WorldWideScience

Sample records for benzhydrol

  1. Radiation-stable polyolefin compositions

    International Nuclear Information System (INIS)

    Rekers, J.W.

    1986-01-01

    This invention relates to compositions of olefinic polymers suitable for high energy radiation treatment. In particular, the invention relates to olefinic polymer compositions that are stable to sterilizing dosages of high energy radiation such as a gamma radiation. Stabilizers are described that include benzhydrol and benzhydrol derivatives; these stabilizers may be used alone or in combination with secondary antioxidants or synergists

  2. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  3. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  4. Miniaturized hollow fiber assisted liquid-phase microextraction and gas chromatography-mass spectrometry for determination of benzophenone and derivates in human urine sample.

    Science.gov (United States)

    Kawaguchi, Migaku; Ito, Rie; Honda, Hidehiro; Koganei, Youji; Okanouchi, Noriya; Saito, Koichi; Seto, Yasuo; Nakazawa, Hiroyuki

    2009-01-15

    The determination of benzophenones (BPs) in human urine sample by miniaturized hollow fiber assisted liquid-phase microextraction (HF-LPME) and gas chromatography-mass spectrometry (GC-MS) is described. As analytes, BP, its metabolites benzhydrol (BP-OH) and 2-hydroxybenzophenone (2OH-BP), and its derivatives 2-hydroxy-4-methoxybenzophenone (BP-3) and 2-hydroxy-4-methoxy-4'-methylbenzophenone (BP-10) were selected. The detection limit and the quantification limit of BPs in human urine sample are 5-10 and 20-50 pg mL(-1), respectively. The calibration curve for BPs is linear with correlation coefficient higher than 0.99 in the range of 0.02-10 or 0.05-10 ng mL(-1). The average recoveries of BPs in human urine samples spiked with 0.5 and 5 ng mL(-1) BPs are 89.8-100.2% (RSD: 2.5-9.3%) and 89.3-99.9% (RSD: 2.9-3.7%), respectively. Ten human urine samples were analyzed using the present method. BP-OH and BP-3 were detected in all the samples within the range of 0.24-5.91 and 0.43-5.17 ng mL(-1), respectively. This simple, sensitive, and selective analytical method was successfully applied to the determination of trace amounts of BPs in human urine samples.

  5. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  6. Novel modification method to prepare crosslinked sulfonated poly(ether ether ketone)/silica hybrid membranes for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shaoguang; Shang, Yuming; Liu, Guoshun; Dong, Wenqi; Xie, Xiaofeng; Xu, Jingming [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Mathur, V.K. [Department of Chemical Engineering, University of New Hampshire, NH 03824 (United States)

    2010-10-01

    Crosslinked organic-inorganic hybrid membranes are prepared from hydroxyl-functionalized sulfonated poly(ether ether ketone) (SPEEK) and various amounts of silica with the aims to improve dimensional stability and methanol resistance. The partially hydroxyl-functionalized SPEEK is prepared by the reduction of some benzophenone moieties of SPEEK into the corresponding benzhydrol moieties which is then reacted with (3-isocyanatopropyl)triethoxysilane (ICPTES) to get a side chained polymer bearing triethoxysilyl groups. These groups are subsequently co-hydrolyzed with tetraethoxysilane (TEOS) and allow the membrane to form a crosslinked network via a sol-gel process. The obtained hybrid membranes with covalent bonds between organic and inorganic phases exhibit much lower methanol swelling ratio and water uptake. With the increase of silica content, the methanol permeability coefficient of the hybrid membranes decreases at first and then increased. At silica content of about 6 wt.%, the methanol permeability coefficient reaches a minimum of 7.15 x 10{sup -7} cm{sup 2} s{sup -1}, a 5-fold decrease compared with that of the pristine SPEEK. Despite the fact that the proton conductivity is decreased to some extent as a result of introduction of the silica, the hybrid membranes with silica content of 4-8 wt.% shows higher selectivity than Nafion117. (author)

  7. Toxicokinetics and metabolisms of benzophenone-type UV filters in rats

    International Nuclear Information System (INIS)

    Jeon, Hee-Kyung; Sarma, Sailendra Nath; Kim, Youn-Jung; Ryu, Jae-Chun

    2008-01-01

    Sunscreens containing UV filters are recommended to reduce damage caused by solar UV radiation. Recently, benzophenone (BP)-type UV filters have become widely used as UV stabilizers in skin-moisturizing products and sunscreen lotions; however, very little information is available regarding the potential harmful effects of prolonged exposure to these compounds. Therefore, we investigated the toxicokinetics and metabolism of BP-type UV filters in rats using gas chromatography-mass spectrometry (GC-MS). To examine the metabolism of BP-type UV filters, we analyzed the parent compounds BP and 2-hydroxy-4-methoxybenzophenone (HMB). In rats, BP was mainly converted to benzhydrol (BH) and 4-hydroxybenzophenone (HBP) (i.e., type A UV filters). In contrast, HMB was converted into at least three intermediates, including 2,4-dihydroxybenzophenone (DHB), which was formed via o-demethylation and subsequently converted into 2,3,4-trihydroxybenzophenone (THB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), which formed via the aromatic hydroxylation of HMB (i.e., type B UV filters). Next, the toxicokinetic curve for BP showed a peak concentration (C max ) of 2.06 ± 0.46 μg/ml at approximately 4 h after BP administration. After a single oral dose of HMB, the C max of HMB reached 21.21 ± 11.61 μg/ml within 3 h (T max ), and then declined rapidly compared to the kinetic curve of BP. The concentration of these metabolites in rat blood decreased much more slowly over time compared to the parent compounds. Thus, our results indicate that such metabolites might have more significant adverse effects than the parent compounds over the long term

  8. Tuning copper-dioxygen reactivity and exogenous substrate oxidations via alterations in ligand electronics.

    Science.gov (United States)

    Zhang, Christiana Xin; Liang, Hong-Chang; Kim, Eun-Il; Shearer, Jason; Helton, Matthew E; Kim, Eunsuk; Kaderli, Susan; Incarvito, Christopher D; Zuberbühler, Andreas D; Rheingold, Arnold L; Karlin, Kenneth D

    2003-01-22

    Copper(I)-dioxygen adducts are important in biological and industrial processes. For the first time we explore the relationship between ligand electronics, CuI-O2 adduct formation and exogenous substrate reactivity. The copper(I) complexes [CuI(R-MePY2)]+ (1R, where R = Cl, H, MeO, Me2N) were prepared; where R-MePY2 are 4-pyridyl substituted bis[2-(2-pyridyl)ethyl]methylamine chelates. Both the redox potential of 1R (ranging from E1/2 = -270 mV for 1Cl to -440 mV for 1MeN vs FeCp2/FeCp2+) and nuCO of the CO adducts of 1R (ranging from 2093 cm-1 for 1Cl-CO to 2075 cm-1 for 1Me2N-CO) display modest but expected systematic shifts. Dioxygen readily reacts with 1H, 1MeO, and 1Me2N, forming the side-on peroxo-CuII2 complexes [{CuII(R-MePY2)}2(O2)]2+ (2R, also containing some bis-mu-oxo-CuIII2 isomer), but there is no reaction with 1Cl. Stopped-flow studies in dichloromethane show that the formation of 2Me2N from dioxygen and 1Me2N proceeds with a k = 8.2(6) x 104 M-2 s-1 (183 K, DeltaH = -20.3(6) kJ mol-1, DeltaS = -219(3) J mol-1 K-1). Solutions of 2R readily oxidize exogenous substrates (9,10-dihydroanthracene --> anthracene, tetrahydrofuran (THF) --> 2-hydroxytetrahydrofuran (THF-OH), N,N-dimethylaniline --> N-methylaniline and formaldehyde, benzyl alcohol --> benzaldehyde, benzhydrol --> benzophenone, and methanol --> formaldehyde), forming the bis-mu-hydroxo-CuII2 complexes [{CuII(R-MePY2)(OH)}2]2+ (3R). Product yields increase as the R-group is made more electron-donating, and in some cases are quantitative with 2Me2N. Pseudo-first-order rate constants for THF and methanol oxidation reactions demonstrate a remarkable R-group dependence, again favoring the strongest ligand donor (i.e., R = Me2N). For THF oxidation to THF-OH a nearly 1500-fold increase in reaction rate is observed (kobs = 2(1) x 10-5 s-1 for 2H to 3(1) x 10-2 s-1 for 2Me2N), while methanol oxidation to formaldehyde exhibits an approximately 2000-fold increase (kobs = 5(1) x 10-5 s-1 for 2H to 1(1) x