WorldWideScience

Sample records for benzene sulfonic acid

  1. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl...

  2. A STUDY ON THE DEGRADATION MECHANISM OF PHOTOCROSSLINKING PRODUCTS FORMED BY CYCLIZED POLYISOPRENE-DIAZIDE SYSTEM UNDER THE INFLUENCE OF ALKYL BENZENE SULFONIC ACIDS

    Institute of Scientific and Technical Information of China (English)

    HUANG Junlian; SUN Meng

    1989-01-01

    The degradation mechanism of photocrosslinking products formed by cyclized polyisoprene-diazide system under the influence of the different alkyl benzene sulfonic acids was studied. The effects ofalkyl chain length and the concentration of alkyl benzene sulfonic acids on the rate of degradation reaction were discussed. It was found that in the initial stage of degradation, the cyclicity ratio and the average fused ring number did not change considerably, but the percentage of uncyclized parts content varied significantly. The suitable mechanism was supposed.

  3. Crystal structure of 2-benzene-sulfon-amido-3-hy-droxy-propanoic acid.

    Science.gov (United States)

    Jabeen, Nabila; Mushtaq, Misbah; Danish, Muhammad; Tahir, Muhammad Nawaz; Raza, Muhammad Asam

    2015-11-01

    In the title compound, C9H11NO5S, the O=S=O plane of the sulfonyl group is twisted at a dihedral angle of 52.54 (16)° with respect to the benzene ring. The dihedral angle between the carb-oxy-lic acid group and the benzene ring is 49.91 (16)°. In the crystal, C-H⋯O, N-H⋯O and O-H⋯O hydrogen bonds link the mol-ecules into (001) sheets. PMID:26594589

  4. An Evaluation of a Teat Dip with Dodecyl Benzene Sulfonic Acid in Preventing Bovine Mammary Gland Infection from Experimental Exposure to Streptococcus agalactiae and Staphylococcus aureus

    OpenAIRE

    Barnum, D A; Johnson, R. E.; Brooks, B W

    1982-01-01

    The effectiveness of a teat dip with dodecyl benzene sulfonic acid (1.94%) for the prevention of intramammary infections was determined in cows experimentally challenged with Streptococcus agalactiae and Staphylococcus aureus. The infection rates with Streptococcus agalactiae and Staphylococcus aureus were 62.5% and 75% in undipped quarters, 12.5% and 21.5% in dipped quarters with a reduction rate of 80% and 71% respectively. The significance of some findings in relation to mastitis control a...

  5. Electronic Conductivity of Polypyrrole−Dodecyl Benzene Sulfonate Complexes

    DEFF Research Database (Denmark)

    West, Keld; Bay, Lasse; Nielsen, Martin Meedom;

    2004-01-01

    The electronic conductivity of the electroactive polymer polypyrrole-dodecyl benzene sulfonate (PPy-DBS) has been characterized as function of the redox level. The polymer was synthesized with different isomers of the dopant anions: the common mixed DBS tenside and three well-defined synthetic...... dodecyl isomers (with the benzene group at positions 1, 2 and 6). The conductivity was measured both by van der Pauw measurements on PPy-DBS in the oxidized, dry state as function of temperature, and by electrochemical impedance spectroscopy as function of potential in 0.1 M NaCl aqueous electrolyte...

  6. Preparation and characterization of proton exchange poly (ether sulfone)s membranes grafted propane sulfonic acid on pendant phenyl groups

    International Nuclear Information System (INIS)

    Poly(ether sulfone)s containing hexaphenyl (PHP) was prepared by 1,2-bis(4-hydroxyphenyl)-3,4,5,6-tetraphenylbenzene, 4,4-hydroxyphenylsulfone, and 4,4-fluorophenylsulfone, followed bromination on phenyl groups to produce brominated PHP (Br-PHP). Grafted sulfonated poly(ether sulfone)s containing hexaphenyl (GSPHP) were prepared from Br-PHP and 3-bromopropane sulfonic acid with potassium salt and copper powder. The salt form was converted to free acid using 1 M sulfuric acid solution. All these membranes were cast from dimethylacetamide (DMAc). The structural properties of the synthesized polymers were investigated by 1H-NMR spectroscopy. The membranes were studied with regard to ion exchange capacity (IEC), water uptake, Fenton test, and proton conductivity. These grafted polymer membranes were compared with normal sulfonated poly(ether sulfone)s and Nafion

  7. SOLVENT-FREE FACILE SYNTHESIS OF NOVEL α-TOSYLOXY β-KETO SULFONES USING [HYDROXY(TOSYLOXY)IODO]BENZENE

    Science.gov (United States)

    A facile, general and high yielding protocol for the synthesis of novel α-tosyloxy β-keto sulfones is described utilizing relatively non-toxic, [hydroxy(tosyloxy)iodo]benzene, under solvent-free conditions at room temperature.

  8. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    Science.gov (United States)

    Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu

    2015-11-01

    A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  9. Small-angle neutron scattering studies of sodium butyl benzene sulfonate aggregates in aqueous solution

    Indian Academy of Sciences (India)

    O R Pal; V G Gaikar; J V Joshi; P S Goyal; V K Aswal

    2004-08-01

    The aggregation behaviour of a hydrotrope, sodium -butyl benzene sulfonate (Na-NBBS), in aqueous solutions is investigated by small-angle neutron scattering (SANS). Nearly ellipsoidal aggregates of Na-NBBS at concentrations well above its minimum hydrotrope concentration were detected by SANS. The hydrotrope seems to form self-assemblies with aggregation number of 36–40 with a substantial charge on the aggregate. This aggregation number is weakly affected by the hydrotrope concentration.

  10. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    Directory of Open Access Journals (Sweden)

    Zi-Yu Liu

    2015-11-01

    Full Text Available A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT. Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  11. Synthesis of dodecyl lauroyl benzene sulfonate and its application in enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhenggang; Wu, Le; Sun, Mingming; Jiang, Jian-zhong; Wang, Feng [Jiangnan Univ., Wuxi (China). School of Chemical and Material Engineering

    2011-09-15

    A new hydrophobic surfactant, dodecyl lauroyl benzene sulfonate (DLBS), was synthesized and its application in enhanced oil recovery by alkali-surfactant-polymer (ASP) flooding was studied. The results show that DLBS can be synthesized by reaction of industrial dodecyl benzene with lauroyl chloride in the presence of AlCl{sub 3}, followed by sulfonation with ClSO{sub 3}H and neutralization with NaOH. The lauroyl-group is confirmed to be connected to the para-position of the alkylbenzene by1HNMR spectrum. The synthesized DLBS is well soluble in pure water and reservoir (connate) water at 45 C. It is highly surface active which is indicated by its low CMC of 1.1 . 10{sup -5} mol/L, and its low surface tension, {gamma}{sub cmc} of 28.6 mN m{sup -1}. By mixing with heavy alkylbenzene sulfonates of relatively low average molar mass (387g mol{sup -1}) at a total surfactant concentration of 5 mM, DLBS can reduce the interfacial tension of Daqing crude oil/connate water to an order of 10{sup -3} mN/m at 45 C in the presence of 0.5-1.0 wt.% NaOH and 1000 mg L{sup -1} of polymer. If the NaOH was replaced by a gentle alkaline salt, Na{sub 2}CO{sub 3}, certain amounts of dodecyl dimethyl carboxy betaine were added and the concentration of Na{sub 2}CO{sub 3} was increased to 1.2-2.0 wt.%, the interfacial tension of Daqing crude oil/connate water can also be reduced to an ultralow value. Therefore DLBS is a good hydrophobic surfactant applicable in ASP flooding with either NaOH or Na{sub 2}CO{sub 3} as alkaline agents. (orig.)

  12. Methane sulfonic acid in the marine atmosphere

    OpenAIRE

    E. S. Saltzman; Savoie, D. L.; Zika, R. G; J. M. Prospero

    1983-01-01

    Methane sulfonic acid (MSA) is an oxidation product of the reaction of OH radical with dimethyl sulfide and, hence, should be an important constituent of marine air. MSA concentrations in marine aerosols ranged from 0.009 to 0.075 μg/m3 in samples from the Pacific and Indian oceans and Miami, Florida. In the samples from remote areas (Pacific and Indian oceans), MSA levels averaged 6.7% (S = 1.9) of the non-sea-salt (nss) SO4 =. In the Miami area, ratios were occasionally lower be...

  13. Extraction Behavior and Wastewater Treatment of Amino Sulfonic Acid with Alamine 336

    Institute of Scientific and Technical Information of China (English)

    秦炜; 李振宇; 汪敏; 戴猷元

    2004-01-01

    p-Amino benzene sulfonic acid (PABSA) is selected as the solute with amphoteric functional group, Lewis acid and Lewis base, to be separated from its dilute solutions. An aliphatic, straight chain amine, Alamine 336, is used as the extractant, and kerosene, 1-octanol, chloroform, butyl acetate and benzene as the diluent. The effects of pH value of solution, extractant concentration, salt and types of diluent on the distribution coefficient, D, are studied. There is a peak of D value with pH value of solution, the polar diluents are favorable for extracting PABSA, and the salt in aqueous phase reduces values of D apparently. The extraction equilibrium is described using the mass action law, and the calculated data according to the proposed model agree with the experimental data well. Further, the extraction behavior for other amino benzene sulfonic acids, 1-amino-8-naphtol-3,6-disulfonic acid (H acid) and 4,4′-diaminostilbene-2,2′-disulfonic acid (DSD acid), is investigated in a wide pH value region. Finally. H acid and DSD acid are successfully removed from wastewater by the extraction with Alamine 336.

  14. Affinity labelling enzymes with esters of aromatic sulfonic acids

    Science.gov (United States)

    Wong, Show-Chu; Shaw, Elliott

    1977-01-01

    Novel esters of aromatic sulfonic acids are disclosed. The specific esters are nitrophenyl p- and m-amidinophenylmethanesulfonate. Also disclosed is a method for specific inactivation of the enzyme, thrombin, employing nitrophenyl p-amidinophenylmethanesulfonate.

  15. Basic dye removal from aqueous solutions by dodecylsulfate- and dodecyl benzene sulfonate-intercalated hydrotalcite

    International Nuclear Information System (INIS)

    Dodecylsulfate- and dodecyl benzene sulfonate-hydrotalcites were prepared by calcination-rehydratation method. The surfactants intercalation in the interlayer space of hydrotalcite were checked by PXRD and FTIR spectroscopy where the resulting materials were found to be similar to those reported in the literature and were used to remove a basic dye (safranine) from aqueous solutions. The sorption kinetics data fitted the pseudo second order model. The isotherms were established and the parameters calculated. The sorption data fitted the Langmuir model with good values of the determination coefficient. The thermodynamic parameters calculated from Van't Hoff plots gave a low value of ΔGo (-1) indicating a spontaneous physisorption process. Two regeneration cycles were processed by acetone extraction leading to the same removal capacity of the obtained materials as the original surfactant-intercalated hydrotalcites. The UV-vis spectra of the recovered extracts were similar to the spectrum of safranine, which means that the dye was recovered without any modification

  16. Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system

    International Nuclear Information System (INIS)

    It is found that the fluorescence of curcumin is greatly enhanced by yttrium(III) (Y3+) in the presence of sodium dodecyl benzene sulfonate. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the potassium hydrogen phthalate (KHP) buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 7.37x10-4-0.18, 0.18-2.95 μg mL-1 and the detection limit is 0.1583 ng mL-1. The actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied

  17. Preparation and electrochemical properties of polyethylene membrane modified with the sulfonic acid groups for battery separator

    International Nuclear Information System (INIS)

    Ion-exchange membrane modified with the sulfonic acid group for battery separator was prepared by radiation-induced grafting of styrene (St) onto polyethylene (PE) film and subsequent sulfonation of poly(St) graft chains. The surface area, thickness, and volume of grafted film increased with increase in grafting yield. The water uptake and KOH diffusion flux of ion-exchange membrane increased with increase in the sulfonic acid content. Electrical resistance of ion-exchange membrane modified with the sulfonic acid group decreased with increase in the sulfonic acid content. The transport number (t+) of K+ in the sulfonated membrane was in the range of 0.91 - 0.96

  18. 40 CFR 417.140 - Applicability; description of the neutralization of sulfuric acid esters and sulfonic acids...

    Science.gov (United States)

    2010-07-01

    ... neutralization of sulfuric acid esters and sulfonic acids subcategory. 417.140 Section 417.140 Protection of... MANUFACTURING POINT SOURCE CATEGORY Neutralization of Sulfuric Acid Esters and Sulfonic Acids Subcategory § 417.140 Applicability; description of the neutralization of sulfuric acid esters and sulfonic...

  19. Fluorescence enhancement effect for the determination of curcumin with yttrium(III)-curcumin-sodium dodecyl benzene sulfonate system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Feng [Department of Chemistry, Zaozhuang University, Zaozhuang, 277160 (China)], E-mail: wf332@uzz.edu.cn; Huang Wei; Wang Yanwei [Department of Chemistry, Zaozhuang University, Zaozhuang, 277160 (China)

    2008-01-15

    It is found that the fluorescence of curcumin is greatly enhanced by yttrium(III) (Y{sup 3+}) in the presence of sodium dodecyl benzene sulfonate. Based on this, a sensitive fluorimetric method for the determination of curcumin in aqueous solution is proposed. In the potassium hydrogen phthalate (KHP) buffer, the fluorescence intensity of curcumin is proportional to the concentration of curcumin in the range of 7.37x10{sup -4}-0.18, 0.18-2.95 {mu}g mL{sup -1} and the detection limit is 0.1583 ng mL{sup -1}. The actual samples are satisfactorily determined. In addition, the interaction mechanism is also studied.

  20. High Bulk Modulus of Nanocrystal γ-Fe2O3 with Chemical Dodecyl Benzene Sulfonic Decoration Under High Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jing; GUO Lin; LIU Jing; YANG Yang; CHE Rong-Zheng; ZHOU Lei

    2000-01-01

    Structural transformation in γ-Fe2O3 nanocrystals (about 1Onm) with dodecyl benzene sulfonic (DBS) coated is studied by using high-pressure energy dispersive x-ray diffraction of synchrotron radiation and high-resolution transmission electron microscopy (HRTEM). Relative to the bulk crystal, the transition pressure showed a decrease while the compressibility increases significantly up to 375 (±9 GPa). HRTEM picture confirmed that there is surface cladding surrounding nanocrystals due to DBS, which formed new special boundaries between nanocrystals and should be different from the ordinary grain boundaries. The experimental results imply that the surface layers of γ-Fe2O3 nanocrystals have strong effect on the compressibility.

  1. Miscibility of Methylmethacrylate-co-methacrylic Acid Polymer with Magnesium, Zinc, and Manganese Sulfonated Polystyrene Ionomers

    OpenAIRE

    ALKAN, Cemil; YURTSEVEN, Nebahat; ARAS, Leyla

    2005-01-01

    The miscibility of methyl methacrylate-co-methacrylic acid polymer (MMA-MAA) with metal neutralized sulfonated polystyrene ionomers was investigated by viscometry, differential scanning calorimetry (DSC), and Fourier transform infrared radiation spectroscopy (FTIR) techniques. Polystyrene (PS) was sulfonated by acetic anhydride and sulfuric acid and the sulfonation degree was found to be 2.6 mole percent, and 2.6 mole percent sulfonated polystyrene was neutralized by Mg, Zn, and Mn sa...

  2. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna

    OpenAIRE

    Lu, Guang-hua; Jian-chao LIU; Sun, Li-Sha; Lu-jin YUAN

    2015-01-01

    In order to study toxicological effects of perfluorononanoic acid (PFNA), perfluorooctane sulfonate (PFOS), and their mixtures (PFNA/PFOS) on Daphnia magna (D. magna), a suite of comprehensive toxicity tests were conducted, including a 48-hour acute toxicity test, a 21-day chronic test, a feeding experiment, and a biomarker assay. D. magna were exposed to aqueous solutions of PFNA and PFOS (alone and in combination) at concentrations ranging from 0.008 to 5 mg/L. The survival, growth, and rep...

  3. Synthesis and Water Uptake of Sulfonated Poly (phthalazinone ether sulfone ketone)/Polyacrylic Acid Proton Exchange Membranes

    Institute of Scientific and Technical Information of China (English)

    Xue Mei WU; Gao Hong HE; Lin GAO; Shuang GU; Zheng Wen HU; Ping Jing YAO

    2006-01-01

    Novel SPPESK/PAA composite proton exchange membranes with semi-interpenetrating polymer network (sIPN) structure have been synthesized through the in-situ polymerization of acrylic acid (AA) in the presence of sulfonated poly (phthalazinone ether sulfone ketone) (SPPESK). The composite membranes were identified by FT-IR analysis. Water uptake of the composite membranes was as high as 89.7% at 90℃, nearly one time higher than that of the corresponding SPPESK membrane.

  4. Sulfonation of PEEK-WC polymer via chloro-sulfonic acid for potential PEM fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Iulianelli, A.; Clarizia, G.; Gugliuzza, A.; Ebrasu, D.; Basile, A. [Institute on Membrane Technology, ITM-CNR, c/o University of Calabria, Via P. Bucci, Cubo 17/C, 87030 Rende (CS) (Italy); Bevilacqua, A. [Research Centre Italsistemi S.r.l., Via Avogadro, 88900 Crotone (KR) (Italy); Trotta, F. [Department of Organic Chemistry, University of Torino, C.So M. D' Azeglio 48, 10125 Torino (TO) (Italy)

    2010-11-15

    The preparation and characterization of thin dense sulfonated poly-ether-ether-ketone with cardo group (PEEK-WC) membranes for proton exchange membrane fuel cell (PEMFC) applications are described. The sulfonation of PEEK-WC polymer was realized via chloro-sulfonic acid and different kinds of membrane samples were prepared with a sulfonation degree ranging from 67 to 99%. The degree of sulfonation, homogeneity and thickness significantly affect both the membrane transport properties and the electrochemical performances. The dense character of the membranes was confirmed by SEM analysis. Proton conductivity measurements were carried out in a temperature range from 30 to 80 C and at 100% of relative humidity, reaching 5.40 x 10{sup -3} S/cm{sup -1} as best value at 80 C and with a sulfonation degree (DS) of 99%. At the same conditions, a water uptake of 17% was achieved. DSC and TGA characterizations were used in order to determine the thermal stability of the membranes, confirming a T{sub g} ranging between 206 and 216 C depending on the DS, whereas FT-IR yielded indication about intermolecular interactions and water uptake at various sulfonation degrees. (author)

  5. Monitoring and toxicity of sulfonated derivatives of benzene and naphthalene in municipal sewage treatment plants

    International Nuclear Information System (INIS)

    Monitoring benzenesulfonates (BS) and naphthalenesulfonates (NS) took place in five municipal sewage treatment plants (STP). A previously optimized method based on solid phase extraction with polymeric cartridges followed by ion-pair liquid chromatography-electrospray-mass spectrometry (SPE-IPC-ESI-MS) was used. This work confirmed the little or no effect of primary settlement on total organic carbon (TOC) and monosulfonated compounds removal, whereas the main reduction is obtained at the biological stage. However, the most polar compounds, such as naphthalenedisulfonates (NDS), were not effectively removed using the biological treatment. An aromatic sulfonated compound is suggested to be used as a tracer of the origin of industrial pollutants discharged into STPs. A bioluminescence inhibition test, Microtox[reg] assay, allowed toxicity determination of the most relevant aromatic sulfonated compounds detected and toxicity comparison between primary and secondary effluents. - Sulphonated organic pollutants enter sewage treatment plants and although they partly discharged into the river waters no toxic effects are observed when biological treatment is used

  6. Polyaniline synthesized with functionalized sulfonic acids for blends manufacture

    Directory of Open Access Journals (Sweden)

    Mara Joelma Raupp Cardoso

    2007-12-01

    Full Text Available Polyaniline (PAni, an electronic conductive polymer, has poor mechanical properties, such as low tensile, compressive and flexural strength that render PAni a non-ideal material to be processed for practical applications. Desired properties of polyaniline can be enhanced by mixing it with a polymer that has good mechanical properties. In this work, PAni was synthesised using functionalized sulfonic acids like camphorsulfonic acid (CSA and dodecilbenzene sulfonic acid (DBSA in order to promote PAni doping and improve its solubility, making possible conductive blends manufacture. The different forms of PAni were characterized by infra-red spectroscopy, thermal analysis, scanning electron microscopy and conductivity measurements. A conductive blend composed of PAni/DBSA and lower density polyethylene (LDPE was obtained via solubilization method and its thermal, morphological and electrical properties were investigated. Concentrations as low as 5 wt. (% of PAni was able to lead to electrical conductivities of PAni/LDPE blends in the range of 10-3 S.cm-1, showing great potential to be used in antistatic packing, electromagnetic shielding, anti-corrosion shielding or as a semiconductor.

  7. Periodic Mesoporous Organosilica Functionalized with Sulfonic Acid Groups as Acid Catalyst for Glycerol Acetylation

    Directory of Open Access Journals (Sweden)

    Pascal Van Der Voort

    2013-08-01

    Full Text Available A Periodic Mesoporous Organosilica (PMO functionalized with sulfonic acid groups has been successfully synthesized via a sequence of post-synthetic modification steps of a trans-ethenylene bridged PMO material. The double bond is functionalized via a bromination and subsequent substitution obtaining a thiol functionality. This is followed by an oxidation towards a sulfonic acid group. After full characterization, the solid acid catalyst is used in the acetylation of glycerol. The catalytic reactivity and reusability of the sulfonic acid modified PMO material is investigated. The catalyst showed a catalytic activity and kinetics that are comparable with the commercially available resin, Amberlyst-15, and furthermore our catalyst can be recycled for several subsequent catalytic runs and retains its catalytic activity.

  8. A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate

    Science.gov (United States)

    Luo, Qin; Zhao, Changwei; Liu, Guixia; Ren, Hao

    2016-02-01

    A low-cost and easily constructed porous aromatic framework (PAF-45) was successfully prepared using the Scholl reaction. PAF-45 was, for the first time, used to remove perfluorooctane sulfonate (PFOS) from aqueous solution. Systematic experiments were performed to determine the adsorption capacity of PAF-45 for PFOS and to characterize the kinetics of the adsorption process. The adsorption of PFOS onto PAF-45 reached equilibrium in 30 min, and the adsorption capacity of PAF-45 for PFOS was excellent (5847 mg g-1 at pH 3). The amount of PFOS adsorbed by PAF-45 increased significantly as the cation (Na+, Mg2+, or Fe3+) concentration increased, which probably occurred because the cations enhanced the interactions between the negatively charged PFOS molecules and the positively charged PAF-45 surface. The cations Na+, Mg2+, and Fe3+ were found to form complexes with PFOS anions in solution. Density functional theory was used to identify the interactions between PFOS and Na+, Mg2+, and Fe3+. We expect that materials of the same type as PAF-45 could be useful adsorbents for removing organic pollutants from industrial wastewater and contaminated surface water.

  9. Inhibition of biogas production by alkyl benzene sulfonates (LAS) in a screening test for anaerobic biodegradability.

    Science.gov (United States)

    Garcia, M Teresa; Campos, Encarna; Dalmau, Manel; Illán, Patricia; Sánchez-Leal, Joaquin

    2006-02-01

    The effect of the inoculum source on the digestion of linear alkylbenzene sulfonates (LAS) under anaerobic conditions has been investigated. The potential for primary and ultimate LAS biodegradation of anaerobic sludge samples obtained from wastewater treatment plants (WWTPs) of different geographical locations was studied applying a batch test system. It was found that only 4-22% of the LAS added to the batch anaerobic digesters was primarily transformed suggesting a poor primary degradation of the LAS molecule in anaerobic discontinuous systems. Regarding ultimate biodegradation, the addition of LAS to the batch anaerobic digesters caused a reduction on the extent of biogas production. Significant differences in the inhibition extent of the biogas production were observed (4-26%) depending on the sludge used as inoculum. Effect of the surfactant on the anaerobic microorganisms was correlated with its concentration in the aqueous phase. Sorption of LAS on anaerobic sludge affects its toxicity by depletion of the available fraction of the surfactant. LAS content on sludge was related to the total amount of calcium and magnesium extractable ions. The presence of divalent cations promote the association of LAS with anaerobic sludge reducing its bioavailability and the extent of its inhibitory effect on the biogas production. PMID:16453170

  10. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes

    KAUST Repository

    Tripathi, Bijay Prakash

    2011-02-01

    Herein we report the covalent functionalization of multiwall carbon nanotubes by grafting sulfanilic acid and their dispersion into sulfonated poly(ether ether ketone). The nanocomposites were explored as an option for tuning the proton and electron conductivity, swelling, water and alcohol permeability aiming at nanostructured membranes and electrodes for application in alcohol or hydrogen fuel cells and other electrochemical devices. The nanocomposites were extensively characterized, by studying their physicochemical and electrochemical properties. They were processed as self-supporting films with high mechanical stability, proton conductivity of 4.47 × 10 -2 S cm-1 at 30 °C and 16.8 × 10-2 S cm-1 at 80 °C and 100% humidity level, electron conductivity much higher than for the plain polymer. The methanol permeability could be reduced to 1/20, keeping water permeability at reasonable values. The ratio of bound water also increases with increasing content of sulfonated filler, helping in keeping water in the polymer in conditions of low external humidity level. © 2010 Elsevier B.V.

  11. Sterically Stabilized Poly(3,4-ethylenedioxythiophene) Colloidal Dispersions Doped with Different Sulfonic Acids

    Institute of Scientific and Technical Information of China (English)

    Tie Jun WANG; Ping CHEN; Xiu Jie HU; Shu Yun ZHOU

    2006-01-01

    The preparation of sterically stabilized poly(3, 4-ethylenedioxythiophene)(PEDOT)colloidal dispersions doped with different sulfonic acids is described. Three different sulfonic acids, i.e., p-toluenesulfonic acid, β-naphthalenesuffonic acid and D-camphor-10-sulfonic acid are used, facilitating the preparation of sterically stable PEDOT colloidal particles. The influences of the dopants and concentration of polymeric stabilizer on the yields, morphologies and electrical properties of the resultant colloidal particles were investigated. The colloidal particles with the size ranging from 172 to 334 nm have been obtained in good yields. The compressed pellet conductivity was as high as 4.5 Scm-1.

  12. Nonaqueous preparation of stable silver nano particles dispersions from organic sulfonic acids.

    Directory of Open Access Journals (Sweden)

    Valentina Glushko

    2016-05-01

    Full Text Available The conditions for stable silver nano particles dispersions synthesis from organic sulfonic acids in an anhydrous medium of ethylene glycol and its methyl ester were studied. Ascorbic acid and potassium citrate were used as reducing agents.

  13. Electrochemical study of benzene on Pt of various surface structures in alkaline and acidic solutions

    OpenAIRE

    Montilla Jiménez, Francisco; Morallón Núñez, Emilia; Vázquez Picó, José Luis

    2002-01-01

    The electrochemical behaviour of benzene on platinum electrodes (polycrystalline and single-crystal electrodes) has been studied in acidic and alkaline solutions. In acid solutions the reduction of benzene to cyclohexane takes place in all the platinum surface structure employed, however it does not occur in alkaline media (0.1 M NaOH). In this case, the hydrogen adsorption/desorption processes displace the adsorbed benzene from the electrode surface. The oxidation of benzene is also af...

  14. Radiation-chemical synthesis of polypropylene fabrics with sulfonic acid functional groups

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hyun Kug; Park, Jung Soo; Han, Do Hung, E-mail: dhhan@yumail.ac.kr; Bondar, Iuliia, E-mail: juliavad@yahoo.co

    2011-04-01

    A sorption-active material carrying sulfonic acid groups was synthesized by the radiation-induced graft polymerization of styrene monomer onto the surface of non-woven polypropylene fabric, followed by sulfonation of the grafted polystyrene chains. The effect of the main experimental parameters (absorbed dose, monomer concentration, reaction time) on the styrene degree of grafting was investigated. The sulfonation process with 5% chlorosulfonic acid at room temperature was investigated in detail and the optimal sulfonation conditions for the samples with a medium degree of grafting (70-140%) were determined. Densities of 3.5-5 meq/g were obtained by applying those sorption-active PP fabrics with a sulfonic acid group.

  15. 2H NMR study of dynamics of benzene-d6 interacting with humic and fulvic acids.

    Science.gov (United States)

    Eastman, Margaret A; Brothers, Lucinda A; Nanny, Mark A

    2011-05-01

    Samples of three humic acids and one fulvic acid with 1% loading of benzene-d(6) in sealed glass tubes have been studied with solid-state deuterium quadrupole-echo nuclear magnetic resonance spectroscopy. Calculated spectra combining three motional models, two isotropic models and a third more restricted small-angle wobble (SAW) motional model, are fit to the experimental spectra. One isotropic motion (ISO(v)) is assigned to vaporous benzene-d(6) due to the small line width, short T(1), and the loss of this component by about -25 °C when the temperature is lowered. The remaining two motional components, ISO(s) and SAW, are sorbed by the humic or fulvic acid. Benzene-d(6) slowly interacts with the humic substances, progressively filling SAW sites as ISO(s) motion diminishes. Both the sorption and increase in percentage of SAW motion are for the most part complete within 200 days but continue to a lesser extent over a period of a few years. For the SAW motion there are at least two and most likely a series of T(1) values, indicating more than one adsorption environment. Enthalpies of sorption, obtained from application of the van't Hoff equation to the percentages of the different motional models derived from a series of variable temperature spectra, are comparable in magnitude to the enthalpy of vaporization of benzene. In Leonardite humic acid, ΔH and ΔS for the ISO(s) to SAW transition change from positive to negative values with age, implying a transition in the driving force from an entropic effect associated with expansion and deformation in the molecular structure of the humic substance to accommodate benzene-d(6) to an enthalpic effect of strong benzene-d(6)-humic substance interactions. In contrast, at advanced ages, Suwannee River humic and fulvic acids have small positive or near zero ΔH and positive ΔS for the ISO(s) to SAW transition. PMID:21456559

  16. Cytotoxic effects of sodium dodecyl benzene sulfonate on human keratinocytes are not associated with proinflammatory cytokines expression

    Institute of Scientific and Technical Information of China (English)

    Mu Zhanglei; Liu Xiaojing; Zhao Yan; Zhang Jianzhong

    2014-01-01

    Background Keratinocytes play a crucial role in the biological function of skin barrier.The relationship between sodium lauryl sulfate (SLS) and keratinocytes has been studied.However,the cytotoxicity and effects of sodium dodecyl benzene sulfonate (SDBS),a common detergent similar to SLS,on keratinocytes are still not known.This study aimed to investigate the effects of SDBS on cytotoxicity and expression of proinflammatory cytokines in cultured human keratinocytes.Methods This study was carried out using the keratinocytes cell line,HaCaT cells.The cytotoxicity of SDBS on HaCaT cells was evaluated with cell counting kit-8 (CCK-8) and phase-contrast microscopy.After exposure to different concentrations of SDBS,the total RNA of the HaCaT cells was extracted for evaluating the relative mRNA expression of IL-1α,IL-6,IL-8,and TNF-α by qPCR.The supernatants of cells were collected for measuring the levels of IL-6 and IL-8 by enzyme-linked immunosorbent assay (ELISA).Results SDBS at concentrations of 20 Jg/ml and over showed direct cytotoxicity and induced morphological changes of the HaCaT cells.The mRNA expressions of IL-1a,IL-6,IL-8,and TNF-α in different concentrations of SDBS at different time were comparable with that of controls.SDBS at concentrations of 5,10,and 15 μg/ml had no significant effects on IL-6 and IL-8 excretion from HaCaT cells after 24-hour exposure.Moreover,no significant effects on the IL-6 and IL-8 excretion were found after 10 and 15 μg/ml S DBS stimulations for 6,12,and 24 hours,respectively.Conclusion SDBS at higher concentrations had cytotoxicity on HaCaT cells but had no effects on the mRNA expression of IL-1α,IL-6,IL-8,and TNF-α,that was different from SLS.

  17. Magnetite-supported sulfonic acid: a retrievable nanocatalyst for the Ritter reaction and multicomponent reactions

    Science.gov (United States)

    Magnetite-sulfonic acid (NanocatFe-OSO3H), prepared by wet-impregnation method, serves as a magnetically retrievable sustainable catalyst for the Ritter reaction which can be used in several reaction cycles without any loss of activity.

  18. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna

    Institute of Scientific and Technical Information of China (English)

    Guang-hua Lu; Jian-chao Liu; Li-sha Sun; Lu-jin Yuan

    2015-01-01

    In order to study toxicological effects of perfluorononanoic acid (PFNA), perfluorooctane sulfonate (PFOS), and their mixtures (PFNA/PFOS) on Daphnia magna (D. magna), a suite of comprehensive toxicity tests were conducted, including a 48-h acute toxicity test, a 21-day chronic test, a feeding experiment, and a biomarker assay. D. magna were exposed to aqueous solutions of PFNA and PFOS (alone and in combination) at concentrations ranging from 0.008 to 5 mg/L. The survival, growth, and reproduction of D. magna were monitored over a 21-day life cycle. The biomarkers, including acetylcholinesterase (AChE), superoxide dismutase (SOD), and catalase (CAT) activities, were determined after seven days of exposure. PFOS was more toxic than PFNA based on the results of the acute toxicity test. Perfluorinated compounds (PFCs) inhibited both growth and reproduction of D. magna during the testing period. The ingestion rates and the biomarkers, including AChE, SOD, and CAT activities, were significantly inhibited by PFCs in most cases. Moreover, the combined effects related to the growth and reproduction showed the antagonistic effects of PFCs.

  19. Toxicity of perfluorononanoic acid and perfluorooctane sulfonate to Daphnia magna

    Directory of Open Access Journals (Sweden)

    Guang-hua LU

    2015-01-01

    Full Text Available In order to study toxicological effects of perfluorononanoic acid (PFNA, perfluorooctane sulfonate (PFOS, and their mixtures (PFNA/PFOS on Daphnia magna (D. magna, a suite of comprehensive toxicity tests were conducted, including a 48-hour acute toxicity test, a 21-day chronic test, a feeding experiment, and a biomarker assay. D. magna were exposed to aqueous solutions of PFNA and PFOS (alone and in combination at concentrations ranging from 0.008 to 5 mg/L. The survival, growth, and reproduction of D. magna were monitored over a 21-day life cycle. The biomarkers, including acetylcholinesterase (AChE, superoxide dismutase (SOD, and catalase (CAT activities, were determined after seven days of exposure. PFOS was more toxic than PFNA based on the results of the acute toxicity test. Perfluorinated compounds (PFCs inhibited both growth and reproduction of D. magna during the testing period. The ingestion rates and the biomarkers, including AChE, SOD, and CAT activities, were significantly inhibited by PFCs in most cases. Moreover, the combined effects related to the growth and reproduction showed the antagonistic effects of PFCs.

  20. Oil recovery with vinyl sulfonic acid-acrylamide copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Norton, C.J.; Falk, D.O.

    1973-12-18

    An aqueous polymer flood containing sulfomethylated alkali metal vinyl sulfonate-acrylamide copolymers was proposed for use in secondary or tertiary enhanced oil recovery. The sulfonate groups on the copolymers sustain the viscosity of the flood in the presence of brine and lime. Injection of the copolymer solution into a waterflooded Berea core, produced 30.5 percent of the residual oil. It is preferred that the copolymers are partially hydrolyzed.

  1. Poly(p-Phenylene Sulfonic Acids). PEMs with frozen-in free volume

    Energy Technology Data Exchange (ETDEWEB)

    Litt, Morton [Case Western Reserve Univ., Cleveland, OH (United States)

    2016-01-21

    Early work with rigid rod aromatic polyelectrolytes implied that steric hindrance in packing of the rigid rods left unoccupied volumes that could absorb and hold water molecules strongly. We called this “frozen in free volume). It is illustrated and contrasted with the packing of flexible backbone polyelectrolytes (Reference 5 of this report). This was quantified for poly(biphenylene disulfonic acid) (PBDSA) and poly(phenylene disulfonic acid) (PPDSA). We found that PPDSA held three water molecules per acid group down to 11% relative humidity (RH) and had very high conductivity even at these low RHs. (Reference 1 of report.) The frozen-in free volume was calculated to be equivalent to a λ of 3.5. The work reported below concentrated on studying these polymers and their copolymers with biphenylene disulfonic acid. As expected, the polyelectrolytes are water soluble. Several approaches towards making water stable films were studied. Grafting alkyl benzene substituents on sulfonic acid groups had worked for PBPDSA (1) so it was tried with PPDSA and a 20%/80% copolymer of BPDSA and PDSA (B20P80). T-butyl, n-octyl and n-dodecyl benzene were grafted. Good films could be made. Water absorption and conductivity were studied as a function of RH and temperature (Reference 2). When less than 20% of the sulfonic acid groups were grafted, conductivity was much higher than that of Nafion NR212 at all RHs. At low graft levels, conductivity was ten times higher. Mechanical properties and swelling were acceptable below 90% RH. However, all the films were unstable in water and slowly disintegrated. The proposed explanation was that the molecules formed nano-aggregates in solution held together by hydrophobic bonding. Their cast films disintegrated when placed in water since hydrophobic bonding between the nano-aggregates was poor. We then shifted to crosslinking as a method to produce water stable films (References 3 and 4). Biphenyl could easily be reacted with the polymer

  2. Laser photolysis of interaction of poly-guanylic acid (5’) with anthraquinone-2-sulfonate

    Institute of Scientific and Technical Information of China (English)

    马建华; 韩镇辉; 林维真; 姚思德; 王文峰; 林念芸

    2002-01-01

    The electron transfer reaction between triplet anthraquinone-2-sulfonate and poly-guanylic acid (5’) in CH3CN-H2O (97 : 3) has been investigated by 248 nm (KrF) laser flash photolysis. The transient absorption spectra and kinetics obtained from the interaction of triplet anthraquinone-2-sulfonate and poly[G] demonstrate that the primary ionic radical pair, radical cation of poly[G] and radical anion of anthraquinone-2-sulfonate have been detected simultaneously. The free energy changes in the process of the electron transfer were also calculated.

  3. Sulfonate salts of amino acids: novel inhibitors of the serine proteinases.

    Science.gov (United States)

    Groutas, W C; Brubaker, M J; Zandler, M E; Stanga, M A; Huang, T L; Castrisos, J C; Crowley, J P

    1985-04-16

    A series of amino acid-derived sulfonate salts have been synthesized. They were found to inactivate efficiently and selectively human leukocyte elastase. The sulfonate salts of the methyl esters of L-norleucine, L-norvaline and L-valine were the most potent. The enzyme is inactivated irreversibly with concomitant release of bisulfite ion. The results demonstrate for the first time that ionic compounds can indeed function as novel inhibitors for the serine proteinases. PMID:3885950

  4. Ag (I)-based 2D metal frameworks with helical structures decorated by the homochiral camphor-10-sulfonic acid

    Science.gov (United States)

    Guo, Peng; Wang, Jing; Wang, Jun; Pan, Daocheng; Xu, Guohai

    2010-12-01

    Two two-dimension homochiral Ag (I) metal frameworks constructed from enantiopure camphor-10-sulfonic acid and hexamethylenetetramine have been synthesized at the room temperature. These two complexes with (6, 3) topology decorated by the homochiral camphor-10-sulfonic acid possess the unique helical structures. The result of Circular Dichroism (CD) spectroscopy confirms that the bulk materials are homochiral and also indicates the handedness of the single crystals can be controlled by the chirality of the camphor-10-sulfonic acid.

  5. Dual role of endogenous serotonin in 2,4,6-trinitrobenzene sulfonic acid-induced colitis

    Directory of Open Access Journals (Sweden)

    Alberto eRapalli

    2016-03-01

    Full Text Available Background and Aims: Changes in gut serotonin content have been described in Inflammatory Bowel Disease and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous serotonin through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of Inflammatory Bowel Disease. Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135, 5-HT2A (Ketanserin, 5-HT3 (Ondansetron, 5-HT4 (GR125487, 5-HT7 (SB269970 receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylaminotetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4 and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it.Conclusions: The prevailing deleterious contribution given by endogenous serotonin to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders.

  6. Dual Role of Endogenous Serotonin in 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis

    Science.gov (United States)

    Rapalli, Alberto; Bertoni, Simona; Arcaro, Valentina; Saccani, Francesca; Grandi, Andrea; Vivo, Valentina; Cantoni, Anna M.; Barocelli, Elisabetta

    2016-01-01

    Background and Aims: Changes in gut serotonin (5-HT) content have been described in Inflammatory Bowel Disease (IBD) and in different experimental models of colitis: the critical role of this monoamine in the pathogenesis of chronic gastrointestinal inflammation is gradually emerging. Aim of the present study was to evaluate the contribution of endogenous 5-HT through the activation of its specific receptor subtypes to the local and systemic inflammatory responses in an experimental model of IBD. Materials and Methods: Colitis was induced by intrarectal 2,4,6-TriNitroBenzene Sulfonic acid in mice subacutely treated with selective antagonists of 5-HT1A (WAY100135), 5-HT2A (Ketanserin), 5-HT3 (Ondansetron), 5-HT4 (GR125487), 5-HT7 (SB269970) receptors and with 5-HT1A agonist 8-Hydroxy-2-(di-n-propylamino)tetralin. Results: Blockade of 5-HT1A receptors worsened TNBS-induced local and systemic neutrophil recruitment while 5-HT1A agonist delayed and mitigated the severity of colitis, counteracting the increase in colonic 5-HT content. On the contrary, blockade of 5-HT2A receptors improved global health conditions, reduced colonic morphological alterations, down-regulated neutrophil recruitment, inflammatory cytokines levels and colonic apoptosis. Antagonism of 5-HT3, 5-HT4, and 5-HT7 receptor sites did not remarkably affect the progression and outcome of the pathology or only slightly improved it. Conclusion: The prevailing deleterious contribution given by endogenous 5-HT to inflammation in TNBS-induced colitis is seemingly mediated by 5-HT2A and, to a lesser extent, by 5-HT4 receptors and coexists with the weak beneficial effect elicited by 5-HT1A stimulation. These findings suggest how only a selective interference with 5-HT pro-inflammatory actions may represent an additional potential therapeutic option for intestinal inflammatory disorders. PMID:27047383

  7. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    International Nuclear Information System (INIS)

    Highlights: → Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. → Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. → Several species from classes β-, δ- and γ-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 μM of benzene were degraded, which corresponds to 279 ± 27 micro-electron equivalents (μEq) L-1, linked to the reduction of 619 ± 81 μEq L-1 of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two γ-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes β-, δ- and γ-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  8. Anaerobic degradation of benzene by enriched consortia with humic acids as terminal electron acceptors

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Francisco J., E-mail: fjcervantes@ipicyt.edu.mx [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Mancilla, Ana Rosa; Toro, E. Emilia Rios-del [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico); Alpuche-Solis, Angel G.; Montoya-Lorenzana, Lilia [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica (IPICyT), Camino a la Presa San Jose 2055, Col. Lomas 4a. Seccion, San Luis Potosi, SLP, 78216 Mexico (Mexico)

    2011-11-15

    Highlights: {yields} Enriched consortia were able to couple the anaerobic degradation of benzene to the reduction of humic acids. {yields} Electron-equivalents derived from anaerobic benzene oxidation were highly recovered as reduced humic acids. {yields} Several species from classes {beta}-, {delta}- and {gamma}-Proteobacteria were enriched during the anaerobic degradation of benzene. - Abstract: The anaerobic degradation of benzene coupled to the reduction of humic acids (HA) was demonstrated in two enriched consortia. Both inocula were able to oxidize benzene under strict anaerobic conditions when the humic model compound, anthraquinone-2,6-disulfonate (AQDS), was supplied as terminal electron acceptor. An enrichment culture originated from a contaminated soil was also able to oxidize benzene linked to the reduction of highly purified soil humic acids (HPSHA). In HPSHA-amended cultures, 9.3 {mu}M of benzene were degraded, which corresponds to 279 {+-} 27 micro-electron equivalents ({mu}Eq) L{sup -1}, linked to the reduction of 619 {+-} 81 {mu}Eq L{sup -1} of HPSHA. Neither anaerobic benzene oxidation nor reduction of HPSHA occurred in sterilized controls. Anaerobic benzene oxidation did not occur in soil incubations lacking HPSHA. Furthermore, negligible reduction of HPSHA occurred in the absence of benzene. The enrichment culture derived from this soil was dominated by two {gamma}-Proteobacteria phylotypes. A benzene-degrading AQDS-reducing enrichment originated from a sediment sample showed the prevalence of different species from classes {beta}-, {delta}- and {gamma}-Proteobacteria. The present study provides clear quantitative demonstration of anaerobic degradation of benzene coupled to the reduction of HA.

  9. Nitric Acid Dehydration Using Perfluoro Carboxylate and Mixed Sulfonate/Carboxylate Membranes

    Energy Technology Data Exchange (ETDEWEB)

    R.L. Ames

    2004-09-01

    Perfluoro ionomer membranes are tetrafluoro ethylene-based materials with microheterogeneous structures consisting of a hydrophobic polymer backbone and a hydrophilic side-chain cluster region. Due to the ionomer cluster morphology, these films exhibit unique transport properties. Recent investigations with perfluoro sulfonate and perfluoro sulfonate/carboxylate composite polymers have demonstrated their value in the dehydration of nitric acid and they show potential as an alternative to conventional, energy intensive unit operations in the concentration of acid feeds. As a result, investigations were conducted to determine the feasibility of using pure perfluoro carboxylate and mixed perfluoro sulfonate/carboxylate films for the dehydration of nitric acid because of the speculation of improved water selectivity of the carboxylate pendant chain. During the first phase of these investigations the effort was focused on generating a thin, solution cast perfluoro carboxylate ionomer film, to evaluate the general, chemical and physical characteristics of the polymer, and to assess the material's aqueous transport performance (flux and nitrate separation efficiencies) in pervaporation and high-pressure environments. Results demonstrated that generating robust solution-cast films was difficult yet a number of membranes survived high trans-membrane pressures up to 700 psig. General characterization of the solution cast product showed reduced ion exchange capacities when compared with thicker, ''as received'' perfluoro carboxylate and similar sulfonate films. Small angle x-ray scattering analysis results suggested that the solution cast carboxylate films contained a small fraction of sulfonate terminated side-chains. Aqueous transport experimentation showed that permeate fluxes for both pure water and nitric acid were approximately two orders of magnitude smaller for the carboxylate solution cast membranes when compared to their sulfonate

  10. Tin Coatings Electrodeposited from Sulfonic Acid-Based Electrolytes: Tribological Behavior

    Science.gov (United States)

    Bengoa, L. N.; Tuckart, W. R.; Zabala, N.; Prieto, G.; Egli, W. A.

    2015-06-01

    A high efficiency methane sulfonic acid electrolyte used for tin electrodeposition was studied, and the properties of the resulting deposits were compared to those of tin coatings obtained from an industrial phenol sulfonic acid electrolyte. Cyclic voltammetry was used to study the effect of organic additives on the reduction process to define the composition of the electrolytic bath. Thick tin electrodeposits were obtained on rotating cylinder steel electrodes, and their surface morphology, preferred crystal orientation, surface roughness, micro hardness, and tribological behavior were measured. Smooth, adherent, and bright tin coatings were obtained from the methane sulfonic acid electrolyte, which differed in morphology and texture from tin electrodeposited from the industrial bath. Influence of organic additives on preferred crystal orientation of the coatings was found to be stronger than changing the supporting sulfonic acid type. Tribological tests showed that the two types of deposits have a similar coefficient of friction. However, tin coatings obtained from methane sulfonic electrolytes presented a lower wear resistance and underwent galling at lower loads.

  11. Thermochemical comparisons of homogeneous and heterogeneous acids and bases. 1. Sulfonic acid solutions and resins as prototype Broensted acids

    Energy Technology Data Exchange (ETDEWEB)

    Arnett, E.M.; Haaksma, R.A.; Chawla, B.; Healy, M.H.

    1986-08-06

    Heats of ionization by thermometric titration for a series of bases (or acids) can be used to compare solid acids (or bases) with liquid analogues bearing the same functionalities in homogeneous solutions. The method is demonstrated for Broensted acids by reacting a series of substituted nitrogen bases with solutions of p-toluenesulfonic acid (PTSA) in acetonitrile and with suspensions of the microporous polymeric arylsulfonic acid resin-Dowex 50W-X8 in the same solvent. Under well-controlled anhydrous conditions there is a good correlation (r = 0.992) between the heats of reaction of the bases with the homogeneous and heterogeneous acid systems, but the homogeneous system gives a more exothermic interaction by 3-4 kcal mol/sup -1/ for a series of 29 substituted pyrimidines, anilines, and some other amines. This difference may be attributed to homohydrogen bonding interactions between excess acid and sulfonate anion sites which are more restricted geometrically in the resin than in solution. Other factors which affect the enthalpy change for the acid-base interaction are the acid/base ratio, the water content of the sulfonic acid, the solvent, and the resin structure (e.g., microporous vs. macroporous). Steric hindrance in the base does not differentiate solid from homogeneous acid. In addition to the use of titration calorimetry, heats of immersion are reported for the Dowex-arylsulfonic acid resins and the Nafion-perfluorinated sulfonic acid resin in a series of basic liquids. The results are compared with each other and with those from a previous study of several varieties of coal.

  12. Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon.

    Science.gov (United States)

    Zhang, Di; Luo, Qi; Gao, Bin; Chiang, Sheau-Yun Dora; Woodward, David; Huang, Qingguo

    2016-02-01

    The sorption of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and perfluoroheptanoic acid (PFHpA) on granular activated carbon (GAC) was characterized and compared to explore the underlying mechanisms. Sorption of the three perfluoroalkyl acids (PFAAs) on GAC appeared to be a rapid intra-particle diffusion process, which were well represented by the pseudo-second-order rate model with the sorption rate following the order PFOS > PFOA > PFHpA. Sorption isotherm data were well fitted by the Freundlich model with the sorption capacity (Kf) of PFOS, PFOA and PFHpA being 4.45, 2.42 and 1.66 respectively. This suggests that the hydrophilic head group on PFAAs, i.e. sulfonate vs carboxylic, has a strong influence on their sorption. Comparison between PFOA and PFHpA revealed that hydrophobicity could also play a role in the sorption of PFAAs on GAC when the fluorocarbon chain length is different. Analyses using Attenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy suggested possible formation of a negative charge-assisted H-bond between PFAAs and the functionalities on GAC surfaces, including non-aromatic ketones, sulfides, and halogenated hydrocarbons. PMID:26606188

  13. 40 CFR 721.1225 - Benzene, 1,2-dimethyl-, poly-propene derivatives, sulfonated, po-tas-sium salts.

    Science.gov (United States)

    2010-07-01

    ... releases of the substance are subject to an EPA Significant New Use Rule (SNUR) under 40 CFR part 721 which...) (where N = 25 ppb). The requirement of 40 CFR 721.91(a)(4) that the amount of the substance estimated to... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,2-dimethyl-,...

  14. Transport of protonic charge carriers in methyl-sulfonic-acid/water mixtures : a model for lowly hydrated sulfonic acid based ionomers

    OpenAIRE

    Telfah, Ahmad D. S.

    2008-01-01

    Polymer-electrolyte-membrane fuel cells (PEM-FCs) deliver high power density and offer the advantages of low weight and volume, compared to other fuel cell systems. State-of-the-art separator materials in PEM-FCs are sulfonic acid functionalized polymers, like the perfluorinated polymer Nafion. The suitability of proton-conducting materials as separators in a particular fuel-cell application is essentially dependent on its transport properties, durability, and reactivity. Thus, this thesis...

  15. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Binbin, E-mail: changbinbin806@163.com; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng, E-mail: baochengyang@yahoo.com

    2015-01-15

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl{sub 2} using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl{sub 2} at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO{sub 3}H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N{sub 2} adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO{sub 3}H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO{sub 3}H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO{sub 3}H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses

  16. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    International Nuclear Information System (INIS)

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of –SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption–desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of –SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of –SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and –SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles. - Graphical abstract: Sulfonated porous carbon nanospheres with high surface area and superior catalytic performance were prepared by a facile chemical activation route. - Highlights: • Porous carbon spheres solid acid prepared by a facile chemical activation. • It owns high surface area, superior porosity and uniform spherical morphology. • It possesses high acidity and high –SO3H density. • It

  17. Aggregation of Benzene Molecules with Molecules of Methanol and Formic Acid

    International Nuclear Information System (INIS)

    Calculations and experimental studies of Raman scattering spectra show that there is a dimeric aggregation of benzene molecules with the molecule of methyl alcohol with the use of π-electrons of the benzene ring. In this process, the H-active hydrogen atom of O-H group is oriented to the edge of the benzene ring (a distance along the normal to the plane of the benzene ring is 2.850 A). The unusual position of the H-active hydrogen atom is conditioned by the interaction of two hydrogen atoms of the alcohols methyl group with π-electrons of the benzene ring. In Raman scattering spectra, the aggregation of molecules in the liquid state of the substance leads to a broadening of the band of full-symmetric vibrations with the maximum at 992 cm-1, as well as to a shift of this band toward lower frequencies by ∼ 1 cm-1. The band at 992 cm-1 is narrowed more than twice at the strong dilution of the benzene-methyl alcohol mixture by a large amount of heptane. The aggregation of benzene molecules takes place also with the molecules of formic acid with the use of π-electrons of the benzene ring. As in the case of the benzene-methyl alcohol mixture, the H-active hydrogen atom of O-H group of the acid is shifted toward the edge of the benzene ring. The energy of the benzene-formic acid dimerization is 9.2 kJ/mole.

  18. An investigation of proton conductivity of binary matrices sulfonated polysulfone/polyvinyltriazole after doping with inorganic acids

    Indian Academy of Sciences (India)

    Serkan Sevinç; Sevim Ünügür Çelik; Ayhan Bozkurt

    2015-04-01

    As anhydrous proton conductive membranes, sulfonated polysulfone (SPSU) and polyvinyl triazole were studied as binary matrices. The sulfonation of polysulfone was performed with trimethylsilylchlorosulfonate and high degree of sulfonation (140%) was obtained. Ion exchange capacity of SPSU was determined as 3.05 mmol−1/g. The polymer electrolyte membranes were prepared by blending of sulfonated polysulfone with polyvinyl triazole and phosphoric acid. Fourier transform infrared spectroscopy confirmed the sulfonation of the polysulfone and the ionic interaction between sulfonic acid and triazole units. Thermogravimetric analysis showed that the polymer electrolyte membranes are thermally stable up to at least 150° C. Scanning electron microscopy analysis indicated the homogeneity of the ternary composites. The maximum proton conductivity has been measured as 3.63 × 10−4S cm−1 at 150° C.

  19. Gene expression profiling identifies mechanisms of protection to recurrent trinitrobenzene sulfonic acid colitis mediated by probiotics

    NARCIS (Netherlands)

    Mariman, R.; Kremer, S.H.A.; Erk, M. van; Lagerweij, T.; Koning, F.; Nagelkerken, L.

    2012-01-01

    Background: Host-microbiota interactions in the intestinal mucosa play a major role in intestinal immune homeostasis and control the threshold of local inflammation. The aim of this study was to evaluate the efficacy of probiotics in the recurrent trinitrobenzene sulfonic acid (TNBS)-induced colitis

  20. Preparation and Reactions of Amino Acid Ester Sulfones as New Remote Asymmetrical Induced Reagents

    Institute of Scientific and Technical Information of China (English)

    ZHOU,Cheng-He; BAI,Xue; LI,Tan-Qing; WU,Jun; Alfred Hassner

    2004-01-01

    @@ The development of chiral auxiliary-controlled asymmetric synthesis has been receiving increasing interest in recent yearsfi,2] Various chiral auxiliary reagents have been observed[3] and a lot of results showed that variation of the chiral auxiliary could influence asymmetric induction. Recently, it has been reported the reaction of the aminated sulfones as a remote chiral auxiliary with α,β-unsaturated carbonyl compounds.[4] Here we would like to report the preparation of amino acid ester sulfones as new remote asymmetrical induced reagents and their reactions with α,β-unsaturated esters.

  1. Esterification of oleic acid with ethanol catalyzed by sulfonated cation exchange resin: Experimental and kinetic studies

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Esterification of oleic acid with ethanol was investigated in the presence of sulfonated cation exchange resin. • We studied kinetic model of the esterification of oleic acid with ethanol according to experimental data. • The proposed kinetic model can well predict oleic acid conversion. - Abstract: This paper investigated the effects of ethanol to oleic acid molar ratio, reaction temperature, catalyst loading, water content and catalyst recycling on sulfonated cation exchange resin in a stirred batch reactor under atmospheric pressure. When the esterification was carried out with an ethanol to oleic acid (42.4 g) molar ratio of 9:1, reflux of ethanol at 82 °C, 20 g of catalyst and 8 h of reaction time, the oleic acid conversion rate reached approximately 93%. A pseudo-homogeneous kinetic model for describing the esterification of oleic acid with ethanol by the sulfonated cation exchange resin was developed on the basis of laboratorial results. The kinetic model can well predict the oleic acid conversion

  2. Meso- and macroporous sulfonated starch solid acid catalyst for esterification of palm fatty acid

    Directory of Open Access Journals (Sweden)

    Ibrahim M. Lokman

    2016-03-01

    Full Text Available In the present work, a heterogeneous solid acid catalyst was successfully developed from starch. The catalyst was prepared by a significant two-step process; the initial step was incomplete carbonization of starch (ICS at 400 °C for 12 h and consequently followed by sulfonation process using concentrated H2SO4 to produce sulfonated-incomplete carbonized starch (ICS-SO3H. The characterization of the ICS-SO3H catalyst was done for chemical and physical properties such as X-ray diffraction (XRD, ammonia-temperature programmed desorption (NH3-TPD, surface area analysis, thermal gravimetric analysis (TGA, elemental analysis and morphology analysis by scanning electron microscope (SEM. BET results showed the structure of ICS-SO3H consists of meso- and macro-porous properties, which allowed high density of the SO3H group attached on its carbon networks. The catalytic activity of ICS-SO3H catalyst was determined by analyzing the catalyst performance to esterify palm fatty acid distillate (PFAD and sequentially produced methyl ester. The maximum free fatty acid (FFA conversion and FAME yield were as high as 94.6% and 90.4%, respectively, at 75 °C using 10:1 methanol-to-PFAD molar ratio and 2 wt.% of catalyst within 3 h. The catalyst has sufficient potential to recycle up to 6 reactions without reactivation step and any remarkable loss of catalytic activity. It revealed that the heterogeneous ICS-SO3H catalyst exhibits high stability, reusability and catalytic activity.

  3. The Role of Acid Strength of Modified NaX Zeoliteson Gas Phase Ethylation of Benzene

    Directory of Open Access Journals (Sweden)

    Sanghamitra Barman

    2010-01-01

    Full Text Available The role of acid strength of modified NaX zeolites in gas phase ethylation of benzene were studied over Ce exchanged NaX zeolite of different types. Acidity of the modified zeolite was investigated by means of adsorbing ammonia at different temperature. The conversion of reactantsvaries with the acid strength as well as the different types of the zeolites. The strong acid sites are active centers while the weak acid sites are inactive. The influences of various process parameters such as temperature, space-time and the feed ratio of benzene to ethanol on benzene conversion over most acidic zeolite were studied. The kinetic and adsorption constants of the rate equations were estimated by the best fit. From the estimated kinetic constants, the activation energies and frequency factors for various reactions were determined. The activation energy values compared well with those reported by other investigators for same reactions over similar catalysts.

  4. Fabrication and Performance Evaluation of Hybrid Membrane based on a Sulfonated Polyphenyl Sulfone/Phosphotungstic acid/Silica for Proton Exchange Membrane Fuel Cell at Low Humidity Conditions

    International Nuclear Information System (INIS)

    Sulfonated polyphenyl sulfone/phosphotungstic acid/silica (sPPS/PWA/silica) hybrid membranes were prepared and characterized as alternative materials for PEMFC operation at high temperature and low humidity conditions. Polyphenyl sulfone polymer (PPS) was sulfonated with trimethylsilyl chlorosulfonate in 1,2 dichloroethane at ambient temperatures. The degree of sulfonation was determined by 1H-NMR analysis. Sulfonation levels from 25 to 45% were easily achieved by varying the content of the sulfonation agent. The hybrid membrane was composed of the mixture of sPPS solution, PWA/silica particles. The structures of the membranes were investigated by Scanning Electron Microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and by thermogravimetric analysis (TGA). The composite membranes gained good thermal resistance with insertion of PWA/silica. SEM results have proven the uniform and homogeneous distribution of PWA/silica in hybrid membrane. The existence PWA/silica has improved the water uptake, proton conductivity and oxidative stability of hybrid membrane. Gas diffusion electrodes (GDE) were fabricated by ultrasonic coating technique. Catalyst loading was 0.4 mg Pt/cm2 for both anode and cathode sides. The membranes were tested in a single cell with a 5 cm2 active area operating at the temperature range of 70 to 120 °C and 100 and 30% relative humidity conditions. Single PEMFC tests performed at different operating temperatures indicated that sPPS/PWA/silica hybrid membrane was more stable and also performed better than pristine sPPS membrane. At the overall, the sPPS/PWA/silica hybrid membrane seems to be a promising alternative membrane for the possible utilization in PEMFC

  5. Effects of sodium dodecyl benzene sulfonate on the crystal structures and photocatalytic performance of ZnO powders prepared by hydrothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Limin; Dong, Shuying; Li, Qilu; Li, Yifan; Pi, Yunqing; Liu, Menglin; Han, Xiao; Sun, Jianhui, E-mail: sunjh@htu.cn

    2015-11-15

    A facile and efficient route for the controllable synthesis of ZnO nanostructures by hydrothermal method using sodium dodecyl benzene sulfonate (SDBS) as surfactant was reported. The obtained products were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical, electrochemical and optical properties. The prepared products were used as photocatalysts in the application of the degradation of metronidazole (MNZ)-contained wastewater under visible light irradiation. A 4.5-fold augmentation of degradation efficiency was in turn observed for optimal ZnO (ZO-0.75) photocatalyst compared with that of sample without SDBS addition (ZO) under the visible light irradiation. The effects of SDBS dosage on the crystal structures of prepared samples as well as the crystal growth mechanism were also probed. - Graphical abstract: ZnO photocatalysts were fabricated through a facile and efficient hydrothermal method using SDBS as structure-directing surfactant in a controllable manner. In particular, the sample with different SDBS dosage exhibited distinct crystal structure and photocatalytic performance. - Highlights: • A rod-like ZnO photocatalyst was facilely synthesized by using SDBS as surfactant. • The effect of SDBS dosage on the crystal structure of photocatalyst was probed. • The probably crystal growth mechanism of prepared photocatalyst was explored. • The optimal ZnO with 0.75 g SDBS dosage displayed the best photocatalytic activity.

  6. Ag island film-enhanced rare earth co-luminescence effect of Tb-Gd-protein-sodium dodecyl benzene sulfonate system and sensitive detection of protein.

    Science.gov (United States)

    Sun, Chang Xia; Wu, Xia; Zhou, Hai Ping; Wang, Fei; Ding, Hong Hong; Zhao, Liang Liang; Yang, Jing He

    2008-09-15

    This paper reported the coupling technique of Ag island film-enhanced fluorescence with rare earth co-luminescence effect of Tb-Gd-sodium dodecyl benzene sulfonate (SDBS)-protein system. While the collagen is used as the separator between Ag island film and the fluorophore because it not only can decrease the fluorescence of the blank, but also can promote the adsorption of other proteins and change the conformation of the protein. The effects of Ag island film on both the fluorescence and resonance energy transfer process of Tb-Gd-SDBS-protein system are studied, finding that Ag island film can enhance the energy transfer efficiency of this system, resulting in fluorescence enhancement about tenfold compared with this system without Ag island film. Therefore, this technique is used for the detection of proteins as low as 0.72 ng/mL for BSA and 1.3 ng/mL for HSA. In addition, Ag island film can also change the energy transfer process of Tb-SDBS-protein system. PMID:18761153

  7. Effects of sodium dodecyl benzene sulfonate on the crystal structures and photocatalytic performance of ZnO powders prepared by hydrothermal method

    International Nuclear Information System (INIS)

    A facile and efficient route for the controllable synthesis of ZnO nanostructures by hydrothermal method using sodium dodecyl benzene sulfonate (SDBS) as surfactant was reported. The obtained products were well characterized with the aid of various techniques to probe their crystallographic, morphological, chemical, electrochemical and optical properties. The prepared products were used as photocatalysts in the application of the degradation of metronidazole (MNZ)-contained wastewater under visible light irradiation. A 4.5-fold augmentation of degradation efficiency was in turn observed for optimal ZnO (ZO-0.75) photocatalyst compared with that of sample without SDBS addition (ZO) under the visible light irradiation. The effects of SDBS dosage on the crystal structures of prepared samples as well as the crystal growth mechanism were also probed. - Graphical abstract: ZnO photocatalysts were fabricated through a facile and efficient hydrothermal method using SDBS as structure-directing surfactant in a controllable manner. In particular, the sample with different SDBS dosage exhibited distinct crystal structure and photocatalytic performance. - Highlights: • A rod-like ZnO photocatalyst was facilely synthesized by using SDBS as surfactant. • The effect of SDBS dosage on the crystal structure of photocatalyst was probed. • The probably crystal growth mechanism of prepared photocatalyst was explored. • The optimal ZnO with 0.75 g SDBS dosage displayed the best photocatalytic activity

  8. Assessment and influence of operational parameters on the TiO2 photocatalytic degradation of sodium benzene sulfonate under highly concentrated solar light illumination

    International Nuclear Information System (INIS)

    Sodium benzene sulfonate (BS) was decomposed in aqueous TiO2 dispersions under highly concentrated solar light illumination to examine the photocatalytic characteristics of a parabolic round concentrator (PRC) reactor to degrade the pollutant without visible light absorption. The effects of such operational parameters as initial concentration, volume of the aqueous BS solution, oxygen purging, and TiO2 loading on the kinetics of decomposition of BS were investigated. An effective photodegradation necessitates a suitable combination of initial volume and concentration of BS solution. Relative to atmospheric air, oxygen purging significantly accelerates the degradation process at high initial concentrations of BS (0.40 mM or 1.0 mM). Optimal TiO2 loading was 9 gl -1, greater than previously reported. Elimination of TOC (total organic carbon) followed pseudo first-order kinetics in the initial stages of the photodegradation process. The relative photonic efficiency for the photodegradation of BS is ζrel=1.0. (Author)

  9. Absorption characteristic of paeoniflorin-6'-O-benzene sulfonate (CP-25) in in situ single-pass intestinal perfusion in rats.

    Science.gov (United States)

    Yang, Xiao-Dan; Wang, Chun; Zhou, Peng; Yu, Jun; Asenso, James; Ma, Yong; Wei, Wei

    2016-09-01

    1. Paeoniflorin-6'-O-benzene sulfonate (CP-25) was synthesized to improve the poor oral absorption of paeoniflorin (Pae). 2. This study was performed to investigate the absorptive behavior and mechanism of CP-25 in in situ single-pass intestinal perfusion in rats, using Pae as a control. 3. The results showed that intestinal absorption of CP-25 was neither segmental nor sex dependent. However, the main segment of intestine that absorbed Pae was the duodenum. Furthermore, passive transport was confirmed to be the main absorption pattern of CP-25. More importantly, the absorption of CP-25 was much higher than Pae in the small intestine. 4. Among the ABC transporter inhibitors, the absorption rate of Pae increased in the presence of P-gp inhibitors verapamil and GF120918, which indicated that Pae was a substrate of P-glycoprotein (P-gp), however, such was not observed in the presence of breast cancer resistance protein and multidrug resistance-associated protein 2. Finally, the ABC transporter inhibitors did not have any significant impact on CP-25 as demonstrated in the parallel studies. 5. CP-25 could improve the poor absorption of Pae, which may be attributed to both the lipid solubility enhancement and its resistance to P-gp-mediated efflux. PMID:26711120

  10. Removal of the hazardous, volatile, and organic compound benzene from aqueous solution using phosphoric acid activated carbon from rice husk

    OpenAIRE

    Yakout, Sobhy M

    2014-01-01

    Background Benzene is one of the most hazardous organic pollutants in groundwater. The removal of benzene from water is very important from a health point of view and for environmental protection. In this study, benzene adsorption kinetics was investigated using phosphoric acid activated carbon, prepared from rice husk. Results An initial rapid uptake of benzene was observed and became almost constant after 40 minutes of contact. Kinetic data was analyzed using pseudo first order, pseudo seco...

  11. Reaction kinetics of free fatty acids esterification in palm fatty acid distillate using coconut shell biochar sulfonated catalyst

    Science.gov (United States)

    Hidayat, Arif; Rochmadi, Wijaya, Karna; Budiman, Arief

    2015-12-01

    Recently, a new strategy of preparing novel carbon-based solid acids has been developed. In this research, the esterification reactions of Palm Fatty Acid Distillate (PFAD) with methanol, using coconut shell biochar sulfonated catalyst from biomass wastes as catalyst, were studied. In this study, the coconut shell biochar sulfonated catalysts were synthesized by sulfonating the coconut shell biochar using concentrated H2SO4. The kinetics of free fatty acid (FFA) esterification in PFAD using a coconut shell biochar sulfonated catalyst was also studied. The effects of the mass ratio of catalyst to oil (1-10%), the molar ratio of methanol to oil (6:1-12:1), and the reaction temperature (40-60°C) were studied for the conversion of PFAD to optimize the reaction conditions. The results showed that the optimal conditions were an methanol to PFAD molar ratio of 12:1, the amount of catalyst of 10%w, and reaction temperature of 60°C. The proposed kinetic model shows a reversible second order reaction and represents all the experimental data satisfactorily, providing deeper insight into the kinetics of the reaction.

  12. Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons

    Institute of Scientific and Technical Information of China (English)

    Filoklis D. Pileidis; Maham Tabassum; Sam Coutts; Maria-Magdalena Ttitirici

    2014-01-01

    The synthesis of carbon-based, heterogeneous sulphonic catalysts for the production of levulinate esters. Hydrothermal treatment at moderated temperatures was employed to generate highly func-tional carbonaceous materials, referred to as hydrothermal carbons (HTCs), from both glucose, cellulose and rye straw. The products were sulfonated to generate solid acid-catalysts. Characterisa-tion of the as-synthesised materials as well as catalyst activity tests were performed. SEM images indicate the micrometre-sized particles present in both HTCs were largely unaffected by sulfona-tion, although cellulose-derived HTC displayed signs of inadequate hydrolysis. FT-IR spectroscopy and elemental analysis confirmed successful incorporation of sulphonic groups. 13C solid state NMR, in addition to TGA, elucidated the carbons’ structural composition and supported the common-ly-proposed hydrothermal carbonisation mechanism. Finally, the catalysts were tested via levulinic acid-ethanol esterification and gave high conversion and ester-selectivities (>90%).

  13. Clean synthesis of biodiesel over solid acid catalysts of sulfonated mesopolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    FDU-15-SO3H,a solid acid material prepared from the sulfonation of FDU-15 mesoporous polymer,has been demonstrated to serve as an efficient catalyst in the esterification of palmitic acid with methanol as well as in the transesterification of fatty acid-edible oil mixture.FDU-15-SO3H achieved an acid conversion of 99.0% when the esterification was carried out at 343 K with a methanol/palmitic acid molar ratio of 6:1 and 5 wt% catalyst loading.It was capable of giving 99.0% yield of fatty acid methyl esters (FAME) when the transesterification of soybean oil was performed at 413 K and the methanol/oil weight ratio of 1:1.FDU-15-SO3H was further applied to the transesterification/esterification of the oil mixtures with a varying ratio of soybean oil to palmitic acid,which simulated the feedstock with a high content of free fatty acids.The yield of FAME reached 95% for the oil mixtures containing 30 wt% palmitic acid.This indicated the sulfonated mesopolymer was a potential catalyst for clean synthesis of fuel alternative of biodiesel from the waste oil without further purification.

  14. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    Science.gov (United States)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  15. New complexes of samarium(III), terbium(III) and holmium (III) with quercetin-5'-sulfonic acid

    International Nuclear Information System (INIS)

    New solid complexes of samarium(III), terbium (III), and holmium (III) with quercetin-5'-sulfonic acid were obtained. Their composition and physicochemical properties were investigated. Ultraviolet, visible and infrared spectroscopy methods were used to determine their structure. (author)

  16. Validation and optimization of experimental colitis induction in rats using 2, 4, 6-trinitrobenzene sulfonic acid

    OpenAIRE

    Motavallian-Naeini, A.; Andalib, S.; M Rabbani; Mahzouni, P.; Afsharipour, M.; Minaiyan, M.

    2012-01-01

    Trinitrobenzene sulfonic acid (TNBS)-induced colitis is one of the most common methods for studying inflammatory bowel disease in animal models. Several factors may, however, affect its reproducibility, rate of animal mortality, and macroscopic and histopathological outcomes. Our aim was to validate the main contributing factors to this method and compare the effects of different reference drugs upon remission of resultant colon injuries. TNBS was dissolved in 0.25 ml of ethanol (50% v/v) and...

  17. Determination of Protein by Fluorescence Enhancement of Curcumin in Lanthanum-Curcumin-Sodium Dodecyl Benzene Sulfonate-Protein System

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Zaozhuang University, People' s Republic of China; Huang, Wei [Zaozhuang University, People' s Republic of China; Zhang, Yunfeng [Zaozhuang University, People' s Republic of China; Wang, Mingyin [Zaozhuang University, People' s Republic of China; Sun, Lina [Zaozhuang University, People' s Republic of China; Tang, Bo [Shandong University, Jinan, China; Wang, Wei [ORNL

    2011-01-01

    We found that the fluorescence intensity of the lanthanum (La(3+))-curcumin (CU) complex can be highly enhanced by proteins in the presence of sodium dodecyl benzene sulphonate (SDBS). Based on this finding, a new fluorimetric method for the determination of protein was developed. Under optimized conditions, the enhanced intensities of fluorescence are quantitatively in proportion to the concentrations of proteins in the range 0.0080-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1) for human serum albumin (HSA) with excitation of 425 nm, and 0.00020-20.0 g mL(-1) for bovine serum albumin (BSA) and 0.00080-20.0 g mL(-1)for human serum albumin (HSA) with excitation of 280 nm, while corresponding qualitative detection limits (S/N 3) are as low as 5.368, 0.573, 0.049, 0.562 g mL(-1), respectively. Study on reaction mechanism reveals that proteins can bind with La(3+), CU and SDBS through self-assembling function with electrostatic attraction, hydrogen bonding, hydrophobic interaction and van der Waals forces, etc. The proteins form a supermolecular association with multilayer structure, in which La(3+)-CU is clamped between BSA and SDBS. The unique high fluorescence enhancement of CU is resulted through synergic effects of favorable hydrophobic microenvironment provided by BSA and SDBS, and efficient intermolecular energy transfer among BSA, SDBS and CU. In energy transfer process, La(3+) plays a crucial role because it not only shortens the distance between SDBS and CU, but also acts as a "bridge" for transferring the energy from BSA to CU.

  18. Production of biodiesel from palm fatty acid distillate using sulfonated-glucose solid acid catalyst:Characterization and optimization

    Institute of Scientific and Technical Information of China (English)

    Ibrahim M Lokman; Umer Rashid; Yun Hin Taufiq-Yap

    2015-01-01

    A palm fatty acid distillate (PFAD) has been used for biodiesel production. An efficient sulfonated-glucose acid catalyst (SGAC) was prepared by sulfonation to catalyze the esterification reaction. The effect of three variables i.e. methanol-to-PFAD molar ratio, catalyst amount and reaction time, on the yield of PFAD esters was studied by the response surface methodology (RSM). The optimum reaction conditions were:12.2:1 methanol-to-PFAD molar ratio, 2.9%catalyst concentration and 134 min of time as predicted by the RSM. The reaction under the optimum conditions resulted in 94.5%of the free fatty acid (FFA) conversion with 92.4%of the FAME yield. The properties of the PFAD esters were determined according to biodiesel standards.

  19. Vacuum thermal evaporation of polyaniline doped with camphor sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Boyne, Devon; Menegazzo, Nicola; Pupillo, Rachel C.; Rosenthal, Joel; Booksh, Karl S., E-mail: kbooksh@udel.edu [Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716 (United States)

    2015-05-15

    Intrinsically conducting polymers belong to a class of organic polymers with intriguing electronic and physical properties specifically for electro-optical applications. Significant interest into doped polyaniline (PAni) can be attributed to its high conductivity and environmental stability. Poor dissolution in most solvents has thus far hindered the successful integration of PAni into commercial applications, which in turn, has led to the investigations of various deposition and acidic doping methods. Physical vapor deposition methods, including D.C. magnetron sputtering and vacuum thermal evaporation, have shown exceptional control over physical film properties (thickness and morphology). However, resulting films are less conductive than films deposited by conventional methods (i.e., spin and drop casting) due to interruption of the hyperconjugation of polymer chains. Specifically, vacuum thermal evaporation requires a postdoping process, which results in incorporation of impurities and oxidation of surface moieties. In this contribution, thermally evaporated films, sequentially doped by vacuum evaporation of an organic acid (camphorsulfonic acid, CSA) is explored. Spectroscopic evidence confirms the successful doping of PAni with CSA while physical characterization (atomic force microscopy) suggests films retain good morphology and are not damaged by the doping process. The procedure presented herein also combines other postpreparation methods in an attempt to improve conductivity and/or substrate adhesion.

  20. Sulfonic acid heterogeneous catalysts for dehydration of C6-monosaccharides to 5-hydroxymethylfurfural in dimethyl sulfoxide

    Institute of Scientific and Technical Information of China (English)

    Gabriel Morales; Juan A.Melero; Marta Paniagua; Jose Iglesias; Blanca Hernández; María Sanz

    2014-01-01

    Sulfonic acid-functionalized heterogeneous catalysts have been evaluated in the catalytic dehydra-tion of C6 monosaccharides into 5-hydroxymethylfurfural (HMF) using dimethyl sulfoxide (DMSO) as solvent. Sulfonic commercial resin Amberlyst-70 was the most active catalyst, which was as-cribed to its higher concentration of sulfonic acid sites as compared with the other catalysts, and it gave 93 mol%yield of HMF from fructose in 1 h. With glucose as the starting material, which is a much more difficult reaction, the reaction conditions (time, temperature, and catalyst loading) were optimized for Amberlyst-70 by a response surface methodology, which gave a maximum HMF yield of 33 mol%at 147°C with 23 wt%catalyst loading based on glucose and 24 h reaction time. DMSO promotes the dehydration of glucose into anhydroglucose, which acts as a reservoir of the substrate to facilitate the production of HMF by reducing side reactions. Catalyst reuse without a regeneration treatment showed a gradual but not very significant decay in catalytic activity.

  1. 4-Benzene­sulfonamido­benzoic acid

    OpenAIRE

    Sharif, Hafiz Muhammad Adeel; Dong, Gui-Ying; Arshad, Muhammad Nadeem; Khan, Islam Ullah

    2009-01-01

    In the mol­ecule of the title sulfonamide compound, C13H11NO4S, the dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings are inclined at 45.36 (15)° to one another. In the crystal, adjacent mol­ecules are linked via classical inter­molecular N—H⋯O and O—H⋯O, and non-classical C—H⋯O hydrogen bonds, which stabilize the crystal structure.

  2. 4-Benzene­sulfonamido­benzoic acid

    Science.gov (United States)

    Sharif, Hafiz Muhammad Adeel; Dong, Gui-Ying; Arshad, Muhammad Nadeem; Khan, Islam Ullah

    2009-01-01

    In the mol­ecule of the title sulfonamide compound, C13H11NO4S, the dihedral angle between the planes of the benzene ring and the carboxyl substituent group is 6.7 (4)°. The two aromatic rings are inclined at 45.36 (15)° to one another. In the crystal, adjacent mol­ecules are linked via classical inter­molecular N—H⋯O and O—H⋯O, and non-classical C—H⋯O hydrogen bonds, which stabilize the crystal structure. PMID:21578816

  3. Synthesis of Rare Metal Yttrium of Camphor Sulfonic Acid%樟脑磺酸钇的合成

    Institute of Scientific and Technical Information of China (English)

    刘晓红; 柯春兰

    2015-01-01

    This paper studied the preparation of Yttrium of L-camphor sulfonic acid and Yttrium of D-cam-phor sulfonic acid. In this experiment,racemic camphor was uesd as the raw material,and through the sulfonation reaction,split,purification and separate,chiral camphor sulfonic acid was abtained,and it can react with Y2 O3 to get yttrium of chiral Camphor sulfonic acid. The optimal synthesis conditions were:Camphor sulfonic acid concentration was 12% -15%,reaction temperature was 90 ℃,reaction time was 0. 5-1 h,Y2 O3 excessed 50%. Tested by in-frared spectroscopy( IR)and XRD,it can be found that Yttrium of Rare Metal Camphor Sulfonic Acid are consist-ent with the standard compounds.%研究了左旋樟脑磺酸钇和右旋樟脑磺酸钇的制备。实验以合成樟脑粉为原料,经过磺化反应、拆分、纯化分离等步骤得到手性樟脑磺酸,稀土金属氧化钇与手性樟脑磺酸反应合成了稀土金属樟脑磺酸钇,合成条件:樟脑磺酸质量浓度12%~15%,反应温度90℃,反应时间0.5~1 h,氧化钇过量50%。得到的产品稀土金属樟脑磺酸钇经红外光谱( IR)、XRD分析,证明与目标产物一致。

  4. Spectrophotometric Determination of Zinc Using 7-(4-Nitrophenylazo)-8-Hydroxyquinoline-5-Sulfonic Acid

    OpenAIRE

    Korn Maria das Graças Andrade; Ferreira Adriana Costa; Teixeira Leonardo Sena Gomes; Costa Antonio Celso Spínola

    1999-01-01

    A sensitive and selective spectrophotometric method is proposed for the rapid determination of zinc(II) using an 8-hydroxyquinoline derivative, 7-(4-nitrophenylazo)-8-hydroxyquinoline-5-sulfonic acid (p-NIAZOXS), as a new spectrophotometric reagent. The reaction between the p-NIAZOXS and zinc(II) is instantaneous at pH 9.2 (borax buffer) and the absorbance remains stable for over 24 h. The method allows the determination of zinc over the range of 0.05-1.0 mug mL-1 with a molar absorptivity of...

  5. Spectrophotometric determination of uranium(VI) with 7-iodo-8-hydroxyquinoline-5-sulfonic acid (ferron)

    International Nuclear Information System (INIS)

    A new method is introduced to estimate uranium(VI) spectrophotometrically by extraction of its ferron (7-iodo-8-hydroxyquinoline-5-sulfonic acid) complex with 1% tridodecylamine in chloroform at pH 4.5. The optimum absorption wavelength is 380 mm. The stoichiometry of the uranium-ferron complex as indicated by a mole ratio plot is 1:2 and its dissociation constant is 3.24x10-9. The effects of various parameters on the absorption are studied. This method has a sensitivity of 0.028 ppm on Sandell's scale. Interferences are described. (author)

  6. Mesoporous silica containing sulfonic acid groups as catalysts for alpha-pinene methoxylation

    OpenAIRE

    Castanheiro, J; Guerreiro, L; Fonseca, I.; Ramos, A.; Vital, J

    2008-01-01

    The methoxylation of a-pinene was studied over sulfonic acid-functionalized mesoporous silica (MCM-41, PMO) at 60ºC. The support functionalization was achieved by the introduction of 3-(mercaptopropyl)trimethoxysilane onto the surface of these materials either by grafting or by co-condensation. The thiol groups were oxidized to SO3H by treatment with H2O2. All the catalysts were active in the studied reaction being the PMO-SO3H-g the best one. Good values of selectivity to a-terpinyl methyl e...

  7. Adsorption behavior of perfluorinated sulfonic acid ionomer on highly graphitized carbon nanofibers and their thermal stabilities

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Borghei, Maryam; Dhiman, Rajnish;

    2014-01-01

    A systematic adsorption study of perfluorinated sulfonic acid Nafion® ionomer on ribbon type highly graphitized carbon nanofibers (CNFs) was carried out using 19 fluorine nuclear magnetic resonance spectroscopy. Based on the values obtained for the equilibrium constant (Keq., derived from Langmui...... coverage (ΓSmax) of the CNFs is one order of magnitude higher than the one of Vulcan. The large discrepancy is due to the fact that the ionomers are inaccessible to the internal surface area of Vulcan with high micro porosity....

  8. Evaluation of Trans, Trans-Muconic Acid in Urine of Exposed Workers to Benzene in a Cokery Plant

    OpenAIRE

    M. Rahiminejad; S.Gh. Mirsattari; A. Bahrami; B. Akbari

    2006-01-01

    Introduction & Objective: Benzene is a light yellow liquid with aromatic odor and has effects to human body. The main and dangerous health effect of chronic exposure to benzene in workplace is hematopoetic system disease or blood cancer that it's primarily clinical figures are anemia, leucopenia, thrombocytopenia. The objective of this study was evaluation of benzene exposure by analysis of urinary trans, trans-muconic acid (t,t-ma) in post shift of workers.Materials & Methods: A case-contro...

  9. SYNTESIS OF THE COMPLEXES OF MACROPOROUS SULFONATED RESINS WITH FERRIC CHLORIDE AND THEIR CATALYTIC BEHAVIOR FOR SETERIFICATION OF ACETIC ACID WITH BUTANOL

    Institute of Scientific and Technical Information of China (English)

    HuangWenqiang; HouXin; 等

    1997-01-01

    The complex resins prepared from macroporous sulfonated resin D72(H+ form) with ferric chloride or ferric chloride hexahydrate have both sites of Bronsted acid and Lewis acid.In the catalysis of exterification of acetic acid with butanol the complex resins show to have much higher catalytic activity than that of its matrix.a conventional sulfonated cation exchange resin D72.

  10. Catalytic oxidation of N-methyldiphenylamine-4-sulfonic acid in weakly acid solutions: a study by radiospectroscopic methods

    International Nuclear Information System (INIS)

    The mechanism of the catalytic oxidation of N-methyldiphenylamine-4-sulfonic acid (MDPASA) in weakly acid (10-3 M H2SO4) solutions is studied by EPR and 1H NMR spectroscopy. It is shown that the oxidation of the reagent with potassium periodate in the presence of ruthenium(4) proceeds through the radical mechanism that includes alternate steps of the oxidation and reduction of the catalyst. The suggested mechanism of the catalytic oxidation of MDPASA gave theoretical grounds to the conditions for the determination of ruthenium by kinetic methods that were selected previously in the basis of experimental data

  11. Physicochemical study of poly(ether ether ketone) electrolyte membranes sulfonated with mixtures of fuming sulfuric acid and sulfuric acid for direct methanol fuel cell application

    International Nuclear Information System (INIS)

    Sulfonated poly(ether ether ketone) (SPEEK) membranes with various degrees of sulfonation (DS) have been prepared as a potential membrane material for proton exchange membrane by sulfonation process using mixtures of (15-30% concentration) fuming sulfuric acid and (95-98%) concentrated sulfuric acid as the sulfonating agent. The sulfonation process was conducted at room temperature by varying the acid ratio and reaction time. The produced membranes were then characterized by evaluating the ion exchange capacity (IEC), water uptake, thermal stability, proton conductivity and methanol permeability as a function of degree of sulfonation. The proton conductivity of the sulfonated PEEK membranes with various DS was within the magnitude of 10-3 and 10-2 S cm-1 at room temperature and the methanol permeability was in the range of 3.45 x 10-7 to 2.73 x 10-6 cm2 s-1. The overall membrane performance of the SPEEK membrane with 80% DS was six times higher than Nafion membrane. In conclusion, the SPEEK membrane produced was acceptable and stable enough within the temperature range of direct methanol fuel cell (DMFC) application

  12. Synthesis of a Sulfonated Two-Dimensional Covalent Organic Framework as an Efficient Solid Acid Catalyst for Biobased Chemical Conversion.

    Science.gov (United States)

    Peng, Yongwu; Hu, Zhigang; Gao, Yongjun; Yuan, Daqiang; Kang, Zixi; Qian, Yuhong; Yan, Ning; Zhao, Dan

    2015-10-12

    Because of limited framework stability tolerance, de novo synthesis of sulfonated covalent organic frameworks (COFs) remains challenging and unexplored. Herein, a sulfonated two-dimensional crystalline COF, termed TFP-DABA, was synthesized directly from 1,3,5-triformylphloroglucinol and 2,5-diaminobenzenesulfonic acid through a previously reported Schiff base condensation reaction, followed by irreversible enol-to-keto tautomerization, which strengthened its structural stability. TFP-DABA is a highly efficient solid acid catalyst for fructose conversion with remarkable yields (97 % for 5-hydroxymethylfurfural and 65 % for 2,5-diformylfuran), good chemoselectivity, and good recyclability. The present study sheds light on the de novo synthesis of sulfonated COFs as novel solid acid catalysts for biobased chemical conversion. PMID:26448524

  13. Alkyl sulfonic acide hydrazides: Synthesis, characterization, computational studies and anticancer, antibacterial, anticarbonic anhydrase II (hCA II) activities

    Science.gov (United States)

    O. Ozdemir, Ummuhan; İlbiz, Firdevs; Balaban Gunduzalp, Ayla; Ozbek, Neslihan; Karagoz Genç, Zuhal; Hamurcu, Fatma; Tekin, Suat

    2015-11-01

    Methane sulfonic acide hydrazide, CH3SO2NHNH2 (1), ethane sulfonic acide hydrazide, CH3CH2SO2NHNH2 (2), propane sulfonic acide hydrazide, CH3CH2CH2SO2NHNH2 (3) and butane sulfonic acide hydrazide, CH3CH2CH2CH2SO2NHNH2 (4) have been synthesized as homologous series and characterized by using elemental analysis, spectrophotometric methods (1H-13C NMR, FT-IR, LC-MS). In order to gain insight into the structure of the compounds, we have performed computational studies by using 6-311G(d, p) functional in which B3LYP functional were implemented. The geometry of the sulfonic acide hydrazides were optimized at the DFT method with Gaussian 09 program package. A conformational analysis of compounds were performed by using NMR theoretical calculations with DFT/B3LYP/6-311++G(2d, 2p) level of theory by applying the (GIAO) approach. The anticancer activities of these compounds on MCF-7 human breast cancer cell line investigated by comparing IC50 values. The antibacterial activities of synthesized compounds were studied against Gram positive bacteria; Staphylococcus aureus ATCC 6538, Bacillus subtilis ATCC 6633, Bacillus cereus NRRL-B-3711, Enterococcus faecalis ATCC 29212 and Gram negative bacteria; Escherichia coli ATCC 11230, Pseudomonas aeruginosa ATCC 15442, Klebsiella pneumonia ATCC 70063 by using the disc diffusion method. The inhibition activities of these compounds on carbonic anhydrase II enzyme (hCA II) have been investigated by comparing IC50 and Ki values. The biological activity screening shows that butane sulfonic acide hydrazide (4) has more activity than the others against tested breast cancer cell lines MCF-7, Gram negative/Gram positive bacteria and carbonic anhydrase II (hCA II) isoenzyme.

  14. Estimated pKa values for the environmentally relevant C1 through C8 perfluorinated sulfonic acid isomers.

    Science.gov (United States)

    Rayne, Sierra; Forest, Kaya

    2016-10-14

    In order to estimate isomer-specific acidity constants (pKa) for the perfluorinated sulfonic acid (PFSA) environmental contaminants, the parameterization method 6 (PM6) pKa prediction method was extensively validated against a wide range of carbon oxyacids and related sulfonic/sulfinic acids. Excellent pKa prediction performance was observed for the carbon oxyacids using the PM6 method, but this approach was found to have a severe positive bias for sulfonic/sulfinic acids. To overcome this obstacle, a correlation was developed between non-adjusted PM6 pKa values and the corresponding experimentally obtained/estimated acidity constants for a range of representative alkyl, aryl and halogen-substituted sulfonic acids. Application of this correction to the PM6 values allows for extension of this computational method to a new acid functional group. When used to estimate isomer-specific pKa values for the C1 through C8 PFSAs, the modified PM6 approach suggests an adjusted pKa range from -5.3 to -9.0, indicating that all members of this class of well-known environmental contaminants will be effectively completely dissociated in aquatic systems. PMID:27389973

  15. A study on the distribution of polystyrene sulfonic acid grafts over the cross-section of a PFA film

    International Nuclear Information System (INIS)

    In this study, the distribution behaviors of polystyrene sulfonic acid (PSSA) grafts over the cross-section of grafted PFA membranes (PFA-g-PSSA) were investigated by using SEM-EDX analysis. Membranes with various degrees of grafting (DOG) and thicknesses were prepared by a simultaneous radiation grafting of styrene and a subsequent sulfonation with chlorosulfonic acid. A SEM-EDX instrument was utilized to directly observe that the distribution behaviors of the PSSA grafts over the cross-section of grafted PFA membranes and the results showed that the distribution behaviors were largely affected by the grafting conditions such as the degree of grafting, monomer concentration, and film thickness.

  16. Radiation and storage-induced ageing of polypyrrole doped with dodecylbenzene sulfonic acid

    Science.gov (United States)

    Kappen, P.; Brack, N.; Hale, P. S.; Prissanaroon, W.; Welter, E.; Pigram, P. J.

    2005-04-01

    The effects of storage and exposure to X-rays on the surface chemistry of electrochemically prepared polypyrrole (PPy) doped with dodecylbenzene sulfonic acid (DBSA) were investigated using X-ray photoelectron spectroscopy (XPS). For irradiation, different photon sources (lab source and synchrotron radiation) and energies (1.4-9 keV) were chosen. This covers an energy range of relevance for many X-ray based investigations (e.g. XPS or X-ray absorption spectroscopy) of PPy[DBSA], PPy-metal interfaces, and transition metals embedded into PPy. The DBSA doping level and the concentration ratio of sulfonate species are discussed as a function of storage and irradiation times, and links between both ageing parameters are given. New sulfur species are found to emerge upon repeated soft X-ray irradiation. Severe changes in the polaron/bipolaron structure of PPy[DBSA] during exposure to high energy (several keV) synchrotron radiation are observed, and the results are discussed in the light of photon absorption and photoelectron generation in the polymer surface.

  17. Radiation and storage-induced ageing of polypyrrole doped with dodecylbenzene sulfonic acid

    International Nuclear Information System (INIS)

    The effects of storage and exposure to X-rays on the surface chemistry of electrochemically prepared polypyrrole (PPy) doped with dodecylbenzene sulfonic acid (DBSA) were investigated using X-ray photoelectron spectroscopy (XPS). For irradiation, different photon sources (lab source and synchrotron radiation) and energies (1.4-9 keV) were chosen. This covers an energy range of relevance for many X-ray based investigations (e.g. XPS or X-ray absorption spectroscopy) of PPy[DBSA], PPy-metal interfaces, and transition metals embedded into PPy. The DBSA doping level and the concentration ratio of sulfonate species are discussed as a function of storage and irradiation times, and links between both ageing parameters are given. New sulfur species are found to emerge upon repeated soft X-ray irradiation. Severe changes in the polaron/bipolaron structure of PPy[DBSA] during exposure to high energy (several keV) synchrotron radiation are observed, and the results are discussed in the light of photon absorption and photoelectron generation in the polymer surface

  18. Radiation and storage-induced ageing of polypyrrole doped with dodecylbenzene sulfonic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kappen, P. [Centre for Materials and Surface Science, La Trobe University, Vic. 3086 (Australia)]. E-mail: p.kappen@latrobe.edu.au; Brack, N. [Centre for Materials and Surface Science, La Trobe University, Vic. 3086 (Australia); Hale, P.S. [Centre for Materials and Surface Science, La Trobe University, Vic. 3086 (Australia); Prissanaroon, W.; Welter, E. [Hamburg Synchrotron Radiation Laboratory (HASYLAB), Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Pigram, P.J. [Centre for Materials and Surface Science, La Trobe University, Vic. 3086 (Australia)

    2005-04-30

    The effects of storage and exposure to X-rays on the surface chemistry of electrochemically prepared polypyrrole (PPy) doped with dodecylbenzene sulfonic acid (DBSA) were investigated using X-ray photoelectron spectroscopy (XPS). For irradiation, different photon sources (lab source and synchrotron radiation) and energies (1.4-9 keV) were chosen. This covers an energy range of relevance for many X-ray based investigations (e.g. XPS or X-ray absorption spectroscopy) of PPy[DBSA], PPy-metal interfaces, and transition metals embedded into PPy. The DBSA doping level and the concentration ratio of sulfonate species are discussed as a function of storage and irradiation times, and links between both ageing parameters are given. New sulfur species are found to emerge upon repeated soft X-ray irradiation. Severe changes in the polaron/bipolaron structure of PPy[DBSA] during exposure to high energy (several keV) synchrotron radiation are observed, and the results are discussed in the light of photon absorption and photoelectron generation in the polymer surface.

  19. Removal of 5-Amino-2-chlorotoluene-4-sulfonic and Chlorhydric Acids From Wastewater by Weakly Basic Resin: Equilibrium and Kinetics

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To study the adsorption of 5-Amino-2-chlorotoluene-4-sulfonic (CLT) and chlorhydric (HCl) acids from wastewater by weakly basic resin.Methods The kinetics and isotherm were studied. Thermodynamic parameters for the adsorption of acids were calculated and discussed.Results The adsorption of CLT and HCl acids followed Langmuir isotherm and the first-order kinetics model.Conclusion The adsorptive affinity of the two acids on D301R is in the order of CLT acid > HCl acid. CLT and HCl acids can be separated.

  20. Synthesis of naphthoxazinone derivatives using silica-bonded -sulfonic acid as catalyst under solvent-free conditions

    Indian Academy of Sciences (India)

    Khodabakhsh Niknam; Parisa Abolpour

    2015-07-01

    Silica-bonded -sulfonic acid is employed as a recyclable catalyst for the synthesis of naphthoxazinone derivatives from the reaction of -naphthol, aromatic aldehydes and urea at 150°C under solvent-free conditions. The heterogeneous catalyst was recycled for five runs after the reaction of -naphthol, benzaldehyde and urea without losing its catalytic activity.

  1. THERMODYNAMIC STUDY ON ADSORPTION OF AROMATIC SULFONIC ACIDS ONTO MACROPOROUS WEAK BASE ANION EXCHANGER FROM AQUEOUS SOLUTIONS

    Institute of Scientific and Technical Information of China (English)

    Chao Long; Quan-xing Zhang; Ai-min Li; Jin-long Chen

    2004-01-01

    The adsorption equilibrium isotherms of three aromatic sulfonic acid compounds, 2-naphthalenesulfonic acid, ptoluenesulfonic acid and p-chlorobenzenesulfonic acid, from aqueous solutions by macroporous weak base anion exchanger within the temperature range of 293 K-313 K were obtained. Several isotherm equations were correlated with the equilibrium data, and the experimental data was found to fit the three-parameter Redlich-Peterson equation best within the entire range of concentrations. The study showed that the hydrophobicity of solute has distinct influence on adsorption capacity of the anion exchanger for the aromatic sulfonic acid. Moreover, estimations of the isosteric enthalpy, free energy,and entropy change of adsorption were also reported. The positive isosteric enthalpy and entropy change for adsorption indicate an endothermic and entropy driven process in the present study.

  2. Selective Preparation of Furfural from Xylose over Sulfonic Acid Functionalized Mesoporous Sba-15 Materials

    Directory of Open Access Journals (Sweden)

    Panpan Li

    2011-04-01

    Full Text Available Sulfonic acid functionalized mesoporous SBA-15 materials were prepared using the co-condensation and grafting methods, respectively, and their catalytic performance in the dehydration of xylose to furfural was examined. SBA-15-SO3H(C prepared by the co-condensation method showed 92–95% xylose conversion and 74% furfural selectivity, and 68–70% furfural yield under the given reaction conditions. The deactivation and regeneration of the SBA-15-SO3H(C catalyst for the dehydration of xylose was also investigated. The results indicate that the used and regeneration catalysts retained the SBA-15 mesoporous structure, and the S content of SBA-15-SO3H(C almost did not change. The deactivation of the catalysts is proposed to be associated with the accumulation of byproducts, which is caused by the loss reaction of furfural. After regeneration by H2O2, the catalytic activity of the catalyst almost recovered.

  3. Perfluorooctanoic acid and perfluorooctane sulfonate in the sediment of the Roter Main river, Bayreuth, Germany

    International Nuclear Information System (INIS)

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are widely distributed in aquatic ecosystems. Their sources are known but few studies about their accumulation potential in river sediments exist. The aim of this study is to assess the concentrations of PFOA and PFOS in sediments in relation to their levels in river water receiving effluent from a waste water treatment plant (WWTP). PFOS accumulates by a factor of about 40 relative to river water, PFOA only up to threefold. In contrast to previous suggestions, in this case the enrichment on sediment is not correlated to the total organic carbon contents. - River sediments constitute a sink of perfluorinated surfactants released from the waste water treatment plant

  4. Nanoscale Distribution of Sulfonic Acid Groups Determines Structure and Binding of Water in Nafion Membranes.

    Science.gov (United States)

    Ling, Xiao; Bonn, Mischa; Parekh, Sapun H; Domke, Katrin F

    2016-03-14

    The connection between the nanoscale structure of two chemically equivalent, yet morphologically distinct Nafion fuel-cell membranes and their macroscopic chemical properties is demonstrated. Quantification of the chemical interactions between water and Nafion reveals that extruded membranes have smaller water channels with a reduced sulfonic acid head group density compared to dispersion-cast membranes. As a result, a disproportionally large amount of non-bulk water molecules exists in extruded membranes, which also exhibit larger proton conductivity and larger water mobility compared to cast membranes. The differences in the physicochemical properties of the membranes, that is, the chemical constitution of the water channels and the local water structure, and the accompanying differences in macroscopic water and proton transport suggest that the chemistry of nanoscale channels is an important, yet largely overlooked parameter that influences the functionality of fuel-cell membranes. PMID:26895211

  5. Interaction of multi-walled carbon nanotubes with perfluorinated sulfonic acid ionomers and surface treatment studies

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Borghei, Maryam;

    2014-01-01

    equilibrium constant (Keq.) and maximum surface coverage (Γmax) were determined based on the model. In general, the ionomer showed stronger adsorption for MWCNTs (Keq. = 21 − 377 depending on treatment) comparing to Vulcan (Keq. = 18), and slightly lower monolayer coverage. The interaction was found to be...... strongly affected by surface composition, morphology, porosity and oxygen containing functional groups, which are varied with purification and functionalization treatments. The modification of the surface properties was also studied with HR-TEM, BET, porosity measurement, EDXS, XPS, Raman and TG. The......The interaction between high surface area nano-carbon catalyst supports for proton exchange membrane fuel cells (PEMFCs) and perfluorinated sulfonic acid (Nafion®) ionomer was studied 19 fluorine nuclear magnetic resonance spectroscopy (19F-NMR). The method was developed and improved for more...

  6. Flexible, all-organic ammonia sensor based on dodecylbenzene sulfonic acid-doped polyaniline films

    International Nuclear Information System (INIS)

    A stable chlorobenzene dispersion of conducting polyaniline (PANI) has been obtained by doping emeraldine base with dodecylbenzene sulfonic acid (DBSA) and studied by spectrophotometric measurements in the UV-vis-IR range. The electrical properties of PANI: DBSA films obtained from the above dispersion have been investigated under different temperature and relative humidity conditions. All-organic chemoresistive devices have been developed by spin-coating the PANI: DBSA dispersion on flexible substrates, and then by depositing electrodes on the top, from a carbon nanotube conducting ink. Sensing tests performed under exposition to calibrated amounts of ammonia reveal that these simple and inexpensive sensors are able to detect ammonia at room temperature in a reliable way, with a sensitivity linearly related to concentration in the range between 5 ppm and 70 ppm.

  7. Comparison of gene expression methods to identify genes responsive to perfluorooctane sulfonic acid.

    Science.gov (United States)

    Hu, Wenyue; Jones, Paul D; Decoen, Wim; Newsted, John L; Giesy, John P

    2005-01-01

    Genome-wide expression techniques are being increasingly used to assess the effects of environmental contaminants. Oligonucleotide or cDNA microarray methods make possible the screening of large numbers of known sequences for a given model species, while differential display analysis makes possible analysis of the expression of all the genes from any species. We report a comparison of two currently popular methods for genome-wide expression analysis in rat hepatoma cells treated with perfluorooctane sulfonic acid. The two analyses provided 'complimentary' information. Approximately 5% of the 8000 genes analyzed by the GeneChip array, were altered by a factor of three or greater. Differential display results were more difficult to interpret, since multiple gene products were present in most gel bands so a probabilistic approach was used to determine which pathways were affected. The mechanistic interpretation derived from these two methods was in agreement, both showing similar alterations in a specific set of genes. PMID:21783471

  8. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  9. Chemical Mechanical Polishing of Glass Substrate with α-Alumina-g-Polystyrene Sulfonic Acid Composite Abrasive

    Institute of Scientific and Technical Information of China (English)

    LEI Hong; BU Naijing; ZHANG Zefang; CHEN Ruling

    2010-01-01

    Abrasive is the one of key influencing factors during chemical mechanical polishing(CMP) process. Currently, α-Alumina (α-Al2O3) particle, as a kind of abrasive, has been widely used in CMP slurries, but their high hardness and poor dispersion stability often lead to more surface defects. After being polished with composite particles, the surface defects of work pieces decrease obviously. So the composite particles as abrasives in slurry have been paid more attention. In order to reduce defect caused by pure α-Al2O3 abrasive, α-alumina-g-polystyrene sulfonic acid (α-Al2O3-g-PSS) composite abrasive was prepared by surface graft polymerization. The composition, structure and morphology of the product were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS), time-of-flight secondary ion mass spectroscopy(TOF-SIMS), and scanning electron microscopy(SEM), respectively. The results show that polystyrene sulfonic acid grafts onto α-Al2O3, and has well dispersibility. Then, the chemical mechanical polishing performances of the composite abrasive on glass substrate were investigated with a SPEEDFAM-16B-4M CMP machine. Atomic force microscopy(AFM) images indicate that the average roughness of the polished glass substrate surface can be decreased from 0.835 nm for pure α-Al2O3 abrasive to 0.583 nm for prepared α-Al2O3-g-PSS core-shell abrasive. The research provides a new and effect way to improve the surface qualities during CMP.

  10. A verapamil electrochemical sensor based on magnetic mobile crystalline material-41 grafted by sulfonic acid

    International Nuclear Information System (INIS)

    Graphical abstract: The Fe2O3-MCM-41-SO3H was characterized with TEM and used to investigate the electrochemical behavior of verapamil. The results indicated that Fe2O3-MCM-41-SO3H-CPE facilitate the determination of verapamil with good sensitivity. Highlights: ► Electrooxidation of verapamil was performed using Fe2O3-MCM-41-SO3H-CPE. ► Modified electrode shows many advantages as a verapamil sensor. ► Excellent electrocatalytic activity was obtained for verapamil oxidation. ► The response of the modified electrode is linear over the entire 50–160 and 160–350 nM. -- Abstract: Magnetic (Fe2O3) mobile crystalline material-41 (MCM-41) grafted by sulfonic acid (Fe2O3-MCM-41-SO3H) was prepared and characterized using transmission electron microscopy (TEM) and nitrogen adsorption–desorption techniques. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) and square wave voltametry (SQWV) used to investigate the electrochemical behavior of verapamil at the sulfonic acid functionalized magnetic mesoporous silica, which was modified through carbon paste electrode (Fe2O3-MCM-41-SO3H-CPE). The Fe2O3-MCM-41-SO3H-CPE showed better performance for the electrochemical oxidation of verapamil, when compared with bare carbon paste electrode (CPE) and Fe2O3-MCM-41-CPE. The experimental conditions influencing the determination of verapamil were optimized and under optimal conditions, the oxidation peak current was proportional to verapamil concentration in the range of 50–160 and 160–350 nmol dm−3, while the detection limit was 41 nmol dm−3 (S/N = 3). The proposed method was successfully applied to determine verapamil in human serum, yielding satisfactory results. The spiked recoveries were in the range of (94.5–104.1%)

  11. Vapor-phase Nitration of Benzene to Nitrobenzene over Supported Sulfuric Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vapor-phase nitration of benzene over solid acid catalyst is expected to be a clean process with no sulfuric acid waste.We investigated this process over solid acidic catalysts utilizing diluted nitric acid (60-70%) as nitrating agent,and found that supported sulfuric acid catalyst exhibited a very high catalytic activity.Under the conditions of reaction temperature 160-170℃,space velocity (SV) 1200 h-1,the yield and the space-time yield (STY) of nitrobenzene (NB) based on HNO3 were more than 98% and 0.75 kg@kgcat-1@h-1 over 10% H2SO4/SiO2 (by weight) catalyst respectively.

  12. An Introduction to Multivariate Curve Resolution-Alternating Least Squares: Spectrophotometric Study of the Acid-Base Equilibria of 8-Hydroxyquinoline-5-Sulfonic Acid

    Science.gov (United States)

    Rodriguez-Rodriguez, Cristina; Amigo, Jose Manuel; Coello, Jordi; Maspoch, Santiago

    2007-01-01

    A spectrophotometric study of the acid-base equilibria of 8-hydroxyquinoline-5-sulfonic acid to describe the multivariate curve resolution-alternating least squares algorithm (MCR-ALS) is described. The algorithm provides a lot of information and hence is of great importance for the chemometrics research.

  13. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Mi-Lim; Choi, Jisun; Woo, Hyun-Su; Kumar, Vinod; Sohn, Joon-Yong; Shin, Junhwa, E-mail: shinj@kaeri.re.kr

    2014-02-15

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10{sup −7} cm{sup 2}/s) compared to a Nafion 212 membrane (5.37 × 10{sup −7} cm{sup 2}/s)

  14. Poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) membranes

    International Nuclear Information System (INIS)

    Highlights: • PEEK-g-PVBSA, a polymer electrolyte membrane was prepared by a radiation grafting technique. • Poly(ether ether ketone) (PEEK), an aromatic hydrocarbon polymer was used as a grafting backbone film. • The water uptake, proton conductivity, and methanol permeability of the membranes were evaluated. • PEEK-g-PVBSA membranes show considerably lower methanol permeability compared to a Nafion membrane. -- Abstract: In this study, an aromatic hydrocarbon based polymer electrolyte membrane, poly(vinylbenzyl sulfonic acid)-grafted poly(ether ether ketone) (PEEK-g-PVBSA), has been prepared by the simultaneous irradiation grafting of vinylbenzyl chloride (VBC) monomer onto a PEEK film and subsequent sulfonation. Each chemical conversion was monitored by FT-IR and SEM–EDX instruments. The physicochemical properties including IEC, water uptake, proton conductivity, and methanol permeability of the prepared membranes were also investigated and found that the values of these properties increase with the increase of degree of grafting. It was observed that the IEC values of the prepared PEEK-g-PVBSA membranes with 32%, 58%, and 80% DOG values were 0.50, 1.05, and 1.22 meq/g while the water uptakes were 14%, 20%, and 21%, respectively. The proton conductivities (0.0272–0.0721 S/cm at 70 °C) were found to be somewhat lower than Nafion 212 (0.126 S/cm at 70 °C) at a relative humidity of 90%. However, the prepared membranes showed a considerably lower methanol permeability (0.61–1.92 × 10−7 cm2/s) compared to a Nafion 212 membrane (5.37 × 10−7 cm2/s)

  15. Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Hasiotis, C.; Li, Qingfeng; Deimede, V.;

    2001-01-01

    Polymeric membranes from blends of sulfonated polysulfones (SPSF) and polybenzimidazole (PBI) doped with phosphoric acid were developed as potential high-temperature polymer electrolytes for fuel cells and other electrochemical applications. The water uptake and acid doping of these polymeric...... was found to be higher than 10/sup -2/ S cm/sup -1/. Much improvement in the mechanical strength is observed for the blend polymer membranes, especially at higher temperatures. Preliminary work has demonstrated the feasibility of these polymeric membranes for fuel-cell applications...... membranes were investigated. Ionic conductivity of the membranes was measured in relation to temperature, acid doping level, sulfonation degree of SPSF, relative humidity, and blend composition. The conductivity of SPSF was of the order of 10/sup -3/ S cm/sup -1/. In the case of blends of PBI and SPSF it...

  16. Studies of Grafted and Sulfonated Spiro Poly(isatin-ethersulfone Membranes by Super Acid-Catalyzed Reaction

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2016-03-01

    Full Text Available Spiro poly(isatin-ethersulfone polymers were prepared from isatin and bis-2,6-dimethylphenoxyphenylsulfone by super acid catalyzed polyhydroxyalkylation reactions. We designed and synthesized bis-2,6-dimethylphenoxyphenylsulfone, which is structured at the meta position steric hindrance by two methyl groups, because this structure minimized crosslinking reaction during super acid catalyzed polymerization. In addition, sulfonic acid groups were structured in both side chains and main chains to form better polymer chain morphology and improve proton conductivity. The sulfonation reactions were performed in two steps which are: in 3-bromo-1-propanesulfonic acid potassium salt and in con. sulfuric acid. The membrane morphology was studied by tapping mode atomic force microscope (AFM. The phase difference between the hydrophobic polymer main chain and hydrophilic sulfonated units of the polymer was shown to be the reasonable result of the well phase separated structure. The correlations of proton conductivity, ion exchange capacity (IEC and single cell performance were clearly described with the membrane morphology.

  17. Direct Synthesis of Phenol from Benzene on an Activated Carbon Catalyst Treated with Nitric Acid

    Institute of Scientific and Technical Information of China (English)

    Cui-hong Chen; Jia-quan Xu; Ming-ming Jin; Gui-ying Li; Chang-wei Hu

    2011-01-01

    Commercially available coal-based activated carbon was treated by nitric acid with different concentrations and the resultant samples were used as catalysts for the direct hydroxylation of benzene to phenol in acetonitrile. Boehm titration, X-ray photoelectron spectroscopy,scanning electron microscope coupled with an energy dispersive X-ray microanalyzer, and Brunauer-Emmett-Teller method were used to characterize toe samples. The number of carboxyl groups on the surface was found to be the main factor affecting the catalytic activity. An optimum catalytic performance with a yield of 15.7% and a selectivity of 87.2% to phenol was obtained.

  18. 4-(4-Bromo­benzene­sulfonamido)benzoic acid

    OpenAIRE

    Islam Ullah Khan; Shahzad Sharif; Muhammad Shafiq; Muhammad Nadeem Arshad; Ghulam Mustafa

    2009-01-01

    The title compound, C13H10BrNO4S, belongs to the sulfonamide class of organic compounds. The two aromatic rings are inclined at 34.30 (15)° to one another, and the carboxyl substituent lies in the plane of the benzene ring to which it is bound (maximum deviation = 0.004 Å). In the crystal structure, charactersitic carboxylic acid dimers are formed through O—H...O hydrogen bonds. These dimers are linked into rows down a by N—H...O inter...

  19. Removal of free fatty acid in Palm Fatty Acid Distillate using sulfonated carbon catalyst derived from biomass wastefor biodiesel production

    Science.gov (United States)

    Hidayat, Arif; Rochmadi; Wijaya, Karna; Budiman, Arief

    2016-01-01

    In this research, the esterification of PFAD using the sulfonatedcoconut shell biochar catalyst was studied. Carbon solid catalysts were prepared by a sulfonation of carbonized coconut shells. The performances of the catalysts were evaluated in terms of the reaction temperatures, the molar ratios of methanol to PFAD, the catalyst loading and the reaction times. The reusability of the solid acid carbon catalysts was also studied in this work. The results indicated that the FFA conversion was significantly increased with increasing catalyst loading and reaction times. It can be concluded that the optimal conditions were an PFAD to methanol molar ratio of 1:12, the amount of catalyst of 10%w, and reaction temperature of 60oC.At this optimum condition, the conversion to biodieselreached 88%.

  20. Effect of time and temperature exposition in the crystallinity degree of sulfonated poly-(styrene acrylic acid) (PSAA-S)

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, G.W.; Becker, E.B.; Silva, L.; Naspolini, A.M.; Consenso, E.C.; Paula, M.M.S.; Fiori, M.A., E-mail: glau_bn@hotmail.co [University of Extreme South of Santa Catarina Criciuma, SC (Brazil). Dept. of Materials Engineering; Silveira, F.Z. [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. of Chemical Engineering

    2010-07-01

    Polymers with special properties have been increasingly applied in the development of technological devices. For example, polymeric materials with special electric properties, such as sulfonated poly-(styrene-acrylic acid) - PSAA-S, are of great interest for showing different conductivities depending on the environment where they are applied. The special properties of PSAA are obtained only after sulfonation step in acidic media. The present work aimed to evaluate the effect of time and temperature exposition in the crystallinity degree of PSAA-S, through a statistical experimental factorial planning. The samples of PSAA-S were submitted to FT-IR and DRX tests. The results showed that the temperature and the time of exposition are significant factors in the crystallinity degree of PSAA-S, considering that the crystal lattices created during the polymerization are damaged by the action of time and temperature at which the polymer is exposed. (author)

  1. Ag nanoparticle/melamine sulfonic acid supported on silica gel as an efficient catalytic system for synthesis of dihydropyrimidinthiones

    Directory of Open Access Journals (Sweden)

    Parya Nasehi

    2014-07-01

    Full Text Available 3,4-Dihydropyrimidin-2(1H-thiones were synthesized in the presence of Ag nanoparticle/melamine sulfonic acid (MSA supported on silica gel. The reactionwas carried out at 110 oC for 20 min under solvent free conditions. This method hassome advantages such as good yield, mild reaction conditions, ease of operation and work up, short reaction time and high product purity.

  2. Use of anionic clays for photoprotection and sunscreen photostability: Hydrotalcites and phenylbenzimidazole sulfonic acid

    Science.gov (United States)

    Perioli, Luana; Ambrogi, Valeria; Rossi, Carlo; Latterini, Loredana; Nocchetti, Morena; Costantino, Umberto

    2006-05-01

    Layered double hydroxides of hydrotalcite (HTlc) type have many applications as matrices in pharmaceutical and cosmetic fields when intercalated with active species in anionic form. The aim of this work was to intercalate 2-phenyl-1H-benzimidazole-5-sulfonic acid (Eusolex 232) (EUS) as sunscreen molecule into hydrotalcites in order to obtain the sunscreen stabilization, the reduction of its photodegradation and the elimination of close contact between skin and filter. Hydrotalcites MgAl and ZnAl were used as hosts and the intercalation products obtained were characterized by TG, RX and DSC. They were also submitted to spectrophotometric assays in order to study the matrix influence on sunlight protection and on sunscreen photostability. These experiments showed that both MgAl and ZnAl HTlc intercalation products maintained the sunscreen properties and eusolex photodegradation was reduced. The in vitro EUS release from both formulations was almost negligible when compared with formulations containing free EUS. The EUS intercalation in HTlc and the respective formulations provided advantages in the maintenance of photoprotection efficacy, filter photostabilization and avoidance of a close contact between skin and filter, with consequent elimination of allergy problems and photocross reactions.

  3. Removal of textile dyes and metallic ions using polyelectrolytes and macroelectrolytes containing sulfonic acid groups.

    Science.gov (United States)

    Caldera Villalobos, M; Peláez Cid, A A; Herrera González, Ana M

    2016-07-15

    This work reports the removal of textile dyes and metallic ions by means of adsorption and coagulation-flocculation using two polyelectrolytes and two macroelectrolytes containing sulfonic acid groups. The adsorption of textile dyes was studied in aqueous solutions containing cationic dyes and in wastewater containing a vat dye. Also, removal of vat and naphthol dyes was studied using the process of coagulation-flocculation. The results show these materials possess elevated adsorption capacity, and they accomplished removal rates above 97% in aqueous solutions. The removal of the vat dye improved the quality of the wastewater notably, and an uncolored effluent was obtained at the end of the treatment. The treatment using adsorption decreased the values for coloration, conductivity, suspended solids, and pH. The removal of vat and naphthol dyes by means of coagulation-flocculation was studied as well, and removal rates of 90% were obtained. The polyelectrolytes and macroelectrolytes also proved effective in the adsorption of metallic ions in wastewater. The treatment using adsorption accomplished high removal rates of metallic ions, and it showed greater selectivity towards Cu(2+), Fe(3+) and Pb(2+). A decrease in the content of solids as well as the values for COD and conductivity was observed in the wastewater as well. The analyses of FT-IR indicated that cationic dyes and metallic ions were chemisorbed by means of ionic exchange. PMID:27082258

  4. Effect of Dodecylbenzene Sulfonic Acid Used as Additive on Residue Hydrotreating

    Institute of Scientific and Technical Information of China (English)

    Sun Yudong; Yang Chaohe

    2015-01-01

    The effect of additive—dodecylbenzene sulfonic acid (DBSA)—on residue hydrotreating was studied in the au-toclave. The results showed that the additive improved stabilization of the colloid system of residue, which could delay the aggregation and coke formation from asphaltenes on the catalyst, and make heavy components transformed into light oil. The residue conversion in the presence of this additive increased by 1.94%, and the yield of light oil increased by 1.53% when the reaction time was 90 min. The surface properties of the catalyst in the presence of this additive were better than that of the blank test within a very short time (30 min) and deteriorated rapidly after a longer reaction time due to higher conversion and coke deposition. Compared with the blank test, the case using the said additive had shown that the structure of hydrotreated asphaltene units was smaller and the condensation degrees were higher. The test results indicated that the additive could improve the hydrotreating reactivity of residue via permeation and depolymerization, the heavier components could be transformed into light oil more easily, and the light oil yield and residue conversion were higher for the case using the said additive in residue hydrotreating process.

  5. Isonicotinic acid-ligated cobalt (II phthalocyanine-modified titania as photocatalyst for benzene degradation via fluorescent lamp

    Directory of Open Access Journals (Sweden)

    Joey Andrew A. Valinton

    2016-06-01

    Full Text Available The utilization of bis(isonicotinic acidphthalocyaninatocobalt (II [CoPc(isa2] incorporated on TiO2 has been studied as a photocatalyst to degrade benzene vapor under fluorescent lamp (indoor light conditions. The photocatalytic activity of [CoPc(isa2]-TiO2 compared to TiO2 showed an increase in the extent of degradation. The axial isonicotinic acid ligand attached to CoPc improved the degradation rate of benzene as compared with unligated CoPc-TiO2 which may be attributed to the enhancement of electronic structure in the complex due to the additional isonicotinic acid ligand and its possible attachment to the TiO2 surface through the carboxylic acid moiety. Therefore, covalently-linked CoPc(isa2 to TiO2 can enhance the extent of photodegradation of benzene and other common volatile organic compounds under indoor lighting conditions.

  6. Thermodynamics of the ethylene glycol pair interaction with some amino acids and benzene

    International Nuclear Information System (INIS)

    Highlights: • Thermodynamics of amino acid solutions in highly aqueous Eg was studied at 298 and 313 K. • The pair interaction parameters were computed using the virial expansion technique. • The results were discussed in terms of solute–Eg pair interactions. - Abstract: We have studied thermodynamics of interaction of benzene and some amino acids with ethylene glycol (Eg) which is a stabilizing agent for proteins in water using calorimetric and solubility data. Enthalpic, entropic and free energy parameters in highly diluted aqueous solutions have been computed at 298 and 313 K using the virial expansion technique and compared with available literature values. The results obtained are discussed in terms of solute–solute interactions and their relation to stability of macromolecules

  7. Sulfonated mesoporous silica–carbon composites and their use as solid acid catalysts

    OpenAIRE

    Valle Vigón, Patricia; Sevilla Solís, Marta; Fuertes Arias, Antonio Benito

    2012-01-01

    [EN] The synthesis of highly functionalized porous silica–carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica–carbon composites contain ∼30 wt % of carbo...

  8. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Angela Yu-Chen, E-mail: yuchenlin@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan (China); Panchangam, Sri Chandana; Chang, Cheng-Yi [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan (China); Hong, P.K. Andy [Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Hsueh, Han-Fang [Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Rd., Taipei 106, Taiwan (China)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer PFOA and PFOS are degraded by O{sub 3} or O{sub 3}/H{sub 2}O{sub 2} treatment at pH 11. Black-Right-Pointing-Pointer Degradation of PFOA and PFOS by O{sub 3} or O{sub 3}/H{sub 2}O{sub 2} under alkaline condition is enhanced when the compounds are pretreated by 15 min of ozonation at ambient pH (4-5). Black-Right-Pointing-Pointer PFOA and PFOS removal by O{sub 3} or O{sub 3}/H{sub 2}O{sub 2} at pH 11 was efficient relative to existing methods in terms of energy and contact time. - Abstract: The elimination of recalcitrant, ubiquitous perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is desirable for reducing potential human health and environmental risks. We here report the degradation of PFOA and PFOS by 85-100% via ozonation under alkaline condition being studied at environmentally relevant contaminant concentrations of 50 {mu}g L{sup -1} to 5 mg L{sup -1}, with enhanced removal rates by addition of hydrogen peroxide. Enhanced removal is achieved by ozonation pretreatment for 15 min at the ambient pH (i.e. 4-5), followed by elevation of pH to 11 and continued ozonation treatment for 4 h. The ozonation pretreatment resulted in increased degradation of PFOA by 56% and PFOS by 42%. The results indicated hydroxyl radical-driven degradation of PFOA and PFOS in both treatments by ozone and peroxone under alkaline conditions. Wastewaters from electronics and semiconductor fabrication plants in the Science Park of Hsinchu city, Taiwan containing PFOA and PFOS have been readily treated by ozonation under alkaline condition. Treatment of PFAAs by ozone or peroxone proves to be efficient in terms of energy requirement, contact time, and removal rate.

  9. Removal of perfluorooctanoic acid and perfluorooctane sulfonate via ozonation under alkaline condition

    International Nuclear Information System (INIS)

    Highlights: ► PFOA and PFOS are degraded by O3 or O3/H2O2 treatment at pH 11. ► Degradation of PFOA and PFOS by O3 or O3/H2O2 under alkaline condition is enhanced when the compounds are pretreated by 15 min of ozonation at ambient pH (4–5). ► PFOA and PFOS removal by O3 or O3/H2O2 at pH 11 was efficient relative to existing methods in terms of energy and contact time. - Abstract: The elimination of recalcitrant, ubiquitous perfluoroalkyl acids (PFAAs) such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) is desirable for reducing potential human health and environmental risks. We here report the degradation of PFOA and PFOS by 85–100% via ozonation under alkaline condition being studied at environmentally relevant contaminant concentrations of 50 μg L−1 to 5 mg L−1, with enhanced removal rates by addition of hydrogen peroxide. Enhanced removal is achieved by ozonation pretreatment for 15 min at the ambient pH (i.e. 4–5), followed by elevation of pH to 11 and continued ozonation treatment for 4 h. The ozonation pretreatment resulted in increased degradation of PFOA by 56% and PFOS by 42%. The results indicated hydroxyl radical-driven degradation of PFOA and PFOS in both treatments by ozone and peroxone under alkaline conditions. Wastewaters from electronics and semiconductor fabrication plants in the Science Park of Hsinchu city, Taiwan containing PFOA and PFOS have been readily treated by ozonation under alkaline condition. Treatment of PFAAs by ozone or peroxone proves to be efficient in terms of energy requirement, contact time, and removal rate.

  10. Benzene-Poly-Carboxylic Acid Complex, a Novel Anti-Cancer Agent Induces Apoptosis in Human Breast Cancer Cells

    OpenAIRE

    Fares, Fuad; Azzam, Naiel; Fares, Basem; Larsen, Stig; Lindkaer-Jensen, Steen

    2014-01-01

    Some cases of breast cancer are composed of clones of hormonal-independent growing cells, which do not respond to therapy. In the present study, the effect of Benzene-Poly-Carboxylic Acid Complex (BP-C1) on growth of human breast-cancer cells was tested. BP-C1 is a novel anti-cancer complex of benzene-poly-carboxylic acids with a very low concentration of cis-diammineplatinum (II) dichloride. Human breast cancer cells, MCF-7 and T47D, were used. Cell viability was detected by XTT assay and ap...

  11. Crystal structure of benzene-1,3,5-tri-carb-oxy-lic acid-4-pyridone (1/3).

    Science.gov (United States)

    Staun, Selena L; Oliver, Allen G

    2015-11-01

    Slow co-crystallization of a solution of benzene-1,3,5-tri-carb-oxy-lic acid with a large excess of 4-hy-droxy-pyridine produces an inter-penetrating, three-dimensional, hydrogen-bonded framework consisting of three 4-pyridone and one benzene-1,3,5-tri-carb-oxy-lic acid mol-ecules, C9H6O6·3C5H5NO. This structure represents an ortho-rhom-bic polymorph of the previously reported C-centered, monoclinic structure [Campos-Gaxiola et al. (2014 ▸). Acta Cryst. E70, o453-o454]. PMID:26594492

  12. Adsorption from n-heptane/benzene liquid mixture on acid leached bentonite powders

    International Nuclear Information System (INIS)

    In this study, adsorption excess isotherms of n-heptane/benzene liquid mixture on hydrochloric acid leached bentonite powders were determined. Adsorptions were conducted at 25 °C for 48 h. Experimental results were evaluated with both Schay–Nagy (SN) and Everett (E) methods. Specific surface areas (SSN and SE) of the powders were calculated regarding monolayer adsorption capacity of the preferentially adsorbed benzene. Adsorption equilibrium constants (K ≫ 1) were obtained by the E-method. The SE and SSN values are closed to each other. SE-values were found much lower than the corresponding Brunauer, Emmett and Teller (BET)-values. This difference was discussed with respect to the interaction of adsorbed molecules with solid surface, their collision diameter, molar cross sectional surface area and orientation in dense monolayer. Even the maximum for the SE was not associated with the maxima for K and nanopore volume (V), their values changed approximately parallel to each other with respect to the HCl% by the leaching.

  13. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge

    OpenAIRE

    Jianwei Zhao; Yiwen Liu; Bingjie Ni; Qilin Wang; Dongbo Wang; Qi Yang; Yingjie Sun; Guangming Zeng; Xiaoming Li

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS pre...

  14. Chemical mechanical polishing of hard disk substrate with {alpha}-alumina-g-polystyrene sulfonic acid composite abrasive

    Energy Technology Data Exchange (ETDEWEB)

    Lei Hong, E-mail: hong_lei2005@yahoo.com.c [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Bu Naijing; Chen Ruling; Hao Ping [Research Center of Nano-science and Nano-technology, Shanghai University, Shanghai 200444 (China); Neng Sima; Tu Xifu; Yuen Kwok [Shenzhen Kaifa Magnetic Recording Co., LTD, Shenzhen, 518035 (China)

    2010-05-03

    {alpha}-Alumina-g-polystyrene sulfonic acid ({alpha}-Al{sub 2}O{sub 3}-g-PSS) composite abrasive was prepared by surface activation, graft polymerization and sulfonation, successively. The composition, dispersibility and morphology of the product were characterized by Fourier transformed infrared spectroscopy, laser particle size analysis and scanning electron microscopy, respectively. The chemical mechanical polishing (CMP) performances of the composite abrasive on hard disk substrate with nickel-phosphorous plating were investigated. The microscopy images of the polished surfaces show that {alpha}-Al{sub 2}O{sub 3}-g-PSS composite abrasive results in improved CMP and post-CMP cleaning performances than pure {alpha}-alumina abrasive under the same testing conditions.

  15. Molecular dynamics in conducting polyaniline protonated by camphor sulfonic acid as seen by quasielastic neutron scattering

    International Nuclear Information System (INIS)

    Using incoherent quasielastic neutron scattering techniques, the molecular motions were investigated in fully hydrogenated and partially deuterated polyaniline protonated by camphor sulfonic acid (CSA) conducting samples. The obtained results show that on the 10-9-10-12 s time scale the polymer chains do not exhibit any diffusive motions: the whole observed quasielastic scattering has accordingly to be attributed to motions of CSA ions. From our measurements two molecular movements could be differentiated. A rapid one has been attributed to the three-site rotation of methyl groups present on camphor moieties of CSA and a slower one that has been modeled as a rigid body motion of the whole CSA molecule. Due to the disordered character of the system, the methyl rotors appeared to be dynamically nonequivalent. Their dynamics was then described in terms of a log gaussian distribution of correlation times. This description allowed a good fitting of experimental data and gave an activation energy of 12.5 kJ mol-1. However, two different regimes in temperature could be distinguished. At high temperatures (T>280 K) the width of the distribution is nearly zero and thus, the methyl rotors are dynamically equivalent while it turned larger and larger when temperature is decreased below 250 K revealing that the rotors are more and more sensitive to their local environment. In the conducting samples the slowest motion clearly exists in the 280-330 K temperature range and is blocked at temperatures inferior to 250 K. This transition occurs in the temperature range in which the metal-insulator transition also happens

  16. Validation and optimization of experimental colitis induction in rats using 2, 4, 6-trinitrobenzene sulfonic acid.

    Science.gov (United States)

    Motavallian-Naeini, A; Andalib, S; Rabbani, M; Mahzouni, P; Afsharipour, M; Minaiyan, M

    2012-07-01

    Trinitrobenzene sulfonic acid (TNBS)-induced colitis is one of the most common methods for studying inflammatory bowel disease in animal models. Several factors may, however, affect its reproducibility, rate of animal mortality, and macroscopic and histopathological outcomes. Our aim was to validate the main contributing factors to this method and compare the effects of different reference drugs upon remission of resultant colon injuries. TNBS was dissolved in 0.25 ml of ethanol (50% v/v) and instilled (25, 50, 100 and 150 mg/kg) intracolonically to the male Wistar rats. After determination of optimum dose of TNBS in male rats and assessment of this dose in female rats, they were treated with reference drugs including dexamethasone [1 mg/kg, intraperitoneally (i.p.) and 2 mg/kg, orally (p.o.)], Asacol (mesalazine, 100 mg/kg, p.o.; 150 mg/kg, enema) and hydrocortisone acetate (20 mg/kg, i.p.; 20 mg/kg, enema) which started 2 h after colitis induction and continued daily for 6 consecutive days. Thereafter, macroscopic and microscopic parameters and clinical features were assessed and compared in different groups. We found that the optimum dose of TNBS for the reproducibility of colonic damage with the least mortality rate was 50 mg/kg. Amongst studied reference drugs, hydrocortisone acetate (i.p.), dexamethasone (i.p. and p.o.) and Asacol (p.o.) significantly diminished the severity of macroscopic and microscopic injuries and could be considered effective for experimental colitis studies in rats . Our findings suggest that optimization of TNBS dose is essential for induction of colitis under the laboratory conditions; and gender exerts no impact upon macroscopic and histological characteristics of TNBS-induced colitis in rats. Furthermore, the enema forms of hydrocortisone and Asacol are not appropriate reference drugs. PMID:23181094

  17. High-performance Liquid Chromatographic Determination of Urinary Trans, Trans-Muconic Acid Excreted by Workers Occupationally Exposed to Benzene

    Institute of Scientific and Technical Information of China (English)

    XIA-MIN HU; SHI-ZHEN SONG; FANG-LI YE; LI-WEN LIU

    2006-01-01

    To investigate the relationship between trans, trans-muconic acid (ttMA) as benzene metabolite of occupational workers and benzene concentration in air. Methods A rapid and sensitive high-performance liquid chromatography was developed to determine the level of urinary ttMA. ttMA was extrated from urinary samples in liquid-liquid phase a ODS (2) (5u) column (Φ4.6 mm× 150 mm) and detected at wavelength 264 nm in a UV detector using vanillic acid as an internal standard. The mobile phase was acetaticacid/tetrahydrofuran/methanol/water (v/v, 1:2:10:87). The method was validated with 56 urine samples collected from occupationally benzene-exposed individuals. Results A correlation coefficient (r = 0.9963 ) was found for ttMA ranging 0.10-10.00 μg/mL. The limit of detection was 0.10 μg/mL. The recovery and reproducibility were generally over 90%. There was a positive correlation between ttMA and benzene level in air. The equation was Y=0.859+0.108C (before work, r=-0.6200) or Y=1.980+0.179C (after work, r=0.7930). Conclusion This method can be used to determine and control the level of urinary ttMA in those who are occupationally exposed to benzene.

  18. 4-(4-Bromo­benzene­sulfonamido)benzoic acid

    Science.gov (United States)

    Khan, Islam Ullah; Mustafa, Ghulam; Arshad, Muhammad Nadeem; Shafiq, Muhammad; Sharif, Shahzad

    2009-01-01

    The title compound, C13H10BrNO4S, belongs to the sulfonamide class of organic compounds. The two aromatic rings are inclined at 34.30 (15)° to one another, and the carboxyl substituent lies in the plane of the benzene ring to which it is bound (maximum deviation = 0.004 Å). In the crystal structure, charactersitic carboxylic acid dimers are formed through O—H⋯O hydrogen bonds. These dimers are linked into rows down a by N—H⋯O inter­actions. Additional C—H⋯O contacts further stabilize the structure, and a close Br⋯Br(x, −y + 1, −z + 1) contact of 3.5199 (9) Å is also observed. PMID:21583888

  19. Crystal Structure and Characterization of Salicylic Acid-benzene Azimide Cocrystal

    Institute of Scientific and Technical Information of China (English)

    DUAN Jiong; GUO Ping; PAN Qing-Qing; WU You; WU Xiao-Qing; LI Hui

    2013-01-01

    A new single crystal of 1∶1 salicylic acid-benzene azimide was determined and characterized.It belongs to space group P21/n with a =13.8085(13),b =5.3846(4),c =16.7063(13) (A)and β =102.331(9)°.Crystals of the title compound,C7H6O3·C6H5N3,were obtained by cocrystallization.FT-IR,Raman spectroscopy and TGA-DTA were applied to characterize the title compound as supplemental evidence to prove the formation of the crystal.Our work describes the solubility of the crystal by considering the equilibria between the crystal,components,and solution mixture.

  20. Covalently bonded sulfonic acid magnetic graphene oxide: Fe3O4@GO-Pr-SO3H as a powerful hybrid catalyst for synthesis of indazolophthalazinetriones.

    Science.gov (United States)

    Doustkhah, Esmail; Rostamnia, Sadegh

    2016-09-15

    Multistep synthesis of covalently sulfonated magnetic graphene oxide was achieved by starting from Hummer's method to produce graphene oxide (GO) from chemical oxidation of graphite. Then, GO nanosheets were applied to support Fe3O4 nanoparticles (Fe3O4@GO) using co-precipitation method in the presence of GO sheets. This strategy led to formation of uniform particles of Fe3O4 on the surface of GO sheets. Then, it was sulfonated (Fe3O4@GO-Pr-SO3H) through modification with 3-mercaptopropyltrimethoxysilane (MPTMS) and subsequent oxidation with hydrogen peroxide (H2O2). In comparison, the covalently bonded propyl sulfonic acid groups were more prevailing rather to sulfonic acids of GO itself. The proposed catalyst was more active and recyclable at least for 11 runs. PMID:27309948

  1. Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol-gel method

    International Nuclear Information System (INIS)

    A mild and clean liquid nitration of benzene with 65% nitric acid as nitrating agent over silica supported ammonium salt of 12-molybdophosphoric acid catalysts has been investigated. These catalysts with different loadings were prepared by sol-gel method and characterized by X-ray diffraction (XRD) and FTIR spectra. The acidity of these catalysts was measured by the potentiometric titration method. The XRD and IR analysis revealed that supported catalysts possess the Keggin structure which is similar to 12-molybdophosphoric acid. And it can be found that the supported catalysts had high nitration reaction catalytic activity and selectivity over nitrobenzene. The effects of various parameters such as nitric acid/benzene volume ratio, temperature and time of reaction have also been systematically studied.

  2. The corrosion inhibition of aluminum and its copper alloys in 1.0 M H{sub 2}SO{sub 4} solution using linear-sodium dodecyl benzene sulfonate as inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Abd El Rehim, Sayed S.; Amin, Mohammed A. [Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Moussa, S.O. [Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)], E-mail: sherif_m74@yahoo.com; Ellithy, Abdallah S. [Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)

    2008-12-20

    The corrosion inhibition of Al and its two copper alloys are the subject of tremendous technological importance due to the increased industrial applications of these materials. This paper reports the results of potentiodynamic polarization and electrochemical impedance spectroscopic (EIS) measurements on the corrosion inhibition of Al (Al-2.5% Cu and Al-7.0% Cu) alloys in 1.0 M H{sub 2}SO{sub 4} solution carried out in different concentrations of linear-sodium dodecyl benzene sulfonate as an anionic surfactant (LAS) and temperature range from 10 to 60 deg. C. The data revealed that the inhibition efficiency increases with increasing surfactant concentration and time of immersion, and decreases with solution temperature. Energy dispersion X-ray (EDX) observations of the electrode surface confirmed the existence of LAS adsorbed film on the electrode surface. The surfactant acted mainly as cathodic inhibitor. Maximum inhibition efficiency of the surfactant is observed at concentration around its critical micelle concentration (CMC). The inhibition occurs through adsorption of the surfactant on the metal surface without modifying the mechanism of the corrosion process, which tested by UV-spectroscopy. The potential of zero charge (PZC) of aluminum and Al-7.0% Cu was studied by ac-impedance, and the mechanism of adsorption is discussed. The adsorption isotherm is described by Temkin adsorption isotherm. Thermodynamic functions for activation and adsorption process were determined.

  3. Degradation and contamination of perfluorinated sulfonic acid membrane due to swelling-dehydration cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    the membrane degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment...

  4. Theoretical investigation on the molecular inclusion process of prilocaine into p-sulfonic acid calix[6]arene

    Science.gov (United States)

    de Sousa, Sara M. R.; Fernandes, Sergio A.; De Almeida, Wagner B.; Guimarães, Luciana; Abranches, Paula A. S.; Varejão, Eduardo V. V.; Nascimento, Clebio S., Jr.

    2016-02-01

    The present letter reports, for the first time, results from a theoretical analysis of the inclusion process involving the prilocaine into the p-sulfonic acid calix[6]arene. Structure and stabilization energies were calculated, in both gas and aqueous phases, using a sequential methodology based on semiempirical and Density Functional Theory (DFT) calculations. From the results, a qualitative structure property relationship could be established with some main structural features being relevant for inclusion complex stabilization: (i) the hydrogen bonds established between guest and host molecules, (ii) the dispersion effect and (iii) the inclusion mode of guest molecule into the host cavity.

  5. Silylation of Alcohols and Phenols with Hexamethyldisilazane over Highly Reusable Propyl Sulfonic Acid Functionalized Nanostructured SBA-15

    Institute of Scientific and Technical Information of China (English)

    Daryoush ZAREYEE; Rezvaneh ASGHARI; Mohammad A. KHALILZADEH

    2011-01-01

    Various alcohols and phenols were trimethylsilylated in excellent yields using hexamethyldisilazane in the presence of catalytic amounts of environmentally friendly,hydrophobic,highly thermal stable,and completely heterogeneous sulfonic acid functionalized mesostructured SBA-15 in dichloromethane at ambient temperature.Primary,bulky secondary,tertiary,and phenolic hydroxyl functional groups were transformed to the corresponding trimethylsilyl ethers in excellent yields.The simple experimental procedure was accompanied by easy recovery and the catalyst was reusable (at least 18 reaction cycles); these are attractive features of this protocol.

  6. Liquid Chromatography-Tandem Mass Spectrometry Analysis of Perfluorooctane Sulfonate and Perfluorooctanoic Acid in Fish Fillet Samples

    Directory of Open Access Journals (Sweden)

    Viviana Paiano

    2012-01-01

    Full Text Available Perfluorooctane sulfonate (PFOS and perfluorooctanoic (PFOA acid are persistent contaminants which can be found in environmental and biological samples. A new and fast analytical method is described here for the analysis of these compounds in the edible part of fish samples. The method uses a simple liquid extraction by sonication, followed by a direct determination using liquid chromatography-tandem mass spectrometry (LC-MS/MS. The linearity of the instrumental response was good, with average regression coefficients of 0.9971 and 0.9979 for PFOS and PFOA, respectively, and the coefficients of variation (CV of the method ranged from 8% to 20%. Limits of detection (LOD were 0.04 ng/g for both the analytes and recoveries were 90% for PFOS and 76% for PFOA. The method was applied to samples of homogenized fillets of wild and farmed fish from the Mediterranean Sea. Most of the samples showed little or no contamination by perfluorooctane sulfonate and perfluorooctanoic acid, and the highest concentrations detected among the fish species analyzed were, respectively, 5.96 ng/g and 1.89 ng/g. The developed analytical methodology can be used as a tool to monitor and to assess human exposure to perfluorinated compounds through sea food consumption.

  7. Optimization of SPE for Analysis of Mandelic Acid as a Biomarker of Exposure to Ethyl Benzene

    Directory of Open Access Journals (Sweden)

    SJ Shahtaheri, M Abdollahi, F Golbabaei, A Rahimi-Froushani, F Ghamari

    2004-10-01

    Full Text Available Ethyl benzene is an important constituent of widely used solvents in industries and laboratories, causing widespread environmental and industrial pollutions. For evaluation of occupational exposure to such pollutants, biological monitoring is an essential process, in which, preparation of environmental and biological samples is one of the most time-consuming and error-prone aspects prior to chromatographic techniques. The use of solid-phase extraction (SPE has been grown and is a fertile technique of sample preparation as it provides better results than those of liquid-liquid extraction (LLE. In this study, SPE using bonded silica has been optimized with regard to sample pH, sample concentration, elution solvent, elution volume, sorbent type, and sorbent mass. Through experimental evaluation, a strong anion exchange silica cartridge (SAX has been found successful in simplifying sample preparation. The present approach proved that, mandelic acid could be retained on SAX sorbent based on specific interaction. Further study was employed using 10% acetic acid to extract the analyte from spiked urine and gave a clean sample for HPLC-UV system. In this study, a high performance liquid chromatography, using reverse-phase column was used. The isocratic run was done at a constant flow rate of 0.85 ml/min, the mobile phase was water/methanol/acetic acid and a UV detector was used, setting at 225 nm. At the developed conditions the extraction recovery was exceeded 98%. The factors were evaluated statically and also validated with three different pools of spiked urine samples and showed a good reproducibility over six consecutive days as well as six within-day experiments.

  8. Synthesis of highly phosphonic acid functionalized benzene-bridged periodic mesoporous organosilicas for use as efficient dye adsorbents

    International Nuclear Information System (INIS)

    Highlights: • Synthesis of highly phosphonic acid functionalized benzene-bridged PMOs. • Phosphonic acid loaded PMOs as adsorbent for cationic and anionic dyes. • Due to electrostatic interaction the adsorbent has high dye adsorption capacity. • π–π stacking interaction between benzene and dye enhances adsorption capacity. • Intraparticle diffusion played a dominant role in the adsorption process. - Abstract: Periodic mesoporous organosilicas (PMOs) with benzene bridging groups in the silica wall were functionalized with a tunable content of phosphonic acid groups. These bifunctional materials were synthesized by co-condensation of two different organosilane precursors, that is, 1,4-bis(triethoxysilyl)benzene (BTEB) and sodium 3-(trihydroxysilyl)propyl methyl phosphate (SPMP), under acidic conditions using nonionic surfactant Brij-S10 as template. The materials exhibited well-ordered mesostructures and were characterized by X-ray diffraction, nitrogen sorption, TEM, TGA, FTIR, and solid-state NMR measurements. The materials thus obtained were employed as adsorbents to remove different types of dyes, for example, cationic dyes methylene blue and phenosafranine, anionic orange II, and amphoteric rhodamine B, from aqueous solutions. The materials exhibited a remarkably high adsorption capacity than activated carbon due to their ordered mesostructures, a large number of phosphonic acid groups, and high surface areas. The adsorption was mainly governed by electrostatic interaction, but also involved π–π stacking interaction as well as hydrogen bonding. The adsorption kinetics can be better fitted by the pseudo-second order model. The adsorption process was controlled by the mechanisms of external mass transfer and intraparticle diffusion. The materials retained more than 97% dye removal efficiency after use for five consecutive cycles

  9. Effect of sodium dodecyl benzene sulfonate on reproduction of male mice%十二烷基苯磺酸钠对雄性小鼠生育力的影响

    Institute of Scientific and Technical Information of China (English)

    韩俊娟; 任春娥; 韩海艳; 乔鹏云; 姜俊怡

    2012-01-01

    Objective:To determine the effects of sodium dodecyl benzene sulfonate (SDBS) on reproduction of male mice. Methods: Both 120 Kunming male mice and 120 female mice were randomly divided into four groups and the number of every group was 30. Group A was the female mice which were mated with the male mice gavaged by SDBS for two months; Group B was the female mice which were mated with the male mice gavaged by SDBS for two months and stopped for one month. Group a and group b were the control groups respectively. The pregnancy rates, the average birth number of pregnant rats and the fetal rats of these groups were studied. Results: The pregnancy rates, the average birth number of pregnant rats and the proportion of deaths, malformation and absorbed fetuses in pregnant rats was lower than the control groups, there was significant difference(P 0.05). Conclusion: Sodium dodecyl benzene sulfonate have an significant toxicity effect on the reproduction of male mice and they cannot restore after leaving off being gavaged for a short time.%目的:探讨十二烷基苯磺酸钠(SDBS)对雄性小鼠生育力的影响.方法:分别将120只昆明种雌、雄性小鼠随机分为4组,每组30只.A组为与染毒SDBS两个月后的雄性小鼠交配的雌鼠;B组为与染毒SDBS两个月,停止染毒一个月后的雄鼠交配的雌鼠.A、B两组分别设对照组为a组、b组.对各组怀孕率、孕鼠平均产子数及其胎鼠情况进行比较分析.结果:与对照组相比,A、B两组的怀孕率、孕鼠平均产子数、孕鼠腹中死胎、畸胎与吸收胎比例明显降低,有显著性差异(P<0.05);A、B两组相比,小鼠怀孕率、孕鼠平均产子数、孕鼠腹中死胎、畸胎与吸收胎比例无显著性差异(P>0.05).结论:十二烷基苯磺酸钠对雄性小鼠的生育力有显著影响,并且在停止染毒后的短时期内不能恢复.

  10. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA): emerging contaminants of increasing concern in fish from Lake Varese, Italy.

    Science.gov (United States)

    Squadrone, S; Ciccotelli, V; Prearo, M; Favaro, L; Scanzio, T; Foglini, C; Abete, M C

    2015-07-01

    Perfluoroalkylated substances (PFASs) are highly fluorinated aliphatic compounds with high thermal and chemical stability, used in a range of industrial applications. Extensive screening analyses in biota samples from all over the world have shown the bioaccumulation of PFAS into higher trophic levels in the food chain. Perfluorooctane sulfonic acid (PFOS) and perfluoroctanoic acid (PFOA) are potential reproductive and developmental toxicants and are considered to be emerging endocrine disrupters. Ingestion of fish and other seafood is considered the main source of exposure of these contaminants. Here, we quantified PFOS and PFOA by LC-MS/MS in muscle samples of European perch from Lake Varese, Italy. PFOS was detected in all samples with concentrations of up to 17.2 ng g(-1). Although the reported values were lower than the recommended total daily intake (TDI) proposed by the European Food Safety Authority (EFSA), fish from Lake Varese may be a significant source of dietary PFOS exposure. PMID:26085281

  11. Composite electrolytes composed of Cs-substituted phosphotungstic acid and sulfonated poly(ether-ether ketone) for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Song-Yul, E-mail: ms089203@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Yoshida, Toshihiro; Kawamura, Go [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Muto, Hiroyuki [Department of Materials Science and Engineering, Kurume National College of Technology, 1-1-1 Komorino, Kurume, Fukuoka 830-8555 (Japan); Sakai, Mototsugu [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan); Matsuda, Atsunori, E-mail: matsuda@tutms.tut.ac.jp [Department of Materials Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi 441-8580 (Japan)

    2010-10-15

    Composite electrolytes composed of cesium hydrogen sulfate containing phosphotungstic acids (CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40}) and sulfonated poly(ether-ether ketone) (SPEEK) were prepared by casting the corresponding precursor for application in fuel cells. Partially Cs-substituted phosphotungstic acids (Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}) were formed in the CsHSO{sub 4}-H{sub 3}PW{sub 12}O{sub 40} system by mechanochemical treatment. SPEEK was prepared from PEEK by sulfonation using concentrated sulfuric acid. Flexible composite electrolytes were obtained and their electrochemical properties were markedly improved with the addition of Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, into the SPEEK matrix. A maximum power density of 213 mW cm{sup -2} was obtained from the single cell test for 50H{sub 3}PW{sub 12}O{sub 40}-50CsHSO{sub 4} in SPEEK (1/5 by weight) composite electrolyte at 80 deg. C and at 80 RH%. Electrochemical properties and transmission electron microscopy (TEM) results suggest that three-dimensional cluster particles were formed and homogeneously distributed in the SPEEK matrix. The mechanochemically synthesized Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40} incorporated into the SPEEK matrix increased the number of protonate sites in the electrolyte. The composite electrolytes were successfully formed with Cs{sub x}H{sub 3-x}PW{sub 12}O{sub 40}, which consist of hydrogen bonding between surface of inorganic solid acids and not only -HSO{sub 4}{sup -} dissociated from CsHSO{sub 4} but also -SO{sub 3}H groups in the SPEEK.

  12. Synthesis, characterization and biological evaluation of novel diesters of 4,4'-dihydroxy azoxy benzene with long chain carboxylic acid

    International Nuclear Information System (INIS)

    Synthesis of novel symmetrical azoxy diesters have been prepared by the reaction of 4,4'-dihydroxyazoxy benzene with aliphatic acid halides of varying chain lengths. The synthesized compounds have been characterized by spectral and analytical means. These symmetrical azoxy diesters exhibit good antifungal against six fungal strains (Mucor species, Aspergillus niger, Aspergillus flavus, Alternaria solani, Fusarium solani and Aspergillus fumigatus) and antitumor activities while no significant antibacterial activity has been observed. These synthesized compounds are also potent free radical scavengers. (author)

  13. Effect of intrachain sulfonic acid dopants on the solid-state charge mobility of a model radical polymer

    International Nuclear Information System (INIS)

    Radical polymers are an emerging class of non-conjugated, charge-conducting macromolecules that are capable of transporting charge through localized oxidation–reduction (redox) reactions that occur at the stable radical groups present as the pendant groups of the macromolecular chains. The chemical nature and oxidation state of these pendant radical groups are critical to the charge transporting abilities of radical polymers in the solid state. To date, however, the control of this chemistry has been limited to external oxidizing agents, and the concept of intramolecular dopants has not been explored fully. To this end, we have synthesized poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate)-co-poly(vinylsulfonic acid sodium salt) (PTMA-co-PVS). Then, electron paramagnetic resonance spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy are implemented to evaluate the exact chemical nature of the pendant groups as a function of the PVS intramolecular dopants and exposure of the materials to external oxidation reactions. We correlate these changes in pendant group chemistry to charge transport ability, and we establish that the inclusion of a moderate amount of PVS dopants can improve the solid-state hole mobility of the material. Conversely, a large amount of sulfonic acidic dopants can be detrimental to the transport of the polymer relative to the homopolymer PTMA. Therefore, refinement of pendant group chemistry and careful addition of intramolecular dopants can enhance the solid-state transport ability of a radical polymer system. These fundamental principles, in turn, provide a vital foothold by which to optimize the solid-state charge transporting ability of current and next-generation radical polymer designs. - Highlights: • Sulfonic acid groups are copolymerized within the backbone of radical polymer chain. • Addition of the sulfonic acid groups alters the pendant group oxidation state. • Exact oxidation states are

  14. Novel sulfonated poly (ether ether keton)/polyetherimide acid-base blend membranes for vanadium redox flow battery applications

    International Nuclear Information System (INIS)

    Highlights: • SPEEK/PEI acid-base blend membranes are prepared for VRB applications. • The acid-base blend membranes have much lower vanadium ion permeability. • The energy efficiency of SPEEK/PEI maintain around 86.9% after 50 cycles. - Abstract: Novel acid-base blend membranes composed of sulfonated poly (ether ether ketone) (SPEEK) and polyetherimide (PEI) were prepared for vanadium redox flow battery (VRB). The blend membranes were characterized by Fourier transform infrared spectroscopy (FT-IR) and scanning electronic microscopy (SEM). The ion exchange capacity (IEC), proton conductivity, water uptake, vanadium ion permeability and mechanical properties were measured. As a result, the acid-base blend membranes exhibit higher water uptake, IEC and lower vanadium ion permeability compared to Nafion117 membranes and all these properties decrease with the increase of PEI. In VRB single cell test, the VRB with blend membranes shows lower charge capacity loss, higher coulombic efficiency (CE) and energy efficiency (EE) than Nafion117 membrane. Furthermore, the acid-base blend membranes present stable performance up to 50 cycles with no significant decline in CE and EE. All experimental results indicate that the SPEEK/PEI (S/P) acid-base blend membranes show promising prospects for VRB

  15. Evaluation of Trans, Trans-Muconic Acid in Urine of Exposed Workers to Benzene in a Cokery Plant

    Directory of Open Access Journals (Sweden)

    M. Rahiminejad

    2006-07-01

    Full Text Available Introduction & Objective: Benzene is a light yellow liquid with aromatic odor and has effects to human body. The main and dangerous health effect of chronic exposure to benzene in workplace is hematopoetic system disease or blood cancer that it's primarily clinical figures are anemia, leucopenia, thrombocytopenia. The objective of this study was evaluation of benzene exposure by analysis of urinary trans, trans-muconic acid (t,t-ma in post shift of workers.Materials & Methods: A case-control study was conducted. The urine samples were collected from 42 workers exposed to benzene at a cokery plant and it’s by –product refinery site and 40 non exposed villagers from rural areas without nearby factories. The t,t-ma was extracted from urine by solid phase extraction (SPE and analyzed via high performance liquid chromatography (HPLC. The urinary creatinine level was measured by Kone – Pro autoanalyzer . Results: The mean urinary t,t – ma level was 3.33 mg/g creatinine for exposed workers and 0.1007 mg/g creatinine for non exposed workers. The urinary levels in exposed group differed among workplaces, and were higher for subjects that worked in cokery plant ( cokery plant, 3.68 mg / g creatinine; its by product refinery site, 0.64 mg / g creatinine.Conclusion: The results showed that the mean level of urinary t,t-ma was about 6 to 7 times more than biological exposure index; thus, there is a high risk of hematopoetic damage and other adverse effects in these workers. We suggest that the company must decrease benzene exposure via engineering and management controls to lower than threshold limit value.

  16. Hydroquinone based sulfonated poly (arylene ether sulfone copolymer as proton exchange membrane for fuel cell applications

    Directory of Open Access Journals (Sweden)

    V. Kiran

    2015-12-01

    Full Text Available Synthesis of sulfonated poly (arylene ether sulfone copolymer by direct copolymerization of 4,4'-bis(4-hydroxyphenyl valeric acid, benzene 1,4-diol and synthesized sulfonated 4,4'-difluorodiphenylsulfone and its characterization by using FTIR (Fourier Transform Infrared and NMR (Nuclear Magnetic Resonance spectroscopic techniques have been performed. The copolymer was subsequently cross-linked with 4, 4!(hexafluoroisopropylidenediphenol epoxy resin by thermal curing reaction to synthesize crosslinked membranes. The evaluation of properties showed reduction in water and methanol uptake, ion exchange capacity, proton conductivity with simultaneous enhancement in oxidative stability of the crosslinked membranes as compared to pristine membrane. The performance of the membranes has also been evaluated in terms of thermal stability, morphology, mechanical strength and methanol permeability by using Thermo gravimetric analyzer, Differential scanning calorimetery, Atomic force microscopy, XPERT-PRO diffractometer, universal testing machine and diffusion cell, respectively. The results demonstrated that the crosslinked membranes exhibited high thermal stability with phase separation, restrained crystallinity, acceptable mechanical properties and methanol permeability. Therefore, these can serve as promising proton exchange membranes for fuel cell applications.

  17. Enhanced bio-decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by Sphingomonas xenophaga with nutrient amendment

    Institute of Scientific and Technical Information of China (English)

    Hong Lu; Xiaofan Guan; Jing Wang; Jiti Zhou; Haikun Zhang

    2015-01-01

    Bacterial decolorization of anthraquinone dye intermediates is a slow process under aerobic conditions.To speed up the process,in the present study,effects of various nutrients on 1-amino-4-bromoanthraquinone-2-sulfonic acid (ABAS) decolorization by Sphingomonas xenophaga QYY were investigated.The results showed that peptone,yeast extract and casamino acid amendments promoted ABAS bio-decolorization.In particular,the addition of peptone and casamino acids could improve the decolorization activity of strain QYY.Further experiments showed that L-proline had a more significant accelerating effect on ABAS decolorization compared with other amino acids.L-Proline not only supported cell growth,but also significantly increased the decolorization activity of strain QYY.Membrane proteins of strain QYY exhibited ABAS decolorization activities in the presence of L-proline or reduced nicotinamide adenine dinucleotide,while this behavior was not observed in the presence of other amino acids.Moreover,the positive correlation between L-proline concentration and the decolorization activity of membrane proteins was observed,indicating that L-proline plays an important role in ABAS decolorization.The above findings provide us not only a novel insight into bacterial ABAS decolorization,but also an L-proline-supplemented bioaugmentation strategy for enhancing ABAS bio-decolorization.

  18. MCM-41 anchored sulfonic acid (MCM-41-R-SO3H): A mild, reusable and highly efficient heterogeneous catalyst for the Biginelli reaction

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    An efficient three-component synthesis of 3A-dihydropyrimidinones using MCM-41 anchored sulfonic acid (MCM-41-R-SO3H) as a mild, heterogeneous catalyst for Biginelli reaction in CH3CN under reflux condition is described.

  19. Green procedures for the chemoselective synthesis of acylals and their cleavage promoted by recoverable sulfonic acid based nanoporous carbon (CMK-5-SO3H)

    Indian Academy of Sciences (India)

    Daryoush Zareyee; Ehsan Mirzajanzadeh; Mohammad Ali Khalilzadeh

    2015-07-01

    A selective synthesis of gem-diacetates from the reaction of aldehydes and acetic anhydride in the presence of recyclable nanoporous solid sulfonic acid (CMK-5-SO3H) under solvent-free reaction conditions is reported. The catalyst was also found to be highly active for deprotection of resulting acylals in water.

  20. Transport of strontium cation through a hollow fiber supported dichlorobenzene membrane using 18-C-6 crown ether. Nitrate and anion of dinonylnaphtalen sulfonic acid

    International Nuclear Information System (INIS)

    The transport of strontium cation through a hollow fiber supported dichlorobenzene membrane using 18-C-6 crown ether, nitrate and anion of dinonylnaphtalen sulfonic acid has been studied. A permeation device-single hollow fiber module with on-line radiometric detection of strontium using 85Sr tracer was used, (author). 5 refs., 7 figs., 1 tab

  1. Mesomorphic structure of poly(styrene)-block-poly(4-vinylpyridine) with oligo(ethylene oxide)sulfonic acid side chains as a model for molecularly reinforced polymer electrolyte

    NARCIS (Netherlands)

    Kosonen, H; Valkama, S; Hartikainen, J; Eerikainen, H; Torkkeli, M; Jokela, K; Serimaa, R; Sundholm, F; ten Brinke, G; Ikkala, O; Eerikäinen, Hannele

    2002-01-01

    We report self-organized polymer electrolytes based on poly(styrene)-block-poly(4-vinylpyridine) (PS-block-P4VP). Liquidlike ethylene oxide (EO) oligomers with sulfonic acid end groups are bonded to the P4VP block, leading to comb-shaped supramolecules with the PS-block-P4VP backbone. Lithium perchl

  2. Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA).

    Science.gov (United States)

    Wiedemeier, Daniel B; Lang, Susan Q; Gierga, Merle; Abiven, Samuel; Bernasconi, Stefano M; Früh-Green, Gretchen L; Hajdas, Irka; Hanke, Ulrich M; Hilf, Michael D; McIntyre, Cameron P; Scheider, Maximilian P W; Smittenberg, Rienk H; Wacker, Lukas; Wiesenberg, Guido L B; Schmidt, Michael W I

    2016-01-01

    Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar). Moreover, the emergence of nanotechnology may also result in the release of PyC-like compounds to the environment. It is thus a high priority to reliably detect, characterize and quantify these charred materials in order to investigate their environmental properties and to understand their role in the carbon cycle. Here, we present the benzene polycarboxylic acid (BPCA) method, which allows the simultaneous assessment of PyC's characteristics, quantity and isotopic composition ((13)C and (14)C) on a molecular level. The method is applicable to a very wide range of environmental sample materials and detects PyC over a broad range of the combustion continuum, i.e., it is sensitive to slightly charred biomass as well as high temperature chars and soot. The BPCA protocol presented here is simple to employ, highly reproducible, as well as easily extendable and modifiable to specific requirements. It thus provides a versatile tool for the investigation of PyC in various disciplines, ranging from archeology and environmental forensics to biochar and carbon cycling research. PMID:27214064

  3. Characterization, Quantification and Compound-specific Isotopic Analysis of Pyrogenic Carbon Using Benzene Polycarboxylic Acids (BPCA)

    Science.gov (United States)

    Wiedemeier, Daniel B.; Lang, Susan Q.; Gierga, Merle; Abiven, Samuel; Bernasconi, Stefano M.; Früh-Green, Gretchen L.; Hajdas, Irka; Hanke, Ulrich M.; Hilf, Michael D.; McIntyre, Cameron P.; Scheider, Maximilian P. W.; Smittenberg, Rienk H.; Wacker, Lukas; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2016-01-01

    Fire-derived, pyrogenic carbon (PyC), sometimes called black carbon (BC), is the carbonaceous solid residue of biomass and fossil fuel combustion, such as char and soot. PyC is ubiquitous in the environment due to its long persistence, and its abundance might even increase with the projected increase in global wildfire activity and the continued burning of fossil fuel. PyC is also increasingly produced from the industrial pyrolysis of organic wastes, which yields charred soil amendments (biochar). Moreover, the emergence of nanotechnology may also result in the release of PyC-like compounds to the environment. It is thus a high priority to reliably detect, characterize and quantify these charred materials in order to investigate their environmental properties and to understand their role in the carbon cycle. Here, we present the benzene polycarboxylic acid (BPCA) method, which allows the simultaneous assessment of PyC's characteristics, quantity and isotopic composition (13C and 14C) on a molecular level. The method is applicable to a very wide range of environmental sample materials and detects PyC over a broad range of the combustion continuum, i.e., it is sensitive to slightly charred biomass as well as high temperature chars and soot. The BPCA protocol presented here is simple to employ, highly reproducible, as well as easily extendable and modifiable to specific requirements. It thus provides a versatile tool for the investigation of PyC in various disciplines, ranging from archeology and environmental forensics to biochar and carbon cycling research. PMID:27214064

  4. Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques

    Science.gov (United States)

    Mohamed, Hamdy F. M.; Abdel-Hady, E. E.; Ohira, A.

    2015-06-01

    The mechanism of gas permeation in per-fluorinated sulfonic acid/PTFE copolymer Fumapem® membranes for polymer electrolyte fuel cells has been investigated from the viewpoint of free volume. Three different samples, Fumapem® F-950, F-1050 and F-14100 membranes with ion exchange capacity (IEC) = 1.05, 0.95 and 0.71 meq/g, respectively were used after drying. Free volume was quantified using the positron annihilation lifetime (PAL) technique and gas permeabilities were measured for O2 and H2 as function of temperature. Good linear correlation between the logarithm of the permeabilities at different temperatures and reciprocal free volume indicate that gas permeation in dry Fumapem® is governed by the free volume. Nevertheless permeabilities are much smaller than the corresponding flexible chain polymer with a similar free volume size due to stiff chains of the perfluoroethylene backbone.

  5. Synthesis, crystal structures and fluorescent properties of two new 7-iodo-8-hydroxyquinoline-5-sulfonic acid-containing polymers

    Science.gov (United States)

    Lu, Yongguang; Cheng, Wei; Meng, Xiangru; Hou, Hongwei

    2008-03-01

    Two new coordination polymers [Zn(IHQS)(4,4'-bipy) 1/2(H 2O) 2] n ( 1) and [Mn(IHQS)(4,4'-bipy) 1/2(H 2O) 2] n ( 2) (IHQS = 7-iodo-8-hydroxyquinoline-5-sulfonic acid) have been synthesized and characterized by single crystal X-ray diffraction. Both of them display one-dimensional chain framework in which the cage-like dimeric units formed by two metal ions, two IHQS anions and four water molecules are bridged by 4,4'-bipy. The hydrogen bonds and weak C--I···X (X = N, O, S) interactions extend the one-dimensional chains into three-dimensional supramolecular frameworks. The fluorescent properties of both polymers and IHQS were measured in solid state at room temperature. The results indicated that the emission spectra of the two polymers could be assigned to intraligand transition.

  6. Electrodeposited polypyrrole (PPy)/para (toluene sulfonic acid) (pTS) free-standing film for lithium secondary battery application

    International Nuclear Information System (INIS)

    Highlights: ► Free-standing polypyrrole-para (toluene sulfonic acid) (PPy-pTS) film. ► The films are soft, lightweight, mechanically robust, and highly electrically conductive. ► Application as cathode material for lithium secondary battery ► PPy-pTS film with 30 min deposition time exhibited higher discharge capacity (85 mAh g−1) beyond 80 cycles than the PPy-pTS films with 1 h deposition time (76 mAh g−1) and 2 h deposition time (55 mAh g−1). - Abstract: Highly flexible and bendable free-standing polypyrrole-para (toluene sulfonic acid) (PPy-pTS) films were prepared using the electropolymerization method. The films are soft, lightweight, mechanically robust, and highly electrically conductive. The films display a cauliflower-like structure consisting of micron-scale spherical grains, which are related to dopant intercalation in the polymeric chains. The electrochemical behaviour of the free-standing films was examined as cathode against lithium counter electrode. Electrochemical tests demonstrated that the PPy-pTS film with 30 min deposition time exhibited higher discharge capacity (85 mAh g−1) beyond 80 cycles than the PPy-pTS films with 1 h deposition time (76 mAh g−1) and 2 h deposition time (55 mAh g−1) at 0.1 mA cm−2 over a potential range of 2.5–4.3 V. The free-standing films can be used as electrode materials to satisfy the new market demand for flexible and bendable polymer batteries.

  7. Study on the Retention Behavior of Aromatic Carboxylic and Sulfonic acid on a New Anion Exchange Column

    Institute of Scientific and Technical Information of China (English)

    SHI,Ya-Li; CAI,Ya-Qi; MOU,Shi-Fen

    2008-01-01

    Ion chromatography (IC) has gradually developed into a preferred method for the determination of inorganic anions. And in recent years some low molecular aliphatic acid can be also separated in the ion exchange column with the development of stationary phase. But for the determination of aromatic ionic compounds there are some problems. The aromatic anions show enhanced retention due to interaction with the π electrons of the aromatic backbone. Although the addition of an organic modifier can alleviate the difficulty, it is not the ultimate solution.IonPac AS20 column was developed using a unique polymer bonding technology and its substrate coating is aliphatic backbone. The polymer is completely free of any π electron-containing substituents in the AS20 column. In this paper, the retention behavior of aromatic carboxylic and sulfonic acid on two hydroxide-selective columns,IonPac AS11-HC, AS16, and the new column AS20 was also studied. The result showed that the retentions of ten compounds on three columns were different with each other because of their different column characteristics.Among them 4-chlorobenzene sulfonic acid, 3,5-dihydric benzoic acid and salicylic acid obviously exhibited the weakest retention on the IonPac AS20. It was showed that π-π bond function between anion and stationary phases was weakened in AS20 column because its polymer was completely free of any π electron-containing substituents.So in this paper the AS20 was selected as an analytical column to separate ten aromatic ionic compounds, fumaric acid with conjugate bond included. The retention behavior, separation of the ten compounds and effect of temperature on their retention in the anion-exchange column AS20 (2 mm) were studied. The result showed that those compounds could be separated with each other when running in gradient program and the organic modifier was unnecessary during the separation. So it is showed that AS20 column can be used as a separating column because its

  8. Phase II metabolism of benzene.

    OpenAIRE

    Schrenk, D.; Orzechowski, A.; Schwarz, L R; Snyder, R.; Burchell, B; Ingelman-Sundberg, M; K. W. DE BOCK

    1996-01-01

    The hepatic metabolism of benzene is thought to be a prerequisite for its bony marrow toxicity. However, the complete pattern of benzene metabolites formed in the liver and their role in bone marrow toxicity are not fully understood. Therefore, benzene metabolism was studied in isolated rodent hepatocytes. Rat hepatocytes released benzene-1,2-dihydrodiol, hydroquinone (HQ), catechol (CT), phenol (PH), trans-trans-muconic acid, and a number of phase II metabolites such as PH sulfate and PH glu...

  9. Solid-supported sulfonic acid-containing catalysts efficiently promoted one-pot multi-component synthesis of -acetamido carbonyl compounds

    Indian Academy of Sciences (India)

    Mohammad Ali Zolfigol; Ardeshir Khazaei; Abdolkarim Zare; Mohammad Mokhlesi; Tahereh Hekmat-Zadeh; Alireza Hasaninejad; Fatemeh Derakhshan-Panah; Ahmad Reza Moosavi-Zare; Hassan Keypour; Ahmad Ali Dehghani-Firouzabadid; Maria Merajoddin

    2012-03-01

    Silica-functionalized sulfonic acid (SFSA) and sulfuric acid-modified polyethylene glycol-6000 (PEG-OSO3H) efficiently catalysed one-pot multi-component condensation of enolizable ketones or alkyl acetoacetates with arylaldehydes, acetonitrile and acetyl chloride to afford the corresponding -acetamido ketone or ester derivatives in high to excellent yields and in relatively short reaction times. Moreover, in this work, some novel -acetamido carbonyl compounds (i.e., one complex structure) are synthesized.

  10. Application of sulfonic acid functionalized nanoporous silica (SBA-Pr-SO3H in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-01-01

    Full Text Available Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H with a pore size of 6 nm was proven to be an efficient heterogeneous nanoporous solid acid catalyst in the green one-pot synthesis of triazoloquinazolinones and benzimidazoquinazolinones from the reaction of aromatic aldehydes with 3-amino-1,2,4-triazole (or 2-aminobenzimidazole and dimedone under solvent free conditions.

  11. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification

    Directory of Open Access Journals (Sweden)

    Beatrice Muriithi

    2016-01-01

    Full Text Available The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%–30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%–42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes.

  12. Proton Conductivity of Nafion/Ex-Situ Sulfonic Acid-Modified Stöber Silica Nanocomposite Membranes As a Function of Temperature, Silica Particles Size and Surface Modification.

    Science.gov (United States)

    Muriithi, Beatrice; Loy, Douglas A

    2016-01-01

    The introduction of sulfonic acid modified silica in Nafion nanocomposite membranes is a good method of improving the Nafion performance at high temperature and low relative humidity. Sulfonic acid-modified silica is bifunctional, with silica phase expected to offer an improvement in membranes hydration while sulfonic groups enhance proton conductivity. However, as discussed in this paper, this may not always be the case. Proton conductivity enhancement of Nafion nanocomposite membranes is very dependent on silica particle size, sometimes depending on experimental conditions, and by surface modification. In this study, Sulfonated Preconcentrated Nafion Stober Silica composites (SPNSS) were prepared by modification of Stober silica particles with mercaptopropyltriethoxysilane, dispersing the particles into a preconcentrated solution of Nafion, then casting the membranes. The mercapto groups were oxidized to sulfonic acids by heating the membranes in 10 wt % hydrogen peroxide for 1 h. At 80 °C and 100% relative humidity, a 20%-30% enhancement of proton conductivity was only observed when sulfonic acid modified particle less than 50 nm in diameter were used. At 120 °C, and 100% humidity, proton conductivity increased by 22%-42% with sulfonated particles with small particles showing the greatest enhancement. At 120 °C and 50% humidity, the sulfonated particles are less efficient at keeping the membranes hydrated, and the composites underperform Nafion and silica-Nafion nanocomposite membranes. PMID:26828525

  13. Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Labadie, Pierre, E-mail: p.labadie@epoc.u-bordeaux1.fr [UMR 7619 Sisyphe, CNRS/UPMC, Universite Pierre et Marie Curie, BP 105, 4 place Jussieu, 75252 Paris Cedex 05 (France); Chevreuil, Marc [Laboratoire Hydrologie et Environnement, EPHE, UMR 7619 Sisyphe, CNRS/UPMC, Universite Pierre et Marie Curie, BP 105, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2011-12-15

    The biogeochemical dynamics of 15 perfluorinated compounds (PFCs) were investigated in a heavily urbanised river (River Seine, Paris, France). The target compounds included C4-C10 sulfonates and C5-C14 acids; eleven PFCs were detected and {Sigma}PFCs ranged between 31 and 91 ng L{sup -1} (median: 47 ng L{sup -1}). The molecular pattern was dominated by the perfluoroalkyl sulfonates PFHxS and PFOS (>54% of {Sigma}PFCs), which were the only PFCs quantified in both the dissolved and particulate phases. For these PFCs, the sorbed fraction positively correlated with suspended sediment levels. Total PFC levels negatively correlated with river flow rate, which varied between 150 and 640 m{sup 3} s{sup -1}. This suggests the predominance of point sources (likely WWTP effluent discharge), but a contribution of non-point sources such as combined sewer overflow could not be excluded. The annual PFC mass flow was estimated at 500 kg, which is less than observed for other large European rivers. - Highlights: > Eleven out of fifteen perfluorinated compounds were detected in the River Seine (Paris, France). > Only PFHxS and PFOS were quantified in the particulate phase of water samples. > PFOA, PFHxS and PFOS levels negatively correlated with river flow rate (i.e. point sources were predominant). > The annual PFC mass flow in the River Seine was estimated at nearly 500 kg. - PFOA, PFOS and PFHxS levels in the River Seine negatively correlated with river flow rate, suggesting that point sources were predominant for these major PFCs.

  14. Biogeochemical dynamics of perfluorinated alkyl acids and sulfonates in the River Seine (Paris, France) under contrasting hydrological conditions

    International Nuclear Information System (INIS)

    The biogeochemical dynamics of 15 perfluorinated compounds (PFCs) were investigated in a heavily urbanised river (River Seine, Paris, France). The target compounds included C4-C10 sulfonates and C5-C14 acids; eleven PFCs were detected and ΣPFCs ranged between 31 and 91 ng L-1 (median: 47 ng L-1). The molecular pattern was dominated by the perfluoroalkyl sulfonates PFHxS and PFOS (>54% of ΣPFCs), which were the only PFCs quantified in both the dissolved and particulate phases. For these PFCs, the sorbed fraction positively correlated with suspended sediment levels. Total PFC levels negatively correlated with river flow rate, which varied between 150 and 640 m3 s-1. This suggests the predominance of point sources (likely WWTP effluent discharge), but a contribution of non-point sources such as combined sewer overflow could not be excluded. The annual PFC mass flow was estimated at 500 kg, which is less than observed for other large European rivers. - Highlights: → Eleven out of fifteen perfluorinated compounds were detected in the River Seine (Paris, France). → Only PFHxS and PFOS were quantified in the particulate phase of water samples. → PFOA, PFHxS and PFOS levels negatively correlated with river flow rate (i.e. point sources were predominant). → The annual PFC mass flow in the River Seine was estimated at nearly 500 kg. - PFOA, PFOS and PFHxS levels in the River Seine negatively correlated with river flow rate, suggesting that point sources were predominant for these major PFCs.

  15. Catalytic Upgrading of bio-oil using 1-octene and 1-butanol over sulfonic acid resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhijun; Wang, Qingwen; Tripathi, Prabhat; Pittman, Charles U.

    2011-02-04

    Raw bio-oil from fast pyrolysis of biomass must be refined before it can be used as a transporation fuel, a petroleum refinery feed or for many other fuel uses. Raw bio-oil was upgraded with the neat model olefin, 1-octene, and with 1-octene/1-butanol mixtures over sulfonic acid resin catalysts frin 80 to 150 degrees celisus in order to simultaneously lower water content and acidity and to increase hydrophobicity and heating value. Phase separation and coke formation were key factors limiting the reaction rate during upgrading with neat 1-octene although octanols were formed by 1-octene hydration along with small amounts of octyl acetates and ethers. GC-MS analysis confirmed that olefin hydration, carboxylic acid esterification, acetal formation from aldehydes and ketones and O- and C-alkylations of phenolic compounds occurred simultaneously during upgrading with 1-octene/1-butanol mixtures. Addition of 1-butanol increased olefin conversion dramatically be reducing mass transfer restraints and serving as a cosolvent or emulsifying agent. It also reacted with carboxylic acids and aldehydes/ketones to form esters, and acetals, respectively, while also serving to stabilize bio-oil during heating. 1-Butanol addition also protected the catalysts, increasing catalyst lifetime and reducing or eliminationg coking. Upgrading sharply increased ester content and decreased the amounts of levoglucosan, polyhydric alcohols and organic acids. Upgrading lowered acidity (pH value rise from 2.5 to >3.0), removed the uppleasant ordor and increased hydrocarbon solubility. Water content decreased from 37.2% to < 7.5% dramatically and calorific value increased from 12.6 MJ kg to about 30.0 MJ kg.

  16. Multinomial logistic regression model to assess the levels in trans, trans-muconic acid and inferential-risk age group among benzene-exposed group

    OpenAIRE

    Mala A; Ravichandran B; Raghavan S; Rajmohan H

    2010-01-01

    There are only a few studies performed on multinomial logistic regression on the benzene-exposed occupational group. A study was carried out to assess the relationship between the benzene concentration and trans-trans-muconic acid (t,t-MA), biomarkers in urine samples from petrol filling workers. A total of 117 workers involved in this occupation were selected for this current study. Generally, logistic regression analysis (LR) is a common statistical technique that could be used to predict t...

  17. Pore-expanded SBA-15 sulfonic acid silicas for biodiesel synthesis.

    Science.gov (United States)

    Dacquin, J P; Lee, A F; Pirez, C; Wilson, K

    2012-01-01

    Here we present the first application of pore-expanded SBA-15 in heterogeneous catalysis. Pore expansion over the range 6-14 nm confers a striking activity enhancement towards fatty acid methyl ester (FAME) synthesis from triglycerides (TAG), and free fatty acid (FFA), attributed to improved mass transport and acid site accessibility. PMID:22089025

  18. Highly Sulfonated Diamine Synthesized Polyimides and Protic Ionic Liquid Composite Membranes Improve PEM Conductivity

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2015-06-01

    Full Text Available A novel sulfonated diamine was synthesized from 1,4-bis(4-aminophenoxy benzene [pBAB]. Sulfonated polyimides (SPIs were synthesized from sulfonated pBAB, 1,4-bis(4-aminophenoxy-2-sulfonic acid benzenesulfonic acid [pBABTS], various diamines and aromatic dianhydrides. Composite proton exchange membranes (PEMs made of novel SPIs and a protic ionic liquid (PIL 1-vinyl-3-H-imidazolium trifluoromethanesulfonate [VIm][OTf] showed substantially increased conductivity. We prepared an SPI/PIL composite PEM using pBABTS, 4,4′-(9-fluorenylidene dianiline (9FDA as diamine, 3,3′,4,4′-diphenylsulfone tetracarboxylic dianhydride (DSDA as dianhydride and 40 wt % [VIm][OTf] with a high conductivity of 16 mS/cm at 120 °C and anhydrous condition. pBABTS offered better conductivity, since the chemical structure had more sulfonated groups that provide increased conductivity. The new composite membrane could be a promising anhydrous or low-humidity PEM for intermediate or high-temperature fuel cells.

  19. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Yasuoka, K; Sasaki, K; Hayashi, R, E-mail: yasuoka@ee.titech.ac.jp [Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Ookayama, Tokyo (Japan)

    2011-06-15

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l{sup -1} (54.8% of the initial amount of fluorine atoms) and 26 mg kWh{sup -1}, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  20. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    Science.gov (United States)

    Yasuoka, K.; Sasaki, K.; Hayashi, R.

    2011-06-01

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l-1 (54.8% of the initial amount of fluorine atoms) and 26 mg kWh-1, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  1. An energy-efficient process for decomposing perfluorooctanoic and perfluorooctane sulfonic acids using dc plasmas generated within gas bubbles

    International Nuclear Information System (INIS)

    Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are environmentally harmful and persistent substances. Their decomposition was investigated using dc plasmas generated within small gas bubbles in a solution. The plasma characteristics including discharge voltage, voltage drop in the liquid, plasma shape and the emission spectrum were examined with different gases. The decomposition rate and energy efficiency were evaluated by measuring the concentration of fluoride and sulfate ions released from PFOA/PFOS molecules. The concentration of fluoride ions and energy efficiency in the treatment of a PFOS solution were 17.7 mg l-1 (54.8% of the initial amount of fluorine atoms) and 26 mg kWh-1, respectively, after 240 min of operation. The addition of scavengers of hydroxyl radicals and hydrated electrons showed little effect on the decomposition. The decomposition processes were analyzed with an assumption that positive species reacted with PFOA/PFOS molecules at the boundary of the plasma-solution surface. This type of plasma showed a much higher decomposition energy efficiency compared with energy efficiencies reported in other studies.

  2. Efficacy of two acidified chlorite postmilking teat disinfectants with sodium dodecylbenzene sulfonic acid on prevention of contagious mastitis using an experimental challenge protocol.

    Science.gov (United States)

    Oura, L Y; Fox, L K; Warf, C C; Kempt, G K

    2002-01-01

    Two acidified sodium chlorite postmilking teat disinfectants were evaluated for efficacy against Staphylococcus aureus and Streptococcus agalactiae by using National Mastitis Council experimental challenge procedures. The effect of these teat dips on teat skin and teat end condition was also determined. Both dips contained 0.32% sodium chlorite, 1.32% lactic, and 2.5% glycerin. Dips differed in the amount of sodium dodecylbenzene sulfonic acid (0.53 or 0.27%) added as a surfactant. Both dips significantly reduced new intramammary infection (IMI) rates compared with undipped controls. The dip containing 0.53% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 72% and Strep. agalactiae by 75%. The dip containing 0.27% dodecylbenzene sulfonic acid reduced new IMI by Staph. aureus by 100% and by Strep. agalactiae by 88%. Changes in teat skin and teat end condition for treatment and control groups varied in parallel over time. Teats treated with either teat dip had higher mean teat skin and teat end scores than control teats at some weeks. However, teat skin and teat end condition did not tend to change from the start to the completion of the trial. Application of the two new postmilking teat dips was effective in reducing new IMI from contagious mastitis pathogens. (Key words: teat dip, contagious mastitis, chlorous acid) PMID:11860118

  3. Benzene-Poly-Carboxylic Acid Complex, a Novel Anti-Cancer Agent Induces Apoptosis in Human Breast Cancer Cells

    Science.gov (United States)

    Fares, Fuad; Azzam, Naiel; Fares, Basem; Larsen, Stig; Lindkaer-Jensen, Steen

    2014-01-01

    Some cases of breast cancer are composed of clones of hormonal-independent growing cells, which do not respond to therapy. In the present study, the effect of Benzene-Poly-Carboxylic Acid Complex (BP-C1) on growth of human breast-cancer cells was tested. BP-C1 is a novel anti-cancer complex of benzene-poly-carboxylic acids with a very low concentration of cis-diammineplatinum (II) dichloride. Human breast cancer cells, MCF-7 and T47D, were used. Cell viability was detected by XTT assay and apoptosis was detected by Flow Cytometry and by annexin V/FITC/PI assay. Caspases were detected by western blot analysis and gene expression was measured by using the Applied Biosystems® TaqMan® Array Plates. The results showed that exposure of the cells to BP-C1 for 48 h, significantly (P<0.001) reduced cell viability, induced apoptosis and activated caspase 8 and caspace 9. Moreover, gene expression experiments indicated that BP-C1 increased the expression of pro-apoptotic genes (CASP8AP1, TNFRSF21, NFkB2, FADD, BCL10 and CASP8) and lowered the level of mRNA transcripts of inhibitory apoptotic genes (BCL2L11, BCL2L2 and XIAP. These findings may lead to the development of new therapeutic strategies for treatment of human cancer using BP-C1 analog. PMID:24523856

  4. Mineralization of sulfonated azo dyes and sulfanilic acid by Phanerochaete chrysosporium and Streptomyces chromofuscus.

    OpenAIRE

    Paszczynski, A; Pasti-Grigsby, M B; Goszczynski, S; Crawford, R L; Crawford, D. L.

    1992-01-01

    Five 14C-radiolabeled azo dyes and sulfanilic acid were synthesized and used to examine the relationship between dye substitution patterns and biodegradability (mineralization to CO2) by a white-rot fungus and an actinomycete. 4-Amino-[U-14C]benzenesulfonic acid and 4-(3-sulfo-4-aminophenylazo)-[U-14C]benzenesulfonic acid were used as representative compounds having sulfo groups or both sulfo and azo groups. Such compounds are not known to be present in the biosphere as natural products. The ...

  5. Biomarkers of environmental benzene exposure.

    OpenAIRE

    Weisel, C; Yu, R; Roy, A; Georgopoulos, P.

    1996-01-01

    Environmental exposures to benzene result in increases in body burden that are reflected in various biomarkers of exposure, including benzene in exhaled breath, benzene in blood and urinary trans-trans-muconic acid and S-phenylmercapturic acid. A review of the literature indicates that these biomarkers can be used to distinguish populations with different levels of exposure (such as smokers from nonsmokers and occupationally exposed from environmentally exposed populations) and to determine d...

  6. A New Strategy for the Preparation of N-Aminopiperidine Using Hydroxylamine-O-Sulfonic Acid: Synthesis, Kinetic Modelling, Phase Equilibria, Extraction and Processes

    OpenAIRE

    E. Labarthe; A. J. Bougrine; Véronique Pasquet; H. Delalu

    2013-01-01

    A new strategy for the synthesis of N-aminopiperidine (NAPP) was developed using hydroxylamine-O-sulfonic acid (HOSA). A systematic study of NAPP formation and degradation reactions was carried out in diluted medium, in order to identify products and to establish a kinetic modelling. Principal parameters have been defined, in particular, that obtaining high yields (>90%) requires non stoichiometric conditions. The extraction and purification processes were also studied. NAPP isolation and pi...

  7. Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to Birth Outcomes in the Mid-Ohio Valley, 2005–2010

    OpenAIRE

    Darrow, Lyndsey A.; Stein, Cheryl R.; Steenland, Kyle

    2013-01-01

    Background: Previous research suggests perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) may be associated with adverse pregnancy outcomes. Objective: We conducted a population-based study of PFOA and PFOS and birth outcomes from 2005 through 2010 in a Mid-Ohio Valley community exposed to high levels of PFOA through drinking-water contamination. Methods: Women provided serum for PFOA and PFOS measurement in 2005–2006 and reported reproductive histories in subsequent follow-up...

  8. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum

    International Nuclear Information System (INIS)

    We evaluated whether life-time exposure to PFOS affects egg development, hatching, larval development, survival, metamorphosis and body mass of Enallagma cyathigerum (Insecta: Odonata). Eggs and larvae were exposed to five concentrations ranging from 0 to 10 000 μg/L. Our results show reduced egg hatching success, slower larval development, greater larval mortality, and decreased metamorphosis success with increasing PFOS concentration. PFOS had no effect on egg developmental time and hatching or on mass of adults. Eggs were the least sensitive stage (NOEC = 10 000 μg/L). Larval NOEC values were 1000 times smaller (10 μg/L). Successful metamorphosis was the most sensitive response trait studied (NOEC < 10 μg/L). The NOEC value suggests that E. cyathigerum is amongst the most sensitive freshwater organisms tested. NOEC for metamorphosis is less than 10-times greater than the ordinary reported environmental concentrations in freshwater, but is more than 200-times smaller than the greatest concentrations measured after accidental releases. - Long-term laboratory exposure to perfluorooctane sulfonic acid reduces survival and interferes with metamorphosis of Enallagma cyathigerum (Insecta: Odonata).

  9. Synthesis of amorphous silica and sulfonic acid functionalized silica used as reinforced phase for polymer electrolyte membrane

    International Nuclear Information System (INIS)

    In this work silica (SiO2) and sulfonic acid-functionalized silica (sul-SiO2) were synthesized by sol–gel method from tetraethoxysilane (TEOS) and 3-mercatopropyltrimethoxysilane (MPTMS) with various ratios between them. The synthesized materials were characterized by x-ray diffraction (XRD) for crystalline structure, Brunauer–Emmet–Teller (BET) specific surface area analysis, transmission electronic microscopy (TEM) and dynamic light scattering (DLS) for particle size analysis, and ion exchange capacity (IEC) for determining sulfur content in Sul-SiO2 materials. The initial results showed that the average particle size of amorphous SiO2 and Sul-SiO2 at different TEOS: MPTMS ratios are in narrow distribution with average diameter about 20–30 nm. The particle size of Sul-SiO2 is almost unaffected by the content of MPTMS while IEC depends strongly on it. Composite membranes of 60 μm thickness were successfully prepared from blending of poly(vinylidene fluoride) (PVDF) and synthesized amorphous SiO2. It was shown that the latter may be used as a reinforced phase for composite membrane electrolytes based on PVDF. (paper)

  10. CD4+ T cell responses in Balb/c mice with food allergy induced by trinitrobenzene sulfonic acid and ovalbumin.

    Science.gov (United States)

    Sun, Chen-Yi; Bai, Jie; Hu, Tian-Yong; Cheng, Bao-Hui; Ma, Li; Fan, Xiao-Qin; Yang, Ping-Chang; Zheng, Peng-Yuan; Liu, Zhi-Qiang

    2016-06-01

    The rapid increase in atopic diseases is potentially linked to increased hapten exposure, however, the role of haptens in the pathogenesis of food allergy remains unknown. Further studies are required to elucidate the cluster of differentiation 4 positive (CD4+) T cell response to food allergy induced by haptens. Dendritic cells were primed by trinitrobenzene sulfonic acid (TNBS) as a hapten or ovalbumin (OVA) as a model antigen, in a cell culture model. BALB/c mice were sensitized using TNBS and/or OVA. Intestinal Th1/Th2 cell and ovalbumin specific CD4+ T cells proliferation, intestinal cytokines (interleukin‑4 and interferon‑γ) in CD4+ T cells were evaluated. TNBS increased the expression of T cell immunoglobulin and mucin domain‑4 and tumor necrosis factor ligand superfamily member 4 in dendritic cells. Skewed Th2 cell polarization, extensive expression of interleukin‑4, reduced expression of interferon‑γ and forkhead box protein P3 were elicited following concomitant exposure to TNBS and OVA, with reduced regulatory T cells in the mouse intestinal mucosa, whereas a Th1 response was detected when challenged by TNBS or OVA alone. This data suggests that TNBS, as a hapten, combined with food antigens may lead to a Th2 cell response in the intestinal mucosa. PMID:27109448

  11. Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing

    International Nuclear Information System (INIS)

    An organic solvent-free polyamic acid (PAA) nanoemulsion was obtained by direct ionization of the solid PAA in deionized water, with the average particle size of 261 nm and Zeta potential of −55.1 mV, and used as a carbon fiber sizing to improve the interfacial adhesion between the carbon fiber and polyether sulfone (PES). The surface characteristics of PAA coated carbon fibers were investigated using Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and dynamic contact angle measurement. The results demonstrated that a continuous and uniform PAA sizing layer was formed on the surface of carbon fibers, and the surface energy of carbon fibers increased from 42.91 to 54.55 mN/m after sizing treatment. The single fiber pull-out testing was also performed, which showed the increased interfacial shear strength (IFSS) of carbon fiber/PES composites from 33.6 to 49.7 MPa by 47.9%. The major reasons for the improved interfacial adhesion were the increased van der Waals forces between the PES matrix and sizing layer as well as the chemical bonding between the sizing layer and carbon fiber surface. Furthermore, the PAA sizing also presented a positive effect on the interfacial adhesion of carbon fiber/PES composites under hydrothermal condition.

  12. A novel voltammetric sensor for citalopram based on multiwall carbon nanotube/(poly(p-aminobenzene sulfonic acid)/β-cyclodextrin).

    Science.gov (United States)

    Gholivand, Mohammad-Bagher; Akbari, Arezoo

    2016-05-01

    Multi-walled carbon nanotube (MWCNTS) coated with poly p-aminobenzene sulfonic acid/β-cyclodextrin (p-ABSA/β-CD) film was used as an effective strategy for modification of the surface of glassy carbon electrode (GCE). Electrochemical study and determination of citalopram (CT) were investigated at the p (p-ABSA)/β-CD/MWCNT/GC using cyclic and differential pulse anodic stripping voltammetric techniques. The results indicate that the p (p-ABSA)/β-CD/MWCNT/GC significantly enhanced the oxidation peak current of CT. The modified electrode was characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy(SEM) and cyclic voltammetry (CV).The fabricated electrochemical sensor exhibits a fast and reversible linear response toward CT within the concentration ranges of 90 nM-1 μM, 1-11 μM and 11-100 μM with correlation coefficients greater than 0.99 and detection limit of 44 nM. The resulting functionalized polymer film features interesting electrochemical properties such good recovery, reproducibility and selectivity toward CT. The applicability of the proposed sensor was tested by determination of CT in pharmaceutical combinations and human body fluids. PMID:26952450

  13. Study of polyaniline doped with trifluoromethane sulfonic acid in gas-diffusion electrodes for proton-exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Gharibi, Hussein; Zhiani, Mohammad; Kheirmand, Mehdi; Kakaei, Karim [Department of Physical Chemistry, Faculty of Science, Tarbiat Modarres University, P.O. Box 14115-175, Tehran (Iran); Entezami, Ali Akbar [Faculty of Chemistry, Tabriz University, Tabriz (Iran); Mirzaie, Rasol Abdullah [Department of Chemistry, Faculty of Science, Shahid Rajaee University, Tehran (Iran)

    2006-04-21

    Polytetrafluoroethylene (PTFE)-bonded gas-diffusion electrodes (GDEs), modified with polyaniline as an electron and proton conductor in the catalyst layer, are prepared and evaluated for use in proton-exchange membrane fuel cells (PEMFCs). Polyaniline is coated on the GDE by electropolymerization of aniline and trifluoromethane sulfonic acid as the proton-conductive monomer. The electrodes are characterized by cyclic voltammetry, current-potential measurements, electrochemical impedance spectroscopy, and chronoamperometry. The polyaniline is found to be homogenously dispersed in the catalyst layer, making it a good candidate proton and electron conductor. Use of polyaniline instead of Nafion in the catalyst layer, increases the utility of the electrocatalyst by 18%. The results are consistent with the presence of polyaniline as a conductive polymer in the reaction layer reducing the polarization resistance of the electrode in comparison with that of a corresponding electrode containing Nafion. Thus, the present results indicate that PEMFCs using polyaniline-containing electrocatalysts should give superior performance to those using catalysts containing traditional ionomers. (author)

  14. Denaturant effects on HbGp hemoglobin as monitored by 8-anilino-1-naphtalene-sulfonic acid (ANS) probe.

    Science.gov (United States)

    Barros, Ana E B; Carvalho, Francisco A O; Alves, Fernanda R; Carvalho, José W P; Tabak, Marcel

    2015-03-01

    Glossoscolex paulistus extracellular hemoglobin (HbGp) stability has been monitored in the presence of denaturant agents. 8-Anilino-1-naphtalene-sulfonic acid (ANS) was used, and spectroscopic and hydrodynamic studies were developed. Dodecyltrimethylammonium bromide (DTAB) induces an increase in ANS fluorescence emission intensity, with maximum emission wavelength blue-shifted from 517 to 493 nm. Two transitions are noticed, at 2.50 and 9.50 mmol/L of DTAB, assigned to ANS interaction with pre-micellar aggregates and micelles, respectively. In oxy-HbGp, ANS binds to protein sites less exposed to solvent, as compared to DTAB micelles. In DTAB-HbGp-ANS ternary system, at pH 7.0, protein aggregation, oligomeric dissociation and unfolding were observed, while, at pH 5.0, aggregation is absent. DTAB induced unfolding process displays two transitions, one due to oligomeric dissociation and the second one, probably, to the denaturation of dissociated subunits. Moreover, guanidine hydrochloride and urea concentrations above 1.5 and 4.0 mol/L, respectively, induce the full HbGp denaturation, with reduction of ANS-bound oxy-HbGp hydrophobic patches, as noticed by fluorescence quenching up to 1.0 and 5.0 mol/L of denaturants. Our results show clearly the differences in probe sensitivity to the surfactant, in the presence and absence of protein, and new insights into the denaturant effects on HbGp unfolding. PMID:25546245

  15. Exposure to perfluorooctane sulfonic acid (PFOS) adversely affects the life-cycle of the damselfly Enallagma cyathigerum

    Energy Technology Data Exchange (ETDEWEB)

    Bots, Jessica, E-mail: Jessica.bots@ua.ac.b [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); De Bruyn, Luc, E-mail: luc.debruyn@ua.ac.b [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Research Institute for Nature and Forest (INBO), Kliniekstraat 25, 1070 Brussels (Belgium); Snijkers, Tom, E-mail: tomsnijkers@gmail.co [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Van den Branden, Bert, E-mail: bvandenbranden@gmail.co [Department PIH Environment, University College West Flanders (HOWEST), Graaf K. 11 de Goedelaan 5, B-8500 Kortrijk (Belgium); Van Gossum, Hans, E-mail: hans.vangossum@ua.ac.b [Evolutionary Ecology Group, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2010-03-15

    We evaluated whether life-time exposure to PFOS affects egg development, hatching, larval development, survival, metamorphosis and body mass of Enallagma cyathigerum (Insecta: Odonata). Eggs and larvae were exposed to five concentrations ranging from 0 to 10 000 mug/L. Our results show reduced egg hatching success, slower larval development, greater larval mortality, and decreased metamorphosis success with increasing PFOS concentration. PFOS had no effect on egg developmental time and hatching or on mass of adults. Eggs were the least sensitive stage (NOEC = 10 000 mug/L). Larval NOEC values were 1000 times smaller (10 mug/L). Successful metamorphosis was the most sensitive response trait studied (NOEC < 10 mug/L). The NOEC value suggests that E. cyathigerum is amongst the most sensitive freshwater organisms tested. NOEC for metamorphosis is less than 10-times greater than the ordinary reported environmental concentrations in freshwater, but is more than 200-times smaller than the greatest concentrations measured after accidental releases. - Long-term laboratory exposure to perfluorooctane sulfonic acid reduces survival and interferes with metamorphosis of Enallagma cyathigerum (Insecta: Odonata).

  16. Covalently anchored sulfonic acid on silica gel (SiO2-R-SO3H) as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Gholam Hossein Mahdavinia; Mohammad A.Bigdeli; Yaser Saeidi Hayeniaz

    2009-01-01

    A highly efficient one-pot synthesis of 1,8-dioxooctahydroxanthenes under solvent-free conditions catalyzed by sulfonic acid covalently anchored onto the surface of silica gel is reported.All types of aldehydes,including aromatic,unsaturated,and heterocyclic,are used.The silica gel/sulfonic acid catalyst (SiO2-R-SO3H) is completely heterogeneous and can be recycled.

  17. Morphological control of layered double hydroxide through a biomimetic approach using carboxylic and sulfonic acids

    Directory of Open Access Journals (Sweden)

    Taishi Yokoi

    2015-09-01

    Full Text Available Layered double hydroxides (LDHs have intercalation properties and are used in various applications. The performances of the LDH materials can be improved by controlling crystal morphology. Morphology of inorganic crystals is controlled by organic molecules in biomineralization. Inspired by biomineralization, we investigated the effect of the addition of mono, di and triacids as morphological control agents on crystal morphology of LDH synthesized by the homogeneous precipitation method. Morphology of LDH was changed from hexagonal plate to stacked disc by addition of monoacids, namely acetic acid and methanesulfonic acid, in the reaction solution. Flower-shaped LDH crystals were formed in the presence of diacids and a triacid, namely succinic acid, 1,2-ethanedisulfonic acid and 1,2,3-propanetricarboxylic acid. We found that the morphology of the LDH crystals was controlled by the number of functional group on the morphological control agent rather than the type of functional group. These findings can contribute for the development of novel and functional LDH materials with precisely controlled morphology.

  18. 2-(4-Bromo­benzene­sulfonamido)benzoic acid

    Science.gov (United States)

    Arshad, Muhammad Nadeem; Khan, Islam Ullah; Akkurt, Mehmet; Shafiq, Muhammad; Mustafa, Ghulam

    2009-01-01

    In the title compound, C13H10BrNO4S, the dihedral angle between the benzene rings is 82.75 (15)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal structure, two mol­ecules form an R 2 2(8) centrosymmetric dimer through a pair of O—H⋯O hydrogen bonds. Intra- and inter­molecular C—H⋯O hydrogen bonds are also observed. PMID:21582883

  19. 40 CFR 721.10072 - Benzene, 1,1′-methylenebis[4-isocyanato-, polymer with benzenedicarboxylic acid, butyl dialkyl...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, 1,1â²-methylenebis , .alpha... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10072 Benzene, 1,1′-methylenebis... to reporting. (1) The chemical substance identified generically as benzene,...

  20. QSTR studies regarding the ECOSAR toxicity of benzene-carboxylic acid' esters to fathead minnow fish (Pimephales promelas).

    Science.gov (United States)

    Tarko, Laszlo; Putz, Mihai V; Ionascu, Cosmin; Putz, Ana-Maria

    2014-01-01

    The present work employs 152 benzene-carboxylic acid' esters having computed the toxicity within the range [2.251, 10.222] for fathead minnow fish (Pimephales promelas). Calibration set includes many pairs having very similar chemical structure, size, shape and hydrophilicity, but very different value of ECOSAR toxicity or vice versa. The QSTR study, which uses all esters as calibration set, emphasized a large percent (16.2%) of outliers. In this QSTR study most of the estimated values of toxicity for outliers are much lower than ECOSAR toxicity. The LogP and some aromaticity descriptors are predictors. The best QSTR for esters having low value (toxicity and the best QSTR for esters having high value (> 5.5) of ECOSAR toxicity are obtained when the number of outliers is very small. These QSTRs are different enough and highlight opposite influences of certain descriptors on toxicity. The results emphasize two possibilities: (a) the esters having low value of ECOSAR toxicity and the esters having high value of ECOSAR toxicity are included in two different classes from the point of view of structure-toxicity relationship and/or (b) many high values of ECOSAR toxicity are wrong. By comparison, a QSTR using experimental values of toxicity against rats for 37 benzene-carboxylic esters included in the same database gives good correlation experimental/computed values of toxicity, the number of outliers is null and the result of validation test is good. PMID:24724900

  1. Hydrogen production by water electrolysis using tetra-alkyl-ammonium-sulfonic acid ionic liquid electrolytes

    Science.gov (United States)

    Fiegenbaum, Fernanda; Martini, Emilse M.; de Souza, Michèle O.; Becker, Márcia R.; de Souza, Roberto F.

    2013-12-01

    Triethylammonium-propanesulfonic acid tetrafluoroborate (TEA-PS·BF4) is used as an electrolyte in the water electrolysis. The electrolysis of water with this ionic conductor produces high current densities with high efficiencies, even at room temperatures. A system using TEA-PS·BF4 in an electrochemical cell with platinum electrodes has current densities (i) up to 1.77 A cm-2 and efficiencies between 93 and 99% in temperatures ranging from 25 °C to 80 °C. The activation energy observed with TEA-PS·BF4 is ca. 9.3 kJ mol-1, a low value that can be explained by the facilitation of proton transport in the organised aqueous ionic liquid media. The unexpectedly high efficiency of this system is discussed by taking into account the high conductivities associated with the Brönsted and Lewis acidity characteristics associated with these ionic conductive materials.

  2. Synthesis of 2-Aryl-l-arylmethyl-lH-1,3-benzimidazole Derivatives Using Silica-bonded PropyI-S-sulfonic Acid as Recyclable Solid Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    Ghaem Ahmadi-Ana,Sayed Mohammad; Baghernejad, Mojtaba"; Niknam, Khodabakhsh

    2012-01-01

    A highly selective synthesis of 2-aryl-l-arylmethyl-lH-1,3-benzimidazoles from the reaction of o-phenylene- diamine and aromatic aldehydes in the presence of silica-bonded propyl-S-sulfonic acid (SBSSA) at 80℃ in water in good to excellent yields was developed.

  3. Experimental study of the removal of copper ions using hydrogels of xanthan, 2-acrylamido-2-methyl-1-propane sulfonic acid, montmorillonite: Kinetic and equilibrium study.

    Science.gov (United States)

    Aflaki Jalali, Marzieh; Dadvand Koohi, Ahmad; Sheykhan, Mehdi

    2016-05-20

    In this paper, removal of copper ions from aqueous solution using novel xanthan gum (XG) hydrogel, xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid (XG-g-P(AMPS)) hydrogel and xanthan gum-graft-2-acrylamido-2-methyl-1-propane sulfonic acid/montmorillonite (XG-g-P(AMPS)/MMT) hydrogel composite were studied. The structure and morphologies of the xanthan-based hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Adsorbents comprised a porous crosslink structure with side chains that carried carboxyl, hydroxyl and sulfonate. Maximum adsorption was observed in the pH=5.2, initial concentrations of Cu(2+)=321.8 mg/L, Temperature=45 °C, contact time=5 h with 0.2 g/50 mL of the hydrogels. Adsorption process was found to follow Langmuir isotherm model with maximum adsorption capacity of 24.57, 39.06 and 29.49 mg/g for the XG, XG-g-P(AMPS) and XG-g-P(AMPS)/MMT, respectively. Adsorption kinetics data fitted well with pseudo second order model. The negative ΔG° values and the positive ΔS° confirmed that the adsorption was a spontaneous process. The positive ΔH° values suggested that the adsorption was endothermic in nature. PMID:26917382

  4. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Dong Cai

    2015-09-01

    Full Text Available A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H2SO4. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, 1H-NMR, 13C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities.

  5. Synthesis, Antibacterial and Antitubercular Activities of Some 5H-Thiazolo[3,2-a]pyrimidin-5-ones and Sulfonic Acid Derivatives.

    Science.gov (United States)

    Cai, Dong; Zhang, Zhi-Hua; Chen, Yu; Yan, Xin-Jia; Zou, Liang-Jing; Wang, Ya-Xin; Liu, Xue-Qi

    2015-01-01

    A series of 5H-thiazolo[3,2-a]pyrimidin-5-ones were synthesized by the cyclization reactions of S-alkylated derivatives in concentrated H₂SO₄. Upon treatment of S-alkylated derivatives at different temperatures, intramolecular cyclization to 7-(substituted phenylamino)-5H-thiazolo[3,2-a]pyrimidin-5-ones or sulfonation of cyclized products to sulfonic acid derivatives occurred. The structures of the target compounds were confirmed by IR, ¹H-NMR, (13)C-NMR and HRMS studies. The compounds were evaluated for their preliminary in vitro antibacterial activity against some Gram-positive and Gram-negative bacteria and screened for antitubercular activity against Mycobacterium tuberculosis by the broth dilution assay method. Some compounds showed good antibacterial and antitubercular activities. PMID:26378507

  6. Preparation and characterization of sulfonated amine-poly(ether sulfone)s for proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Dong-Wan; Lim, Young-Don; Lee, Soon-Ho; Jeong, Young-Gi; Kim, Whan-Gi [Department of Applied Chemistry/RIC-ReSEM, Konkuk University, Chungju-si, Chungbuk 380-701 (Korea, Republic of); Hong, Tae-Whan [Department of Materials Sci and Engineering/RIC-ReSEM, Chungju National University, Chungju, Chungbuk (Korea, Republic of)

    2010-12-15

    Sulfonated amine-poly(ether sulfone)s (S-APES)s were prepared by nitration, reduction and sulfonation of poly(ether sulfone) (ultrason {sup registered} -S6010). Poly(ether sulfone) was reacted with ammonium nitrate and trifluoroacetic anhydride to produce the nitrated poly(ether sulfone), and was followed by reduction using tin(II)chloride and sodium iodide as reducing agents to give the amino-poly(ether sulfone). The S-APES was obtained by reaction of 1,3-propanesultone and the amino-poly(ether sulfone) (NH{sub 2}-PES) with sodium methoxide. The different degrees of nitration and reduction of poly(ether sulfone) were successfully synthesized by an optimized process. The reduction of nitro group to amino was done quantitatively, and this controlled the contents of the sulfonic acid group. The films were converted from salt to acid forms with dilute hydrochloric acid. Different contents of sulfonated unit of the S-APES were studied by FT-IR, {sup 1}H NMR spectroscopy, differential scanning calorimetry (DSC), and thermo gravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymers with water and methanol. The ion exchange capacity (IEC), a measure of proton conductivity, was evaluated. The S-APES membranes exhibit conductivities (25 C) from 1.05 x 10{sup -3} to 4.83 x 10{sup -3} S/cm, water swell from 30.25 to 66.50%, IEC from 0.38 to 0.82 meq/g, and methanol diffusion coefficients from 3.10 x 10{sup -7} to 4.82 x 10{sup -7} cm{sup 2}/S at 25 C. (author)

  7. Four-component one-pot synthesis of unsymmetrical polyhydroquinoline derivatives using 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate as a catalyst

    Institute of Scientific and Technical Information of China (English)

    Nader Ghaffari Khaligh

    2014-01-01

    3-Methyl-1-sulfonic acid imidazolium hydrogen sulfate has been used as an efficient, halogen-free, and reusable Brönsted acidic ionic liquid catalyst for the synthesis of ethyl-4-aryl/heteryl- hexahy-dro-trimehtyl-5-oxoquinoline-3-carboxylates via the one-pot condensation of dimedone with ar-yl/heteryl aldehydes, ethyl acetoacetate, and ammonium acetate under solvent-free conditions. This method has the advantage of being clean and simple, as well as providing the desired product in high yield over a short reaction time. Furthermore, the catalyst could be recycled and reused four times without any discernible reduction in activity.

  8. 2-(4-Acetamido­benzene­sulfonamido)­benzoic acid

    Science.gov (United States)

    Sharif, Shahzad; Khan, Islam Ullah; Mahmood, Tariq; Kang, Sung Kwon

    2011-01-01

    In the title compound, C15H14N2O5S, two similar mol­ecules comprise the asymmetric unit, which are linked by strong inter­molecular C—H⋯π inter­actions. Both mol­ecules are bent, with dihedral angles of 71.94 (16) and 74.62 (15)° between the benzene rings. An intra­molecular N—H⋯O hydrogen bond occurs in each mol­ecule. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. PMID:21836982

  9. Thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene and aliphatic dicarboxylic acid chlorides

    Indian Academy of Sciences (India)

    Khudbudin Mulani; Mohasin Momin; Nitin Ganjave; Nayaku Chavan

    2015-09-01

    A series of thermotropic liquid crystalline polyesters derived from bis-(4-hydroxybenzoyloxy)-2-methyl-1,4-benzene (BHBOMB) and aliphatic dicarboxylic acid chlorides were investigated. All these polyesters were synthesized by interfacial polycondensation method and characterized by differential scanning calorimetry and wide-angle X-ray diffractometer. These polyesters consist of BHBOMB as a mesogenic diol and aliphatic diacid chlorides were used as flexible spacers. The length of oligomethylene units in polymer was varied from the trimethylene to the dodecamethylene groups. The transition temperatures and thermodynamic properties were studied for all these polymers. All these polyesters were soluble in chlorinated solvents such as chloroform, dichloromethane, dichloroethane, etc. More importantly, all these polyesters exhibited very large mesophase stability.

  10. Preventive and therapeutic effects of NF-kappaB inhibitor curcumin in rats colitis induced by trinitrobenzene sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    Yan-Ting Jian; Guo-Feng Mai; Ji-De Wang; Ya-Li Zhang; Rong-Cheng Luo; Yong-Xin Fang

    2005-01-01

    AIM: To ascertain the molecule mechanism of nuclear factor-κB (NF-κB) inhibitor curcumin preventive and therapeutic effects in rats' colitis induced by trinitrobenzene sulfonic acid (TNBS).METHODS: Sixty rats with TNBS-induced colitis weretreated with 2.0% curcumin in the diet. Thirty positive control rats were treated with 0.5% sulfasalazine (SASP).Thirty negative control rats and thirty model rats were treated with general diet. Changes of body weight together with histological scores were evaluated. Survival rates were also evaluated. Cell nuclear NF-κB activity in colonic mucosa was evaluated by using electrophoretic mobility shift assay. Cytoplasmic IκB protein in colonic mucosa was detected by using Western Blot analysis.Cytokine messenger expression in colonic tissue was assessed by using semiquantitative reverse-transcription polymerase chain reaction.RESULTS: Treatment with curcumin could prevent and treat both wasting and histopathologic signs of rats with TNBS-induced intestinal inflammation. In accordance with these findings, NF-κB activation in colonic mucosa was suppressed in the curcumin-treated groups. Degradations of cytoplasmic IκB protein in colonic mucosa were blocked by curcumin treatment. Proinfiammatory cytokine messenger RNA expression in colonic mucosa was also suppressed.CONCLUSION: This study shows that NF-κB inhibitor curcumin could prevent and improve experimental colitis in murine model with inflammatory bowel disease (IBD).The findings suggest that NF-κB inhibitor curcumin could be a potential target for the patients with IBD.

  11. Kinetics and mechanism of the reduction of hydroxylamine-O-sulfonic acid by the hexaaquochromium(II) ion

    Energy Technology Data Exchange (ETDEWEB)

    Bakac, A.; Simunic, J.L.; Espenson, J.H. (Iowa State Univ., Ames (USA))

    1990-03-07

    The title reaction takes place with a 2:1 (Cr{sup 2+}):(HSA) stoichiometry (HSA = hydroxylamine-O-sulfonic acid) and yields CrNH{sub 3}{sup 3+}, Cr{sup 3+}, and CrSO{sub 4}{sup +} as the main products. The kinetics conform to the rate law {minus}d(HSA)/dt = {minus}d(Cr{sup 2+})/2(dt) = k{sub obs}(Cr{sup 2+})(HSA), where k{sub obs} = kK{sub a}/(K{sub a} + (H{sup +)}). At 25{degree}C and 1.0 M ionic strength (CHlO{sub 4} + LiClO{sub 4}) the parameter k has the value of 20.5 {plus minus} 0.3 M{sup {minus}1} s{sup {minus}1} when K{sub a} is set at the value (6.8 {plus minus} 0.8) {times} 10{sup {minus}2} M, as determined by pH titration. In the proposed mechanism, Cr{sup 2+} attacks at the nitrogen end of the anion, NH{sub 2}OSO{sub 3}{sup {minus}}, to form CrNH{sub 3}{sup 3+} and SO{sub 4}{sup {center dot}{minus}}. The sulfate radical anion then oxidizes rapidly the second mole of Cr{sup 2+} to yield Cr{sup 3+} and some CrSO{sub 4}{sup +}. In solutions containing Br{sup {minus}}, SO{sub 4}{sup {center dot}{minus}} oxidizes it to Br{sub 2}{sup {center dot}{minus}}. The latter reacts with Cr{sup 2+} to yield CrBr{sup 2+}. 19 refs., 2 figs.

  12. Prevention of tri-nitrobenzene of sulfonic acid-induced colitis in chicken by using extract of Aloe vera

    Directory of Open Access Journals (Sweden)

    Motamed Elsayed Mahmoud

    Full Text Available Aim: Aloe vera, species of succulent plant in the genus Aloe, has multiple clinical activities and used routinely to accelerate wound healing. The present study was designed to investigate the anti-inflammatory effect of Aloe vera extracts (AVE in vitro and in vivo. Materials and Methods: The effect of crude AVE on inducible nitric oxide production by LPS/IFNg-stimulated cultured macrophages was evaluated. The therapeutic effect of administering crude Aloe vera extracts (100 mg/kg b.w. on the development of tri-nitrobenzene of sulfonic acid (TNBS-induced colitis (40 mg/kg b. w. in chicken was also investigated. Chicken is a valuable model for this purpose because it showed preference to bitter taste of Aloe vera. Diverse clinical pictures of the colitis including weight loss, diarrhea and histopathological changes were evaluated. Results: Nitrite production by LPS/IFNg-stimulated macrophages was maximally reduced by adding of AVE (100 μg/ml. This result suggests a direct inhibitory effect of AVE on the inflammatory cells. Chicks treated orally with AVE showed improvement of the histological signs with no inflammatory cell infiltrates and reduction of myeloperoxidase (MPO activities when compared with colitis control group. AVE pretreatment ameliorated significantly the clinical and histopathological severity of the TNBS-induced colitis; decreased body weight loss and diarrhea and increased survival. Conclusion: It was concluded that oral administration of AVE represents a valuable therapeutic approach for the treatment of colitis in chicken. [Vet. World 2012; 5(8.000: 469-476

  13. Combined Effect of Free Nitrous Acid Pretreatment and Sodium Dodecylbenzene Sulfonate on Short-Chain Fatty Acid Production from Waste Activated Sludge.

    Science.gov (United States)

    Zhao, Jianwei; Liu, Yiwen; Ni, Bingjie; Wang, Qilin; Wang, Dongbo; Yang, Qi; Sun, Yingjie; Zeng, Guangming; Li, Xiaoming

    2016-01-01

    Free nitrous acid (FNA) serving as a pretreatment is an effective approach to accelerate sludge disintegration. Also, sodium dodecylbenzene sulfonate (SDBS), a type of surfactants, has been determined at significant levels in sewage sludge, which thereby affects the characteristics of sludge. Both FNA pretreatment and sludge SDBS levels can affect short-chain fatty acid (SCFA) generation from sludge anaerobic fermentation. To date, however, the combined effect of FNA pretreatment and SDBS presence on SCFA production as well as the corresponding mechanisms have never been documented. This work therefore aims to provide such support. Experimental results showed that the combination of FNA and SDBS treatment not only improved SCFA accumulation but also shortened the fermentation time. The maximal SCFA accumulation of 334.5 mg chemical oxygen demand (COD)/g volatile suspended solids (VSS) was achieved at 1.54 mg FNA/L treatment and 0.02 g/g dry sludge, which was respectively 1.79-fold and 1.41-fold of that from FNA treatment and sludge containing SDBS alone. Mechanism investigations revealed that the combined FNA pretreatment and SDBS accelerated solubilization, hydrolysis, and acidification steps but inhibited the methanogenesis. All those observations were in agreement with SCFA enhancement. PMID:26868898

  14. Effective Liquid-phase Nitration of Benzene Catalyzed by a Stable Solid Acid Catalyst: Silica Supported Cs2.5H0.5PMo12O40

    International Nuclear Information System (INIS)

    Silica supported Cs2.5H0.5PMo12O40 catalyst was prepared through sol-gel method with ethyl silicate-40 as silicon resource and characterized by X-ray diffraction, infrared spectroscopy, scanning electron microscopy, nitrogen adsorption-desorption and potentiometric titration methods. The Cs2.5H0.5PMo12O40 particles with Keggin-type structure well dispersed on the surface of silica, and the catalyst exhibited high surface area and acidity. The catalytic performance of the catalysts for benzene liquid-phase nitration was examined with 65% nitric acid as nitrating agent, and the effects of various parameters were tested, which including temperature, time and amount of catalyst, reactants ratio, especially the recycle of catalyst was emphasized. Benzene was effectively nitrated to mononitro-benzene with high conversion (95%) in optimized conditions. Most importantly, the supported catalyst was proved has excellent stability in the nitration progress, and there were no any other organic solvent and sulfuric acid were used in the reaction system, so the liquid-phase nitration of benzene that we developed was an eco-friendly and attractive alternative for the commercial technology

  15. 2-Chloro-5-(2-iodo­benzene­sulfonamido)­benzoic acid

    Science.gov (United States)

    Arshad, Muhammad Nadeem; Tahir, M. Nawaz; Khan, Islam Ullah; Siddiqui, Waseeq Ahmad; Shafiq, Muhammad

    2009-01-01

    In the mol­ecule of the title compound, C13H9ClINO4S, the coordination around the S atom is distorted tetra­hedral. The aromatic rings are oriented at a dihedral angle of 74.46 (9)°. Intra­molecular C—H⋯O hydrogen bonds result in the formation of two five- and one six-membered rings, which adopt planar, envelope and twisted conformations, respectively. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds link the mol­ecules to form R 2 2(8) ring motifs, which are further linked by C—H⋯O hydrogen bonds. π–π contacts between the benzene rings [centroid–centroid distances = 3.709 (3) and 3.772 (3) Å] may further stabilize the structure. The I atom is disordered over two positions, refined with occupancies of ca 0.75 and 0.25. PMID:21581894

  16. Synthesis and characterization of sulfonated cardo poly(arylene ether sulfone)s for fuel cell proton exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Islam, M.M.; Jang, H.H.; Lim, Y.D.; Seo, D.W.; Kim, W.G. [Department of Applied Chemistry, Konkuk University, Chungju, Chungbuk (Korea, Republic of); Kim, T.H.; Hong, Y.T. [Energy Material Research Center, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, D.M. [Material Engineering and Science, Hongik Univ, Jochiwon-eup, Yeongi-gun, Chungnam (Korea, Republic of)

    2012-12-15

    Sulfonated cardo poly(arylene ether sulfone)s (SPPA-PES) with various degrees of sulfonation (DS) were prepared by post-sulfonation of synthesized phenolphthalein anilide (PPA; N-phenyl-3,3'-bis(4-hydroxyphenyl)-1-isobenzopyrolidone) poly(arylene ether sulfone)s (PPA-PES) by using concentrated sulfuric acid. PPA-PES copolymers were synthesized by direct polycondensation of PPA with bis-(4-fluorophenyl)-sulfone and 4,4'-sulfonyldiphenol. The DS was varied with different mole ratios of PPA (24, 30, 40, 50 mol.%) in the polymer. The structure of the resulting SPPA-PES copolymers and the different contents of the sulfonated unit were studied by Fourier transform infrared (FT-IR) spectroscopy, {sup 1}H NMR spectroscopy, and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity of SPPA-PES were evaluated according to the increase of DS. The water uptake (WU) of the resulting SPPA-PES membranes was in the range of 20-72%, compared with 28% for Nafion 211 registered. The SPPA-PES membranes showed proton conductivities of 23-82 mS cm{sup -1}, compared with 194 mS cm{sup -1} for Nafion 211 registered, under 100% relative humidity (RH) at 80 C. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. How strong are strong poly(sulfonic acids)? An example of the poly(2-acrylamido-2-methyl-1-propanesulfonic acid)

    Czech Academy of Sciences Publication Activity Database

    Gospodinova, Natalia; Tomšík, Elena; Omelchenko, Olga

    2016-01-01

    Roč. 74, January (2016), s. 130-135. ISSN 0014-3057 R&D Projects: GA ČR(CZ) GA15-14791S Institutional support: RVO:61389013 Keywords : polyelectrolytes * strong poly(acids) * proton conductors Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.005, year: 2014

  18. Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line

    OpenAIRE

    Yuan Cui; Wei Liu; Wenping Xie; Wenlian Yu; Cheng Wang; Huiming Chen

    2015-01-01

    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by fl...

  19. Stability constants of uranium(VI) and thorium(IV) complexes formed with 8-hydroxyquinoline and its 5-sulfonic acid derivative

    International Nuclear Information System (INIS)

    The stability constants of uranium(VI) and thorium(IV) complexes formed with 8-hydroxyquinoline (8-HOQ) and its 5-sulfonic acid (8-HOQ-5-SO3H) derivative have been determined using the Irving-Rossotti method, computing the Calvin-Bjerrum pH-titration data. As a result, it is determined that the thorium(IV) complexes are considerably more stable than the corresponding uranium(VI) complexes. On the other hand, the complexes formed between 8-HOQ-5-SO3H and uranium(VI) or thorium(IV) are less stable than the corresponding 8-HOQ complexes. (author) 18 refs.; 2 figs.; 1 tab

  20. A new method to prepare high performance perfluorinated sulfonic acid ionomer/porous expanded polytetrafluoroethylene composite membranes based on perfluorinated sulfonyl fluoride polymer solution

    Science.gov (United States)

    Yang, Libin; Li, Hong; Ai, Fei; Chen, Xiaoyong; Tang, Junkun; Zhu, Yan; Wang, Chaonan; Yuan, Wang Zhang; Zhang, Yongming

    2013-12-01

    Perfluorinated sulfonyl fluoride (PFSF) resin, the precursor of perfluorinated sulfonic acid (PFSA) ionomer is successfully dissolved in perfluorinated solvents, and its hydrophobic nature is utilized to resolve the difficulty of impregnating hydrophilic PFSA solution into hydrophobic porous expanded polytetrafluoroethylene (ePTFE). The composite membrane fabricated through such simple but effective method is well impregnated, leading to better ionic conductivity and lower gas permeability. The fuel cell constructed with PFSF solution based membranes shows superior performance as compared to that of its aqueous PFSA solution based counterpart, which is comparable to that of commercial Nafion® 211.

  1. One-pot synthesis of pyrido[2,3-d]pyrimidine derivatives using sulfonic acid functionalized SBA-15 and the study on their antimicrobial activities

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2015-11-01

    Full Text Available A simple and clean one-pot method for the preparation of 7-amino-2,4-dioxo-5-aryl-1,2,3,4-tetrahydropyrido[2,3-d]pyrimidine-6-carbonitrile derivatives using 6-amino uracil, various aromatic aldehydes and malononitrile in the presence of sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H is described. Some of synthesized pyrido[2,3-d]pyrimidines showed antimicrobial activities against some fungi and gram positive and negative bacteria.

  2. Substrate Effects in the Supramolecular Assembly of 1,3,5-Benzene Tricarboxylic Acid on Graphite and Graphene.

    Science.gov (United States)

    MacLeod, J M; Lipton-Duffin, J A; Cui, D; De Feyter, S; Rosei, F

    2015-06-30

    The behavior of small molecules on a surface depends critically on both molecule-substrate and intermolecular interactions. We present here a detailed comparative investigation of 1,3,5-benzene tricarboxylic acid (trimesic acid, TMA) on two different surfaces: highly oriented pyrolytic graphite (HOPG) and single-layer graphene (SLG) grown on a polycrystalline Cu foil. On the basis of high-resolution scanning tunnelling microscopy (STM) images, we show that the epitaxy matrix for the hexagonal TMA chicken wire phase is identical on these two surfaces, and, using density functional theory (DFT) with a non-local van der Waals correlation contribution, we identify the most energetically favorable adsorption geometries. Simulated STM images based on these calculations suggest that the TMA lattice can stably adsorb on sites other than those identified to maximize binding interactions with the substrate. This is consistent with our net energy calculations that suggest that intermolecular interactions (TMA-TMA dimer bonding) are dominant over TMA-substrate interactions in stabilizing the system. STM images demonstrate the robustness of the TMA films on SLG, where the molecular network extends across the variable topography of the SLG substrates and remains intact after rinsing and drying the films. These results help to elucidate molecular behavior on SLG and suggest significant similarities between adsorption on HOPG and SLG. PMID:25594568

  3. The feasibility of isolation and detection of fullerenes and carbon nanotubes using the benzene polycarboxylic acid method

    International Nuclear Information System (INIS)

    The incorporation of fullerenes and carbon nanotubes into electronic, optical and consumer products will inevitably lead to the presence of these anthropogenic compounds in the environment. To date, there have been few studies isolating these materials from environmental matrices. Here we report a method commonly used to quantify black carbon (BC) in soils, the benzene polycarboxylic acid (BPCA) method, for measurement of two types of single walled carbon nanotubes (SWCNTs), two types of fullerenes and two forms of soot. The distribution of BC products (BPCAs) from the high pressure and high temperature oxidation illustrates the condensed nature of these compounds because they form predominantly fully substituted mellitic acid (B6CA). The conversion of carbon nanoparticles to BPCAs was highest for fullerenes (average of 23.2 ± 4.0% C recovered for both C60 and C70) and lowest for non-functionalized SWCNTs (0.5 ± 0.1% C). The recovery of SWCNTs was 10 times higher when processed through a cation-exchange column, indicating the presence of metals in SWCNTs compromises the oxidation chemistry. While mixtures of SWCNTs, soot and sediment revealed small losses of black carbon during sample processing, the method is suitable for quantifying total BC. The BPCA distribution of mixtures did not agree with theoretical mixtures using model polyaromatic hydrocarbons, suggesting the presence of a matrix effect. Future work is required to quantify different types of black carbon within the same sample.

  4. Ion-exclusion chromatographic behavior of aliphatic carboxylic acids and benzenecarboxylic acids on a sulfonated styrene--divinylbenzene co-polymer resin column with sulfuric acid containing various alcohols as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The addition of C1-C7 alcohols (methanol, ethanol, propanol, butanol, heptanol, hexanol and heptanol) to dilute sulfuric acid as eluent in ion-exclusion chromatography using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as the stationary phase was carried out for the simultaneous separations of both (a) C1-C7 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, 2-methylvaleric, isocaproic, caproic, 2,2-dimethyl-n-valeric, 2-methylhexanoic, 5-methylhexanoic and heptanoic acids) and (b) benzenecarboxylic acids (pyromellitic, hemimellitic, trimellitic, o-phthalic, m-phthalic, p-phthalic, benzoic and salicylic acids and phenol). Heptanol was the most effective modifier in ion-exclusion chromatography for the improvement of peak shapes and a reduction in retention volumes for higher aliphatic carboxylic acids and benzenecarboxylic acids. Excellent simultaneous separation and relatively highly sensitive conductimetric detection for these C1-C7 aliphatic carboxylic acids were achieved on the TSKgel SCX column (150 x 6 mm I.D.) in 30 min using 0.5 mM sulfuric acid containing 0.025% heptanol as eluent. Excellent simultaneous separation and highly sensitive UV detection at 200 nm for these benzenecarboxylic acids were also achieved on the TSKgel SCX column in 30 min using 5 mM sulfuric acid containing 0.075% heptanol as eluent. PMID:12830881

  5. Preparation and properties of composite membrane of bisphenol A-based sulfonated poly(arylene ether sulfone) and phosphotungstic acid for proton exchange membranes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ni; LIU Hui-ling; LI Jun-jing; XIA Zhi

    2010-01-01

    A series of bi A-SPAES (Ds=0.4)/phosphotungstic acid (PWA/bi A-SPAES) composite membranes with various contents of PWA were prepared and characterized by FT-IR.Scanning electron microscopy (SEM) images indicated the PWA were well dispersed within polymer matrix.These composite membranes were evaluated for proton exchange membranes (PEM) in direct methanol fuel cell (DMFC).These membranes showed good thermal stability.It was found that the water uptake of these membranes increased with the increase of the PWA content in the hybrid membranes.Meanwhile,the introduction of inorganic particles increased both the proton conductivity and the methanol permeability.The proton conductivities of composite membranes were increased from 0.017 S/cm to 0.045 S/cm at 20 ℃ and from 0.054 S/cm to 0.093 S/cm at 100 ℃ with the increase of PWA content from 0 to 50 %.Especially,all the methanol diffusion coefficients (4.20×10-8-1.05×10-7 cm2/s) of bi A-SPAES/PWA hybrid membranes are much lower than that of Nafion 117 membrane (2.1×10-6 cm2/s).Bi A-SPAES/PWA hybrid membranes were therefore proposed as candidates of material for PEM in DMFC.

  6. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    International Nuclear Information System (INIS)

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL−1 with a detection limit of 0.05 μgL−1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  7. Perfluorooctane sulfonic acid and organohalogen pollutants in liver of three freshwater fish species in Flanders (Belgium): relationships with biochemical and organismal effects

    International Nuclear Information System (INIS)

    A perfluorooctane sulfonic acid (PFOS) assessment was conducted on gibel carp (Carassius auratus gibelio), carp (Cyprinus carpio), and eel (Anguilla anguilla) in Flanders (Belgium). The liver PFOS concentrations in fish from the Ieperlee canal (Boezinge, 250-9031 ng/g wet weight, respectively) and the Blokkersdijk pond (Antwerp, 633-1822 ng/g wet weight) were higher than at the Zuun basin (Sint-Pieters-Leeuw, 11.2-162 ng/g wet weight) and among the highest in feral fish worldwide. Eel from the Oude Maas pond (Dilsen-Stokkem) and Watersportbaan basin (Ghent) had PFOS concentrations ranging between 212 and 857 ng/g wet weight. The hepatic PFOS concentration was significantly and positively related with the serum alanine aminotransferase activity, and negatively with the serum protein content in eel and carp. The hepatic PFOS concentration in carp correlated significantly and negatively with the serum electrolyte concentrations whereas a significant positive relation was found with the hematocrit in eel. Although 13 organochlorine pesticides, 22 polychlorinated biphenyl (PCB) congeners and 7 polybrominated diphenyl ethers (PBDEs) were also measured in the liver tissue, only PCB 28, PCB 74, γ-hexachlorocyclohexane (γ-HCH) and hexachlorobenzene (HCB) were suggested to contribute to the observed serological alterations in eel. - Hepatic perfluorooctane sulfonic acid contamination in Flanders (Belgium) might affect serological endpoints in feral carp and eel

  8. 3-[4-(Acetamido)­benzene­sulfonamido]­benzoic acid

    OpenAIRE

    Muhammad Shafiq; Muhammad Zia-ur-Rehman; Islam Ullah Khan; Ghulam Mustafa; Sidra Muzaffar Mirza

    2010-01-01

    In the title compound, C15H14N2O5S, the dihedral angle between the aromatic rings is 63.20 (11) Å. The crystal structure displays classical intermolecular O—H...O hydrogen bonding typical for carboxylic acids, forming centrosymmetric dimers. These dimers are further connected by N—H...O and C—H...O hydrogen bonds to form an extended network.

  9. 3-[4-(Acetamido)­benzene­sulfonamido]­benzoic acid

    Science.gov (United States)

    Mirza, Sidra Muzaffar; Mustafa, Ghulam; Khan, Islam Ullah; Zia-ur-Rehman, Muhammad; Shafiq, Muhammad

    2011-01-01

    In the title compound, C15H14N2O5S, the dihedral angle between the aromatic rings is 63.20 (11) Å. The crystal structure displays classical inter­molecular O—H⋯O hydrogen bonding typical for carb­oxy­lic acids, forming centrosymmetric dimers. These dimers are further connected by N—H⋯O and C—H⋯O hydrogen bonds to form an extended network. PMID:21522739

  10. Synthesis, characterization and biological evaluation of N-ferrocenylmethyl amino acid benzene carboxamide derivatives and N-ferrocenyl benzoyl amino alkane derivatives as anti-cancer agents.

    OpenAIRE

    Butler, William E.

    2012-01-01

    The aim of this research was to explore the structure-activity relationship (SAR) of ferrocenyl-bioconjugates. A series of N-(ferrocenylmethylamino acid)-fluorinated-benzene carboxamide derivatives and a series of N-(ferrocenyl)-benzoyl-aminoalkane derivatives have been synthesised, structurally characterised and biologically evaluated for their anti-proliferative activity on various cancer cell lines, principally, the (estrogen receptor positive) MCF-7 breast cancer cell line. The anti-c...

  11. SANS study of concentration effect in magnetite/oleic acid/benzene ferrofluid

    Energy Technology Data Exchange (ETDEWEB)

    Aksenov, V.; Avdeev, M. [Frank Laboratory of Neutron Physics, JINR, 141980 Moscow Region, Dubna (Russian Federation); Balasoiu, M. [Frank Laboratory of Neutron Physics, JINR, 141980 Moscow Region, Dubna (Russian Federation); Institute of Space Sciences, 76900 Bucharest (Romania); Rosta, L.; Toeroek, G. [Research Institute for Solid State Physics and Optics, KFKI, 1525 Budapest (Hungary); Vekas, L.; Bica, D. [Center of Fundamental and Advanced Technical Research, Timisoara Branch of RAS, Timisoara-1900 (Romania); Garamus, V. [GKSS Research Centre, 21502 Geesthacht (Germany); Kohlbrecher, J. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2002-07-01

    The effect of the colloidal particle concentration on the structure of the magnetite/C{sub 6}D{sub 6} ferrofluid stabilized by oleic acid is investigated by small-angle neutron scattering (SANS). A significant decrease in the thickness of the surfactant layer with increase in the magnetite concentration is observed. This points to the fact that the interparticle interaction increasing with the concentration presses the surfactant tails in the layer closer against the magnetite surface. The influence of magnetic scattering on the SANS curves is considered. (orig.)

  12. SANS study of concentration effect in magnetite/oleic acid/benzene ferrofluid

    International Nuclear Information System (INIS)

    The effect of the colloidal particle concentration on the structure of the magnetite/C6D6 ferrofluid stabilized by oleic acid is investigated by small-angle neutron scattering (SANS). A significant decrease in the thickness of the surfactant layer with increase in the magnetite concentration is observed. This points to the fact that the interparticle interaction increasing with the concentration presses the surfactant tails in the layer closer against the magnetite surface. The influence of magnetic scattering on the SANS curves is considered. (orig.)

  13. Preparation and characterization of poly(2-acrylamido-2-methylpropane-sulfonic acid)/Chitosan hydrogel using gamma irradiation and its application in wastewater treatment

    Science.gov (United States)

    Gad, Y. H.

    2008-09-01

    Radiation grafting of chitosan with 2-acrylamido-2-methyl propane sulfonic acid (AMPS) has been successfully performed. The effect of absorbed dose (kGy) and the chitosan:AMPS ratio on graft hydrogelization was studied. The structure of the prepared hydrogel was confirmed using infrared spectroscopy (IR). Thermal properties were simultaneously studied by thermogravimetric analysis (TGA). The effect of the polymerization variables on the swelling % of the prepared hydrogel was investigated. The highest equilibrium degree of swelling (38.6 g/g) and gel % (94.7%) of the prepared chitosan-AMPS hydrogel was at 40% AMPS and absorbed dose of 10 kGy. The removal of methylene blue, acid red dye, Cd (II) and Cr (III) from composed wastewater was also investigated. The effect of pH, the chitosan:AMPS ratio and the concentration of the pollutant on the adsorption process were studied.

  14. Synthesis and properties of sulfonated poly(ether sulfone) membranes containing metallophthalocyanine

    International Nuclear Information System (INIS)

    Graphical abstract: Metallophthalocyanine (MPc) is a potent catalyst for hydrogen peroxide oxidation, and the mechanism of H2O2 decomposition in solution has been previously explored (H2O2 → 2H+ + O2 + 2e−). This work presents a role of MPc as an anti-oxidant for water and hydrogen peroxide. Poly(ether sulfone)s contained MPc (Ni and Co) (PMPc) were prepared by two-step reaction from 1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthlene, 4,4-biphenol and 4,4-fluorophenylsulfone, and followed reaction with metal (II) chloride (Ni and Co) and 1,2-dicyanobenzene in quinoline. The sulfonated PMPc (SPMPc) were synthesized by sulfonation reaction with chlorosulfuric acid and methylene chloride. All these membranes were casted from dimethylacetamide (DMAc). The structure properties of the synthesized polymers were investigated by 1H NMR spectroscopy and FT-IR. The membranes were studied by ion exchange capacity (IEC), water uptake, and proton conductivity. These membranes deterioration test was performed by Fenton reagent as kind of contained metal ions, and compared with normal sulfonated poly(ether sulfone)s and Nafion. - Highlights: • We synthesize sulfonated copolymers contained metallophthalocyanine for PEMFC. • We control selectively sulfonation on biphenyl structures on polymer. • Increasing sulfonic acid group increases proton conductivity. • These type membranes show good chemical stability and performance. - Abstract: Metallophthalocyanine (MPc) is a potent catalyst for hydrogen peroxide oxidation (H2O2 → 2H+ + O2 + 2e−). The properties of membranes with and without MPc have been studied in this study. Poly(ether sulfone)s containing MPc (Ni and Co) (PMPc) were prepared by two-step reaction from 1,4-bis(4-hydroxyphenyl)-2,3-dicyanonaphthlene, 4,4-biphenol and 4,4-fluorophenylsulfone, and were followed reaction with metal (II) chloride (Ni and Co) and 1,2-dicyanobenzene in quinoline. The sulfonated PMPc (SPMPc) were synthesized by sulfonation reaction of

  15. Pipping success and liver mRNA expression in chicken embryos exposed in ovo to C8 and C11 perfluorinated carboxylic acids and C10 perfluorinated sulfonate.

    Science.gov (United States)

    O'Brien, Jason M; Crump, Doug; Mundy, Lukas J; Chu, Shaogang; McLaren, Kristina K; Vongphachan, Viengtha; Letcher, Robert J; Kennedy, Sean W

    2009-10-28

    Several perfluoroalkyl compounds (PFCs) are ubiquitous environmental contaminants that can biomagnify in species at high trophic levels including wild birds. Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) have been detected in wild birds and are known to reduce hatching success of laboratory-exposed chicken embryos at environmentally relevant concentrations. Limited toxicity data are available regarding avian exposure to PFCs of chain lengths greater than C(8), which are of increasing environmental relevance following the recent phase-out of PFOS and PFOA. In this study, linear PFOA, perfluoroundecanoic acid (PFUdA) and perfluorodecane sulfonate (PFDS) were injected into the air cell of white leghorn chicken eggs (Gallus gallus domesticus) prior to incubation to determine effects on embryo pipping success. Furthermore, mRNA expression of key genes involved in pathways implicated in PFC toxicity was monitored in liver tissue. PFOA, PFUdA or PFDS had no effect on embryonic pipping success at concentrations up to 10 microg/g. All PFCs accumulated in the liver to concentrations greater than the initial whole-egg concentration as determined by HPLC/MS/MS. Hepatic accumulation was highest for PFOA (4.5 times) compared to PFUdA and PFDS. Cytochrome P450 1A4 and liver fatty acid binding protein mRNA expression increased after exposure to PFUdA but was only statistically significant at 10 microg/g; several orders of magnitude higher than levels found in wild bird eggs. Based on the present results for white leghorn chickens, current environmental concentrations of PFOA, PFUdA and PFDS are unlikely to affect the hatching success of wild birds. PMID:19595750

  16. Enhanced conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film by acid treatment for indium tin oxide-free organic solar cells

    Science.gov (United States)

    Lin, Chun-Chiao; Huang, Chih-Kuo; Hung, Yu-Chieh; Chang, Mei-Ying

    2016-08-01

    An acid treatment is used in the enhancement of the conductivity of the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) thin film, which is often used as the anode in organic solar cells. There are three types of acid treatment for PEDOT:PSS thin film: hydrochloric, sulfuric, and phosphoric acid treatments. In this study, we examine and compare these three ways with each other for differences in conductivity. Hydrochloric acid results in the highest conductivity enhancement, from 0.3 to 1109 S/cm. We also discuss the optical transmittance, conductivity, surface roughness, surface morphology, and stability, as well as the factors that can influence device efficiency. The devices are fabricated using an acid-treated PEDOT:PSS thin film as the anode. The highest power conversion efficiency was 1.32%, which is a large improvement over that of the unmodified organic solar cell (0.21%). It is comparable to that obtained when using indium tin oxide (ITO) as an electrode, ca. 1.46%.

  17. A complementary electrochromic device based on polyaniline tethered polyhedral oligomeric silsesquioxane and poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Shanxin [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); Ma, Jan; Lu, Xuehong [Temasek Laboratories, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2009-12-15

    A high-contrast complementary electrochromic device based on polyaniline (PANI) tethered polyhedral oligomeric silsesquioxane (POSS) (POSS-PANI) and poly(3,4-ethylenedioxythiophene)/poly(4-styrene sulfonic acid) (PEDOT:PSS) is assembled. The electrochromic properties, cyclic voltammetry behavior and coloration efficiency of the device are studied. Due to the loosely packed structure, POSS-PANI gives rise to a significantly higher electrochromic contrast, coloration efficiency and faster switching speed than PANI. Despite its high contrast, the combination of POSS-PANI with PEDOT:PSS still shows synergy in terms of contrast enhancement, which can be attributed to the additional driving force for the diffusion of dopants into PEDOT:PSS provided by the dedoping of POSS-PANI. (author)

  18. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes

    Directory of Open Access Journals (Sweden)

    Kundu Kshama

    2014-01-01

    Full Text Available (±-Camphor-10-sulfonic acid (CSA catalyzed condensation of 2-naphthol with both aliphatic/aromatic aldehydes at 80°C yielded 14-alkyl/aryl-dibenzoxanthenes as the sole product in high yields. However, the same condensation with benzaldehyde at 25°C afforded a mixture of intermediate 1,1-bis-(2-hydroxynaphthylphenylmethane and 14-phenyl-dibenzoxanthene while the condensation with aliphatic aldehydes at 25°C furnished the corresponding 14-alkyl-dibenzoxanthenes as the sole product. Moreover, condensation of 2-naphthol with aromatic/aliphatic aldehydes with low catalyst loading (2 mol% was greatly accelerated under microwave irradiation to afford the corresponding 14-aryl/alkyl-dibenzoxanthenes as the sole product in high yields.

  19. β–Cyclodextrin–Propyl Sulfonic Acid Catalysed One-Pot Synthesis of 1,2,4,5-Tetrasubstituted Imidazoles as Local Anesthetic Agents

    Directory of Open Access Journals (Sweden)

    Yan Ran

    2015-11-01

    Full Text Available Some functionalized 1,2,4,5-tetrasubstituted imidazole derivatives were synthesized using a one-pot, four component reaction involving 1,2-diketones, aryl aldehydes, ammonium acetate and substituted aromatic amines. The synthesis has been efficiently carried out in a solvent free medium using β-cyclodextrin-propyl sulfonic acid as a catalyst to afford the target compounds in excellent yields. The local anesthetic effect of these derivatives was assessed in comparison to lidocaine as a standard using a rabbit corneal and mouse tail anesthesia model. The three most potent promising compounds were subjected to a rat sciatic nerve block assay where they showed considerable local anesthetic activity, along with minimal toxicity. Among the tested analogues, 4-(1-benzyl-4,5-diphenyl-1H-imidazol-2-yl-N,N-dimethylaniline (5g was identified as most potent analogue with minimal toxicity. It was further characterized by a more favourable therapeutic index than the standard.

  20. A glassy carbon electrode modified with poly(anthranilic acid), poly(diphenylamine sulfonate) and CuO nano-particles for the sensitive determination of hydrogen peroxide

    International Nuclear Information System (INIS)

    We report on a modified glassy carbon electrode (GCE) for sensing hydrogen peroxide (H2O2). It was constructed by consecutive electrochemical deposition of poly(anthranilic acid) and poly(diphenylamine sulfonate) on the GCE, followed by the deposition of copper oxide (CuO). The morphology and electrochemistry of the modified electrode was characterized by atomic force microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied with the use of differential pulse voltammetry under optimized conditions. This sensor displayed significantly better electrocatalytic activity for the reduction of H2O2 in comparison to a GCE without or with modification with CuO or polymer films alone. The response to H2O2 is linear in the range between 0.005 to ∼11 mM, and the detection limit is 0.18 μM (at an S/N of 3). (author)

  1. Preparation of Poly[Styrene(ST)-co-Allyloxy-2-Hydroxypropane Sulfonic Acid Sodium Salt(COPS-I)] Colloidal Crystalline Photonic Crystals.

    Science.gov (United States)

    Choo, Hun Seung; Lee, Ki Chang

    2015-10-01

    Colloidal crystalline photonic crystals using highly monodisperse poly[Styrene(ST)-co-Allyloxy-2-hydroxypropane sulfonic acid sodium salt(COPS-I)] microspheres were prepared to study their optical properties under visible light. For this purpose, a series of surfactant-free emulsion copolymerizations was carried out at various reaction conditions such as the changes of ST/COPS-I ratio, polymerization temperature, KPS initiator and DVB crosslinker concentration. All the latices showed highly uniform spherical particles in the size range of 165-550 nm and the respective opaline structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices. PMID:26726395

  2. Degradation and mineralization of organic UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) using UV-254 nm/H{sub 2}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Abdelraheem, Wael H.M. [Chemistry Department, Faculty of Science, Sohag University, Sohag 82524 (Egypt); Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); He, Xuexiang; Duan, Xiaodi [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus); Dionysiou, Dionysios D., E-mail: dionysios.d.dionysiou@uc.edu [Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); NIREAS-International Water Research Center, University of Cyprus, Nicosia 1678 (Cyprus)

    2015-01-23

    Graphical abstract: - Highlights: • UV-254 nm/H{sub 2}O{sub 2} AOP was utilized for the degradation and mineralization of PBSA and BSA. • Promotion of k{sub obs} with [H{sub 2}O{sub 2}]{sub 0} ≤ 4 mM and inhibition at higher [H{sub 2}O{sub 2}]{sub 0} were observed. • The S and N were released and monitored as SO{sub 4}{sup 2−} and NH{sub 4}{sup +}, respectively. • Br{sup −} inhibited both the degradation and mineralization much more significantly than Cl{sup −}. • There was an increase in [NH{sub 4}{sup +}] at higher [H{sub 2}O{sub 2}]{sub 0} and its further destruction at higher UV fluence. - Abstract: Various studies have revealed the non-biodegradable and endocrine disrupting properties of sulfonated organic UV absorbers, directing people's attention toward their risks on ecological and human health and hence their removal from water. In this study, UV-254 nm/H{sub 2}O{sub 2} advanced oxidation process (AOP) was investigated for degrading a model UV absorber compound 2-phenylbenzimidazole-5-sulfonic acid (PBSA) and a structurally similar compound 1H-benzimidazole-2-sulfonic acid (BSA), with a specific focus on their mineralization. At 4.0 mM [H{sub 2}O{sub 2}]{sub 0}, a complete removal of 40.0 μM parent PBSA and 25% decrease in TOC were achieved with 190 min of UV irradiation; SO{sub 4}{sup 2−} was formed and reached its maximum level while the release of nitrogen as NH{sub 4}{sup +} was much lower (around 50%) at 190 min. Sulfate removal was strongly enhanced by increasing [H{sub 2}O{sub 2}]{sub 0} in the range of 0–4.0 mM, with slight inhibition in 4.0–12.0 mM. Faster and earlier ammonia formation was observed at higher [H{sub 2}O{sub 2}]{sub 0}. The presence of Br{sup −} slowed down the degradation and mineralization of both compounds while a negligible effect on the degradation was observed in the presence of Cl{sup −}. Our study provides important technical and fundamental results on the HO{sup ·} based degradation and

  3. The impact of hyaluronic acid oligomer content on physical, mechanical, and biologic properties of divinyl sulfone-crosslinked hyaluronic acid hydrogels.

    Science.gov (United States)

    Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand

    2010-08-01

    In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1 x 10(6) Da) and HA-o mixtures (HA-o: 0.75-10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA-o was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild subcutaneous inflammatory response in vivo and VCAM-1 expression by endothelial cells (ECs) cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA-o and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromise their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA-o and more biocompatible HMW HA on synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and

  4. Perfluoroalkyl sulfonates and carboxylic acids in liver, muscle and adipose tissues of black-footed albatross (Phoebastria nigripes) from Midway Island, North Pacific Ocean.

    Science.gov (United States)

    Chu, Shaogang; Wang, Jun; Leong, Gladys; Woodward, Lee Ann; Letcher, Robert J; Li, Qing X

    2015-11-01

    The Great Pacific Garbage Patch (GPGP) is a gyre of marine plastic debris in the North Pacific Ocean, and nearby is Midway Atoll which is a focal point for ecological damage. This study investigated 13 C4-C16 perfluorinated carboxylic acids (PFCAs), four (C4, C6, C8 and C10) perfluorinated sulfonates and perfluoro-4-ethylcyclohexane sulfonate [collectively perfluoroalkyl acids (PFAAs)] in black-footed albatross tissues (collected in 2011) from Midway Atoll. Of the 18 PFCAs and PFSAs monitored, most were detectable in the liver, muscle and adipose tissues. The concentrations of PFCAs and PFSAs were higher than those in most seabirds from the arctic environment, but lower than those in most of fish-eating water birds collected in the U.S. mainland. The concentrations of the PFAAs in the albatross livers were 7-fold higher than those in Laysan albatross liver samples from the same location reported in 1994. The concentration ranges of PFOS were 22.91-70.48, 3.01-6.59 and 0.53-8.35 ng g(-1) wet weight (ww), respectively, in the liver, muscle and adipose. In the liver samples PFOS was dominant, followed by longer chain PFUdA (8.04-18.70 ng g(-1) ww), PFTrDA, and then PFNA, PFDA and PFDoA. Short chain PFBA, PFPeA, PFBS and PFODA were below limit of quantification. C8-C13 PFCAs showed much higher composition compared to those found in other wildlife where PFOS typically predominated. The concentrations of PFUdA in all 8 individual albatross muscle samples were even higher than those of PFOS. This phenomenon may be attributable to GPGP as a pollution source as well as PFAA physicochemical properties. PMID:26037817

  5. Species differences in the metabolism of benzene

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, R.F. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States)

    1996-12-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of the benzene to hydroquinone metabolites than do rats or chimpanzees, especially at low doses. Nonhuman primates metabolize less of the benzene to muconic acid than do rodents or humans. In all species studied, a greater proportion of benzene is converted to hydroquinone and ring-breakage metabolites at low doses than at high doses. This finding should be considered in attempting to extrapolate the toxicity of benzene observed at high doses to predicted toxicity at low doses. Because ring-breakage metabolites and hydroquinone have both been implicated in the toxicity of benzene, the higher formation of those metabolites in the mouse may partially explain why mice are more sensitive to benzene than are rats. Metabolism of benzene in humans, the species of interest, does not exactly mimic that of any animal species studied. More information on the urinary and blood metabolites of occupationally exposed people is required to determine the fractional conversion of benzene to putative toxic metabolites and the degree of variability present in human subjects. 12 refs., 4 tabs.

  6. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen Dongyang [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Wang Shuanjin, E-mail: wangshj@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Xiao Min [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China); Meng Yuezhong, E-mail: mengyzh@mail.sysu.edu.c [Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed.

  7. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Dongyang; Wang, Shuanjin; Xiao, Min; Meng, Yuezhong [The Key Laboratory of Low-carbon Chemistry and Energy Conservation of Guangdong Province, Institute of Optoelectronic and Functional Composite Materials, Sun Yat-Sen University, Guangzhou 510275 (China)

    2010-12-15

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO{sup 2+} permeability and cell performance for the single cell were examined and assessed. (author)

  8. Synthesis and properties of novel sulfonated poly(arylene ether sulfone) ionomers for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Novel sulfonated poly(arylene ether sulfone)s with electron-withdrawing sulfone groups in each repeat unit were synthesized via step polymerization followed by post-sulfonation using chlorosulfonic acid. The sulfonation degree can be readily controlled by adjusting the feed ratio of the repeat unit of polymers to chlorosulfonic acid. The synthesized polymers are soluble in common aprotic solvents such as dimethyl sulfoxide, N,N'-dimethylacetamide and dimethylformamide, and can be cast into transparent membranes from their solutions. The ion exchange capacity, water uptake, swelling ratio, sulfonation degree, mechanical property, oxidative property, thermal property and proton conductivity were investigated in detail using different methodologies. As an objective to apply these polymers as separators for vanadium redox flow battery, the VO2+ permeability and cell performance for the single cell were examined and assessed.

  9. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

    International Nuclear Information System (INIS)

    The functionalization of silica-coated Fe3O4 magnetic nanoparticles (Fe3O4@SiO2) using chlorosulfonic acid were afforded sulfonic acid-functionalized magnetic Fe3O4 nanoparticles (Fe3O4@SiO2–SO3H) that can be applied as an organic–inorganic hybrid heterogeneous catalyst. The used Fe3O4 magnetic nanoparticles are 18–30 nm sized that was rapidly functionalized and can be used as catalyst in organic synthesis. The prepared nanoparticles were characterized by X-ray diffraction analysis, magnetization curve, scanning electron microscope, dynamic laser scattering, and FT-IR measurements. The resulting immobilized catalysts have been successfully used in the synthesis of 1,8‐dioxo-octahydroxanthene derivatives under solvent free condition. This procedure has many advantages such as; a much milder method, a shorter reaction time, a wide range of functional group tolerance, and absence of any tedious workup or purification. Other remarkable features include the catalyst can be reused at least five times without any obvious change in its catalytic activity. This procedure also avoids hazardous reagents/solvents, and thus can be an eco-friendly alternative to the existing methods.Graphical AbstractA highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

  10. Ion-exclusion chromatographic separations of C1-C6 aliphatic carboxylic acids on a sulfonated styrene-divinylbenzene co-polymer resin column with 5-methylhexanoic acid as eluent.

    Science.gov (United States)

    Ohta, Kazutoku; Towata, Atsuya; Ohashi, Masayoshi

    2003-05-16

    The application of C7 aliphatic carboxylic acids (heptanoic, 2-methylhexanoic, 5-methylhexanoic and 2,2-dimethyl-n-valeric acids) as eluents in ion-exclusion chromatography with conductimetric detection for C1-C6 aliphatic carboxylic acids (formic, acetic, propionic, isobutyric, butyric, isovaleric, valeric, isocaproic and caproic acids) was carried out using a highly sulfonated styrene-divinylbenzene co-polymer resin (TSKgel SCX) in the H+ form as a stationary phase. When using 0.05 mM sulfuric acid at pH 4.0 as the eluent, peak shapes of hydrophobic carboxylic acids (isovaleric, valeric, isocaproic and caproic acids) were tailed strongly. In contrast, when using 1 mM these C7 carboxylic acids at pH ca. 4 as the eluents, although system peaks (vacant peaks) corresponding to these C7 carboxylic acids appeared, peak shapes of these hydrophobic acids were improved drastically. Excellent simultaneous separation and relatively high sensitive conductimetric detection for these C1-C6 aliphatic carboxylic acids were achieved in 25 min on the TSKgel SCX column (150 x 6 mm I.D.) using 1 mM 5-methylhexanoic acid at pH 4.0 as the eluent. PMID:12830882

  11. Evaluation of benzene exposure in petrol pump attendants and in mechanics by urinary trans, trans-muconic acid (t, t-MA determination

    Directory of Open Access Journals (Sweden)

    Teresa Cirillo

    2004-12-01

    Full Text Available

    Occupational exposure to benzene in petrol pump attendants and in mechanics was studied by examining the benzene content in both the air breathed and in the urinary metabolite trans,trans-muconic acid (t,t-MA. Thirty petrol pump attendants and thirty mechanics (as exposed workers and thirty adult male office workers (as non exposed workers were involved in the study. Measures were taken at the begin and at the end of the working shifts.

     The benzene concentrations in the breathing air samples varied from 2 to 88 μg m-3, lower than the EU acceptable limit for occupational environment. The average urinary t,t-MA in the petrol pump attendants at the begin and at the end of the working shifts ranged between 133 ± 69 and 255 ± 174 μg g-1 creatinine and in the mechanics between 204 ± 139 and 300 ± 211 μg g-1 creatinine, respectively.

    In all the participants the mean levels of urinary t,t-MA at the end of the working shifts were significantly higher than those at the beginning. In the exposed workers mean levels of urinary t,t-MA were significantly higher than in those of the non-exposed workers. The influence of the smoking was demonstrated by the urinary t,t-MA levels in smoking non-exposed subjects.

  12. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort

    Science.gov (United States)

    Haiman, Christopher A.; Patel, Yesha M.; Stram, Daniel O.; Carmella, Steven G.; Chen, Menglan; Wilkens, Lynne R.; Le Marchand, Loic; Hecht, Stephen S.

    2016-01-01

    Research from the Multiethnic Cohort (MEC) demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA), a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005) SPMA/ml urine than Whites (2.67 [0.13]) while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005). SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1) deletion explained between 14.2–31.6% (p = 5.4x10-157) and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9) of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke. PMID:26959369

  13. Benzene Uptake and Glutathione S-transferase T1 Status as Determinants of S-Phenylmercapturic Acid in Cigarette Smokers in the Multiethnic Cohort.

    Directory of Open Access Journals (Sweden)

    Christopher A Haiman

    Full Text Available Research from the Multiethnic Cohort (MEC demonstrated that, for the same quantity of cigarette smoking, African Americans and Native Hawaiians have a higher lung cancer risk than Whites, while Latinos and Japanese Americans are less susceptible. We collected urine samples from 2,239 cigarette smokers from five different ethnic groups in the MEC and analyzed each sample for S-phenylmercapturic acid (SPMA, a specific biomarker of benzene uptake. African Americans had significantly higher (geometric mean [SE] 3.69 [0.2], p<0.005 SPMA/ml urine than Whites (2.67 [0.13] while Japanese Americans had significantly lower levels than Whites (1.65 [0.07], p<0.005. SPMA levels in Native Hawaiians and Latinos were not significantly different from those of Whites. We also conducted a genome-wide association study in search of genetic risk factors related to benzene exposure. The glutathione S-transferase T1 (GSTT1 deletion explained between 14.2-31.6% (p = 5.4x10-157 and the GSTM1 deletion explained between 0.2%-2.4% of the variance (p = 1.1x10-9 of SPMA levels in these populations. Ethnic differences in levels of SPMA remained strong even after controlling for the effects of these two deletions. These results demonstrate the powerful effect of GSTT1 status on SPMA levels in urine and show that uptake of benzene in African American, White, and Japanese American cigarette smokers is consistent with their lung cancer risk in the MEC. While benzene is not generally considered a cause of lung cancer, its metabolite SPMA could be a biomarker for other volatile lung carcinogens in cigarette smoke.

  14. Silica-based sulfonic acid (MCM-41-SO3H: a practical and efficient catalyst for the synthesis of highly substituted quinolines under solvent-free conditions at ambient temperature

    Directory of Open Access Journals (Sweden)

    Ali Maleki

    2014-06-01

    Full Text Available In this work, a variety of highly substituted quinolines were readily synthesized via Friedlander annulation using Brönsted acid silica-based sulfonic acid as a modified catalyst under solvent-free conditions at room temperature. This efficient procedure has the advantages of giving the target compounds in high yields, short reaction times, simple workup procedure, reusability of the catalyst, and environmentally benign conditions.

  15. Novel Ordered Mesoporous Carbon Based Sulfonic Acid as an Efficient Catalyst in the Selective Dehydration of Fructose into 5-HMF: the Role of Solvent and Surface Chemistry.

    Science.gov (United States)

    Karimi, Babak; Mirzaei, Hamid M; Behzadnia, Hesam; Vali, Hojatollah

    2015-09-01

    Novel ionic liquid derived ordered mesoporous carbons functionalized with sulfonic acid groups IOMC-ArSO3H and GIOMC-ArSO3H were prepared, characterized, and examined in the dehydration reaction of fructose into 5-hydroxymethylfurfural (5-HMF) both in aqueous and nonaqueous systems. To study and correlate the surface properties of these carbocatalysts and some other SBA-15 typed solid acids with 5-HMF yield, hydrophilicity index (H-index) were employed in the fructose dehydration. Our study systematically declared that almost a criterion may be expected for application of solid acids in which by increasing H-index value up to 0.8 the HMF yield enhances accordingly. More increase in H-index up to 1.3 did not change the HMF yield profoundly. Although, it has been shown that the catalyst with larger H-index (∼1.3) resulted in higher activity both in aqueous and 2-propanol systems, during the recycling process deactivation occurs because of more water uptake and the catalysts with optimum amount of H-index (∼0.8) is more robust in the dehydration of fructose. PMID:26259108

  16. Properties investigation of sulfonated poly(ether ether ketone)/polyacrylonitrile acid-base blend membrane for vanadium redox flow battery application.

    Science.gov (United States)

    Li, Zhaohua; Dai, Wenjing; Yu, Lihong; Liu, Le; Xi, Jingyu; Qiu, Xinping; Chen, Liquan

    2014-11-12

    Acid-base blend membrane prepared from sulfonated poly(ether ether ketone) (SPEEK) and polyacrylonitrile (PAN) was detailedly evaluated for vanadium redox flow battery (VRFB) application. SPEEK/PAN blend membrane exhibited dense and homogeneous cross-section morphology as scanning electron microscopy and energy-dispersive X-ray spectroscopy images show. The acid-base interaction of ionic cross-linking and hydrogen bonding between SPEEK and PAN could effectively reduce water uptake, swelling ratio, and vanadium ion permeability, and improve the performance and stability of blend membrane. Because of the good balance of proton conductivity and vanadium ion permeability, blend membrane with 20 wt % PAN (S/PAN-20%) showed higher Coulombic efficiency (96.2% vs 91.1%) and energy efficiency (83.5% vs 78.4%) than Nafion 117 membrane at current density of 80 mA cm(-2) when they were used in VRFB single cell. Besides, S/PAN-20% membrane kept a stable performance during 150 cycles at current density of 80 mA cm(-2) in the cycle life test. Hence the SPEEK/PAN acid-base blend membrane could be used as promising candidate for VRFB application. PMID:25315399

  17. Matrix Isolation Infrared Spectroscopy of an O-H···π Hydrogen-Bonded Complex between Formic Acid and Benzene.

    Science.gov (United States)

    Banerjee, Pujarini; Bhattacharya, Indrani; Chakraborty, Tapas

    2016-05-26

    Mid-infrared spectra of an O-H···π hydrogen-bonded 1:1 complex between formic acid and benzene were measured by isolating the complex in an argon matrix at a temperature of 8 K. The O-H stretching fundamental of formic acid (νO-H) undergoes a red shift of 120 cm(-1), which is the largest among the known π-hydrogen bonded complexes of an O-H donor with respect to benzene as acceptor. Electronic structure theory methods were used extensively to suggest a suitable geometry of the complex that is consistent with a recent study performed at CCSD(T)/CBS level by Zhao et al. (J. Chem. Theory Comput. 2009, 5, 2726-2733), as well as with the measured IR spectral shifts of the present study. It has been determined that density functional theory (DFT) D functionals as well as parametrized DFT functionals like M06-2X, in conjunction with modestly sized basis sets like 6-31G (d, p), are sufficient for correct predictions of the spectral shifts observed in our measurement and also for reproducing the value of the binding energy reported by Zhao et al. We also verified that these low-cost methods are sufficient in predicting the νO-H spectral shifts of an analogous O-H···π hydrogen-bonded complex between phenol and benzene. However, some inconsistencies with respect to shifts of νO-H arise when diffuse functions are included in the basis sets, and the origin of this anomaly is shown to lie in the predicted geometry of the complex. Natural bond orbital (NBO) and atoms-in-molecule (AIM) analyses were performed to correlate the spectral behavior of the complex with its geometric parameters. PMID:27163753

  18. Synthesis and characterization of sulfonated polyphenylene containing benzophenone moiety via nickel catalyzed polymerization

    International Nuclear Information System (INIS)

    Graphical abstract: Synthesis and characterization of sulfonated polyphenylene containing benzophenone moiety via nickel catalyzed polymerization. - Highlights: • The active new monomer, 1,6-dichloro-2,5-dibenzoylbenzene, was synthesized. • The sulfonated polyphenylenes containing benzoyl moiety were synthesized with high molecular weight using Ni(II) and Zn catalysts. • Carbon-carbon structures membranes showed good performance with high proton conductivity. - Abstract: The synthesis of polyphenylenes containing benzoyl moiety (PPBP), their functionalization with sulfonic acid groups, and the measurement of properties for PEMs are described. The new monomer was synthesized from an oxidation reaction of 2,5-dichloro-p-xylene, followed by Fridel-craft reaction with benzene. The polymerization was performed by a Ni-catalyzed carbon-carbon coupling reaction of 1,6-dichloro-2,5-dibenzoylbenzene, followed by a sulfonation reaction with chlorosulfuric acid. Compared with Nafion 211® membrane, these SPPBPs showed rational IECs from 1.47 to 2.51 meq./g, water uptake from 54.1 to 88.4%, proton conductivity from 80.6 to 108.6 mS/cm, and high thermal stability. The proton conductivity was higher than Nafion 211®. These results showed that the morphology of the polymer matrix was greatly affected by the membranes’ properties and stability. Membranes, including benzoyl segments without ether linkage, also provided good dimensional stability in spite of high IEC values. The properties of SPPBPs were very remarkable for fuel cell membrane application. This research demonstrated the possibility of promising SPPBP membranes for excellent proton conductivity

  19. Coprecipitation of trace elements with Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid and their determination by flame atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Ni2+/2-Nitroso-1-naphthol-4-sulfonic acid precipitate was used for the coprecipitation of Co, Pb, Cu, Fe and Zn prior to their flame atomic absorption spectrometric (FAAS) determinations in environmental samples. The precipitate could be easily dissolved with concentrated nitric acid. The recovery values for analyte ions were higher than 95%. The parameters including pH, sample volume, centrifuge time, amounts of nickel and matrix effects were optimized for the quantitative recoveries of the analytes. The relative standard deviations of cobalt, lead, copper, iron and zinc were found 4.5, 5.7, 3.8, 6.1 and 7.5%, respectively. The limit of detection was calculated as 1.05, 2.67, 1.30, 1.38, and 0.50 μg L-1 for cobalt, lead, copper, iron and zinc. The validation of the procedure was checked by the analysis of IAEA 336 lichen and SLRS 4 Riverine water standard reference materials were analyzed with satisfactory results. The presented coprecipitation procedure was successfully applied to some environmental samples for determination of analyte ions.

  20. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells.

    Science.gov (United States)

    Chen, Cai-Xia; Yang, Li-Chao; Xu, Xu-Dong; Wei, Xiao; Gai, Ya-Ting; Peng, Lu; Guo, Han; Hao-Zhou; Wang, Yi-Qing; Jin, Xin

    2015-06-01

    Oleoylethanolamide (OEA), an endogenous agonist of PPARα, has been reported to have anti-atherosclerotic properties. However, OEA can be enzymatically hydrolyzed to oleic acid and ethanolamine and, thus, is not expected to be orally active. In the present study, we designed and synthesized an OEA analog, propane-2-sulfonic acid octadec-9-enyl-amide (N15), which is resistant to enzymatic hydrolysis. The purpose of this study was to investigate the effects of N15 on the expression of adhesion molecules in human umbilical vein endothelial cells (HUVECs). The results showed that N15 inhibited TNFα-induced production of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and the adhesion of monocytes to TNFα-induced HUVECs. Furthermore, the protective effect of N15 on inflammation is dependent upon a PPAR-α/γ-mediated mechanism. In conclusion, N15 protects against TNFα-induced vascular endothelial inflammation. This anti-inflammatory effect of N15 is dependent on PPAR-α/γ dual targets. PMID:25797284

  1. Electrochemical behaviour of benzene on platinum electrodes

    OpenAIRE

    Montilla Jiménez, Francisco; Huerta Arráez, Francisco; Morallón Núñez, Emilia; Vázquez Picó, José Luis

    1999-01-01

    The adsorption and oxidation of benzene in acidic media on platinum electrodes (polycrystalline and single-crystal electrodes) have been studied by cyclic voltammetry and in-situ Fourier transform infrared spectroscopy. The oxidation characteristics of benzene depend on the surface structure of the platinum electrode used. In all platinum electrodes studied, the main reduction product of benzene is cyclohexane, and the oxidation products detected by infrared spectroscopy have been CO2 and ben...

  2. 以弱碱性树脂去除废水中5-氨基-2-氯苯-4-磺酸和盐酸%Removal of 5-Amino-2-chlorotoluene-4-sulfonic and Chlorhydric Acids from Wastewater by Weakly Basic Resin

    Institute of Scientific and Technical Information of China (English)

    李长海; 许振良; 李春平

    2006-01-01

    This research deals with an investigation of the adsorption of two acids, namely, 5-amino-2-chlorotoluene-4-sulfonic and chlorhydric acids from their solution onto weakly basic resin. The screening of resins, kinetics, and isotherm were studied. The results indicate that the D301R is more appropriate for the removal of acids from solution. The adsorption of acids obeys Langmuir isotherm and the first-order kinetics model. Sorptive affinity of the two acids on D301R was found to be in the order of 5-amino-2-chlorotoluene-4-sulfonic acid>chlorhydric acid. Thermodynamic parameters for the adsorption of acids were calculated and discussed. The maximum removal of acids was observed around 97% and 76% at 25℃ for 5-amino-2-chlorotoluene-4-sulfonic acid and chlorhydric acid, respectively.

  3. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm−2, as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  4. A durable alternative for proton-exchange membranes: sulfonated poly(benzoxazole thioether sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100039 (China); Li, Jinhuan [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Song, Min-Kyu; Liu, Meilin [Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States); Yi, Baolian; Zhang, Huamin [Lab of PEMFC Key Materials and Technologies, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Liaoning, Dalian 116023 (China)

    2011-03-18

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s (SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid-base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25 C to 90 C and excellent thermal stability up to 250 C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80 C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. A highly efficient nano-Fe{sub 3}O{sub 4} encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Naeimi, Hossein, E-mail: naeimi@kashanu.ac.ir; Nazifi, Zahra Sadat [University of Kashan, Department of Organic Chemistry, Faculty of Chemistry (Iran, Islamic Republic of)

    2013-11-15

    The functionalization of silica-coated Fe{sub 3}O{sub 4} magnetic nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2}) using chlorosulfonic acid were afforded sulfonic acid-functionalized magnetic Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4}@SiO{sub 2}–SO{sub 3}H) that can be applied as an organic–inorganic hybrid heterogeneous catalyst. The used Fe{sub 3}O{sub 4} magnetic nanoparticles are 18–30 nm sized that was rapidly functionalized and can be used as catalyst in organic synthesis. The prepared nanoparticles were characterized by X-ray diffraction analysis, magnetization curve, scanning electron microscope, dynamic laser scattering, and FT-IR measurements. The resulting immobilized catalysts have been successfully used in the synthesis of 1,8‐dioxo-octahydroxanthene derivatives under solvent free condition. This procedure has many advantages such as; a much milder method, a shorter reaction time, a wide range of functional group tolerance, and absence of any tedious workup or purification. Other remarkable features include the catalyst can be reused at least five times without any obvious change in its catalytic activity. This procedure also avoids hazardous reagents/solvents, and thus can be an eco-friendly alternative to the existing methods.Graphical AbstractA highly efficient nano-Fe{sub 3}O{sub 4} encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives.

  6. The Antidotal Effects of High-dosage γ-Aminobutyric Acid on Acute Tetramine Poisoning as Compared with Sodium Dimercaptopropane Sulfonate

    Institute of Scientific and Technical Information of China (English)

    SUN Peng; HAN Jiyuan; WENG Yuying

    2007-01-01

    To investigate the therapeutic effect of high-dosage γ-aminobutyric acid (GABA) on acute tetramine (TET) poisoning, 50 Kunming mice were divided into 5 groups at random and the antidotal effects of GABA or sodium dimercaptopropane sulfonate (Na-DMPS) on poisoned mice in different groups were observed in order to compare the therapeutic effects of high-dosage GABA with those of Na-DMPS. Slices of brain tissue of the poisoned mice were made to examine pathological changes of cells. The survival analysis was employed. Our results showed that both high-dosage GABA and Na-DMPS could obviously prolong the survival time, delay onset of convulsion and muscular twitch, and ameliorate the symptoms after acute tetramine poisoning in the mice.Better effects could be achieved with earlier use of high dosage GABA or Na-DMPS. There was no significant difference in prolonging the survival time between high-dose GABA and Na-DMPS used immediately after poisioning. It is concluded that high-dosage GABA can effectively antagonize acute toxicity of teramine in mice. And it is suggested that high-dosage GABA may be used as an excellent antidote for acute TET poisoning in clinical practice. The indications and correct dosage for clinical use awaits to be further studied.

  7. Characteristics and direct methanol fuel cell performance of polymer electrolyte membranes prepared from poly(vinyl alcohol-b-styrene sulfonic acid)

    International Nuclear Information System (INIS)

    Block type polymer electrolyte membranes (PEMs) were prepared by casting an aqueous solution of a block copolymer, poly(vinyl alcohol-b-styrene sulfonic acid) (PVA-b-PSSA), and by cross-linking the PVA chains with glutaraldehyde (GA) solution at various GA concentrations to investigate the effect of the cross-linking conditions on the properties of the block-type PEMs. The proton conductivity and the permeability of methanol through the block-type PEMs decreased with increasing GA concentration. The permeability coefficient through the block-type PEM prepared under the conditions of cGA = 0.05% is about 6 times lower than that through Nafion115® under the same measurement conditions. A test cell for a direct methanol fuel cell constructed using the block-type PEMs delivered 32.4 mW cm−2 of Pmax at 116 mA cm−2 of load current density at 1 M methanol solution, which is almost the same value obtained with Nafion115®. However, at high methanol concentrations (>9 M), the Pmax of the block-type PEM was 17.8 mW cm−2, and was 86% higher than that of Nafion®115

  8. Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode.

    Science.gov (United States)

    Tefera, Molla; Geto, Alemnew; Tessema, Merid; Admassie, Shimelis

    2016-11-01

    Poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode (poly(AHNSA)/GCE) was prepared for simultaneous determination of caffeine and paracetamol using square-wave voltammetry. The method was used to study the effects of pH and scan rate on the voltammetric response of caffeine and paracetamol. Linear calibration curves in the range of 10-125μM were obtained for both caffeine and paracetamol in acetate buffer solution of pH 4.5 with a correlation coefficient of 0.9989 and 0.9986, respectively. The calculated detection limits (S/N=3) were 0.79μM for caffeine and 0.45μM for paracetamol. The effects of some interfering substances in the determination of caffeine and paracetamol were also studied and their interferences were found to be negligible which proved the selectivity of the modified electrode. The method was successfully applied for the quantitative determination of caffeine and paracetamol in Coca-Cola, Pepsi-Cola and tea samples. PMID:27211634

  9. Investigation of the Effects of Perfluorooctanoic Acid (PFOA and Perfluorooctane Sulfonate (PFOS on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio Liver Cell Line

    Directory of Open Access Journals (Sweden)

    Yuan Cui

    2015-12-01

    Full Text Available This study aimed to explore the effects of perfluorooctanoic acid (PFOA and perfluorooctane sulfonate (PFOS on apoptosis and cell cycle in a zebrafish (Danio rerio liver cell line (ZFL. Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p < 0.05. Cell cycle and cell proliferation were blocked in both the PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells.

  10. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    International Nuclear Information System (INIS)

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M–Na) and copper cation (M–Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M–Cu changes depending on the inorganic cation and the polymer intercalated in the M–Cu structure. TGA analyses reveal that polymer/M–Cu composites is less stable than M–Cu. The conductivity of the composites is found to be 103 times higher than that for M–Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV–Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  11. Investigation of the Effects of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) on Apoptosis and Cell Cycle in a Zebrafish (Danio rerio) Liver Cell Line

    Science.gov (United States)

    Cui, Yuan; Liu, Wei; Xie, Wenping; Yu, Wenlian; Wang, Cheng; Chen, Huiming

    2015-01-01

    This study aimed to explore the effects of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) on apoptosis and cell cycle in a zebrafish (Danio rerio) liver cell line (ZFL). Treatment groups included a control group, PFOA-IC50, PFOA-IC80, PFOS-IC50 and PFOS-IC80 groups. IC50 and IC80 concentrations were identified by cellular modeling and MTT assays. mRNA levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were detected by qPCR. Cell apoptosis and cell cycle were detected by flow cytometry and the protein levels of p53, Bcl-2, Bax, Caspase-3 and NF-κB p65 were determined by western blotting. Both PFOA and PFOS inhibited the growth of zebrafish liver cells, and the inhibition rate of PFOS was higher than that of PFOA. Bcl-2 expression levels in the four groups were significantly higher than the control group and Bcl-2 increased significantly in the PFOA-IC80 group. However, the expression levels of Bax in the four treatment groups were higher than the control group. The percentage of cell apoptosis increased significantly with the treatment of PFOA and PFOS (p PFOA-IC80 and PFOS-IC80 groups, indicating that PFOA-IC80 and PFOS-IC50 enhanced apoptosis in ZFL cells. PMID:26690195

  12. A capacitive sensor based on molecularly imprinted polymers and poly(p-aminobenzene sulfonic acid) film for detection of pazufloxacin mesilate

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lu; YE GuangRong; YUAN Ruo; CHAI YaQin; CHEN SuMing

    2007-01-01

    A novel capacitive sensor for pazufloxacin mesilate (pazufloxacin) determination was developed by electropolymerizing p-aminobenzene sulfonic (p-ABSA) and molecularly imprinted polymers (MIPs), which was synthesized through thermal radical copolymerization of metharylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of pazufloxacin template molecules, on the gold electrode surface. Furthermore, 1-dedecanethiol was used to insulate the modified electrode. Alternating current (ac) impedance experiments were carried out with a Model IM6e to obtain the capacitance responses. Under the optimum conditions, the sensor showed linear capacitance response to pazufloxacin in the range of 5ng·Ml-1 to 5μg·mL-1 with a relative standard deviation (RSD) 5.3% (n=7) and a detection limit of 1.8 ng·mL-1. The recoveries for different concentration levels of pazufloxacin samples varied from 94.0% to 102.0%. Electrochemical experiments indicated the capacitive sensor exhibited good sensitivity and selectivity and showed excellent parameters of regeneration and stability.

  13. A capacitive sensor based on molecularly imprinted polymers and poly(p-aminobenzene sulfonic acid) film for detection of pazufloxacin mesilate

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel capacitive sensor for pazufloxacin mesilate (pazufloxacin) determination was developed by electropolymerizing p-aminobenzene sulfonic (p-ABSA) and molecularly imprinted polymers (MIPs), which was synthesized through thermal radical copolymerization of metharylic acid (MAA) and ethyl-ene glycol dimethacrylate (EGDMA) in the presence of pazufloxacin template molecules, on the gold electrode surface. Furthermore, 1-dedecanethiol was used to insulate the modified electrode. Alter-nating current (ac) impedance experiments were carried out with a Model IM6e to obtain the capaci-tance responses. Under the optimum conditions, the sensor showed linear capacitance response to pazufloxacin in the range of 5 ng·mL-1 to 5 μg·mL-1 with a relative standard deviation (RSD) 5.3% (n=7) and a detection limit of 1.8 ng·mL-1. The recoveries for different concentration levels of pazufloxacin samples varied from 94.0% to 102.0%. Electrochemical experiments indicated the capacitive sensor exhibited good sensitivity and selectivity and showed excellent parameters of regeneration and stabil-ity.

  14. Self-assembled platinum nanoparticles on sulfonic acid-grafted graphene as effective electrocatalysts for methanol oxidation in direct methanol fuel cells

    Science.gov (United States)

    Lu, Jinlin; Li, Yanhong; Li, Shengli; Jiang, San Ping

    2016-02-01

    In this article, sulfonic acid-grafted reduced graphene oxide (S-rGO) were synthesized using a one-pot method under mild conditions, and used as Pt catalyst supports to prepare Pt/S-rGO electrocatalysts through a self-assembly route. The structure, morphologies and physicochemical properties of S-rGO were examined in detail by techniques such as atomic force microscope (AFM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The S-rGO nanosheets show excellent solubility and stability in water and the average particle size of Pt nanoparticles supported on S-rGO is ~3.8 nm with symmetrical and uniform distribution. The electrocatalytic properties of Pt/S-rGO were investigated for methanol oxidation reaction (MOR) in direct methanol fuel cells (DMFCs). In comparison to Pt supported on high surface area Vulcan XC-72 carbon (Pt/VC) and Pt/rGO, the Pt/S-rGO electrocatalyst exhibits a much higher electrocatalytic activity, faster reaction kinetics and a better stability. The results indicate that Pt/S-rGO is a promising and effective electrocatalyst for MOR of DMFCs.

  15. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinlin, E-mail: jinlinlu@hotmail.com [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Song, Hua [School of Mechanical Engineering and Automation, University of Science and Technology, Liaoning, Anshan 114051 (China); Li, Suning; Wang, Lin; Han, Lu [School of Materials and Metallurgy, University of Science and Technology, Liaoning, Anshan 114051 (China); Ling, Han; Lu, Xuehong [School of Material Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2015-06-01

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO{sub 2}) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO{sub 2} nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO{sub 2} nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO{sub 2} and the synergistic effect between the inorganic nano-TiO{sub 2} and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO{sub 2} nanocomposite film by electropolymerization • PEDOT:PSS/TiO{sub 2} film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO{sub 2} film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO{sub 2} film displays a good stability for electrochromic application.

  16. The Effect of Monosodium Glutamate (MSG On Rat Liver And The Ameliorating Effect Of "Guanidino Ethane Sulfonic acid (GES" (Histological, Histochemical and Electron Microscopy Studies

    Directory of Open Access Journals (Sweden)

    Hanaa F. Waer and *Saleh Edress

    2006-09-01

    Full Text Available Food additives are chemical substances added intentionally to food stuffs to preserve, color, sweeten and flavor food. Monosodium glutamate (MSG is used as a flavor enhancer and found in most soups, salad dressing and processed meat. The use of MSG in food is growing. Irrational fear had increased in the last few years due to the adverse reactions and toxicity of MSG. The present study was designed to investigate the effect of MSG on the rat liver and the ameliorating effect of taurine analog "Guanidinoethane sulfonic acid (GES". Sixty albino rats (2-3 months old were used in the present study. MSG was given orally at a daily dose of 60 mg/1000 g for one month, two months and was given at a daily dose of 100mg/1000gm for one month. The results revealed that the deleterious effects of MSG were dose related and cumulative. In MSG treated rats, the examined sections showed remarkable alterations varied considerably from moderate structural changes to cytoplasmic lysis and signs of degeneration of cellular organelles. The histological changes showed disturbed liver architecture, hemorrhage in the central veins, areas of necrosis, vacuolation and increased inflammatory cells infiltration. The glycogen granules increased as well as the collagen fibers in the liver cells. Ultrastructural changes showed loss of cytoplasmic differentiation, vacuolation, pyknotic nuclei with irregular nuclear membranes and elongated electron dense mitochondria. Conversely, treatment of rats with taurine analog (GES significantly attenuated the cellular toxicity of MSG.

  17. Treatment efficiencies of nitrite nitrogen in industrial wastewater by using amido sulfonic acid; Amido ryusan ni yoru kojo haisuichu no ashosansei chisso no shori koka

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, M. [Kanagawa Environmental Research Center, Kanagawa (Japan); Inamori, Y. [National Inst. for Environmental Studies, Tsukuba (Japan)

    1998-06-10

    Chemical denitrification of NO2-N conducted with amido sulfonic acid was studied to treat NO2-N in both bench and in situ experiments. In bench experiments, following optium conditions for NO2-N removal were obtained. The dosage of amide sulfate was 6.9 times equivalent to NO2-N load, pH value and stirring rate were 2.5 and 50 r.p.m., respectively in the bench reactor, and the period for reaction was more than 60 minutes. Nitrogenous gases like NOx, and N2O, which are causative materials for air pollution and global warming, were not detected in the gas exhaust. In situ experiment was made with wastewater containing NO2-N discharged from a factory and with its operating parameters same as the optimum conditions obtained in the bench experiment. It ran in batch style and was controlled automatically. Results showed that efficient chemical denitrification could be conducted through continuously stirring during treated wastewater discharging, and through covering nitrite sensor to keep it from the nitrogenous gases generated in the reaction. 17 refs., 9 figs., 1 tab.

  18. White light emission from Mn2+ doped ZnS nanocrystals through the surface chelating of 8-hydroxyquinoline-5-sulfonic acid

    International Nuclear Information System (INIS)

    White light emitting semiconductor nanocrystals (NCs) have been successfully synthesized from 8-hydroxyquinoline-5-sulfonic acid (HQS) decorated manganese doped ZnS NCs through fine tuning the surface-coordination emission and dopant emission of the NC host. The HQS functionalized manganese doped ZnS NCs (QS-ZnS:Mn), with a cubic crystal structure, have the same diameter of about 4.0 nm as ZnS:Mn NCs without HQS. The intensity of the surface-coordination emission peak increased with increasing HQS content or augmenting excited wavelength. The emission of white light was achieved by carefully controlling the dosage of HQS in NCs and appropriately tuning the excited wavelength. The color coordinates (0.35, 0.34) for the efficient white light emitting NCs were very close to the ideal Commission Internationale de l'Eclairage (CIE) chromaticity coordinates for pure white light (0.33, 0.33). The photoluminescence (PL) decay study revealed that the white light emitting NCs exhibited maximum lifetime values at different emission peaks for different NC samples. The study results also indicated that the HQS molecules were attached to the surface of ZnS:Mn NCs in a single coordination fashion due to the steric hindrance effect of the special spherical surface of NCs, which made the QS-ZnS:Mn NCs possess stable and high fluorescent properties in different organic solvents as compared with the conventional small molecule complexes.

  19. Effect of the intercalated cation-exchanged on the properties of nanocomposites prepared by 2-aminobenzene sulfonic acid with aniline and montmorillonite

    Energy Technology Data Exchange (ETDEWEB)

    Toumi, I. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Benyoucef, A., E-mail: ghani29000@yahoo.fr [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Yahiaoui, A. [Laboratoire de Chimie Organique, Macromoleculaire et des Materiaux, Universite de Mascara, Bp 763 Mascara 29000 (Algeria); Quijada, C. [Departamento de Ingenieria Textil y Papelera, Universidad Politecnica de Valencia, Pza Ferrandiz i Carbonel, E-03801 Alcoy, Alicante (Spain); Morallon, E. [Departamento de Quimica Fisica e Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, E-03080 Alicante (Spain)

    2013-02-25

    Polymer/montmorillonite nanocomposites were prepared. Intercalation of 2-aminobenzene sulfonic acid with aniline monomers into montmorillonite modified by cation was followed by subsequent oxidative polymerization of monomers in the interlayer spacing. The clay was prepared by cation exchange process between sodium cation in (M-Na) and copper cation (M-Cu). XRD analyses show the manifestation of a basal spacing (d-spacing) for M-Cu changes depending on the inorganic cation and the polymer intercalated in the M-Cu structure. TGA analyses reveal that polymer/M-Cu composites is less stable than M-Cu. The conductivity of the composites is found to be 10{sup 3} times higher than that for M-Cu. The microscopic examinations including TEM picture of the nanocomposite demonstrated an entirely different and more compatible morphology. Remarkable differences in the properties of the polymers have also been observed by UV-Vis and FTIR, suggesting that the polymer produced with presence of aniline has a higher degree of branching. The electrochemical behavior of the polymers extracted from the nanocomposites has been studied by cyclic voltammetry which indicates the electroactive effect of nanocomposite gradually increased with aniline in the polymer chain.

  20. Radiolytic preparation of poly(styrene sulfonic acid) - grafted poly(tetrafluoroethylene-co-perfluorovinyl vinyl ether) membranes with highly cross-linked networks

    International Nuclear Information System (INIS)

    In this study, various amounts of a divinylbenzene (DVB) cross-linking agent (5∼30%) were introduced during a simultaneous irradiation grafting of styrene onto a PFA film of a 25 μm thickness in order to prepare a series of poly(styrene sulfonic acid)-grafted poly(tetrafluoroethylene-co-perfluorovinyl vinyl ether) (PFA) membranes with various degrees of cross-linking and grafting (29∼74%). The effects of the DVB cross-linking agent on the properties of the prepared membranes, such as water uptake, proton conductivity, methanol permeability, and chemical stability, were also investigated in this study. The results indicated that the ion exchange capacity (IEC) slightly decreased with increasing DVB content, whereas the water uptake, proton conductivity, and methanol permeability of the membrane greatly decreased. The chemical stability of the prepared membranes was found to be significantly improved with increasing DVB content. The results indicated that the cross-linked network membranes are promising for application in a direct methanol fuel cell.

  1. Radiolytic preparation of poly(styrene sulfonic acid) - grafted poly(tetrafluoroethylene- co-perfluorovinyl vinyl ether) membranes with highly cross-linked networks

    Science.gov (United States)

    Kang, Sung-A.; Shin, Junhwa; Fei, Geng; Ko, Beom-Seok; Kim, Chong-Yeal; Nho, Young-Chang

    2010-11-01

    In this study, various amounts of a divinylbenzene (DVB) cross-linking agent (5˜30%) were introduced during a simultaneous irradiation grafting of styrene onto a PFA film of a 25 μm thickness in order to prepare a series of poly(styrene sulfonic acid)-grafted poly(tetrafluoroethylene- co-perfluorovinyl vinyl ether) (PFA) membranes with various degrees of cross-linking and grafting (29˜74%). The effects of the DVB cross-linking agent on the properties of the prepared membranes, such as water uptake, proton conductivity, methanol permeability, and chemical stability, were also investigated in this study. The results indicated that the ion exchange capacity (IEC) slightly decreased with increasing DVB content, whereas the water uptake, proton conductivity, and methanol permeability of the membrane greatly decreased. The chemical stability of the prepared membranes was found to be significantly improved with increasing DVB content. The results indicated that the cross-linked network membranes are promising for application in a direct methanol fuel cell.

  2. Radiolytic preparation of poly(styrene sulfonic acid) - grafted poly(tetrafluoroethylene-co-perfluorovinyl vinyl ether) membranes with highly cross-linked networks

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung-A [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Radiation Science and Technology, Chonbuk National University, 664-14 GA Deokjin-dong, Deokjingu, Jeonju-si, Jeollabuk-do 560-756 (Korea, Republic of); Shin, Junhwa; Fei, Geng [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Ko, Beom-Seok [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Radiation Science and Technology, Chonbuk National University, 664-14 GA Deokjin-dong, Deokjingu, Jeonju-si, Jeollabuk-do 560-756 (Korea, Republic of); Kim, Chong-Yeal [Department of Radiation Science and Technology, Chonbuk National University, 664-14 GA Deokjin-dong, Deokjingu, Jeonju-si, Jeollabuk-do 560-756 (Korea, Republic of); Nho, Young-Chang, E-mail: ycnho@kaeri.re.k [Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeong-dong, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2010-11-15

    In this study, various amounts of a divinylbenzene (DVB) cross-linking agent (5{approx}30%) were introduced during a simultaneous irradiation grafting of styrene onto a PFA film of a 25 {mu}m thickness in order to prepare a series of poly(styrene sulfonic acid)-grafted poly(tetrafluoroethylene-co-perfluorovinyl vinyl ether) (PFA) membranes with various degrees of cross-linking and grafting (29{approx}74%). The effects of the DVB cross-linking agent on the properties of the prepared membranes, such as water uptake, proton conductivity, methanol permeability, and chemical stability, were also investigated in this study. The results indicated that the ion exchange capacity (IEC) slightly decreased with increasing DVB content, whereas the water uptake, proton conductivity, and methanol permeability of the membrane greatly decreased. The chemical stability of the prepared membranes was found to be significantly improved with increasing DVB content. The results indicated that the cross-linked network membranes are promising for application in a direct methanol fuel cell.

  3. A poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium oxide nanocomposite film synthesized by sol–gel assisted electropolymerization for electrochromic application

    International Nuclear Information System (INIS)

    In this article, we report the facile synthesis of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid)/titanium dioxide (PEDOT:PSS/TiO2) nanocomposite film by sol–gel assisted electropolymerization. The structure, morphology and composition of the films were investigated by different techniques, such as Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, atomic force microscope and X-ray photoelectron spectroscopy. The PEDOT:PSS/TiO2 nanocomposite film was applied for electrochromic application. The results indicate that the PEDOT:PSS/TiO2 nanocomposite film exhibits a higher optical contrast and a much better stability as compared to PEDOT:PSS film. The significant performance enhancement can be attributed to the nanoscale particle size and uniform size distribution of PEDOT:PSS/TiO2 and the synergistic effect between the inorganic nano-TiO2 and organic PEDOT:PSS material. - Highlights: • Facile synthesis of PEDOT:PSS/TiO2 nanocomposite film by electropolymerization • PEDOT:PSS/TiO2 film shows nano-scaled particle sizes and uniform size distribution. • PEDOT:PSS/TiO2 film shows higher optical contrasts and faster switching speed. • PEDOT:PSS/TiO2 film displays a good stability for electrochromic application

  4. Design, Synthesis, and Crystal Structures of 6-Alkylidene-2 -Substituted Penicillanic Acid Sulfones as Potent Inhibitors of Acinetobacter baumannii OXA-24 Carbapenemase

    Energy Technology Data Exchange (ETDEWEB)

    Bou, G.; Santillana, E; Sheri, A; Beceiro, A; Sampson, J; Kalp, M; Bethel, C; Distler, A; Drawz, S; et. al.

    2010-01-01

    Class D {beta}-lactamases represent a growing and diverse class of penicillin-inactivating enzymes that are usually resistant to commercial {beta}-lactamase inhibitors. As many such enzymes are found in multi-drug resistant (MDR) Acinetobacter baumannii and Pseudomonas aeruginosa, novel {beta}-lactamase inhibitors are urgently needed. Five unique 6-alkylidene-2{prime}-substituted penicillanic acid sulfones (1-5) were synthesized and tested against OXA-24, a clinically important {beta}-lactamase that inactivates carbapenems and is found in A. baumannii. Based upon the roles Tyr112 and Met223 play in the OXA-24 {beta}-lactamase, we also engineered two variants (Tyr112Ala and Tyr112Ala,Met223Ala) to test the hypothesis that the hydrophobic tunnel formed by these residues influences inhibitor recognition. IC{sub 50} values against OXA-24 and two OXA-24 {beta}-lactamase variants ranged from 10 {+-} 1 (4 vs WT) to 338 {+-} 20 nM (5 vs Tyr112Ala, Met223Ala). Compound 4 possessed the lowest K{sub i} (500 {+-} 80 nM vs WT), and 1 possessed the highest inactivation efficiency (k{sub inact}/K{sub i} = 0.21 {+-} 0.02 {micro}M{sup -1}s{sup -1}). Electrospray ionization mass spectrometry revealed a single covalent adduct, suggesting the formation of an acyl-enzyme intermediate. X-ray structures of OXA-24 complexed to four inhibitors (2.0-2.6 {angstrom}) reveal the formation of stable bicyclic aromatic intermediates with their carbonyl oxygen in the oxyanion hole. These data provide the first structural evidence that 6-alkylidene-2{prime}-substituted penicillin sulfones are effective mechanism-based inactivators of class D {beta}-lactamases. Their unique chemistry makes them developmental candidates. Mechanisms for class D hydrolysis and inhibition are discussed, and a pathway for the evolution of the BlaR1 sensor of Staphylococcus aureus to the class D {beta}-lactamases is proposed.

  5. Synthesis and Characterization of Sulfonated Poly(Phenylene Containing a Non-Planar Structure and Dibenzoyl Groups

    Directory of Open Access Journals (Sweden)

    Hohyoun Jang

    2016-02-01

    Full Text Available Polymers for application as sulfonated polyphenylene membranes were prepared by nickel-catalyzed carbon-carbon coupling reaction of bis(4-chlorophenyl-1,2-diphenylethylene (BCD and 1,4-dichloro-2,5-dibenzoylbenzene (DCBP. Conjugated cis/trans isomer (BCD had a non-planar conformation containing four peripheral aromatic rings that facilitate the formation of π–π interactions. 1,4-Dichloro-2,5-dibenzoylbenzene was synthesized from the oxidation reaction of 2,5-dichloro-p-xylene, followed by Friedel-Crafts reaction with benzene. DCBP monomer had good reactivity in polymerization affecting the activity of benzophenone as an electron-withdrawing group. The polyphenylene was sulfonated using concentrated sulfuric acid. These polymers without any ether linkages on the polymer backbone were protected from nucleophilic attack by hydrogen peroxide, hydroxide anion, and radicals generated by polymer electrolyte membrane fuel cell (PEMFC operation systems. The mole fraction of the sulfonic acid groups was controlled by varying the mole ratio of bis(4-chlorophenyl-1,2-diphenylethylene in the copolymer. In comparison with Nafion 211® membrane, these SBCDCBP membranes showed ion exchange capacity (IEC ranging from 1.04 to 2.07 meq./g, water uptake from 36.5% to 69.4%, proton conductivity from 58.7 to 101.9 mS/cm, and high thermal stability.

  6. Global analysis of myocardial peptides containing cysteines with irreversible sulfinic and sulfonic Acid post-translational modifications

    DEFF Research Database (Denmark)

    Paulech, Jana; Liddy, Kiersten A; Engholm-Keller, Kasper;

    2015-01-01

    Cysteine (Cys) oxidation is a crucial post-translational modification (PTM) associated with redox signaling and oxidative stress. As Cys is highly reactive to oxidants it forms a range of post-translational modifications, some that are biologically reversible (e.g. disulfides, Cys sulfenic acid...

  7. Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation

    OpenAIRE

    Fraile, José M.; García Bordejé, E.; Roldán, Laura

    2012-01-01

    Sulfonated hydrothermal carbons present high activity for esterification of palmitic acid with alcohols. However, the catalyst is significantly deactivated upon recovery. Leaching of sulfonated species does not account for this deactivation, which is observed even by pretreatment only with the alcohol under reflux. Solid state NMR shows the presence of chemically bound alkyl groups coming from the alcohol, clearly different from strongly physisorbed species obtained by pretreatment at room te...

  8. Four component catalysis for the hydroalkylation of benzene to cyclohexyl benzene

    Energy Technology Data Exchange (ETDEWEB)

    Fahy, J.; Trimm, D.L. [School of Chemical Engineering and Industrial Chemistry, University of New South Wales, NSW 2052 Sydney (Australia); Cookson, D.J. [BHP Melbourne Research Laboratories, Vic. Melbourne (Australia)

    2001-04-13

    Patent claims that benzene can be hydroalkylated to form cyclohexyl benzene - a potential diesel fuel - over a four component catalyst have been verified, and the role of the individual components has been explored. The hydrogenation of benzene over nickel on zeolite 13X produced reasonably high (ca. 30%) yields of cyclohexane, but the product distribution favoured cyclohexyl benzene in the presence of rare earth ions. The addition of small (ca. 1%) of platinum produced good yields and selectivities to cyclohexyl benzene at ca. 450K, a performance which was matched only at ca. 670K in the absence of platinum. Temperature programmed studies showed that Pt promoted the low temperature reduction of the catalyst to produce better performance. The acidic 13X molecular sieve promoted alkylation, but acidity was not the only factor involved. Rare earth additions were suggested to induce electron transfer to the nickel, weakening adsorption of benzene and promoting hydroalkylation rather than hydrogenation.

  9. Solubility of disodium 4,4′-dinitrostilbene-2,2′-disulfonate and sodium 4-nitrotoluene-2-sulfonate in aqueous organic solutions and its application feasibility in oxidation stage of DSD acid synthesis

    International Nuclear Information System (INIS)

    Highlights: • Solubility of sodium 4-nitrotoluene-2-sulfonate in two aqueous organic solution were measured using dynamic method. • Solubility of disodium 4,4′-dinitrostilbene-2,2′-disulfonate in corresponding solution were measured using dynamic method. • The experimental data were correlated with electrolyte non-random two-liquid (E-NRTL) model. • A synergistic effect on disodium 4,4′-dinitrostilbene-2,2′-disulfonate solubility was observed. • A suitable solvent for oxidation of 4-nitrotoluene-2-sulfonic to 4,4′-dinitrostilbene-2,2′-disulfonic has been suggested. -- Abstract: Solid–liquid equilibrium (SLE) measurements for disodium 4,4′-dinitrostilbene-2,2′-disulfonate (DNSNa) and sodium 4-nitrotoluene-2-sulfonate (NTSNa) in aqueous ethylene glycol monoethyl ether solution and aqueous ethylene glycol monobutyl ether solution were conducted using a dynamic method over the temperature range from (280 to 335) K. A synergistic effect on DNSNa solubility was observed with the maximum solubility at solute-free mass fraction of ethylene glycol monoethyl ether w30=0.4000 and solute-free mass fraction of ethylene glycol monobutyl ether w40=0.5999, respectively. The solubility data were correlated using the thermodynamic electrolyte non-random two-liquid (E-NRTL) model and model parameters were determined simultaneously. Aqueous ethylene glycol monobutyl ether solution at solute-free mass fraction of ethylene glycol monobutyl ether w40=0.2000 was found to be suitable solvent medium for the oxidation of 4-nitrotoluene-2-sulfonic acid (NTS) to 4,4′-dinitrostilbene-2,2′-disulfonic acid (DNS) and the conclusion was confirmed using the static analytical method combined with UV–VIS spectrophotometer

  10. Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death.

    Science.gov (United States)

    Liu, Gesheng; Zhang, Shuai; Yang, Kun; Zhu, Lizhong; Lin, Daohui

    2016-07-01

    Perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two widely used polyfluorinated compounds (PFCs) and are persistent in the environment. This study for the first time systematically investigated their toxicities and the underlying mechanisms to Escherichia coli. Much higher toxicity was observed for PFOA than PFOS, with the 3 h half growth inhibition concentrations (IC50) determined to be 10.6 ± 1.0 and 374 ± 3 mg L(-1), respectively, while the bacterial accumulation of PFOS was much greater than that of PFOA. The PFC exposures disrupted cell membranes as evidenced by the dose-dependent variations of cell structures (by transmission electron microscopy observations), surface properties (electronegativity, hydrophobicity, and membrane fluidity), and membrane compositions (by gas chromatogram and Fourier transform infrared spectroscopy analyses). The increases in the contents of intracellular reactive oxygen species (ROS) and malondialdehyde and the activity of superoxide dismutase indicated the increment of oxidative stress induced by the PFCs in the bacterial cells. The fact that the cell growth inhibition was mitigated by the addition of ROS scavenger (N-acetyl cysteine) further evidenced the important role of oxidative damage in the toxicities of PFOS and PFOA. Eighteen genes involved in cell division, membrane instability, oxidative stress, and DNA damage of the exposed cells were up or down expressed, indicating the DNA damage by the PFCs. The toxicities of PFOS and PFOA to E. coli were therefore ascribed to the membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. The difference in the bactericidal effect between PFOS and PFOA was supposed to be related to their different dominating toxicity mechanisms, i.e., membrane disruption and oxidative damage, respectively. The outcomes will shed new light on the assessment of ecological effects of PFCs. PMID:27155098

  11. Effects of co-administration of dietary sodium arsenate and 2,3-dimercaptopropane-1-sulfonic acid (DMPS) on the rat bladder epithelium

    International Nuclear Information System (INIS)

    Inorganic arsenic is a known human carcinogen, inducing tumors of the skin, urinary bladder and lung. It is metabolized to organic methylated arsenicals. 2,3-Dimercaptopropane-1-sulfonic acid (DMPS), a chelating agent, is capable of reducing pentavalent arsenicals to the trivalent state and binding to the trivalent species, and it has been used in the treatment of heavy metal poisoning in humans. Therefore, we investigated the ability of DMPS to inhibit the cytotoxicity and regenerative urothelial cell proliferation induced by arsenate administration in vivo. Female rats were treated for 4 weeks with 100 ppm AsV. DMPS (2800 ppm) co-administered in the diet significantly reduced the AsV-induced cytotoxicity of superficial cells detected by scanning electron microscopy (SEM), and the incidence of simple hyperplasia observed by light microscopy and the bromodeoxyuridine (BrdU) labeling index. It also reduced the total concentration of arsenicals in the urine and the methylation of arsenic. There were no differences in oxidative stress as assessed by immunohistochemical staining for 8-hydroxy-2′-deoxyguanosine (8OHdG) of the bladder urothelium. No differences were detected in urine sediments between groups. These data suggest that DMPS has the ability to inhibit both arsenate-induced acute toxicity and regenerative proliferation of the rat bladder epithelium, most likely by decreasing exposure of the urothelium to trivalent arsenicals excreted in the urine. These data provide additional evidence that the effects of arsenate exposure in vivo do not appear to be related to oxidative effects on dG in DNA.

  12. Crystal Structures of KPC-2[beta]-Lactamase in Complex with 3-Nitrophenyl Boronic Acid and the Penam Sulfone PSR-3-226

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Wei; Bethel, Christopher R.; Papp-Wallace, Krisztina M.; Pagadala, Sundar Ram Reddy; Nottingham, Micheal; Fernandez, Daniel; Buynak, John D.; Bonomo, Robert A.; van den Akker, Focco (Case Western); (Stokes); (SMU)

    2012-08-01

    Class A carbapenemases are a major threat to the potency of carbapenem antibiotics. A widespread carbapenemase, KPC-2, is not easily inhibited by {beta}-lactamase inhibitors (i.e., clavulanic acid, sulbactam, and tazobactam). To explore different mechanisms of inhibition of KPC-2, we determined the crystal structures of KPC-2 with two {beta}-lactamase inhibitors that follow different inactivation pathways and kinetics. The first complex is that of a small boronic acid compound, 3-nitrophenyl boronic acid (3-NPBA), bound to KPC-2 with 1.62-{angstrom} resolution. 3-NPBA demonstrated a Km value of 1.0 {+-} 0.1 {micro}M (mean {+-} standard error) for KPC-2 and blocks the active site by making a reversible covalent interaction with the catalytic S70 residue. The two boron hydroxyl atoms of 3-NPBA are positioned in the oxyanion hole and the deacylation water pocket, respectively. In addition, the aromatic ring of 3-NPBA provides an edge-to-face interaction with W105 in the active site. The structure of KPC-2 with the penam sulfone PSR-3-226 was determined at 1.26-{angstrom} resolution. PSR-3-226 displayed a K{sub m} value of 3.8 {+-} 0.4 {micro}M for KPC-2, and the inactivation rate constant (kinact) was 0.034 {+-} 0.003 s{sup -1}. When covalently bound to S70, PSR-3-226 forms a trans-enamine intermediate in the KPC-2 active site. The predominant active site interactions are generated via the carbonyl oxygen, which resides in the oxyanion hole, and the carboxyl moiety of PSR-3-226, which interacts with N132, N170, and E166. 3-NPBA and PSR-3-226 are the first {beta}-lactamase inhibitors to be trapped as an acyl-enzyme complex with KPC-2. The structural and inhibitory insights gained here could aid in the design of potent KPC-2 inhibitors.

  13. Properties of a novel acid dye 1-amino-4-[(6-nitro-2-benzothiazolyl)amino]-9,10-anthraquinone-2-sulfonic acid with anti-UV capability

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel acid dye acid was synthesized by the condensation reaction between bromamine acid and 2-amino-6-nitrobenzothiazole and its anti-UV protection properties were evaluated.The results showed that silk dyed with this dye had very good ultraviolet radiation protection capability and excellent dyeing performance.The UV-absorption mechanism of this dye was also discussed.

  14. H2 O2 Generated by Natural Biofilms Under Light Irradiation and Its Effects on Degradation of Sodium Dodecyl Benzene Sulfonate%光照下自然水体生物膜产生 H2O2及其对十二烷基苯磺酸钠降解的影响

    Institute of Scientific and Technical Information of China (English)

    董德明; 李明; 孙家倩; 赵天宇; 花修艺; 郭爱桐; 梁大鹏

    2014-01-01

    In this study, generation of H2 O2(hydrogen peroxide) by natural biofilms of different bioactivities under light irradiation was investigated, and effect of light on sodium dodecyl benzene sulfonate(SDBS) degra-dation in such natural biofilm-water systems was evaluated. The role of H2 O2 in the degradation of SDBS was also verified by SDBS degradation experiments in H2 O2 solution without biofilms. The results indicated that:(1) biofilms with full bio-activity can generate H2 O2 , while biofilms without any bio-activity or bio-activity of photosynthesis can not generate H2 O2; (2) much more SDBS can be degraded under visible light than in darkness; (3) light and Fe2+ can promote the degradation of SDBS in the presence of H2 O2 . H2 O2 produced by natural biofilms should be one of the most important causes of the degradation of SDBS, and the roles of H2 O2 in the degradation should include both direct oxidation of SDBS by H2 O2 and the indirect role in genera-ting active oxygen species.%通过模拟实验研究了不同活性的自然水体生物膜在光照条件下生成过氧化氢(H2 O2)的反应。并研究了光照对自然水体生物膜体系中十二烷基苯磺酸钠(SDBS)降解的影响,结合无生物膜 H2 O2溶液中 SDBS的降解实验,验证了 H2 O2对 SDBS 降解的作用。结果表明,具有生物活性的生物膜可以生成 H2 O2,而无活性和光合作用受到抑制的生物膜则不能生成 H2 O2;光照条件下,生物膜体系中 SDBS 的降解量明显高于无光照条件下的;光照和 Fe2+对 H2 O2降解 SDBS 有促进作用。

  15. Construction of Substituted Benzenes via Pd-Catalyzed Cross-Coupling/Cyclization Reaction of Vinyl Halides and Terminal Alkynes.

    Science.gov (United States)

    Xie, Meihua; Wang, Shengke; Wang, Jun; Fang, Kuang; Liu, Changqing; Zha, Chao; Jia, Jing

    2016-04-15

    A tandem Sonogashira coupling/cyclization/aromatization sequence of β-halo vinyl sulfones/ketones with terminal alkynes has been developed for the construction of benzene rings. Polysubstituted functionalized benzenes containing a sulfonyl or an acyl group could be obtained in up to 95% yield. PMID:27015420

  16. Analysis of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids as molecular tracers of black carbon by using liquid chromatography-mass spectrometry%液相色谱-质谱法分析黑碳的分子标志物--苯多羧酸和硝基苯多羧酸

    Institute of Scientific and Technical Information of China (English)

    黄国培; 陈颖军; 田崇国; 刘莺

    2016-01-01

    苯多羧酸法是定量检测黑碳和溶解态黑碳的重要分子标志物法,其中苯多羧酸和硝基苯多羧酸的分离和定量是关键环节。本文建立了苯多羧酸和硝基苯多羧酸的液相色谱-质谱分析方法,利用质谱的定性能力解决了部分苯多羧酸和硝基苯多羧酸化合物在缺乏标准品情况下的定性问题。用 Phenomenex Synergi Polar RP 分离柱,柱温为35℃,流动相为0.5%(体积分数)甲酸水溶液和甲醇,流速为0.5 mL/min,梯度洗脱,以电喷雾离子源负离子全扫描和选择扫描模式进行离子阱质谱检测,同时利用串联的二极管阵列检测器采集三维紫外光谱数据。在实际样品检测中,14个含3个及以上羧基的苯多羧酸和硝基苯多羧酸化合物获得良好分离。此方法简化并加快了苯多羧酸法定量黑碳和溶解态黑碳的分析过程,可满足环境样品中黑碳和溶解态黑碳的分析,促进了苯多羧酸法应用的普及。%The benzene polycarboxylic acid( BPCA)method is an important molecular marker method for black carbon and dissolved black carbon quantification while the separation and quantification of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids are the key process. In order to use mass spectrometer to solve the issue of identification of benzene polycarboxylic acids and nitro-benzene polycarboxylic acids due to the lack of the standards of some of the target compounds,a liquid chromatography-mass spectrometry method was pro-posed. It made the experimental procedures easier and faster than using the gas chromatogra-phy mass spectrometry,and would promote the use of the BPCA method. A Phenomenex Syn-ergi Polar RP column was used. The digestion productions of black carbon and dissolved black carbon were gradiently eluted by the mobile phases of 0. 5%( v/v)aqueous formic acid solution and methanol with the flow rate of 0. 5 mL/min at 35 ℃. The determination

  17. 苯与双氧水在高效钼钒磷杂多酸催化剂上的羟基化%Hydroxylation of Benzene with Hydrogen Peroxide over Highly Efficient Molybdovanadophosphoric Heteropoly Acid Catalysts

    Institute of Scientific and Technical Information of China (English)

    张富民; 郭麦平; 葛汉青; 王军

    2007-01-01

    Keggin type molybdovanadophosphoric heteropoly acids,H3+nPMo12-nVnO40 (n= 1-3),were prepared by a novel environmentally benign method,and their catalytic performances were evaluated via hydroxylation of benzene to phenol with hydrogen peroxide as oxidant in a mixed solvent of glacial acetic acid and acetonitrile.Various reaction parameters,such as reaction time,reaction temperature,ratio of benzene to hydrogen peroxide,concentration of aqueous hydrogen peroxide,ratio of glacial acetic acid to acetonitrile in solvent and catalyst concentration,were changed to obtain an optimal reaction conditions. H3+nPMo12-nVnO40 (n= 1-3) are revealed to be highly efficient catalyst for hydroxylation of benzene. In case of H5PMo10V2O40,a conversion of benzene of 34.5% with the selectivity of phenol of 100% can be obtained at the optimal reaction conditions.

  18. 微反应器中十二烷基苯液相SO3磺化过程%Process Performance of Dodecylbenzene Sulfonation with Liquid SO3 in a Microreactor

    Institute of Scientific and Technical Information of China (English)

    主凯; 赵玉潮; 张博宇; 陈光文

    2015-01-01

    Petroleum sulfonates and heavy alkyl benzene sulfonates are important anionic surfactants used in tertiary oil recovery and the active components are alkyl benzene sulfonates. In this work, dodecylbenzene (DDB) sulfonation with liquid SO3 inmicroreactors was used as a model reaction and its reaction performance was studied in a microreactor. The effects of some important parameters on the yield of dodecylbenzene sulfonic acid are investigated, including liquid flow rate, reaction temperature, mass fraction of SO3, length of microchannel, molar ratio of SO3 to dodecylbenzene, reactor types and stirring time. The results showed that the sulfonation of dodecylbenzene is controlled by mass transfer and the initial period of sulfonation can be significantly intensified in the microreactor. With a combination of a microreactor and a tank reactor, the yield of dodecylbenzene sulfonic acid can reach 93.7% under the condition of molar ratio of SO3 to dodecylbenzene 1.1:1.%石油磺酸盐和重烷基苯磺酸盐是三次采油用重要阴离子表面活性剂,其主要成分是烷基苯磺酸盐。本研究以十二烷基苯(DDB)液相SO3磺化为模型反应,研究微反应器内的烷基苯磺酸合成反应过程特性,考察了液体流量、反应温度、磺化剂中 SO3含量、反应通道长度、SO3与十二烷基苯物质的量比、微反应器结构、搅拌时间等参数的影响。结果表明,十二烷基苯磺化过程受传质控制,微反应器对反应初始阶段的强化作用明显,在SO3与十二烷基苯物质的量比为1.1时,采用微反应器与釜式反应器串联模式合成十二烷基苯磺酸,收率高达93.7%,为微反应器生产重烷基苯磺酸的路线提供了重要基础。

  19. Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite.

    Science.gov (United States)

    Kera, Nazia H; Bhaumik, Madhumita; Ballav, Niladri; Pillay, Kriveshini; Ray, Suprakas Sinha; Maity, Arjun

    2016-08-15

    A polypyrrole/2,5-diaminobenzenesulfonic acid (PPy/DABSA) composite, synthesised by the in situ oxidative polymerization of pyrrole in the presence of DABSA, was studied as an adsorbent for the removal of Cr(VI) from aqueous solution. The structure and morphology of the composite were investigated by ATR-FTIR, FE-SEM, EDX, TGA, XRD and XPS studies. The adsorption of Cr(VI) by PPy/DABSA composite was highly pH dependent and optimum removal was achieved at pH 2. Adsorption of Cr(VI) was confirmed by EDX and XPS studies. The isotherm data fitted the linear Langmuir model well, with a maximum adsorption capacity of 303mg/g at 25°C. Thermodynamic parameters (ΔG°, ΔH° and ΔS°) were calculated using isotherm data and confirmed that the adsorption process was spontaneous and endothermic. Adsorption kinetics was best described by the pseudo-second-order model. The activation energy of the adsorption process suggested that Cr(VI) was chemisorbed by PPy/DABSA composite. PPy/DABSA composite could be used for three consecutive adsorption-desorption cycles without loss of its original adsorption capacity. Highly selective removal of Cr(VI) was observed even when co-existing ions such as Cu(2+), Zn(2+), Ni(2+), Cl(-), SO4(2)(-) and NO3(-) were present in the solution. In summary, the potential of PPy/DABSA composite for remediating industrial wastewater contaminated by Cr(VI) has been demonstrated. PMID:27209399

  20. 一类磺酸系双子表面活性剂的制备及性能研究%Preparation and properties of a sulfonic acid series gemini surfactants

    Institute of Scientific and Technical Information of China (English)

    宋冬冬; 孙雪丽; 刘方圆; 朱广军

    2012-01-01

    Intermediates, α - sulfostearic acid and α - snlfolauric acid ,were prepared by reacting ehlorosulfonic acid with stearic acid and lauric acid respectively. Five kinds of sulfonic acid gemini surfactant were prepared by reacting α - sulfostearic acid with ethanediol ,1,4- butanediol ,1,6- hexanediol and poly ethanediol respectively as well as α — sulfolauric acid with ethanediol. All the sulfonated intermediates were neutralized to form the corresponding salts and thereby five kinds of sulfonic acid gemini surfactant were prepared. Molecular structures of the gemini surfactants were characterized by FTIR and HNMR. Optimal esterification reaction conditions for preparation of the gemini surfactants were obtained through orthogonal designed experiments. Basic physical - chemical properties of the gemini surfactants were studied. Results showed that following the increase of carbon chain length of the spacing group,its cmc reduces correspondingly. Meanwhile,following the increase of the carbon chain length of the hydrophobic group,its γcmc increases correspondingly. Emulsification and foam properties of the sulfonic acid series gemini surfactants are better than that of the corresponding single body sulfonic acid surfactants.%以氯磺酸为磺化剂,分别与硬脂酸和月桂酸进行磺化反应,制备了中间体α-磺基硬脂酸和α-磺基月桂酸.将中间体α-磺基硬脂酸分别与乙二醇、1,4-丁二醇、1,6-己二醇和聚乙二醇400以及α-磺基月桂酸与乙二醇进行酯化反应,最后中和成盐,制备出5种磺酸系双子表面活性剂.通过FTIR和1HNMR对目标产物进行了表征.通过正交试验对磺酸系双子表面活性剂制备的酯化工艺进行了优化,得到较优的酯化工艺条件.对制备的磺酸系双子表面活性剂的基本物化性能进行了研究,结果表明,临界胶束浓度(cmc)随联结基团长度的增加而降低,同时随着疏水链的增长,γcmc呈增大的

  1. Ionic Liquid Catalyst Used in Deep Desulfuration of the Coking Benzene for Producing Sulfurless Benzene

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xia-Ping; WANG Yan-Liang; MENG Fan-Wei; FAN Xing-Ming; QIN Song-Bo

    2008-01-01

    For the widening need of benzene used in organic synthesis, ionic liquid catalyst was prepared to study the process of deep desulfuration in the coking benzene. The result shows that the effect of de-thiophene by the ionic liquid catalyst (N-methyl imidazolium hydrogen sulfate [Hmim][HSO4]) is related to its acid function value.Hammett indicator was used to determine the acid function value H0 of the ionic liquid. It can be concluded that while the acid function value is in the range from -4 to -12, the ionic liquid catalyst can make the concentration certain acid quantity and strength, the ionic liquid catalyst helps to form alkyl thiophene through Friedel-Crafts reaction, which differs from the character of benzene and it is absolutely necessary for the separation and refinement of benzene. But overabundant quantity and higher acid value of [Hmim][HSO4] are more suitable for the side copolymerization of benzene, thiophene and alkene, thereby affecting repeated use of the ionic liquid catalyst([Hmim][HSO4]). In our research, thiophene derivant produced by desulfurization in the coking benzene was used as the polymer to provide the passing channel of the charges. The ionic liquid composition in poor performance after repeated use was made to prepare conductive material (resisting to static electricity) as an "electron-receiving" and "electron-giving" doping agent. The result shows that thiophene derivant after desulfuration in the coking benzene can be used to prepare doping conductive materials.

  2. Poly(arlyene ether sulfone) based semi-interpenetrating polymer network membranes containing cross-linked poly(vinyl phosphonic acid) chains for fuel cell applications at high temperature and low humidity conditions

    Science.gov (United States)

    Kim, Kihyun; Heo, Pilwon; Ko, Taeyun; Kim, Ki-hyun; Kim, Sung-Kon; Pak, Chanho; Lee, Jong-Chan

    2015-10-01

    Semi-interpenetrating polymer network (semi-IPN) membranes are prepared by in-situ casting and thermal-initiated radical polymerization of vinyl phosphonic acid (VPA) and bis(2-(methacryloyloxy)ethyl) phosphate (BMAEP) in N,N-dimethylacetamide solutions of sulfonated poly(arylene ether sulfone) (SPAES). The incorporation of VPA units into the SPAES membranes improves proton conductivity especially at high temperature and low humidity conditions. In addition the cross-linker, BMAEP, prevents the decrease of the mechanical and chemical stabilities by the aliphatic linear poly(vinyl phosphonic acid) chains in the semi-IPN membranes, and furthermore the phosphonic acid group in BMAEP can prevent the decrease of the proton conductivity by the formation of cross-linked structures. Therefore, the resulting semi-IPN membranes show high proton conductivities up to 15 mS cm-1 at 120 °C and 40% RH. The fuel cell performance (187 mW cm-2 at 120 °C and 40% RH) of membrane-electrode assembly (MEA) from the semi-IPN membrane is found to be superior to that (145 mW cm-2 at 120 °C and 40% RH) of MEA from the SPAES membrane. The durability test result at the operating conditions indicates that the semi-IPN membrane is electrochemically very stable maintaining the low hydrogen cross-over and high power densities.

  3. Benzene from Traffic

    DEFF Research Database (Denmark)

    Palmgren, F.; Berkowicz, R.; Skov, H.;

    The measurements of benzene showed very clear decreasing trends in the air concentrations and the emissions since 1994. At the same time the measurements of CO and NOx also showed a decreasing trend, but not so strong as for benzene. The general decreasing trend is explained by the increasing...... number of petrol vehicles with three way catalysts, 60-70% in 1999. The very steep decreasing trend for benzene at the beginning of the period from 1994 was explained by the combination of more catalyst vehicles and reduced benzene content in Danish petrol. The total amount of aromatics in petrol......, including toluene, increased only weakly. The analyses of air concentrations were confirmed by analyses of petrol sold in Denmark. The concentration of benzene at Jagtvej in Copenhagen is still in 1998 above the expected new EU limit value, 5 µg/m3 as annual average. However, the reduced content of benzene...

  4. Cross-aldol Condensation of Cycloalkanones and Aromatic Aldehydes in the Presence of Nanoporous Silica-based Sulfonic Acid (SiO2-Pr-SO3H) under Solvent Free Conditions

    Institute of Scientific and Technical Information of China (English)

    MOHAMMADI ZIARANI Ghodsi; BADIEI Alireza; ABBASI Alireza; FARAHANI Zahra

    2009-01-01

    The aromatic aldehydes underwent cross aldol condensation with cycloalkanones in the presence of a catalytic amount of nanoporous silica-based sulfonic acid (SiO2-Pr-SO3H) under solvent-free conditions to afford the corresponding a,a'-bis(substituted benzylidene)cycloalkanones in excellent yields with short reaction time without any side reactions.This method is very general,simple and environmentally friendly in contrast with other existing methods.SiO2-Pr-SO3H was proved to be an efficient heterogeneous solid acid catalyst,which could be easily handled and removed from the reaction mixture by simple filtration,and also recovered and reused without loss of reactivity.

  5. Reprint of: Liquid chromatographic enzymatic studies with on-line Beta-secretase immobilized enzyme reactor and 4-(4-dimethylaminophenylazo) benzoic acid/5-[(2-aminoethyl) amino] naphthalene-1-sulfonic acid peptide as fluorogenic substrate.

    Science.gov (United States)

    De Simone, Angela; Seidl, Claudia; Santos, Cid Aimbiré M; Andrisano, Vincenza

    2014-10-01

    High throughput screening (HTS) techniques are required for the fast hit inhibitors selection in the early discovery process. However, in Beta-secretase (BACE1) inhibitors screening campaign, the most frequently used methoxycoumarin based peptide substrate (M-2420) is not widely applicable when aromatic or heterocycle compounds of natural source show auto-fluorescence interferences. Here, in order to overcome these drawbacks, we propose the use of a highly selective 4-(4-dimethylaminophenylazo)benzoic acid/5-[(2-aminoethyl)amino]naphthalene-1-sulfonic acid (DABCYL/1,5-EDANS) based peptide substrate (Substrate IV), whose cleavage product is devoid of spectroscopic interference. HrBACE1-IMER was prepared and characterized in terms of units of immobilised hrBACE1. BACE1 catalyzed Substrate IV cleavage was on-line kinetically characterized in terms of KM and vmax, in a classical Michaelis and Menten study. The on-line kinetic constants were found consistent with those obtained with the in solution fluorescence resonance energy transfer (FRET) standard method. In order to further validate the use of Substrate IV for inhibition studies, the inhibitory potency of the well-known BACE1 peptide InhibitorIV (IC₅₀: 0.19 ± 0.02 μM) and of the natural compound Uleine (IC₅₀: 0.57 ± 0.05) were determined in the optimized on-line hrBACE1-IMER. The IC₅₀ values on the hrBACE1-IMER system were found in agreement with that obtained by the conventional methods confirming the applicability of Substrate IV for on-line BACE1 kinetic and inhibition studies. PMID:24932540

  6. Benzene-1,2,4,5-tetra­carb­oxy­lic acid bis­(1,3,7-trimethyl-2,3,6,7-tetra­hydro-1H-purine-2,6-dione)

    OpenAIRE

    Arman, Hadi D.; Tiekink, Edward R. T.

    2013-01-01

    The asymmetric unit of the title co-crystal, C10H6O8·2C8H10N4O2, comprises a centrosymmetric benzene-1,2,4,5-tetracarboxylic acid (LH4) molecule and a molecule of caffeine in a general position. LH4 is nonplanar, with the dihedral angles between the ring and pendent carboxylic acid groups being 44.22 (7) and 49.74 (7)°. By contrast, the caffeine molecule is planar (r.m.s. deviation = 0.040 Å). Supramolecular layers parallel to (-1-10) are sustained by carboxyl...

  7. Bis(tetra­methyl­amonium) bis­(2,4,5-carboxy­benzoate)–benzene-1,2,4,5-tetra­carboxylic acid (1/1)

    OpenAIRE

    Girginova, Penka I.; Tito Trindade; João Rocha; Jacek Klinowski; Almeida Paz, Filipe A.; Luís Cunha-Silva

    2007-01-01

    The asymmetric unit of the title compound, 2C4H12N+·2C10H5O8−·C10H6O8, consists of a tetramethylamonium cation, an anion derived from the singly deprotonated pyromellitic acid anion, 2,4,5-carboxybenzoate (H3bta−), and one-half of a benzene-1,2,4,5-tetracarboxylic acid (H4bta) molecule, which has the centroid of the aromatic ring positioned at a crystallographic centre of inversion. The H4bta and H3bta− residues are involved in an extensive intermolecular O—H...

  8. Densities and Kinematic Viscosities for the Systems Benzene + Methyl Formate, Benzene + Ethyl Formate, Benzene + Propyl Formate, and Benzene + Butyl Formate

    DEFF Research Database (Denmark)

    Emmerling, Uwe; Rasmussen, Peter

    1998-01-01

    Densities and kinematic viscosities have been measured for the system benzene + methyl formate at 20°C and for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate from 20°C to 50°C. The results for the system benzene + methyl formate have been correlated using...... a Redlich-Kister type of expression with temperature-independent parameters and the data for the systems benzene + ethyl formate, benzene + propyl formate, and benzene + butyl formate with temperature-dependent parameters. The viscosities have furthermore been compared to values predicted by means...

  9. Benzene release. Status report

    International Nuclear Information System (INIS)

    Scoping benzene release measurements were conducted on 4 wt percent KTPB 'DEMO' formulation slurry using a round, flat bottomed 100-mL flask containing 75 mL slurry. The slurry was agitated with a magnetic stirrer bar to keep the surface refreshed without creating a vortex. Benzene release measurements were made by purging the vapor space at a constant rate and analyzing for benzene by gas chromatography with automatic data acquisition. Some of the data have been rounded or simplified in view of the scoping nature of this study

  10. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU Peter C; WANG Dei-Haw; LU Kaitao; MANI Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis (dibromomethyl) benzenes with fuming sulfuric acid, followed by hydrolysis, The yields were significantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  11. An efficient synthesis of substituted benzene-1,2-dicarboxaldehydes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Peter; C; WANG; Der-Haw; MANI; Neelakandha

    2007-01-01

    Substituted-benzene-1,2-dicarbaldehydes were synthesized by the reaction of substituted-1,2-bis(dibromomethyl) benzenes with fuming sulfuric acid,followed by hydrolysis. The yields were signifi-cantly improved by introducing solid sodium bicarbonate into the reaction mixture before hydrolysis and workup.

  12. Facts about Benzene

    Science.gov (United States)

    ... Lab Info Chemical Emergencies A–Z Abrin Adamsite Ammonia Arsenic Arsine Barium Benzene Brevetoxin Bromine BZ Carbon ... used to make some types of lubricants, rubbers, dyes, detergents, drugs, and pesticides. How you could be ...

  13. Human urine certified reference material CZ 6010: creatinine and toluene metabolites (hippuric acid and o-cresol) and a benzene metabolite (phenol)

    Czech Academy of Sciences Publication Activity Database

    Šperlingová, I.; Dabrowská, L.; Stránský, V.; Kučera, Jan; Tichý, M.

    2007-01-01

    Roč. 387, č. 7 (2007), s. 2419-2424. ISSN 1618-2642 Institutional research plan: CEZ:AV0Z10480505 Keywords : toluene metabolites * benzene metabolite * human urine Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 2.867, year: 2007

  14. Benzene Monitor System report

    Energy Technology Data Exchange (ETDEWEB)

    Livingston, R.R.

    1992-10-12

    Two systems for monitoring benzene in aqueous streams have been designed and assembled by the Savannah River Technology Center, Analytical Development Section (ADS). These systems were used at TNX to support sampling studies of the full-scale {open_quotes}SRAT/SME/PR{close_quotes} and to provide real-time measurements of benzene in Precipitate Hydrolysis Aqueous (PHA) simulant. This report describes the two ADS Benzene Monitor System (BMS) configurations, provides data on system operation, and reviews the results of scoping tests conducted at TNX. These scoping tests will allow comparison with other benzene measurement options being considered for use in the Defense Waste Processing Facility (DWPF) laboratory. A report detailing the preferred BMS configuration statistical performance during recent tests has been issued under separate title: Statistical Analyses of the At-line Benzene Monitor Study, SCS-ASG-92-066. The current BMS design, called the At-line Benzene Monitor (ALBM), allows remote measurement of benzene in PHA solutions. The authors have demonstrated the ability to calibrate and operate this system using peanut vials from a standard Hydragard{trademark} sampler. The equipment and materials used to construct the ALBM are similar to those already used in other applications by the DWPF lab. The precision of this system ({+-}0.5% Relative Standard Deviation (RSD) at 1 sigma) is better than the purge & trap-gas chromatograpy reference method currently in use. Both BMSs provide a direct measurement of the benzene that can be purged from a solution with no sample pretreatment. Each analysis requires about five minutes per sample, and the system operation requires no special skills or training. The analyzer`s computer software can be tailored to provide desired outputs. Use of this system produces no waste stream other than the samples themselves (i.e. no organic extractants).

  15. Multiblock copolymers with highly sulfonated blocks containing di- and tetrasulfonated arylene sulfone segments for proton exchange membrane fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Takamuku, Shogo; Jannasch, Patric [Polymer and Materials Chemistry, Department of Chemistry, Lund University (Sweden)

    2012-01-15

    Multiblock copoly(arylene ether sulfone)s with different block lengths and ionic contents are tailored for durable and proton-conducting electrolyte membranes. Two series of fully aromatic copolymers are prepared by coupling reactions between non-sulfonated hydrophobic precursor blocks and highly sulfonated hydrophilic precursor blocks containing either fully disulfonated diarylsulfone or fully tetrasulfonated tetraaryldisulfone segments. The sulfonic acid groups are exclusively introduced in ortho positions to the sulfone bridges to impede desulfonation reactions and give the blocks ion exchange capacities (IECs) of 4.1 and 4.6 meq. g{sup -1}, respectively. Solvent cast block copolymer membranes show well-connected hydrophilic nanophase domains for proton transport and high decomposition temperatures above 310 C under air. Despite higher IEC values, membranes containing tetrasulfonated tetraaryldisulfone segments display a markedly lower water uptake than the corresponding ones with disulfonated diarylsulfone segments when immersed in water at 100 C, presumably because of the much higher chain stiffness and glass transition temperature of the former segments. The former membranes have proton conductivities in level of a perfluorosulfonic acid membrane (NRE212) under fully humidified conditions. A membrane with an IEC of 1.83 meq. g{sup -1} reaches above 6 mS cm{sup -1} under 30% relative humidity at 80 C, to be compared with 10 mS cm{sup -1} for NRE212 under the same conditions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Synthesis and characterization of binary and ternary complexes of Co(II), Ni(II), Cu(II) and Zn(II) ions based on 4-aminotoluene-3-sulfonic acid

    Science.gov (United States)

    Faheim, Abeer A.; Abdou, Safaa N.; Abd El-Wahab, Zeinab H.

    2013-03-01

    Salicylidene (4-aminotoluene-3-sulfonic acid) Schiff base ligand H2L, and its binary and ternary Co(II), Ni(II), Cu(II) and Zn(II) complexes using 8-hydroxyquinoline (8-HOqu) and 2-aminopyridine (2-Ampy) as secondary ligands have been synthesised and characterized via elemental analysis, spectral data (IR, 1H NMR, mass and solid reflectance), molar conductance, magnetic moment, TG-DSC measurements and XRPD analysis. Correlation of all spectroscopic data suggest that H2L ligand acts as monoanionic terdentate ligand with ONO sites coordinating to the metal ions via deprotonated phenolic-O, azomethine-N and sulfonate-O while 2-Ampy behaves as a neutral monodentate ligand via amino group-N and 8-HOqu behaves as a monoanionic bidentate ligand through the ring-N and deprotonated phenolic-O. The thermal behavior of these complexes shows that the coordinated water molecules were eliminated from the complexes at relatively higher temperatures than the hydrated water and there are two routes in removal of coordinated water molecules. All complexes have mononuclear structure and the tetrahedral, square planar or an octahedral geometry have been proposed. The ligand and its complexes have been screened for their antimicrobial activity against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Salmonella typhimurium, Candida albicans and Aspergillus fumigatus. Among the synthesised compounds, the binary and ternary Ni(II) complexes, (2, 8 and 10) and ternary Zn(II) complex, (12) were found to be very effective against Candida albicans and Bacillus subtilis than all other complexes with MICs of 2 and 8 μg/mL, respectively.

  17. Sulfonation and characterization of styrene-indene copolymers for the development of proton conducting polymer membranes

    Directory of Open Access Journals (Sweden)

    Cristiane M. Becker

    2012-01-01

    Full Text Available The aim of this work is to obtain polymer precursors based on styrene copolymers with distinct degrees of sulfonation, as an alternative material for fuel cell membranes. Acetyl sulfate was used to carry out the sulfonation and the performance of the polyelectrolyte was evaluated based on the content of acid polar groups incorporated into the macromolecular chain. Polymeric films were produced by blending the sulfonated styrene-indene copolymer with poly(vinylidene fluoride. The degree of sulfonation of the polymer was strongly affected by the sulfonation reaction parameters, with a direct impact on the ionic exchange capacity and the ionic conductivity of the sulfonated polymers and the membranes obtained from them. The films produced with the blends showed more suitable mechanical properties, although the conductivity of the membranes was still lower than that of commercially available membranes used in fuel cells.

  18. Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide.

    Science.gov (United States)

    Dange, C; Phan, T N T; André, V; Rieger, J; Persello, J; Foissy, A

    2007-11-01

    Adsorption on ZnO of sodium poly(acrylate) (PAA), sodium poly(styrene sulfonate) (PSS) and a monomer surfactant [hydroxyethylidene diphosphonate (HEDP)] was investigated in suspensions initially equilibrated at pH 7. Results demonstrate interplay in the adsorption mechanism between zinc complexation, salt precipitation, and ZnO dissolution. In the case of PAA, the adsorption isotherm exhibits a maximum attributed to the precipitation of zinc polyacrylate. PSS and HEDP formed high-affinity adsorption isotherms, but the plateau adsorption of HEDP was significantly lower than that of PSS. The adsorption isotherm of each additive is divided into two areas. At low additive concentration (high zinc/additive ratio), the total zinc concentration in the solution decreased and the pH increased upon addition. At a higher additive ratio, zinc concentration and pH increased with the organic concentration. The increase in pH is due to the displacement of hydroxyl ions from the surface and the increase in zinc concentration results from the dissolution of ZnO due to the complexation of zinc ions by the organics. The stability of the ZnO dispersions was investigated by measurement of the particle size distribution after addition of various amounts of polymers. The three additives stabilized the ZnO dispersions efficiently once full surface coverage was reached. PMID:17720181

  19. 21 CFR 573.600 - Lignin sulfonates.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Lignin sulfonates. 573.600 Section 573.600 Food... Additive Listing § 573.600 Lignin sulfonates. Lignin sulfonates may be safely used in animal feeds in... feeds, as liquid lignin sulfonate, in an amount not to exceed 11 percent of the molasses. (4) As...

  20. Synthesis and characterization of sulfonated polyesters derived from glycerol; Sintese e caracterizacao de poliesteres sulfonados obtidos a partir do glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Fiuza, R.A.; Jose, N.M.; Boaventura, J.S. [Universidade Federal da Bahia (IQ/UFBA), Salvador, BA (Brazil). Inst. de Quimica; Fiuza, R.P. [Universidade Federal da Bahia (EP/UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Quimica

    2010-07-01

    In this work were synthesized polyesters from glycerol and acid sulfonated phthalic previously. The materials were characterized by DSC, TGA, FTIR, SEM, XRD and XRF. The results showed effective sulfonation of phthalic acid. The presence of sulfonic groups promoted strong changes in the crystallinity of the new material makes the lens. The polyesters made from phthalic acid sulfonated combine characteristics such as heat resistance and groups that drivers potentiate the electrolyte for application in fuel cells proton exchange membrane and also for gas separation. (author)

  1. Economical benzene emission reduction

    International Nuclear Information System (INIS)

    Benzene has been classified as a toxic compound under the Canadian Environmental Protection Act. This has prompted the Alberta Energy and Utilities Board (AEUB) to introduce specific reporting and monitoring guidelines for the oil and gas industry regarding excessive benzene emissions. Glycol dehydration units have been determined to be the major single source of benzene emissions causing air and soil pollution. DualTank Corp. has designed a condensation and storage tank unit to enhance emission reduction, odour elimination and liquid recovery from dehydration units. Their newly designed combined tank unit consists of a large, uninsulated surface area for cooling, and an excessive internal volume for increased retention time. The first prototype was installed in December 1998 at an Enerplus Resources Site. The system provides excellent benzene emission reduction and the elimination of odours and visual plumes. Effective January 1, 1999, the petroleum and natural gas industry must either clean up excessive emissions voluntarily or face government imposed regulations, facility shutdowns and/or fines. 1 fig

  2. 丙烯腈-苯乙烯磺酸共聚物/层状双金属氢氧化物纳米复合质子传导聚合物电解质的制备与表征%Synthesis and characterization of proton-conducting polymer electrolytes based on acrylonitrile-styrene sulfonic acid copolymer/layered double hydroxides nanocomposites

    Institute of Scientific and Technical Information of China (English)

    王盎然; 包永忠; 翁志学; 黄志明

    2008-01-01

    Acrylonitrile-sodium styrene sulfonate copolymer/layered double hydroxides nanocomposites were prepared by in situ aqueous precipitation copolymerization of acrylonitrile (AN) and sodium styrene sulfonate (SSS) in the presence of 4-vinylbenzene sulfonate intercalated layered double hydroxides (MgAl-VBS LDHs) and transferred to acrylonitrile-styrene sulfonic acid (AN-SSA) copolymer/LDHs nanocomposites as a proton-conducting polymer electrolyte. MgAl-VBS LDHs were prepared by a coprecipitation method, and the structure and composition of MgAl-VBS LDHs were determined by X-ray diffraction (XRD), infrared spectroscopy, and elemental analysis. X-ray diffraction result of AN-SSS copolymer/LDHs nanocomposites indicated that the LDHs layers were well dispersed in the AN-SSS copolymer matrix. All the AN-SSS copolymer/LDHs nanocomposites showed significant enhancement of the decomposition temperatures compared with the pristine AN-SSS copolymer, as identified by the thermogravimetric analysis. The methanol crossover was decreased and the proton conductivity was highly enhanced for the AN-SSA copolymer/LDHs nanocomposite electrolyte systems In the case of the nanocomposite electrolyte containing 2% (by mass) LDHs, the proton conductivity of 2.60×10-3 S·m-1 was achieved for the polymer electrolyte.

  3. Preparation of a Sulfonated Carbonaceous Material from Lignosulfonate and Its Usefulness as an Esterification Catalyst

    Directory of Open Access Journals (Sweden)

    Duckhee Lee

    2013-07-01

    Full Text Available Sulfonated carbonaceous material useful as a solid acid catalyst was prepared from lignosulfonate, a waste of the paper-making industry sulfite pulping process, and characterized by 13C-NMR, FT-IR, TGA, SEM and elemental analysis, etc. The sulfonic acid group density and total density of all acid groups in the sulfonated carbonaceous material was determined by titration to be 1.24 mmol/g and 5.90 mmol/g, respectively. Its catalytic activity in the esterification of cyclohexanecarboxylic acid with anhydrous ethanol was shown to be comparable to that of the ionic exchange resin Amberlyst-15, when they were used in the same amount. In the meantime, the sulfonic acid group was found to be leached out by 26%–29% after it was exposed to hot water (95 °C for 5 h. The catalytic usefulness of the prepared carbonaceous material was investigated by performing esterifications.

  4. Electrical conductivity of sulfonated poly(ether ether ketone) based composite membranes containing sulfonated polyhedral oligosilsesquioxane

    Science.gov (United States)

    Celso, Fabricio; Mikhailenko, Serguei D.; Rodrigues, Marco A. S.; Mauler, Raquel S.; Kaliaguine, Serge

    2016-02-01

    Composite proton exchange membranes (PEMs) intended for fuel cell applications were prepared by embedding of various amounts of dispersed tri-sulfonic acid ethyl POSS (S-Et-POSS) and tri-sulfonic acid butyl POSS (S-Bu-POSS) in thin films of sulfonated poly ether-ether ketone. The electrical properties of the PEMs were studied by Impedance spectroscopy and it was found that their conductivity σ changes with the filler content following a curve with a maximum. The water uptake of these PEMs showed the same dependence. The investigation of initial isolated S-POSS substances revealed the properties of typical electrolytes, which however in both cases possessed low conductivities of 1. 17 × 10-5 S cm-1 (S-Et-POSS) and 3.52 × 10-5 S cm-1 (S-Bu-POSS). At the same time, the insoluble in water S-POSS was found forming highly conductive interface layer when wetted with liquid water and hence producing a strong positive impact on the conductivity of the composite PEM. Electrical properties of the composites were analysed within the frameworks of effective medium theory and bounding models, allowing to evaluate analytically the range of possible conductivity values. It was found that these approaches produced quite good approximation of the experimental data and constituted a fair basis for interpretation of the observed relationship.

  5. Establishment of biological limit value of urinary S-phenylmercapturic acid for occupational exposure to benzene%职业接触苯尿中苯巯基尿酸生物限值研究

    Institute of Scientific and Technical Information of China (English)

    梅勇; 宋世震; 陈斯琦; 叶玉杰; 叶方立

    2009-01-01

    Objective To establish the biological exposure limit values of urinary S-phenylmercap-turic acid (SPMA) for assessing occupational exposure to benzene. Methods Study participants were selected from 55 workers of benzene exposures below 32.5 mg/m~3. The concentration of personal exposure to benzene was measured by gas chromatography and sampled with personal sampler. The urine samples were collected at the end of work shift and individual internal exposure level was evaluated by determination of SPMA in urine by HPLC/MS method. Comparison of external and internal exposure was assessed by the relative internal expo-sure(RIE) index. Results The benzene exposure level ranged from 0.71 to 32.17 mg/m~3 (geometric mean 6.98 mg/m~3, median 7.50 mg/m~3). The urinary SPMA at the end of the work shift were significantly correlated with benzene exposure, Y (μg/g Cr)=-8.625 + 18.367X (mg/m~3), r=0.8035, (P<0.01). According to the occupational exposure limit for benzene in China and calculation of regression equation, the expected value of urinary SPMA was 101.58 μg/g Cr. Mean level of biotransformation of per mg/m~3 benzene to urinary SPMA was 18.23 μg/g Cr and the metabolic efficiencies of benzene transformation to urinary SPMA decreased with benzene exposure in-creased. Conclusion Based on abroad documents and data, biological limit value for occupational exposure to benzene in China is recommended as follows: 100 μg/g Cr (47 μmol/mol Cr) for SPMA in the urine at the end of shift.%目的 研制我国职业接触苯工人尿中苯巯基尿酸(SPMA)的生物限值.方法 在苯作业车间选择空气中苯浓度在32.5 mg/m~3以下接苯工人55人,应用个体采样器采集空气样品,用气相色谱法检测作业者个体苯接触水平,同时采集当日工人班后尿,应用高压液相色谱/质谱法(HPLC/MS)测定尿中SPMA含量以评价苯接触者的内暴露水平,内外暴露水平的比较用相对内暴露指数(RIE)加以评定.结果 接苯工人工作

  6. Bio-esters formation in transesterification and esterification reactions on carbon and silica supported organo-sulfonic acids-polyaniline solid catalysts

    Czech Academy of Sciences Publication Activity Database

    Kalemba-Jaje, Z.; Drelinkiewicz, A.; Lalik, E.; Konyushenko, Elena; Stejskal, Jaroslav

    2014-01-01

    Roč. 135, 1 November (2014), s. 130-145. ISSN 0016-2361 Institutional support: RVO:61389013 Keywords : sufonic acids * transesterification * triacetin Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.520, year: 2014

  7. Synthesis and characterization of sulfonic acid membranes based on interpenetrating polymer networks for application in fuel cells; Sintese e caracterizacao de membranas sulfonadas baseadas em redes polimericas interpenetrantes para aplicacao em celulas a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Lyzed Toloza; Loureiro, Felipe A.M.; Rocco, Ana Maria [Grupo de Materiais Condutores e Energia, Escola de Quimica, Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)], e-mail: amrocco@eq.ufrj.br; Pereira, Robson Pacheco [Instituto de Ciencias Exatas, Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil)

    2011-07-01

    In the present work, the synthesis and characterization of sulfonic membranes based on interpenetrating polymer networks (IPN). In order to obtain such systems, the diglycidyl ether of bisphenol A (DGEBA) was polymerized in presence of polyethyleneimine (PEI). These membranes were submitted to sulfonation reactions, originating IPN-SO{sub 3}H membranes. The characterization by FTIR evidenced the formation of a Semi-IPN structure, while sulfonation reactions resulted in systems containing -SO{sub 3}H groups covalently bonded to the chains. The membranes exhibited water retention up to 200 degree C, in a temperature range sufficient for application in PEMFC under hydration. (author)

  8. Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples After Preconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid.

    Science.gov (United States)

    Islam, Aminul; Ahmad, Akil; Laskar, Mohammad Asaduddin

    2015-01-01

    Amberlite® XAD-16 was functionalized with p-aminobenzene sulfonic acid via an azo spacer in order to prepare a new chelating resin, which was then characterized by water regain value, hydrogen ion capacity, elemental analyses, and IR spectral and thermal studies. The maximum uptake of Cu(II), Ni(II), Zn(II), Co(II), Cr(III), Fe(III), and Pb(II) ions was observed in the pH range 4.0-6.0 with the corresponding half-loading times of 6.5, 7.0, 8.0, 9.0, 11.0, 8.5, and 16.5 min. The sorption data followed Langmuir isotherms and a pseudo-second-order model. Thermodynamic quantities, ΔH and ΔS, based on the variation of the distribution coefficient with temperature were also evaluated. High preconcentration factors of 60-100 up to a low preconcentration limit of 4.0-6.6 μg/L have been achieved for the metal ions. The validity of the method was checked by analyzing standard reference materials and recoveries of trace metals after spiking. The analytical applications of the method were explored by analyzing natural water, mango pulp, mint leaves, and fish. PMID:25857893

  9. NCX-1015, a nitric-oxide derivative of prednisolone, enhances regulatory T cells in the lamina propria and protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis in mice

    Science.gov (United States)

    Fiorucci, Stefano; Antonelli, Elisabetta; Distrutti, Eleonora; Del Soldato, Piero; Flower, Roderick J.; Clark, Mark J. Paul; Morelli, Antonio; Perretti, Mauro; Ignarro, Louis J.

    2002-01-01

    NCX-1015 is a nitric oxide (NO)-releasing derivative of prednisolone. In this study we show NCX-1015 protects mice against the S. A. development and induces healing of T helper cell type 1-mediated experimental colitis induced by intrarectal administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS). The beneficial effect of NCX-1015 was reflected in increased survival rates, improvement of macroscopic and histologic scores, a decrease in the mucosal content of T helper cell type 1 cytokines (protein and mRNA), and diminished myeloperoxidase activity in the colon. In contrast to its NO derivative, only very high doses of prednisolone were effective in reproducing these beneficial effects. NCX-1015 was 10- to 20-fold more potent than the parent compound in inhibiting IFN-γ secretion by lamina propria mononuclear cells. Protection against developing colitis correlated with inhibition of nuclear translocation of p65/Rel A in these cells. In vivo treatment with NCX-1015 potently stimulated IL-10 production, suggesting that the NO steroid induces a regulatory subset of T cells that negatively modulates intestinal inflammation. PMID:12427966

  10. HPLC Analysis of Impurity in p-Amino Benzene Sulfonic Acid%高效液相色谱法测定对氨基苯磺酸中的有关杂质

    Institute of Scientific and Technical Information of China (English)

    王燕桓; 高慧; 石志红

    2002-01-01

    用反相高效液相色谱法同时测定工业对氨基苯磺酸中的几种微量杂质 (邻氨基苯磺酸、间氨基苯磺酸、苯胺).以0.1 mol/L 磷酸二氢铵为流动相,采用SUPELCOSIL LC-18-DB(5 μm,150 mm×4.6 mm I.D.)色谱柱,紫外检测波长 205 nm,流速1 mL/min.方法快速准确、灵敏度高、重现性好,测定结果令人满意.

  11. Thermal behaviors and grafting process of LDH/benzene derivative hybrid systems

    International Nuclear Information System (INIS)

    Highlights: ► Orientation of the organic entities between the layers of the mineral network. ► Influence of the organics functional group on the stability of the hybrid material. ► Demonstration of three different behaviors in terms of the grafting process. - Abstract: Thermal behaviors of four hybrid layered double hydroxide (LDH) phases have been studied by thermogravimetric analyses coupled with mass spectroscopy, temperature dependence of X-ray powder diffraction measurements, and temperature dependence of infrared spectroscopy measurements. Inorganic zinc–aluminium LDH main layers (with a Zn2+/Al3+ cationic ratio of 2) inserted the following four organic anions: benzene carboxylate, 4-hydroxy-benzene carboxylate, benzene sulfonate and 4-hydroxy-benzene sulfonate. The four LDH hybrids have been synthesized by the coprecipitation method. The as-prepared samples have been characterized and their compositions were determined. Thermal evolution of the crystalline phases during the dehydration (occurring before 200 °C) and the dehydroxylation (occurring between 200 and 300 °C) gave evidence for organic anion grafting onto the inorganic main layer. The thermal stability of the LDH hybrid system depends on the nature of the intercalated aromatic anion. The thermal grafting process can be monitored, as well as its thermal reversibility, by choosing the functionalizations of the benzenic anion and the temperature of the applied heat treatment.

  12. Development of tailor-made glycidyl methacrylate-divinyl benzene copolymer for immobilization of D-amino acid oxidase from Aspergillus species strain 020 and its application in the bioconversion of cephalosporin C.

    Science.gov (United States)

    Mujawar; Kotha; Rajan; Ponrathnam; Shewale

    1999-09-24

    A tailor-made glycidyl methacrylate-divinyl benzene (GMA-DVB) copolymer PC-3 was evolved by studying the effect of synthesis variables on binding and expression of D-amino acid oxidase (DAAO) from Aspergillus species strain 020. Almost quantitative binding (100%) and a high yield of immobilization per unit of enzyme loaded was achieved. Optimum pH, optimum temperature and K(m)95% was achieved by using 3% (w/v) solution of ceph C, 48 U of DAAO per g of ceph C, keeping dissolved oxygen level above 50%, maintaining the pH between 7.6 and 7.8 and temperature at 24 degrees C. The immobilized DAAO was used for 60 cycles in a stirred tank reactor. PMID:10704992

  13. Complexes of Al(3), Ga(3) and In(3) ions with sodium salt of morin-5'-sulfonic acid (NaMSA) in aqueous solutions

    International Nuclear Information System (INIS)

    The complexation equilibria of Al(3), Ga(3) and In(3) with NaMSA in acid aqueous solutions have been investigated. The composition and the equilibrium constants of the reaction as well as the concentration stability constants of the complexes have been determined. The probable mechanisms of the complexation reaction have been suggested. (author)

  14. CdSe量子点与对氨基苯磺酸偶联反应研究%Coupling reaction of CdSe quantum dots with aminobenzene sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    王伟杰; 俞英; 林碧霞; 梁耀珍

    2011-01-01

    The water soluble CdSe QDs, which were prepared by wrapping nanoparticles of the CdSe QD's with mercapto-propionic acid ( M PA) , were covalently conjugated with ami-nobenzene sulfonic acid ( ABSA) by linker EDC and NHS. The CdSe/MPA/ABSA was characterized using transmission electron microscopy, UV-vis spectrometry, fluorescence spec-trometry, fluorescence decay spectrometry, IR spectrometry, Capillary electrophoregrams. The coupled complex of CdSe QDs with ABSA was proved to be successfully. The results show that CdSe/MPA/ABSA possess fine optical properties.%以巯基丙酸为修饰剂合成水溶性硒化镉量子点(CdSe/MPA),利用碳化二亚胺(EDC)和琥珀酰亚胺(NHS)两种偶联剂,将对氨基苯磺酸与硒化镉量子点进行偶联以制备量子点-对氨基苯磺酸偶合物.通过透射电子显微镜、紫外-可见光谱、荧光光谱、荧光寿命、红外光谱、毛细管电泳对偶合物进行了表征.结果表明:量子点和对氨基苯磺酸偶联成功,该偶合物基本保持了量子点的荧光性能,可以作为研究植物病理的荧光探针.

  15. 脂肪酸甲酯磺酸盐中二钠盐来源分析及改进%Source analysis of dio-sodium salt in fatty acid methyl ester sulfonate and amelioration

    Institute of Scientific and Technical Information of China (English)

    蒋惠亮; 王相明

    2012-01-01

    实验考察了脂肪酸甲酯磺酸盐(MES)合成的各工序中α-磺基脂肪酸二钠(二钠盐)的变化量。其中再酯化阶段二钠盐减少最多,中和阶段二钠盐产生最多,这是由于再酯化阶段引入了部分甲醇以及中和阶段的强碱性环境和较高温度引起的。同时提出了各阶段的改进方法。经过优化实验,得到二钠盐含量最低时,各阶段最佳条件为:漂白温度75℃,再酯化时间6 h,甲醇与脂肪酸甲酯磺酸摩尔比30∶1,中和方式为以碳酸钠粉末干法中和。%The content ofdi-sodium salt ( DSS ) in every step of MES's synthesis was measured, the maximal decrease of DSS is in reesterification stage, the maximal increase of DSS is in neutralization stage. It could be resulted from the methanol introduction in reesterification stage, strong alkaline environment and higher temperature in neutralization stage. Meanwhile, improvement is also proposed for every stage in ameliorated method. By optimizing the experiment, the optimal condition for every stage was obtained as, bleaching temperature 75 ℃, reesterification time 6h, the mole ratio of methanol to fatty acid methyl ester sulfonic acid 30 : 1, neutralization pattern, dry neutralization by sodium carbonate powder when the content of di-sodium salt is the lowest.

  16. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene

    International Nuclear Information System (INIS)

    Two coordination polymers [Co(dnbab)2(bimb)](H2O)4 (1) and [Zn(dnbab)2(bimb)](H2O)5 (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab)2(bimb)](H2O)4(1) and [Zn(dnbab)2(bimb)](H2O)5(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state

  17. Syntheses, structures, and properties of Co(II)/Zn(II) mixed-ligand coordination polymers based on 4-[(3,5-dinitrobenzoyl)amino]benzoic acid and 1,4-bis(1-imidazolyl) benzene

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Fei; Chen, Jing; Liang, Yongfeng [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018 (China); Zou, Yang, E-mail: zouyang@zstu.edu.cn [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018 (China); Yinzhi, Jiang [Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018 (China); Xie, Jingli, E-mail: jlxie@mail.zjxu.edu.cn [College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001 (China)

    2015-05-15

    Two coordination polymers [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4} (1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5} (2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been solvothermally synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by powder X-ray diffraction (PXRD) and thermogravimetric (TG) analyses. Complexes 1 and 2 are isostructures and each displays an one-dimensional (1D) zigzag chain, which further forms a 3D supramolecular architecture with 1-D channels via inter-chain π–π interactions and hydrogen bonds. Moreover, the magnetic properties of 1 and fluorescent properties of 2 have been investigated. - Graphical abstract: Two coordination supramolecular frameworks [Co(dnbab){sub 2}(bimb)](H{sub 2}O){sub 4}(1) and [Zn(dnbab){sub 2}(bimb)](H{sub 2}O){sub 5}(2) (Hdnbab=4-[(3,5-dinitrobenzoyl)amino]benzoic acid, bimb=1,4-bis(1-imidazolyl) benzene) have been synthesized and characterized by X-ray single-crystal diffraction. Their thermal, magnetic and fluorescent properties have also been studied. - Highlights: • Two isomorphic Co(II)/Zn(II) complexes with the mixed-ligands have been synthesized. • Hydrogen bonds and π–π stacking interactions directed the final 3-D architecture assembly. • Both Co(II) and Zn(II) complexes show good thermal stability. • Co complex exhibits antiferromagnetic interaction. • The fluorescent property of Zn(II) complex has been investigated in the solid state.

  18. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    OpenAIRE

    Yin-lin Lei; Yun-jie Luo; Fei Chen; Le-he Mei

    2014-01-01

    With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF) alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN) cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB) in the alloy particles on the...

  19. Proton conductive membranes based on doped sulfonated polytriazole

    Energy Technology Data Exchange (ETDEWEB)

    Boaventura, M.; Brandao, L.; Mendes, A. [Laboratorio de Engenharia de Processos, Ambiente e Energia (LEPAE), Faculdade de Engenharia da Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal); Ponce, M.L.; Nunes, S.P. [GKSS Research Centre Geesthacht GmbH, Max Planck Str. 1, D-21502, Geesthacht (Germany)

    2010-11-15

    This work reports the preparation and characterization of proton conducting sulfonated polytriazole membranes doped with three different agents: 1H-benzimidazole-2-sulfonic acid, benzimidazole and phosphoric acid. The modified membranes were characterized by scanning electron microscopy (SEM), infrared spectra, thermogravimetric analysis (TGA), dynamical mechanical thermal analysis (DMTA) and electrochemical impedance spectroscopy (EIS). The addition of doping agents resulted in a decrease of the glass transition temperature. For membranes doped with 85 wt.% phosphoric acid solution proton conductivity increased up to 2.10{sup -3} S cm{sup -1} at 120 C and at 5% relative humidity. The performance of the phosphoric acid doped membranes was evaluated in a fuel cell set-up at 120 C and 2.5% relative humidity. (author)

  20. Detecting a Quasi-stable Imine Species on the Reaction Pathway of SHV-1 β-Lactamase and 6β-(Hydroxymethyl)penicillanic Acid Sulfone

    OpenAIRE

    Che, Tao; Rodkey, Elizabeth A.; Bethel, Christopher R.; Shanmugam, Sivaprakash; Ding, Zhe; Pusztai-Carey, Marianne; Nottingham, Michael; Chai, Weirui; Buynak, John D.; Robert A Bonomo; van den Akker, Focco; Carey, Paul R.

    2014-01-01

    For the class A β-lactamase SHV-1, the kinetic and mechanistic properties of the clinically used inhibitor sulbactam are compared with the sulbactam analog substituted in its 6β position by a CH2OH group (6β-(hydroxymethyl)penicillanic acid). The 6β substitution improves both in vitro and microbiological inhibitory properties of sulbactam. Base hydrolysis of both compounds was studied by Raman and NMR spectroscopies and showed that lactam ring opening is followed by fragmentation of the dioxo...

  1. Radiolysis of Aqueous Benzene Solutions

    International Nuclear Information System (INIS)

    Aerated and deaerated aqueous solutions of benzene have been irradiated with 60Co γ-rays. The products of radiolysis in deaerated, unbuffered or acid, solutions were phenol, biphenyl, hydrogen and in acid solutions also hydrogen peroxide with the following yields: G(phenol) = 0. 37 (0. 37), G(biphenyl) = 1.3 (1.7), G(H2) = 0.44 (0. 43) and G(H2O2) = 0 (0.60), the figures in brackets giving the results for acid solutions. The results are shown to agree with the conclusion that k(e-aq + H2O2) >> k(H + H2O2). Furthermore, the results indicate that a competition takes place between the reactions: 2 C6H6OH · -> dimer -> biphenyl. C6H7 · + C6H6OH · -> dimer -> biphenyl. The yields in aerated, unbuffered or acid, solutions were: G(phenol) = 2.1 (2.3), G(biphenyl) = 0 (0), and G(H2O2) = 2.2 (3.1), the figures in brackets being valid for acid solutions. The ratio k(H + C6H6)/k(H + O2) was 1.4x10-2. The results indicate that peroxides, or more probably hydroperoxides, take part in the reactions. After the addition of Fe2+ or Fe3+ to aerated acid solutions G(phenol) was increased to 6.6 and 3.4 respectively. Oxygen was consumed more rapidly in the presence of Fe. Reaction mechanisms are discussed

  2. Benzene exposure: an overview of monitoring methods and their findings.

    Science.gov (United States)

    Weisel, Clifford P

    2010-03-19

    Benzene has been measured throughout the environment and is commonly emitted in several industrial and transportation settings leading to widespread environmental and occupational exposures. Inhalation is the most common exposure route but benzene rapidly penetrates the skin and can contaminant water and food resulting in dermal and ingestion exposures. While less toxic solvents have been substituted for benzene, it still is a component of petroleum products, including gasoline, and is a trace impurity in industrial products resulting in continued sub to low ppm occupational exposures, though higher exposures exist in small, uncontrolled workshops in developing countries. Emissions from gasoline/petrochemical industry are its main sources to the ambient air, but a person's total inhalation exposure can be elevated from emissions from cigarettes, consumer products and gasoline powered engines/tools stored in garages attached to homes. Air samples are collected in canisters or on adsorbent with subsequent quantification by gas chromatography. Ambient air concentrations vary from sub-ppb range, low ppb, and tens of ppb in rural/suburban, urban, and source impacted areas, respectively. Short-term environmental exposures of ppm occur during vehicle fueling. Indoor air concentrations of tens of ppb occur in microenvironments containing indoor sources. Occupational and environmental exposures have declined where regulations limit benzene in gasoline (<1%) and cigarette smoking has been banned from public and work places. Similar controls should be implemented worldwide to reduce benzene exposure. Biomarkers of benzene used to estimate exposure and risk include: benzene in breath, blood and urine; its urinary metabolites: phenol, t,t-muconic acid (t,tMA) and S-phenylmercapturic acid (sPMA); and blood protein adducts. The biomarker studies suggest benzene environmental exposures are in the sub to low ppb range though non-benzene sources for urinary metabolites, differences

  3. Benzene vapor recovery and processing

    International Nuclear Information System (INIS)

    The National Emissions Standards for Hazardous Air Pollutants, or NESHAPs, have provided a powerful motivation for interest in, and attention to, benzene vapor emissions in recent times. Benzene and its related aromatics are volatile organic compounds (VOCs), which marks them for surveillance as potential contributors to air pollution. In addition, benzene is a suspected carcinogen, which applies a special urgency to its control. The regulations governing the control of benzene emissions were issued as Title 40, Code of Federal Regulations, Part 61, subpart Y (Storage Vessels); subpart BB (Transfer Operations); and subpart FF (Waste Operations). These regulations specify very particular emission reduction guidelines for various generating sources. The problem in the hydrocarbon processing industry is to identify significant sources of benzene vapors in plants, and then to collect and process these vapors in an environmentally acceptable manner. This paper discusses various methods for collecting benzene fumes in these facilities

  4. Benzene exposures in urban areas

    International Nuclear Information System (INIS)

    Benzene exposures in urban areas were reviewed. Available data confirm that both in USA and Europe, benzene concentrations measured by fixed outdoor monitoring stations underestimate personal exposures of urban residents. Indoor sources, passive smoke and the high exposures during commuting time may explain this difference. Measures in European towns confirm that very frequently mean daily personal exposures to benzene exceed 10 μg/m3, current European air quality guideline for this carcinogenic compound

  5. Evaluación de un Detergente en Base a Benceno Sulfonato de Sodio para el Control de la Mosquita Blanca Aleurothrixus floccosus (Maskell (Hemiptera: Aleyrodidae y de la arañita Roja Panonychus citri (McGregor (Acarina: Tetranychidae en Naranjos y Mandarinos Evaluation of a Detergent Based on Sodium Benzene Sulfonate for the Control of Woolly Whitefly Aleurothrixus floccosus (Maskell (Hemiptera: Aleyrodidae and Red Citrus Red Mites Panonychus citri (McGregor (Acarina: Tetranychidae on Oranges and Mandarins

    Directory of Open Access Journals (Sweden)

    Renato Ripa S

    2006-06-01

    economic damage, and the use of non selective insecticides increases the problem due to the effect on the natural enemies. To evaluate the use of detergent based on sodium benzene sulfonate on the reduction of whiteflies, mites and natural enemies, experiments were performed in two citrus orchards. The first field trial was carried out on in a mandarin orchard (Citrus reticulata Blanco infested by the woolly whitefly at El Palqui (IV Region, Chile. The experiment consisted of the evaluation of two applications of detergent (February 10th and March 3rd, 1998, compared with an untreated control. The results showed significant differences in A. floccosus populations between sprayed and untreated trees from May to July. The mean of parasitized nymphs between March and August was 89.6% in treated trees and 57.1% in untreated trees. The proportion of fruits at harvest with sooty mould was lower on untreated trees compared with the control, 2.3% and 45.5%, respectively. The second field trial was carried out on an orange orchard trees (Citrus sinensis (L. Osbeck, infested by the citrus red mite at Hijuelas (V Region and included the following applications detergent, chinometionate, mineral oil and water. Chinometionate produced an effective control of the phytophagous mites populations and an almost total elimination of natural enemies such as phytoseiids and the coccinellid Stethorus histrioChazeau. The application of detergent and mineral oil showed less control compared to the acaricide and less impact on populations of natural enemies.

  6. Biodiesel from Citrullus colocynthis Oil: Sulfonic-Ionic Liquid-Catalyzed Esterification of a Two-Step Process

    OpenAIRE

    Yasir Ali Elsheikh; Faheem Hassan Akhtar

    2014-01-01

    Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to th...

  7. Stannic chloride-para toluene sulfonic acid as a novel catalyst-co-catalyst system for the designing of hydroxyl terminated polyepichlorohydrin polymer: Synthesis and characterization.

    Science.gov (United States)

    Ahmad, Muhammad; Sirajuddin, Muhammad; Akther, Zareen; Ahmad, Waqar

    2015-12-01

    Hydroxy terminated polyepichlorohydrin (PECH) was synthesized in good yield (85-88%) with improved functionality (2.01-2.53) and desired number average molecular weight (∼3000), using a novel catalyst-co-catalyst combination. The effect of various molar ratios (4-12) of p-toluenesulphonic acid and SnCl4 on molecular weight of PECH was investigated. Different polymerization conditions like temperature, time and monomer addition rates were found to have pronounced effect on molecular weight, polydispersity and functionality of the products. The molecular weight distribution and polydispersity of the synthesized polymers were determined by Gel permeation chromatography (GPC). Absolute value of Number average molecular weight (Mn) was established with vapor pressure osmometry and structural elucidations were carried out by FT-IR and NMR spectroscopic techniques. Terminal Hydroxyl groups were quantified by acetylation method and functionality was derived from hydroxyl value and Mn. PMID:26135537

  8. ANALYSIS OF LEACHABLE PERFLUOROOCTANIC ACID AND PERFLUOROOCTANIC SULFONIC IN DISPOSABLE LUNCH BOXES%一次性餐盒材料中全氟辛酸和全氟辛烷磺酸沥出性研究

    Institute of Scientific and Technical Information of China (English)

    潘媛媛; 史亚利; 王亚(韦/华); 蔡亚岐

    2009-01-01

    The leachability of perfluorooctanie acid (PFOA) and perfluorooctanic sulfonic (PFOS) from disposable luneh boxes materials under 4 food stimulant conditions was investigated with the HPLC/MS/MS method, using MPFOA and MPFOS as the internal standard, respectively. Four kinds of solvents were selected to simulate the exposure of food to the plastic materials, which were distilled water, 3% acetic acid (W/W), 15% ethanol (V/V) and n-hexane. The two compounds in the stimulant solvents were extracted using the Supelclean LC-18 SPE (3ec) cartridges. It was indieated that foodstuff can be very likely contaminated by perfluorinated compounds during the usage of disposable lunch boxes, and that mueh higher level of PFOA (about2296 ng· m~(-2))was deteeted in the stimulant solvent of 3% acetic acid after contact with the disposable lunch box for 4 h. Generally, PFOS can hardly be leached out under the four conditions.%利用高效液相色谱-串联质谱检测方法对一次性餐盒材料中可沥出性全氟辛酸(PFOA)和全氟辛烷磺酸(PFPS)进行了研究.分别选取水、3%乙酸(W/W)、15%乙醇(V/V)和正己烷4种浸取液模拟餐盒材料在使用过程中可能接触到的水性、酸性、酒精类和油脂类条件.材料经4种溶液浸提后,浸取液用固相萃取净化和浓缩,目标分析物PFOA和PFOS采用内标法进行定量.研究表明,一次性餐盒材料在模拟条件下中有以PFOA为主的伞氟类化合物从材料中沥出,其中酸性环境对PFOA的浸取率最高(2296 ng·m~(-2)), 为其它3种方法的82.8倍;4种浸提条件下PFPS的沥出率都比较低,浓度仪为0.7 ng·m~(-2)-5.4 ng·m~(-2).

  9. Interaction of humic acid with plutonium(III)

    International Nuclear Information System (INIS)

    The stability constants of the complex of Pu(III) with a humic acid at pH 2.9 and 5.0 were measured using solvent extraction technique. The organic extractant was dinonyl naphthalene sulfonic acid in sodium form (NaD) in benzene, while the humate aqueous phase had a constant ionic strength of 0.5M (NaClO4). The total carboxylate capacity of the humic acid (6.201 Meq g-1) was determined by direct potentiometric titration. The apparent pKa increased as the degree of ionization increased. The lg β1 values of the complex of Pu(III) with humic acid were 2.8 and 3.11 at pH 2.9 and 5.0. (author) 11 refs.; 4 figs.; 3 tabs

  10. SYNTHESIS AND PROPERTIES OF SULFONATED POLY(ARYLENE ETHER) CONTAINING TRIPHENYL METHANE MOIETIES FROM ISOCYNATE MASKED BISPHENOL

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel sulfonated poly(arylene ether) containing triphenylmethane moieties was synthesized by the sulfonation of a designed parent polymer using chlorosulfonic acid as sulfonation agent. The sulfonation took place at the para position of the pendant phenyl rings because of the specially designed parent polymer. The position and degree of sulfonation were characterized by 1H-NMR and elemental analysis. The sulfonated polymers are highly soluble in common organic solvents, such as dimethylsulfoxide, N,N'-dimethylacetamide, dimethylformamide, ethylene glycol monomethyl ether, and can be readily cast into tough and smooth films from solutions. The films showed good thermal and hydrolysis stabilities. Moreover, Fenton's reagent test revealed that the films exhibited superior stability to oxidation. The proton conductivities of the films were comparable with Nation 117 under same conditions. The membrane electrode assembly (MEA) prepared with the asmade film (706 EW, 100 μm dry thickness) shows better cell performance than Nation 115-MEA in the whole current density range.

  11. Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation.

    Science.gov (United States)

    Park, Saerom; Lee, Linda S; Medina, Victor F; Zull, Aaron; Waisner, Scott

    2016-02-01

    PFOA (perfluorooctanoic acid) oxidation (0.121-6.04 μM) by heat-activated persulfate was evaluated at 20-60 °C with 4.2-84 mM [Formula: see text] and in the presence of soluble fuel components to assess feasibility for in-situ remediation of groundwater. 6:2 fluorotelomer sulfonic acid/sulfonate (6:2 FTSA) and PFOS (perfluorooctanesulfonic acid) persulfate oxidation was also evaluated in a subset of conditions given their co-occurrence at many sites. High performance liquid chromatography electron spray tandem mass spectrometry was used for organic analysis and fluoride was measured using a fluoride-specific electrode. PFOA pseudo-1st order transformation rates (k1,PFOA) increased with increasing temperature (half-lives from 0.1 to 7 d for 60 to 30 °C) sequentially removing CF2 groups ('unzipping') to shorter chain perfluoroalkyl carboxylic acids (PFCAs) and F(-). At 50 °C, a 5-fold increase in [Formula: see text] led to a 5-fold increase in k1,PFOA after which self-scavenging by sulfate radicals decreased the relative rate of increase with more [Formula: see text] . Benzene, toluene, ethylbenzene and xylene did not affect k1,PFOA even at 40 times higher molar concentrations than PFOA. A modeling approach to explore pathways strongly supported that for 6:2 FTSA, both the ethyl linkage and CF2-CH2 bond of 6:2 FTSA oxidize simultaneously, resulting in a ratio of ∼25/75 PFHpA/PFHxA. The effectiveness of heat-activated [Formula: see text] on PFOA oxidation was reduced in a soil slurry; therefore, repeated persulfate injections are required to efficiently achieve complete oxidation in the field. However, PFOS remained unaltered even at higher activation temperatures, thus limiting the sole use of heat-activated persulfate for perfluoroalkyl substances removal in the field. PMID:26692515

  12. Synthesis of proton conducting sulfonated and phosphonated polybenzimidazoles

    Energy Technology Data Exchange (ETDEWEB)

    Ng, F.; Peron, J.; Salunke, A.; Jones, D.J.; Roziere, J. [Montpellier Univ., Montpellier (France). Lab. des Agregats Moleculaires et Materiaux Inorganiques

    2006-07-01

    A study was conducted in which a new flexible polybenzimidazoles (PBI) was synthesized with a proton conductivity higher than 10-3 S/cm at room temperature, in the absence of any unbound acid. Polybenzimidazoles are particularly robust polymers that are stable under various chemical and thermal environments. It is difficult to achieve direct sulfonation in solution of commercially available PBI, although alternative types of PBI with different solubility properties may be modified in this way. Reaction at high temperature of sulfuric acid-doped PBI membranes results in cross-linked and poorly conducting systems. Although acid-doped PBI membranes have high conductivity, acid loss occurs at temperature and load cycling in an operating fuel cell. Alternative approaches have been suggested, such as direct sulfonation and polycondensation reaction involving building blocks functionalized with protogenic groups that lead to new functionalized polybenzimidazoles with suitable properties for fuel cell application. The membrane microstructure can be modified by controlling the position, number and distribution of the sulfonic (phosphonic) acid groups along the backbone. This also affects membrane swelling and conductivity. This study also investigated the influence of the degree of protogenic group functionalization of polymer and membrane properties such as Tg, film forming properties, membrane water uptake and conductivity, and surface hydrophobic/philic properties. It was concluded that the polymer's conductivity depends on the ion exchange capacity and on the nature of the component diacids that give flexibility to the functionalized polybenzimidazole chains.

  13. Radiation-induced crosslinking of poly(styrene–butadiene–styrene) block copolymers and their sulfonation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sun-Young [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Song, Ju-Myung; Sohn, Joon-Yong [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of); Shul, Yong-Gun [Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Shin, Junhwa, E-mail: shinj@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeollabuk-do 580-185 (Korea, Republic of)

    2013-12-01

    Highlights: • The c-SBS films were prepared using a gamma ray or electron beam. • The crosslinking degree of the c-SBS films were increased with the irradiation dose. • The prepared c-SBS films were sulfonated with various concentration of CSA. • The sulfonation of the c-SBS film is largely dependent on the concentration of CSA. • The sulfonation process is progressed from the surface to the inner part of c-SBS film. -- Abstract: Several crosslinked poly(styrene–butadiene–styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  14. Inexpensive proton exchange membrane synthesis by sulfonation of commercially available polycarbonate

    International Nuclear Information System (INIS)

    Commercially available thermoplastic, bisphenol polymer (polycarbonate) was sulfonated with various reagents to introduce sulfonic acid group (So/sub 3/H) under optimum conditions. Subsequently modified polymer was studied for its physical and chemical properties needed for its potential use as PEM in Fuel Cells (FCs). Fourier Transform infrared (FT-IR) and X-ray Diffraction (XRD) were performed to confirm the occurrence of sulfonation. Differential thermal Analysis (DTA) and Thermogravimetric analysis (TGA) were used to determine the effects of sulfonation on glass transition temperature (Tg) and thermal stability of modified polymer. The ion exchange capacity (IEC) and Degree of substitution (DS) of sulfonic acid group were determined using standard procedure. Swelling properties were tested using water soaking. Scanning Electron Microscopy (SEM) was utilized to study the morphology of the polymeric membrane both before and after sulfonation. the results reveal that proper controlled sulfonation of bisphenol polymer can be a viable substitute for NAFION owing to its comparable IEC (1.15 meq/g), DS, water uptake (35%), good mechanical properties/ thermal stability and above all low cost of production. (author)

  15. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    Science.gov (United States)

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  16. Synthesis and characterization of quaternized poly(phthalazinone ether sulfone ketone) for anion-exchange membrane

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) was prepared from poly(phthalazinone ether sulfone ketone) (PPESK) using chloromethyl octyl ethers (CMOE) with lower toxicity as chloromethylated regent. CMPPESK was soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc) and chloroform. Quatemized poly(phthalazinone ether sulfone ketone) (QAPPESK) was prepared from CMPPESK by quaternization. QAPPESK had excellent solvent resistance,which was only partly soluble in sulfuric acid (98%) and swollen in N,N-dimethylformamide (DMF). The vanadium redox flow battery (V-RFB) using QAPPESK anion-exchange membrane had better performance with 88.3% of overall energy efficiency.

  17. A Durable Alternative for Proton-Exchange Membranes: Sulfonated Poly(Benzoxazole Thioether Sulfone)s

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dan; Li, Jin Hui; Song, Min Kyu; Yi, Baolian; Zhang, Huamin; Liu, Meilin

    2011-02-24

    To develop a durable proton-exchange membrane (PEM) for fuel-cell applications, a series of sulfonated poly(benzoxazole thioether sulfone)s ( SPTESBOs) are designed and synthesized, with anticipated good dimensional stability (via acid–base cross linking), improved oxidative stability against free radicals (via incorporation of thioether groups), and enhanced inherent stability (via elimination of unstable end groups) of the backbone. The structures and the degree of sulfonation of the copolymers are characterized using Fourier-transform infrared spectroscopy, and nuclear magnetic resonance spectroscopy ({sup 1}H NMR and {sup 19}F NMR). The electrochemical stabilities of the monomers are examined using cyclic voltammetry in a typical three-electrode cell configuration. The physicochemical properties of the membranes vital to fuel-cell performance are also carefully evaluated under conditions relevant to fuel-cell operation, including chemical and thermal stability, proton conductivity, solubility in different solvents, water uptake, and swelling ratio. The new membranes exhibit low dimensional change at 25°C to 90°C and excellent thermal stability up to 250°C. Upon elimination of unstable end groups, the co-polymers display enhanced chemical resistance and oxidative stability in Fenton's test. Further, the SPTESBO-HFB-60 (HFB-60=hexafluorobenzene, 60 mol% sulfone) membrane displays comparable fuel-cell performance to that of an NRE 212 membrane at 80°C under fully humidified condition, suggesting that the new membranes have the potential to be more durable but less expensive for fuel-cell applications.

  18. Dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid induce lipid peroxidation by the proliferation of intestinal gram-negative bacteria in mice

    Directory of Open Access Journals (Sweden)

    Hyun Yang-Jin

    2010-02-01

    Full Text Available Abstrect Background To understand whether TLR-4-linked NF-kB activation negatively correlates with lipid peroxidation in colitic animal models, we caused colitis by the treatment with dextran sulfate sodium (DSS or 2,4,6-trinitrobenzenesulfonic acid (TNBS to C3H/HeJ (TLR-4-defective and C3H/HeN (wild type mice, investigated inflammatory markers, lipid peroxidation, proinflammatory cytokines and TLR-4-linked NF-κB activation, in colon and intestinal bacterial composition in vivo. Methods Orally administered DSS and intrarectally injected TNBS all caused severe inflammation, manifested by shortened colons in both mice. These agents increased intestinal myeloperoxidase activity and the expression of the proinflammatory cytokines, IL-1β, TNF-α and IL-6, in the colon. Results DSS and TNBS induced the protein expression of TLR-4 and activated transcription factor NF-κB. However, these colitic agents did not express TLR-4 in C3H/HeJ mice. Of proinflammatory cytokines, IL-1β was most potently expressed in C3H/HeN mice. IL-1β potently induced NF-κB activation in CaCo-2 cells, but did not induce TLR-4 expression. DSS and TNBS increased lipid peroxide (malondialdehyde and 4-hydroxy-2-nonenal content in the colon, but reduced glutathione content and superoxide dismutase and catalase activities. These colitic inducers increased the number of Enterobacteriaceae grown in DHL agar plates in both mice, although the number of anaerobes and bifidobacteria grown in GAM and BL agar plates was reduced. E. coli, K. pneumoniae and Proteus mirabilis isolated in DHL agar plates increased lipid peroxidation in liposomes prepared by L-α-phosphatidylcholine, but B. animalis and B. cholerium isolated from BL agar plates inhibited it. Discussion These findings suggest that DSS and TNBS may cause colitis by inducing lipid peroxidation and enterobacterial proliferation, which may deteriorate the colitis by regulating proinflammatory cytokines via TLR-4-linked NF

  19. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pcherry flavoured beverages, industrial best practices should include monitoring for benzene. Formulations containing either benzoic acid or benzaldehyde in combination with ascorbic acid should be avoided. PMID:27041300

  20. 磺酸官能化的磁性核壳结构的纳米材料用于果糖脱水制备5-羟甲基糠醛%Nanocoating of magnetic cores with sulfonic acid functionalized shells for the catalytic dehydration of fructose to 5-hydroxymethylfurfural

    Institute of Scientific and Technical Information of China (English)

    张晓辰; 王敏; 王业红; 张超峰; 张哲; 王峰; 徐杰

    2014-01-01

    通过反相微乳液法制备了以Fe3O4为核,磺酸官能化的硅基材料为壳层的磁性酸性催化剂.首先制备纳米Fe3O4磁核,然后涂层包覆苯基修饰的纳米级硅层,最后进行苯基磺化修饰,制得固体酸催化剂Fe3O4@Si/Ph-SO3H.在果糖脱水制备5-羟甲基糠醛反应中,该催化剂表现出较好的催化活性,优于传统催化剂A-15,且与均相无机酸催化活性相当.当采用二甲基亚砜作溶剂,在110 oC下反应3 h,果糖转化率达到99%,5-羟甲基糠醛收率为82%.另外,该催化剂经磁法回收后可多次重复使用.%A magnetically recyclable acid catalyst composed of an Fe3O4 core and sulfonic acid functionalized silica shell has been prepared using the reverse microemulsion method. The Fe3O4 core was coated with a phenyl modified silica shell nanolayer, and the phenyl groups were subsequently sulfonated to generate a solid sulfonic acid catalyst. The resulting acid catalyst showed higher activity than the conventional A-15 catalyst and comparable activity to several homogeneous sulfonic acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural (HMF). This process gave a fructose conversion of 99%with an HMF yield of 82%following 3 h in dimethylsulfoxide at 110 °C. Fur-thermore, the catalyst could be magnetically separated and recycled several times without losing its activity.

  1. Radiation-induced crosslinking of poly(styrene-butadiene-styrene) block copolymers and their sulfonation

    Science.gov (United States)

    Lee, Sun-Young; Song, Ju-Myung; Sohn, Joon-Yong; Shul, Yong-Gun; Shin, Junhwa

    2013-12-01

    Several crosslinked poly(styrene-butadiene-styrene) (c-SBS) block copolymer films were prepared using a gamma ray or electron beam with various irradiation doses and the prepared c-SBS film was then subjected to sulfonation using a chlorosulfonic acid (CSA) solution to introduce a sulfonic acid group. To estimate the degree of crosslinking, the gel fractions and FT-IR spectra of the c-SBS films were used and the results indicate that the degree of crosslinking is increased with an increase in the radiation dose. The surface morphology and mechanical property of the c-SBS films were observed using SEM and UTM instruments, respectively. The sulfonated c-SBS films were investigated by measuring the ion exchange capacity (IEC) and by observing the cross-sectional distribution patterns of sulfonic acid group using an SEM-EDX instrument. The IEC and SEM-EDX studies indicate that the sulfonated c-SBS membranes can be successfully prepared through the radiation crosslinking of the SBS film and the subsequent sulfonation with a diluted CSA solution.

  2. Investigation of carbon monoxide tolerance of platinum nanoparticles in the presence of optimum ratio of doped polyaniline with para toluene sulfonic acid and their utilization in a real passive direct methanol fuel cell

    International Nuclear Information System (INIS)

    Highlights: ► Onset potential of methanol oxidation on Pt/C-PANI-PTSA electrocatalysts is close to Pt–Ru catalyst. ► The methanol crossover in the presence of Pt/C-20%PANI-PTSA reduced by 59% compared with Pt/C (Electrochem). ► The energy efficiency of Pt/C-20%PANI-PTSA as anode is 2.18 times more than Pt/C. -- Abstract: Polyaniline fiber (PANI) was synthesized by chemical interfacial method and doped with para toluene sulfonic acid (PTSA) through a sequential doping–dedoping–redoping process resulting in PANI-PTSA. The doped material was utilized to fabricate Vulcan-polyaniline composite of C-PANI-PTSA. Next, through reduction, Pt particles were deposited on to this composite to produce a Pt/C-PANI-PTSA electrocatalyst. To investigate the PANI-PTSA interaction with the carbon support as well as, to consider its effect upon the catalytic activity of Pt/C-PANI-PTSA, electrocatalysts with different ratios of 10, 15, 20, 25 and 30 wt% were synthesized and their activity was compared with the Pt/C (Electrochem). Results revealed that, the peak current density in methanol electro-oxidation, electrochemical surface area, methanol diffusion coefficient, charge transfer resistance as well as; the stability of the Pt/C-20%PANI-PTSA electrocatalyst were all markedly improved for the synthesized material. Moreover, the Pt/C-20%PANI-PTSA was demonstrated to be more CO tolerant according to the CO stripping voltammetry test. Also powder XRD and TEM techniques were utilized to investigate the crystallite size and the surface morphologies of the catalysts. Finally, the performance of Pt/C-20%PANI-PTSA was compared with Pt/C (Electrochem) in a passive direct methanol fuel cell and the effect of PANI-PTSA on methanol crossover and fuel utilization was analyzed. Ultimately, the Pt/C-20%PANI-PTSA modified catalyst was shown to be more suitable for applying in the direct methanol fuel cells (DMFC) compared with the commercial Pt/C material

  3. Overbased Calcium sulfonate Detergent Technology Overview

    Institute of Scientific and Technical Information of China (English)

    MA Qing-gao; MUIR Ronald J.

    2009-01-01

    Overbased calcium sulfonate is used widely as detergent in automotive and marine lubricants, as well as various industrial oil applications. In this paper, the process to produce overbased calcium sulfonate is overviewed. The sulfonate structure and molecular weight and its molecular weight distribution, the enclosed calcium carbonate nanoparticle size and crystalline structure, properties of the carrier oil, all influence its properties, such as stability, viscosity, and detergency of the system.

  4. Polystyrene-supported Selenomethyl-sulfonates:Efficient Reagents for Stereocontrolled Synthesis of Substituted Vinyl Sulfones

    Institute of Scientific and Technical Information of China (English)

    Wei Ming XU; Lu Ling WU; Xian HUANG

    2004-01-01

    Polystyrene-supported selenomethyl-sulfonates have been prepared. These novel reagents were treated with LDA to produce selenium stabilized carbanions, which reacted with alkyl halide and epoxides, followed by selenoxide syn-elimination, to give E-vinyl sulfones and γ-hydroxy-substituted-E-vinyl sulfones respectively.

  5. Synthesis and characterizations of electrospun sulfonated poly (ether ether ketone) SPEEK nanofiber membrane

    Science.gov (United States)

    Hasbullah, N.; Sekak, K. A.; Ibrahim, I.

    2016-07-01

    A novel electrospun polymer electrolyte membrane (PEM) based on Sulfonated Poly (ether ether ketone) were prepared and characterized. The poly (ether ether ketone) PEEK was sulfonated using concentrated sulfuric acid at room temperature for 60 hours reaction time. The degree sulfonation (DS) of the SPEEK are 58% was determined by H1 NMR using area under the peak of the hydrogen shielding at aromatic ring of the SPEEK. Then, the functional group of the SPEEK was determined using Fourier transfer infrared (FTIR) showed O-H vibration at 3433 cm-1 of the sulfonated group (SO2-OH). The effect of the solvent and polymer concentration toward the electrospinning process was investigated which, the DMAc has electrospun ability compared to the DMSO. While, at 20 wt.% of the polymer concentration able to form a fine and uniform nanofiber, this was confirmed by FESEM that shown electrospun fiber mat SPEEK surface at nano scale diameter.

  6. 4-Aminopyridinium-3-sulfonate monohydrate

    Directory of Open Access Journals (Sweden)

    Zhi-Biao Zhu

    2011-02-01

    Full Text Available The reaction of 4-aminopyridine and oleum yielded the title hydrated zwitterion, C5H6N2O3S·H2O. There are two formula units in the asymmetric unit. The H and non-H atoms of both zwitterions lie on a mirror plane except for one sulfonate O atom. The water molecules are also situated on a mirror plane. In the crystal, the zwitterions and water molecules are linked by O—H...O and N—H...O hydrogen bonds, generating a three-dimensional network.

  7. Sulfonates and Organotrophic Sulfite Metabolism

    OpenAIRE

    Cook, Alasdair M.; Theo H. M. Smits; Denger, Karin

    2007-01-01

    One is used to considering sulfite oxidation as part of a lithotrophic process (e.g. SorAB or Sox system), much of which involves neutral or ionic inorganic sulfur species on the outer surface of the cytoplasmic membrane. In contrast, the processes referred to in this chapter involve organic compounds, which (1) include a highly stable sulfonate substituent (C−SO3−), (2) are involved in the organotrophic growth of the organism and (3) much of whose metabolism takes place in the cytoplasm. Man...

  8. APPLICATION OF THE ACID-WASHED COLORIMETRY MEASUREMENT ON LINEAR ALKYL BENZENE (LAB) QUALITY CONTROL%酸洗比色法在直链烷基苯生产质量控制中的应用

    Institute of Scientific and Technical Information of China (English)

    黄爱忠; 胡鹏程; 付在伟; 方绍东; 徐斌; 黄品文; 李丕谊; 祁鸣

    2011-01-01

    Linear Alkyl Benzene(LAB) was widely used as an intermediate to produce the detergents in petrochemical industry. It was selected as an excellent solvent for the Gadolinium-loaded Liquid Scintillator in the Daya Bay reactor neutrino experiment, because of its attractive properties such as appreciable optical yield, high content of protons(13%), security flash point(130℃ ), and environmental friendly. According to some characteristics of LAB mass production from the LAB plant of Jinling petro-chemical, its light attenuation length had only 5-6 m. So that it is necessary to improve the current producing technique, and promote its quality in order to meet the requirement of the Daya Bay experiment successfully. An acid-washed colorimetry method was set up, which was directly used on LAB production procedure, to compare with the results of the attenuation length of some measured LAB samples from our laboratory. It was found that the results of the acid-washed colorimetry measurement corresponded well with the attenuation length of these samples. Therefore, the acid-washed colorimetry method, which is fast and accurate for the on-site measurement, can be used on LAB quality control directly during its producing process, and also would be beneficial to further applications for the LAB producing technique promotion.%对于首次应用于大亚湾中微子物理实验的液体闪烁介质——直链烷基苯( LAB)的工业化生产,其最重要的质量控制指标为光衰减长度,这通常需要在实验室里利用专门仪器进行测量分析.经过对比研究,在LAB工业化生产流程的基础上,建立了相应的测试方法——酸洗比色分析方法,即使直链烷基苯和98.4%的发烟硫酸反应,在波长403 nm处测定其透光率.研究表明:酸洗比色测量值与光衰减长度测量值之间存在着密切相关性,相关系数达到0.9806.利用酸洗比色测定方法可以对生产流程中的LAB进行实时、有效的

  9. Human benzene metabolism following occupational and environmental exposures.

    Science.gov (United States)

    Rappaport, Stephen M; Kim, Sungkyoon; Lan, Qing; Li, Guilan; Vermeulen, Roel; Waidyanatha, Suramya; Zhang, Luoping; Yin, Songnian; Smith, Martyn T; Rothman, Nathaniel

    2010-03-19

    We previously reported evidence that humans metabolize benzene via two enzymes, including a hitherto unrecognized high-affinity enzyme that was responsible for an estimated 73% of total urinary metabolites [sum of phenol (PH), hydroquinone (HQ), catechol (CA), E,E-muconic acid (MA), and S-phenylmercapturic acid (SPMA)] in nonsmoking females exposed to benzene at sub-saturating (ppb) air concentrations. Here, we used the same Michaelis-Menten-like kinetic models to individually analyze urinary levels of PH, HQ, CA and MA from 263 nonsmoking Chinese women (179 benzene-exposed workers and 84 control workers) with estimated benzene air concentrations ranging from less than 0.001-299 ppm. One model depicted benzene metabolism as a single enzymatic process (1-enzyme model) and the other as two enzymatic processes which competed for access to benzene (2-enzyme model). We evaluated model fits based upon the difference in values of Akaike's Information Criterion (DeltaAIC), and we gauged the weights of evidence favoring the two models based upon the associated Akaike weights and Evidence Ratios. For each metabolite, the 2-enzyme model provided a better fit than the 1-enzyme model with DeltaAIC values decreasing in the order 9.511 for MA, 7.379 for PH, 1.417 for CA, and 0.193 for HQ. The corresponding weights of evidence favoring the 2-enzyme model (Evidence Ratios) were: 116.2:1 for MA, 40.0:1 for PH, 2.0:1 for CA and 1.1:1 for HQ. These results indicate that our earlier findings from models of total metabolites were driven largely by MA, representing the ring-opening pathway, and by PH, representing the ring-hydroxylation pathway. The predicted percentage of benzene metabolized by the putative high-affinity enzyme at an air concentration of 0.001 ppm was 88% based upon urinary MA and was 80% based upon urinary PH. As benzene concentrations increased, the respective percentages of benzene metabolized to MA and PH by the high-affinity enzyme decreased successively to 66 and

  10. Human Benzene Metabolism Following Occupational and Environmental Exposures

    Science.gov (United States)

    Rappaport, Stephen M.; Kim, Sungkyoon; Lan, Qing; Li, Guilan; Vermeulen, Roel; Waidyanatha, Suramya; Zhang, Luoping; Yin, Songnian; Smith, Martyn T.; Rothman, Nathaniel

    2011-01-01

    We previously reported evidence that humans metabolize benzene via two enzymes, including a hitherto unrecognized high-affinity enzyme that was responsible for an estimated 73 percent of total urinary metabolites [sum of phenol (PH), hydroquinone (HQ), catechol (CA), E,E-muconic acid (MA), and S-phenylmercapturic acid (SPMA)] in nonsmoking females exposed to benzene at sub-saturating (ppb) air concentrations. Here, we used the same Michaelis-Menten-like kinetic models to individually analyze urinary levels of PH, HQ, CA and MA from 263 nonsmoking Chinese women (179 benzene-exposed workers and 84 control workers) with estimated benzene air concentrations ranging from less than 0.001 ppm to 299 ppm. One model depicted benzene metabolism as a single enzymatic process (1-enzyme model) and the other as two enzymatic processes which competed for access to benzene (2-enzyme model). We evaluated model fits based upon the difference in values of Akaike’s Information Criterion (ΔAIC), and we gauged the weights of evidence favoring the two models based upon the associated Akaike weights and Evidence Ratios. For each metabolite, the 2-enzyme model provided a better fit than the 1-enzyme model with ΔAIC values decreasing in the order 9.511 for MA, 7.379 for PH, 1.417 for CA, and 0.193 for HQ. The corresponding weights of evidence favoring the 2-enzyme model (Evidence Ratios) were: 116.2:1 for MA, 40.0:1 for PH, 2.0:1 for CA and 1.1:1 for HQ. These results indicate that our earlier findings from models of total metabolites were driven largely by MA, representing the ring-opening pathway, and by PH, representing the ring-hydroxylation pathway. The predicted percentage of benzene metabolized by the putative high-affinity enzyme at an air concentration of 0.001 ppm was 88% based upon urinary MA and was 80% based upon urinary PH. As benzene concentrations increased, the respective percentages of benzene metabolized to MA and PH by the high-affinity enzyme decreased successively

  11. Determination of benzene in different food matrices by distillation and isotope dilution HS-GC/MS

    International Nuclear Information System (INIS)

    Benzene is classified by the IARC as carcinogenic to humans. Several sources may contribute for the occurrence of benzene in foods, such as, environmental contamination and the reaction of benzoate salts with ascorbic acid (naturally present or added as food additives). Matrix effect on benzene recovery (e.g. in fatty foods) and artefactual benzene formation from benzoate during analysis in the presence of ascorbate are some of the challenges presented when determining benzene in a wide range of foodstuffs. Design of experiment (DOE) was used to determine the most important variables in benzene recovery from headspace GC/MS. Based on the results of the DOE, a versatile method for the extraction of benzene from all kind of food commodities was developed. The method which consisted of distillation and isotope dilution HS-GC/MS was in-house validated. Artefactual benzene was prevented by addition of a borate buffer solution (pH 11) under distillation conditions. The method presented in this study allows the use of a matrix-independent calibration with detection limits below the legal limit established by the European Council for benzene in drinking water (1 μg L-1).

  12. Hydroxylation of Benzene to Phenol by H2O2 over an Inorganic-Organic Dual Modified Heteropolyacid☆

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Fumin Zhang; Yijun Zhong; Weidong Zhu

    2014-01-01

    Various catalysts, including the heteropolyacid (HPA) H4PMo11VO40, its cesium salts, and inorganic–organic dual modified HPA catalyst, were prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), nu-clear magnetic resonance (13C NMR), N2 adsorption, acid–base titration, electron spin resonance (ESR) and X-ray diffraction (XRD) techniques as wel as elemental analysis. These prepared catalysts were used in the hydroxyl-ation of benzene to phenol by H2O2 as oxidant. The inorganic–organic dual modified HPA Cs2.5(MIMPS)1.5 PMo11VO40, prepared by partially exchanging Cs+with protons in H4PMo11VO40 and followed by the immobili-zation of 3-(1-methylimidazolium-3-yl)propane-1-sulfonate (MIMPS), led to a liquid–solid biphasic catalysis system in the hydroxylation, which showed the best catalytic performance in terms of reusability and catalytic activity. The high reusability of Cs2.5(MIMPS)1.5PMo11VO40 in the heterogeneous hydroxylation was probably due to its high resistance in leaching of bulk HPA into the reaction medium. The slightly enhanced catalytic activ-ity for the catalyst was due to the acid sites available from MIMPS beneficial to the hydroxylation.

  13. Benzene oxygenation and oxidation by the peroxygenase of Agrocybe aegerita.

    Science.gov (United States)

    Karich, Alexander; Kluge, Martin; Ullrich, René; Hofrichter, Martin

    2013-01-01

    Aromatic peroxygenase (APO) is an extracellular enzyme produced by the agaric basidiomycete Agrocybe aegerita that catalyzes diverse peroxide-dependent oxyfunctionalization reactions. Here we describe the oxygenation of the unactivated aromatic ring of benzene with hydrogen peroxide as co-substrate. The optimum pH of the reaction was around 7 and it proceeded via an initial epoxide intermediate that re-aromatized in aqueous solution to form phenol. Identity of the epoxide intermediate as benzene oxide was proved by a freshly prepared authentic standard using GC-MS and LC-MS analyses. Second and third [per]oxygenation was also observed and resulted in the formation of further hydroxylation and following [per]oxidation products: hydroquinone and p-benzoquinone, catechol and o-benzoquinone as well as 1,2,4-trihydroxybenzene and hydroxy-p-benzoquinone, respectively. Using H218O2 as co-substrate and ascorbic acid as radical scavenger, inhibiting the formation of peroxidation products (e.g., p-benzoquinone), the origin of the oxygen atom incorporated into benzene or phenol was proved to be the peroxide. Apparent enzyme kinetic constants (kcat, Km) for the peroxygenation of benzene were estimated to be around 8 s-1 and 3.6 mM. These results raise the possibility that peroxygenases may be useful for enzymatic syntheses of hydroxylated benzene derivatives under mild conditions. PMID:23327645

  14. Polymer electrolyte membranes from fluorinated polyisoprene-block-sulfonated polystyrene: Membrane structure and transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Sodeye, Akinbode [Department of Polymer Science and Engineering, University of Massachusetts; Huang, Tianzi [University of Tennessee, Knoxville (UTK); Gido, Samuel [University of Massachusetts, Amherst; Mays, Jimmy [ORNL

    2011-01-01

    With a view to optimizing morphology and ultimately properties, membranes have been cast from relatively inexpensive block copolymer ionomers of fluorinated polyisoprene-block-sulfonated polystyrene (FISS) with various sulfonation levels, in both the acid form and the cesium neutralized form. The morphology of these membranes was characterized by transmission electron microscopy and ultra-small angle X-ray scattering, as well as water uptake, proton conductivity and methanol permeability within the temperature range from 20 to 60 C. Random phase separated morphologies were obtained for all samples except the cesium sample with 50 mol% sulfonation. The transport properties increased with increasing degree of sulfonation and temperature for all samples. The acid form samples absorbed more water than the cesium samples with a maximum swelling of 595% recorded at 60 C for the acid sample having 50 mol% sulfonation. Methanol permeability for the latter sample was more than an order of magnitude less than for Nafion 112 but so was the proton conductivity within the plane of the membrane at 20 C. Across the plane of the membrane this sample had half the conductivity of Nafion 112 at 60 C.

  15. Lignin Sulfonation - A different Approach

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2001-01-01

    The research on sulfite pulping has been characterized by the attempts to explain its chemistry. The. different approach presented is incited by perceptions about the (still) unsolved problem of the ultrastructural features of lignin in wood. A simple kinetic model has been chosen to describe the...... lignin and MWL dissolved (after extraction of the "immediate" lignin) at higher rates than W lignin. For MWL, the rate difference between pH 1.5 and 6 was moderate, compared to W lignin. Borohydride reduction did not affect the lignin dissolution from W, but gave a large decrease of sulfonation rate for...... MWL. Methylation had also a small rate effect for W, but again a large decrease for MWL....

  16. Ultrafiltration of an alkylbenzene sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Schlumpf, J.P.; Quemeneur, F.

    1985-04-01

    The effect of various parameters, such as pressure, flow rate, and concentration, on the ultrafiltration of an amonic surfactant (sodium dodecylbenzene sulfonate) in aqueous solution through a membrane with a cut-off point of M.W. 20,000 was studied. The variations of the rate of flow of ultrafiltrate and the rate of rejection can be explained by the presence of miscelles of the surface-active agent and by concentration polarization close to the membrane. Values of the rate of rejection between 0.7 and 0.95 show that membranes with high cut-off points can be used to ultrafilter surfactants whose molecular weights are much lower than the cut-off point.

  17. Survey results of benzene in soft drinks and other beverages by headspace gas chromatography/mass spectrometry.

    Science.gov (United States)

    Nyman, Patricia J; Diachenko, Gregory W; Perfetti, Gracia A; McNeal, Timothy P; Hiatt, Michael H; Morehouse, Kim M

    2008-01-23

    Benzene, a carcinogen that can cause cancer in humans, may form at nanogram per gram levels in some beverages containing both benzoate salts and ascorbic or erythorbic acids. Through a series of reactions, a hydroxyl radical forms that can decarboxylate benzoate to form benzene. Elevated temperatures and light stimulate these reactions, while sugar and ethylenediaminetetraacetic acid (EDTA) can inhibit them. A headspace gas chromatography/mass spectrometry method for the determination of benzene in beverages was developed and validated. The method was used to conduct a survey of 199 soft drinks and other beverages. The vast majority of beverages sampled contained either no detectable benzene or levels below the U.S. Environmental Protection Agency's drinking water limit of 5 ng/g. Beverages found to contain 5 ng/g benzene or more were reformulated by the manufacturers. The amount of benzene found in the reformulated beverages ranged from none detected to 1.1 ng/g. PMID:18072742

  18. Species differences in the metabolism of benzene.

    OpenAIRE

    Henderson, R F

    1996-01-01

    The pathways of metabolism of benzene appear to be qualitatively similar in all species studied thus far. However, there are quantitative differences in the fraction of benzene metabolized by the different pathways. These species differences become important for risk assessments based on animal data. Mice have a greater overall capacity to metabolize benzene than rats or primates, based on mass balance studies conducted in vivo using radiolabled benzene. Mice and monkeys metabolize more of th...

  19. 27 CFR 21.97 - Benzene.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Benzene. 21.97 Section 21... TREASURY LIQUORS FORMULAS FOR DENATURED ALCOHOL AND RUM Specifications for Denaturants § 21.97 Benzene. (a..., Standard No. D 836-77; for incorporation by reference, see § 21.6(b).) When 100 ml of benzene are...

  20. Chlorine resistant desalination membranes based on directly sulfonated poly(arylene ether sulfone) copolymers

    Science.gov (United States)

    McGrath, James E.; Park, Ho Bum; Freeman, Benny D.

    2011-10-04

    The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.

  1. Synthesis and Characterization of Sulfonated Poly( phenylene sulfide sulfone)%磺化聚苯硫醚砜的制备和性能表征

    Institute of Scientific and Technical Information of China (English)

    肖慧; 李涛; 胡祥; 李瑞海

    2011-01-01

    This paper studied on sulfonated process of sulfonated poly(phenylene sulfide sulfone) based on sulfuric aid as solvent and oleum as sulfonating agent. By changing the four factors, such as temperature, reaction time, the dosage of sulfuric acid and oleum, the sulfonated conditions were explored. The structures and properties of the obtained polymer were characterized by FT-IR, TGA, testing of solubility, sulfonation degree and reduced inherent viscosity. The results indicated the sulfonation degree was 62. 2% and reduced inherent viscosity was 0. 964 mL/g when the raction temperature was at 15℃, the sulfonated time was for 2 h, sulfuric aid was 8 mL and the ratio of oleum/PPSS was 9. 5. Decomposition temperature of sulfonic aid group and its main chain were 346℃, 534 % , respectively. It can be dissolved improvably in the polar solvent which dialectic constant exceeded 20.7.%以浓硫酸为溶剂,发烟硫酸为磺化剂对聚苯硫醚砜的磺化过程,通过改变温度、反应时间、浓硫酸的用量和发烟硫酸的用量这四个因素来探究磺化反应的条件.利用FTIR、热重分析(TGA)、磺化度、比浓黏度和溶解性测试对其结构和性能进行了表征.结果表明,采用磺化时间为2h,反应温度15℃,浓硫酸8 mL,发烟硫酸与聚苯硫醚砜的质量比为9.5时,可得到磺化度为62.2%,比浓黏度为0.964 mL/g的磺化聚苯硫醚砜.磺酸基的主要分解温度为346℃,主链的分解温度为534℃.其溶解性得到提高,可溶解在介电常数大于20.7的有机溶剂中.

  2. Retarded acid emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Fast, C.R.; Rixe, F.H.; Duffield, E.L. Jr.

    1972-08-01

    Compositions for use in acidizing hydrocarbon-bearing formations are described. Retarded acid emulsions of prolonged stability make it possible for the acid in this form to be displaced substantial distances out into the formation before becoming spent. The action of acid emulsions for use in acidizing hydrocarbon-bearing formations is prolonged by employing as the principal emulsifying agent an amine salt of dodecylbenzene sulfonic acid. Acid emulsions employing the amine salt of dodecylbenzene sulfonic acid exhibit greater stability than those employing the free acid. (8 claims)

  3. Synthesis, Characterization, and Catalytic Activity of Sulfonated Carbon-Based Catalysts Derived From Rubber Tree Leaves and Pulp and Paper Mill Waste

    Science.gov (United States)

    Janaun, J.; Sinin, E.; Hiew, S. F.; Kong, A. M. T.; Lahin, F. A.

    2016-06-01

    Sulfonated carbon-based catalysts derived from rubber tree leaves, and pulp and paper mill waste were synthesized and characterized. Three types of catalyst synthesized were sulfonated rubber tree leaves (S-RTL), pyrolysed sludge char (P-SC) and sulfonated sludge char (S-SC). Sulfonated rubber tree leaves (S-RTL) and sulfonated sludge char (S-SC) were prepared through pyrolysis followed by functionalization via sulfonation process whereas, P- SC was only pyrolyzed without sulfonation. The characterization results indicated sulfonic acids, hydroxyl, and carboxyl moieties were detected in S-RTL and S-SC, but no sulfonic acid was detected in P-SC. Total acidity test showed S-RTL had the highest value followed by S-SC and P-SC. The thermal stability of S-RTL and S-SC were up to 230oC as the loss was associated with the decomposition of sulfonic acid group, whereas, P-SC showed higher stability than the S-RTL and S-SC. Morphology analysis showed that S-RTL consisted of an amorphous carbon structure, and a crystalline structure for P-SC and S-SC. Furthermore, traces of metal components were also detected on all of the catalysts. The catalyst catalytic activity was tested through esterification of oleic acid with methanol. The results showed that the reaction using S-RTL catalyst produced the highest conversion (99.9%) followed by P-SC (88.4%) and lastly S-SC (82.7%). The synthesized catalysts showed high potential to be used in biodiesel production.

  4. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    OpenAIRE

    Bor-Kuan Chen; Jhong-Ming Wong; Tzi-Yi Wu; Lung-Chuan Chen; I-Chao Shih

    2014-01-01

    Proton exchange membranes (PEMs) are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs) were doped by protic ionic liquid (PIL) to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxy)phenyl]propane (BAPP), sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS) and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanc...

  5. Sulfonate to hydrocarbon ratio influencing thermostability of micellar dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.A.; Kunzman, W.J.

    1970-02-03

    The thermostability of micellar dispersions can be shifted to higher temperatures by increasing the ratio of surfactant to hydrocarbon within the dispersion, by increasing the amount of electrolyte, and by varying the particular type of components within the micellar solution. The oil recovery solution is composed of soft water, hydrocarbon (crude oil), surfactant (sodium or ammonium petroleum sulfonates with an average molecular weight of 420 to 470), cosurfactant (primary butanols, primary pentanols, primary and secondary hexanols), and electrolyte (inorganic bases, inorganic acids, or inorganic salts).

  6. 46 CFR 151.05-2 - Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or...

    Science.gov (United States)

    2010-10-01

    ... benzene and benzene containing cargoes, or butyl acrylate cargoes. 151.05-2 Section 151.05-2 Shipping... Compliance with requirements for tank barges carrying benzene and benzene containing cargoes, or butyl acrylate cargoes. A tank barge certificated to carry benzene and benzene containing cargoes or...

  7. Double photoionization of halogenated benzene

    International Nuclear Information System (INIS)

    We have experimentally investigated the double-photoionization process in C6BrF5 using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C6H3D3) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance

  8. Double photoionization of halogenated benzene

    Energy Technology Data Exchange (ETDEWEB)

    AlKhaldi, Mashaal Q. [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, D-10623 Berlin (Germany); Wehlitz, Ralf, E-mail: rwehlitz@gmail.com [Synchrotron Radiation Center, University of Wisconsin–Madison, Stoughton, Wisconsin 53589 (United States)

    2016-01-28

    We have experimentally investigated the double-photoionization process in C{sub 6}BrF{sub 5} using monochromatized synchrotron radiation. We compare our results with previously published data for partially deuterated benzene (C{sub 6}H{sub 3}D{sub 3}) over a wide range of photon energies from threshold to 270 eV. A broad resonance in the ratio of doubly to singly charged parent ions at about 65 eV appears shifted in energy compared to benzene data. This shift is due to the difference in the bond lengths in two molecules. A simple model can explain the shape of this resonance. At higher photon energies, we observe another broad resonance that can be explained as a second harmonic of the first resonance.

  9. Electrocoagulation of commercial naphthalene sulfonates: process optimization and assessment of implementation potential.

    Science.gov (United States)

    Olmez-Hanci, Tugba; Kartal, Zeynep; Arslan-Alaton, Idil

    2012-05-30

    The commercially important naphthalene sulfonate K-acid (C(10)H(9)NO(9)S(3); 2-naphthylamine 3,6,8-tri sulfonic acid) was subjected to electrocoagulation employing stainless steel electrodes. An experimental design tool was used to mathematically describe and optimize the single and combined influences of major process variables on K-acid and its organic carbon (COD and TOC) removal efficiencies as well as electrical energy consumption. Current density, followed by treatment time were found to be the parameters affecting process responses most significantly, whereas initial K-acid concentration had the least influence on the electrocoagulation performance. Process economics including sludge generation, electrode consumption, and electrochemical efficiency, as well as organically bound adsorbable halogen formation and toxicity evolution were primarily considered to question the feasibility of K-acid electrocoagulation. Considering process economics and ecotoxicological parameters, process implementation appeared to be encouraging. PMID:22318240

  10. Slow Neutron Scattering by Benzene

    International Nuclear Information System (INIS)

    We have calculated the scattering of slow neutrons by the benzene molecule. The calculations are carried out within the framework of the time dependent formalism of Zemach and Glauber. Detailed account is taken of the effects of the molecular vibrations on the neutron scattering. Among the results explicitly calculated are the slow neutron total scattering cross-section as a function of energy and the energy angular distribution of singly scattered sections. (author)

  11. Cloning and Characterization of a Sulfonate/α-Ketoglutarate Dioxygenase from Saccharomyces cerevisiae

    OpenAIRE

    Hogan, Deborah A.; Auchtung, Thomas A.; Hausinger, Robert P.

    1999-01-01

    The Saccharomyces cerevisiae open reading frame YLL057c is predicted to encode a gene product with 31.5% amino acid sequence identity to Escherichia coli taurine/α-ketoglutarate dioxygenase and 27% identity to Ralstonia eutropha TfdA, a herbicide-degrading enzyme. Purified recombinant yeast protein is shown to be an Fe(II)-dependent sulfonate/α-ketoglutarate dioxygenase. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being is...

  12. Effect of benzene on product evolution in a H2S/O2 flame under Claus condition

    International Nuclear Information System (INIS)

    Highlights: • Effect of trace amounts of benzene (0.3%, 0.5% and 1%) to H2S combustion process. • Benzene favored formation of H2 and reduced conversion of H2S. • Benzene reduced SO2 formation to impact sulfur production. • Benzene addition promoted CO and COS formation and degraded sulfur quality. - Abstract: Experimental results are presented on the role of benzene addition to H2S combustion at an equivalence ratio of three with respect to H2S (Claus condition) and complete combustion of benzene. The results are reported with 0.3%, 0.5% and 1% benzene addition to H2S/O2 flame. Combustion of H2S and benzene mixtures is of practical value for sulfur recovery during combustion of acid gases. The results showed that H2S combustion caused H2S to decompose to a minimum mole fraction with high conversion of H2S while the SO2 mole fraction reached a maximum value. Addition of benzene decreased the conversion of H2S with reduced mole fraction of SO2 in the reactor to subsequently reduce the formation of elemental sulfur. Benzene also caused significant production of H2, CO and COS formation along with faster decomposition of the formed SO2. Presence of benzene, even in trace amounts, in acid gas hinders sulfur conversion in a Claus reactor and increases emission of unwanted sulfur bearing compounds. Increased hydrogen production with benzene offers potential value for hydrogen recovery under certain conditions

  13. Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cations

    International Nuclear Information System (INIS)

    Two sulfonated ionomers based on poly(triethylmethyl ammonium 2-acrylamido-2-methyl-1-propane sulfonic acid) (PAMPS) and containing mixtures of Li+ and quaternary ammonium cations are characterised. The first system contains Li+ and the methyltriethyl ammonium cation (N1222) in a 1:9 molar ratio, and the 7Li NMR line widths showed that the Li+ ions are mobile in this system below the glass transition temperature (105 °C) and are therefore decoupled from the polymer segmental motion. The conductivity in this system was measured as 10−5 S cm−1 at 130 °C. A second PAMPS system containing Li+ and the dimethylbutylmethoxyethyl ammonium cation (N114(2O1)) in a 2:8 molar ratio showed much lower conductivities despite a significantly lower Tg (60 °C), possibly due to associations between the Li+ and the ether group on the ammonium cation, or between the latter cations and the sulfonate groups

  14. Effects of polymer structure on properties of sulfonated polyimide/protic ionic liquid composite membranes for nonhumidified fuel cell applications.

    Science.gov (United States)

    Yasuda, Tomohiro; Nakamura, Shin-ichiro; Honda, Yoshiyuki; Kinugawa, Kei; Lee, Seung-Yul; Watanabe, Masayoshi

    2012-03-01

    To investigate the effects of polymer structure on the properties of composite membranes including a protic ionic liquid, [dema][TfO] (diethylmethylammonium trifluoromethanesulfonate), for nonhumidified fuel cell applications, we synthesized sulfonated polyimides (SPIs) with different structures as matrix polymers, which have different magnitudes of ion-exchange capacities (IECs), different sequence distributions of ionic groups, and positions of sulfonate groups in the main chain or side chain. Despite having similar IECs, multiblock copolymer SPI and random copolymer SPI having sulfonate groups in the side chain exhibit higher ionic conductivity than random copolymer SPI having sulfonate groups in the main chain, indicating that the flexibility of sulfonic acid groups and the sequence distribution of ionic groups greatly affect the ion conduction. Atomic force microscopy observation revealed that the multiblock copolymer SPI forms more developed phase separation than the others. These results indicate that the flexibility of sulfonic acid groups and the connectivity of the ion conduction channel, which greatly depends on the sequence distribution, affect the ion conduction. PMID:22352958

  15. Sulfonation Process and Desalination Effect of Polystyrene/PVDF Semi-Interpenetrating Polymer Network Cation Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Yin-lin Lei

    2014-07-01

    Full Text Available With the classical sulfonation method of polystyrene-based strongly acidic cation exchange resins, polystyrene/polyvinylidene fluoride (PVDF alloy particles were sulfonated to obtain a cation exchange resin, which was then directly thermoformed to prepare a semi-interpenetrating polymer network (semi-IPN cation exchange membrane. The effects of the swelling agent, sulfonation time and temperature and the relative contents of polystyrene and divinylbenzene (DVB in the alloy particles on the feasibility of the membrane formation are discussed. The results indicate that a favorable sulfonation degree above 80% and a suitable ion exchange capacity of 1.5–2.4 mmol/g can be gained, with concentrated sulfuric acid as the sulfonation agent and 1,2-dichloroethane as the swelling agent. The running electrical resistance and desalination effect of the prepared cation exchange membrane were measured in a pilot-scale electrodialyser and not only obviously exceeded a commercial heterogeneous cation exchange membrane, but was also very close to a commercial homogenous membrane. In this way, the authors have combined the classical sulfonation method of polystyrene-based cation exchange resins with the traditional thermoforming manufacturing process of heterogeneous cation exchange membranes, to successfully develop a novel, low-price, but relatively high-performance polystyrene/PVDF cation exchange membrane with the semi-IPN structure.

  16. Comparison of antioxidant activities of different parts from snow chrysanthemum (Coreopsis tinctoria Nutt.) and identification of their natural antioxidants using high performance liquid chromatography coupled with diode array detection and mass spectrometry and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt-based assay.

    Science.gov (United States)

    Chen, L X; Hu, D J; Lam, S C; Ge, L; Wu, D; Zhao, J; Long, Z R; Yang, W J; Fan, B; Li, S P

    2016-01-01

    Snow chrysanthemum (Coreopsis tinctoria Nutt.), a world-widely well-known flower tea material, has attracted more and more attention because of its beneficial health effects such as antioxidant activity and special flavor. In this study, a high performance liquid chromatography coupled with diode array detection and mass spectrometry (HPLC-DAD-MS) and 2,2'-azinobis(3-ethylbenzthiazoline-sulfonic acid)diammonium salt (ABTS) based assay was employed for comparison and identification of antioxidants in different samples of snow chrysanthemum. The results showed that snow chrysanthemum flowers possessed the highest while stems presented the lowest antioxidant capacities. Fourteen detected peaks with antioxidant activity were temporarily identified as 3,4',5,6,7-pentahydroxyflavanone-O-hexoside, chlorogenic acid, 2R-3',4',8-trihydroxyflavanone-7-O-glucoside, flavanomarein, flavanocorepsin, flavanokanin, quercetagitin-7-O-glucoside, 3',5,5',7-tetrahydroxyflavanone-O-hexoside, marein, maritimein, 1,3-dicaffeoylquinic acid, coreopsin, okanin and acetyl-marein by comparing their UV spectra, retention times and MS data with standards or literature data. Antioxidants existed in snow chrysanthemum are quite different from those reported in Chrysanthemum morifolium, a well-known traditional beverage in China, which indicated that snow chrysanthemum may be a promising herbal tea material with obvious antioxidant activity. PMID:26521095

  17. Wine metabolomics reveals new sulfonated products in bottled white wines, promoted by small amounts of oxygen.

    Science.gov (United States)

    Arapitsas, Panagiotis; Ugliano, Maurizio; Perenzoni, Daniele; Angeli, Andrea; Pangrazzi, Paolo; Mattivi, Fulvio

    2016-01-15

    The impact of minute amounts of oxygen in the headspace on the post-bottling development of wine is generally considered to be very important, since oxygen can either damage or improve the quality of wine. This project aimed to gain new experimental evidence about the chemistry of the interaction between wine and oxygen. The experimental design included 216 bottles of 12 different white wines produced from 6 different cultivars (Inzolia, Muller Thurgau, Chardonnay, Grillo, Traminer and Pinot gris). Half of them were bottled using the standard industrial process with inert headspace and the other half without inert gas and with extra headspace. After 60 days of storage at room temperature, the wines were analysed using an untargeted LC-MS method. The use of a detailed holistic analysis workflow, with several levels of quality control and marker selection, gave 35 metabolites putatively induced by the different amounts of oxygen. These metabolite markers included ascorbic acid, tartaric acid and various sulfonated compounds observed in wine for the first time (e.g. S-sulfonated cysteine, glutathione and pantetheine; and sulfonated indole-3-lactic acid hexoside and tryptophol). The consumption of SO2 mediated by these sulfonation reactions was promoted by the presence of higher levels of oxygen on bottling. PMID:26709023

  18. 1-(3-sulfonic acid group) propyl piperidinium dodecylbenzenesulfonic acid applied in carbon dioxide capture%1-(3-磺酸基)丙基哌啶十二烷基苯磺酸在CO2捕集中的应用∗

    Institute of Scientific and Technical Information of China (English)

    李工; 丁嘉; 郭剑桥; 徐小军; 王树立; 余益松

    2015-01-01

    A surface active functional ionic liquid, 1⁃(3⁃sulfonic acid group) propyl piperidinium dodecylbenzenesulfonic acid ([ PIPS] DBSA) was synthesized and characterized by 1H NMR, FTIR, and element analysis. [ PIPS] DBSA was used to promote the formation of carbon dioxide hydrate, and its effect on the temperature and pressure was investigated. Experimental results show that, by comparing 300 mg·L-1 [ PIPS ] DBSA solution with the 700 mg·kg-1 sodium dodecylbenzenesulfonate solution( SDBS) , the phase equilibrium pressure of carbon dioxide hydrate was decreased by 13.60% —14.96% in the range of 4℃ —6℃, and the required time for steady CO2 pressure was reduced by 50 min at 4 ℃. The investigation indicated that [ PIPS] DBSA has a good promotion effect on the formation of cardon dioxide hydrate.%合成了一种具有表面活性功能的离子液体1⁃(3⁃磺酸基)丙基哌啶十二烷基苯磺酸([PIPS]DBSA),采用FT⁃IR,1 H NMR 和元素分析等方法对产物进行表征,并将其用于促进 CO2水合物的生成,考察[ PIPS] DBSA对CO2水合物生成过程中温度和压力的影响.实验表明在温度4℃—6℃时,300 mg·L-1[ PIPS] DBSA溶液中CO2的相平衡压力比700 mg·L-1的十二烷基苯磺酸钠( SDBS)溶液的相平衡压力下降了13�6%—14.96%.在4℃时,300 mg·L-1[ PIPS] DBSA溶液中CO2压力稳定所用的时间与700 mg·L-1 SDBS溶液相比减少了50 min,表明[ PIPS] DBSA对CO2水合物的形成具有良好的促进作用.

  19. Synthesis and properties of a novel sulfonated poly(arylene ether ketone sulfone) membrane with a high β-value for direct methanol fuel cell applications

    International Nuclear Information System (INIS)

    Highlights: • Introduction of carboxyl groups into copolymers resulted in extensive hydrogen bond. • The C-SPAEKS membranes had obviously hydrophilic/hydrophobic phase separation. • The membranes showed low methanol permeability and high β values. • The membranes exhibited good thermal property and desirable mechanical performance. - Abstract: Sulfonated poly(arylene ether ketone sulfone) membranes containing carboxylic acid groups (C-SPAEKS) with different degrees of sulfonation were synthesized by the nucleophilic aromatic substitution reactions of 4-carboxylphenyl hydroquinone (4C-PH), bisphenol A, 3,3′-disulfonated 4,4′-dichlorodiphenyl sulfone, and 4,4′-difluorobenzophenone. The Fourier transform infrared and 1H NMR analyses of C-SPAEKS revealed the presence of carboxylic acid groups in the C-SPAEKS membranes. The membranes exhibited a low swelling degree and methanol crossover level. The effects of different degrees of sulfonation on the water uptake, proton conductivity, and methanol permeability coefficient of the membranes were studied. The maximum proton conductivity of C-SPAEKS-80 membrane at room temperature was 0.069 S cm−1, which was higher than that of Nafion® 117 membrane. The methanol permeability coefficient of C-SPAEKS-80 membrane was 9.15 × 10−7 cm2 s−1 at 20 °C, much lower than that of Nafion 117 membrane (22.9 × 10−7 cm2 s−1). Furthermore, the carboxyl group-containing membranes exhibited a high β-value, further confirming that this series of membranes possess excellent comprehensive performance and can be applied in direct methanol fuel cells

  20. Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells

    International Nuclear Information System (INIS)

    Highlights: • PVdF-co-HFP and its sulfonated derivatives have been analyzed in MFC as PEM. • Better performance resulted with 7 h long sulfonated membrane. • Impedance analysis revealed lower resistance from 7 h sulfonated membrane than others. • Mixed firmicute consortium has shown its electro-activity for bioenergy generation. - Abstract: In the present study, PVdF-co-HFP copolymer and its sulfonated derivatives have been analyzed as polymer electrolyte membrane in single chamber MFCs. The sulfonation of PVdF-co-HFP copolymer was performed by treating with chlorosulfonic acid for 5, 7 and 9 h, resulting in 23%, 30%, and 18% of degree of sulfonation (DS) in the respective SP-5, SP-7, and SP-9 membranes. On observing the membranes under field emission scanning electron microscope fitted with EDAX, porosity was found to be increasing with increase in the duration of sulfonation except for 9 h duration. The elemental analysis of the membranes indicated the presence of higher sulfur and oxygen content with the increasing sulfonation duration except for 9 h duration, for which crosslinks were formed via sulfone linkages. The membranes were characterized for their ion exchange capacity (IEC) and proton conductivity; IEC value of 0.21 meq g−1, 0.42 meq g−1, and 0.12 meq g−1 and proton conductivity of 0.0012 S cm−1, 0.00363 S cm−1, and 0.0006 S cm−1 were observed for SP-5, SP-7, and SP-9 membranes. Open air cathode MFCs with membrane electrode assemblies (MEA) containing sulfonated and non-sulfonated PVdF-co-HFP membranes have been analyzed for their overall MFC performance. It was observed that amongst these membranes, MFC with SP-7 membrane showed the maximum power and current density of 290.176 ± 15 mW m−2 and 1390.866 ± 70 mA m−2 with an overall ∼89% COD removal in 28 days operation, using electrogenic mixed firmicute consortium. In overall, the study illustrates the impression of sulfonated PVdF-co-HFP membranes as PEM and its application

  1. Natural Biological Attenuation of Benzene in Groundwater

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Benzene has been found in subsurface unsaturated soil and groundwater beneath a petro-chemical plant. Although the groundwater contained several mg/L of benzene in the area immediately beneath the source, benzene was not detected in monitoring wells approximately 800m down stream. All kinds of physical processes such as adsorption and advection/dispersion are considered to account for the observed attenuation. The results indicated that the attenuation was primarily due to natural biological processes occurring within the aquifer. The evidence for the natural bioremediation of benzene from the groundwater included: (1) analysis of groundwater chemistry, (2) laboratory studies demonstrating benzene biodegradation in aquifer samples, and (3) computer simulations examining benzene transport. Laboratory experiments indicated that for conditions similar to those in the plume, the aerobic degradation of benzene by the naturally occurring microorganisms in the polluted groundwater samples was quite rapid with a half-life time of from 5 to 15 days. In situ analyses indicated the level of dissolved oxygen in the groundwater was over 2mg/L. Thus, oxygen should not limit the biodegradation. In fact, the benzene was also shown to degrade under anaerobic conditions. The results from the modeling simulations indicate that biodegradation is the dominant process influencing attenuation of the benzene.

  2. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin, and induction of micronuclei

    International Nuclear Information System (INIS)

    Metabolism of benzene is thought to be necessary to produce the toxic effects, including carcinogenicity, associated with benzene exposure. To extrapolate from the results of rodent studies to potential health risks in man, one must know how benzene metabolism is affected by species, dose, dose rate, and repeated versus single exposures. The purpose of our studies was to determine the effect of repeated inhalation exposures on the metabolism of [14C]benzene by rodents. Benzene metabolism was assessed by characterizing and quantitating urinary metabolites, and by quantitating 14C bound to hemoglobin and micronuclei induction. F344/N rats and B6C3F1 mice were exposed, nose-only, to 600 ppm benzene or to air (control) for 6 hr/day, 5 days/week for 3 weeks. On the last day, both benzene-pretreated and control animals were exposed to 600 ppm, 14C-labeled benzene for 6 hr. Individual benzene metabolites in urine collected for 24 hr after the exposure were analyzed. There was a significant decrease in the respiratory rate of mice (but not rats) pretreated with benzene which resulted in lower levels of urinary [14C]benzene metabolites. The analyses indicated that the only effects of benzene pretreatment on the metabolite profile in rat or mouse urine were a slight shift from glucuronidation to sulfation in mice and a shift from sulfation to glucuronidation in rats. Benzene pretreatment also had no effect, in either species, on formation of [14C]benzene-derived hemoglobin adducts. Mice and rats had similar levels of hemoglobin adduct binding, despite the higher metabolism of benzene by mice. This indicates that hemoglobin adduct formation occurs with higher efficiency in rats. After 1 week of exposure to 600 ppm benzene, the frequency of micronucleated, polychromatic erythrocytes (PCEs) in mice was significantly increased

  3. Albumin Adducts of Electrophilic Benzene Metabolites in Benzene-Exposed and Control Workers

    OpenAIRE

    Lin, Yu-Sheng; Vermeulen, Roel; Tsai, Chin H.; Waidyanatha, Suramya; Lan, Qing; Rothman, Nathaniel; Smith, Martyn T.; Zhang, Luoping; Shen, Min; Li, Guilan; Yin, Songnian; Kim, Sungkyoon; Rappaport, Stephen M.

    2006-01-01

    Background Metabolism of benzene produces reactive electrophiles, including benzene oxide (BO), 1,4-benzoquinone (1,4-BQ), and 1,2-benzoquinone (1,2-BQ), that are capable of reacting with blood proteins to produce adducts. Objectives The main purpose of this study was to characterize relationships between levels of albumin adducts of these electrophiles in blood and the corresponding benzene exposures in benzene-exposed and control workers, after adjusting for important covariates. Because se...

  4. Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells

    DEFF Research Database (Denmark)

    Yang, Jingshuai; Li, Qingfeng; Cleemann, Lars Nilausen;

    2012-01-01

    Poly(aryl sulfone benzimidazole) (SO2PBI) and its copolymers with poly[2,2′-p-(phenylene)-5,5′-bibenzimidazole] (pPBI), termed as Co-SO2PBI, were synthesized with varied feeding ratios of 4,4′-sulfonyldibenzoic acid (SDBA) to terephthalic acid (TPA). Incorporation of the stiff para-phenylene and...

  5. Sulfonated graphenes catalyzed synthesis of expanded porphyrins and their supramolecular interactions with pristine graphene

    Indian Academy of Sciences (India)

    Sweta Mishra; Smriti Arora; Ritika Nagpal; Shive Murat Singh Chauhan

    2014-11-01

    A newer synthesis of sulfonic acid functionalized graphenes have been developed, which have been characterized, examined as heterogeneous solid acid carbocatalyst in the synthesis of selected expanded porphyrins in different reaction conditions. This environment-friendly catalyst avoids the use of toxic catalysts and enhances the yields of porphyrinoids. The non-covalent interaction of porphyrinoids has also been studied with exfoliated graphene solution in organic solvents by UV-Visible and fluorescence spectroscopy.

  6. Syntheses and Antibiotic Evaluation of 2-{[(2R,4R-4-Carboxy-2-hydroxypyrrolidin-1-yl]carbonyl}benzene-1,5-dicarboxylic Acids and 2-Carbamoylbenzene-1,5-dicarboxylic Acid Analogues

    Directory of Open Access Journals (Sweden)

    Abdulrazaq Tukur

    2016-01-01

    Full Text Available Our search for new antibiotics led to the syntheses and biological evaluation of new classes of dicarboxylic acid analogues. The syntheses involve nucleophilic addition of different substituted benzylamine, aniline, alkylamine, and 4-hydroxyl-L-proline with carbamoylbenzoic acid. The results of the antimicrobial activity as indicated by the zone of inhibition (ZOI showed that Z10 is the most active against Pseudomonas aeruginosa (32 mm and least active against Candida stellatoidea (27 mm and Vancomycin Resistant Enterococci (VRE (27 mm, while Z7 shows the least zone of inhibition (22 mm against Methicillin Resistant Staphylococcus aureus (MRSA. The minimum inhibition concentration (MIC determination reveals that Z10 inhibits the growth of tested microbes at a low concentration of 6.25 μg/mL, while Z9 and Z12 inhibits the growth of most microbes at a concentration of 12.5 μg/mL, recording the least MIC. The Minimum Bactericidal/Fungicidal Concentration (MBC/MFC results revealed that Z10 has the highest bactericidal/fungicidal effect on the test microbes, at a concentration of 12.5 μg/mL, with the exception of Candida stellatoidea and Vancomycin Resistant Enterococci (VRE with MBC/MFC of 25 μg/mL. The result of this investigation reveals the potential of the target compounds (Z1–3,5,7–12 in the search for new antimicrobial agents.

  7. Mechanistic considerations in benzene physiological model development

    Energy Technology Data Exchange (ETDEWEB)

    Medinsky, M.A.; Kenyon, E.M.; Seaton, M.J.; Schlosser, P.M. [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1996-12-01

    Benzene, an important industrial solvent, is also present in unleaded gasoline and cigarette smoke. The hematotoxic effects of benzene in humans are well documented and include aplastic anemia, pancytopenia, and acute myelogenous leukemia. However, the risks of leukemia at low exposure concentrations have not been established. A combination of metabolites (hydroquinone and phenol, for example) may be necessary to duplicate the hematotoxic effect of benzene, perhaps due in part to the synergistic effect of phenol on myeloperoxidase-mediated oxidation of hydroquinone to the reactive metabolite benzoquinone. Because benzene and its hydroxylated metabolites (phenol, hydroquinone, and catechol) are substrates for the same cytochrome P450 enzymes, competitive interactions among the metabolites are possible. In vivo data on metabolite formation by mice exposed to various benzene concentrations are consistent with competitive inhibition of phenol oxidation by benzene. In vitro studies of the metabolic oxidation of benzene, phenol, and hydroquinone are consistent with the mechanism of competitive interaction among the metabolites. The dosimetry of benzene and its metabolites in the target tissue, bone marrow, depends on the balance of activation processes such as enzymatic oxidation and deactivation processes such as conjugation and excretion. Phenol, the primary benzene metabolite, can undergo both oxidation and conjugation. Thus the potential exists for competition among various enzymes for phenol. Zonal localization of phase I and phase 11 enzymes in various regions of the liver acinus also impacts this competition. Biologically based dosimetry models that incorporate the important determinants of benzene flux, including interactions with other chemicals, will enable prediction of target tissue doses of benzene and metabolites at low exposure concentrations relevant for humans. 39 refs., 4 figs., 2 tabs.

  8. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C...

  9. Selective sorption of perfluorooctane sulfonate on molecularly imprinted polymer adsorbents

    Institute of Scientific and Technical Information of China (English)

    Shubo DENG; Danmeng SHUAI; Qiang YU; Jun HUANG; Gang YU

    2009-01-01

    Perfluorooctane sulfonate (PFOS), as a potential persistent organic pollutant, has been widely detected in water environments, and has become a great concern in recent years. PFOS is very stable and difficult to decompose using conventional techniques. Sorption may be an attractive method to remove it from water. In this study, the molecularly imprinted polymer (MIP) adsorbents were prepared through the polymerization of 4-vinylpyridine under different preparation conditions in order to remove perfluorooctane sulfonate (PFOS) from water. The MIP adsorbents using perfluorooctanoic acid (PFOA) as the template had good imprinting effects and could selectively remove PFOS from aqueous solution. The sorption behaviors including sorption kinetics,isotherms, and effect of pH, salt, and competitive anions were investigated. Experimental results showed that the sorption of PFOS On the MIP adsorbents was very fast, pH-dependent, and highly selective. The achieved fast sorption equilibrium within 1 h was attributed to the surface sorption on the fine adsorbents. The sorption isotherms showed that the sorption selectivity of PFOS on the MIP adsorbents decreased at high PFOS concentrations, which may be due to the double-layer sorption and the formation of PFOS micelles on the sorbent surface. The sorption of PFOS on the MIP adsorbents was mainly dominated by the electrostatic interaction between the protonated vinylpyridine on the adsorbent surface and the anionic PFOS. The prepared MIP adsorbents can potentially be applied in water and wastewater treatment for selective removal of PFOS.

  10. Particle size effects of sulfonated graphene supported Pt nanoparticles on ethanol electrooxidation

    International Nuclear Information System (INIS)

    Highlights: • Pt colloidal nanoparticles with five mean diameters are synthesized. • Size-selected Pt nanoparticles are loaded on sulfonated graphene (sG). • Sulfonic acid functional groups atop graphene donate charge to Pt. • Pt-sG catalysts are used for ethanol oxidation reaction (EOR). • Pt-sG(2.5 nm) has the highest peak current density in EOR. - Abstract: Fuel cells are promising alternative in automobile and stationary power generation. Direct ethanol fuel cells (DEFCs) offer significant advantages due to the non-toxicity and renewability of ethanol as well as its high power density. Development of the efficient catalysts for ethanol oxidation reaction (EOR) has attracted great attention and represents one of the major challenges in electrocatalysis. Graphene, one-atom thick nanocarbon materials, has attracted much attention recently in a variety of applications. The sulfonation of graphene is able to make it hydrophilic, which enhances its dispersibility in aqueous solvents. Furthermore, sulfonation increases the adsorption and uniform distribution of the Pt nanoparticles, which increases both the electrocatalytic activity and the durability. In this study, theoretical calculations demonstrated that the sulfonate functional group can donate charge to Pt, enhanced the adsorption energy of Pt, and then reduce the adsorption energy of CO on Pt. Then experimentally five kinds of Pt/sulfonated-graphene (Pt/sG) catalysts were synthesized via the control of pH values during the preparation of five-selected colloidal nanoparticles. Among all catalysts, Pt-sG(2.5 nm) has the highest peak current density in EOR

  11. Hydrogen isotope exchange between boranes and deuterated aromatic hydrocarbons: evidence for reversible hydroboration of benzene

    International Nuclear Information System (INIS)

    Pentaborane, B5H9, and diborane, B2H6, undergo hydrogen isotope exchange with deuterated aromatic hydrocarbons. Lewis acid catalyzed hydrogen isotope exchange occurs between benzene-d6 and the apical hydrogen atom of B5H9 to form 1-DB5H8 at ambient temperature. In uncatalyzed exchanges, B5H9 reacts with deuterated aromatic hydrocarbons to produce 1,2,3,4,5-D5B5H4 at +450C and B5D9 at +1200C. This thermally induced hydrogen isotope exchange apparently occurs via a reversible hydroboration of the aromatic ring. Diborane undergoes a similar isotope exchange with benzene-d6 under mild thermal conditions. 18 references, 6 figures, 3 tables

  12. 46 CFR 30.25-3 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Benzene. 30.25-3 Section 30.25-3 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Commodities Regulated § 30.25-3 Benzene. The provisions contained in 46 CFR part 197, subpart C, apply to liquid cargoes containing 0.5% or more...

  13. 46 CFR 151.50-60 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 151.50-60 Section 151.50-60 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-60 Benzene. The person in charge of...

  14. 29 CFR 1926.1128 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Benzene. 1926.1128 Section 1926.1128 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Toxic and Hazardous Substances § 1926.1128 Benzene....

  15. 29 CFR 1915.1028 - Benzene.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Benzene. 1915.1028 Section 1915.1028 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED... Benzene. Note: The requirements applicable to shipyard employment under this section are identical...

  16. Bio sensing Benzene in the refinery

    International Nuclear Information System (INIS)

    A biosensor based on Pseudomonas putida cells was utilized for Benzene analysis in air of an oil refinery. Biosensoristic approach was compared to gaschromatografic essay. We also developed bio sensing Benzene genetically modified Escherichia coli and tested them with refinery samples. Microbial biosensor were useful to determine air pollution.

  17. In situ inhibitor synthesis from admixture of benzaldehyde and benzene-1,2-diamine along with FeCl3 catalyst as a new corrosion inhibitor for mild steel in 0.5 M sulphuric acid

    International Nuclear Information System (INIS)

    Highlights: ► Excellent inhibitive efficiency (97%) was obtained by in situ synthesis. ► Results from electrochemical and weight loss measurements are quite comparable. ► By increasing temperature the inhibition efficiency has not changed noticeably. ► FTIR results proved that 2-phenyl-1H-benzo[d]imidazole synthesized on the surface. ► Quantum chemical reveals benzene ring and N atoms are proper adsorption sites. -- Abstract: Corrosion protection of mild steel in 0.5 M H2SO4 solution was studied using combination of benzene-1,2-diamine and benzaldehyde with FeCl3 to in situ synthesis of new inhibitor at different temperatures employing electrochemical, weight loss, quantum chemical studies and optical microscopy. The electrochemical results represent the combination of these components in the solution shows equal efficiency to the compound which was synthesized in the laboratory which is 2-phenyl-1H-benzo[d]imidazole. To indicate this compound was created on the metal surface, deposited layer was investigated by Fourier transform infrared spectroscopy (FTIR). Optical microscopy examinations demonstrate a decrease in corrosion attacks in presence of inhibitors

  18. Sulindac Sulfide, but Not Sulindac Sulfone, Inhibits Colorectal Cancer Growth

    Directory of Open Access Journals (Sweden)

    Christopher S. Williams

    1999-06-01

    Full Text Available Sulindac sulfide, a metabolite of the nonsteroidal antiinflammatory drug (NSAID sulindac sulfoxide, is effective at reducing tumor burden in both familial adenomatous polyposis patients and in animals with colorectal cancer. Another sulindac sulfoxide metabolite, sulindac sulfone, has been reported to have antitumor properties without inhibiting cyclooxygenase activity. Here we report the effect of sulindac sulfone treatment on the growth of colorectal carcinoma cells. We observed that sulindac sulfide or sulfone treatment of HCA-7 cells led to inhibition of prostaglandin E2 production. Both sulindac sulfide and sulfone inhibited HCA-7 and HCT-116 cell growth in vitro. Sulindac sulfone had no effect on the growth of either HCA-7 or HCT-116 xenografts, whereas the sulfide derivative inhibited HCA-7 growth in vivo. Both sulindac sulfide and sulfone inhibited colon carcinoma cell growth and prostaglandin production in vitro, but sulindac sulfone had no effect on the growth of colon cancer cell xenografts in nude mice.

  19. Development of a new highly conductive and thermomechanically stable complex membrane based on sulfonated polyimide/ionic liquid for high temperature anhydrous fuel cells

    Science.gov (United States)

    Deligöz, Hüseyin; Yılmazoğlu, Mesut

    The paper deals with the synthesis and characterization of a new type of acid doped highly conductive complex membrane based on sulfonated polyimide (sPI) and ionic liquid (IL) for high temperature anhydrous fuel cells. For this purpose, 2,4-diaminobenzene sulfonic acid (2,4-DABSA) is reacted with benzophenontetracarboxylic dianhydride (BTDA) to yield sulfonated poly(amic acid) (sPAA) intermediate. Subsequently, IL is added into sPAA to form an interaction between sulfonic acid and imidazolium group of IL followed by acid doping. The ionic conductivity of acid doped sPI/IL complex polymer membrane is higher than that of IL containing composite membranes reported in the literature (5.59 × 10 -2 S cm -1 at 180 °C). Furthermore, dynamic mechanical analysis (DMA) results of acid doped sPI/IL complex membrane show that the mechanical strength of the complex product is slightly changed until 350 °C due to the formation of ionic interactions between sulfonic acid groups of sPI and imidazolium groups of IL. Consequently, the ionic interaction not only provides high ionic conductivity with excellent thermomechanical properties (the storage module of 0.91 GPa at 300 °C) but also results in a positive effect in long term conductivity stability by blocking IL migration through the membrane.

  20. Molecular dynamics simulation of benzene

    Science.gov (United States)

    Trumpakaj, Zygmunt; Linde, Bogumił B. J.

    2016-03-01

    Intermolecular potentials and a few models of intermolecular interaction in liquid benzene are tested by Molecular Dynamics (MD) simulations. The repulsive part of the Lennard-Jones 12-6 (LJ 12-6) potential is too hard, which yields incorrect results. The exp-6 potential with a too hard repulsive term is also often used. Therefore, we took an expa-6 potential with a small Gaussian correction plus electrostatic interactions. This allows to modify the curvature of the potential. The MD simulations are carried out in the temperature range 280-352 K under normal pressure and at experimental density. The Rayleigh scattering of depolarized light is used for comparison. The results of MD simulations are comparable with the experimental values.

  1. Highly branched sulfonated poly(fluorenyl ether ketone sulfone)s membrane for energy efficient vanadium redox flow battery

    Science.gov (United States)

    Yin, Bibo; Li, Zhaohua; Dai, Wenjing; Wang, Lei; Yu, Lihong; Xi, Jingyu

    2015-07-01

    A series of highly branched sulfonated poly (fluorenyl ether ketone sulfone)s (HSPAEK) are synthesized by direct polycondensation reactions. The HSPAEK with 8% degree of branching is further investigated as membrane for vanadium redox flow battery (VRFB). The HSPAEK membrane prepared by solution casting method exhibits smooth, dense and tough morphology. It possesses very low VO2+ permeability and high ion selectivity compared to those of Nafion 117 membrane. When applied to VRFB, this novel membrane shows higher coulombic efficiency (CE, 99%) and energy efficiency (EE, 84%) than Nafion 117 membrane (CE, 92% and EE, 78%) at current density of 80 mA cm-2. Besides, the HSPAEK membrane shows super stable CE and EE as well as excellent discharge capacity retention (83%) during 100 cycles life test. After being soaked in 1.5 mol L-1 VO2+ solution for 21 days, the weight loss of HSPAEK membrane and the amount of VO2+ reduced from VO2+ are only 0.26% and 0.7%, respectively, indicating the superior chemical stability of the membrane.

  2. All solid supercapacitor based on polyaniline and crosslinked sulfonated poly[ether ether ketone

    International Nuclear Information System (INIS)

    All solid supercapacitor based on polyaniline (PANI) and crosslinked sulfonated poly[ether ether ketone] (XSPEEK,) is reported in this paper. The crosslinker used for sulfonated poly[ether ether ketone] (SPEEK) is 1,4-bis(hydroxymethyl) benzene. The XSPEEK is used as both solid electrolyte and separator membrane. Supercapacitors are fabricated using various PANI/XSPEEK weight ratios. These are characterized by cyclic voltammetry and galvanostatic charge-discharge studies. The supercapacitor with PANI/XSPEEK weight ratio 1:0.5, exhibit a specific capacitance of 480 F g-1 of PANI. To the best of authors' knowledge, the value reported here is the highest for a supercapacitor based on a proton conducting solid polymer electrolyte and PANI. Detailed electrochemical impedance spectroscopy analysis is carried out. The analysis shows that the complex capacitance of the supercapacitor depends on the XSPEEK content. The time constant (t0), derived from the imaginary part of complex capacitance decreases with increase in the XSPEEK content in the supercapacitor. Cycle life characteristics of the supercapacitor show a decrease in specific capacitance during initial cycles and get stabilized during later cycles.

  3. Interphase cytogenetics of workers exposed to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, L.; Wang, Yunxia; Venkatesh, P. [Univ. of California, Berkeley, CA (United States)] [and others

    1996-12-01

    Fluorescence in situ hybridization (FISH) is a powerful new technique that allows numerical chromosome aberrations (aneuploidy) to be detected in interphase cells. In previous studies, FISH has been used to demonstrate that the benzene metabolites hydroquinone and 1,2,4-benzenetriol induce aneuploidy of chromosomes 7 and 9 in cultures of human cells. In the present study, we used an interphase FISH procedure to perform cytogenetic analyses on the blood cells of 43 workers exposed to benzene (median=31 ppm, 8-hr time-weighted average) and 44 matched controls from Shanghai, China. High benzene exposure (>31 ppm, n=22) increased the hyperdiploid frequency of chromosome 9 (p<0.01), but lower exposure (<31 ppm, n=21) did not. Trisomy 9 was the major form of benzene-induced hyperdiploidy. The level of hyperdiploidy in exposed workers correlated with their urinary phenol level (r= 0.58, p < 0.0001), a measure of internal benzene close. A significant correlation was also found between hyperdiploicly and decreased absolute lymphocyte count, an indicator of benzene hematotoxicity, in the exposed group (r=-0.44, p=0.003) but not in controls (r=-0.09, P=0.58). These results show that high benzene exposure induces aneuploidy of chromosome 9 in nondiseased individuals, with trisomy being the most prevalent form. They further highlight the usefulness of interphase cytogenetics and FISH for the rapid and sensitive detection of aneuploidy in exposed human populations. 35 refs., 3 figs., 2 tabs.

  4. Sulfonated carbon black-based composite membranes for fuel cell applications

    Indian Academy of Sciences (India)

    Hacer Doǧan; Emel Yildiz; Metin Kaya; Tülay Y Inan

    2013-08-01

    Two different commercial grade carbon black samples, Cabot Regal 400R (C1) and Cabot Mogul L (C2), were sulfonated with diazonium salt of sulfanilic acid. The resultant sulfonated carbon black samples (S–C) were characterized by Fourier transform infrared spectroscopy (FTIR) and thermal gravimetric analysis (TGA). Composite membranes were then prepared using S–C as fillers and sulfonated poly(ether ether ketone) (SPEEK) as polymer matrix with three different sulfonation degrees (DS = 60, 70 and 82%). Structure and properties of the composite membranes were characterized by FTIR, TGA, scanning electron microscopy, proton conduction, water uptake, ion exchange capacity and chemical stability. Incorporation of S–C particles above 0.25 wt% caused decrease in chemical stability. Pristine and composite membranes prepared from SPEEK82 decomposed completely in <1 h, which is undesirable for fuel cell applications. SPEEK60 membrane having wt% of 0.25–0.5 with S–C particles led to higher proton conductivity than that of pristine membrane. No positive effect was observed on the properties of the composite membranes with the addition of S–C particles at high concentrations due to the agglomeration problems and decrease in the content of conductive polymer matrix.

  5. Anaerobic degradation of linear alkylbenzene sulfonate

    DEFF Research Database (Denmark)

    Mogensen, Anders Skibsted; Haagensen, Frank; Ahring, Birgitte Kiær

    2003-01-01

    increases during anaerobic stabilization due to transformation of easily degradable organic matter. Hence, LAS is regarded as resistant to biodegradation under anaerobic conditions. We present data from a lab-scale semi-continuously stirred tank reactor (CSTR) spiked with linear dodecylbenzene sulfonate (C......% of the added C-12 LAS was bioavailable and 20% was biotransformed when spiking with 100 mg/L of C-12 LAS and a TS concentration of 14.2 mg/L. Enhanced bioavailability of C-12 LAS was obtained in an upflow anaerobic sludge blanket (UASB) reactor inoculated with granular sludge and sewage sludge. Biodegradation......Linear alkylbenzene sulfonate (LAS) found in wastewater is removed in the wastewater treatment facilities by sorption and aerobic biodegradation. The anaerobic digestion of sewage sludge has not been shown to contribute to the removal. The concentration of LAS based on dry matter typically...

  6. Degradation analysis of linear alkylbenzene sulfonates (LAS)

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, S.S.; Warren, W.J.; Reed, A.

    1980-01-01

    The degradation of mixtures of sodium salts of butyl-, decyl-, and dodecylbenzene sulfonate was studied as influenced by shaking for seven days, by the addition of soil and sand, and by changes in pH. LAS were analyzed by measurement of the absorbance at 223 nm or by reaction with methylene blue and measurement of the absorbance at 652 nm. Slurries containing 48.0 g/l. and 6.6 g/l. of LAS degraded at room temperature, which suggested a simple chemical decomposition of the LAS to simpler products since these concentrations prohibited microbial activity. None of the treatments significantly aided the degradation process, except the addition of soil, i.e., the addition of a source of microorganisms. Contrary to the LAS slurry data, the dodecylbenzene sulfonate solution did not degrade even after aging for 30 days; however, it degraded completely after 7 days on the addition of a glucose and nutrient solution.

  7. Excited state of protonated benzene and toluene

    International Nuclear Information System (INIS)

    We present photo-fragmentation electronic spectra of the simplest protonated aromatic molecules, protonated benzene and toluene, recorded under medium resolution conditions and compared with the photo-fragmentation spectrum of protonated pyridine. Despite the resolution and cold temperature achieved in the experiment, the electronic spectra of protonated benzene and toluene are structure-less, thus intrinsically broadened. This is in agreement with the large geometrical changes and the fast dynamic toward internal conversion predicted by ab initio calculations for protonated benzene [Rode et al., J. Phys. Chem. A 113, 5865–5873 (2009)

  8. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Institute of Scientific and Technical Information of China (English)

    姜楠; 鲁娜; 李杰; 吴彦

    2012-01-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h^-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  9. Brain met-enkephalin immunostaining after subacute and subchronic exposure to benzene

    Energy Technology Data Exchange (ETDEWEB)

    Gandarias, J.M. de; Echevarria, E.; Martinez-Millan, L.; Casis, L. [Univ. of the Basque Country, Bilbao (Spain); Martinez-Garcia, F. [Univ. of Valencia (Spain)

    1994-01-01

    Benzene is used in a wide variety of domestic and occupational activities, and due to its lipophilic nature, it accumulates in lipid-rich tissues like the brain. In this sense, neurotoxic action has long been associated with organic solvent exposure and it has been shown that benzene, injected in a single dose or during a prolongued administration, modifies the content of dopamine, noradrenaline, serotonin and its main metabolite 5-hydroxy indolacetic acid, in several brain regions of the rat, then revealing a stimulating action on brain monoamine synthesis and turnover. However, information concerning neurotoxic action of benzene exposure in vivo on peptidergic neuromodulatory systems is still lacking. Nevertheless, it has been recently described that subacute benzene exposure in rats generates regional changes in brain aminopeptidase activity. These proteolytic enzymes have been widely associated with metabolic control of neuropeptides and it has been suggested that they could play a role in benzene neurotoxic mechanism by hypothetically changing regional neuropeptide levels. This being the case, we focused on analyzing met-enkephalin immunostaining in different brain regions of the rat after subacute and subchronic administration of benzene. 12 refs., 3 figs.

  10. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Science.gov (United States)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  11. Catalytic transformation of methyl benzenes over zeolite catalysts

    KAUST Repository

    Al-Khattaf, S.

    2011-02-01

    Catalytic transformation of three methyl benzenes (toluene, m-xylene, and 1,2,4-trimethyl benzene) has been investigated over ZSM-5, TNU-9, mordenite and SSZ-33 catalysts in a novel riser simulator at different operating conditions. Catalytic experiments were carried out in the temperature range of 300-400 °C to understand the transformation of these alkyl benzenes over large pore (mordenite and SSZ-33) in contrast to medium-pore (ZSM-5 and TNU-9) zeolite-based catalysts. The effect of reaction conditions on the isomerization to disproportionation product ratio, distribution of trimethylbenzene (TMB) isomers, and p-xylene/o-xylene ratios are reported. The sequence of reactivity of the three alkyl benzenes depends upon the pore structure of zeolites. The zeolite structure controls primarily the diffusion of reactants and products while the acidity of these zeolites is of a secondary importance. In the case of medium pore zeolites, the order of conversion was m-xylene > 1,2,4-TMB > toluene. Over large pore zeolites the order of reactivity was 1,2,4-TMB > m-xylene > toluene for SSZ-33 catalyst, and m-xylene ∼ 1,2,4-TMB > toluene over mordenite. Significant effect of pore size between ZSM-5 and TNU-9 was observed; although TNU-9 is also 3D 10-ring channel system, its slightly larger pores compared with ZSM-5 provide sufficient reaction space to behave like large-pore zeolites in transformation of aromatic hydrocarbons. We have also carried out kinetic studies for these reactions and activation energies for all three reactants over all zeolite catalysts under study have been calculated. © 2011 Elsevier B.V.

  12. Neuroendocrine effects of perfluorooctane sulfonate in rats.

    OpenAIRE

    Austin, Maureen E; Kasturi, Badrinarayanan S.; Barber, Matthew; Kannan, Kurunthachalam; MohanKumar, Puliyur S.; MohanKumar, Sheba M.J.

    2003-01-01

    Perfluorooctane sulfonate (PFOS) is a degradation product of sulfonyl-based fluorochemicals that are used extensively in industrial and household applications. Humans and wildlife are exposed to this class of compounds from several sources. Toxicity tests in rodents have raised concerns about potential developmental, reproductive, and systemic effects of PFOS. However, the effect of PFOS on the neuroendocrine system has not been investigated thus far. In this study, adult female rats were inj...

  13. 46 CFR 197.565 - Notifying personnel of benzene hazards.

    Science.gov (United States)

    2010-10-01

    ... appendices A and B of this subpart or a MSDS on benzene meeting the requirements of 29 CFR 1910.1200(g) is... 46 Shipping 7 2010-10-01 2010-10-01 false Notifying personnel of benzene hazards. 197.565 Section... AND HEALTH STANDARDS GENERAL PROVISIONS Benzene § 197.565 Notifying personnel of benzene hazards....

  14. Diastereoselective synthesis of γ- And δ-lactams from imines and sulfone-substituted anhydrides

    OpenAIRE

    Sorto, NA; Di Maso, MJ; Muñoz, MA; Dougherty, RJ; Fettinger, JC; Shaw, JT

    2014-01-01

    Sulfone-substituted γ- and δ-lactams have been prepared in a single step with high diastereoselectivity. Sulfonylglutaric anhydrides produce intermediates that readily decarboxylate to provide δ-lactams with high diastereoselectivity. Substituents at the 3- or 4-position of the glutaric anhydride induce high levels of stereocontrol. Sulfonylsuccinic anhydrides produce intermediate carboxylic acids that can be trapped as methyl esters or allowed to decarboxylate under mild conditions. This met...

  15. SYNTHESIS AND CHARACTERIZATION O F SODIUM METHYL ESTER SULFONATE FOR CHEMICALLY-ENHANCED OIL RECOVERY

    OpenAIRE

    Babu, K.; N. K. Maurya; Mandal, A.; Saxena, V. K.

    2015-01-01

    AbstractAttention has been given to reduce the cost of surfactant by using castor oil as an alternative natural source of feedstock. A new surfactant, sodium methyl ester sulfonate (SMES) was synthesised using ricinoleic acid methyl ester, which is obtained from castor oil, for enhanced oil recovery in petroleum industries. The performance of SMES was studied by measuring the surface tension with and without sodium chloride and its thermal stability at reservoir temperature. SMES exhibited go...

  16. The selective detection of dopamine at a polypyrrole film doped with sulfonated β-cyclodextrins

    OpenAIRE

    Harley, Claire C.; Rooney, A. Denise; Breslin, Carmel B.

    2010-01-01

    A highly selective dopamine sensor was fabricated by doping polypyrrole with a sulfonated β-cyclodextrin. This composite material enabled the selective sensing of dopamine in the presence of a large excess of ascorbic acid and prevented the regeneration of dopamine through the homogeneous catalytic reaction of the ascorbate anion with the dopamine-o-quinone. A single redox wave, corresponding to the oxidation of dopamine, was observed in dopamine/ascorbate mixtures, giving a truly se...

  17. Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects

    OpenAIRE

    Cheng, Jie; Vecitis, Chad D.; Park, Hyunwoong; Mader, Brian T.; Michael R. Hoffmann

    2008-01-01

    Perfluorinated chemicals such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmentally persistent and recalcitrant to most conventional chemical and microbial treatment technologies. In this paper, we show that sonolysis is able to decompose PFOS and PFOA present in groundwater beneath a landfill. However, the pseudo first-order rate constant for the sonochemical degradation in the landfill groundwater is reduced by 61 and 56% relative to MilliQ water for PFOS...

  18. Recommended sublimation pressure and enthalpy of benzene

    International Nuclear Information System (INIS)

    Highlights: • Sublimation pressures of benzene were measured. • Benzene thermodynamic properties in the state of ideal gas were calculated. • Recommended sublimation pressure and enthalpy of benzene were developed. -- Abstract: Recommended vapor pressures of solid benzene (CAS Registry Number: 71-43-2) which are consistent with thermodynamically related crystalline and ideal-gas heat capacities as well as with properties of the liquid phase at the triple point temperature (vapor pressure, enthalpy of vaporization) were established. The recommended data were developed by a multi-property simultaneous correlation of vapor pressures and related thermal data. Vapor pressures measured in this work using the static method in the temperature range from 233 K to 260 K, covering pressure range from 99 Pa to 1230 Pa, were included in the simultaneous correlation. The enthalpy of sublimation was established with uncertainty significantly lower than the previously recommended values

  19. Alkylation of benzene with normal olefins from coker distillate

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-Gheit, A.K.; Moustafa, O.F.; Habbib, R.M.

    1985-10-01

    The normal olefins separated from a coker distillate were used to alkylate benzene on catalysts containing silicotungstic acid supported on silica, silica-alumina and activated natural clays. The alkylation activity was found to increase as the surface area and silica/alumina ratio of the catalysts increase, irrespective of the support texture. The activation energy of the reaction was very low (proportional3 k cal mol/sup -1/), assuming catalytic intraparticle diffusion limitation. Equilibrium shift towards dealkylation was observed beyond 300/sup 0/C. (orig.).

  20. Benzene and lead exposure assessment among occupational bus drivers in Bangkok traffic

    Institute of Scientific and Technical Information of China (English)

    SHING TET LEONG; PREECHA LAORTANAKUL

    2004-01-01

    Four environmental and biological monitoring sites were strategically established to evaluate benzene and lead exposure assessment at various traffic zones of Bangkok Metropolitan Region(BMR). Biological measurement of 48 non air-conditioned, male bus drivers was carried to study the relationship between individual exposure levels and exposure biomarkers. The study group was further subdivided into four age groups( 16-25, 26-35, 36-45 and 46-55 years old) to monitor the age-related exposure effects. A total of 12unexposed persons were deliberately chosen as the control group. Measurement of unmetobolized benzene in blood and analysis of urinary tt-Muconic acid urine and urinary creatinine are recommended as biomarkers of benzene exposure. Measurement of lead in blood and urine is also recommended for the biological monitoring of lead exposure.During the monitoring period, benzene and lead levels at Yaowarat Road was C6H6: 42.46 + 3.88 μg/m3 , Pb: 0.29 + 0.03 μg/m3 and decreased to C6 H6: 33.5 ± 1.35 μg/m3 , Pb: O. 13 + 0.01 μg/m3 at Phahonyothin Road. Significant difference was established between the nonsmoking exposed group and nonsmoking control group for blood benzene concentrations ( P < 0.001, two-tailed, Mann-Whiteney U test). Strong correlations were also found between trans-trans-Muconic acid concentrations in post shift samples and atmospheric benzene concentrations. Similarly, good correlation between all of biomarkers and lead level in air is established from automobile emissions.The analysis revealed that among the occupational population in the urban sites, the driver groups were found to have the highest risk of benzene and lead exposures derived from automobile emission.

  1. Benzene and lead exposure assessment among occupational bus drivers in Bangkok traffic.

    Science.gov (United States)

    Muttamara, S; Leong, Shing Tet; Arayasiri, M

    2004-01-01

    Four environmental and biological monitoring sites were strategically established to evaluate benzene and lead exposure assessment at various traffic zones of Bangkok Metropolitan Region(BMR). Biological measurement of 48 non air-conditioned, male bus drivers was carried to study the relationship between individual exposure levels and exposure biomarkers. The study group was further subdivided into four age groups(16-25, 26-35, 36-45 and 46-55 years old) to monitor the age-related exposure effects. A total of 12 unexposed persons were deliberately chosen as the control group. Measurement of unmetobolized benzene in blood and analysis of urinary tt-Muconic acid urine and urinary creatinine are recommended as biomarkers of benzene exposure. Measurement of lead in blood and urine is also recommended for the biological monitoring of lead exposure. During the monitoring period, benzene and lead levels at Yaowarat Road was C6H6: 42.46 +/- 3.88 microg/m3 , Pb: 0.29 +/- 0.03 microg/m3 and decreased to C6H6: 33.5 +/- 1.35 microg/m3, Pb: 0.13 +/- 0.01 microg/m3 at Phahonyothin Road. Significant difference was established between the nonsmoking exposed group and nonsmoking control group for blood benzene concentrations (P < 0.001, two-tailed, Mann-Whiteney U test). Strong correlations were also found between trans-trans-Muconic acid concentrations in post shift samples and atmospheric benzene concentrations. Similarly, good correlation between all of biomarkers and lead level in air is established from automobile emissions. The analysis revealed that among the occupational population in the urban sites, the driver groups were found to have the highest risk of benzene and lead exposures derived from automobile emission. PMID:14971454

  2. Partially Fluorinated Sulfonated Poly(ether amide Fuel Cell Membranes: Influence of Chemical Structure on Membrane Properties

    Directory of Open Access Journals (Sweden)

    Chulsung Bae

    2011-01-01

    Full Text Available A series of fluorinated sulfonated poly (ether amides (SPAs were synthesized for proton exchange membrane fuel cell applications. A polycondensation reaction of 4,4’-oxydianiline, 2-sulfoterephthalic acid monosodium salt, and tetrafluorophenylene dicarboxylic acids (terephthalic and isophthalic or fluoroaliphatic dicarboxylic acids produced SPAs with sulfonation degrees of 80–90%. Controlling the feed ratio of the sulfonated and unsulfonated dicarboxylic acid monomers afforded random SPAs with ion exchange capacities between 1.7 and 2.2 meq/g and good solubility in polar aprotic solvents. Their structures were characterized using NMR and FT IR spectroscopies. Tough, flexible, and transparent films were obtained with dimethylsulfoxide using a solution casting method. Most SPA membranes with 90% sulfonation degree showed high proton conductivity (>100 mS/cm at 80 °C and 100% relative humidity. Among them, two outstanding ionomers (ODA-STA-TPA-90 and ODA-STA-IPA-90 showed proton conductivity comparable to that of Nafion 117 between 40 and 80 °C. The influence of chemical structure on the membrane properties was systematically investigated by comparing the fluorinated polymers to their hydrogenated counterparts. The results suggest that the incorporation of fluorinated moieties in the polymer backbone of the membrane reduces water absorption. High molecular weight and the resulting physical entanglement of the polymers chains played a more important role in improving stability in water, however.

  3. Characterization of a Sulfonated Polycarbonate Resistive Humidity Sensor

    OpenAIRE

    Claudio L. Donnici; Henrique Oliveira; Rubinger, Rero M.; Hallen D. R. Calado; Rubinger, Carla P.L.

    2013-01-01

    In this work; resistive moisture sensors were obtained by dip coating sulfonated polycarbonate (SPC) onto silver interdigitated electrodes. Commercial polycarbonate was sulfonated with acetyl sulphate at two different sulfonation degrees corresponding to 9.0 and 18.0 mole %. Impedance spectroscopy was used to investigate the humidity sensing properties at controlled relative humidity (RH%) environments generated from standard saline solutions in the range of 11–90 RH%. For the highest sulfona...

  4. Synthesis and properties of novel multiblock copolyimides consisting of benzimidazole-groups-containing sulfonated polyimide hydrophilic blocks and non-sulfonated polyimide hydrophobic blocks as proton exchange membranes

    International Nuclear Information System (INIS)

    A series of novel multiblock copolymers consisting of benzimidazole-groups-containing sulfonated polyimide hydrophilic blocks (averaged block length = 20) and non-sulfonated polyimide hydrophobic blocks (averaged block length = 5 or 10) have been synthesized via two-pot synthetic procedures. The anhydride-terminated hydrophilic oligomer is synthesized by copolymerization of excess 1,4,5,8-naphthalelnetetracarboxylic dianhydride (NTDA) with amine-terminated polybenzimidazole (PBI-NH2) and 4,4′-bis(4-aminophenoxy) biphenyl-3,3′-disulfonic acid (BAPBDS), while the amine-terminated hydrophobic oligomers are synthesized by polymerization of excess non-sulfonated diamines with NTDA or a fluorinated dianhydride. The resulting multiblock copolymers can be cast into tough membranes indicating that reasonably high molecular weights block copolymers have been obtained. The block SPIs exhibit microphase-separated structure, whereas the random one is amorphous. Fenton’s test reveals that the block copolymer membranes, in particular, those consisting of fluorinated hydrophobic blocks, are fairly stable toward radical oxidation. Preliminary fuel cell tests are performed to evaluate the fuel cell performance of the block copolymer membranes. The single cell equipped with the block copolymer membrane of which hydrophobic block is prepared from NTDA and a fluorinated diamine (averaged block length = 5) exhibits a peak output power density of 0.70 W/cm2 at 90 °C and 92% relative humidity for H2/air which is comparable to that of Nafion 112

  5. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H) and their docking and urease inhibitory activity

    OpenAIRE

    Ghodsi Mohammadi Ziarani; Afsaneh Faramarzi; Shima Asadi; Alireza Badiei; Roya Bazl; Massoud Amanlou

    2013-01-01

    Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and...

  6. Improving the Conductivity of Sulfonated Polyimides as Proton Exchange Membranes by Doping of a Protic Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Bor-Kuan Chen

    2014-10-01

    Full Text Available Proton exchange membranes (PEMs are a key component of a proton exchange membrane fuel cell. Sulfonated polyimides (SPIs were doped by protic ionic liquid (PIL to prepare composite PEMs with substantially improved conductivity. SPIs were synthesized from diamine, 2,2-bis[4-(4-amino-phenoxyphenyl]propane (BAPP, sulfonated diamine, 4,4'-diamino diphenyl ether-2,2'-disulfonic acid (ODADS and aromatic anhydride. BAPP improved the mechanical and thermal properties of SPIs, while ODADS enhanced conductivity. A PIL, 1-vinylimidazolium trifluoromethane-sulfonate ([VIm][OTf], was utilized. [VIm][OTf] offered better conductivity, which can be attributed to its vinyl chemical structure attached to an imidazolium ring that contributed to ionomer-PIL interactions. We prepared sulfonated polyimide/ionic liquid (SPI/IL composite PEMs using 50 wt% [VIm][OTf] with a conductivity of 7.17 mS/cm at 100 °C, and in an anhydrous condition, 3,3',4,4'-diphenyl sulfone tetracarboxylic dianhydride (DSDA was used in the synthesis of SPIs, leading to several hundred-times improvement in conductivity compared to pristine SPIs.

  7. Synergistic mechanism between SDBS and oleic acid in anionic flotation of rhodochrosite

    Science.gov (United States)

    Bu, Yong-jie; Liu, Run-qing; Sun, Wei; Hu, Yue-hua

    2015-05-01

    Pure mineral flotation experiments, zeta potential testing, and infrared spectroscopy were employed to investigate the interfacial reactions of oleic acid (collector), sodium dodecyl benzene sulfonate (SDBS, synergist), and rhodochrosite in an anionic system. The pure mineral test shows that oleic acid has a strong ability to collect products on rhodochrosite. Under neutral to moderately alkaline conditions, low temperature (e.g., 10°C) adversely affects the flotation performance of oleic acid; the addition of SDBS significantly improves the dispersion and solubility of oleic acid, enhancing its collecting ability and flotation recovery. The zeta potential test shows that rhodochrosite interacts with oleic acid and SDBS, resulting in a more negative zeta potential and the co-adsorption of the collector and synergist at the mineral surface. Infrared spectroscopy demonstrated that when oleic acid and SDBS are used as a mixed collector, oleates along with -COO- and -COOH functional groups are formed on the mineral surface, indicating chemical adsorption on rhodochrosite. The results demonstrate that oleic acid and SDBS co-adsorb chemically on the surface of rhodochrosite, thereby improving the flotation performance of the collector.

  8. Enhancing the phase segregation and connectivity of hydrophilic channels by blending highly sulfonated graft copolymers with fluorous homopolymers

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller; Ching-Ching Yang, Ami; Jankova Atanasova, Katja;

    2013-01-01

    The influence of tuning the ionic content of membranes by blending, as opposed to varying the degree of sulfonation, is evaluated. Membranes of fully sulfonated poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(styrene sulfonic acid) blended with PVDF were prepared and investigated for...... morphology, water sorption, and proton transport properties. The blend membranes exhibit conductivities superior to pure graft copolymers under fully humidified conditions despite their lower water uptake. Transmission electron microscopy images of the blends reveal that the membranes comprise a combination...... of macro-phase segregated regions of ion-rich and PVDF-rich domains, and, at higher PVDF contents, ion-rich nano-scale domains within fluorine-rich domains. © 2013 The Royal Society of Chemistry....

  9. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ziarani Ghodsi Mohammadi

    2013-01-01

    Full Text Available Abstract Background A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported. Results Reactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 μM. Discussion The compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  10. Three-component synthesis of pyrano[2,3-d]-pyrimidine dione derivatives facilitated by sulfonic acid nanoporous silica (SBA-Pr-SO3H and their docking and urease inhibitory activity

    Directory of Open Access Journals (Sweden)

    Ghodsi Mohammadi Ziarani

    2013-01-01

    Full Text Available A straightforward and efficient method for the synthesis of pyrano[2,3-d]pyrimidine diones derivatives from the reaction of barbituric acid, malononitrile and various aromatic aldehydes using SBA-Pr-SO3H as a nanocatalyst is reported.ResultsReactions proceed with high efficiency under solvent free conditions. Urease inhibitory activity of pyrano[2,3-d]pyrimidine diones derivatives were tested against Jack bean urease using phenol red method. Three compounds of 4a, 4d and 4l were not active in urease inhibition test, but compound 4a displayed slight urease activation properties. Compounds 4b, 4k, 4f, 4e, 4j, 4g and 4c with hydrophobic substitutes on phenyl ring, showed good inhibitory activity (19.45-279.14 muM.DiscussionThe compounds with electron donating group and higher hydrophobic interaction with active site of enzyme prevents hydrolysis of substrate. Electron withdrawing groups such as nitro at different position and meta-methoxy reduced urease inhibitory activity. Substitution of both hydrogen of barbituric acid with methyl group will convert inhibitor to activator.

  11. Analysis of recycled poly (styrene-co-butadiene) sulfonation: a new approach in solid catalysts for biodiesel production.

    Science.gov (United States)

    Aguilar-Garnica, Efrén; Paredes-Casillas, Mario; Herrera-Larrasilla, Tito E; Rodríguez-Palomera, Felicia; Ramírez-Arreola, Daniel E

    2013-01-01

    The disposal of solid waste is a serious problem worldwide that is made worse in developing countries due to inadequate planning and unsustainable solid waste management. In Mexico, only 2% of total urban solid waste is recycled. One non-recyclable material is poly (styrene-co-butadiene), which is commonly used in consumer products (like components of appliances and toys), in the automotive industry (in instrument panels) and in food services (e.g. hot and cold drinking cups and glasses). In this paper, a lab-scale strategy is proposed for recycling poly (styrene-co-butadiene) waste by sulfonation with fuming sulfuric acid. Tests of the sulfonation strategy were carried out at various reaction conditions. The results show that 75°C and 2.5 h are the operating conditions that maximize the sulfonation level expressed as number of acid sites. The modified resin is tested as a heterogeneous catalyst in the first step (known as esterification) of biodiesel production from a mixture containing tallow fat and canola oil with 59% of free fatty acids. The preliminary results show that esterification can reach 91% conversion in the presence of the sulfonated polymeric catalyst compared with 67% conversion when the reaction is performed without catalyst. PMID:24098857

  12. Irradiation effects on the storage and disposal of radwaste containing organic ion-exchange media. [3 functional forms of resin - sulfonic acid cation exchanger, quarternary ammonium anion exchanger and mixed bed combination of the two

    Energy Technology Data Exchange (ETDEWEB)

    Swyler, K.J.; Dodge, C.J.; Dayal, R.

    1983-10-01

    Polystyrene-divinylbenzene (PS-DVB) based ion exchangers are commonly used in water demineralization or decontamination operations at nuclear facilities. Self-irradiation from sorbed radionuclides may affect the properties of radwaste containing these ion-exchange media. The effects of external irradiation on anion, cation, and mixed bed PS-DVB ion exchangers have been investigated under conditions relevant to radwaste storage and disposal. Three effects are emphasized in the present report: (1) release of acids, radionuclides or chemically aggressive species through radiolytic attack on the functional group, (2) radiolytic generation/uptake of corrosive or combustible gases, (3) effect of irradiation on solidification of resins in cement. Special consideration was placed on external variables such as radiation dose rate, resin chemical loading and moisture conditions, accessibility to atmospheric oxygen, and interactions in multicomponent systems. Such variables may affect the correspondence between laboratory results and field performance. 40 references, 24 figures, 28 tables.

  13. Determination of glucose at poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode%聚对氨基苯磺酸/石墨烯复合膜修饰玻碳电极测定葡萄糖

    Institute of Scientific and Technical Information of China (English)

    许春萱; 宋力; 余萌; 蔡翠玲

    2011-01-01

    制备了对氨基苯磺酸/石墨烯复合膜修饰电极,研究了葡萄糖在该修饰电极上的电化学行为.在0.1 moL/L NaOH溶液中,峰电流与葡萄糖的浓度在1 ×1O-6 ~5 ×1O-4 mol/L的范围内呈良好的线性关系,检出限为2×10-7 mol/L(S/N =3).实验结果表明对氨基苯磺酸/石墨烯复合膜显著提高了方法的检测灵敏度.利用该传感器测定了人血清中的葡萄糖,回收率在97.2%~104.1%之间.%A poly (p-aminobenzene sulfonic acid)/graphene composite film modified glassy carbon electrode was fabricated for glucose determination. In 0. 1 mol/L NaOH solution, the peak currents varied linearly with the concentration of glucose in the range of 1x10-6 ~5x10-4 mol/L with the detection limit of 2x10-7 mol/L(S/N =3). It indicated that the composite fibs obviously improved the sensitivity for the glucose determination. The biosensor was used in the determination of glucose in serum with recoveries ranging from 97. 2 % to 104.1%.

  14. QENS investigation of proton confined motions in hydrated perfluorinated sulfonic membranes and self-assembled surfactants

    Directory of Open Access Journals (Sweden)

    Berrod Quentin

    2015-01-01

    Full Text Available We report on QuasiElastic Neutron Scattering (QENS investigations of the dynamics of protons and water molecules confined in nanostructured perfluorinated sulfonic acid (PFSA materials, namely a commercial Aquivion membrane and the perfluorooctane sulfonic acid (PFOS surfactant. The former is used as electrolyte in low-temperature fuel cells, while the latter forms mesomorphous self-assembled phases in water. The dynamics was investigated as a function of the hydration level, in a wide time range by combining time-of-flight and backscattering incoherent QENS experiments. Analysis of the quasielastic broadening revealed for both systems the existence of localized translational diffusive motions, fast rotational motions and slow hopping of protons in the vicinity of the sulfonic charges. The characteristic times and diffusion coefficients have been found to exhibit a very similar behaviour in both membrane and surfactant structures. Our study provides a comprehensive picture of the proton motion mechanisms and the dynamics of confined water in model and real PFSA nanostructures.

  15. Alkylation mechanism of benzene with 1-dodecene catalyzed by Et3NHCl-AlCl3

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The isotope exchange method was employed to investigate the catalytic mechanism of ionic liquid in alkylation of benzenes with olefins.It is proposed that alkylation was induced by the Lewis acid AlCl3 which attracted π electrons of 1-dodecene to shift toward 1-carbon,thus forming a carbonium ion.The carbonium ion further reacted with benzenes to form a complex.Due to unstabilit of the complex,a deuterated ring proton was transferred into an electronegative 1-carbon of the side chain to substitute for the AlCl3,accordingly 2-phenyldodecane was generated.

  16. IMMOBILIZATION OF POTENTIALLY BIOACTIVE MOIETIES ONTO POLYETHER WITH POLY(ETHYLENE GLYCOL)-SULFONATE SPACER

    Institute of Scientific and Technical Information of China (English)

    JI Jian; FENG Linxian; QIU Yongxin; YU Xiaojie; YANG Shilin

    1997-01-01

    A new reactive graft copolymer, poly(tetramethylene glycol)-graft-ω-propyl sodium sulfonate-poly(ethylene glycol) (PTMG-g-PEG-CH2CH2CH2SO-3Na+), was synthesized by the cationic polymerization of α-ω-bifunctional PEG macromonomer ((o)CH2-PEG--CH2CH2CH2SO3Na ) and THF. The obtained copolymer exhibits the expected structure as indicated by the result of characterization. Two amino acids (L-arginine, L-tyrosine) were covalently attached to the copolymer after converting the sulfonate group to sulfonyl chloride. So the new reactive graft copolymer (PTMG-g-PEG-CH2CH2CH2SO-3Na+) is expected to be very useful in attachment of potentially bioactive moieties to polymer via a hydrophilic PEG spacer.

  17. Oil-soluble metal containing sulfonated polymers useful as oil additives

    Energy Technology Data Exchange (ETDEWEB)

    Miller, H.N.

    1983-02-08

    This invention relates to oil soluble, metal containing sulfonated polymers useful as additives for lubricating oils or hydrocarbon fuels and which are effective as dispersants. Such polymers of high molecular weight are also useful as viscosityindex improvers for the lubricating oils. The polymeric dispersant additives are ionic polymers which comprise a backbone substantially soluble in the fuel or lubricant, and pendant ionic groups which are sulfonic acid groups neutralized with a metal compound. Polymeric dispersant additives of this type may be made which are also capable of imparting excellent viscosity improvement, varnish inhibition, oxidation inhibition and detergency to the lubricant. These additives may also impart rust preventive properties to the oil or fuel, and as V.I. improvers they can be formed to have particularly good low temperature viscosity effects in lubricating oil.

  18. Enhancement of proton conductivity of sulfonated polystyrene membrane prepared by plasma polymerization process

    Indian Academy of Sciences (India)

    Bhabesh Kumar Nath; Aziz Khan; Joyanti Chutia; Arup Ratan Pal; Heremba Bailung; Neelotpal Sen Sarma; Devasish Chowdhury; Nirab Chandra Adhikary

    2014-12-01

    This work reports the achievement of higher proton conductivity of polystyrene based proton exchange membrane synthesized in a continuous RF plasma polymerization process using two precursors, styrene (C8H8) and trifluoromethane sulfonic acid (CF3SO3H). The chemical composition of the developed membranes is investigated using Fourier transform infrared spectroscopy and energy dispersive spectroscopy. Scanning electron microscopy has been used for the study of surface morphology and thickness measurement of the membrane. The membranes deposited in the power range from 0.114 to 0.318 Wcm-2 exhibit a lot of variation in the properties like proton transport, water uptake, sulfonation rate, ion exchange capacity and thermal behaviour. The proton conductivity of the membranes is achieved up to 0.6 Scm-1, measured with the help of potentiostat/galvanostat. The thermogravimetric study of the plasma polymerized membrane shows the thermal stability up to 140 °C temperature.

  19. Controlling Structure in Sulfonated Block Copolymer Membranes

    Science.gov (United States)

    Truong, Phuc; Stein, Gila; Strzalka, Joe

    2015-03-01

    In many ionic block copolymer systems, the strong incompatibility between ionic and non-ionic segments will trap non-equilibrium structures in the film, making it difficult to engineer the optimal domain sizes and transport pathways. The goal of this work is to establish a framework for controlling the solid-state structure of sulfonated pentablock copolymer membranes. They have ABCBA block sequence, where A is poly(t-butyl styrene), B is poly(hydrogenated isoprene), and C is poly(styrene sulfonate). To process into films, the polymer is dissolved in toluene/n-propanol solvent mixtures, where the solvent proportions and the polymer loading were both varied. Solution-state structure was measured with small angle X-ray scattering (SAXS). We detected micelles with radii that depend on the solvent composition and polymer loading. Film structure was measured with grazing-incidence SAXS, which shows (i) domain periodicity is constant throughout film thickness; (ii) domain periodicity depends on solvent composition and polymer loading, and approximately matches the micelle radii in solutions. The solid-state packing is consistent with a hard sphere structure factor. Results suggest that solid-state structure can be tuned by manipulating the solution-state self-assembly.

  20. Catalytic Synthesis of Isopropyl Benzene over SO42-/ZrO2 -MCM-41

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Super acid catalyst SO2-4-/ZrO2 was introduced into pure silicone MCM-41 via the impregnation method and the catalyst samples obtained at different temperatures were characterized by means of XRD, IR, and Py-IR techniques.The selectively catalytic gas-phase flow reactions of benzene with propene over the catalyst samples were carried out in a made-to-measure high-pressure flow reactor equipped with a thermostat and a condenser. Effect of the preparative condition on the catalytic synthesis of isopropyl benzene over the catalyst samples was tested. The results show that SO2-4/ZrO2-MCM-41 (SZM-41) can be used as a catalyst for the title reaction, in which there are a higher conversion (97%) for the propene and a higher selectivity(93%) for the isopropyl benzene.

  1. PERVAPORATION FOR SEPARATING BENZENE/CYCLOHEXANE MIXTURE BY P(AA-MA) COPOLYMER MEMBRANES

    Institute of Scientific and Technical Information of China (English)

    Gao-fei Xu; Wei-pu Zhu

    2011-01-01

    P(AA-MA) copolymers composed of acrylic acid and methyl acrylate with different molecular weights and sequence structures were synthesized by combination of ATRP and selective hydrolysis. These copolymers were used as membrane materials to separate benzene/cyclohexane mixture by pervaporation. The effects of molecular weight and sequence structure of the copolymers on the pervaporation performance were investigated in detail. For the random copolymers, the permeate flux decreased rapidly with the increasing of molecular weight. The separation factor was also influenced by the molecular weight, which was changed from no selectivity to cyclohexane selectivity with increasing the molecular weight. Contrarily, the block copolymer membrane showed good benzene selectivity with separation factor of 4.3 and permeate flux of 157 g/(m2h) to 50 wt% benzene/cyclohexane mixture.

  2. Dehydrogenation of benzene on Pt(111) surface

    Science.gov (United States)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  3. Detection of Sperm DNA Damage in Workers Exposed to Benzene by Modified Single Cell Gel Electrophoresis

    Institute of Scientific and Technical Information of China (English)

    Bo SONG; Zhi-ming CAI; Xin LI; Li-xia DENG; Qiao ZHANG; Lu-kang ZHENG

    2005-01-01

    Objective To assess the effect of benzene on sperm DNA damageMethods Twenty-seven benzene-exposed workers were selected as exposed groupand 35 normal sperm donors as control group. Air concentration of benzene series inworkshop was determined by gas chromatography. As an internal exposure dose ofbenzene, the concentration of trans, trans-muconic acid (ttMA) was determined byhigh performance liquid chromatography. DNA was detected by modified single cellgel electrophoresis (SCGE).Results The air concentrations of benzene, toluene and xylene at the workplace were86.49 ± 2.83 mg/m3, 97.20 ±3.52 mg/m3 and 97.45 ±2.10 mg/m3, respectively.Urinary ttMA in exposed group (1.040 ± 0.617 mg/L) was significantly higher thanthat of control group (0.819 ± 0.157 mg/L). The percentage of head DNA, determinedby modified SCGE method, significantly decreased in the exposed group (n=13, 70.18%± 7.36%) compared with the control (n=16, 90.62% ± 2.94%)(P<0.001).Conclusion The modified SCGE method can be used to investigate the damage ofsperm DNA. As genotoxin and reprotoxins, benzene had direct effect on the germ cellsduring the spermatogenesiss.

  4. Lack of correlation between environmental or biological indicators of benzene exposure at parts per billion levels and micronuclei induction

    International Nuclear Information System (INIS)

    Despite growing concern for possible carcinogenic effects associated with environmental benzene exposure in the general population, few studies exist at parts per billion (ppb) levels. We investigated the existence of a relationship between airborne/biological measurements of benzene exposure i.e., personal/area sampling and unmodified urinary benzene/trans,trans-muconic acid; t,t-MA) and micronuclei induction cytochalasin B technique) among exposed chemical laboratory workers (n=47) and traffic wardens (n=15). Although urinary t,t-MA (106.9±123.17 μg/Lurine) correlated (R2=0.37) with urinary benzene (0.66±0.99 μg/Lurine), neither biological measurement correlated with environmental benzene exposure (14.04±9.71 μg/m3; 4.39±3.03 ppb), suggesting that, at ppb level (1 ppb=3.2 μg/m3), airborne benzene constitutes a fraction of the total intake. Traffic wardens and laboratory workers had comparable numbers of micronuclei (4.70±2.63 versus .76±3.11; n.s.), similar to levels recorded in the general population. With univariate/multivariate analysis, no association was found between micronuclei induction and air/urinary benzene exposure variables. Notably, among the personal characteristics examined (including age, gender, smoking, drinking, etc.), high body mass index correlated with micronuclei induction while, among females, use of hormonal medication was associated with less micronuclei. Thus the present study provides no evidence that ppb levels of environmental benzene exposure appreciably affect micronuclei incidence against the background of other relevant factors). However, this should not be taken as an argument against efforts aiming to reduce environmental benzene pollution

  5. The pyrolysis of toluene and ethyl benzene

    Science.gov (United States)

    Sokolovskaya, V. G.; Samgin, V. F.; Kalinenko, R. A.; Nametkin, N. S.

    1987-01-01

    The pyrolysis of toluene at 850 to 950 C gave mainly H2, CH4, and benzene; PhEt at 650 to 750 C gave mainly H2, CH4, styrene, benzene, and toluene. The rate constants for PhEt pyrolysis were 1000 times higher than those for toluene pyrolysis; the chain initiation rate constants differed by the same factor. The activation energy differences were 46 kJ/mole for the total reaction and 54 kJ/mole for chain initiation. The chain length was evaluated for the PhEt case (10 + or - 2).

  6. Acid evaporation property in chemically amplified resists

    Science.gov (United States)

    Hashimoto, Shuichi; Itani, Toshiro; Yoshino, Hiroshi; Yamana, Mitsuharu; Samoto, Norihiko; Kasama, Kunihiko

    1997-07-01

    The lithographic performance of a chemically amplified resist system very much depends on the photo-generated acid structure. In a previous paper, we reported the molecular structure dependence of two typical photo-generated acids (aromatic sulfonic acid and alkyl sulfonic acid) from the viewpoints of lithographic performance and acid characteristics such as acid generation efficiency, acid diffusion behavior and acid evaporation property. In this paper, we evaluate the effect of the remaining solvent in a resist film on the acid evaporation property. Four types of two-component chemically amplified positive KrF resists were prepared consisting of tert-butoxycarbonyl (t-BOC) protected polyhydroxystyrene and sulfonic acid derivative photo-acid generator (PAG). Here, a different combination of two types of PAGs [2,4-dimethylbenzenesulfonic acid (aromatic sulfonic acid) derivative PAG and cyclohexanesulfonic acid (alkyl sulfonic acid) derivative PAG] and two types of solvents (propylene glycol monomethyl ether acetate; PGMEA and ethyl lactate; EL) were evaluated. The aromatic sulfonic acid was able to evaporate easily during post exposure bake (PEB) treatment, but the alkyl sulfonic acid was not. The higher evaporation property of aromatic sulfonic acid might be due to the higher vapor pressure and the longer acid diffusion length. Furthermore, the amount of aromatic sulfonic acid in the PGMEA resist was reduced by more than that in the EL resist. The amount of acid loss also became smaller at a higher prebake temperature. The concentration of the remaining solvent in the resist film decreased with the increasing prebake temperature. We think that the acid evaporation property was affected by the remaining solvent in the resist, film; the large amount of remaining solvent promoted the acid diffusion and eventually accelerated the acid evaporation from the resist film surface in the PGMEA resist. In summary, the acid evaporation property depends on both the acid

  7. Brain region distribution and patterns of bioaccumulative perfluoroalkyl carboxylates and sulfonates in east greenland polar bears (Ursus maritimus).

    Science.gov (United States)

    Greaves, Alana K; Letcher, Robert J; Sonne, Christian; Dietz, Rune

    2013-03-01

    The present study investigated the comparative accumulation of perfluoroalkyl acids (PFAAs) in eight brain regions of polar bears (Ursus maritimus, n = 19) collected in 2006 from Scoresby Sound, East Greenland. The PFAAs studied were perfluoroalkyl carboxylates (PFCAs, C(6) -C(15) chain lengths) and sulfonates (C(4) , C(6) , C(8) , and C(10) chain lengths) as well as selected precursors including perfluorooctane sulfonamide. On a wet-weight basis, blood-brain barrier transport of PFAAs occurred for all brain regions, although inner regions of the brain closer to incoming blood flow (pons/medulla, thalamus, and hypothalamus) contained consistently higher PFAA concentrations compared to outer brain regions (cerebellum, striatum, and frontal, occipital, and temporal cortices). For pons/medulla, thalamus, and hypothalamus, the most concentrated PFAAs were perfluorooctane sulfonate (PFOS), ranging from 47 to 58 ng/g wet weight, and perfluorotridecanoic acid, ranging from 43 to 49 ng/g wet weight. However, PFOS and the longer-chain PFCAs (C(10) -C(15) ) were significantly (p  0.05) different among brain regions. The burden of the sum of PFCAs, perfluoroalkyl sulfonates, and perfluorooctane sulfonamide in the brain (average mass, 392 g) was estimated to be 46 µg. The present study demonstrates that both PFCAs and perfluoroalkyl sulfonates cross the blood-brain barrier in polar bears and that wet-weight concentrations are brain region-specific. PMID:23280712

  8. Cycling performance and efficiency of sulfonated poly(sulfone) membranes in vanadium redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soowhan; Yan, Jingling; Schwenzer, Birgit; Zhang, Jianlu; Li, Liyu; Liu, Jun; Yang, Zhenguo; Hickner, Michael A.

    2010-11-30

    As an alternative to the expensive Nafion® ion exchange membrane, an inexpensive commercially-available Radel® polymer was sulfonated, fabricated into a thin membrane, and evaluated for its performance in a vanadium redox flow battery (VRFB). The sulfonated Radel (S-Radel) membrane showed almost an order of magnitude lower permeability of V (IV) ions (2.07×10-7 cm2/min), compared to Nafion 117 (1.29×10-6 cm2/min), resulting in better coulombic efficiency (~98% vs. 95% at 50 mA/cm2) and lower capacity loss per cycle. Even though the S-Radel membrane had slightly higher membrane resistance, the energy efficiency of the VRFB with the S-Radel membrane was comparable to that of Nafion due to its better coulombic efficiency. The S-Radel membrane exhibited good performance up to 40 cycles, but a decay in performance at later cycles was observed.

  9. Toward 5 V Li-Ion Batteries: Quantum Chemical Calculation and Electrochemical Characterization of Sulfone-Based High-Voltage Electrolytes.

    Science.gov (United States)

    Wu, Feng; Zhou, Hang; Bai, Ying; Wang, Huali; Wu, Chuan

    2015-07-15

    In seeking new sulfone-based electrolytes to meet the demand of 5 V lithium-ion batteries, we have combined the theoretical quantum chemistry calculation and electrochemical characterization to explore several sulfone/cosolvent systems. Tetramethylene sulfone (TMS), dimethyl sulfite (DMS), and diethyl sulfite (DES) were used as solvents, and three kinds of lithium salts including LiBOB, LiTFSI, and LiPF6 were added into TMS/DMS [1:1, (v)] and TMS/DES [1:1, (v)] to form high-voltage electrolyte composites, respectively. All of these electrolytes display wide electrochemical windows of more than 5.4 V, with the high electrolyte conductivities being more than 3 mS/cm at room temperature. It is indicated that to achieve the best ionic conductivity in TMS/DMS cosolvent, the optimized concentrations of lithium salts LiBOB, LiTFSI, and LiPF6 were 0.8, 1, and 1 M, respectively. Furthermore, the vibrational changes of the molecular functional groups in the cosolvents were evaluated by Fourier transform infrared spectroscopy. It is found that lithium salts show strong interaction with the main functional sulfone groups and sulfonic acid ester group, thus playing a vital role in the enhancement of the ionic conductivity and electrochemical stability of the solvent system. These sulfone-based solvents with high electrochemical stability are expected to become a new generation of a high-voltage organic electrolytic liquid system for lithium-ion batteries. PMID:26087246

  10. Chemical and Mechanical Degradation of Sulfonated Poly(sulfone) Membranes in Vanadium Redox Flow Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soowhan; Tighe, Timothy B.; Schwenzer, Birgit; Yan, Jingling; Zhang, Jianlu; Liu, Jun; Yang, Zhenguo; Hickner, Michael A.

    2011-10-01

    A sulfonated poly(sulfone) (S-Radel{reg_sign}) membrane with high proton conductivity and low vanadium ion diffusion showed high initial performance in a vanadium redox flow battery (VRFB) but suffered damage during charge/discharge cycling. The S-Radel membrane had different degradation behaviors in flow cell cycling and ex-situ vanadium ion immersion tests. The S-Radel membrane immersed in V5+ solution cracked into small pieces, but in the VRFB cell, the membrane underwent internal delamination preferentially on the side of the membrane that faced the positive electrode. A vanadium-rich interface was observed near the membrane surface that experienced delamination and Raman spectroscopic analysis of the surfaces of the membrane indicated a slightly depressed 1026 cm-1 band corresponding to the sulfonate SO2 stretch for the degraded surface. Even though the S-Radel membrane underwent severe mechanical damage during the flow cell cycling, significant chemical degradation was not obvious from the spectroscopic analyses. For the VRFB containing an S-Radel membrane, an increase in membrane resistance caused an abnormal voltage depression during the discharge cycle. The reversible increase in membrane resistance and severe mechanical degradation of the membrane during cycling may be attributed repeated formation and dissolution of particles inside the membrane. The mechanical stresses imposed by the particles coupled with a small amount of chemical degradation of the polymer by V5+, are likely degradation mechanisms of the S-Radel membrane in VRFBs under high state-of-charge conditions.

  11. Sulfonated polyimide membranes with different non-sulfonated diamines for vanadium redox battery applications

    International Nuclear Information System (INIS)

    A series of vanadium ion blocking sulfonated polyimide (SPI) membranes with various non-sulfonated diamines were prepared for vanadium redox battery (VRB) applications. FT-IR spectrum verifies the successful synthesis of SPIs, FSEM images illustrate that the membrane surface facing the negative electrode is more intact than that facing the positive electrode. The properties of SPI membranes such as water uptake, ion exchange capacity, thermal stability, proton conductivity and vanadium ion permeability can be adjusted by the species and the structure of non-sulfonated diamine. All SPI membranes show over one or two order of magnitude lower permeability of vanadium ion (0.48 - 2.36 × 10−7 cm2 min−1) than currently used Nafion 117 membrane (17.10 × 10−7 cm2 min−1). Vanadium redox static batteries with SPI membranes exhibit lower self-discharge rate, higher coulombic efficiency (97% - 99%) compared with Nafion 117 (94%) at 30 mA cm−2. Meanwhile, as-prepared SPI membranes are durable in 0.1 mol L−1 VO2+ + 3.0 mol L−1 H2SO4 solutions at 40 °C. All results show that SPI membranes are promising proton conductive membranes for VRB applications, among which the SPI (BAPP) has the best VRB performance

  12. Preparation of new proton exchange membranes using sulfonated poly(ether sulfone) modified by octylamine (SPESOS)

    International Nuclear Information System (INIS)

    Highlights: → New, simple and cheap way to synthesize a membrane. → The membranes combine good proton conductivities with good mechanical properties. → The membrane performances in a fuel cell are similar to the Nafion 117. - Abstract: Sulfonated poly(arylene ether sulfone) (SPES) has received considerable attention in membrane preparation for proton exchange membrane fuel cell (PEMFC). But such membranes are brittle and difficult to handle in operation. We investigated new membranes using SPES grafted with various degrees of octylamine. Five new materials made from sulfonated polyethersulfone sulfonamide (SPESOS) were synthetized with different grades of grafting. They were made from SPES, with initially an ionic exchange capacity (IEC) of 2.4 meq g-1 (1.3 H+ per monomer unit). Pristine SPES with that IEC is water swelling and becomes soluble at 80 deg. C, its proton conductivity is in the range of 0.1 S cm-1 at room temperature in aqueous H2SO4 1 M, similar to that of Nafion. After grafting with various amounts of octylamine, the material is water insoluble; membranes are less brittle and show sufficient ionic conductivity. Proton transport numbers were measured close to 1.

  13. Remediation of textile azo dye acid red 114 by hairy roots of Ipomoea carnea Jacq. and assessment of degraded dye toxicity with human keratinocyte cell line.

    Science.gov (United States)

    Jha, Pamela; Jobby, Renitta; Desai, N S

    2016-07-01

    Bioremediation has proven to be the most desirable and cost effective method to counter textile dye pollution. Hairy roots (HRs) of Ipomoea carnea J. were tested for decolourization of 25 textile azo dyes, out of which >90% decolourization was observed in 15 dyes. A diazo dye, Acid Red 114 was decolourized to >98% and hence, was chosen as the model dye. A significant increase in the activities of oxidoreductive enzymes was observed during decolourization of AR114. The phytodegradation of AR114 was confirmed by HPLC, UV-vis and FTIR spectroscopy. The possible metabolites were identified by GCMS as 4- aminobenzene sulfonic acid 2-methylaniline and 4- aminophenyl 4-ethyl benzene sulfonate and a probable pathway for the biodegradation of AR114 has been proposed. The nontoxic nature of the metabolites and toxicity of AR114 was confirmed by cytotoxicity tests on human keratinocyte cell line (HaCaT). When HaCaT cells were treated separately with 150μgmL(-1) of AR114 and metabolites, MTT assay showed 50% and ≈100% viability respectively. Furthermore, flow cytometry data showed that, as compared to control, the cells in G2-M and death phase increased by 2.4 and 3.6 folds respectively on treatment with AR114 but remained unaltered in cells treated with metabolites. PMID:26971029

  14. L benzene sulfonic acid amlodipine and enalaprilat in elderly patients with ischemic stroke compared analysis of blood pressure regulation%苯磺酸左旋氨氯地平与依那普利对老年缺血性脑卒中患者血压调控的对比分析

    Institute of Scientific and Technical Information of China (English)

    周健

    2013-01-01

      Objective To investigate the correlation of senile cerebral arterial thrombosis patients using the Levamlodipine and enalapril treatment on blood pressure regulation. Methods The object of this study selected 100 cases in our hospital in 2010 June to 2012 June were elderly cerebral arterial thrombosis patients, randomized, were treated with Levamlodipine besylate (group A) and enalapril (group B), review the clinical data of two groups. Results Within 1 weeks of treatment, two groups with the passage of time, the blood pressure decreased to normal level at 7d, but the A group decreased significantly than that in B group, the difference was statistical y significant (P0.05). A mean of 9 months of fol ow-up, the A group of acute cerebral infarction rate was 10%, 14% in B group, no significant difference (P>0.05). There were no serious adverse reactions of the two groups. Conclusion The elderly cerebral arterial thrombosis patients with Levamlodipine besylate tablets treatment, concrete with high safety and effectiveness, can effectively control blood pressure level, accelerate the rehabilitation process, improve the quality of life of patients.%  目的探讨老年缺血性脑卒中患者采用苯磺酸左旋氨氯地平与依那普利治疗对血压调控的对比。方法本次研究选择的对象共100例,均为我院2010年6月至2012年6月收治的老年缺血性脑卒中患者,随机分组,分别给予苯磺酸左旋氨氯地平(A 组)和依那普利(B 组),回顾两组临床资料。结果治疗1周内,两组随时间推移,血压在第7天均降至正常水平,但 A 组下降幅度显著高于 B 组,差异有统计学意义(P<0.05)。与治疗前比较,治疗后 A 组24h动态血压水平下降幅度高于 B 组,A 组24h 动态血压合格率为88%,对照组为78%,A 组明显高于 B 组,差异均有统计学意义(P<0.05)。两组治疗后颈动脉 IMT 均显著降低,与治疗前比较差异有统计学意义(P<0.05)。A 组斑块面积与治疗前比较,明显缩小,差异有统计学意义(P<0.05),B 组斑块面积与治疗前比较无明显变化(P>0.05)。行平均9个月随访,A 组急性脑梗死率为10%,B 组为14%,无明显差异(P>0.05)。两组均无严重不良反应。结论老年缺血性脑卒中患者采用苯磺酸左旋氨氯地平片治疗,具有较高安全性和有效性,可有效控制血压水平,加快疾病康复进程,改善患者生活质量。

  15. Efficient and selective adsorption of multi-metal ions using sulfonated cellulose as adsorbent.

    Science.gov (United States)

    Dong, Cuihua; Zhang, Fulong; Pang, Zhiqiang; Yang, Guihua

    2016-10-20

    Contamination of heavy metal in wastewater has caused great concerns on human life and health. Developing an efficient material to eliminate the heavy metal ions has been a popular topic in recent years. In this work, sulfonated cellulose (SC) was explored as efficient adsorbent for metal ions in solution. Thermo gravimetric analyzer (TGA), X-ray diffraction (XRD) and Fourier-transform infrared spectrometer (FTIR) first analyzed the characterizations of SC. Subsequently, effects of solution pH, adsorbent loading, temperature and initial metal ion concentration on adsorption performance were investigated. The results showed that sulfonated modification of cellulose could decrease the crystallinity and thermostability of cellulose. Due to its excellent performance of adsorption to metal ions, SC could reach adsorption equilibrium status within as short as 2min. In multi-component solution, SC can orderly removes Fe(3+), Pb(2+) and Cu(2+) with excellent selectivity and high efficiency. In addition, SC is a kind of green and renewable adsorbent because it can be easily regenerated by treatment with acid or chelating liquors. The mechanism study shows that the sulfonic group play a major role in the adsorption process. PMID:27474562

  16. Blends of a Polymer of Intrinsic Microporosity and Partially Sulfonated Polyphenylenesulfone for Gas Separation.

    Science.gov (United States)

    Yong, Wai Fen; Lee, Zhi Kang; Chung, Tai-Shung; Weber, Martin; Staudt, Claudia; Maletzko, Christian

    2016-08-01

    Polyphenylenesulfone (PPSU) and sulfonated polyphenylenesulfone (sPPSU) are widely used for liquid separations in the medical and food industries. However, their potential applications for gas separation have not been studied extensively owing to their low intrinsic gas permeability. We report here for the first time that blending with sPPSU can significantly improve the gas separation performance of highly permeable polymers of intrinsic microporosity (PIMs), specifically PIM-1, because of the strong molecular interactions of the sulfonic acid groups of sPPSU with CO2 and O2 . In addition, a novel co-solvent system has been discovered to overcome the immiscibility of these polymers. The presence of a higher degree of sulfonation in sPPSU results in better gas separation performance of the blend membranes close to or above the Robeson upper bound lines for O2 /N2 , CO2 /N2 and CO2 /CH4 separations. Interestingly, the blend membranes have comparable gas selectivity to sPPSU even though their sPPSU content is only 5-20 wt %. Moreover, they also display improved anti-plasticization properties up to 30 atm (3 MPa) using a binary CO2 /CH4 feed gas. The newly developed PIM-1/sPPSU membranes are potential candidates for air separation, natural gas separation, and CO2 capture. PMID:27332951

  17. Biodiesel from Citrullus colocynthis oil: sulfonic-ionic liquid-catalyzed esterification of a two-step process.

    Science.gov (United States)

    Ali Elsheikh, Yasir; Hassan Akhtar, Faheem

    2014-01-01

    Biodiesel was prepared from Citrullus colocynthis oil (CCO) via a two-step process. The first esterification step was explored in two ionic liquids (ILs) with 1,3-disulfonic acid imidazolium hydrogen sulfate (DSIMHSO4) and 3-methyl-1-sulfonic acid imidazolium hydrogen sulfate (MSIMHSO4). Both ILs appeared to be good candidates to replace hazardous acidic catalyst due to their exceptional properties. However, the two sulfonic chains existing in DSIMHSO4 were found to increase the acidity to the IL than the single sulfonic chain in MSIMHSO4. Based on the results, 3.6 wt% of DSIMHSO4, methanol/CCO molar ratio of 12 : 1, and 150 °C offered a final FFA conversion of 95.4% within 105 min. A 98.2% was produced via second KOH-catalyzed step in 1.0%, 6 : 1 molar ratio, 600 rpm, and 60 °C for 50 min. This new two-step catalyzed process could solve the corrosion and environmental problems associated with the current acidic catalysts. PMID:24987736

  18. Recommended sublimation pressure and enthalpy of benzene

    Czech Academy of Sciences Publication Activity Database

    Růžička, K.; Fulem, Michal; Červinka, C.

    2014-01-01

    Roč. 68, Jan (2014), s. 40-47. ISSN 0021-9614 Institutional support: RVO:68378271 Keywords : benzene * vapor pressure * heat capacity * ideal-gas thermodynamic properties * sublimation enthalpy * recommended vapor pressure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.679, year: 2014

  19. 46 CFR 153.1060 - Benzene.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Benzene. 153.1060 Section 153.1060 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Special Cargo Procedures § 153.1060...

  20. Formation of Benzene in the Interstellar Medium

    Science.gov (United States)

    Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)

    2010-01-01

    Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.

  1. Contrastive Analysis of the Raman Spectra of Polychlorinated Benzene: Hexachlorobenzene and Benzene

    Directory of Open Access Journals (Sweden)

    Zhengjun Zhang

    2011-12-01

    Full Text Available Detection of persistent pollutants such as polychlorinated benzene in environment in trace amounts is challenging, but important. It is more difficult to distinguish homologues and isomers of organic pollutantd when present in trace amounts because of their similar physical and chemical properties. In this work we simulate the Raman spectra of hexachlorobenzene and benzene, and figure out the vibration mode of each main peak. The effect on the Raman spectrum of changing substituents from H to Cl is analyzed to reveal the relations between the Raman spectra of homologues and isomers of polychlorinated benzene, which should be helpful for distinguishing one kind of polychlorinated benzene from its homologues and isomers by surface enhanced Raman scattering.

  2. 40 CFR 721.1350 - Benzene, (1-methylethyl)(2-phenylethyl)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (1-methylethyl)(2-phenylethyl... Substances § 721.1350 Benzene, (1-methylethyl)(2-phenylethyl)-. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified as benzene,...

  3. 40 CFR 721.1210 - Benzene, (2-chloroethoxy)-.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzene, (2-chloroethoxy)-. 721.1210... Substances § 721.1210 Benzene, (2-chloroethoxy)-. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as benzene, (2-chloroethoxy)- (PMN P-87-1471) is subject...

  4. 40 CFR 721.1187 - Bis(imidoethylene) benzene.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Bis(imidoethylene) benzene. 721.1187... Substances § 721.1187 Bis(imidoethylene) benzene. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance bis(imidoethylene)benzene (PMN P-93-1447) is subject to...

  5. Solvent and irradiation doses effects on the ion exchange capacity of sulfonated styrene grafted PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique P.; Parra, Duclerc F.; Lugao, Ademar B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Polymers exhibiting ion exchange capacity are studied for many years due to their application in several fields, such as membranes for proton exchange fuel cells, filtration membranes, heavy ions recovery and artificial muscles and sensors. Radiation induced grafting followed by sulfonation is a well-known way to obtain ion exchange polymers. Fluorinated polymers are frequently used as polymeric matrix for grafting due to their excellent physicochemical properties. Radiation induced grafting of styrene into poly (vinylidene fluoride) (PVDF) by simultaneous method in 1:1 styrene/toluene or styrene/N,N-dimethylformamide solutions was studied. Irradiations were performed under nitrogen atmosphere, room temperature and at doses of 5, 10 and 20 kGy with dose rate of 5 kGy.h{sup -1} from a {sup 60}Co gamma source. After washing, grafted materials were sulfonated in 10% chlorosulfonic acid/1,2-dichloroethane solutions for 4 h at room temperature. Characterization shows that increasing irradiation dose corresponds to increases in the grafting yield (GY %) gravimetrically calculated and these different solvents shows different grafting behaviors. Toluene allows no more than 3 % of grafting while DMF allows up to 55 % of grafting in the same condition. Grafting in toluene solution occurs on the surface and in DMF solution it occurs in the bulk, as confirmed by SEM. Both irradiation doses and solvent used have direct effects in the ion exchange capacities (calculated after titrations). FT-IR spectra exhibit new peaks after grafting and after sulfonation, attributed to grafted monomer and sulfonic groups attached to the styrene. DSC shows differences in thermal behavior of the polymer before and after each step. (author)

  6. 21 CFR 173.395 - Trifluoromethane sulfonic acid.

    Science.gov (United States)

    2010-04-01

    .... Neutralization equivalent, 147-151. Water, 1 percent maximum. Fluoride ion, 0.03 percent maximum. Heavy metals... esterification reaction is quenched with steam and water and the catalyst is removed with the aqueous phase... detection limit of 0.2 part per million fluoride as determined by the method described in “Official...

  7. Influence of organic and inorganic compounds on oxidoreductive decolorization of sulfonated azo dye C.I. Reactive Orange 16

    International Nuclear Information System (INIS)

    An isolated bacterial strain is placed in the branch of the Bacillus genus on the basis of 16S rRNA sequence and biochemical characteristics. It decolorized an individual and mixture of dyes, including reactive, disperse and direct. Bacillus sp. ADR showed 88% decolorization of sulfonated azo dye C.I. Reactive Orange 16 (100 mg L-1) with 2.62 mg of dye decolorized g-1 dry cells h-1 as specific decolorization rate along with 50% reduction in COD under static condition. The optimum pH and temperature for the decolorization was 7-8 and 30-40 oC, respectively. It was found to tolerate the sulfonated azo dye concentration up to 1.0 g L-1. Significant induction in the activity of an extracellular phenol oxidase and NADH-DCIP reductase enzymes during decolorization of C.I. Reactive Orange 16 suggest their involvement in the decolorization. The metal salt (CaCl2), stabilizers (3,4-dimethoxy benzyl alcohol and o-tolidine) and electron donors (sodium acetate, sodium formate, sodium succinate, sodium citrate and sodium pyruvate) enhanced the C.I. Reactive Orange 16 decolorization rate of Bacillus sp. ADR. The 6-nitroso naphthol and dihydroperoxy benzene were final products obtained after decolorization of C.I. Reactive Orange 16 as characterized using FTIR and GC-MS.

  8. Twofold deprotonation and substitution of branched alkyl aryl sulfones

    Czech Academy of Sciences Publication Activity Database

    Řehová, Lucie; Jahn, Ullrich

    Praha : Czech Chemical Society, 2015. s. 133. [Liblice 2015. Advances in Organic , Bioorganic and Pharmaceutical Chemistry /50./. 06.11.2015-08.11.2015, Olomouc] Institutional support: RVO:61388963 Keywords : sulfones * twofold deprotonation Subject RIV: CC - Organic Chemistry

  9. (Liquid + liquid) equilibria for (benzene + cyclohexane + dimethyl sulfoxide) system at T = (298.15 or 303.15) K: Experimental data and correlation

    International Nuclear Information System (INIS)

    Graphical abstract: The selectivity of DMSO, is usually high. At 25 °C and atmospheric pressure, the selectivity coefficient can reach beyond 14, which means that DMSO can compete with some ionic liquids for extracting benzene from cyclohexane. So, DMSO has large potential to separate benzene from cyclohexane as a new extractant. - Highlights: • The highest selectivity coefficient is beyond 14 of DMSO at T = (298.15 or 303.15) K. • The data’s reliability is approved by the correlation of Othmer–Tobias equation. • NRTL model is in good agreement with the experimental data. - Abstract: (Liquid + liquid) equilibrium (LLE) data were measured experimentally at T = (298.15 or 303.15) K and atmospheric pressure for the (benzene + cyclohexane + dimethyl sulfone (DMSO)) system. The Othmer–Tobias equation was applied to verify the reliability of the data. Based on the data, the selectivity of DMSO was estimated and compared with that of ionic liquids. The highest selectivity coefficient of DMSO can reach beyond 14, which means it is able to compete with some ionic liquids and it would be a good extractant to separate benzene from cyclohexane. At the same time, the NRTL model was used to correlate the data and the results show that the model agrees on the experimental data very well

  10. Effects of electrode geometry on the performance of dielectric barrier/packed-bed discharge plasmas in benzene degradation

    International Nuclear Information System (INIS)

    Highlights: • Benzene was successfully degraded by dielectric barrier/packed-bed discharge plasmas. • Different electrode geometry has distinct effect on plasmas oxidation performance. • Benzene degradation and energy performance were enhanced when using the coil electrode. • The reaction products were well determined by online FTIR analysis. -- Abstract: In this study, the effects of electrode geometry on benzene degradation in a dielectric barrier/packed-bed discharge plasma reactor with different electrodes were systematically investigated. Three electrodes were employed in the experiments, these were coil, bolt, and rod geometries. The reactor using the coil electrode showed better performance in reducing the dielectric loss in the barrier compared to that using the bolt or rod electrodes. In the case of the coil electrode, both the benzene degradation efficiency and energy yield were higher than those for the other electrodes, which can be attributed to the increased role of surface mediated reactions. Irrespective of the electrode geometry, the packed-bed discharge plasma was superior to the dielectric barrier discharge plasma in benzene degradation at any specific applied voltage. The main gaseous products of benzene degradation were CO, CO2, H2O, and formic acid. Discharge products such as O3, N2O, N2O5, and HNO3 were also detected in the outlet gas. Moreover, the presence of benzene inhibited the formation of ozone because of the competing reaction of oxygen atoms with benzene. This study is expected to offer an optimized approach combining dielectric barrier discharge and packed-bed discharge to improve the degradation of gaseous pollutants

  11. Synthesis and Crystal Structure of Novel Sulfone Derivatives Containing 1,2,4-Triazole Moieties

    Directory of Open Access Journals (Sweden)

    Deyu Hu

    2010-02-01

    Full Text Available Some 3-(Substituted methylthio-4-phenyl-5-(3,4,5-trimethoxyphenyl-4H-1,2,4-triazole derivatives were synthesized in six steps starting from easily accessible gallic acid. The resulting sulfides were then catalytically oxidized to the title sulfones with H2O2. The products were obtained in high yield under mild conditions and practically devoid of any by-products. The structures were confirmed by elemental analysis, IR, 1H- and 13C-NMR spectral data. Furthermore, a detailed X-ray crystallography structural analysis of model triazole 7g was carried out.

  12. Quinolinium 8-hydroxy-7-iodoquinoline-5-sulfonate 0.8-hydrate

    OpenAIRE

    Graham Smith

    2012-01-01

    In the crystal structure of the title hydrated quinolinium salt of ferron (8-hydroxy-7-iodoquinoline-5-sulfonic acid), C9H7N+·C9H5INO4S−·0.8H2O, the quinolinium cation is fully disordered over two sites (occupancy factors fixed at 0.63 and 0.37) lying essentially within a common plane and with the ferron anions forming π–π-associated stacks down the b axis [minimum ring centroid separation = 3.462 (6) Å]. The...

  13. Study of adjuvant effect of model surfactants from the groups of alkyl sulfates, alkylbenzene sulfonates, alcohol ethoxylates and soaps

    DEFF Research Database (Denmark)

    Clausen, S K; Sobhani, S; Poulsen, O M;

    2000-01-01

    The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice. The surfact......The sodium salts of representatives of anionic surfactants, dodecylbenzene sulfonate (SDBS), dodecyl sulfate (SDS) and coconut oil fatty acids, and a nonionic surfactant, dodecyl alcohol ethoxylate, were studied for adjuvant effect on the production of specific IgE antibodies in mice...... showed a statistically significant increase in OVA specific IgE levels. After two boosters, a statistically significant suppression in OVA-specific IgE production occurred with SDS (1000 mg/l), SDBS (1000 and 100 mg/l), coconut soap (1000 mg/l) and the alcohol ethoxylate (10 mg/l). This study suggests...

  14. The surface of ordered mesoporous benzene-silica hybrid material: an infrared and ab initio molecular modeling study.

    Science.gov (United States)

    Onida, Barbara; Borello, Luisa; Busco, Claudia; Ugliengo, Piero; Goto, Yasutomo; Inagaki, Shinji; Garrone, Edoardo

    2005-06-23

    Joint IR and computational results allow a detailed characterization of the surface properties of a mesoporous benzene-silica hybrid material with crystal-like wall structure. After outgassing at 450 degrees C, hydroxyl species mainly consist of noninteracting silanols, with both O-H and Si-O stretching modes at lower frequencies than those of SiOH in silica. Interaction with several probe molecules, followed both by experiment and calculus, shows that the aryl group in the coordination sphere of Si imparts a lesser acidity with respect to the isolated silanol in silica. In contrast, adsorption isotherms indicate that the interaction with acetone is stronger with benzene-silica than with silica: this is interpreted in terms of secondary interactions taking place between the slightly acidic CH in acetone and the electronic cloud in benzene-like rings. This suggests that both the inorganic component and the organic one play a role in dictating the surface behavior. PMID:16852474

  15. Formation of reactive metabolites from benzene

    International Nuclear Information System (INIS)

    Rat liver mitoplasts were incubated first with [3H]dGTP, to form DNA labeled in G, and then with [14C]benzene. The DNA was isolated and upon isopycnic density gradient centrifugation in CsCl yielded a single fraction of DNA labeled with both [3H] and [14C]. These data are consistent with the covalent binding of one or more metabolites of benzene to DNA. The DNA was enzymatically hydrolyzed to deoxynucleosides and chromatographed to reveal at least seven deoxyguanosine adducts. Further studies with labeled deoxyadenine revealed one adduct on deoxyadenine. [3H]Deoxyguanosine was reacted with [14C]hydroquinone or benzoquinone. The product was characterized using uv, fluorescence, mass and NMR spectroscopy. A proposed structure is described. (orig.)

  16. Nonlinear diffusion in Acetone-Benzene Solution

    CERN Document Server

    Obukhovsky, Vjacheslav V

    2010-01-01

    The nonlinear diffusion in multicomponent liquids under chemical reactions influence has been studied. The theory is applied to the analysis of mass transfer in a solution of acetone-benzene. It has been shown, that the creation of molecular complexes should be taken into account for the explanation of the experimental data on concentration dependence of diffusion coefficients. The matrix of mutual diffusivities has been found and effective parameters of the system have been computed.

  17. Synthesis and Characterization of Poly(arylene ether sulfone)s for Reverse Osmosis Water Purification and Gas Separation Membranes

    OpenAIRE

    Sundell, Benjamin James

    2014-01-01

    Crosslinking is an effective technique for increasing the salt rejection of water purification membranes and the selectivity of gas separation membranes. An abundance of monomers, telechelic oligomers, and novel polymers were synthesized for use as separation membranes. These materials were often imbued with crosslinking functionalities to increase their performance during testing at the University of Texas-Austin. Crosslinking of sulfonated poly(arylene ether sulfone) oligomers was stud...

  18. Synthesis and Characterization of trans-1,4-Cyclohexylene Ring Containing Poly(arylene ether sulfone)s

    OpenAIRE

    ZHANG Bin

    2012-01-01

    Poly(arylene ether sulfone)s (PAES) are important commercial polymers and have been extensively studied due to their excellent thermal and mechanical properties. However, some applications are still limited when good solvent resistance and low thermal expansion coefficient are required. There has been a continuous interest in developing new PAES based on new monomers or polymer modifications to obtain new properties or to enhance existing properties. In this dissertation, the synthesis, chara...

  19. 4-[(4-Aminophenylsulfonyl]aniline–3,5-dinitrobenzoic acid (1/1

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2012-03-01

    Full Text Available The title compound, C7H4N2O6·C12H12N2O2S, is a 1:1 cocrystal of the drug dapsone with 3,5-dinitrobenzoic acid. The dihedral angle between the two aromatic rings of the dapsone molecule is 75.4 (2°, and the dihedral angles between these rings and that of the 3,5-dinitrobenzoic acid are 64.5 (2 and 68.4 (2°. A strong intermolecular carboxylic acid O—H...Namine hydrogen bond is found, together with intermolecular amine N—H...O hydrogen-bonding associations with carboxyl, nitro and sulfone O-atom acceptors. In addition, weak π–π interactions between one of the dapsone benzene rings and the 3,5-dinitrobenzoic acid ring [ring centroid separation = 3.774 (2 Å] results in a two-dimensional network structure.

  20. New pathway for degradation of sulfonated azo dyes by microbial peroxidases of Phanerochaete chrysosporium and Streptomyces chromofuscus.

    OpenAIRE

    Goszczynski, S; Paszczynski, A; Pasti-Grigsby, M B; Crawford, R L; Crawford, D. L.

    1994-01-01

    Pathways for the degradation of 3,5-dimethyl-4-hydroxy-azobenzene-4'-sulfonic acid (I) and 3-methoxy-4-hydroxyazobenzene-4'-sulfonamide (II) by the manganese peroxidase and ligninase of Phanerochaete chrysosporium and by the peroxidase of Streptomyces chromofuscus have been proposed. Twelve metabolic products were found, and their mechanisms of formation were explained. Preliminary oxidative activation of the dyes resulted in the formation of cationic species, making the molecules vulnerable ...