that alerted flying foragers and inhibited A. cerana foraging. BA thereby decreased A. cerana foraging for risky sites. Interestingly, although BA occurs only in trace amounts and is nearly absent in sympatric honeybee species (respectively only 0.07% and 0.44% as much in A. dorsata and A. florea), these floral generalists detected and avoided BA as strongly as they did to their own alarm pheromone on natural inflorescences. These results demonstrate that competing pollinators can take advantage of alarm signal information provided by other species.

  16. Effects of a myosin-II inhibitor (N-benzyl-p-toluene sulphonamide, BTS) on contractile characteristics of intact fast-twitch mammalian muscle fibres.

    Science.gov (United States)

    Pinniger, G J; Bruton, J D; Westerblad, H; Ranatunga, K W

    2005-01-01

    We have examined the effects of N-benzyl-p-toluene sulphonamide (BTS), a potent and specific inhibitor of fast muscle myosin-II, using small bundles of intact fibres or single fibres from rat foot muscle. BTS decreased tetanic tension reversibly in a concentration-dependent manner with half-maximal inhibition at approximately approximately 2 microM at 20 degrees C. The inhibition of tension with 10 microM BTS was marked at the three temperatures examined (10, 20 and 30 degrees C), but greatest at 10 degrees C. BTS decreased active muscle stiffness to a lesser extent than tetanic tension indicating that not all of the tension inhibition was due to a reduced number of attached cross-bridges. BTS-induced inhibition of active tension was not accompanied by any change in the free myoplasmic Ca2+ transients. The potency and specificity of BTS make it a very suitable myosin inhibitor for intact mammalian fast muscle and should be a useful tool for the examination of outstanding questions in muscle contraction.

  17. Substitution Effects and Linear Free Energy Relationships During Reduction of 4- Benzoyl-n-(4-substituted Benzyl)pyridinium Cations

    Science.gov (United States)

    Leventis, Nicholas; Zhang, Guo-Hui; Rawashdeh, Abdel-Monem M.; Sotiriou-Leventis, Chariklia; Gray, Hugh R. (Technical Monitor)

    2003-01-01

    In analogy to 4-(para-substituted benzoyl)-N-methylpyridinium cations (1-X's), the title species (2-X's, -X = -OCH3, -CH3, -H, -Br, -COCH3, -NO2) undergo two reversible, well-separated (E(sub 1/2) greater than or equal to 650 mV) one-electron reductions. The effect of substitution on the reduction potentials of 2-X's is much weaker than the effect of the same substituents on 1-X's: the Hammett rho-values are 0.80 and 0.93 for the 1st- and 2nd-e reduction of 2-X's vs. 2.3 and 3.3 for the same reductions of 1-X's, respectively. Importantly, the nitro group of 2-NO2 undergoes reduction before the 2nd-e reduction of the 4-benzoylpyridinium system. These results suggest that the redox potentials of the 4-benzoylpyridinium system can be course-tuned via p-benzoyl substitution and fine-tuned via para-benzyl substitution. Introducing the recently derived substituent constant of the -NO2(sup)- group (sigma para-NO2(sup)- = -0.97) yields an excellent correlation for the 3rd-e reduction of 2- NO2 (corresponding to the reduction of the carbonyl group) with the 2nd-e reduction of the other 2-X's, and confirms the electron donating properties of -NO2(sup)-.

  18. Microwave assisted synthesis and antimicrobial activity of novel 1-[1/2-(1-Benzyl-1H-[1,2,3]triazol-4-ylmethoxy-naphthalen-2/1-yl]-3-(1-phenyl-3-aryl-1H-pyrazol-4-yl-propenones

    Directory of Open Access Journals (Sweden)

    Dongamanti Ashok

    2015-06-01

    Full Text Available A series of novel 1-[1/2-(1-Benzyl-1H-[1,2,3]triazol-4-ylmethoxy-naphthalen-2/1-yl]-3-(1-phenyl-3-aryl-1H-pyrazol-4-yl-propenones were design and synthesized by Click reaction followed by Claisen-Schmidt condensation under microwave irradiation and conventional heating methods. The structures of newly synthesized compounds have been established on the basis of elemental analysis, IR, 1H & 13C NMR and mass spectral data. All the compounds were screened for their antimicrobial activity.

  19. Identification of an Isothiocyanate on the HypEF Complex Suggests a Route for Efficient Cyanyl-Group Channeling during [NiFe]-Hydrogenase Cofactor Generation.

    Directory of Open Access Journals (Sweden)

    Sven T Stripp

    Full Text Available [NiFe]-hydrogenases catalyze uptake and evolution of H2 in a wide range of microorganisms. The enzyme is characterized by an inorganic nickel/ iron cofactor, the latter of which carries carbon monoxide and cyanide ligands. In vivo generation of these ligands requires a number of auxiliary proteins, the so-called Hyp family. Initially, HypF binds and activates the precursor metabolite carbamoyl phosphate. HypF catalyzes removal of phosphate and transfers the carbamate group to HypE. In an ATP-dependent condensation reaction, the C-terminal cysteinyl residue of HypE is modified to what has been interpreted as thiocyanate. This group is the direct precursor of the cyanide ligands of the [NiFe]-hydrogenase active site cofactor. We present a FT-IR analysis of HypE and HypF as isolated from E. coli. We follow the HypF-catalyzed cyanation of HypE in vitro and screen for the influence of carbamoyl phosphate and ATP. To elucidate on the differences between HypE and the HypEF complex, spectro-electrochemistry was used to map the vibrational Stark effect of naturally cyanated HypE. The IR signature of HypE could ultimately be assigned to isothiocyanate (-N=C=S rather than thiocyanate (-S-C≡N. This has important implications for cyanyl-group channeling during [NiFe]-hydrogenase cofactor generation.

  20. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer's disease.

    Science.gov (United States)

    Lan, Jin-Shuai; Hou, Jian-Wei; Liu, Yun; Ding, Yue; Zhang, Yong; Li, Ling; Zhang, Tong

    2017-12-01

    A novel family of cinnamic acid derivatives has been developed to be multifunctional cholinesterase inhibitors against AD by fusing N-benzyl pyridinium moiety and different substituted cinnamic acids. In vitro studies showed that most compounds were endowed with a noteworthy ability to inhibit cholinesterase, self-induced Aβ (1-42) aggregation, and to chelate metal ions. Especially, compound 5l showed potent cholinesterase inhibitory activity (IC 50 , 12.1 nM for eeAChE, 8.6 nM for hAChE, 2.6 μM for eqBuChE and 4.4 μM for hBuChE) and the highest selectivity toward AChE over BuChE. It also showed good inhibition of Aβ (1-42) aggregation (64.7% at 20 μM) and good neuroprotection on PC12 cells against amyloid-induced cell toxicity. Finally, compound 5l could penetrate the BBB, as forecasted by the PAMPA-BBB assay and proved in OF1 mice by ex vivo experiments. Overall, compound 5l seems to be a promising lead compound for the treatment of Alzheimer's diseases.

  1. Synthesis, PASS-Predication and in Vitro Antimicrobial Activity of Benzyl 4-O-benzoyl-α-l-rhamnopyranoside Derivatives

    Directory of Open Access Journals (Sweden)

    Mohammed Mahbubul Matin

    2016-08-01

    Full Text Available Benzyl α-l-rhamnopyranoside 4, obtained by both conventional and microwave assisted glycosidation techniques, was subjected to 2,3-O-isopropylidene protection to yield compound 5 which on benzoylation and subsequent deprotection of isopropylidene group gave the desired 4-O-benzoylrhamnopyranoside 7 in reasonable yield. Di-O-acetyl derivative of benzoate 7 was prepared to get newer rhamnopyranoside. The structure activity relationship (SAR of the designed compounds was performed along with the prediction of activity spectra for substances (PASS training set. Experimental studies based on antimicrobial activities verified the predictions obtained by the PASS software. Protected rhamnopyranosides 5 and 6 exhibited slight distortion from regular 1C4 conformation, probably due to the fusion of pyranose and isopropylidene ring. Synthesized rhamnopyranosides 4–8 were employed as test chemicals for in vitro antimicrobial evaluation against eight human pathogenic bacteria and two fungi. Antimicrobial and SAR study showed that the rhamnopyranosides were prone against fungal organisms as compared to that of the bacterial pathogens. Interestingly, PASS prediction of the rhamnopyranoside derivatives 4–8 were 0.49 < Pa < 0.60 (where Pa is probability ‘to be active’ as antibacterial and 0.65 < Pa < 0.73 as antifungal activities, which showed significant agreement with experimental data, suggesting rhamnopyranoside derivatives 4–8 were more active against pathogenic fungi as compared to human pathogenic bacteria thus, there is a more than 50% chance that the rhamnopyranoside derivative structures 4–8 have not been reported with antimicrobial activity, making it a possible valuable lead compound.

  2. Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model.

    Science.gov (United States)

    Krul, Cyrille; Humblot, Christèle; Philippe, Catherine; Vermeulen, Martijn; van Nuenen, Marleen; Havenaar, Robert; Rabot, Sylvie

    2002-06-01

    Cruciferous vegetables, such as Brassica, which contain substantial quantities of glucosinolates, have been suggested to possess anticarcinogenic activity. Cutting and chewing of cruciferous vegetables releases the thioglucosidase enzyme myrosinase, which degrades glucosinolates to isothiocyanates and other minor metabolites. Cooking of cruciferous vegetables inactivates the myrosinase enzyme, allowing intact glucosinolates to reach the large intestine, where they can be degraded by the indigenous microflora into isothiocyanates. This local release of isothiocyanates may explain the protective effect of cruciferous vegetables on the colon epithelium. However, little is known about the amounts and identities of glucosinolate metabolites produced by the human microflora. The production of allyl isothiocyanate from sinigrin was investigated in a dynamic in vitro large-intestinal model, after inoculation with a complex microflora of human origin. Sinigrin and allyl isothiocyanate concentrations were analysed in the lumen and dialysis fluid of the model. Peak levels of allyl isothiocyanate were observed between 9 and 12 h after the addition of sinigrin. The model was first set up with a pooled and cultured human microflora, in which 1 and 4% of, respectively, 1 and 15 mM sinigrin, was converted into AITC. However, the conversion rate was remarkably higher if different individual human microflora were used. Between 10% and 30% (mean 19%) of the sinigrin was converted into allyl isothiocyanate. The results of this study suggest that allyl isothiocyanate is converted further into other, yet unknown, metabolites.

  3. A 14-day repeated-dose oral toxicological evaluation of an isothiocyanate-enriched hydro-alcoholic extract from Moringa oleifera Lam. seeds in rats.

    Science.gov (United States)

    Kim, Youjin; Jaja-Chimedza, Asha; Merrill, Daniel; Mendes, Odete; Raskin, Ilya

    2018-01-01

    A 14-d short-term oral toxicity study in rats evaluated the safety of moringa isothiocyanate-1 (MIC-1)-enriched hydro-alcoholic moringa seeds extract (MSE). Rats (5 males/5 females per group) were gavaged daily for 14 d with the vehicle control or MSE, at 78 (low), 257 (mid-low), 772 (mid-high), or 2571 (high) mg/kg bw/d, standardized to MIC-1 (30, 100, 300, or 1000 mg/kg bw/d, respectively). Toxicological endpoints included body weight and weight gain, food consumption and feed efficiency, clinical observations, hematology, gross necropsy and histopathology, and relative organ weights. Mortality was only observed in the high dose group animals, both male and female, representing decreases in body weight/weight gain and food consumption/feed efficiency. Irregular respiratory patterns and piloerection were major clinical observations found primarily in the mid-high and high dose group animals. In the high dose group, gastrointestinal distention and stomach discoloration were observed in non-surviving males and females, and degeneration and necrosis of the testicular germinal cells and epididymal cells were also observed in a non-surviving male. Increased liver weights were found in females in the mid-high and high dose groups. Animals in the low and mid-low groups did not exhibit adverse effects of MSE (100 mg/kg bw/d MIC-1). A no observed adverse effect level (NOAEL) of the standardized MSE was determined as 257 mg/kg bw/d providing 100 mg/kg bw/d MIC-1.

  4. The inactivation of human CYP2E1 by phenethyl isothiocyanate, a naturally occurring chemopreventive agent, and its oxidative bioactivation.

    Science.gov (United States)

    Yoshigae, Yasushi; Sridar, Chitra; Kent, Ute M; Hollenberg, Paul F

    2013-04-01

    Phenethylisothiocyanate (PEITC), a naturally occurring isothiocyanate and potent cancer chemopreventive agent, works by multiple mechanisms, including the inhibition of cytochrome P450 (P450) enzymes, such as CYP2E1, that are involved in the bioactivation of carcinogens. PEITC has been reported to be a mechanism-based inactivator of some P450s. We describe here the possible mechanism for the inactivation of human CYP2E1 by PEITC, as well as the putative intermediate that might be involved in the bioactivation of PEITC. PEITC inactivated recombinant CYP2E1 with a partition ratio of 12, and the inactivation was not inhibited in the presence of glutathione (GSH) and not fully recovered by dialysis. The inactivation of CYP2E1 by PEITC is due to both heme destruction and protein modification, with the latter being the major pathway for inactivation. GSH-adducts of phenethyl isocyanate (PIC) and phenethylamine were detected during the metabolism by CYP2E1, indicating formation of PIC as a reactive intermediate following P450-catalyzed desulfurization of PEITC. Surprisingly, PIC bound covalently to CYP2E1 to form protein adducts but did not inactivate the enzyme. Liquid chromatography mass spectroscopy analysis of the inactivated CYP2E1 apo-protein suggests that a reactive sulfur atom generated during desulfurization of PEITC is involved in the inactivation of CYP2E1. Our data suggest that the metabolism of PEITC by CYP2E1 that results in the inactivation of CYP2E1 may occur by a mechanism similar to that observed with other sulfur-containing compounds, such as parathion. Digestion of the inactivated enzyme and analysis by SEQUEST showed that Cys 268 may be the residue modified by PIC.

  5. Inhibition of Listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized Oriental mustard extract.

    Science.gov (United States)

    Olaimat, Amin N; Holley, Richard A

    2016-08-01

    Ready-to-eat meats are considered foods at high risk to cause life-threatening Listeria monocytogenes infections. This study screened 5 L. monocytogenes strains for their ability to hydrolyze sinigrin (a glucosinolate in Oriental mustard), which formed allyl isothiocyanate (AITC) and reduced L. monocytogenes viability on inoculated vacuum-packed, cooked, cured roast chicken slices at 4 °C. Tests involved incorporation of 25-50 μl/g AITC directly or 100-250 mg/g Oriental mustard extract in 0.5% (w/v) κ-carrageenan/2% (w/v) chitosan-based coatings prepared using 1.5% malic or acetic acid. L. monocytogenes strains hydrolyzed 33.6%-48.4% pure sinigrin in MH broth by 21 d at 25 °C. Acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 100-250 mg/g mustard reduced the viability of L. monocytogenes and aerobic bacteria on cooked, cured roast chicken slices by 4.1 to >7.0 log10 CFU/g compared to uncoated chicken stored at 4 °C for 70 d. Coatings containing malic acid were significantly more antimicrobial than those with acetic acid. During storage for 70 d, acidified κ-carrageenan/chitosan coatings containing 25-50 μl/g AITC or 250 mg/g mustard extract reduced lactic acid bacteria (LAB) numbers 3.8 to 5.4 log10 CFU/g on chicken slices compared to uncoated samples. Acidified κ-carrageenan/chitosan-based coatings containing either AITC or Oriental mustard extract at the concentrations tested had the ability to control L. monocytogenes viability and delay growth of potential spoilage bacteria on refrigerated, vacuum-packed cured roast chicken. Copyright © 2016. Published by Elsevier Ltd.

  6. Discovery of (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), a kinesin spindle protein inhibitor and potential anticancer agent.

    Science.gov (United States)

    Theoclitou, Maria-Elena; Aquila, Brian; Block, Michael H; Brassil, Patrick J; Castriotta, Lillian; Code, Erin; Collins, Michael P; Davies, Audrey M; Deegan, Tracy; Ezhuthachan, Jayachandran; Filla, Sandra; Freed, Ellen; Hu, Haiqing; Huszar, Dennis; Jayaraman, Muthusamy; Lawson, Deborah; Lewis, Paula M; Nadella, Murali V P; Oza, Vibha; Padmanilayam, Maniyan; Pontz, Timothy; Ronco, Lucienne; Russell, Daniel; Whitston, David; Zheng, Xiaolan

    2011-10-13

    Structure-activity relationship analysis identified (+)-N-(3-aminopropyl)-N-[1-(5-benzyl-3-methyl-4-oxo-[1,2]thiazolo[5,4-d]pyrimidin-6-yl)-2-methylpropyl]-4-methylbenzamide (AZD4877), from a series of novel kinesin spindle protein (KSP) inhibitors, as exhibiting both excellent biochemical potency and pharmaceutical properties suitable for clinical development. The selected compound arrested cells in mitosis leading to the formation of the monopolar spindle phenotype characteristic of KSP inhibition and induction of cellular death. A favorable pharmacokinetic profile and notable in vivo efficacy supported the selection of this compound as a clinical candidate for the treatment of cancer.

  7. Noxious heat threshold temperature and pronociceptive effects of allyl isothiocyanate (mustard oil) in TRPV1 or TRPA1 gene-deleted mice.

    Science.gov (United States)

    Tékus, Valéria; Horváth, Ádám; Hajna, Zsófia; Borbély, Éva; Bölcskei, Kata; Boros, Melinda; Pintér, Erika; Helyes, Zsuzsanna; Pethő, Gábor; Szolcsányi, János

    2016-06-01

    To investigate the roles of TRPV1 and TRPA1 channels in baseline and allyl isothiocyanate (AITC)-evoked nociceptive responses by comparing wild-type and gene-deficient mice. In contrast to conventional methods of thermonociception measuring reflex latencies, we used our novel methods to determine the noxious heat threshold. It was revealed that the heat threshold of the tail measured by an increasing-temperature water bath is significantly higher in TRPV1(-/-), but not TRPA1(-/-), mice compared to respective wild-types. There was no difference between the noxious heat thresholds of the hind paw as measured by an increasing-temperature hot plate in TRPV1(-/-), TRPA1(-/-) and the corresponding wild-type mice. The withdrawal latency of the tail from 0°C water was prolonged in TRPA1(-/-), but not TRPV1(-/-), mice compared to respective wild-types. In wild-type animals, dipping the tail or paw into 1% AITC induced an 8-14°C drop of the noxious heat threshold (heat allodynia) of both the tail and paw, and 40-50% drop of the mechanonociceptive threshold (mechanical allodynia) of the paw measured by dynamic plantar esthesiometry. These AITC-evoked responses were diminished in TRPV1(-/-), but not TRPA1(-/-), mice. Tail withdrawal latency to 1% AITC was significantly prolonged in both gene-deleted strains. Different heat sensors determine the noxious heat threshold in distinct areas: a pivotal role for TRPV1 on the tail is contrasted with no involvement of either TRPV1 or TRPA1 on the hind paw. Noxious heat threshold measurement appears appropriate for preclinical screening of TRP channel ligands as novel analgesics. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales.

    Directory of Open Access Journals (Sweden)

    Seiya Kitamura

    Full Text Available Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1, showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.

  9. Hepatobiliary delivery of polyaminopolycarboxylate chelates: Synthesis and characterization of a cholic acid conjugate of EDTA and biodistribution and imaging studies with its indium-111 chelate

    Energy Technology Data Exchange (ETDEWEB)

    Betebenner, D.A.; Carney, P.L.; Zimmer, A.M.; Kazikiewicz, J.M.; Bruecher, E.S.; Sherry, A.D.; Johnson, D.K. (Abbott Laboratories, Abbott Park, Illinois (USA))

    1991-03-01

    A conjugate in which the steroid nucleus of cholic acid was linked to EDTA via an 11-atom spacer was obtained by reacting the succinimidyl ester of cholic acid with the amine formed by reaction of a benzyl isothiocyanate derivative of EDTA with N-(tert-butoxycarbonyl)ethylenediamine and subsequent deprotection. Potentiometric titration studies with model complexes showed that the EDTA moiety retained the ability to form 1:1 chelates of high thermodynamic stability, although formation constants were some 3-4 log K units lower for complexes of the conjugate than for the analogous chelates with underivatized EDTA. A complex formed between the cholic acid-EDTA conjugate and 111InIII was clearly rapidly into the liver when injected iv into mice, with subsequent excretion from the liver into the gastrointestinal tract being complete within 1 h of injection. Radioscintigraphic imaging studies conducted in a rabbit given the 111In-labeled conjugate also showed early liver uptake followed by rapid clearance from the liver into the intestine, with good visualization of the gallbladder in images obtained at 20-25 min postinjection. It is concluded that conjugation to cholic acid provides a useful means for the hepatobiliary delivery of EDTA chelates that otherwise exhibit predominantly extracellular distribution and renal clearance.

  10. Hepatobiliary delivery of polyaminopolycarboxylate chelates: Synthesis and characterization of a cholic acid conjugate of EDTA and biodistribution and imaging studies with its indium-111 chelate

    International Nuclear Information System (INIS)

    Betebenner, D.A.; Carney, P.L.; Zimmer, A.M.; Kazikiewicz, J.M.; Bruecher, E.S.; Sherry, A.D.; Johnson, D.K.

    1991-01-01

    A conjugate in which the steroid nucleus of cholic acid was linked to EDTA via an 11-atom spacer was obtained by reacting the succinimidyl ester of cholic acid with the amine formed by reaction of a benzyl isothiocyanate derivative of EDTA with N-(tert-butoxycarbonyl)ethylenediamine and subsequent deprotection. Potentiometric titration studies with model complexes showed that the EDTA moiety retained the ability to form 1:1 chelates of high thermodynamic stability, although formation constants were some 3-4 log K units lower for complexes of the conjugate than for the analogous chelates with underivatized EDTA. A complex formed between the cholic acid-EDTA conjugate and 111InIII was clearly rapidly into the liver when injected iv into mice, with subsequent excretion from the liver into the gastrointestinal tract being complete within 1 h of injection. Radioscintigraphic imaging studies conducted in a rabbit given the 111In-labeled conjugate also showed early liver uptake followed by rapid clearance from the liver into the intestine, with good visualization of the gallbladder in images obtained at 20-25 min postinjection. It is concluded that conjugation to cholic acid provides a useful means for the hepatobiliary delivery of EDTA chelates that otherwise exhibit predominantly extracellular distribution and renal clearance

  11. Sulforaphane, a Dietary Isothiocyanate, Induces G2/M Arrest in Cervical Cancer Cells through CyclinB1 Downregulation and GADD45β/CDC2 Association

    Directory of Open Access Journals (Sweden)

    Ya-Min Cheng

    2016-09-01

    Full Text Available Globally, cervical cancer is the most common malignancy affecting women. The main treatment methods for this type of cancer include conization or hysterectomy procedures. Sulforaphane (SFN is a natural, compound-based drug derived from dietary isothiocyanates which has previously been shown to possess potent anti-tumor and chemopreventive effects against several types of cancer. The present study investigated the effects of SFN on anti-proliferation and G2/M phase cell cycle arrest in cervical cancer cell lines (Cx, CxWJ, and HeLa. We found that cytotoxicity is associated with an accumulation of cells in the G2/M phases of the cell-cycle. Treatment with SFN led to cell cycle arrest as well as the down-regulation of Cyclin B1 expression, but not of CDC2 expression. In addition, the effects of GADD45β gene activation in cell cycle arrest increase proportionally with the dose of SFN; however, mitotic delay and the inhibition of proliferation both depend on the dosage of SFN used to treat cancer cells. These results indicate that SFN may delay the development of cancer by arresting cell growth in the G2/M phase via down-regulation of Cyclin B1 gene expression, dissociation of the cyclin B1/CDC2 complex, and up-regulation of GADD45β proteins.

  12. The Novel SCN''- Ion-selective Electrode Based on the 1-Benzyl-3-(4-nitrophenyl) thio-urea Ionophore

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Mi; Kang, Dong Hyeon; Choe, Ju Eun; You, Jung Min; Go, Min Jeong; Lee, Jung Seong; Jeon, Seung Won [Chungnam National University, Daejeon (Korea, Republic of)

    2014-09-15

    A potentiometric sensor based on the 1-benzyl-3-(4-nitrophenyl) thio-urea was synthesized and tested as an ionophore in PVC based membrane sensor towards SCN - ions. This membrane exhibits a linear stable response over a wide concentration range (1.0 × 10''-5 to 1.0 × 10''-2 M) with a slope of -59.2 mV/dec., a detection limit of log[SCN''- ] = -5.05, and a selectivity coefficient for thiocyanate against perchlorate anion of logK{sub s}cn''pot = -0.133. The selectivity series of the membrane is as follows: SCN''- > ClO{sub 4}''- > I''- >NO{sub 3}''- >HSO{sub 3}''- > Cl''-HSO{sub '}'-''4 > F''- > CH{sub 3}COO''- > HCO''-''3 > Br''- > H{sub 2}PO{sub 4}''- > SO{sub 3}''-''2 > SO{sub 4}''-''2 > CO{sub 3}''-''2. The proposed electrode showed good selectivity and a good response for the SCN''- ion over a wide variety of other anions in pH 6.0 buffer solutions and has a fast response time of about < 5s.. The influences of the membrane by pH, ionophore, and plasticizer were studied.

  13. Establishment of prostate cancer spheres from a prostate cancer cell line after phenethyl isothiocyanate treatment and discovery of androgen-dependent reversible differentiation between sphere and neuroendocrine cells.

    Science.gov (United States)

    Chen, Yamei; Cang, Shundong; Han, Liying; Liu, Christina; Yang, Patrick; Solangi, Zeeshan; Lu, Quanyi; Liu, Delong; Chiao, J W

    2016-05-03

    Prostate cancer can transform from androgen-responsive to an androgen-independent phenotype. The mechanism responsible for the transformation remains unclear. We studied the effects of an epigenetic modulator, phenethyl isothiocyanate (PEITC), on the androgen-responsive LNCaP cells. After treatment with PEITC, floating spheres were formed with characteristics of prostate cancer stem cells (PCSC). These spheres were capable of self-renewal in media with and without androgen. They have been maintained in both types of media as long term cultures. Upon androgen deprivation, the adherent spheres differentiated to neuroendocrine cells (NEC) with decreased proliferation, expression of androgen receptor, and PSA. NEC reverse differentiated to spheres when androgen was replenished. The sphere cells expressed surface marker CD44 and had enhanced histone H3K4 acetylation, DNMT1 down-regulation and GSTP1 activation. We hypothesize that PEITC-mediated alteration in epigenomics of LNCaP cells may give rise to sphere cells, whereas reversible androgenomic alterations govern the shuttling between sphere PCSC and progeny NEC. Our findings identify unrecognized properties of prostate cancer sphere cells with multi-potential plasticity. This system will facilitate development of novel therapeutic agents and allow further exploration into epigenomics and androgenomics governing the transformation to hormone refractory prostate cancer.

  14. Preventive effect of oral administration of 6-(methylsulfinyl)hexyl isothiocyanate derived from wasabi (Wasabia japonica Matsum) against pulmonary metastasis of B16-BL6 mouse melanoma cells.

    Science.gov (United States)

    Fuke, Yoko; Shinoda, Shoko; Nagata, Ikuko; Sawaki, Saeko; Murata, Mituyoshi; Ryoyama, Kazuo; Koizumi, Keiichi; Saiki, Ikuo; Nomura, Takahiro

    2006-01-01

    Effect of oral administration of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) or a 6-MITC-containing T-wasabi fraction from wasabi root (Wasabia japonica Matsum) to inhibit the macroscopic pulmonary metastasis was studied with a murine B16-BL6 melanoma model. Two administration routes, subcutaneous or intravenous, and two administration times, prior to or concomitant with tumor inoculation, of 6-MITC or T-wasabi against the metastatic foci formation in C57BL/6J mouse lungs were compared. The number of metastasized foci per lung in either subcutaneous or intravenous injection was significantly reduced by intake of 6-MITC or a T-wasabi fraction. The maximum reduction by a T-wasabi fraction reached to 82%. Fifty-six percent of foci formation was inhibited by a 2 week-prior administration of 6-MITC (200 microM), whereas only 27% inhibition was obtained by a concomitant administration with tumor inoculation. Neither 6-MITC nor T-wasabi at tested concentrations showed any toxic effects. Together with our previous results, a component of the Japanese pungent spice, wasabi appears to inhibit not only tumor cell growth but also tumor metastasis. Therefore, 6-MITC from wasabi is apparently a useful dietary candidate for controlling tumor progression.

  15. A versatile synthesis of cyclic dipeptides using the stepwise construction of the piperazine-2,5-dione ring from simple precursors: synthetic sequence and the structure of a representative product, (3RS)-4-(2-allyl-3,5-dimethylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione.

    Science.gov (United States)

    Acosta Quintero, Lina M; Palma, Alirio; Cobo, Justo; Glidewell, Christopher

    2018-02-01

    A versatile synthesis of multiply substituted cyclic dipeptides has been designed, based on the stepwise construction of the piperazine-2,5-dione ring using molecular fragments from four different precursor molecules. Starting from substituted 2-allylanilines, reaction with methyl 2-bromo-2-phenylacetate yields the corresponding methyl 2-(2-allylanilino)-2-phenylacetates, which react with haloacetyl chlorides to give methyl 2-[N-(2-allylphenyl)-2-haloacetamido]-2-phenylacetates, which then undergo ring closure with benzylamine to yield the corresponding cyclic dipeptides of type 4-(2-allylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione. (3RS)-4-(2-Allyl-3,5-dimethylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione, C 28 H 28 N 2 O 2 , (IIId), crystallizes with Z' = 2 in the space group P2 1 /c; the allyl groups in the two independent molecules adopt different conformations and, in one of them, the allyl group is disordered over two sets of atomic sites having occupancies of 0.534 (4) and 0.466 (4). In both molecules, the piperazine-2,5-dione ring adopts a boat conformation, with the 3-phenyl ring in a quasi-axial site. The molecules of (IIId) are linked into a three-dimensional framework structure by a combination of three C-H...O hydrogen bonds and three C-H...π(arene) hydrogen bonds. Comparisons are made with some related structures.

  16. Study of the radiolysis of tetracycline hydrochloride in powder form, in aqueous solutions and in benzyl alcohol, at 77K, by electron paramagnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Guedes, S.M.L.

    1984-01-01

    The radiolysis of tetracycline hydrochloride in powder form, dissolved in benzyl alcohol and in acid, neutral and alkaline aerated aqueous solutions at 77K is studied by electron paramagnetic resonance spectroscopy. Mechanisms of reactions that occur in the radiolysis of these systems are proposed and some aspects of the reactions that occurs with electrons and with hydrogen atoms at 77K are investigated, since tetracycline hydrochloride captures both paramagnetic species. Also discussed is the influence of some factors in the migration of these species at 77K, such as: the position of solutes, the crystalline structure of the solvent, the kinetic energy of the species and the angle of incidence in the channeling. The rate constants for the reaction between the electron and physical and chemical traps which are present in the alkaline aerated aqueous solutions, at 77k, are calculated. The values found are, respectively: k=9.6 x 10 15 1 mol -1 s -1 and k= 1.8 x 10 10 1 mol -1 s -1 . (Author) [pt

  17. Moringin activates Wnt canonical pathway by inhibiting GSK3β in a mouse model of experimental autoimmune encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Giacoppo S

    2016-10-01

    Full Text Available Sabrina Giacoppo,1 Thangavelu Soundara Rajan,1 Gina Rosalinda De Nicola,2 Renato Iori,2 Placido Bramanti,1 Emanuela Mazzon1 1IRCCS Centre Neurolesi “Bonino-Pulejo”, Messina, Italy; 2Council for Agricultural Research and Economics, Research Centre for Industrial Crops (CREA-CIN, Bologna, Italy Abstract: Aberrant canonical Wnt–β-catenin signaling has been reported in multiple sclerosis (MS, although the results are controversial. The present study aimed to examine the role of the Wnt–β-catenin pathway in experimental MS and also to test moringin (4-[α-L-rhamnopyranosyloxy]-benzyl isothiocyanate, resulting from exogenous myrosinase hydrolysis of the natural phytochemical glucomoringin 4(α-L-rhamnosyloxy-benzyl glucosinolate as a modulator of neuroinflammation via the β-catenin–PPARγ axis. Experimental autoimmune encephalomyelitis (EAE, the most common model of MS, was induced in C57BL/6 mice by immunization with MOG35–55. Released moringin (10 mg/kg glucomoringin +5 µL myrosinase/mouse was administered daily for 1 week before EAE induction and continued until mice were killed on day 28 after EAE induction. Our results clearly showed that the Wnt–β-catenin pathway was downregulated in the EAE model, whereas moringin pretreatment was able to avert this. Moringin pretreatment normalizes the aberrant Wnt–β-catenin pathway, resulting in GSK3β inhibition and β-catenin upregulation, which regulates T-cell activation (CD4 and FoxP3, suppresses the main inflammatory mediators (IL-1β, IL-6, and COX2, through activation of PPARγ. In addition, moringin attenuates apoptosis by reducing the expression of the Fas ligand and cleaved caspase 9, and in parallel increases antioxidant Nrf2 expression in EAE mice. Taken together, our results provide an interesting discovery in identifying moringin as a modulator of the Wnt–β-catenin signaling cascade and as a new potential therapeutic target for MS treatment. Keywords: Wnt

  18. A convenient method for 14C-labeling of 2-methylthio-1-[4-N-α-ethoxycarbonylbenzyl)-amino-benzyl] -5-hydroxymethyl-2-[14C]-1H-imidazole and 1-[4-N-α-ethoxy-carbonylbenzyl)-aminobenzyl]-5-hydroxymethyl-2-[14C] -1H-imidazole as potential antihypertensives

    International Nuclear Information System (INIS)

    Nader Saemian; Gholamhossein Shirvani; Mohsen Javaheri; Sayed Sajad Oliyaee

    2012-01-01

    The key synthetic intermediate, (2-mercapto-1-(4-nitrobenzyl)-1H-imidazol-5-yl)methanol-[2- 14 C], has been synthesized by using one pot procedure from potassium[ 14 C]-thiocyanate. It was converted to two nonpeptide angiotensin II receptor antagonists, 2-methylthio-1-[4-N-α-ethoxycarbonyl benzyl)-aminobenzyl]-5-hydroxymethyl-1H-imidazole-[2- 14 C] and 1-[4-N-α-ethoxy-carbonylbenzyl)-aminobenzyl] -5-hydroxymethyl-1H-imidazole-[2- 14 C] via a 3-step sequence synthetic pathway. (author)

  19. I. Activation energies for the gas phase reactions of hydrogen atom with carbon monoxide and with ethylene. II. Rate constants for the reactions of benzyl cation with triethylphosphine and with triethylarsine in 1,2-dichloroethane

    International Nuclear Information System (INIS)

    Wang, H.Y.

    1976-01-01

    Two H-atom reactions H + CO + H 2 → HCO + H 2 and H + C 2 H 4 → C 2 H 5 * were separately studied from room temperature to about 100 0 C, and the activation energies for these two reactions were determined in this temperature range. For H + C 2 H 4 system, a small activation energy of 0.2 kcal/mole was obtained in the present narrow temperature range. The low activation energy indicates that the pre-exponential factor has a predominant contribution to the rate constant of this reaction and has about the same magnitude as that of the rate constant. For H + CO system, a fairly large activation energy of more than 7 kcal/mole was speculated in the potential energy surfaces of the system. The activation energy obtained in the present work, however, has a low value of about 2 kcal/mole. This low value reveals the low level of crossing of this reaction in the potential energy surface and thus indicates considerable complexity involved in the surface. Carbonium ions can be formed from chosen solutes in pulse-irradiated 1,2-dichloroethane (RCl) solutions. Upon irradiation, the electrons generated from the ionization of the solvent become localized on chloride ions as a result of their reaction with the neutral solvent molecules. The solvent counterion, RCl + , on the other hand, is free to exchange charge with the solute molecule. By choosing appropriate solutes, carbonium ion can be formed through a dissociative ionization process in the exchange. The benzyl cation was formed from its precursor compound dibenzylmercury and its reactions with two nucleophiles, triethylphosphine and triethylarsine, were separately studied. The formation and decay of benzyl cation were observed at 363 nm, the position of the maximum of its absorption band, and the second-order rate constants for the two reactions were determined at room temperature

  20. Possible Effect of 5, 6- Dimethyl -4 Isothiocyanate Thieno [2, 3-d] Pyrimidine and I or Irradiation on Ehrlich Carcinoma in Mice

    International Nuclear Information System (INIS)

    Mansour, S.Z.; Anis, L.M.

    2010-01-01

    Considerable attention has been devoted to the construction of new derivatives of [2,3-d] pyrimidines on the account of their reported biological activities. The aim of the present work is to evaluate the antitumour activity of 5, 6- dimethyl -4- isothiocyanate- thieno [2,3-d] pyrimidine (DMITCTP) in solid Ehrlich carcinoma (SEC) bearing mice. DMITCTP was administered on the 10th day after tumor inoculation at a dose of 150 mg/kg BW, day after day, during a period of 3 weeks. Whole body exposure to one dose of 2Gy gamma irradiation was carried out two weeks after DMITCTP administration. Biochemical analysis in the blood of solid Ehrlich carcinoma (SEC) bearing mice showed significant increase in MDA content and GSH-Px activity level a significant decrease in GSH content and SOD activity level, IL 10 concentration and TNF- α concentration was detected associated with significant alteration in kidney and liver functions, as compared to control. Administration of DMITCTP alone or in combination with gamma-irradiation has significantly decrease MDA content and GSH-Px activity level associated with significant increase in GSH content, SOD activity level, IL-10 concentration and TNF-a concentration, compared to SEC bearing mice. These results supported by significant improvement in liver and kidney functions. Treatment solid Ehrlich carcinoma (SEC) bearing mice with gamma-irradiation or DMITCTP combined with y-irradiation showed significant increase in MDA content, GSH-Px and GST activities levels and in amount of metabolites of CYP450 and significant decrease in GSH content, and SOD activity level, as compared to SEC bearing mice. Administration of DMITCTP alone or combined with gamma- irradiation has significantly decreased tumor volume

  1. Exploitation of phosphorescent labelling reagent of fullerol-fluorescein isothiocyanate and new method for the determination of trace alkaline phosphatase as well as forecast of human diseases

    International Nuclear Information System (INIS)

    Liu Jiaming; Huang Xiaomei; Liu Zhenbo; Lin Shaoqin; Li Feiming; Gao Fei; Li Zhiming; Zeng Liqing; Li Lianying; Ouyang Ying

    2009-01-01

    A new phosphorescent labelling reagent consisting of fullerol, fluorescein isothiocyanate and N,N-dimethylaniline (F-ol-(FITC) n -DMA) was developed. The mode of action is based on the reactivity of the active -OH group in F-ol with the -COOH group of FITC to form an F-ol-(FITC) n -DMA complex containing several FITC molecules. F-ol-(FITC) n -DMA increased the number of luminescent molecules in the biological target of WGA-AP-WGA-F-ol-(FITC) n -DMA (WGA and AP are wheat germ agglutinin and alkaline phosphatase, respectively) which improved the sensitivity using solid substrate room temperature phosphorimetry (SSRTP) detection. The proposed method provided high sensitivity and strong specificity for WGA-AP. The limit of detection (LD) was 0.15 ag AP spot -1 for F-ol and 0.097 ag AP spot -1 for FITC in F-ol-(FITC) n -DMA, which was lower than the method using single luminescent molecules of F-ol-DMA and FITC-DMA to label WGA (0.20 ag AP spot -1 for F-ol-DMA and 0.22 ag AP spot -1 for FITC-DMA). Results for the determination of AP in human serum were in good agreement with those obtained by enzyme-linked immunosorbent assay. The mechanism of F-ol-(FITC) n -DMA labelling of WGA was discussed.

  2. Crystal structure of N,N′-bis[2-((benzyl{[5-(dimethylaminonaphthalen-1-yl]sulfonyl}aminoethyl]naphthalene-1,8:4,5-tetracarboximide 1,2-dichlorobenzene trisolvate

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Claudio-Catalán

    2016-10-01

    Full Text Available The asymmetric unit of the title compound, C56H50N6O8S2·3C6H4Cl2, contains two half-molecules of the parent, A and B, which both have crystallographic inversion symmetry, together with three 2,3-dichlorobenzene molecules of solvation. Molecules A and B are conformationally similar, with dihedral angles between the central naphthalenediimide ring and the peripheral naphthalene and benzyl rings of 2.43 (7, 81.87 (7° (A and 3.95 (7, 84.88 (7° (B, respectively. The conformations are stabilized by the presence of intramolecular π–π interactions between the naphthalene ring and the six-membered diimide ring of the central naphthalenediimide moiety, with ring centroid-to-centroid distances of 3.5795 (8 Å (A and 3.5640 (8 Å (B. In the crystal, C—H...O hydrogen bonds link the molecules into infinite supramolecular chains along the c axis. These chains are interconnected through C—H...π and offset π–π interactions, generating supramolecular nanotubes which are filled by 1,2-dichlorobenzene molecules.

  3. Synthesis of 6-O-(5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosylonic acid)-D-galactose [6-O-(N-acetyl-α-D-neuraminyl)-D-galactose

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Vleugel, D.J.M. van der; Wassenburg, F.R.; Zwikker, J.W.

    1982-01-01

    Condensation of methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-2-chloro-2,3,5-trideoxy-beta-D-glycero-D-galacto-2-nonulopyranosonate with benzyl 2,3,4-tri-O-benzyl-beta-D-galactopyranoside, using silver salicylate as promoter, gave benzyl 2,3,4-tri-O-benzyl-6-O-(methyl

  4. Molecular imaging of a cell-penetrating peptide labeled fluorescein-5-isothiocyanate and MR contrast agents: gadopentetate dimeglumine

    International Nuclear Information System (INIS)

    Liu Min; Guo Youmin; Duan Xiaoyi; Guo Xiaojuan; Yang Junle; Xu Min

    2006-01-01

    Objective: To study the value of a new intracellular contrast agent--cell penetrating peptide labeled Fluorescein-5-isothiocyanate (FITC) and MRI contrast agent, Gadopentetate dimeglumine in molecular imaging. Methods: A new cell penetration peptides (CPPs)sequence LAGRRRRRRRRRK were synthesized in solid phase on the base of arginine (9) and were labelled with FITC (CPP 13 -FITC) and Gd - DTPA (CPP 13 -DTPA-Gd). Hepatic carcinoma cell line-HEPG 2 and mouse bone marrow stem cell was respectively stained by CPP 13 -FITC for different time intervals for observing the uptake and intracellular distribution. HEPG 2 in three l00 mm 2 culture plates was respectively incubated with CPP 13 -DTPA-Gd, Gd- DTPA and Dulbecco minimum essential medium for 30 min and imaged by 1.5 T MRI for studying the intracellular uptake and T 1 WI signal characteristics. Results: The peptide was synthesized by the manual solid-phase method successfully. The calculated molecular weight was 1792.78 and the chemical purity was over 95%. By inverted fluorescence microscope, HEPG 2 and mouse stem cell could transport CPP-FITC in cytoplasm and nuclear in 10 min. By MR imaging, CPP-DTPA-Gd could be uptake by HEPG 2 in 30 min and had a short T 1 short T 2 signal, furthermore. T 1 WI signal intensity ratio between in-tube (Ii) and out-tube (Io) in three groups of three scan slices were shown below: Iil/Io of group 1 (Group 1 was the cell incubated by CPP 13 -DTPA-Gd ) respectively was 2.84, 2.60, 2. 48; Iil/Io of group 2 (Group 2 was the cell incubated by DTPA-Gd) respectively is 1.15, 1.11, 1.12; Iil/Io of group 3 (Group 3 was the controled cell ) respectively was 1.15, 1.11, 1.11. By ANVOA analysis, the signal intensity among group 1, group 2 and group 3 had significant difference(F (1,2) = 201.88 P (1,3) =206.37 P (2,3) =0.529 P=0.507). Conclusion: The new constructed cell penetration peptide on the base of the polyargnine can translocate cell by carting FITC and MRI contrast agent-DTPA-Gd and the

  5. 聚合物微球固载的N-羟基邻苯二甲酰亚胺在分子氧氧化苯甲醇反应过程中的催化特性%Catalytic characteristics of N-hydroxyphthalimide immobilized on polymer microspheres in oxidation of benzyl alcohol by molecular oxygen

    Institute of Scientific and Technical Information of China (English)

    杨晓林; 黄建龙; 高保娇; 门吉英

    2015-01-01

    以甲基丙烯酸缩水甘油酯(GMA)和甲基丙烯酸甲酯(MMA)的交联共聚微球 GMA/MMA 为基质,经过几步大分子反应在微球表面合成与固载了 N-羟基邻苯二甲酰亚胺(NHPI),形成固载有 NHPI 的聚合物微球GMA/MMA-NHPI。将 GMA/MMA-NHPI 与 Co(OAc)2组成共催化体系,用于分子氧氧化苯甲醇的反应过程。研究结果表明,GMA/MMA-NHPI与Co(OAc)2所构成的共催化体系在温和条件(65℃和常压氧气)下可有效地实现苯甲醇的分子氧氧化过程,将其深度氧化为苯甲酸,显示出较好的催化活性和高的选择性(苯甲酸的选择性为96%)。主催化剂GMA/MMA-NHPI固载的NHPI与助催化剂Co(OAc)2适宜的摩尔比为20:1;主催化剂所含NHPI的摩尔分数为底物的10%时催化剂的用量比较适宜。固体催化剂GMA/MMA-NHPI还具有良好的再循环使用性能。%Crosslinked polymeric microspheres GMA/MMA of glycidyl methacrylate (GMA) and methyl methacrylate (MMA) were prepared, and then N-hydroxyphthalimide (NHPI) was synthesized and immobilized on GMA/MMA microspheres through several polymer reaction steps, resulting in the functionalized microspheres GMA/MMA-NHPI. The solid catalyst GMA/MMA-NHPI in combination with Co(OAc)2 was used in aerobic oxidation of benzyl alcohol. Experimental results showed that the composite catalyst consisting of GMA/MMA-NHPI and Co(OAc)2 could effectively catalyze aerobic oxidation of benzyl alcohol by molecular oxygen under mild conditions (65℃ and normal pressure). Benzyl alcohol was deeply oxidized to benzoic acid. Although benzyl alcohol conversion rate was not very high, catalytic activity was satisfactory and benzoic acid selectivity was as high as 96%. The appropriate molar ratio of immobilized NHPI on GMA/MMA-NHPI microspheres to Co(OAc)2 was 20:1, and the appropriate amount of GMA/MMA-NHPI was 10% (mol) of the substrate. The solid catalyst GMA/MMA-NHPI microspheres showed good recycling and reusing

  6. Effects of application methods of metam sodium and plastic covers on horizontal and vertical distributions of methyl isothiocyanate in bedded field plots.

    Science.gov (United States)

    Ou, Li-Tse; Thomas, John E; Allen, L Hartwell; Vu, Joseph C; Dickson, Donald W

    2006-08-01

    This study was conducted to examine the effects of three application methods of metam sodium (broadcast, single irrigation drip tape delivery, and double irrigation drip tape delivery) and two plastic covers (polyethylene film and virtually impermeable film) on volatilization and on horizontal and vertical distributions of the biologically active product of metam sodium, methyl isothiocyanate (MITC), in field plots in a Florida sandy soil. Volatilization of MITC from field beds lasted for about 20 hours after completion of metam sodium application regardless of application methods. Virtually impermeable film (VIF) was a better barrier to reduce volatilization loss than polyethylene film (PE). Since water was not applied during broadcast application, MITC was mainly retained in the shallow soil layer (0- to 20-cm depth) and downward movement of MITC was limited to about 30 cm. Large values of standard deviation indicated that initial spatial distribution of MITC in the root zone (10- and 20-cm depths) of the two broadcast applied beds covered with PE or VIF was variable. Twice more water was delivered through the single drip tape than through individual tapes of double drip tape treatments during drip application of metam sodium. More water from the single drip tape likely facilitated downward movement of MITC to at least 60-cm depth, but MITC did not penetrate to this depth in the double drip tape beds. On the other hand, horizontal distribution of MITC in the root zone (10- and 20-cm depths) in the double drip tape beds was more uniform than in the single drip tape beds. More MITC was retained in the subsurface of the VIF-covered beds regardless of application methods than in the PE-covered beds.

  7. Chemoselective organocatalytic aerobic oxidation of primary amines to secondary imines.

    Science.gov (United States)

    Wendlandt, Alison E; Stahl, Shannon S

    2012-06-01

    Biomimetic aerobic oxidation of primary benzylic amines has been achieved by using a quinone catalyst. Excellent selectivity is observed for primary, unbranched benzylic amines relative to secondary/tertiary amines, branched benzylic amines, and aliphatic amines. The exquisite selectivity for benzylic amines enables oxidative self-sorting within dynamic mixtures of amines and imines to afford high yields of cross-coupled imine products.

  8. Synthesis and evaluation of radioiodinated (S,S)-2-({alpha}-(2-iodophenoxy)benzyl)morpholine for imaging brain norepinephrine transporter

    Energy Technology Data Exchange (ETDEWEB)

    Kanegawa, Naoki; Kimura, Hiroyuki; Sugita, Taku; Kajiyama, Satomi; Kuge, Yuji; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Sakyo-ku, Kyoto (Japan); Kiyono, Yasushi [Kyoto University, Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Sakyo-ku, Kyoto (Japan); Kawashima, Hidekazu [Kyoto University, Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Sakyo-ku, Kyoto (Japan); Ueda, Masashi [Kyoto Prefectural University of Medicine, Radioisotope Laboratory, Sakyo-ku, Kyoto (Japan)

    2006-06-15

    Abnormality of the brain norepinephrine transporter (NET) has been reported in several psychiatric and neuronal disorders. Since NET is an important target for the diagnosis of these diseases, the development of radiopharmaceuticals for imaging of brain NET has been eagerly awaited. In this study, we synthesized (S,S)-2-({alpha}-(2-iodophenoxy)benzyl)morpholine [(S,S)-IPBM], a derivative of reboxetine iodinated at position 2 of the phenoxy ring, and evaluated its potential as a radiopharmaceutical for imaging brain NET using SPECT. (S,S)-{sup 123/125}I-IPBM was synthesized in a halogen exchange reaction. The affinity and selectivity of (S,S)-IPBM for NET was measured by assaying the displacement of {sup 3}H-nisoxetine and (S,S)-{sup 125}I-IPBM from the binding site in rat brain membrane, respectively. The biodistribution of (S,S)-{sup 125}I-IPBM was also determined in rats. Furthermore, SPECT studies with (S,S)-{sup 123}I-IPBM were carried out in the common marmoset. (S,S)-{sup 125}I-IPBM was prepared with high radiochemical yields (65%) and high radiochemical purity (>98%). (S,S)-IPBM showed high affinity and selectivity for NET in the binding assay experiments. In biodistribution experiments, (S,S)-{sup 125}I-IPBM showed rapid uptake in the brain, and the regional cerebral distribution was consistent with the density of NET. The administration of nisoxetine, a selective NET-binding agent, decreased the accumulation of (S,S)-{sup 125}I-IPBM in the brain, but the administration of selective serotonin transporter and dopamine transporter binding agents caused no significant changes in the accumulation. Moreover, (S,S)-{sup 123}I-IPBM allowed brain NET imaging in the common marmoset with SPECT. These results suggest that (S,S)-{sup 123}I-IPBM is a potential SPECT radiopharmaceutical for imaging brain NET. (orig.)

  9. Variation of kinetic energy release with temperature and electron energy for unimolecular ionic transitions

    International Nuclear Information System (INIS)

    Rabia, M.A.; Fahmy, M.A.

    1992-01-01

    The kinetic energy released during seven unimolecular ionic transitions, generated from benzyl alcohol and benzyl amine have been studied as a function of ion source temperature and ionizing electron energy. Only, the kinetic energy released during H CN elimination from fragment [C 7 H 8 N]+ ion of benzyl amine displays a temperature dependence. For only two transitions, generated from benzyl alcohol, the kinetic energy released show a significant ionizing electron energy dependence. These results may reveal the role of the internal energy of reacting ions in producing the kinetic energy released some transitions produced from benzyl alcohol

  10. Phenethyl Isothiocyanate Induces Apoptotic Cell Death Through the Mitochondria-dependent Pathway in Gefitinib-resistant NCI-H460 Human Lung Cancer Cells In Vitro.

    Science.gov (United States)

    Hsia, Te-Chun; Huang, Yi-Ping; Jiang, Yi-Wen; Chen, Hsin-Yu; Cheng, Zheng-Yu; Hsiao, Yung-Ting; Chen, Cheng-Yen; Peng, Shu-Fen; Chueh, Fu-Shin; Chou, Yu-Cheng; Chung, Jing-Gung

    2018-04-01

    Some lung cancer patients treated with gefitinib develop resistance to this drug resulting in unsatisfactory treatment outcomes. Phenethyl isothiocyanate (PEITC), present in our common cruciferous vegetables, exhibits anticancer activities in many human cancer cell lines. Currently, there is no available information on the possible modification of gefitinib resistance of lung cancer in vitro by PEITC. Thus, the effects of PEITC on gefitinib resistant lung cancer NCI-H460 cells were investigated in vitro. The total cell viability, apoptotic cell death, production of reactive oxygen species (ROS) and Ca 2+ , levels of mitochondria membrane potential (ΔΨ m ) and caspase-3, -8 and -9 activities were measured by flow cytometry assay. PEITC induced chromatin condensation was examined by DAPI staining. PEITC-induced cell morphological changes, decreased total viable cell number and induced apoptotic cell death in NCI-H460 and NCI-H460/G cells. PEITC decreased ROS production in NCI-H460 cells, but increased production in NCI-H460/G cells. PEITC increased Ca 2+ production, decreased the levels of ΔΨ m and increased caspase-3, -8 and -9 activities in both NCI-H460 and NCI-H460/G cells. Western blotting was used to examine the effect of apoptotic cell death associated protein expression in NCI-H460 NCI-H460/G cells after exposure to PEITC. Results showed that PEITC increased expression of cleaved caspase-3, PARP, GADD153, Endo G and pro-apoptotic protein Bax in NCI-H460/G cells. Based on these results, we suggest that PEITC induces apoptotic cell death via the caspase- and mitochondria-dependent pathway in NCI-H460/G cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Pungent Components from Thioglucosides in Armoracia rusticana Grown in China, Obtained by Enzymatic Hydrolysis

    Directory of Open Access Journals (Sweden)

    Rong Li

    2006-01-01

    Full Text Available The conditions of enzymatic hydrolysis of thioglucosides, which are the precursors of the pungent components in Armoracia rusticana grown in China, were studied. The effects of incubation time, temperature, pH and the addition of ascorbic acid on the hydrolysis of thioglucosides were determined. The optimum hydrolytic conditions for the pungent components from thioglucosides were time, 120 min; temperature, 65 oC; pH=4.0 and ascorbic acid, 2 mg/g. The mixture of pungent components in a pale-yellow liquid and a yield of 0.85 % were isolated and analyzed by GC/MS. Nine constituents were identified, representing 92.1 % of the pungent components. The major constituents were allyl isothiocyanate (78.4 %, 3-butenyl isothiocyanate (1.5 %, 2-pentyl isothiocyanate (2.1 % and β-phenylethyl isothiocyanate (9.4 %.

  12. Determination of volatile polycyclic aromatic hydrocarbons in waters using headspace solid-phase microextraction with a benzyl-functionalized crosslinked polymeric ionic liquid coating.

    Science.gov (United States)

    Merdivan, Melek; Pino, Verónica; Anderson, Jared L

    2017-08-01

    A benzyl-functionalized crosslinked polymeric ionic liquid (PIL), produced through the co-polymerization of the 1-vinylbenzyl-3-hexadecylimidazolium bis[(trifluoromethyl)sulfonyl]imide (VBHDIM-NTf 2 ) ionic liquid (IL) monomer and 1,12-di(3-vinylbenzylimidazolium)dodecane bis[(trifluoromethyl)sulfonyl]imide ((DVBIM) 2 C 12- 2NTf 2 ) IL crosslinker, was successfully used as a sorbent coating in headspace solid-phase microextraction (SPME) coupled to gas chromatography (GC) with flame-ionization detection (FID) to determine seven volatile polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. Optimum extraction conditions for the PAHs when using the novel sorbent include an extraction temperature of 50°C, an ionic strength content adjusted with 30% (w/v) NaCl in the aqueous sample, and an extraction time of 60 min. The extraction performance of the crosslinked PIL fiber was compared to the SPME commercial coating polydimethylsiloxane fiber. The calibration ranges of the studied PAHs were linear in the range of 0.02-20 µg L -1 for the crosslinked PIL fiber. The accuracy of the proposed method was demonstrated by examining the spiked recoveries of seven PAHs which produced values ranging from 67.2% to 130% (for river- and seawater samples), and precision values lower than 9.4% for a spiked level of 1 µg L -1 , and detection limits between 0.01 and 0.04 µg L -1 , which supports the sensitivity of the method using GC-FID.

  13. Effects of BTS (N-benzyl-p-toluene sulphonamide), an inhibitor for myosin-actin interaction, on myofibrillogenesis in skeletal muscle cells in culture.

    Science.gov (United States)

    Kagawa, Maiko; Sato, Naruki; Obinata, Takashi

    2006-11-01

    Actin filaments align around myosin filaments in the correct polarity and in a hexagonal arrangement to form cross-striated structures. It has been postulated that this myosin-actin interaction is important in the initial phase of myofibrillogenesis. It was previously demonstrated that an inhibitor of actin-myosin interaction, BDM (2,3-butanedione monoxime), suppresses myofibril formation in muscle cells in culture. However, further study showed that BDM also exerts several additional effects on living cells. In this study, we further examined the role of actin-myosin interaction in myofibril assembly in primary cultures of chick embryonic skeletal muscle by applying a more specific inhibitor, BTS (N-benzyl-p-toluene sulphonamide), of myosin ATPase and actin-myosin interaction. The assembly of sarcomeric structures from myofibrillar proteins was examined by immunocytochemical methods with the application of BTS to myotubes just after fusion. Addition of BTS (10-50 microM) significantly suppressed the organization of actin and myosin into cross-striated structures. BTS also interfered in the organization of alpha-actinin, C-protein (or MyBP-C), and connectin (or titin) into ordered striated structures, though the sensitivity was less. Moreover, when myotubes cultured in the presence of BTS were transferred to a control medium, sarcomeric structures were formed in 2-3 days, indicating that the inhibitory effect of BTS on myotubes is reversible. These results show that actin-myosin interaction plays a critical role in the process of myofibrillogenesis.

  14. Flurbiprofen benzyl nitrate (NBS-242) inhibits the growth of A-431 human epidermoid carcinoma cells and targets β-catenin.

    Science.gov (United States)

    Nath, Niharika; Liu, Xiaoping; Jacobs, Lloydine; Kashfi, Khosrow

    2013-01-01

    The Wnt/β-catenin/T cell factor (TCF) signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs). Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242), and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/β-catenin, cyclin D1, and caspase-3. NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50) for growth inhibition being 60 ± 4 μM, 320 ± 20 μM, and 880 ± 65 μM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved β-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of β-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels in a concentration dependent manner. These findings establish a strong inhibitory effect of NBS-242 in A-431 human epidermoid carcinoma cells. NBS-242 modulates parameters that are important in determining cellular mass.

  15. Effect of addition of butyl benzyl phthalate plasticizer and zinc oxide nanoparticles on mechanical properties of cellulose acetate butyrate/organoclay biocomposite

    Science.gov (United States)

    Putra, B. A. P.; Juwono, A. L.; Rochman, N. T.

    2017-07-01

    Plastics as packaging materials and coatings undergo increasing demands globally each year. This pose a serious problem to the environment due to its difficulty to degrade. One solution to addressing the problem of plastic wastes is the use of bioplastics. According to the European Organization Bioplastic, one of the biodegradable plastics is derivative of cellulose. To improve mechanical properties of bioplastic, biocomposites are made with the addition of certain additives and fillers. The aim of this study is to investigate the effect of butyl benzyl phthalate plasticizer (BBP) and ZnO nanoparticles addition on mechanical properties of cellulose acetate butyrate (CAB) / organoclay biocomposite. ZnO nanoparticles synthesized from commercial ZnO precursor by using sol-gel size reduction method. ZnO was dissolved in a solution of citric acid in the ratio 1:1 to 1:5 to form zinc citrate. Zinc citrate then decomposed by calcination at temperature of 600oC. ZnO nanoparticles with an average size of 44.4 nm is obtained at a ratio of 1: 2. The addition of ZnO nanoparticles and BBP plasticizer was varied to determine the effect on the mechanical properties of biocomposite. The addition of 10 - 15 %wt ZnO nanoparticles and 30 - 40 %wt BBP plasticizer was studied to determine the effect on the tensile strength, elongation, and modulus elasticity of the biocomposites. Biocomposite films were made by using solution casting method with acetone as solvent. The addition of plasticizer BBP and ZnO nanoparticles by 30% and 10% made biocomposite has a tensile strength of 2.223 MPa.

  16. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Allyl and benzyl ethers of alcohols can be prepared conveniently and in high yield with allyl and benzyl bromide in the presence of solid potassium hydroxide without use of any solvent. Phenols can be converted to allyl ethers but are inert to benzylation under above conditions.

  17. Distribution and metabolism of cis- and trans-resmethrin (5-benzyl-3-furyl-methyl-2,2-dimethyl 3-(2-methyl-propenyl)cyclopropanecarboxylate) in laying hens

    International Nuclear Information System (INIS)

    Christopher, R.J.

    1986-01-01

    The cis and trans isomers of the synthetic pyrethroid, resmethrin (5-benzyl-3-furylmethyl-(IRS)-chrysanthemate), labeled with radiocarbon in either the alcohol or acid moiety, were individually administered orally to White Leghorn laying hens at a dosage of 10 mg/kg. With each isomer and label position, greater than 90% of the radiocarbon was eliminated in the excreta within 24 hours posttreatment. Radiocarbon residues in the egg white and yolk fractions were low, with peak levels observed at 1-2 and 4-5 days post-treatment in white and yolk, respectively. Residues were considerably lower in egg whites than in yolks. In birds killed 12 hours post-treatment, radiocarbon residues in tissues were low with peak levels in liver and kidney. Unmetabolized cis- or trans-resmethrin was detected in all tissues analyzed from birds killed at 12 hours post-treatment and represented the major metabolite in fat. The majority of the tissues from hens 14 days post-treatment contained no detectable levels of radiocarbon and would appear not to be indicative of appreciable residue retention. Numerous metabolites were isolated and were present in both the free and conjugated form. The metabolic routes for both resmethrin isomers arise from ester hydrolysis and oxidation of the hydrolytic products. Certain of these metabolites are further conjugated with glucuronic acid, sulfate or other unidentified compounds before excretion

  18. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    International Nuclear Information System (INIS)

    Sakhalkar, H S; Dewhirst, M; Oliver, T; Cao, Y; Oldham, M

    2007-01-01

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate or BABB

  19. Functional imaging in bulk tissue specimens using optical emission tomography: fluorescence preservation during optical clearing

    Energy Technology Data Exchange (ETDEWEB)

    Sakhalkar, H S [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Dewhirst, M [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oliver, T [Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 (United States); Cao, Y [Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710 (United States); Oldham, M [Department of Radiation Oncology Physics, and Biomedical Engineering, Duke University Medical Center, Durham, NC 27710 (United States)

    2007-04-21

    Optical emission computed tomography (optical-ECT) is a technique for imaging the three-dimensional (3D) distribution of fluorescent probes in biological tissue specimens with high contrast and spatial resolution. In optical-ECT, functional information can be imaged by (i) systemic application of functional labels (e.g. fluorophore labelled proteins) and/or (ii) endogenous expression of fluorescent reporter proteins (e.g. red fluorescent protein (RFP), green fluorescent protein (GFP)) in vivo. An essential prerequisite for optical-ECT is optical clearing, a procedure where tissue specimens are made transparent to light by sequential perfusion with fixing, dehydrating and clearing agents. In this study, we investigate clearing protocols involving a selection of common fixing (4% buffered paraformaldehyde (PFA), methanol and ethanol), dehydrating (methanol and ethanol) and clearing agents (methyl salicylate and benzyl-alcohol-benzyl-benzoate (BABB)) in order to determine a 'fluorescence friendly' clearing procedure. Cell culture experiments were employed to optimize the sequence of chemical treatments that best preserve fluorescence. Texas red (TxRed), fluorescein isothiocyanate (FITC), RFP and GFP were tested as fluorophores and fluorescent reporter proteins of interest. Fluorescent and control cells were imaged on a microscope using a DSred2 and FITC filter set. The most promising clearing protocols of cell culture experiments were applied to whole xenograft tumour specimens, to test their effectiveness in large unsectioned samples. Fluorescence of TxRed/FITC fluorophores was not found to be significantly affected by any of the test clearing protocols. RFP and GFP fluorescence, however, was found to be significantly greater when cell fixation was in ethanol. Fixation in either PFA or methanol resulted in diminished fluorescence. After ethanol fixation, the RFP and GFP fluorescence proved remarkably robust to subsequent exposure to either methyl salicylate

  20. Studies on unusually reactive metal powders. Preparation of new organometallic and organic compounds including potential new catalysts. Final report, July 1, 1980-December 31, 1984

    International Nuclear Information System (INIS)

    Rieke, R.D.

    1985-06-01

    This research project was involved with the preparation and study of highly reactive metal powders prepared by the reduction of metal salts with alkali metals. Studies concentrated on nickel, copper, cadmium, uranium, iron, and magnesium. The nickel powders have been found to react rapidly with benzylic halides, and the resulting organonickel complexes yield dibenzyl. Aryl halides react rapidly with the nickel powders to produce biaryl compounds in high yields. Benzylic halides react with the nickel powders in the presence of acylhalides to produce benzyl ketones in high yields. Reactions of ROCOCOC1 and benzylic halides with nickel powders yield benzyl ketones. These reactions proceed with a wide variety of substituents on the phenyl ring of the benzylic halides. Highly reactive uranium has been prepared, and found to react with a variety of oxygen containing substrates, such as nitrobenzene to yield azo benzene. Highly reactive magnesium has opened up a totally new area of low temperature Grignard chemistry. The preparation of highly reactive copper has allowed the direct preparation of organocopper species directly from organic halides. 16 refs., 6 tabs

  1. 6-(1-Benzyl-1H-pyrrol-2-yl)-2,4-dioxo-5-hexenoic acids as dual inhibitors of recombinant HIV-1 integrase and ribonuclease H, synthesized by a parallel synthesis approach.

    Science.gov (United States)

    Costi, Roberta; Métifiot, Mathieu; Esposito, Francesca; Cuzzucoli Crucitti, Giuliana; Pescatori, Luca; Messore, Antonella; Scipione, Luigi; Tortorella, Silvano; Zinzula, Luca; Novellino, Ettore; Pommier, Yves; Tramontano, Enzo; Marchand, Christophe; Di Santo, Roberto

    2013-11-14

    The increasing efficiency of HAART has helped to transform HIV/AIDS into a chronic disease. Still, resistance and drug-drug interactions warrant the development of new anti-HIV agents. We previously discovered hit 6, active against HIV-1 replication and targeting RNase H in vitro. Because of its diketo-acid moiety, we speculated that this chemotype could serve to develop dual inhibitors of both RNase H and integrase. Here, we describe a new series of 1-benzyl-pyrrolyl diketohexenoic derivatives, 7a-y and 8a-y, synthesized following a parallel solution-phase approach. Those 50 analogues have been tested on recombinant enzymes (RNase H and integrase) and in cell-based assays. Approximately half (22) exibited inhibition of HIV replication. Compounds 7b, 7u, and 8g were the most active against the RNase H activity of reverse-transcriptase, with IC50 values of 3, 3, and 2.5 μM, respectively. Compound 8g was also the most potent integrase inhibitor with an IC50 value of 26 nM.

  2. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    International Nuclear Information System (INIS)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta; Watanabe, Tatsuo; Imai, Yasuyuki

    2012-01-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  3. Transient receptor potential ankyrin 1 activation enhances hapten sensitization in a T-helper type 2-driven fluorescein isothiocyanate-induced contact hypersensitivity mouse model

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, Takahiro; Tamai, Takuma; Sahara, Yurina; Kurohane, Kohta [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Watanabe, Tatsuo [Laboratory of Food Chemistry, School of Food and Nutritional Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan); Imai, Yasuyuki, E-mail: imai@u-shizuoka-ken.ac.jp [Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, 52‐1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422‐8526 (Japan)

    2012-11-01

    Some chemicals contribute to the development of allergies by increasing the immunogenicity of other allergens. We have demonstrated that several phthalate esters, including dibutyl phthalate (DBP), enhance skin sensitization to fluorescein isothiocyanate (FITC) in a mouse contact hypersensitivity model, in which the T-helper type 2 (Th2) response is essential. On the other hand, some phthalate esters were found to activate transient receptor potential ankyrin 1 (TRPA1) cation channels on sensory neurons. We then found a positive correlation between the enhancing effects of several types of phthalate esters on skin sensitization to FITC and their ability to activate TRPA1. Here we examined the involvement of TRPA1 in sensitization to FITC by using TRPA1 agonists other than phthalate esters. During skin sensitization to FITC, the TRPA1 agonists (menthol, carvacrol, cinnamaldehyde and DBP) augmented the ear-swelling response as well as trafficking of FITC-presenting dendritic cells to draining lymph nodes. We confirmed that these TRPA1 agonists induced calcium influx into TRPA1-expressing Chinese hamster ovary (CHO) cells. We also found that TRPA1 antagonist HC-030031 inhibited DBP-induced calcium influx into TRPA1-expressing CHO cells. After pretreatment with this antagonist upon skin sensitization to FITC, the enhancing effect of DBP on sensitization was suppressed. These results suggest that TRPA1 activation will become a useful marker to find chemicals that facilitate sensitization in combination with other immunogenic haptens. -- Highlights: ► Role of TRPA1 activation was revealed in a mouse model of skin sensitization to FITC. ► TRPA1 agonists enhanced skin sensitization as well as dendritic cell trafficking. ► Dibutyl phthalate (DBP) has been shown to enhance skin sensitization to FITC. ► TRPA1 activation by DBP was inhibited by a selective antagonist, HC-030031. ► HC-030031 inhibited the enhancing effect of DBP on skin sensitization to FITC.

  4. Synthesis and biological evaluation of N-(carbobenzyloxy)-l-phenylalanine and N-(carbobenzyloxy)-l-aspartic acid-β-benzyl ester derivatives as potent topoisomerase IIα inhibitors.

    Science.gov (United States)

    Han, Xiaoyan; Zhong, Yifan; Zhou, Guan; Qi, Hui; Li, Shengbin; Ding, Qiang; Liu, Zhenming; Song, Yali; Qiao, Xiaoqiang

    2017-06-15

    A new series of thirteen N-(carbobenzyloxy)-l-phenylalanine and N-(carbobenzyloxy)-l-aspartic acid-β-benzyl ester compounds were synthesized and evaluated for antiproliferative activity against four different human cancer cell lines: cervical cancer (HeLa), lung cancer (A549), gastric cancer (MGC-803) and breast cancer (MCF-7) as well as topoisomerase I and IIα inhibitory activity. Compounds (5a, 5b, 5e, 8a, 8b) showed significant antiproliferative activity with low IC 50 values against the four cancer cell lines. Equally, compounds 5a, 5b, 5e, 5f, 8a, 8d, 8e and 8f showed topoisomerase IIα inhibitory activity at 100μM with 5b, 5e, 8f exhibiting potential topoisomerase IIα inhibitory activity compared to positive control at 100μM and 20μM, respectively. Conversely compounds 5e, 5f, 5g and 8a showed weaker topoisomerase I inhibitory activity compared to positive control at 100μM. Compound 5b exhibited the most potent topoisomerase IIα inhibitory activity at low concentration and better antiproliferative activity against the four human cancer cell lines. The molecular interactions between compounds 5a-5g, 8a-8f and the topoisomerase IIα (PDB ID: 1ZXM) were further investigated through molecular docking. The results indicated that these compounds could serve as promising leads for further optimization as novel antitumor agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Benzyl alcohol derivatives from the mushroom Hericium erinaceum attenuate LPS-stimulated inflammatory response through the regulation of NF-κB and AP-1 activity.

    Science.gov (United States)

    Noh, Hyung Jun; Yoon, Ju Young; Kim, Geum Sook; Lee, Seung Eun; Lee, Dae Young; Choi, Je Hun; Kim, Seung Yu; Kang, Ki Sung; Cho, Jae Youl; Kim, Ki Hyun

    2014-10-01

    On the search for anti-inflammatory compounds from natural Korean medicinal sources, a bioassay-guided fractionation and chemical investigation of the MeOH extract from the fruiting bodies of Hericium erinaceum resulted in the isolation and identification of five benzyl alcohol derivatives (1-5). In this study, their anti-inflammatory effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators were examined using RAW 264.7 macrophage cells. The structures of isolates were identified by comparing their spectroscopic data with previously reported values. The analysis of their inhibitory activities on LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in RAW 264.7 macrophage cells showed that erinacerin B (2) and hericenone E (4) decreased the levels of NO and PGE2 production in a concentration-dependent manner. Next, this study was performed to examine their mechanism of action on the regulation of NO and PGE2 production. Compounds 2 and 4 were found to block the LPS-induced phosphorylation of two major inflammatory transcription factors, NF-κB (p65/p50) and AP-1 (c-Jun and c-Fos). Taken together, these results suggest that down-regulation of LPS-induced NO and PGE2 production by compounds 2 and 4 is mediated through the modulation of NF-κB and AP-1 activation in macrophage cells. These results impact the development of potential health products for preventing and treating inflammatory diseases.

  6. Sulfur deactivation of fatty ester hydrogenolysis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Brands, D.S.; U-A-Sai, G.; Poels, E.K.; Bliek, A. [Univ. of Amsterdam (Netherlands). Dept. of Chemical Engineering

    1999-08-15

    Trace organosulfur compounds present as natural impurities in oleochemical feedstocks may lead to activation of copper-containing catalysts applied for hydrogenolysis of esters toward fatty alcohols. In this paper, the sulfur deactivation of Cu/SiO{sub 2} and Cu/ZnO/SiO{sub 2} catalysts was studied in the liquid-phase hydrogenolysis of methyl palmitate. The rate of deactivation is fast and increases as a function of the sulfur-containing compound present: octadecanethiol {approx} dihexadecyl disulfide < benzyl isothiocyanate < methyl p-toluene sulfonate < dihexadecyl sulfide < dibenzothiophene. The rapid deactivation is caused by the fact that sulfur is quantitatively removed from the reaction mixture and because mainly surface sulfides are formed under hydrogenolysis conditions. The life time of a zinc-promoted catalyst is up to two times higher than that of the Cu/SiO{sub 2} catalyst, most likely due to zinc surface sulfide formation. The maximum sulfur coverage obtained after full catalyst deactivation with dibenzothiophene and dihexadecyl sulfide--the sulfur compounds that cause the fastest deactivation--may be as low as 0.07. This is due to the fact that decomposition of these compounds as well as the hydrogenolysis reaction itself proceeds on ensembles of copper atoms. Catalyst regeneration studies reveal that activity cannot be regained by reduction or combined oxidation/reduction treatments. XRD, TPR, and TPO results confirm that no distinct bulk copper or zinc sulfide or sulfate phases are present.

  7. Combined treatment with cotylenin A and phenethyl isothiocyanate induces strong antitumor activity mainly through the induction of ferroptotic cell death in human pancreatic cancer cells.

    Science.gov (United States)

    Kasukabe, Takashi; Honma, Yoshio; Okabe-Kado, Junko; Higuchi, Yusuke; Kato, Nobuo; Kumakura, Shunichi

    2016-08-01

    The treatment of pancreatic cancer, one of the most aggressive gastrointestinal tract malignancies, with current chemotherapeutic drugs has had limited success due to its chemoresistance and poor prognosis. Therefore, the development of new drugs or effective combination therapies is urgently needed. Cotylenin A (CN-A) (a plant growth regulator) is a potent inducer of differentiation in myeloid leukemia cells and exhibits potent antitumor activities in several cancer cell lines. In the present study, we demonstrated that CN-A and phenethyl isothiocyanate (PEITC), an inducer of reactive oxygen species (ROS) and a dietary anticarcinogenic compound, synergistically inhibited the proliferation of MIAPaCa-2, PANC-1 and gemcitabine-resistant PANC-1 cells. A combined treatment with CN-A and PEITC also effectively inhibited the anchorage-independent growth of these cancer cells. The combined treatment with CN-A and PEITC strongly induced cell death within 1 day at concentrations at which CN-A or PEITC alone did not affect cell viability. A combined treatment with synthetic CN-A derivatives (ISIR-005 and ISIR-042) or fusicoccin J (CN-A-related natural product) and PEITC did not have synergistic effects on cell death. The combined treatment with CN-A and PEITC synergistically induced the generation of ROS. Antioxidants (N-acetylcysteine and trolox), ferroptosis inhibitors (ferrostatin-1 and liproxstatin), and the lysosomal iron chelator deferoxamine canceled the synergistic cell death. Apoptosis inhibitors (Z-VAD-FMK and Q-VD-OPH) and the necrosis inhibitor necrostatin-1s did not inhibit synergistic cell death. Autophagy inhibitors (3-metyladenine and chloroquine) partially prevented cell death. These results show that synergistic cell death induced by the combined treatment with CN-A and PEITC is mainly due to the induction of ferroptosis. Therefore, the combination of CN-A and PEITC has potential as a novel therapeutic strategy against pancreatic cancer.

  8. Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae).

    Science.gov (United States)

    Monteiro, Ildenice Nogueira; Monteiro, Odair Dos Santos; Costa-Junior, Lívio Martins; da Silva Lima, Aldilene; Andrade, Eloisa Helena de Aguiar; Maia, José Guilherme Soares; Mouchrek Filho, Victor Elias

    2017-04-30

    The Essential Oils (EOs) from the leaves of species Cinnamomum verum J. Presl are used in the pharmaceutical industry for their numerous biological activities. Currently, the main compound of C. verum EO is eugenol which has acaricidal activity; however, a rare chemotype with benzyl benzoate as the main component can be found. Benzyl benzoate is recognized as an acaricide; however, studies of the C. verum EOs benzyl benzoate chemotype on Rhipicephalus microplus were not reported. The aim of this study was to evaluate the acaricide activity of an EO from a rare chemotype of C. verum, as well as purified benzyl benzoate, against larvae and engorged females of R. microplus resistant to amidines and pyrethroids. The EO was extracted from C. verum leaves and the compounds present were identified using a gas phase chromatograph coupled to a mass spectrometer. Efficacy against R. microplus was assessed by the larval packet and the engorged female immersion tests. A rare chemotype of C. verum was found to produce EOs with benzyl benzoate (65.4%) as the main compound. The C. verum essential oil was 3.3 times more efficient on the R. microplus larvae than was benzyl benzoate. However, no differences were found on the R. microplus engorged females. This is the first report regarding the acaricidal activity of C. verum with chemotype benzyl benzoate, and this compound showed acaricidal activity on R. microplus larvae. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    International Nuclear Information System (INIS)

    Shimizu, Takashi; Ichikawa, Tsuneki

    2005-01-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon γ-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M n R 1 COOCH(C 6 H 5 )R 2 M n +e - ->M n R 1 COO - + · CH(C 6 H 5 )R 2 M n . The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching

  10. Study of the effect of gamma radiation on the molecule of tetracycline concerning its behavior as complexing and extracting agent; Estudo do efeito da radiacao gama sobre a molecula de tetraciclina relativamente ao seu comportamento como agente complexante e extrator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade e Silva, Leonardo Gondim de

    1982-07-01

    Both solvent extraction and spectrophotometric techniques were used to show the alterations that gamma radiation causes in the behavior of tetracycline molecule as far as its extracting and complexing power are concerned. The effect of gamma radiation on the solid tetracycline molecule, benzyl alcohol and on the solution of both was examined in solvent extraction systems whose aqueous phases were made up by {sup 152} Eu-{sup 154}Eu radioactive tracer solutions and whose organic phases were constituted by tetracycline-benzyl alcohol solutions. Experiments were performed in order to determine whether or not the water used for the pre-saturation of benzyl alcohol would influence the radiolysis of tetracycline. Solvent extraction and spectrophotometry were the techniques used to obtain the necessary data. Absorption spectra of irradiated tetracycline benzyl alcohol solutions submitted to several gamma radiation doses were examined and the alterations shown by these spectra were examined. The effect of gamma radiation on the tetracycline molecule was also studied when tetracycline-benzyl alcohol solutions were irradiated under several gaseous atmospheres, namely: O{sub 2}, N{sub 2}, SF{sub 6} and N{sub 2}O. The variation on the concentration of the tetracycline-benzyl alcohol solution caused by several doses of gamma radiation was determined by using the spectrophotometric technique. (author)

  11. Study of the effect of gamma radiation on the molecule of tetracycline concerning its behavior as complexing and extracting agent

    International Nuclear Information System (INIS)

    Andrade e Silva, Leonardo Gondim de

    1982-01-01

    Both solvent extraction and spectrophotometric techniques were used to show the alterations that gamma radiation causes in the behavior of tetracycline molecule as far as its extracting and complexing power are concerned. The effect of gamma radiation on the solid tetracycline molecule, benzyl alcohol and on the solution of both was examined in solvent extraction systems whose aqueous phases were made up by 152 Eu- 154 Eu radioactive tracer solutions and whose organic phases were constituted by tetracycline-benzyl alcohol solutions. Experiments were performed in order to determine whether or not the water used for the pre-saturation of benzyl alcohol would influence the radiolysis of tetracycline. Solvent extraction and spectrophotometry were the techniques used to obtain the necessary data. Absorption spectra of irradiated tetracycline benzyl alcohol solutions submitted to several gamma radiation doses were examined and the alterations shown by these spectra were examined. The effect of gamma radiation on the tetracycline molecule was also studied when tetracycline-benzyl alcohol solutions were irradiated under several gaseous atmospheres, namely: O 2 , N 2 , SF 6 and N 2 O. The variation on the concentration of the tetracycline-benzyl alcohol solution caused by several doses of gamma radiation was determined by using the spectrophotometric technique. (author)

  12. A Química de Lauráceas Brasileiras. LXX. Estirilpironas de Aniba kappleri

    OpenAIRE

    Santos, Margarida M. dos; Mesquita, Antônio A. L.; Gottlieb, Otto R.

    1982-01-01

    Summary The trunk wood of Aniba kappleri Mez (family Lauraceae) contains besides sitosterol, octacosanoic acid and rhamnocitrin (7-O-methylkaempferol), three esters, namely benzyl benzoate, benzyl 2-hydroxybenzoate and benzyl 2,6-dihydroxybenzoate, and two α-pyrones, namely 4-methoxy-6- (E) -(3',4'-methy!enedioxystyryl)-2-pyrone and 4-methoxy-6-{E)-(3',4'-dimethoxystyryl]-2pyrone. A dimer of the latter compound, which was obtained additionally, is considered to be an artifact.

  13. Neutral and stereospecific Tc-99m complexes: [99mTc]N-benzyl-3,4-di-(N-2-mercaptoethyl)-amino-pyrrolidines (P-BAT)

    International Nuclear Information System (INIS)

    Zhuang Zhiping; Ploessl, Karl; Kung Meiping; Mu Mu; Kung, Hank F.

    1999-01-01

    Technetium-99m-labeled radiopharmaceuticals are currently the most commonly used agents in nuclear medicine. To prepare binding site-specific small molecules containing a Tc-99m complexing core, it is important to consider a ligand system, which selectively forms only one stereoisomer. A novel series of bisaminoethanethiol (BAT) derivatives as a model system were prepared. Stereoisomers of N-benzyl-3,4-di-(N-2-mercaptoethyl)-amino pyrrolidines (P-BAT): (3R,4R)-P-BAT (R,R-4) and (3,4)meso-P-BAT (8), the trans and meso isomer, respectively, as a chelating group were prepared successfully. The desired Tc-99m P-BAT complexes were obtained by using Sn(II)/glucoheptonate as the reducing agent for [ 99m Tc]pertechnetate. As predicted, after complexation with [ 99m Tc]Tc v O, the trans isomer, (3R,4R)-P-BAT (R,R-4), showed only one isomer; whereas the corresponding meso isomer, (3,4)meso-P-BAT (8), produced two distinctive complexes isolated readily by high performance liquid chromatography (HPLC). The [ 99m Tc](R,S)meso-P-BAT (8) isomers showed a different lipophilicity (partition coefficient [P.C.]=54.3 and 55.4 for peak A and peak B, respectively), as compared with that of the corresponding [ 99m Tc](3R,4R)-P-BAT (R,R-4), trans isomer ( P.C.=163). Results of the biodistribution study in rats of these isomers show different heart and brain uptake, suggesting that the intrinsic differences in biodistribution are due to structural and stereospecific factors. Examples in this report confirm that it is possible to design stereospecific Tc-99m complexes based on the bisaminoethanethiol (N 2 S 2 , BAT) ligand system. Consideration on stereoselectivity of site-specific agents labeled with Tc-99m is likely an essential requirement on developing binding-site specific radiopharmaceuticals

  14. Induction of lung lesions in Wistar rats by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and its inhibition by aspirin and phenethyl isothiocyanate

    International Nuclear Information System (INIS)

    Ye, Bo; Zhang, Yu-Xia; Yang, Fei; Chen, Hong-Lei; Xia, Dong; Liu, Ming-Qiu; Lai, Bai-Tang

    2007-01-01

    The development of effective chemopreventive agents against cigarette smoke-induced lung cancer could be greatly facilitated by suitable laboratory animal models, such as animals treated with the tobacco-specific lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). In the current study, we established a novel lung cancer model in Wistar rats treated with NNK. Using this model, we assessed the effects of two chemopreventive agents, aspirin and phenethyl isothiocyanate (PEITC), on tumor progression. First, rats were treated with a single-dose of NNK by intratracheal instillation; control rats received iodized oil. The animals were then sacrificed on the indicated day after drug administration and examined for tumors in the target organs. PCNA, p63 and COX-2 expression were analyzed in the preneoplastic lung lesions. Second, rats were treated with a single-dose of NNK (25 mg/kg body weight) in the absence or presence of aspirin and/or PEITC in the daily diet. The control group received only the vehicle in the regular diet. The animals were sacrificed on day 91 after bronchial instillation of NNK. Lungs were collected and processed for histopathological and immunohistochemical assays. NNK induced preneoplastic lesions in lungs, including 33.3% alveolar hyperplasia and 55.6% alveolar atypical dysplasia. COX-2 expression increased similarly in alveolar hyperplasia and alveolar atypical dysplasia, while PCNA expression increased more significantly in the latter than the former. No p63 expression was detected in the preneoplastic lesions. In the second study, the incidences of alveolar atypical dysplasia were reduced to 10%, 10% and 0%, respectively, in the aspirin, PEITC and aspirin and PEITC groups, compared with 62.5% in the carcinogen-treated control group. COX-2 expression decreased after dietary aspirin or aspirin and PEITC treatment. PCNA expression was significantly reduced in the aspirin and PEITC group. (1) A single dose of 25 mg/kg body weight

  15. The leaf volatile constituents of Isatis tinctoria by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry.

    Science.gov (United States)

    Condurso, Cettina; Verzera, Antonella; Romeo, Vincenza; Ziino, Marisa; Trozzi, Alessandra; Ragusa, Salvatore

    2006-08-01

    The leaf volatile constituents of Isatis tinctoria L. (Brassicaceae) have been studied by Solid-Phase Microextraction and Gas chromatography/Mass Spectrometry (SPME/GC-MS). Seventy components were fully characterized by mass spectra, linear retention indices, and injection of standards; the average composition (ppm) as single components and classes of substances is reported. Aliphatic hydrocarbons, acids, alcohols, aldehydes and esters, aromatic aldehydes, esters and ethers, furans, isothiocyanates and thiocyanates, sulfurated compounds, nitriles, terpenes and sesquiterpenes were identified. Leaf volatiles in Isatis tinctoria L. were characterized by a high amount of isothiocyanates which accounted for about 40 % of the total volatile fraction. Isothiocyanates are important and characteristic flavour compounds in Brassica vegetables and the cancer chemo-protective attributes are recently responsible for their growing interest.

  16. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi [Nitto Denko Co. LTD., Shimohozumi 1-1-2, Ibaraki, Osaka 567-8680 (Japan); Ichikawa, Tsuneki [Division of Materials Chemistry, Graduate school of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: ichikawa@eng.hokudai.ac.jp

    2005-07-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon {gamma}-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M{sub n}R{sub 1}COOCH(C{sub 6}H{sub 5})R{sub 2}M{sub n}+e{sup -}->M{sub n}R{sub 1}COO{sup -}+{sup {center_dot}}CH(C{sub 6}H{sub 5})R{sub 2}M{sub n}. The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching.

  17. Method of recovering uranium from aqueous solution

    International Nuclear Information System (INIS)

    Albright, R.L.

    1980-01-01

    Anion exchange resin derived from insoluble crosslinked polymers of vinyl benzyl chloride which are prepared by polymerizing vinyl benzyl chloride and a crosslinking monomer are particularly suitable in the treatment of uranium bearing leach liquors

  18. The poplar phi class glutathione transferase: expression, activity and structure of GSTF1

    Directory of Open Access Journals (Sweden)

    Henri ePégeot

    2014-12-01

    Full Text Available Glutathione transferases (GSTs constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs, require a conserved catalytic serine residue to perform glutathione (GSH-conjugation reactions. Genomic analyses revealed that terrestrial plants have around 10 GSTFs, 8 in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds and vegetative organs (leaves, petioles. Here, we show that the recombinant poplar GSTF1 (PttGSTF1 possesses peroxidase activity towards cumene hydroperoxide and GSH-conjugation activity towards model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance to analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or MES molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs.

  19. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-88 monoclonal antibodies: critical factors in determining in vivo survival and organ toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kozak, R.W.; Raubitschek, A.; Mirzadeh, S.; Brechbiel, M.W.; Junghaus, R.; Gansow, O.A.; Waldmann, T.A. (Center for Biologics Evaluation and Research, FDA, Bethesda, MD (USA))

    1989-05-15

    One factor that is critical to the potential effectiveness of radioimmunotherapy is the design of radiometal-chelated antibodies that will be stable in vivo. Stability in vivo depends on the condition that both the chelate linkage and radiolabeling procedures not alter antibody specificity and biodistribution. In addition, synthesis and selection of the chelating agent is critical for each radiometal in order to prevent inappropriate release of the radiometal in vivo. In the present study, we compare the in vivo stability of seven radioimmunoconjugates that use different polyaminocarboxylate chelating agents to complex yttrium-88 to the mouse anti-human interleukin-2 receptor monoclonal antibody, anti-Tac. Chelate linkage and radiolabeling procedures did not alter the immunospecificity of anti-Tac. In order to assess whether yttrium was inappropriately released from the chelate-coupled antibody in vivo, iodine-131-labeled and yttrium-88 chelate-coupled antibodies were simultaneously administered to the same animals to correlate the decline in yttrium and radioiodinated antibody activity. The four stable yttrium-88 chelate-coupled antibodies studied displayed similar iodine-131 and yttrium-88 activity, indicating minimal elution of yttrium-88 from the complex. In contrast, the unstable yttrium-88 chelate-coupled antibodies had serum yttrium-88 activities that declined much more rapidly than their iodine-131 activities, suggesting loss of the radiolabel yttrium-88 from the chelate. Furthermore, high rates of yttrium-88 elution correlated with deposition in bone. Four chelating agents emerged as promising immunotherapeutic reagents: isothiocyanate benzyl DTPA and its derivatives 1B3M, MX, and 1M3B.

  20. Catalytic properties of Thallium-containing mesoporous silicas

    Directory of Open Access Journals (Sweden)

    A. Baradji

    2017-02-01

    Full Text Available The benzylation of benzene by benzyl chloride over a series of Thallium-containing mesoporous silicas with different Tl contents has been investigated. These materials (Tl-HMS-n have been characterized by chemical analysis, N2 adsorption/desorption isotherm and X-ray diffraction (XRD. The mesoporous Thallium-containing materials showed both high activity and high selectivity for the benzylation of benzene. More interesting is the observation that these catalysts are always active and selective for large molecules like naphthenic compounds such as methoxynaphthalene.

  1. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    800°C) has been used for the benzylation of toluene and other aromatic compounds by benzyl chloride. Hydrotalcite before and after its calcination was characterized for surface area, crystalline phases and basicity. Both the hydrotalcite ...

  2. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines.

    Science.gov (United States)

    Martin, Valentina; Giorello, Facundo; Fariña, Laura; Minteguiaga, Manuel; Salzman, Valentina; Boido, Eduardo; Aguilar, Pablo S; Gaggero, Carina; Dellacassa, Eduardo; Mas, Albert; Carrau, Francisco

    2016-06-08

    Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.

  3. Mechanism of reductive elimination. Reaction of alkylpalladium(II) complexes with tetraorganotin, organolithium, and Grignard reagents. Evidence for palladium(IV) intermediacy

    International Nuclear Information System (INIS)

    Milstein, D.; Stille, J.K.

    1979-01-01

    Coupling products are obtained in good yields from the reaction of tetraorganotin compounds or Grignard reagents and organohalogenopalladium(II) complexes provided that a benzyl bromide is present. Low yields are obtained in the absence of the benzyl bromides, in which case other decomposition pathways (e.g., α elimination) take place, even in the presence of electron acceptors (e.g., oxygen, m-dinitrobenzene). The first step in the reaction of benzylhalogenobis(triphenylphosphine)-palladium(II) complexes with MeM (M = SnMe 3 , MgBr) is metathesis of the benzyl ligand rather than the halogen. This unique carbon-for-carbon transmetalation takes place at 25 0 C and is facilitated by electron-donating substituents on the benzyl ligand. The products of this reaction subsequently react at higher temperature in the presence of a benzyl bromide to afford ethylbenzene. Optically active chloro-(α-deuteriobenzyl)bis(triphenylphosphine)palladium yields, upon reaction with tetramethyltin in the presence of p-nitrobenzyl bromide, optically active α-deuterioethylbenzene in which overall retention of configuration at carbon has resulted. cis-dimethylbis(triphenylphosphine)palladium(II) reacts with benzyl bromide at 25 0 C to afford ethylbenzene and bromomethylbis(triphenylphosphine)palladium(II) rather than ethane. When optically active α-deuteriobenzyl bromide is used in this reaction, optically active α-deuterioethylbenzene is formed, and inversion of configuration at carbon takes place. The reductive elimination process is proposed to take place preferentially from a palladium(IV) intermediate with retention of configuration at carbon

  4. Novel derivatives of aclacinomycin A block cancer cell migration through inhibition of farnesyl transferase.

    Science.gov (United States)

    Magi, Shigeyuki; Shitara, Tetsuo; Takemoto, Yasushi; Sawada, Masato; Kitagawa, Mitsuhiro; Tashiro, Etsu; Takahashi, Yoshikazu; Imoto, Masaya

    2013-03-01

    In the course of screening for an inhibitor of farnesyl transferase (FTase), we identified two compounds, N-benzyl-aclacinomycin A (ACM) and N-allyl-ACM, which are new derivatives of ACM. N-benzyl-ACM and N-allyl-ACM inhibited FTase activity with IC50 values of 0.86 and 2.93 μM, respectively. Not only ACM but also C-10 epimers of each ACM derivative failed to inhibit FTase. The inhibition of FTase by N-benzyl-ACM and N-allyl-ACM seems to be specific, because these two compounds did not inhibit geranylgeranyltransferase or geranylgeranyl pyrophosphate (GGPP) synthase up to 100 μM. In cultured A431 cells, N-benzyl-ACM and N-allyl-ACM also blocked both the membrane localization of H-Ras and activation of the H-Ras-dependent PI3K/Akt pathway. In addition, they inhibited epidermal growth factor (EGF)-induced migration of A431 cells. Thus, N-benzyl-ACM and N-allyl-ACM inhibited EGF-induced migration of A431 cells by inhibiting the farnesylation of H-Ras and subsequent H-Ras-dependent activation of the PI3K/Akt pathway.

  5. Radio-labelled quaternary compounds and their diagnostic use

    International Nuclear Information System (INIS)

    Woo, D.V.

    1984-01-01

    Radio-labelled compounds having a lipophilic cation, which are quaternary ammonium, phosphonium or arsonium halides, in which the halide is a chloride, bromide or iodide, and in which the four quaternary substituents are independently selected from Csub(1-3) alkyl, phenyl and benzyl, at least two substituents being phenyl or benzyl, and one phenyl or benzyl substituent carrying a ring-substituent selected from 123 I, 125 I, 131 I, 77 Br, 82 Br and 18 F. Such compounds can be administered by injection, and a radio-image of the myocardium obtained. (author)

  6. SYNTHESIS AND PHYSICAL-CHEMICAL PROPERTIES OF WATER-SOLUBLE 3-BENZYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    K. V. Аleksandrova

    2015-04-01

    Full Text Available Introduction Nowadays, research of novel biological active compounds with low toxicity, are carried out among different classes of organic compounds of natural and synthetic genesis. One of the main ways of these studies is search of water-soluble compounds – convenient objects for pharmacological researches. In recent years researchers paid attention to xanthine derivatives, because of their high variativity of possible chemical modification and ability to form different salts with wide spectrum of biological action. Thus, among water-soluble xanthine derivatives were found compounds with pronounced antioxidant, diuretic and analeptic properties. Primary methods of obtaining water-soluble xanthine derivatives are direct interaction of bases with xanthine molecule or insertion basic or acidic residues in positions 7 or 8 of xanthine bicycle. According from the above, search of biologically active compounds among water-soluble substituted xanthines is prospective and actual. The aim of the study was development of synthetic ways of obtaining novel water-soluble derivatives of 3-benzyl-8-methylxanthine and studying their physical and chemical properties. Material and methods Melting points of obtained compounds were determined by capillary method on PTP (M device. ІR-spectra of synthesized compounds were recorded on the Bruker Alpha device (company «Bruker» – Germany on 4000-400 sm-1 with using console ATR (direct insertion of compound. 1Н NMR-spectra were recorded on the Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standart – ТМС. Elemental analysis was made on Elementar Vario L cube device. Chromatoraphic studies were made on the plates Sorbfil-AFV-UV (company «Sobrpolimer» –Russia. Systhems for chromatography: «acetone-propanol-2» in ratio 2:3, «propanol-2-benzene» in ratio 10:1 and exersized in UV-light in wave 200-300 nm. Results and discussion We developed methodic of synthesis

  7. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.

    Science.gov (United States)

    So, Man-Ho; Liu, Yungen; Ho, Chi-Ming; Che, Chi-Ming

    2009-10-05

    Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43-100%) and product yields (66-99%) (19 examples). Oxidation of N-substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83-93%) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o-phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N-benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed.

  8. Flurbiprofen benzyl nitrate (NBS-242 inhibits the growth of A-431 human epidermoid carcinoma cells and targets ß-catenin

    Directory of Open Access Journals (Sweden)

    Nath N

    2013-05-01

    Full Text Available Niharika Nath,1,2 Xiaoping Liu,3 Lloydine Jacobs,1 Khosrow Kashfi1,3 1Department of Physiology, Pharmacology, and Neuroscience, Sophie Davis School of Biomedical Education, City University of New York Medical School, New York, NY, USA; 2Department of Life Sciences, New York Institute of Technology, New York, NY, USA; 3Division of Cancer Prevention, Department of Medicine, Stony Brook University, Stony Brook, NY, USA Background: The Wnt/ß-catenin/T cell factor (TCF signaling pathway is important in the development of nonmelanoma skin cancers (NMSCs. Nitric-oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAIDs are chemopreventive agents consisting of a traditional NSAID attached to an NO-releasing moiety through a chemical spacer. Previously we showed that an aromatic spacer enhanced the potency of a particular NO-NSAID compared to an aliphatic spacer. Methods: We synthesized an NO-releasing NSAID with an aromatic spacer (flurbiprofen benzyl nitrate, NBS-242, and using the human skin cancer cell line A-431, we evaluated its effects on cell kinetics, Wnt/ß-catenin, cyclin D1, and caspase-3. Results: NBS-242 inhibited the growth of A-431 cancer cells, being ~15-fold more potent than flurbiprofen and up to 5-fold more potent than NO-flurbiprofen with an aliphatic spacer, the half maximal inhibitory concentrations (IC50 for growth inhibition being 60 ± 4 µM, 320 ± 20 µM, and 880 ± 65 µM for NBS-242, NO-flurbiprofen, and flurbiprofen, respectively. This effect was associated with inhibition of proliferation, accumulation of cells in the G0/G1 phase of the cell cycle, and an increase in apoptotic cell population. NBS-242 cleaved ß-catenin both in the cytoplasm and the nucleus of A-431 cells. NBS-242 activated caspase-3 whose activation was reflected in the cleavage of procaspase-3. To test the functional consequence of ß-catenin cleavage, we determined the expression of cyclin D1, a Wnt-response gene. NBS-242 reduced cyclin D1 levels

  9. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P. L.; Versteeg, G. F.

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  10. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Hoorn, J.A.A.; Alsters, P.L.; Versteeg, Geert

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  11. Fabrication of novel ternary Au/CeO2@g-C3N4 nanocomposite: kinetics and mechanism investigation of 4-nitrophenol reduction, and benzyl alcohol oxidation

    Science.gov (United States)

    Kohantorabi, Mona; Gholami, Mohammad Reza

    2018-06-01

    Au nanoparticles supported on cerium oxide/graphitic carbon nitride (CeO2@g-C3N4) was synthesized and used as heterogeneous catalyst in redox reaction. The catalyst was characterized by different techniques such as FT-IR, XRD, FE-SEM, EDS, TEM, BET, TGA, and ICP. The as-prepared ternary nanocomposite was used as an effective catalyst for the reduction of toxic 4-nitrophenol to useful 4-aminophenol by NaBH4. The rate constant value of reduction reaction reached up to 0.106 s-1 by Au/CeO2@g-C3N4, which was 3.8, and 8.8 times higher than that of Au@CeO2 (0.028 s-1), and Au@g-C3N4 (0.012 s-1) nanocomposites, respectively. The superior catalytic performance of as-prepared catalyst in 4-NP reduction can be attributed to synergistic effect between Au nanoparticles and CeO2@g-C3N4 support, and efficient electron transfer. The reduction reaction was carried out at different temperatures, and the energy of activation ({Ea}), and thermodynamic parameters including, activation of entropy (Δ S^ ≠), enthalpy (Δ H^ ≠), and Gibbs free energy (Δ G^ ≠) were determined. Additionally, the mechanism of reaction was studied in details, and equilibrium constants of 4-NP ( K 4-NP), and {BH}4^{ - } ({K_{{BH}4^{{ - }} }}) were calculated using Langmuir-Hinshelwood model. Furthermore, this nanocomposite exhibited excellent catalytic activity in oxidation of benzyl alcohol by molecular oxygen as a green oxidant. This study revealed that the ternary Au/CeO2@g-C3N4 nanocomposite is an attractive candidate for catalytic applications.

  12. Deuterium isotope effects on toluene metabolism. Product release as a rate-limiting step in cytochrome P-450 catalysis

    International Nuclear Information System (INIS)

    Ling, K.H.; Hanzlik, R.P.

    1989-01-01

    Liver microsomes from phenobarbital-induced rats oxidize toluene to a mixture of benzyl alcohol plus o-, m- and p-cresol (ca. 69:31). Stepwise deuteration of the methyl group causes stepwise decreases in the yield of benzyl alcohol relative to cresols (ca. 24:76 for toluene-d3). For benzyl alcohol formation from toluene-d3 DV = 1.92 and D(V/K) = 3.53. Surprisingly, however, stepwise deuteration induces stepwise increases in total oxidation, giving rise to an inverse isotope effect overall (DV = 0.67 for toluene-d3). Throughout the series (i.e. d0, d1, d2, d3) the ratios of cresol isomers remain constant. These results are interpreted in terms of product release for benzyl alcohol being slower than release of cresols (or their epoxide precursors), and slow enough to be partially rate-limiting in turnover. Thus metabolic switching to cresol formation causes a net acceleration of turnover

  13. Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting 227Th-DOTA-p-benzyl-trastuzumab.

    Directory of Open Access Journals (Sweden)

    Helen Heyerdahl

    Full Text Available BACKGROUND: The aim of this study was to investigate therapeutic efficacy and normal tissue toxicity of single dosage and fractionated targeted alpha therapy (TAT in mice with HER2-expressing breast and ovarian cancer xenografts using the low dose rate radioimmunoconjugate (227Th-DOTA-p-benzyl-trastuzumab. METHODOLOGY/PRINCIPAL FINDINGS: Nude mice carrying HER2-overexpressing subcutaneous SKOV-3 or SKBR-3 xenografts were treated with 1000 kBq/kg (227Th-trastuzumab as single injection or four injections of 250 kBq/kg with intervals of 4-5 days, 2 weeks, or 4 weeks. Control animals were treated with normal saline or unlabeled trastuzumab. In SKOV-3 xenografts tumor growth to 10-fold size was delayed (p<0.01 and survival with tumor diameter less than 16 mm was prolonged (p<0.05 in all TAT groups compared to the control groups. No statistically significant differences were seen among the treated groups. In SKBR-3 xenografts tumor growth to 10-fold size was delayed in the single injection and 4-5 days interval groups (p<0.001 and all except the 4 weeks interval TAT group showed improved survival to the control groups (p<0.05. Toxicity was assessed by blood cell counts, clinical chemistry measurements and body weight. Transient reduction in white blood cells was seen for the single injection and 4-5 days interval groups (p<0.05. No significant changes were seen in red blood cells, platelets or clinical chemistry parameters. Survival without life threatening loss of body weight was significantly prolonged in 4 weeks interval group compared to single injection group (p<0.05 for SKOV-3 animals and in 2 weeks interval group compared with the 4-5 days interval groups (p<0.05 for SKBR-3 animals. CONCLUSIONS/SIGNIFICANCE: The same concentration of radioactivity split into several fractions may improve toxicity of (227Th-radioimmunotherapy while the therapeutic effect is maintained. Thus, it might be possible to increase the cumulative absorbed radiation dose

  14. Correlating the Metabolic Stability of Psychedelic 5-HT2A Agonists with Anecdotal Reports of Human Oral Bioavailability

    DEFF Research Database (Denmark)

    Leth-Petersen, Sebastian; Bundgaard, Christoffer; Hansen, Martin

    2014-01-01

    2,5-Dimethoxyphenethylamines and their N-benzylated derivatives are potent 5-HT2A agonists with psychedelic effects in humans. The N-benzylated derivatives are among the most selective 5-HT2A agonists currently available and their usage as biochemical and brain imaging tools is increasing, yet ve...

  15. Metabolic commensalism and competition in a two-species microbial consortium

    DEFF Research Database (Denmark)

    Christensen, Bjarke Bak; Haagensen, Janus Anders Juul; Heydorn, Arne

    2002-01-01

    We analyzed metabolic interactions and the importance of specific structural relationships in a benzyl alcohol-degrading microbial consortium comprising two species, Pseudomonas putida strain R1 and Acinetobacter strain C6, both of which are able to utilize benzyl alcohol as their sole carbon...... alcohol, which apparently gives Acinetobacter strain C6 a growth advantage, probably because it converts benzyl alcohol to benzoate with a higher yield per time unit than P. putida R1. In biofilms, however, the organisms establish structured, surface-attached consortia, in which heterogeneous ecological...... niches develop, and under these conditions competition for the primary carbon source is not the only determinant of biomass and population structure....

  16. Multicomponent Synthesis of a N-Protected Alpha-Amino Ester: Ethyl 2-((4-Methoxyphenyl)Amino)-3-Phenylpropanoate

    Science.gov (United States)

    Le Gall, Erwan; Pignon, Antoine

    2012-01-01

    This laboratory experiment describes the preparation of a N-protected phenylalanine ethyl ester by a zinc-mediated Mannich-like multicomponent reaction between benzyl bromide, "p"-anisidine, and ethyl glyoxylate. The one-step reaction involves the in situ metallation of benzyl bromide into a benzylzinc reagent and its addition onto imine (Barbier…

  17. DETERMINATION OF DIBUTYL PHTHALATE (DBP, BENZYL BUTYL PHTHALATE (BBP AND BIS (2-ETHYLHEXYL PHTHALATE (DEHP IN SOFT PLASTIC TOYS AND THE FIRST SURVEY OF THE BULGARIAN MARKET

    Directory of Open Access Journals (Sweden)

    Valentina CHRISTOVA-BAGDASSARIAN

    2017-12-01

    Full Text Available Phthalates are a large group of compounds with similar chemical structure widely used as plasticizers for plastics. They can easily be released from the polymer during usage and in this way enter the human body. Their adverse effect on health is known as "phthalate syndrome" and can impact children and adults alike. For children in particular, there is an additional potential risk of exposure to phthalates via toys intended for oral use. The Regulation (EC No 1907/2006 (REACH prohibits the use of bis (2-ethylhexyl phthalate (DEHP, di butyl phthalate (DBP and benzyl butyl phthalate (BBP as a substance or constituent of preparations at concentrations higher than 0.1 % in the plasticized material meant to toys and childcare items. The aim of this article is to quantify the content of DEHP, DBP and BBP in soft toys intended for children up to 3 years of age, including toys designed to be placed in the mouth. A method consisting of an extraction procedure of phthalates from polymers, purification of the extract, followed by GC/MS identification and quantification was validated. Three different techniques for phthalates’ extraction (Soxhlet, ultrasonic and vibrator were compared and the most effective one was chosen.This method was applied to the analysis of DEHP, DBP and BBP in soft toys from the Bulgarian market to establish their compliance with REACH requirements. All the tested toys contained at least one phthalate. Exceedence of the permitted content for DEHP, DBP and BBP (as sume, mainly due to the high levels of DEHP, was observed in several toys from retail.

  18. Synthesis of (Z)-3,7-anhydro-1,2-dideoxy-2-deuterio-D-gluco-oct-2- enitol, a prochiral substrate for probing the catalytic functioning of of glucosylases.

    Science.gov (United States)

    Weiser, W; Lehmann, J; Brewer, C F; Hehre, E J

    1988-12-01

    Synthesis of the title compound provides a prochiral, glycosyl-donor substrate well suited for use as a probe of the catalytic functioning of D-glucosyl-mobilizing enzymes, because the full stereochemistry of enzymic reactions at its double bond may be unambiguously determined by examining the reaction products. The starting material for the synthesis was 2,6-anhydro-D-glycero-D-gulo-heptonic acid, from which 3,7-anhydro-4,5,6,8-tetra-O-benzyl-1-deoxy-D-glycero-D-gulo-2- octulose was prepared in eight steps. Reduction with lithium aluminum deuteride, and conversion of the resulting diastereomeric alcohols into (Z)-3,7-anhydro-4,5,6,8-tetra-O-benzyl-1,2-dideoxy-2-deuterio-D- gluco-oct-2-enitol (11) and 3,7-anhydro-4,5,6,8-tetra-O-benzyl-1,2-dideoxy-2-deuterio-D- glycero-D-gulo-oct-1-enitol (16), was carried out. By-products were 3,7-anhydro-2-O-benzoyl-4,5,6,8-tetra-O-benzyl-1,2-dideoxy-2-deuterio -D-erythro-L-galacto-octitol and 3,7-anhydro-2-O-benzoyl-4,5,6,8-tetra-O-benzyl-1,2-dideoxy-2-deuterio -D-erythro-L-talo-octitol, which could, like compound 16, be recycled. On debenzylation the oct-2-enitol 11 yielded (Z)-3,7-anhydro-1,2-dideoxy-2-deuterio-D-gluco-oct-2-enitol.

  19. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge

    International Nuclear Information System (INIS)

    Khan, Adnan Hossain; Topp, Edward; Scott, Andrew; Sumarah, Mark; Macfie, Sheila M.; Ray, Madhumita B.

    2015-01-01

    Highlights: • Pseudomonas sp. degraded two benzalkonium chlorides: BDDA and BDTA. • Although BDTA biodegraded at low concentration, it inhibited the degradation of BDDA. • For BDDA, two transformation products indicate two sites of bacterial activity. • "1"4C-labelled BDDA was mineralized to "1"4CO_2 within 300 h. - Abstract: Bactericidal cationic surfactants such as quaternary ammonium compounds (QACs) are widely detected in the environment, and found at mg kg"−"1 concentrations in biosolids. Although individual QACs are amenable to biodegradation, it is possible that persistence is increased for mixtures of QACs with varying structure. The present study evaluated the biodegradation of benzyl dimethyl dodecyl ammonium chloride (BDDA) singly and in the presence of benzyl dimethyl tetradecyl ammonium chloride (BDTA) using Pseudomonas sp., isolated from returned activated sludge. Growth was evaluated, as was biodegradation using "1"4C and HPLC-MS methods. BDTA was more toxic to growth of Pseudomonas sp. compared to BDDA, and BDTA inhibited BDDA biodegradation. The benzyl ring of [U-"1"4C-benzyl] BDDA was readily and completely mineralized. The detection of the transformation products benzyl methyl amine and dodecyl dimethyl amine in spent culture liquid was consistent with literature. Overall, this study demonstrates the antagonistic effect of interactions on biodegradation of two widely used QACs suggesting further investigation on the degradation of mixture of QACs in wastewater effluents and biosolids.

  20. Cytotoxic and genotoxic potential of food-borne nitriles in a liver in vitro model

    Science.gov (United States)

    Kupke, Franziska; Herz, Corinna; Hanschen, Franziska S.; Platz, Stefanie; Odongo, Grace A.; Helmig, Simone; Bartolomé Rodríguez, María M.; Schreiner, Monika; Rohn, Sascha; Lamy, Evelyn

    2016-01-01

    Isothiocyanates are the most intensively studied breakdown products of glucosinolates from Brassica plants and well recognized for their pleiotropic effects against cancer but also for their genotoxic potential. However, knowledge about the bioactivity of glucosinolate-borne nitriles in foods is very poor. As determined by GC-MS, broccoli glucosinolates mainly degrade to nitriles as breakdown products. The cytotoxicity of nitriles in human HepG2 cells and primary murine hepatocytes was marginal as compared to isothiocyanates. Toxicity of nitriles was not enhanced in CYP2E1-overexpressing HepG2 cells. In contrast, the genotoxic potential of nitriles was found to be comparable to isothiocyanates. DNA damage was persistent over a certain time period and CYP2E1-overexpression further increased the genotoxic potential of the nitriles. Based on actual in vitro data, no indications are given that food-borne nitriles could be relevant for cancer prevention, but could pose a certain genotoxic risk under conditions relevant for food consumption. PMID:27883018

  1. Valyl benzyl ester chloride

    Directory of Open Access Journals (Sweden)

    Grzegorz Dutkiewicz

    2010-02-01

    Full Text Available In the title compound (systematic name: 1-benzyloxy-3-methyl-1-oxobutan-2-aminium chloride, C12H18NO2+·Cl−, the ester group is approximately planar, with a maximum deviation of 0.040 (2 Å from the least-squares plane, and makes a dihedral angle of 28.92 (16° with the phenyl ring. The crystal structure is organized by N—H...Cl hydrogen bonds which join the two components into a chain along the b axis. Pairs of chains arranged antiparallel are interconnected by further N—H...Cl hydrogen bonds, forming eight-membered rings. Similar packing modes have been observed in a number of amino acid ester halides with a short unit-cell parameter of ca 5.5 Å along the direction in which the chains run.

  2. Benzyl 3-(2-methylphenyldithiocarbazate

    Directory of Open Access Journals (Sweden)

    Mohamed Ibrahim Mohamed Tahir

    2012-05-01

    Full Text Available In the title compound, C15H16N2S2, the central C2N2S2 unit is essentially planar (r.m.s. deviation = 0.047 Å and forms dihedral angles of 68.26 (4 and 65.99 (4° with the phenyl and benzene rings, respectively, indicating a twisted molecule. Supramolecular chains with a step topology and propagating along [100] feature in the crystal packing, mediated through N—H...S hydrogen bonds. The chains are consolidated into a three-dimensional architecture by C—H...π interactions.

  3. Towards a fragment-based approach in gelator design: halogen effects leading to thixotropic, mouldable and self-healing systems in aryl-triazolyl amino acid-based gelators!

    Science.gov (United States)

    Srivastava, Bhartendu K; Manheri, Muraleedharan K

    2017-04-18

    A simple replacement of a H atom by Br transformed non-gelating aryl triazolyl amino acid benzyl ester into a versatile gelator, which formed shape-persistent, self-healing and mouldable gels. The 'bromo-aryl benzyl ester' fragment was then transplanted into another framework, which resulted in similar solvent preference and gelation efficiency.

  4. Evaluation of radioiodinated (2S,{alpha}S)-2-({alpha}-(2-iodophenoxy)benzyl)morpholine as a radioligand for imaging of norepinephrine transporter in the heart

    Energy Technology Data Exchange (ETDEWEB)

    Kiyono, Yasushi [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto 606-8507 (Japan)], E-mail: ykiyono@u-fukui.ac.jp; Sugita, Taku [Department of Pathofunctional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Ueda, Masashi [Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kawashima, Hidekazu [Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine, Kyoto University, Kyoto 606-8507 (Japan); Kanegawa, Naoki; Kuge, Yuji [Department of Pathofunctional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan); Fujibayashi, Yasuhisa [Biomedical Imaging Research Center, University of Fukui, Fukui 910-1193 (Japan); Saji, Hideo [Department of Pathofunctional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501 (Japan)

    2008-02-15

    Introduction: The norepinephrine transporter (NET) is located presynaptically on noradrenergic nerve terminals and plays a critical role in the regulation of the synaptic norepinephrine (NE) concentration via the reuptake of NE. Changes in NET have been recently reported in several cardiac failures. Therefore, a NET-specific radioligand is useful for in vivo assessment of changes in NET density in various cardiac disorders. Recently, we developed a radioiodinated reboxetine analogue, (2S,{alpha}S)-2-({alpha}-(2-iodophenoxy)benzyl)morpholine ((S,S)-IPBM), for NET imaging. In the current study, we assessed the applicability of radioiodinated (S,S)-IPBM to NET imaging in the heart. Methods: The NET affinity and selectivity were measured from the ability to displace specific [{sup 3}H]nisoxetine and (S,S)-[{sup 125}I]IPBM binding to rat heart membrane, respectively. To evaluate the distribution of (S,S)-[{sup 125}I]IPBM in vivo, biodistribution experiment was performed in rats. With the use of several monoamine transporter binding agents, pharmacological blocking experiments were performed in rats. Results: In vitro binding assays showed that the affinity of (S,S)-IPBM to NET was similar to those of the well-known NET-specific binding agents, nisoxetine and desipramine. Furthermore, (S,S)-[{sup 125}I]IPBM binding was inhibited by nisoxetine and desipramine, but not by dopamine or serotonin transporter binding agents. These data indicated that (S,S)-IPBM had high affinity and selectivity for NET in vitro. Biodistribution studies in rats showed rapid and high uptake of (S,S)-[{sup 125}I]IPBM by the heart and rapid clearance from the blood. The heart-to-blood ratio was 31.9 at 180 min after the injection. The administration of nisoxetine and desipramine decreased (S,S)-[{sup 125}I]IPBM accumulation in the heart, but injection of fluoxetine and GBR12909 had little influence. Conclusions: Radioiodinated (S,S)-IPBM is a potential radioligand for NET imaging in the heart.

  5. Selective discrimination of cyclodextrin diols using cyclic sulfates

    DEFF Research Database (Denmark)

    Petrillo, Marta; Marinescu, Lavinia; Rousseau, Cyril

    2009-01-01

    A method for selective monofunctionalition of readily available cyclodextrin diols (2(A-F),3(A-F),6(B,C,E,F)-hexadeca-O-benzyl-alpha-cyclodextrin and 2(A-G),3(A-G),6(B,C,E-G)-nonadeca-O-benzyl-beta-cyclodextrin) by regioselective nucleophilic opening of their cyclic sulfates is presented. Although...

  6. Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera.

    Science.gov (United States)

    Förster, Nadja; Ulrichs, Christian; Schreiner, Monika; Müller, Carsten T; Mewis, Inga

    2015-01-01

    Glucosinolates are the characteristic secondary metabolites of plants in the order Brassicales. To date the common DIN extraction 'desulfo glucosinolates' method remains the common procedure for determination and quantification of glucosinolates. However, the desulfation step in the extraction of glucosinolates from Moringa oleifera leaves resulted in complete conversion and degradation of the naturally occurring glucosinolates in this plant. Therefore, a method for extraction of intact Moringa glucosinolates was developed and no conversion and degradation of the different rhamnopyranosyloxy-benzyl glucosinolates was found. Buffered eluents (0.1 M ammonium acetate) were necessary to stabilize 4-α-rhamnopyranosyloxy-benzyl glucosinolate (Rhamno-Benzyl-GS) and acetyl-4-α-rhamnopyranosyloxy-benzyl glucosinolate isomers (Ac-Isomers-GS) during HPLC analysis. Due to the instability of intact Moringa glucosinolates at room temperature and during the purification process of single glucosinolates, influences of different storage (room temperature, frozen, thawing and refreezing) and buffer conditions on glucosinolate conversion were analysed. Conversion and degradations processes were especially determined for the Ac-Isomers-GS III. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. S-Substituted cysteine derivatives and thiosulfinate formation in Petiveria alliacea-part II.

    Science.gov (United States)

    Kubec, Roman; Kim, Seokwon; Musah, Rabi A

    2002-11-01

    Three cysteine derivatives, (R)-S-(2-hydroxyethyl)cysteine, together with (R(S)R(C))- and (S(S)R(C))-S-(2-hydroxyethyl)cysteine sulfoxides, have been isolated from the roots of Petiveria alliacea. Furthermore, three additional amino acids, S-methyl-, S-ethyl-, and S-propylcysteine derivatives, were detected. They were present only in trace amounts (<3 microg g(-1) fr. wt), precluding determination of their absolute configurations and oxidation states. In addition, four thiosulfinates, S-(2-hydroxyethyl) (2-hydroxyethane)-, S-(2-hydroxyethyl) phenylmethane-, S-benzyl (2-hydroxyethane)- and S-benzyl phenylmethanethiosulfinates, have been found in a homogenate of the roots. The formation pathways of various benzyl/phenyl-containing compounds previously found in the plant were also discussed.

  8. Biodegradation of benzalkonium chlorides singly and in mixtures by a Pseudomonas sp. isolated from returned activated sludge

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Adnan Hossain, E-mail: akhan462@uwo.ca [Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 (Canada); Topp, Edward, E-mail: Ed.Topp@AGR.GC.CA [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Department of Biology, University of Western Ontario, London, ON N6A 5B7 (Canada); Scott, Andrew, E-mail: Andrew.Scott@AGR.GC.CA [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Sumarah, Mark, E-mail: Mark.Sumarah@agr.gc.ca [Agriculture and Agri-Food Canada, London, ON N5V 4T3 (Canada); Macfie, Sheila M., E-mail: smacfie@uwo.ca [Department of Biology, University of Western Ontario, London, ON N6A 5B7 (Canada); Ray, Madhumita B., E-mail: mbhowmic@uwo.ca [Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9 (Canada)

    2015-12-15

    Highlights: • Pseudomonas sp. degraded two benzalkonium chlorides: BDDA and BDTA. • Although BDTA biodegraded at low concentration, it inhibited the degradation of BDDA. • For BDDA, two transformation products indicate two sites of bacterial activity. • {sup 14}C-labelled BDDA was mineralized to {sup 14}CO{sub 2} within 300 h. - Abstract: Bactericidal cationic surfactants such as quaternary ammonium compounds (QACs) are widely detected in the environment, and found at mg kg{sup −1} concentrations in biosolids. Although individual QACs are amenable to biodegradation, it is possible that persistence is increased for mixtures of QACs with varying structure. The present study evaluated the biodegradation of benzyl dimethyl dodecyl ammonium chloride (BDDA) singly and in the presence of benzyl dimethyl tetradecyl ammonium chloride (BDTA) using Pseudomonas sp., isolated from returned activated sludge. Growth was evaluated, as was biodegradation using {sup 14}C and HPLC-MS methods. BDTA was more toxic to growth of Pseudomonas sp. compared to BDDA, and BDTA inhibited BDDA biodegradation. The benzyl ring of [U-{sup 14}C-benzyl] BDDA was readily and completely mineralized. The detection of the transformation products benzyl methyl amine and dodecyl dimethyl amine in spent culture liquid was consistent with literature. Overall, this study demonstrates the antagonistic effect of interactions on biodegradation of two widely used QACs suggesting further investigation on the degradation of mixture of QACs in wastewater effluents and biosolids.

  9. Enhancement by O6-benzyl-N2-acetylguanosine of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea therapeutic index on nude mice bearing resistant human melanoma.

    Science.gov (United States)

    Debiton, E.; Cussac-Buchdhal, C.; Mounetou, E.; Rapp, M.; Dupuy, J. M.; Maurizis, J. C.; Veyre, A.; Madelmont, J. C.

    1997-01-01

    The exposure of cells to O6-benzyl-N2-acetylguanosine (BNAG) and several guanine derivatives is known to reduce the activity of O6-alkylguanine-DNA alkyltransferase (MGMT) and to enhance the sensitivity of Mer+ (methyl enzyme repair positive) tumour cells to chloroethylnitrosoureas (CENUs) in vitro and in vivo. High water solubility and the pharmacokinetic properties of BNAG make it a candidate for simultaneous administration with CENUs by the i.v. route in human clinical use. In vivo we have shown previously that BNAG significantly increases the efficiency of N'-[2-chloroethyl]-N-[2-(methylsulphonyl)ethyl]-N'-nitrosourea (cystemustine) against M4Beu melanoma cells (Mer+) through its cytostatic activity by the i.p. route, but also increases its toxicity. To investigate the toxicity of BNAG and cystemustine when administered simultaneously in mice, we compared the maximum tolerated dose and LD50 doses of cystemustine alone or in combination with 40 mg kg(-1) BNAG by the i.p. route. The toxicity of cystemustine was enhanced by a factor of almost 1.44 when combined with BNAG. To compare the therapeutic index of cystemustine alone and the cystemustine/BNAG combination, pharmacological tests were carried out in nude mice bearing Mer+ M4Beu human melanoma cells. Isotoxic doses were calculated using the 1.44 ratio. The treatments were administered three times by the i.v. route on days 1, 5 and 9 after s.c. inoculation of tumour cells. Although the toxicities of the treatments were equal, BNAG strongly enhanced tumour growth inhibition. These results demonstrate the increase of the therapeutic index of cystemustine by BNAG and justify the use of BNAG to enhance nitrosourea efficiency in vivo by i.v. co-injection. PMID:9365163

  10. Synthesis, Reactivity and Stability of Aryl Halide Protecting Groups towards Di-Substituted Pyridines

    Directory of Open Access Journals (Sweden)

    Ptoton Mnangat Brian

    2016-03-01

    Full Text Available This paper reports the synthesis and reactivity of different Benzyl derivative protecting groups. The synthesis and stability of Benzyl halides, 4-methoxybenzyl halides, 3,5-dimethoxybenzyl halides, 3,4-dimethoxybenzyl halides, 3,4,5-trimethoxybenzyl halide protecting groups and their reactivity towards nitrogen atom of a di-substituted pyridine ring in formation of pyridinium salts is also reported.

  11. Dietary isothiocyanate sulforaphene induces reactive oxygen ...

    African Journals Online (AJOL)

    intracellular oxygen species (ROS) measurement, mitochondrial membrane depolarization and western blot analysis were performed in four time-intervals to explore sulforaphene activity. ..... proteins were transferred to PVDF membranes.

  12. Phenethyl Isothiocyanate in Breast Cancer Prevention

    Science.gov (United States)

    2005-08-01

    life of about 2.2 hours (15). Therefore, in contrast to dietary components such as the flavonoids , oral clearance of these ITCs is low and...reported to have the lowest IC 50 among the dietary flavonoids tested in MCF-7 cells (25). While some studies have demonstrated similar cytotoxicity...pharmacokinetic profiles of total ITC have been examined using a HPLC -based cyclocondensation approach; PEITC, PEITC conjugates as well as other ITCs or

  13. Health Promoting Effects of Brassica-Derived Phytochemicals: From Chemopreventive and Anti-Inflammatory Activities to Epigenetic Regulation

    Directory of Open Access Journals (Sweden)

    Anika Eva Wagner

    2013-01-01

    Full Text Available A high intake of brassica vegetables may be associated with a decreased chronic disease risk. Health promoting effects of Brassicaceae have been partly attributed to glucosinolates and in particular to their hydrolyzation products including isothiocyanates. In vitro and in vivo studies suggest a chemopreventive activity of isothiocyanates through the redox-sensitive transcription factor Nrf2. Furthermore, studies in cultured cells, in laboratory rodents, and also in humans support an anti-inflammatory effect of brassica-derived phytochemicals. However, the underlying mechanisms of how these compounds mediate their health promoting effects are yet not fully understood. Recent findings suggest that brassica-derived compounds are regulators of epigenetic mechanisms. It has been shown that isothiocyanates may inhibit histone deacetylase transferases and DNA-methyltransferases in cultured cells. Only a few papers have dealt with the effect of brassica-derived compounds on epigenetic mechanisms in laboratory animals, whereas data in humans are currently lacking. The present review aims to summarize the current knowledge regarding the biological activities of brassica-derived phytochemicals regarding chemopreventive, anti-inflammatory, and epigenetic pathways.

  14. An investigation of paper based microfluidic devices for size based separation and extraction applications.

    Science.gov (United States)

    Zhong, Z W; Wu, R G; Wang, Z P; Tan, H L

    2015-09-01

    Conventional microfluidic devices are typically complex and expensive. The devices require the use of pneumatic control systems or highly precise pumps to control the flow in the devices. This work investigates an alternative method using paper based microfluidic devices to replace conventional microfluidic devices. Size based separation and extraction experiments conducted were able to separate free dye from a mixed protein and dye solution. Experimental results showed that pure fluorescein isothiocyanate could be separated from a solution of mixed fluorescein isothiocyanate and fluorescein isothiocyanate labeled bovine serum albumin. The analysis readings obtained from a spectrophotometer clearly show that the extracted tartrazine sample did not contain any amount of Blue-BSA, because its absorbance value was 0.000 measured at a wavelength of 590nm, which correlated to Blue-BSA. These demonstrate that paper based microfluidic devices, which are inexpensive and easy to implement, can potentially replace their conventional counterparts by the use of simple geometry designs and the capillary action. These findings will potentially help in future developments of paper based microfluidic devices. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    International Nuclear Information System (INIS)

    Simonsson, Carl; Stenfeldt, Anna-Lena; Karlberg, Ann-Therese; Ericson, Marica B.; Jonsson, Charlotte A.M.

    2012-01-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  16. The pilosebaceous unit—a phthalate-induced pathway to skin sensitization

    Energy Technology Data Exchange (ETDEWEB)

    Simonsson, Carl, E-mail: carl.simonsson@chem.gu.se [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Stenfeldt, Anna-Lena; Karlberg, Ann-Therese [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Ericson, Marica B., E-mail: marica.ericson@physics.gu.se [Department of Physics, University of Gothenburg, SE-412 96, Gothenburg (Sweden); Jonsson, Charlotte A.M. [Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96, Gothenburg (Sweden)

    2012-10-01

    Allergic contact dermatitis (ACD) is caused by low-molecular weight compounds called haptens. It has been shown that the potency of haptens can depend on the formulation in which they are applied on the skin. Specifically the sensitization potency of isothiocyanates, a group of haptens which can be released from e.g. adhesive tapes and neoprene materials, increases with the presence of phthalates; however, the underlying mechanisms are not clear. A better understanding of the mechanisms governing the potency of haptens is important, e.g. to improve the risk assessment and the formulation of chemicals in consumer products. In this study we have explored phthalate-induced effects on the sensitization potency, skin distribution, and reactivity of fluorescent model isothiocyanate haptens using non-invasive two-photon microscopy to provide new insights regarding vehicle effects in ACD. The data presented in this paper indicate that the sensitization potency of isothiocyanates increases when applied in combination with dibutylphthalate due to a specific uptake via the pilosebaceous units. The results highlight the importance of shunt pathways when evaluating the bioavailability of skin sensitizers. The findings also indicate that vehicle-dependent hapten reactivity towards stratum corneum proteins regulates the bioavailability, and thus the potency, of skin sensitizers. -- Highlights: ► Vehicle effects on sensitization potency were investigated in the LLNA. ► In vivo cutaneous absorption of contact sensitizers was visualized using TPM. ► Sensitizing potency of isothiocyanates depends on the presence of a phthalate. ► Phthalate induced cutaneous absorption via the pilosebaceous units. ► Vehicle-dependent reactivity regulates sensitization potency.

  17. Effects of crystalline state and self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of the novel anti-HIV compound 6-benzyl-1-benzyloxymethyl-5-iodouracil in rats.

    Science.gov (United States)

    Lu, Ying-Yuan; Dai, Wen-Bing; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Lu, Chuang; Zhang, Qiang; Zhang, Guo-Liang

    2018-02-01

    The objective of this study was to investigate the effect of crystalline state and a formulation of self-nanoemulsifying drug delivery system (SNEDDS) on oral bioavailability of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor, in rats. The crystalline states of W-1 were characterized by scanning electron microscope (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). The SNEDDS was formulated by medium-chain lipids, characterized by droplet particle size. The plasma concentrations of W-1 were measured by high performance liquid chromatography (HPLC). The results indicated that W-1 compound were presented as crystalline forms, A and B, the degree of crystallization in form B was higher than that in form A. The SNEDDS of W-1 displayed a significant increase in the dissolution rate than W-1 powder. Furthermore, after oral administration of W-1 (100 mg/kg), the pharmacokinetic parameters of form A, form B, and W-1 SNEDDS were as follows: AUC 0-t 526.4 ± 123.5, 305.1 ± 58.5 and 2297 ± 451 ng h/mL (p < .05, when W-1 SNEDDS were compared with either form A or form B), respectively. With SNEDDS formulation, the relative bioavailabilities were enhanced by 4.36-fold and 7.53-fold over the form A and form B of W-1, respectively. In conclusion, the present results suggested that the crystalline states of W-1 might lead to the lower oral bioavailability, and SNEDDS formulation is a promising strategy of improving bioavailability, in spite of that crystalline states usually carry small lot-to-lot variability.

  18. Spatial and Temporal Control of Chemical Structure for Biofouling Resistant, High Fouling Release Surfaces

    Science.gov (United States)

    2014-06-02

    copolymer of a poly(ethylene glycol) functionalized methacrylate (PEGMA) and a fluoroalkyl acrylate (AF6) prepared by ATRP. The statistical block of...Under an argon atmosphere, benzyl alcohol initiator was added by gas-tight syringe through a 6-mm puresep septum. Potassium alkoxide initiators were...formed by titration of benzyl alcohol with potassium naphthalenide under argon until a green color persisted in solution indicating the

  19. Applications of Laser Diagnostics

    Science.gov (United States)

    2005-03-01

    fraction of methane in the fuel is 0.48. The steady nozzle velocities of the fuel and oxyder stream are respectively 0.59 m/s and 0.61 m/s. The...Hexane Heptane Toluene Benzene THF Ethyl acetate Chloroform Dichloromethane Acetone DMSO Propylene carbonate Benzyl alcohol Ethanol Methanol Octanol...Cyclohexane Pentane Hexane Heptane Toluene Benzene THF Ethyl acetate Chloroform Dichloromethane Acetone DMSO Propylene carbonate Benzyl alcohol Ethanol

  20. Highly efficient oxidation of amines to imines by singlet oxygen and its application in Ugi-type reactions.

    Science.gov (United States)

    Jiang, Gaoxi; Chen, Jian; Huang, Jie-Sheng; Che, Chi-Ming

    2009-10-15

    A variety of secondary benzylic amines were oxidized to imines in 90% to >99% yields by singlet oxygen generated from oxygen and a porphyrin photosensitizer. On the basis of these reactions, a protocol was developed for oxidative Ugi-type reactions with singlet oxygen as the oxidant. This protocol has been used to synthesize C1- and N-functionalized benzylic amines in up to 96% yields.

  1. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  2. [{sup 177}Lu]pertuzumab: experimental studies on targeting of HER-2 positive tumour cells

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Mikael; Gedda, Lars [Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Uppsala University, Experimental Urology, Rudbeck Laboratory, Uppsala (Sweden); Tolmachev, Vladimir; Andersson, Karl; Carlsson, Joergen [Uppsala University, Biomedical Radiation Sciences, Rudbeck Laboratory, Uppsala (Sweden); Sandstroem, Mattias [Uppsala University, Medical Radiation Physics, Uppsala University Hospital, Uppsala (Sweden)

    2005-12-01

    The new antibody pertuzumab (Omnitarg) targets the dimerisation subdomain of HER-2. The purpose of this study was to analyse whether pertuzumab retains HER-2 targeting capacity after labelling with the therapeutically interesting beta emitter {sup 177}Lu and to make initial characterisations in vitro and in vivo. Pertuzumab was conjugated with isothiocyanate-benzyl-CHX-A{sup ''}-DTPA and chelated to {sup 177}Lu. Immunoreactivity, affinity, cellular retention and internalisation were analysed using SKOV-3 cells. The affinity of non-radioactive pertuzumab was measured using a surface plasmon resonance biosensor. In vivo targeting and specific binding were assessed in Balb/c (nu/nu) mice carrying SKOV-3 xenografts. The biodistribution of {sup 177}Lu was determined 1, 3 and 7 days after [{sup 177}Lu]pertuzumab administration. Gamma camera images were taken after 3 days. The immunoreactivity of [{sup 177}Lu]pertuzumab was 85.8{+-}1.3%. The affinity of non-radioactive pertuzumab was 1.8{+-}1.1 nM, and that of [{sup 177}Lu]pertuzumab, 4.1{+-}0.7 nM. The cellular retention after 5 h pre-incubation was 90{+-}2% at 20 h. The targeting was HER-2 specific both in vitro and in vivo, since excess amounts of non-labelled antibody inhibited the uptake of labelled antibody (p<0.0001 and p<0.01, respectively). The biodistribution and gamma camera images of {sup 177}Lu showed extensive tumour uptake. Normal tissues had a surprisingly low uptake. Pertuzumab was efficiently labelled with {sup 177}Lu and showed good intracellular retention and HER-2 specific binding both in vitro and in vivo. The gamma camera images and the biodistribution study gave excellent tumour targeting results. Thus, [{sup 177}Lu]pertuzumab is of interest for further studies aimed at radionuclide therapy. (orig.)

  3. 用清洁生产理念优化苯甲醇和苯甲酸的合成实验%Experiment of Synthesis Optimization for Benzyl Alcohol and Benzoic Acid by Stratagem of Clean Production

    Institute of Scientific and Technical Information of China (English)

    鹿桂芳; 赵喜芝; 王珩

    2009-01-01

    Preparing benzyl alcohol and benzoic acid by benzyalde is an important experiment in organic chemistry experiment teaching in colleges. But in conventional experiment some problem appears including great consumption of alkali and acid as well as pollution of benzene and hydrogen chloride on the laboratory. In the highlight of clean production such as source controlling, pollution reduction and efficiency enhancement, the parameters of traditional experiment were optimized for the purpose of reducing the pollution of laboratory. The stratagem of clean production may direct a new way for students' life.%以苯甲醛为原料制备苯甲醇与苯甲酸是高校有机化学实验教学中的一个重要实验,但在传统实验中,存在原料用量大,苯、氯化氢污染实验室环境等问题.文章利用清洁生产从源头控制、减污增效的思想,对本实验的传统参数进行了优化,从而减轻对实验室的污染.并在该思想的引领下,使学生了解清洁生产可从身边的事做起.

  4. Carbon nanotube-based benzyl polymethacrylate composite monolith as a solid phase extraction adsorbent and a stationary phase material for simultaneous extraction and analysis of polycyclic aromatic hydrocarbon in water.

    Science.gov (United States)

    Al-Rifai, Asma'a; Aqel, Ahmad; Wahibi, Lamya Al; ALOthman, Zeid A; Badjah-Hadj-Ahmed, Ahmed-Yacine

    2018-02-02

    A composite of multi-walled carbon nanotubes incorporated into a benzyl methacrylate-co-ethylene dimethacrylate porous monolith was prepared, characterized and used as solid phase adsorbent and as stationary phase for simultaneous extraction and separation of ten polycyclic aromatic hydrocarbons, followed by nano-liquid chromatography analysis. The extraction and chromatographic parameters were optimized with regard to the extraction efficiency and the quality of chromatographic analytes separation. Under the optimized conditions, all PAHs were separated in 13 min with suitable resolution values (Rs = 1.74-3.98). Addition of a small amount of carbon nanotubes (0.1% with respect to monomers) to the polymerization mixture increased the efficiency for the separation column to over 41,700 plates m -1 for chrysene at flow rate of 0.5 μL min -1 . The method showed a wide linear range (1-500 μg L -1 with R 2 more than 0.9938), acceptable extraction repeatability (RSDs extraction cartridges) and satisfactory detection limits (0.02-0.22 μg L -1 ). Finally, the proposed method was successfully applied to the detection of polycyclic aromatic hydrocarbons in environmental water samples. After a simple extraction procedure with preconcentration factor equal to 100, the average recovery values in ultra-pure, tap and sea water samples were found to be in the range 81.3-95.4% with %RSD less than 6.4. Again, the presence of carbon nanotubes (0.3% relatively to monomers) in native polymer enhanced the extraction performance for the solid phase adsorbent up to 78.4%. The application of the monoliths modified with CNTs in extraction and nano-scale liquid chromatography for analysis of environmental samples offered several advantages; it demonstrated an acceptable precision, low detection limits, good reproducibility, satisfying recoveries and wide dynamic linear ranges. Copyright © 2018. Published by Elsevier B.V.

  5. Identification of cytochrome P450s involved in the metabolism of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1) using human recombinant enzymes and rat liver microsomes in vitro.

    Science.gov (United States)

    Lu, Ying-Yuan; Cheng, Hai-Xu; Wang, Xin; Wang, Xiao-Wei; Liu, Jun-Yi; Li, Pu; Lou, Ya-Qing; Li, Jun; Lu, Chuang; Zhang, Guo-Liang

    2017-08-01

    1. The aim of this study was to identify the hepatic metabolic enzymes, which involved in the biotransformation of 6-benzyl-1-benzyloxymethyl-5-iodouracil (W-1), a novel non-nucleoside reverse transcriptase inhibitor (NNRTI) in rat and human in vitro. 2. The parent drug of W-1 was incubated with rat liver microsomes (RLMs) or recombinant CYPs (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, and CYP3A5, respectively) in the presence or absence of nicotinamide adeninedinucleotide phosphate (NADPH)-regenerating system. The metabolites of W-1 were analyzed with liquid chromatography-ion trap-time of flight-mass spectrometry (LC-IT-TOF-MS). 3. The parent drug of W-1 was metabolized in a NADPH-dependent manner in RLMs. The kinetic parameters of prototype W-1 including K m , V max , and CL int were 2.3 μM, 3.3 nmol/min/mg protein, and 1.4 mL/min/mg protein, respectively. Two metabolites M1 and M2 were observed in shorter retention times (2.988 and 3.188 min) with a higher molecular ion at m/z 463.0160 (both M1 and M2) than that of the W-1 parent drug (6.158 min with m/z 447.0218). The CYP selective inhibition and recombinant enzymes also showed that two hydroxyl metabolites M1 and M2 are mainly mediated by CYP2C19 and CYP3A4. 4. The identification of CYPs involved in W-1 biotransformation is important to understand and minimize, if possible, the potential of drug-drug interactions.

  6. Heterogeneous Catalysis by Tetraethylammonium Tetrachloroferrate of the Photooxidation of Toluene by Visible and Near-UV Light

    Directory of Open Access Journals (Sweden)

    Kelsie R. Barnard

    2018-02-01

    Full Text Available Titanium dioxide is the most extensively used heterogeneous catalyst for the photooxidation of toluene and other hydrocarbons, but it has low utility for the synthesis of benzyl alcohol, of which little is produced, or benzaldehyde, due to further oxidation to benzoic acid and cresol, among other oxidation products, and eventually complete mineralization to CO2. Et4N[FeCl4] functions as a photocatalyst through the dissociation of chlorine atoms, which abstract hydrogen from toluene, and the photooxidation of toluene proceeds only as far as benzyl alcohol and benzaldehyde. Unlike TiO2, which requires ultraviolet (UV irradiation, Et4N[FeCl4] catalyzes the photooxidation of toluene with visible light alone. Even under predominantly UV irradiation, the yield of benzyl alcohol plus benzaldehyde is greater with Et4N[FeCl4] than with TiO2. Et4N[FeCl4] photocatalysis yields benzyl chloride as a side product, but it can be minimized by restricting irradiation to wavelengths above 360 nm and by the use of long irradiation times. The photonic efficiency of oxidation in one experiment was found to be 0.042 mol/einstein at 365 nm. The use of sunlight as the irradiation source was explored.

  7. NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION

    Directory of Open Access Journals (Sweden)

    Lilia Fernández-Sánchez

    2015-03-01

    Full Text Available The paper presents the nuclear magnetic resonance (NMR of proton 1H, carbon 13C and two dimensional spectrums, product of a green organic synthesis of redox on the Cannizzaro reaction. The product was reported as a tribochemical gel (heterogeneous mixture and confirmed by Infrared Spectroscopy IR, X-ray and scanning electron microscope (SEM. The results in this paper confirm its structure through various techniques of NMR and evaluate the content of sodium benzoate and benzyl alcohol in the spectroscopy sample, examining the values of the integrals on 1H NMR signals. The result of analysis indicates that benzyl alcohol (dispersed phase is in 33.44% mol in comparison with sodium benzoate content (continuous phase. These results confirm that the gel structure over time loses the dispersed phase of the benzyl alcohol producing a xerogel.

  8. Synthesis of Thioethers by InI3-Catalyzed Substitution of Siloxy Group Using Thiosilanes

    Directory of Open Access Journals (Sweden)

    Yoshihiro Nishimoto

    2016-10-01

    Full Text Available The substitution of a siloxy group using thiosilanes smoothly occurred in the presence of InI3 catalyst to yield the corresponding thioethers. InI3 was a specifically effective catalyst in this reaction system, while other typical Lewis acids such as BF3⋅OEt2, AlCl3, and TiCl4 were ineffective. Various silyl ethers such as primary alkyl, secondary alkyl, tertiary alkyl, allylic, benzylic, and propargylic types were applicable. In addition, bulky OSitBuMe2 and OSiiPr3 groups, other than the OSiMe3 group, were successfully substituted. The substitution reaction of enantiopure secondary benzylic silyl ether yielded the corresponding racemic thioether product, which suggested that the reaction of tertiary alkyl, secondary alkyl, benzylic, and propargylic silyl ethers would proceed via a SN1 mechanism.

  9. Antimutagenic effect of isocyanates and related compounds in escherichia coli

    International Nuclear Information System (INIS)

    Kawazoe, Yutaka; Kato, Masanari

    1982-01-01

    Isocyanates and isothiocyanates have been suggested to inactivate enzymes involved in the metabolic activation of chemical carcinogens and the repair of DNA damage. These compounds decrease the mutability of a tester strain of Escherichia coli B under UV irradiation. This paper deals with the antimutagenicity of acylating agents, including isocyanates and isothiocyanates, and some anti-oxidants which are suspected to be anticarcinogenic. The results can be summarized as follows. (1) The antimutagenic effect observed in the present study operates on UV-induced mutagenesis but not on X-ray-induced mutagenesis. (2) This effect operates only on the wild-type strain, H/r30R, but not on Hs30R deficient in the excision repair system. (3) This effect may function through giving the irradiated cells a greater chance to carry out excision repair by prolonging the lag-period before entry into the S-phase. (4) The carbamoylating ability of isocyanates and isothiocyanates may be responsible for the antimutagenicity, but other type of reactivities may also be involved. These antimutagens also participate in inactivating enzymes relevant to the metabolic activation of mutagens, resulting in a decrease in the frequency of chemically induced mutagenesis. (author)

  10. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions

    OpenAIRE

    Mehdi, Hasan; Bodor, Andrea; Lantos, Diana; Horváth, István T; De Vos, Dirk; Binnemans, Koen

    2007-01-01

    Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Ca...

  11. 2397-IJBCS-Article-Mahama Ouattara

    African Journals Online (AJOL)

    hp

    25 mars 2014 ... notamment à l'avènement des dérivés de l'artémisinine et de leur association aux antipaludiques ... moustiques vecteurs du paludisme deviennent résistants aux insecticides employés pour les détruire et ..... le dérivé benzylé 4d a été isolé avec un rendement de 71%. N-benzyl-2-acétylbenzimidazole 4d.

  12. Structural studies of 4-aminoantipyrine derivatives

    Science.gov (United States)

    Cunha, Silvio; Oliveira, Shana M.; Rodrigues, Manoel T.; Bastos, Rodrigo M.; Ferrari, Jailton; de Oliveira, Cecília M. A.; Kato, Lucília; Napolitano, Hamilton B.; Vencato, Ivo; Lariucci, Carlito

    2005-10-01

    Reaction of 4-aminoantipyrine with acetylacetone, ethyl acetoacetate, benzoyl isothiocyanate, phenyl isothiocyanate, maleic anhydride and methoxymethylene Meldrum's acid afforded a series of new antipyrine derivatives. The antibacterial activity of the synthesized compounds against Micrococcus luteus ATCC 9341, Staphilococcus aureus ATCC 29737, and Escherichia coli ATCC 8739 was evaluated and the minimal inhibitory concentration determined. Modest activity was found only to the maleamic acid obtained from the reaction of 4-aminoantipyrine and maleic anhydride. 1H NMR investigation of this maleamic acid showed that it is slowly converted to the corresponding toxic maleimide. The structures of three derivatives were determined by X-ray diffraction analysis.

  13. (pt-BUTYL(BENZYL/BENZYLIDEN)AMINO)

    African Journals Online (AJOL)

    Preferred Customer

    standardized by titration against primary standard sodium carbonate (Merck). Solutions of standard bases containing 0.10 M NaCl were prepared as 50% (v/v) aqueous ethanol-water was potentiometrically standardized against hydrochloric acid solutions by use of Gran's plot techniques, allowing determination of dissolved ...

  14. COMPLEXES CONTAINING HYDRAZINE AND BENZYL ...

    African Journals Online (AJOL)

    Preferred Customer

    Treatment of 2 in refluxing acetone in the presence of the ... Microanalyses were carried out at the Center for Nanotechnology, Department of. Chemistry ... product as mixtures of colourless prisms and needles containing methanol and water of.

  15. (N-Benzyl-N-isopropyldithiocarbamatochloridodiphenyltin(IV

    Directory of Open Access Journals (Sweden)

    Amirah Faizah Abdul Muthalib

    2010-09-01

    Full Text Available The SnIV atom in the title organotin dithiocarbamate, [Sn(C6H52(C11H14NS2Cl], is penta-coordinated by an asymmetrically coordinating dithiocarbamate ligand, a Cl and two ispo-C atoms of the Sn-bound phenyl groups. The resulting C2ClS2 donor set defines a coordination geometry intermediate between square-pyramidal and trigonal-bipyramidal with a slight tendency towards the latter. The formation of close intramolecular C–H...Cl and C–H...S contacts precludes the Cl and S atoms from forming significant intermolecular contacts. The presence of C–H...π contacts leads to the formation of supramolecular arrays that stack along the b axis.

  16. Evaluation of Methods for the Analysis of Small Molecular Weight End-Products of Wastewater Ozonation.

    Science.gov (United States)

    1980-04-01

    advantage over the benzyl bromide method, which easily detected acetic and formic acid levels as low as 0.25 mg/L. Recovery was quantitative, with a...inner diameter glass, packed with 10% OV-l on 80/100 mesh Chromosorb WHP ( Alltech Associates) Carrier: Nitrogen at 24 cc/minute Column temperature: 150°C...found to be effective for analysis of acetic and formic acids. There was no advantage to the use of pentafluorobenzyl bromide over benzyl bromide, even

  17. Synthesis of modified proanthocyanidins: introduction of acyl substituents at C-8 of catechin. Selective synthesis of a C-4-->O-->C-3 ether-linked procyanidin-like dimer.

    Science.gov (United States)

    Beauhaire, Josiane; Es-Safi, Nour-Eddine; Boyer, François-Didier; Kerhoas, Lucien; Guernevé, Christine le; Ducrot, Paul-Henri

    2005-02-01

    The regioselective introduction of substituents at C-8 of (+)-catechin is described, leading to the synthesis of several catechin derivatives with various substitution patterns to be used for the further synthesis of modified proanthocyanidins. Thereafter, a new 3-O-4 ether-linked procyanidin-like derivative was synthesized. Its formation was selectively achieved through TiCl(4)-catalyzed condensation of 4-(2-hydroxyethoxy)tetra-O-benzyl catechin with the 8-trifluoroacetyl adduct of tetra-O-benzyl catechin.

  18. A Concise Synthesis of Castanospermine by the Use of a Transannular Cyclization

    DEFF Research Database (Denmark)

    Jensen, Thomas; Mikkelsen, Mette; Lauritsen, Anne

    2009-01-01

    A nine-step synthesis of (+)-castanospermine has been accomplished in 22% overall yield from methyl alpha-D-glucopyranoside. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 6-iodoglucopyranoside, ring-closing olefin metathesis, and strain-release transannu......A nine-step synthesis of (+)-castanospermine has been accomplished in 22% overall yield from methyl alpha-D-glucopyranoside. The key transformations involve a zinc-mediated fragmentation of benzyl-protected methyl 6-iodoglucopyranoside, ring-closing olefin metathesis, and strain...

  19. Molecular interaction of a potent nonpeptide agonist with the chemokine receptor CCR8

    DEFF Research Database (Denmark)

    Jensen, Pia C; Nygaard, Rie; Thiele, Stefanie

    2007-01-01

    Most nonpeptide antagonists for CC-chemokine receptors share a common pharmacophore with a centrally located, positively charged amine that interacts with the highly conserved glutamic acid (Glu) located in position 6 of transmembrane helix VII (VII:06). We present a novel CCR8 nonpeptide agonist......, 8-[3-(2-methoxyphenoxy)benzyl]-1-phenethyl-1,3,8-triaza-spiro[4.5]decan-4-one (LMD-009), that also contains a centrally located, positively charged amine. LMD-009 selectively stimulated CCR8 among the 20 identified human chemokine receptors. It mediated chemotaxis, inositol phosphate accumulation......-binding pockets of CCR8 uncovered that the binding of LMD-009 and of four analogs [2-(1-(3-(2-methoxyphenoxy)benzyl)-4-hydroxypiperidin-4-yl)benzoic acid (LMD-584), N-ethyl-2-4-methoxybenzenesulfonamide (LMD-902), N-(1-(3-(2-methoxyphenoxy)benzyl)piperidin-4-yl)-2-phenyl-4-(pyrrolidin-1yl)butanamide (LMD-268...

  20. Degradation of the fungicide denmert (S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbonimidate, S-1358) by plants, soils and light

    International Nuclear Information System (INIS)

    Ohkawa, Hideo; Shibaike, Reiko; Okihara, Yukiko; Morikawa, Michihide; Miyamoto, Junshi

    1976-01-01

    14 C-Denmert(S-n-butyl S'-p-tert-butylbenzyl N-3-pyridyldithiocarbonimidate, S-1358) labeled at the methylene of the benzyl group was gradually decomposed to yield a number of products, when exposed to sunlight on thin-layer plates or in water solution, applied to plant foliage or nutrient solution, and added to soils under upland conditions. The identified products were almost common to plants, soils and light. The primary reactions occurred: (1), oxidation of the sulfur atoms; (2), cleavage of the dithiocarbonimidate linkage, and (3), oxidation of the methylene of the benzyl group. Also, hydroxylation at the tert-butyl group attached to the benzyl moiety slightly took place in soils. Although radioactivity was absorbed by the plant through leaves or roots, translocation into other parts of the plant occurred to a very small extent. Denmert and its degradation products were hardly leached through the acidic soils tested. (auth.)