WorldWideScience

Sample records for benzhydrol

  1. Correlation analysis of reactivity in the oxidation of some para- substituted benzhydrols by triethylammonium chlorochromate in non-aqueous media

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2017-02-01

    Full Text Available Triethylammonium chlorochromate (TriEACC oxidation of some para-substituted benzhydrols (BH in dimethylsulfoxide (DMSO leads to the formation of corresponding benzophenones. The reaction was run under pseudo-first-order conditions. The reaction is catalyzed by hydrogen ions. The hydrogen ion dependence has the form: kobs = a + b[H+]. Various thermodynamic parameters for the oxidation have been reported and discussed along with the validity of isokinetic relationship. Oxidation of benzhydrol was studied in 18 different organic solvents. The rate data showing satisfactory correlation with Kamlet–Taft solvatochromic parameters (α, β and π∗ suggests that the specific solute–solvent interactions play a major role in governing the reactivity, and the observed solvent effects have been explained on the basis of solute–solvent complexation. A suitable mechanism of oxidation has been proposed.

  2. [Enzyme inductive effect of zixoryn (3-trifluoromethyl-alpha-ethyl-benzhydrol) in neonatal jaundice].

    Science.gov (United States)

    Korányi, G; Boross, G

    1985-02-01

    Zixoryn, (3-trifluoromethyl-alfa-aethyl-benzhydrole) is a new product of the Hungarian Chemical Works of Gedeon Richter Ltd. It induces the mixed function oxydase enzyme system of the endoplasmic reticulum of the liver and has no other pharmacological effects. We have studied the effect of Zixoryn on early hyperbilirubin-aemia. 42 neonates were studied, 21 of them were randomly assigned to be treated and the others served as control group Zixoryn treatment consisted of drops containing 10 mg Zixoryn per ml in a single 20 mg/kg body weight dose through a gastric tube. Results are summarized in Fig. 2. It shows the mean se bi levels during the first six days of life. It is remarkable that the decline of se bi level was much faster in the treated than in the control group. On the third day the difference between the two groups was significant. We may conclude that after Zixoryn administration the se bi level of otherwise healthy newborns decreased significantly faster than that of untreated neonates. No side-effects what so ever were observed. The administration is easy, a single oral dose has a satisfactory effect.

  3. Radiation-stable polyolefin compositions

    International Nuclear Information System (INIS)

    Rekers, J.W.

    1986-01-01

    This invention relates to compositions of olefinic polymers suitable for high energy radiation treatment. In particular, the invention relates to olefinic polymer compositions that are stable to sterilizing dosages of high energy radiation such as a gamma radiation. Stabilizers are described that include benzhydrol and benzhydrol derivatives; these stabilizers may be used alone or in combination with secondary antioxidants or synergists

  4. An efficient and convenient synthesis of N-substituted amides under ...

    Indian Academy of Sciences (India)

    Catalyst re-usability was assessed in the reaction of phenylacetonitrile with benzhydrol. To this end, the reaction was stopped after 3 h (i.e., at 100% conversion of phenylacetonitrile) and the catalyst removed by fil- tration and washed with acetone and 1,2-dichloroethane several times. Table 3 shows the results obtained ...

  5. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  6. Photo catalytic reduction of benzophenone on TiO{sub 2}: Effect of preparation method and reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I., E-mail: mavalenz@ipn.m [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, Zacatenco, 07738 Mexico D. F. (Mexico)

    2010-07-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO{sub 2} was synthesized by means of a hydrothermal technique. TiO{sub 2} (Degussa TiO{sub 2}-P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp ({lambda}= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO{sub 2} depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO{sub 2} was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO{sub 2} (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO{sub 2}-P25. (Author)

  7. γ-radiolysis of benzophenone in heptane solutions

    International Nuclear Information System (INIS)

    Melekhonova, I.I.; Romantsev, M.F.; Saraeva, V.V.

    1979-01-01

    The radiolysis mechanism of 8x10 -3 M solutions of benzophenon in heptane at 0 deg C and a dose of 3.8x10 20 eV/ml, is studied. The radiolysis products (benzpinacol and benzhydrol with alkyl substitution in aromatic ring) are isolated by the thin-layer chromatography. The identification of the products is performed using infrared and mass spectroscopy. The mechanism of the process is considered based on the reactions of a triplet state of benzophenon

  8. Photoreduction of Azoalkanes by Direct Hydrogen Abstraction from 1,4-Cyclohexadiene, Alcohols, Stannanes, and Silanes.

    Science.gov (United States)

    Adam, Waldemar; Moorthy, Jarugu N.; Nau, Werner M.; Scaiano, J. C.

    1997-11-14

    A mechanistic investigation of the photoreduction of the n,pi triplet-excited azo chromophore has been carried out on azoalkanes 1, which exhibit efficient intersystem-crossing quantum yields (ca. 0.5). The azoalkanes 1a and 1b undergo facile photoreduction to the corresponding hydrazines in the presence of a variety of hydrogen donors, which include 2-propanol, benzhydrol, 1,4-cyclohexadiene, tributylstannane, and tris(trimethylsilyl)silane. In contrast, the hydrazine yields derived for the azoalkanes 1c and 1d are significantly lower even at high hydrogen donor concentrations due to their lower triplet yields and shorter triplet lifetimes. A clear dependence of the hydrazine yields on the bond dissociation energies of the hydrogen donors has been observed, which is reflected in the quenching rate constants obtained from time-resolved transient absorption spectroscopy. The absolute rate constants for interaction of the triplet azoalkane 1a with hydrogen donors are generally lower (ca. 10-100-fold) than for benzophenone, in line with the less favorable reaction thermodynamics. The comparison of the rate constants for quenching of the triplet-excited azoalkane 1a and of the singlet-excited state of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) reveals a similar reactivity of excited azoalkanes toward hydrogen donors; differences can be accounted for in terms of variations in the energies of the excited states. The interactions of the excited azoalkanes with tributylstannane and benzhydrol produce the radicals characteristic for hydrogen abstraction from these substrates, namely tributylstannyl and hydroxydiphenylmethyl radicals, which were detected through their transient absorptions at 390 and 550 nm, respectively. Interestingly, compared to the photoreduction of benzophenone with benzhydrol, for which the quantum yield for conversion to radicals is unity, between the azoalkane 1a and benzhydrol this efficiency is only ca. 12%. An associative effect through N.H-O bonding

  9. A novel core–shell nanocomposite Ni–Ca@mSiO_2 for benzophenone selective hydrogenation

    International Nuclear Information System (INIS)

    Han, Xue; Feng, Wenhui; Chu, Xiaoning; Chu, Hailong; Niu, Libo; Bai, Guoyi

    2017-01-01

    A novel core–shell nanocomposite Ni–Ca@mSiO_2 was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO_2 can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO_2. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO_2 can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

  10. A novel core–shell nanocomposite Ni–Ca@mSiO{sub 2} for benzophenone selective hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Xue; Feng, Wenhui; Chu, Xiaoning; Chu, Hailong; Niu, Libo; Bai, Guoyi, E-mail: baiguoyi@hotmail.com [Hebei University, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science (China)

    2017-02-15

    A novel core–shell nanocomposite Ni–Ca@mSiO{sub 2} was first prepared by a modified Stöber method in this paper. It has a core–shell structure with Ni (about 8 nm in diameter) and Ca as the cores and mesoporous silica as the outer shell, as proven by the transmission electron microscopy. This nanocomposite exhibited good catalytic performance in the selective hydrogenation of benzophenone, with 96.1% conversion and 94.9% selectivity for benzhydrol under relatively mild reaction conditions. It was demonstrated that addition of small amounts of alkaline Ca can not only markedly improve the dispersion of the active species but also tune the acid–base property of this nanocomposite, resulting in the efficient suppression of benzhydrol dehydration to achieve a high selectivity. Furthermore, the core–shell nanocomposite Ni–Ca@mSiO{sub 2} can be recycled four runs without appreciable loss of its initial activity, more stable than the traditional supported nanocatalyst Ni–Ca/mSiO{sub 2}. It was suggested that the outer mesoporous silica shell of Ni–Ca@mSiO{sub 2} can prevent both the aggregation and the leaching of the active Ni species, accounting for its relatively good stability.

  11. Hydrogen-transfer and charge-transfer in photochemical and radiation induced reactions. Progress report, November 1, 1975--October 31, 1976

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1976-10-01

    The relative importance of light absorption, quenching of triplet, and hydrogen transfer repair has been examined in retardation by mercaptans of photoreduction of aromatic ketones by alcohols. In the reduction of benzophenone by 2-propanol, retardation is efficient and, after correction for the first two effects, is due entirely to hydrogen-transfer repair, as indicated by deuterium labeling. In reduction of acetophenone by α-methylbenzyl alcohol, repair by hydrogen transfer is also operative. In reduction of benzophenone by benzhydrol, retardation is less efficient and is due to quenching, as the ketyl radical does not abstract hydrogen from mercaptan rapidly in competition with coupling. Deuterium isotope effects are discussed in terms of competitive reactions. Photoreduction of benzophenone by 2-butylamine and by triethylamine is retarded by aromatic mercaptans and disulfides. Of the retardation not due to light absorption and triplet quenching by the sulfur compounds, half is due to hydrogen-transfer repair, as indicated by racemization and deuterium labeling. The remainder is attributed to quenching by the sulfur compound of the charge-transfer-complex intermediate. Photoreduction by primary and secondary amines, but not by tertiary amines, is accelerated by aliphatic mercaptans. The acceleration is attributed to catalysis of hydrogen transfer by the mercaptan in the charge-transfer complex. The effect is large in hydrocarbon solvent, less in polar organic solvents and absent in water

  12. Toxicokinetics and metabolisms of benzophenone-type UV filters in rats

    International Nuclear Information System (INIS)

    Jeon, Hee-Kyung; Sarma, Sailendra Nath; Kim, Youn-Jung; Ryu, Jae-Chun

    2008-01-01

    Sunscreens containing UV filters are recommended to reduce damage caused by solar UV radiation. Recently, benzophenone (BP)-type UV filters have become widely used as UV stabilizers in skin-moisturizing products and sunscreen lotions; however, very little information is available regarding the potential harmful effects of prolonged exposure to these compounds. Therefore, we investigated the toxicokinetics and metabolism of BP-type UV filters in rats using gas chromatography-mass spectrometry (GC-MS). To examine the metabolism of BP-type UV filters, we analyzed the parent compounds BP and 2-hydroxy-4-methoxybenzophenone (HMB). In rats, BP was mainly converted to benzhydrol (BH) and 4-hydroxybenzophenone (HBP) (i.e., type A UV filters). In contrast, HMB was converted into at least three intermediates, including 2,4-dihydroxybenzophenone (DHB), which was formed via o-demethylation and subsequently converted into 2,3,4-trihydroxybenzophenone (THB), and 2,2'-dihydroxy-4-methoxybenzophenone (DHMB), which formed via the aromatic hydroxylation of HMB (i.e., type B UV filters). Next, the toxicokinetic curve for BP showed a peak concentration (C max ) of 2.06 ± 0.46 μg/ml at approximately 4 h after BP administration. After a single oral dose of HMB, the C max of HMB reached 21.21 ± 11.61 μg/ml within 3 h (T max ), and then declined rapidly compared to the kinetic curve of BP. The concentration of these metabolites in rat blood decreased much more slowly over time compared to the parent compounds. Thus, our results indicate that such metabolites might have more significant adverse effects than the parent compounds over the long term

  13. Action of Mercaptan and Disulfide in Hydrogen Atom Exchange Reactions; Action des Thioalcools et des Disulfures dans les Reactions d'Echange d'Atomes d'Hydrogene; Vozdejstvie merkaptanov i disul'fidov v reaktsiyakh obmena atoma vodoroda; Accion de los Mercaptanos y Disulfuros en las Reacciones de Intercambio del Hidrogeno Atomico

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, S. G. [Brandeis University Waltham, MA (United States)

    1965-10-15

    Free- radical, photochemical, and high-energy radiation-induced reactions may be catalysed or inhibited by rapid hydrogen atom exchange reactions of mercaptans and disulfides. The radical-induced, light-initiated, and benzophenone-sensitized decarbonylations of aldehydes are catalysed by mercaptans. The chain-propagating hydrogen transfer reaction, R' + RCH = O -> RH + RC = O , is made more rapid by a similar sequence of hydrogen atom transfers involving the sulfur compound: R' + C{sub 6}H{sub 5}CH{sub 2}SH -> RH + C{sub 6}H{sub 5}CH{sub 2}S'; C{sub 6}H{sub 5}CH{sub 2}S + RCH = 0 -> C{sub 6}H{sub 5}CH{sub 2}SH + RC = 0. The photoreduction of benzophenone in 2-propanol leads to benzpinacol by a non-chain reaction via the radicals (C{sub 6}H{sub 5}){sub 2}C-OH and (CH{sub 3}){sub 2}COH. The reaction is retarded and inhibited by mercaptan and disulfide, which reconvert the radicals to the starting materials by rapid hydrogen transfer reactions and are themselves regenerated in their alternate valence states, each molecule of sulfur compound negating the chemical consequences of many quanta: (C{sub 6}H{sub 5}){sub 2}C-OH + AS' -> (C{sub 6}H{sub 5}){sub 2}C = O + ASH; (CH{sub 3}){sub 2}C-OH + ASH -> (CH{sub 3}){sub 2}C = 0 + AS'. Proof of the mechanism is found in: equilibration of initially present mercaptan or disulfide during inhibition; in racemization of optically active alcohol during inhibition; in deuterium exchange during inhibition. Similar inhibition is seen when only one intermediate radical is formed, as in the benzophenone- benzhydrol and acetophenone-{alpha}-methyl-benzyl alcohol systems. Inhibition by sulfur compounds, by the same mechanism, is found in the {sup 60}Co {gamma}-ray induced conversion of benzophenone to benzpinacol; naphthalene has no protecting effect on benzophenone in the {sup 60}Co system, while quenching the photochemical reaction. The protection by sulfur compounds of solutes against radiation damage thus results from hydrogen atom