WorldWideScience

Sample records for benzaldehyde

  1. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B.; Mishra, I.M.; Wasewar, K.L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  2. The determination of furaldehyde and benzaldehyde in plum brandy

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2005-01-01

    Full Text Available Among all alcohol liqueurs, brandies from drupaceous plants are characterized with the highest level of hydro cyanic acid, benzaldehyde and ethylcarbamate. In fruit brandies ethylcarbamate mainly originates from hydro cyanic acid during the processes of alcohol fermentation of crushed fruit and its preservation, distillation and ripening of the brandy. Hydro cyanic acid and benzaldehyde arise from the hydrolysis of amygdaline that is found exist in the heart of fruit stones and seeds, as well as from the hydrolysis of prunasine from the skin and flesh of drupaceous plants. The content of amygdaline and prunazine depends on the type of fruit, which corresponds to the potential content of hydro cyanic acid and benzaldehyde in the brandy that corresponds the stoichiometric ratio 1:3.94. The content of the aldehydes: furfural and benzaldehyde in plum brandy, strong plum brandy, young brandy, of domestic production in the various regions of Serbia were analyzed in this paper.

  3. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  4. Solubilities of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Qinbo; Xiong, Zhenhua; Chen, Chuxiong; Shen, Binwei

    2015-01-01

    Highlights: • Solubilities of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were measured at 1 atm. • The experimental temperature ranges at (298.35 to 355.65) K. • Effects of benzyl alcohol mass concentration at (0.00 to 1.00) on the solubilities of benzoic acid were studied. • The experimental data were correlated with NRTL model. • Thermodynamic functions of dissolution of benzoic acid in (benzyl alcohol + benzaldehyde) mixtures were discussed. - Abstract: The solubility of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures was measured at temperature from (298.35 to 355.65) K and atmospheric pressure. The measured solubility increases with the increasing temperature at constant solvent composition. The effects of mass fraction benzaldehyde in the solvent mixtures at (0.0 to 1.00) on the solubility were studied. The measured solubility decreases with the increasing mass fraction of benzaldehyde. The experimental results were correlated with the non-random two-liquid (NRTL) equations, and good agreement between the correlated and the experimental values was obtained. Thermodynamic functions for the solution of benzoic acid in binary (benzyl alcohol + benzaldehyde) solvent mixtures were calculated with the van’t Hoff plot. The apparent dissolution Gibbs free energy change was also calculated

  5. Influence of thermal processing conditions on flavor stability in fluid milk: benzaldehyde.

    Science.gov (United States)

    Potineni, R V; Peterson, D G

    2005-01-01

    Flavor loss in dairy products has been associated with enzymatic degradation by xanthine oxidase. This study was conducted to investigate the influence of milk thermal processing conditions (or xanthine oxidase inactivation) on benzaldehyde stability. Benzaldehyde was added to whole milk which had been thermally processed at 4 levels: (1) none or raw, (2) high temperature, short time (HTST) pasteurization, (3) HTST pasteurization, additionally heated to 100 degrees C (PAH), and (4) UHT sterilized. Additionally, PAH and UHT milk samples containing benzaldehyde (with and without ferrous sulfate) were spiked with xanthine oxidase. Azide was added as an antimicrobial agent (one additional pasteurized sample without) and the microbial load (total plate count) was determined on d 0, 2, and 6. The concentration of benzaldehyde and benzoic acid in all milk samples were determined at d 0, 1, 2, 4, and 6 (stored at 5 degrees C) by gas chromatography/mass spectrometry in selective ion monitory mode. Over the 6-d storage period, more than 80% of the benzaldehyde content was converted (oxidized) to benzoic acid in raw and pasteurized milk, whereas no change in the benzaldehyde concentration was found in PAH or UHT milk samples. Furthermore, the addition of xanthine oxidase or xanthine oxidase plus ferrous sulfate to PAH or UHT milk samples did not result in benzaldehyde degradation over the storage period.

  6. Diterpenes and a new benzaldehyde from the mangrove plant Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    Jhessica N. Martins

    Full Text Available ABSTRACT This work describes the isolation, by high-speed counter-current chromatography, of the diterpenes manool, jhanol and steviol and the benzaldehyde p-oxy-2-ethylhexyl benzaldehyde from the stilt roots hexane extract of the mangrove plant Rhizophora mangle L., Rhizophoraceae. For this, a non-aqueous biphasic solvent system composed of hexane–acetonitrile–methanol 1:1:0.5 (v/v/v was applied. As far as we know, only steviol was previously isolated in Rhizophoraceae and this is the first time that p-oxy-2-ethylhexyl benzaldehyde is reported.

  7. Overtone spectroscopy of some benzaldehyde derivatives

    Indian Academy of Sciences (India)

    internuclear distances for the aryl CH bond in the different molecules. The small variation observed in these distances is ..... [6] D N Singh, Vibrational spectra and force fields for some benzaldehyde derivatives, Ph.D. Thesis. (Banaras Hindu ...

  8. Palladium-Catalyzed ortho C-H Arylation of Benzaldehydes Using ortho-Sulfinyl Aniline Transient Auxiliary.

    Science.gov (United States)

    Mu, Delong; He, Gang; Chen, Gong

    2018-05-03

    A PdII-catalyzed ortho-(Csp2)-H arylation reaction of benzaldehydes using catalytic amount of 2-methylsulfinyl-aniline as transient auxiliary was developed. This reaction is compatible with a broad range of benzaldehyde and aryl iodide substrates. Compared with other related reaction systems, an excellent regioselectivity for ortho-C(sp2)-H bonds over benzylic C(sp3)-H bonds was obtained for ortho-alkyl-benzaldehyde substrates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    Science.gov (United States)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  10. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P. L.; Versteeg, G. F.

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  11. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Hoorn, J.A.A.; Alsters, P.L.; Versteeg, Geert

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  12. Highly selective oxidation of styrene to benzaldehyde over a tailor-made cobalt oxide encapsulated zeolite catalyst.

    Science.gov (United States)

    Liu, Jiangyong; Wang, Zihao; Jian, Panming; Jian, Ruiqi

    2018-05-01

    A tailor-made catalyst with cobalt oxide particles encapsulated into ZSM-5 zeolites (Co 3 O 4 @HZSM-5) was prepared via a hydrothermal method with the conventional impregnated Co 3 O 4 /SiO 2 catalyst as the precursor and Si source. Various characterization results show that the Co 3 O 4 @HZSM-5 catalyst has well-organized structure with Co 3 O 4 particles compatibly encapsulated in the zeolite crystals. The Co 3 O 4 @HZSM-5 catalyst was employed as an efficient catalyst for the selective oxidation of styrene to benzaldehyde with hydrogen peroxide as a green and economic oxidant. The effect of various reaction conditions including reaction time, reaction temperature, different kinds of solvents, styrene/H 2 O 2 molar ratio and catalyst dosage on the catalytic performance were systematically investigated. Under the optimized reaction condition, the yield of benzaldehyde can achieve 78.9% with 96.8% styrene conversion and 81.5% benzaldehyde selectivity. Such an excellent catalytic performance can be attributed to the synergistic effect between the confined reaction environment and the proper acidic property. In addition, the reaction mechanism with Co 3 O 4 @HZSM-5 as the catalyst for the selective oxidation of styrene to benzaldehyde was reasonably proposed. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Investigation of the spectroscopy and relaxation dynamics of benzaldehyde using molecular orbital calculations and laser ionization time-of-flight mass spectroscopy

    Science.gov (United States)

    da Silva, Maria Cristina Rodrigues

    1998-11-01

    Molecular orbital methods and laser ionization mass spectrometry measurements are used to investigate the spectroscopy and relaxation dynamics of benzaldehyde following excitation to its S2(/pi/pi/sp/*) state. Energies, equilibrium geometries and vibrational frequencies of ground and low-lying excited states of benzaldehyde neutral and cation determined by ab initio calculations provide a theoretical description of the electronic spectroscopy of benzaldehyde and of the changes occurring on excitation and ionization. The S2(/pi/pi/sp/*)[/gets]S0 excitation spectrum of jet-cooled benzaldehyde acquired using two-color laser ionization mass spectrometry techniques is interpreted with the aid of these calculations. The spectrum is dominated by the origin band and by transitions involving some of the ring modes consistent with the results of the molecular orbital calculations that indicate that the major geometric changes on excitation to S2 are located in the aromatic ring. Ten fundamental vibrations of the S2(/pi/pi/sp/*) state are assigned. The dissociation dynamics of benzaldehyde into benzene and carbon monoxide following excitation to its S2(/pi/pi/sp/*) state are investigated under jet- cooled conditions by two-color laser ionization mass spectrometry using a pump-probe technique. This experimental arrangement allows monitoring the benzaldehyde reactant and the benzene product ion signals as a function of the time delay between the excitation and ionization steps. A kinetic model is proposed to explain the observed biexponential decay of the benzaldehyde signal and the single exponential growth of the benzene product signal in terms of a sequential decay of two excited states of benzaldehyde, one of which leads to formation of benzene molecules in its lowest triplet state. Reactant disappearance and product appearance rates are determined for a number of vibronic transitions of the S2 state. They are found to increase with excitation energy without any indication

  14. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA

    Directory of Open Access Journals (Sweden)

    Artavazd Badalyan

    2014-11-01

    Full Text Available Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl. The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1 of benzaldehyde. The relative standard deviation in a series (n = 13 for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T and PaoABC in the osmium containing redox polymer.

  15. The Production of Benzaldehyde by Rhizopus oligosporus USM R1 in a Solid State Fermentation (SSF System of Soy Bean Meal: Rice Husks

    Directory of Open Access Journals (Sweden)

    Norliza, A. W.

    2005-01-01

    Full Text Available The cultivation of Rhizopus oligosporus USM R1 for the production of benzaldehyde, a bitter cherry almond flavour was performed using soya bean meal and rice husks as the substrates. The identification of R. oligosporus USM R1 was performed based on the observation made under light microscope and scanning electron microscope (SEM. The optimum conditions for the SSF in a 250-ml Erlenmeyer flask system were 40% (v/w water content, substrate particle size of 0.7 mm; inoculum size of 1 x 10^5 spores/g substrate; incubation temperature of 30C; substrate amount of 7 g and the ratio of soy bean meal: rice husks of 50:50%. A maximum benzaldehyde production was obtained when the substrate was agitated after 48 hour for a 96 hour fermentation time. The highest benzaldehyde production obtained after 96 hour cultivation was 5.47 mg g-1 substrate. The supplementation of carbon and nitrogen sources in the substrate mixture revealed an enhancement in the growth and benzyldehyde production. A maximum production of benzaldehyde was obtained with the supplementation of L-phenylalanine, a precursor for benzaldehyde biosynthesis which gave 38.69 mg benzaldehyde/g substrate. This is approximately 6-folds higher compared to the substrates without the supplementation of L-phenylalanine.

  16. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    Science.gov (United States)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  17. Amino acid-based dithiazines: synthesis and photofragmentation of their benzaldehyde adducts.

    Science.gov (United States)

    Kurchan, Alexei N; Kutateladze, Andrei G

    2002-11-14

    Alpha-amino acids and GABA are functionalized with dithiazine rings via reaction with sodium hydrosulfide in aqueous formaldehyde. The resulting dithiazines are lithiated at -78 degrees C and reacted with benzaldehyde furnishing amino acid-based 2,5-bis-substituted dithiazines. These adducts undergo externally sensitized photofragmentation with quantum efficiency comparable to that of the parent dithiane adducts, thus offering a novel approach to amino acid-based photolabile tethers. [reaction: see text

  18. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    de Lange, M.W.; van Ommen, J.G.; Lefferts, Leonardus

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  19. 2-Phenyl-tetrahydropyrimidine-4(1H-ones – cyclic benzaldehyde aminals as precursors for functionalised β2-amino acids

    Directory of Open Access Journals (Sweden)

    Markus Nahrwold

    2009-09-01

    Full Text Available Novel procedures have been developed to condense benzaldehyde effectively with β-amino acid amides to cyclic benzyl aminals. Double carbamate protection of the heterocycle resulted in fully protected chiral β-alanine derivatives. These serve as universal precursors for the asymmetric synthesis of functionalised β2-amino acids containing acid-labile protected side chains. Diastereoselective alkylation of the tetrahydropyrimidinone is followed by a chemoselective two step degradation of the heterocycle to release the free β2-amino acid. In the course of this study, an L-asparagine derivative was condensed with benzaldehyde and subsequently converted to orthogonally protected (R-β2-homoaspartate.

  20. Selective Oxidation of Styrene to Benzaldehyde by Co-Ag Codoped ZnO Catalyst and H2O2 as Oxidant

    Directory of Open Access Journals (Sweden)

    Abderrazak Aberkouks

    2018-01-01

    Full Text Available Various ratio of Co-Ag supported on ZnO have been evaluated in the selective catalytic oxidation of styrene to benzaldehyde, using H2O2 as an oxidant. The catalysts were prepared by a sol-gel process and were characterized using XRD, FT-IR, TG-DTG, BET, and SEM/EDX. The performance of the prepared catalyst was investigated under different parameters such as solvent, temperature, substrate/oxidant molar ratios, reaction time, and doping percent. The Zn1−x−yAgxCoyO catalysts exhibit a good activity and a high selectivity towards benzaldehyde (95% with the formation of only 5% of acetophenone.

  1. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    International Nuclear Information System (INIS)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S.M.

    2009-01-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T c =51 deg. C (for pure TGS, T c =48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  2. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Science.gov (United States)

    Rai, Chitharanjan; Sreenivas, K.; Dharmaprakash, S. M.

    2009-11-01

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 °C/min. An increase in the Curie temperature Tc=51 °C (for pure TGS, Tc=48.5 °C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  3. Polycondensation of pyrrole and benzaldehyde catalyzed by Maghnite–H+

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Rapid synthesis of poly[(pyrrole-2,5-diyl-co-(benzylidene] was achieved under microwave irradiation via the condensation of pyrrole and benzaldehyde in 1,2-dichloroethane using acid exchanged montmorillonite clay called Maghnite–H+ (Mag–H+ as an efficient catalyst. The effect of the amount of catalyst and of time on the polymerization yield and on the viscosity of the polymers was studied. Compared with conventional static interfacial polymerization, the microwave-radiation polymerization reaction proceeded rapidly and was completed within 35 s. The conjugated polymer was characterized by means of 1H-NMR, X-ray diffraction, FT-IR spectroscopy and AFM. The X-ray data showed the presence of a backbone form of the [(pyrrole-2,5-diyl-co-(benzylidene] formed.

  4. Kinetic α secondary deuterium isotope effects for O-ethyl S-phenyl benzaldehyde acetal hydrolysis

    International Nuclear Information System (INIS)

    Ferraz, J.P.; Cordes, E.H.

    1979-01-01

    The rate of hydrolysis of O-ethyl S-phenyl benzaldehyde acetal at 25 0 C in 20% dioxane--80% water is independent of pH over the range pH6-12; k/sub obsd/ = 1.9 x 10 -7 s -1 . Under more acidic conditions, the rate increases linearly with the activity of the hydrated proton; k 2 = 2.95 x 10 -2 M -1 s -1 . The kinetic α secondary deuterium isotope effect for acid-catalyzed hydrolysis of O-ethyl S-phenyl benzaldehyde acetal, measured at 25 0 C in 20% aqueous dioxane containing 0.05 M HCl, is k/sub H//k/sub D/ = 1.038 +- 0.008, a value consistent with a transition state in which the C--S bond is stretched rather little. In contrast, the corresponding isotope effect for the pH-independent hydrolysis of this substrate, measured at 42.5 0 C in 20% dioxane, is 1.13 +- 0.02, a value consistent with complete C--S bond cleavage in the transition state and rate-determining diffusion apart of the ion-pair formed as the initial intermediate, in accord with the suggestion of Jensen and Jencks. 1 figure, 4 tables

  5. Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Skov, Thomas; Gernaey, Krist V.

    2017-01-01

    A presence of carbonyl compounds is very common in the food industry. The nature of such compounds is to be reactive and thus many products involve aldehydes/ketones in their synthetic routes. By contrast, the high reactivity of carbonyl compounds could also lead to formation of undesired compounds......, such as genotoxic impurities. It can therefore be important to remove carbonyl compounds by implementing suitable removal techniques, with the aim of protecting final product quality. This work is focused on benzaldehyde as a model component, studying its removal from a water/ethanol mixture by applying different...

  6. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Chitharanjan, E-mail: raichitharanjan@gmail.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India); Kalpataru First Grade Science College, Tiptur 572 202 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dharmaprakash, S.M., E-mail: smdharma@yahoo.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India)

    2009-11-15

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T{sub c}=51 deg. C (for pure TGS, T{sub c}=48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  7. Gas chromatography-flame ionization determination of benzaldehyde in non-steroidal anti-inflammatory drug injectable formulations using new ultrasound-assisted dispersive liquid-liquid micro extraction

    International Nuclear Information System (INIS)

    Mashayekhi, H.A.; Pourshamsian, K.

    2012-01-01

    Summary: In this study, simple and efficient ultrasound-assisted dispersive liquid-liquid micro extraction combined with gas chromatography (GC) was developed for the preconcentration and determination of benzaldehyde in injectable formulations of the non-steroidal anti-inflammatory drugs, diclofenac, Vitamin B-complex and Voltaren injection solutions. Fourteen microliters of toluene was injected slowly into 10 mL home-designed centrifuge glass vial containing an aqueous sample without salt addition that was located inside the ultrasonic water bath. The formed emulsion was centrifuged and 2 macro L of separated toluene was injected into a gas chromatographic system equipped with a flame ionization detector (GC-FID) for analysis. Several factors influencing the extraction efficiency as the nature and volume of organic solvent, extraction temperature, ionic strength and centrifugation time were investigated and optimized. Using optimum extraction conditions a detection limit of 0.3 macro g L/sup -1/ and a good linearity in a calibration range of 2.0-1000 macro g L/sup -1/ were achieved for analyte. This proposed method was successfully applied to the analysis of benzaldehyde in three injection formulations and relative standard deviation (RSD) of analysis (n=3), before spiking with standard benzaldehyde were 3.3, 2.0 and 1.3% for Na-diclofenac, vitamin B-complex and voltaren, respectively and after spiking of standard benzaldehyde (0.3 mg L/sup -1/), the RSD were 6.5, 3.6 and 2.8% for Na-diclofenac, vitamin B-complex and voltaren, respectively. (author)

  8. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    International Nuclear Information System (INIS)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-01-01

    Highlights: • Cu and Au on γ-Al 2 O 3 catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k app was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al 2 O 3 supported copper and gold nanoparticles. Li 2 O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N 2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of

  9. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata.

    Science.gov (United States)

    Wang, Song; Li, Xiao-Ming; Teuscher, Franka; Li, Dong-Li; Diesel, Arnulf; Ebel, Rainer; Proksch, Peter; Wang, Bin-Gui

    2006-11-01

    Cultivation of the endophytic fungus Chaetomium globosum, which was isolated from the inner tissue of the marine red alga Polysiphonia urceolata, resulted in the isolation of chaetopyranin (1), a new benzaldehyde secondary metabolite. Ten known compounds were also isolated, including two benzaldehyde congeners, 2-(2',3-epoxy-1',3'-heptadienyl)-6-hydroxy-5-(3-methyl-2-butenyl)benzaldehyde (2) and isotetrahydroauroglaucin (3), two anthraquinone derivatives, erythroglaucin (4) and parietin (5), five asperentin derivatives including asperentin (6, also known as cladosporin), 5'-hydroxy-asperentin-8-methylether (7), asperentin-8-methyl ether (8), 4'-hydroxyasperentin (9), and 5'-hydroxyasperentin (10), and the prenylated diketopiperazine congener neoechinulin A (11). The structures of these compounds were determined on the basis of their spectroscopic data analysis (1H, 13C, 1H-1H COSY, HMQC, and HMBC NMR, as well as low- and high-resolution mass experiments). To our knowledge, compound 1 represents the first example of a 2H-benzopyran derivative of marine algal-derived fungi as well as of the fungal genus Chaetomium. Each isolate was tested for its DPPH (1,1-diphenyl-2-picrylhydrazyl) radical-scavenging property. Compounds 1-4 were found to have moderate activity. Chaetopyranin (1) also exhibited moderate to weak cytotoxic activity toward several tumor cell lines.

  10. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    Science.gov (United States)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  11. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris

    Science.gov (United States)

    We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed Beagle is mediated by volatile organic compounds 2-hexanone and benzaldehyde present in Beagle dog odour. Ectoparasite location on animal hosts is affected by variation in odour com...

  12. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout, E-mail: rmeijboom@uj.ac.za

    2017-03-15

    Highlights: • Cu and Au on γ-Al{sub 2}O{sub 3} catalysts were prepared and characterized. • Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide in the absence of any solvent using the prepared catalysts. • The as prepared catalysts exhibited good performance in terms of conversion and selectivity towards benzaldehyde. • The kinetics of the reaction was investigated; k{sub app} was proportional to the amount of nano catalyst and oxidant present in the system. • The catalysts was recycled and reused with neither significant loss of activity nor selectivity. - Abstract: Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al{sub 2}O{sub 3} supported copper and gold nanoparticles. Li{sub 2}O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N{sub 2} absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol

  13. Effects of HCl and HNO3 on the oxidation of toluene to benzaldehyde by H2O2 over TS-1 modified with Al in aqueous phase

    Directory of Open Access Journals (Sweden)

    Paricha Pongjirawat

    2014-09-01

    Full Text Available This research studies effects of HCl and HNO3 in aqueous solution on the oxidation reaction between toluene and hydrogen peroxide to benzaldehyde over titanium silicalite-1 catalyst modified with Al. The reaction was carried out at reaction temperature 120°C in a pressurized autoclave reactor. The research found that the addition of HCl and HNO3 not only increases the concentration of toluene in the aqueous phase but also increases the formation of benzaldehyde as main product in the reaction.

  14. Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yang; Sanyal, Udishnu; Pangotra, Dhananjai; Holladay, Jamelyn D.; Camaioni, Donald M.; Gutierrez-Tinoco, Oliver Y.; Lercher, Johannes A.

    2018-03-01

    Abstract Selective reduction of benzaldehyde to benzyl alcohol on C-supported Pt, Rh, Pd, and Ni in aqueous phase was conducted using either directly H2 (thermal catalytic hydrogenation, TCH) or in situ electrocatalytically generated hydrogen (electrocatalytic hydrogenation, ECH). In TCH, the intrinsic activity of the metals at room temperature and 1 bar H2 increased in the sequence Rh/C < Pt/C < Pd/C, while Ni/C is inactive at these conditions due to surface oxidation in the absence of cathodic potential. The reaction follows a Langmuir-Hinshelwood mechanism with the second hydrogen addition to the adsorbed hydrocarbon being the rate-determining step. All tested metals were active in ECH of benzaldehyde, although hydrogenation competes with the hydrogen evolution reaction (HER). The minimum cathodic potentials to obtain appreciable ECH rates were identical to the onset potentials of HER. Above this onset, the relative rates of H reacting to H2 and H addition to the hydrocarbon determines the selectivity to ECH and TCH. Accordingly, the selectivity of the metals towards ECH increases in the order Ni/C < Pt/C < Rh/C < Pd/C. Pd/C shows exceptionally high ECH selectivity due to its surprisingly low HER reactivity under the reaction conditions. Acknowledgements The authors would like to thank the groups of Hubert A. Gasteiger at the Technische Universität München of Jorge Gascon at the Delft University of Technology for advice and valuable discussions. The authors are grateful to Nirala Singh, Erika Ember, Gary Haller, and Philipp Rheinländer for fruitful discussions. We are also grateful to Marianne Hanzlik for TEM measurements and to Xaver Hecht and Martin Neukamm for technical support. Y.S. would like to thank the Chinese Scholarship Council for the financial support. The research described in this paper is part of the Chemical Transformation Initiative at Pacific Northwest National Laboratory (PNNL), conducted under the Laboratory Directed Research and

  15. Thiol and Disulfide Derivatives of Ephedra Alkaloids 2 : A Mechanistic Study of Their Effect on the Addition of Diethyl Zinc to Benzaldehyde

    NARCIS (Netherlands)

    Fitzpatrick, Kevin; Hulst, Ron; Kellogg, Richard M.

    Thiol and disulfide derivatives of ephedrine have been shown previously to catalyse in high enantiomeric excess (ee) the reaction of diethyl zinc with benzaldehyde. We find that this reaction involves non-linear correlations between the ee of product and catalyst. Osmotic measurements indicate a

  16. Reaction of 11 C-benzoyl chlorides with metalloid reagents: 11 C-labeling of benzyl alcohols, benzaldehydes, and phenyl ketones from [11 C]CO.

    Science.gov (United States)

    Roslin, Sara; Dahl, Kenneth; Nordeman, Patrik

    2018-01-26

    In this article, we describe the carbon-11 ( 11 C, t 1/2  = 20.4 minutes) labeling of benzyl alcohols, benzaldehydes, and ketones using an efficient 2-step synthesis in which 11 C-carbon monoxide is used in an initial palladium-mediated reaction to produce 11 C-benzoyl chloride as a key intermediate. In the second step, the obtained 11 C-benzoyl chloride is further treated with a metalloid reagent to furnish the final 11 C-labeled product. Benzyl alcohols were obtained in moderated to high non-isolated radiochemical yields (RCY, 35%-90%) with lithium aluminum hydride or lithium aluminum deuteride as metalloid reagent. Changing the metalloid reagent to either tributyltin hydride or sodium borohydride, allowed for the reliable syntheses of 11 C-benzaldehydes in RCYs ranging from 58% to 95%. Finally, sodium tetraphenylborate were utilized to obtain 11 C-phenyl ketones in high RCYs (77%-95%). The developed method provides a new and efficient route to 3 different classes of compounds starting from aryl iodides or aryl bromides. Copyright © 2018 John Wiley & Sons, Ltd.

  17. Sonochemical synthesis of a multi-responsive regenerable water-stable zinc(II) fluorescent probe for highly selective, sensitive and real-time sensing of benzaldehyde, ferric ion and PH.

    Science.gov (United States)

    Wang, Xin Rui; Wang, Xing Ze; Li, Yong; Liu, Kun; Liu, Shi Xin; Du, Jing; Huang, Zhuo; Luo, Yan; Huo, Jian Zhong; Wu, Xiang Xia; Liu, Yuan Yuan; Ding, Bin

    2018-06-01

    In this work, a novel water-stable coordination polymer with {4 4 } network topology {[Zn(L) 2 (NO 3 ) 2 ]} n (1) (L = 4,4'-Bis(triazol-1-ylmethyl)biphenyl) has been synthesized through the hydrothermal and sonochemical approaches. 1 has been characterized by single crystal X-ray diffraction, powder X-ray diffraction (PXRD), Fourier Transform Infrared Spectroscopy, UV-vis absorption spectrum and scanning electron microscopy (SEM). PXRD patterns of the as-synthesized samples 1 have confirmed the purity of the bulky samples. In the sonochemical preparation approaches, different ultrasound irradiation power and ultrasound time were also used in order to investigate the impact factor for morphology and size of nano-structured 1. Photo-luminescence studies have revealed that 1 can efficiently distinguish Fe 3+ from Fe 2+ and other metal ions. On the other hand, 1 also can exhibit a highly sensitive, excellently selective and real-time detection of benzaldehyde and pH through photo-luminescence quenching process. As for 1, density functional theory (DFT) and time-dependent DFT (TDDFT) theory has been applied to calculate these spectroscopic data, the result agree with the experimental results for detection of benzaldehyde. Photo-luminescent recyclability results indicated 1 can be reused at least five times in the detection process. To the best of our knowledge, this is the first example of a multi-responsive regenerable luminescent sensor for highly selective, sensitive and real-time sensing of Fe 3+ over Fe 2+ , benzaldehyde and pH values. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives as inhibitors of the corrosion of aluminium in hydrochloric acid.

    Science.gov (United States)

    Fouda, A S; Gouda, M M; El-Rahman, S I

    2000-05-01

    The effect of benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives on the corrosion of aluminium in hydrochloric acid has been investigated using thermometric and polarization techniques. The inhibitive efficiency ranking of these compounds from both techniques was found to be: 2>3>1>4. The inhibitors acted as mixed-type inhibitors but the cathode is more polarized. The relative inhibitive efficiency of these compounds has been explained on the basis of structure of the inhibitors and their mode of interaction at the surface. Results show that these additives are adsorbed on an aluminium surface according to the Langmuir isotherm. Polarization measurements indicated that the rate of corrosion of aluminium rapidly increases with temperature over the range 30-55 degrees C both in the absence and in the presence of inhibitors. Some thermodynamic data of the adsorption process are calculated and discussed.

  19. Toluene, Methanol and Benzaldehyde Removal from Gas Streams by Adsorption onto Natural Clay and Faujasite-Y type Zeolite.

    Science.gov (United States)

    Zaitan, Hicham; Mohamed, Elham F; Valdés, Héctor; Nawdali, Mostafa; Rafqah, Salah; Manero, Marie Hélène

    2016-12-01

    A great number of pollution problems come as a result of the emission of Volatile Organic Compounds (VOCs) into the environment and their control becomes a serious challenge for the global chemical industry. Adsorption is a widely used technique for the removal of VOCs due to its high efficiency, low cost, and convenient operation. In this study, the feasibility to use a locally available clay, as adsorbent material to control VOCs emissions is evaluated. Natural clay is characterised by different physical-chemical methods and adsorptive interaction features between VOCs and natural clay are identified. Toluene (T), methanol (M) and benzaldehyde (B) are used here as representatives of three different kinds of VOCs. Adsorption isotherms onto natural clay and faujasite-Y type zeolite (Fau Y) are obtained at room temperature. According to Langmuir model data, maximum adsorption capacities (qm) of Fez natural clay and zeolite toward methanol (M), toluene (T) and benzaldehyde (B) at 300 K are 8, 0.89 and 3.1 mmol g-1, and 15, 1.91 and 13.9 mmol g-1 respectively. In addition, the effect of temperature on the adsorption of toluene onto natural clay is evaluated in the range from 300 to 323K. An increase on temperature reduces the adsorption capacity of natural clay toward toluene, indicating that an exothermic physical adsorption process takes place. The enthalpy of adsorption of toluene onto Fez natural clay was found to be -54 kJ mol-1. A preliminary cost analysis shows that natural clay could be used as an alternative low cost adsorbent in the control of VOCs from contaminated gas streams with a cost of US$ 0.02 kg-1 compared to Fau Y zeolite with US$ 10 kg-1.

  20. β-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, M. Nazir, E-mail: tahir.muhammad_nazir@courrier.uqam.ca [Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220, Aalborg East (Denmark); Department of Chemistry, University of Quebec at Montreal, QC, H3C 3P8 (Canada); Nielsen, Thorbjørn T.; Larsen, Kim L. [Department of Chemistry and Bioscience, Aalborg University, Frederik Bajers Vej 7H, DK-9220, Aalborg East (Denmark)

    2016-12-15

    Highlights: • Functionalization of βCD onto glass micro-particles (GMP-βCD). • Application of GMP-βCD as a green catalyst for the oxidation of toluene. • 82% yield at room temperature. • Repeated use of the catalyst for several cycles. - Abstract: Oxidation of toluene is considered an important process which often requires high temperatures and specific conditions along with heavy-metals based catalysts. In this study, we have developed a green catalyst by functionalizing beta-cyclodextrin onto glass micro-particle surfaces. All surfaces were characterized by X-ray photoelectron spectroscopy and applied to catalyze the selective oxidation of toluene into benzaldehyde (82% yield) at room temperature. The catalyst was stable and could be used repeatedly for several cycles without losing efficiency.

  1. Influence of basic properties of Mg,Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile

    Directory of Open Access Journals (Sweden)

    Caridad Noda Pérez

    2009-01-01

    Full Text Available The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33 derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.

  2. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Elizandra Aparecida Britta

    Full Text Available BACKGROUND: Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC(50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC(50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. CONCLUSION/SIGNIFICANCE: Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.

  3. Solvent influence on the photophysical properties of 4-(2-Oxo-2H-benzo[h]chromen-4-ylmethoxy)-benzaldehyde

    Science.gov (United States)

    Pramod, A. G.; Renuka, C. G.; Shivashankar, K.; Boregowda, P.; Nadaf, Y. F.

    2018-05-01

    Steady-state absorption and the fluorescence properties of the synthesized Benzofuran derivatives were studied. Absorption and fluorescence spectra of 4-(2-Oxo-2H-benzo[h]chromen-4-ylm ethoxy)-benzaldehyde (4-OBCM) have been recorded at room temperature in extensive variety of solvents of various polarities. 4-OBCM Fluorescence band maxima of the solvents are small amount spectral shifted to hypsochromic when the solvent polarity will increase, compared to absorption band under the identical circumstance. This suggests an increase in dipole moment of excited state compared to ground state. The ground-state dipole moment of 4-OBCM was found from quantum mechanical methods and the excited state dipole moment of 4-OBCM was evaluated from Lippert-Mataga Bakhshiev's, Kawski-Chamma-Viallet's and Reichardt conditions by methods for solvatochromic shift. Kamlet-Taft coefficients which affect this absorption profiles.

  4. Enzymatic reduction of 4-(dimethylamino)benzaldehyde with carrot bits (Daucus carota): a simple experiment for understanding biocatalysis; Reducao enzimatica do 4-(dimetilamino)benzaldeido com pedacos de cenoura (Daucus carota): um experimento simples na compreensao da biocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Alvaro Takeo; Portas, Viviane Barbosa; Oliveira, Camila de Souza de, E-mail: alvaro.omori@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, SP (Brazil)

    2012-07-01

    The present paper describes a simple, low-costly and environmentally friendly procedure for reduction of 4-(dimethylamino)benzaldehyde using carrot bits in water. This interdisciplinary experiment can be used to introduce the concepts of biocatalysis and green chemistry to undergraduate students. (author)

  5. Synthesis and Conformational Assignment of N-(E-Stilbenyloxymethylenecarbonyl-Substituted Hydrazones of Acetone and o-(m- and p- Chloro- (nitro- benzaldehydes by Means of and NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Przemysław Patorski

    2013-01-01

    Full Text Available Eighteen new N-(E-stilbenyloxyalkylcarbonyl-substituted hydrazones of ortho- (meta- and para- chloro- (nitro- benzaldehydes 1–18 and two analogous hydrazones of acetone 19-20 were prepared. The stereochemical behavior of 1–18 in dimethyl-d6 sulfoxide solution has been studied by NMR and NMR techniques, using spectral data of 19 and 20 as supporting material. The E-geometrical isomers and cis-/trans-amide conformers have been found for these hydrazones. Energy barriers of isomers are reported.

  6. Using heavy atom rare gas matrix to control the reactivity of 4-methoxybenzaldehyde: A comparison with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Nihal [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Department of Physics, Anadolu University, 26470 Eskisehir (Turkey); Sharma, Archna; Reva, Igor; Fausto, Rui [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lapinski, Leszek [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2012-04-14

    Different patterns of photochemical behavior were observed for 4-methoxybenzaldehyde (p-anisaldehyde) isolated in xenon and in argon matrices. Monomers of the compound isolated in solid Xe decarbonylate upon middle ultraviolet irradiation, yielding methoxybenzene (anisole), and CO. On the other hand, p-anisaldehyde isolated in an Ar matrix and subjected to identical irradiation, predominantly isomerizes to the closed-ring isomeric ketene (4-methoxycyclohexa-2,4-dien-1-ylidene) methanone. Experimental detection of a closed-ring ketene photoproduct, generated from an aromatic aldehyde, constitutes a rare observation. The difference between the patterns of photochemical transformations of p-anisaldehyde isolated in argon and xenon environments can be attributed to the external heavy-atom effect, where xenon enhances the rate of intersystem crossing from the singlet to the triplet manifold in which decarbonylation (via p-methoxybenzoyl radical) takes place. The parent compound, benzaldehyde, decarbonylates (to benzene + CO) when subjected to middle ultraviolet irradiation in both argon and xenon matrices. This demonstrates the role of the methoxy p-anisaldehyde substituent in activation of the reaction channel leading to the formation of the ketene photoproduct.

  7. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    Science.gov (United States)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  8. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications.

    Science.gov (United States)

    Jagannathan, K; Umarani, P; Ratchagar, V; Ramesh, V; Kalainathan, S

    2016-01-15

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC). Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Inhibitory Effects of Benzaldehyde Derivatives from the Marine Fungus Eurotium sp. SF-5989 on Inflammatory Mediators via the Induction of Heme Oxygenase-1 in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Kyoung-Su Kim

    2014-12-01

    Full Text Available Two benzaldehyde derivatives, flavoglaucin (1 and isotetrahydro-auroglaucin (2, were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO and prostaglandin E2 (PGE2 production by suppressing inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6. Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB activation by suppressing phosphorylation of IkappaB (IκB. These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1 expression through the nuclear transcription factor-E2–related factor 2 (Nrf2 translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP. Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.

  10. Effect of 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone on the corrosion of aged 18 Ni 250 grade maraging steel in phosphoric acid solution

    International Nuclear Information System (INIS)

    Poornima, T.; Nayak, Jagannath; Nityananda Shetty, A.

    2011-01-01

    Highlights: → DEABT as corrosion inhibitor for maraging steel in phosphoric acid. → Inhibition efficiency increases with increase in inhibitor concentration. → Inhibition efficiency decreases with increase in temperature. → Adsorption obeys Langmuir adsorption isotherm. - Abstract: 4-(N,N-diethylamino)benzaldehyde thiosemicarbazone (DEABT) was studied for its corrosion inhibition property on the corrosion of aged 18 Ni 250 grade maraging steel in 0.67 M phosphoric acid at 30-50 deg. C by potentiodynamic polarization, EIS and weight loss techniques. Inhibition efficiency of DEABT was found to increase with the increase in DEABT concentration and decrease with the increase in temperature. The activation energy E a and other thermodynamic parameters (ΔG ads 0 , ΔH ads 0 , ΔS ads 0 ) have been evaluated and discussed. The adsorption of DEABT on aged maraging steel surface obeys the Langmuir adsorption isotherm model and the inhibitor showed mixed type inhibition behavior.

  11. The Cytotoxicity of Benzaldehyde Nitrogen Mustard-2-Pyridine Carboxylic Acid Hydrazone Being Involved in Topoisomerase IIα Inhibition

    Directory of Open Access Journals (Sweden)

    Yun Fu

    2014-01-01

    Full Text Available The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM , HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe2+ caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe2+ of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1 and alkylating agents (G2. BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.

  12. Simultaneous determination of paracetamol, 4-Aminophenol, 4-Chloroacetanilid, Benzyl alcohol,Benzaldehyde and EDTA by HPLC methodin paracetamol injection ampoule

    Directory of Open Access Journals (Sweden)

    Ali Merrikhi Khosroshahi

    2016-06-01

    Full Text Available Paracetamol that is known as acetaminophen have the most consume as an analgesic and antipyretic drug in the world. That is formulated in single compound or mixture at many forms such as tablets, syrups, suspensions and drops. The last form is intravenous injections. Paracetamol derived from 4-minophenol which is synthesized by acylated the P-acetaminophenol and acetic anhydride. 4-aminophenol is the main impurity at manufacturing of paracetamol which could produce by hydrolysis during storage or synthesis under normal conditions (temperature, pH, etc.. Also, 4-chloroacetanilid may be observed as an impurity in the raw material of paracetamol synthesis. Benzyl alcohol is a preservative that used in Paracetamol for injection. It will be very important if there are analytical techniques to measuring paracetamol and its degradation products accurately and easily. Undoubtedly the most important and widely used, separation technique is chromatography. There are several reports about separation and quantitative determination of paracetamol lonely or simultaneous determination of paracetamol and 4-aminophenol. In this paper investigated simultaneous determination of paracetamol, 4-aminophenol, 4-chloroacetanilid, benzyl alcohol, benzaldehyde, and EDTA in paracetamol for injection ampoules by high performance liquid chromatography. By changing the ratio of mixing methanol and acetonitrile as mobile phase at the wavelength of 215 nm and pH=3 separation of all compounds were completely done.

  13. Probing the molecular forces involved in binding of selected volatile flavour compounds to salt-extracted pea proteins.

    Science.gov (United States)

    Wang, Kun; Arntfield, Susan D

    2016-11-15

    Molecular interactions between heterologous classes of flavour compounds with salt-extracted pea protein isolates (PPIs) were determined using various bond disrupting agents followed by GC/MS analysis. Flavour bound by proteins decreased in the order: dibutyl disulfide>octanal>hexyl acetate>2-octanone=benzaldehyde. Benzaldehyde, 2-octanone and hexyl acetate interacted non-covalently with PPIs, whereas octanal bound PPIs via covalent and non-covalent forces. Dibutyl disulfide reacted with PPIs covalently, as its retention was not diminished by urea and guanidine hydrochloride. Using propylene glycol, H-bonding and ionic interactions were implicated for hexyl acetate, benzaldehyde, and 2-octanone. A protein-destabilising salt (Cl3CCOONa) reduced bindings for 2-octanone, hexyl acetate, and benzaldehyde; however, retention for octanal and dibutyl disulfide increased. Conversely, a protein-stabilising salt (Na2SO4) enhanced retention for benzaldehyde, 2-octanone, hexyl acetate and octanal. Formation of a volatile flavour by-product, 1-butanethiol, from dibutyl disulfide when PPIs were treated with dithiothreitol indicated occurrence of sulfhydryl-disulfide interchange reactions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Styrofoam precursors as drop-in diesel fuel

    NARCIS (Netherlands)

    Reijnders, J.J.E.; Boot, M.D.; Goey, de L.P.H.; Johansson, B.H.

    2013-01-01

    Styrene, or ethylbenzene, is mainly used as a monomer for the production of polymers, most notably Styrofoam. In the synthetis of styrene, the feedstock of benzene and ethylene is converted into aromatic oxygenates such as benzaldehyde, 2-phenyl ethanol and acetophenone. Benzaldehyde and phenyl

  15. Biological evaluation of 32 different essential oils against ...

    African Journals Online (AJOL)

    Also, 0.2% (v/v) levels of cinnamon oil, benzaldehyde and cinnamaldehyde completely killed ACC cells artificially contaminating watermelon seeds. This study suggests that cinnamon oil and its bioactive components, benzaldehyde and cinnamaldehyde, have potential for application as natural agents for the prevention ...

  16. Synthesis, spectral investigation (/sup 1/H, /sup 13/C) of new (N, O and S based) schiff bases and evaluation of their antimicrobial activities

    International Nuclear Information System (INIS)

    Khosa, M.K.; Nisar, M.; Jamal, M.A.; Yousaf, M.; Chatha, S.A.S.; Zia, K.M.

    2011-01-01

    Three new series of biologically active amino substituted Schiff bases (1-12) with general formula, R/sub 1/N=CHR/sub 2/ (R/sub 1/ 2-amino-benzthiazole, 4-amino-salicylic acid and 4-aminophenol; R/sub 2/ benzaldehyde, 2-chloro-benzaldehyde, 4-chloro-benzaldehyde, salicylaldehyde and vanillin) were synthesized by the reaction of three different amino substituted compounds and substituted aldehydes in ethanol. The synthesized compounds were characterized by different physico-chemical techniques like, melting point, elemental analysis, multinuclear NMR (/sup 1/H, /sup 13/C). The compounds were subjected for bioassay screening and showed promising antibacterial and antifungal activities using Amoxicillin and Ciprofloxacin as standard drugs. (author)

  17. Modified calcium oxide as stable solid base catalyst for Aldol

    Indian Academy of Sciences (India)

    A highly efficient and stable solid-base catalyst for Aldol condensation was prepared by modifying commercial CaO with benzyl bromide in a simple way. It was found that modified CaO can effectively catalyse the Aldol condensation of cyclohexanone and benzaldehyde, as well as various benzaldehydes, to produce ...

  18. Experimental Determination and Modeling of the Phase Behavior for the Selective Oxidation of Benzyl Alcohol in Supercritical CO2

    DEFF Research Database (Denmark)

    Tsivintzelis, Ioannis; Beier, Matthias Josef; Grunwaldt, Jan-Dierk

    2011-01-01

    In this study the phase behavior of mixtures relevant to the selective catalytic oxidation of benzyl alcohol to benzaldehyde by molecular oxygen in supercritical CO2 is investigated. Initially, the solubility of N2 in benzaldehyde as well as the dew points of CO2–benzyl alcohol–O2 and CO2...

  19. Síntese e hidrólise de azalactonas de Erlenmeyer-Plöchl mediadas por radiação micro-ondas em aparelhos doméstico e dedicado: experimentos de química orgânica para a graduação Synthesis and hydrolysis of Erlenmeyer-Plöchl azalactones mediated by microwave radiation in domestic and dedicated ovens: undergraduate organic chemistry experiments

    Directory of Open Access Journals (Sweden)

    Silvio Cunha

    2013-01-01

    Full Text Available This work describes a green chemistry experiment for the synthesis of Erlenmeyer-Plöchl azalactones mediated by microwave irradiation, employing both dedicated and domestic equipment. Hippuric acid was reacted with equimolar amounts of benzaldehyde, p-chloro-benzaldehyde or p-N,N-dimethyl-benzaldehyde in acetic anhydride as the solvent. Acid hydrolysis of obtained 4-benzylidene-2-phenyloxazol-5(4H-one under microwave and convectional heating afforded Z-α-(benzoylaminocinnamic acid at a 51-61.5% yield. The UV-Vis molecular spectra of 4-benzylidene-2-phenyloxazol-5(4H-one and 4-(4'-N,N-dimethylbenzylidene-2-phenyloxazol-5(4H-one were obtained in ethanol, CH2Cl2 and DMSO and bathochromic shift was observed for the latter azalactone.

  20. Kinetics, mechanism and thermodynamics of bisulfite-aldehyde adduct formation

    Energy Technology Data Exchange (ETDEWEB)

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-04-01

    The kinetics and mechanism of bisulfite addition to benzaldehyde were studied at low pH in order to assess the importance of this reaction in stabilizing S(IV) in fog-, cloud-, and rainwater. Previously, the authors established that appreciable concentrations of the formaldehyde-bisulfite adduct (HMSA) are often present in fogwater. Measured HMSA concentrations in fogwater often do not fully account for observed excess S(IV) concentrations, however, so that other S(IV)-aldehyde adducts may be present. Reaction rates were determined by monitoring the disappearance of benzaldehyde by U.V. spectrophotometry under pseudo-first order conditions, (S(IV))/sub T/ >>(phi-CHO)/sub T/, in the pH range 0 - 4.4 at 25/sup 0/C. The equilibrium constant was determined by dissolving the sodium salt of the addition compound in a solution adjusted to pH 3.9, and measuring the absorbance of the equilibrated solution at 250 nm. A literature value of the extinction coefficient for benzaldehyde was used to calculate the concentration of free benzaldehyde. All solutions were prepared under an N/sub 2/ atmosphere using deoxygenated, deionized water and ionic strength was maintained at 1.0 M with sodium chloride.

  1. Photolysis of O-nitrobenzoin: a reinvestigation

    International Nuclear Information System (INIS)

    Dicks, P.F.; Goosen, A.; McCleland, C.W.

    1983-01-01

    Photolysis of O-nitrobenzoin produces benzaldehyde and 2-phenylbenzo[b]furan. The addition of a nitrogen dioxide scavenger and a triplet n→πsup(*) carbonyl quencher are shown to inhibit 2-phenylbenzo[b]furan formation. It is proposed that cyclization occurs through the carbonyl n→πsup(*) triplet state. The benzaldehyde could result either from rapid α-cleavage of the carbonyl group, occurring from either the singlet or triplet n→πsup(*) states in a process which is concerted with cleavage of the O-NO 2 bond, or from fragmentation of the alkoxyl radical produced upon photolysis of the nitrate ester, or from a combination of both processes. Support for the intermediacy of the alkoxyl radical is afforded by the observation that O-nitro-hydrobenzoin and some of its derivatives all afforded benzaldehyde under similar conditions

  2. The effects of the cherry variety on the chemical and sensorial characteristics of cherry brandy

    Directory of Open Access Journals (Sweden)

    NINOSLAV NIKIĆEVIĆ

    2011-09-01

    Full Text Available The chemical and sensorial characteristics of cherry brandy produced from five cherry varieties (Oblacinska, Celery’s 16, Rexle, Heiman’s Ruby and Heiman’s Conserve grown in Serbia were studied. Gas chromatography and gas chromatography–mass spectrometry analysis of these distillates led to the identification of 32 components, including 20 esters, benzaldehyde, 6 terpenes and 5 acids. The ethyl esters of C8–C18 acids were the most abundant in all samples. The benzaldehyde content was quantified by high performance liquid chromatography with UV detection. The average benzaldehyde concentration in the samples ranged between 2.1 and 24.1 mg L-1. The total sensory scores of the cherry brandies ranged between 17.30 to 18.05, with the cherry brandy produced from the Celery’s 16 variety receiving the highest score (18.05.

  3. Condensação de Knoevenagel de aldeídos aromáticos com o ácido de Meldrum em água: uma aula experimental de Química Orgânica Verde

    OpenAIRE

    Cunha,Silvio; Santana,Lourenço Luis Botelho de

    2012-01-01

    This work describes an undergraduate experiment for the synthesis of Knoevenagel adduct of Meldrum's acid with nine aromatic aldehydes, using water as the solvent, in an adaptation of a previously reported synthetic protocol. The synthesis was straightforward, requiring a period of two hours, and is suitable for undergraduate experimental courses on green chemistry. In addition, quantitative analyses of the relative reactivity of p-nitro-benzaldehyde and p-metoxi-benzaldehyde was evaluated th...

  4. Technical communications

    International Nuclear Information System (INIS)

    Krueger, D.A.

    1987-01-01

    Bitter almond oil (benzaldehyde), a flavoring compound used in many foods, was isolated from apricot kernels; 2 synthetic benzaldehyde samples were obtained from commercial sources. All samples were analyzed for radiocarbon ( 14 C) content. The natural sample yielded a value consistent with its natural origin (approximately 116% of Modern Standard Activity), while the synthetic samples were devoid of 14 C activity as expected for a petrochemical material. Implications for quality control of bitter almond oil are discussed

  5. An Efficient Synthesis of New Pyrazolines and Isoxazolines Bearing Thiazolyl and Etheral Pharmacophores

    Energy Technology Data Exchange (ETDEWEB)

    Bhosle, Manisha R.; Mali, Jyotirling R.; Pratap, Umesh R.; Mane, Ramrao A. [Ambedkar Marathwada University, Aurangabad (India)

    2012-06-15

    A convenient synthetic route has been developed to synthesize 5-(4-((2-phenylthiazol-4-yl) methoxy)phenyl)- 3-(4-sustituted phenyl)pyrazolines (5a-f) and 5-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-3-(4-substituted phenyl)isoxazolines (6a-f) starting from 2-phenyl-4-chloromethylthiazole (1). The chloromethylthiazole (1) was first condensed with 4-hydroxy benzaldehyde (2) for obtaining 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde (3). Claisen-Smidth condensation of 4-((2-phenylthiazol-4-yl)methoxy)benzaldehyde (3) and acetophenones has been carried in alkaline alcohol and obtained 3-(4-((2-phenylthiazol-4-yl)methoxy)phenyl)-1-(4- substituted phenyl)prop-2-en-1-ones (4a-f). The cyclocondensation of 2-propen-1-ones has been first time carried separately with hydrazine hydrate and hydroxylamine hydrochloride in aqueous micellar tetradecyltrimethylammonium bromide (TTAB) medium for getting the titled heterocycles with good to excellent yields

  6. Overtone spectroscopy of some benzaldehyde derivatives

    Indian Academy of Sciences (India)

    chlorobenzaldehyde has been studied in 2000–12000 cm-1 region. Vibrational frequencies and anharmonicity constants for aryl as well as alkyl CH stretch vibrations have been determined. We have also determined the internuclear distances for the aryl CH ...

  7. Initial reactions involved in the dissimilation of mandelate by Rhodotorula graminis.

    Science.gov (United States)

    Durham, D R

    1984-01-01

    Rhodotorula graminis utilized DL-mandelate, L(+)-mandelate, and D(-)-mandelate as sole sources of carbon and energy. Growth on these aromatic substrates resulted in the induction of an NAD-dependent D(-)-mandelate dehydrogenase and a dye-linked L(+)-mandelate dehydrogenase, each catalyzing the stereospecific conversion of its respective enantiomer of mandelate to benzoylformate. Benzoylformate was oxidized to benzaldehyde, which was dehydrogenated to benzoate by an NAD-dependent benzaldehyde dehydrogenase. Benzoate was further metabolized through p-hydroxybenzoate and the protocatechuate branch of the beta-ketoadipate pathway. PMID:6389497

  8. Evaluation of the hydroxynitrile lyase activity in cell cultures of capulin (Prunus serotina).

    Science.gov (United States)

    Hernández, Liliana; Luna, Héctor; Navarro-Ocaña, Arturo; Olivera-Flores, Ma Teresa de Jesús; Ayala, Ivon

    2008-07-01

    Enzymatic preparations obtained from young plants and cell cultures of capulin were screened for hydroxynitrile lyase activity. The three week old plants, grown under sterile conditions, were used to establish a solid cell culture. Crude preparations obtained from this plant material were evaluated for the transformation of benzaldehyde to the corresponding cyanohydrin (mandelonitrile). The results show that the crude material from roots, stalks, and leaves of young plants and calli of roots, stalks, internodes and petioles biocatalyzed the addition of hydrogen cyanide (HCN) to benzaldehyde with a modest to excellent enantioselectivity.

  9. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Science.gov (United States)

    Burgués-Ceballos, Ignasi; Savva, Achilleas; Georgiou, Efthymios; Kapnisis, Konstantinos; Papagiorgis, Paris; Mousikou, Androniki; Itskos, Grigorios; Othonos, Andreas; Choulis, Stelios A.

    2017-11-01

    We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3-xClx) photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3-xClx based solar cells.

  10. Interactions of flavoured oil in-water emulsions with polylactide.

    Science.gov (United States)

    Salazar, Rómulo; Domenek, Sandra; Ducruet, Violette

    2014-04-01

    Polylactide (PLA), a biobased polymer, might prove suitable as eco-friendly packaging, if it proves efficient at maintaining food quality. To assess interactions between PLA and food, an oïl in-water model emulsion was formulated containing aroma compounds representing different chemical structure classes (ethyl esters, 2-nonanone, benzaldehyde) at a concentration typically found in foodstuff (100 ppm). To study non-equilibrium effects during food shelf life, the emulsions were stored in a PLA pack (tray and lid). To assess equilibrium effects, PLA was conditioned in vapour contact with the aroma compounds at concentrations comparable to headspace conditions of real foods. PLA/emulsion interactions showed minor oil and aroma compound sorption in the packaging. Among tested aroma compounds, benzaldehyde and ethyl acetate were most sorbed and preferentially into the lid through the emulsion headspace. Equilibrium effects showed synergy of ethyl acetate and benzaldehyde, favouring sorption of additional aroma compounds in PLA. This should be anticipated during the formulation of food products. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Fluorometric detection of nitroaromatics by fluorescent lead complexes: A spectroscopic assessment of detection mechanism

    Science.gov (United States)

    Chattopadhyay, Tanmay; Chatterjee, Sourav; Majumder, Ishani; Ghosh, Soumen; Yoon, Sangee; Sim, Eunji

    2018-04-01

    Three Schiff base ligands such as 2-[(2-Hydroxy-3-methoxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL1), 2-[(2-Hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL2), 2-[(3,5-Dichloro-2-hydroxy-benzylidene)-amino]-2-hydroxymethyl-propane-1,3-diol (HL3) have been synthesized by condensation of aldehydes (such as 3,5-Dichloro-2-hydroxy benzaldehyde, 2-Hydroxy-benzaldehyde, and 2-Hydroxy-3-methoxy-benzaldehyde) with Tris-(hydroxymethyl)amino methane and characterized by IR, UV-vis and 1H NMR spectroscopy. Then all these three ligands have been used to prepare Pb(II) complexes by reaction with lead(II) acetate tri-hydrate in methanol. In view of analytical and spectral (IR, UV-vis and Mass) studies, it has been concluded that, except HL2, other two ligands form 1:1 metal complexes (1 and 3) with lead. Between two complexes, complex 3 is highly fluorescent and this property has been used to identify the pollutant nitroaromatics. Finally, the quenching mechanism has been established by means of spectroscopic investigation.

  12. Condensação de Knoevenagel de aldeídos aromáticos com o ácido de Meldrum em água: uma aula experimental de Química Orgânica Verde

    Directory of Open Access Journals (Sweden)

    Silvio Cunha

    2012-01-01

    Full Text Available This work describes an undergraduate experiment for the synthesis of Knoevenagel adduct of Meldrum's acid with nine aromatic aldehydes, using water as the solvent, in an adaptation of a previously reported synthetic protocol. The synthesis was straightforward, requiring a period of two hours, and is suitable for undergraduate experimental courses on green chemistry. In addition, quantitative analyses of the relative reactivity of p-nitro-benzaldehyde and p-metoxi-benzaldehyde was evaluated through the competitive reaction of equimolar amounts of these aldehydes with one equivalent of Meldrum's acid, using gas chromatography to quantify the composition of the reaction mixture.

  13. The influence of additives in the stoichiometry of hybrid lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Ignasi Burgués-Ceballos

    2017-11-01

    Full Text Available We investigate the employment of carefully selected solvent additives in the processing of a commercial perovskite precursor ink and analyze their impact on the performance of organometal trihalide perovskite (CH3NH3PbI3−xClx photovoltaic devices. We provide evidence that the use of benzaldehyde can be used as an effective method to preserve the stoichiometry of the perovskite precursors in solution. Benzaldehyde based additive engineering shows to improve perovskite solid state film morphology and device performance of CH3NH3PbI3−xClx based solar cells.

  14. Oxidation of styrene to benzaldehyde/benzoic acid

    Indian Academy of Sciences (India)

    For the first two catalysts (compounds 1 ... liquid phase reactions.7 H2O2 can oxidize the organic compounds with an efficiency of 47% (active oxidant= .... Solid state (diffuse reflectance) electronic absorption spectra of the parent compound 1 and regenerated 1, shown ... tion of the organic part (extraction with DCM layer).

  15. Minute Impurities Contribute Significantly to Olfactory Receptor Ligand Studies: Tales from Testing the Vibration Theory.

    Science.gov (United States)

    Paoli, M; Münch, D; Haase, A; Skoulakis, E; Turin, L; Galizia, C G

    2017-01-01

    Several studies have attempted to test the vibrational hypothesis of odorant receptor activation in behavioral and physiological studies using deuterated compounds as odorants. The results have been mixed. Here, we attempted to test how deuterated compounds activate odorant receptors using calcium imaging of the fruit fly antennal lobe. We found specific activation of one area of the antennal lobe corresponding to inputs from a specific receptor. However, upon more detailed analysis, we discovered that an impurity of 0.0006% ethyl acetate in a chemical sample of benzaldehyde-d 5 was entirely responsible for a sizable odorant-evoked response in Drosophila melanogaster olfactory receptor cells expressing dOr42b. Without gas chromatographic purification within the experimental setup, this impurity would have created a difference in the responses of deuterated and nondeuterated benzaldehyde, suggesting that dOr42b be a vibration sensitive receptor, which we show here not to be the case. Our results point to a broad problem in the literature on use of non-GC-pure compounds to test receptor selectivity, and we suggest how the limitations can be overcome in future studies.

  16. Synthesis, characterization and catalytic property of CuO and Ag/CuO nanoparticles for the epoxidation of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Lashanizadegan, Maryam; Erfaninia, Nasrin [Alzahra University, Tehran (Iran, Islamic Republic of)

    2013-11-15

    CuO nanorodes, CuO nanoplates and Ag/CuO nanoparticles were synthesized in the presence of polyethylene glycol by depositional in alkaline environment. Oxide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared absorption spectra (FT-IR). CuO and Ag/CuO nanoparticles show high catalytic activity for the selective epoxidation of styrene to styrene oxide by TBHP. Under the optimized reaction condition, the oxidation of styrene catalyzed by CuO nanorods gave 100% conversion with 60 and 35% styrene oxide and benzaldehyde, respectively. Ag/CuO gave 99% conversion and styrene oxide (71%) and benzaldehyde (12%) being the major product.

  17. Kinetics and Mechanism of Oxidation of Aromatic Aldehydes by Imidazolium Dichromate in Aqueous Acetic Acid Medium

    Directory of Open Access Journals (Sweden)

    S. Sheik Mansoor

    2009-01-01

    Full Text Available The kinetics of oxidation of benzaldehyde (BA and para-substituted benzaldehydes by imidazolium dichromate (IDC has been studied in aqueous acetic acid medium in the presence of perchloric acid. The reaction is first order each in [IDC], [Substrate] and [H+]. The reaction rates have been determined at different temperatures and the activation parameters calculated. Electron withdrawing substituents are found to increase the reaction and electron releasing substituents are found to retard the rate of the reaction and the rate data obey the Hammett relationship. The products of the oxidation are the corresponding acids. The rate decreases with the increase in the water content of the medium. A suitable mechanism is proposed.

  18. Ruthenium(II) complexes containing bidentate Schiff bases and ...

    Indian Academy of Sciences (India)

    Unknown

    triphenylphosphine or triphenylarsine. P VISWANATHAMURTHIa ... catalytic activities in the oxidation of benzyl alcohol to benzaldehyde. Keywords. Monobasic ... primarily because of the fascinating electron-transfer, photochemical and cata-.

  19. Heterogeneous Reactions between Toluene and NO2 on Mineral Particles under Simulated Atmospheric Conditions.

    Science.gov (United States)

    Niu, Hejingying; Li, Kezhi; Chu, Biwu; Su, Wenkang; Li, Junhua

    2017-09-05

    Heterogeneous reactions between organic and inorganic gases with aerosols are important for the study of smog occurrence and development. In this study, heterogeneous reactions between toluene and NO 2 with three atmospheric mineral particles in the presence or absence of UV light were investigated. The three mineral particles were SiO 2 , α-Fe 2 O 3 , and BS (butlerite and szmolnokite). In a dark environment, benzaldehyde was produced on α-Fe 2 O 3 . For BS, nitrotoluene and benzaldehyde were obtained. No aromatic products were produced in the absence of NO 2 in the system. In the presence of UV irradiation, benzaldehyde was detected on the SiO 2 surface. Identical products were produced in the presence and absence of UV light over α-Fe 2 O 3 and BS. UV light promoted nitrite to nitrate on mineral particles surface. On the basisi of the X-ray photoelectron spectroscopy (XPS) results, a portion of BS was reduced from Fe 3+ to Fe 2+ with the adsorption of toluene or the reaction with toluene and NO 2 . Sulfate may play a key role in the generation of nitrotoluene on BS particles. From this research, the heterogeneous reactions between organic and inorganic gases with aerosols that occur during smog events will be better understood.

  20. Heterogeneous Catalysis by Tetraethylammonium Tetrachloroferrate of the Photooxidation of Toluene by Visible and Near-UV Light

    Directory of Open Access Journals (Sweden)

    Kelsie R. Barnard

    2018-02-01

    Full Text Available Titanium dioxide is the most extensively used heterogeneous catalyst for the photooxidation of toluene and other hydrocarbons, but it has low utility for the synthesis of benzyl alcohol, of which little is produced, or benzaldehyde, due to further oxidation to benzoic acid and cresol, among other oxidation products, and eventually complete mineralization to CO2. Et4N[FeCl4] functions as a photocatalyst through the dissociation of chlorine atoms, which abstract hydrogen from toluene, and the photooxidation of toluene proceeds only as far as benzyl alcohol and benzaldehyde. Unlike TiO2, which requires ultraviolet (UV irradiation, Et4N[FeCl4] catalyzes the photooxidation of toluene with visible light alone. Even under predominantly UV irradiation, the yield of benzyl alcohol plus benzaldehyde is greater with Et4N[FeCl4] than with TiO2. Et4N[FeCl4] photocatalysis yields benzyl chloride as a side product, but it can be minimized by restricting irradiation to wavelengths above 360 nm and by the use of long irradiation times. The photonic efficiency of oxidation in one experiment was found to be 0.042 mol/einstein at 365 nm. The use of sunlight as the irradiation source was explored.

  1. An efficient catalyst for asymmetric Reformatsky reaction

    Indian Academy of Sciences (India)

    rate enantioselectivity using N,N-dialkylnorephedrines as chiral ligands. ..... temperatures also, there was no product conversion. ... Optimization of reaction conditions for asymmetric Reformatsky reaction between benzaldehyde and α-.

  2. Biological evaluation of 32 different essential oils against ...

    African Journals Online (AJOL)

    USER

    2016-01-27

    Jan 27, 2016 ... Among the various components of cinnamon oil, benzaldehyde and cinnamaldehyde ..... cinnamaldehyde have antimicrobial properties against .... Plant essential oils for pest and disease management. ... Needle. Sweet basil.

  3. A concise total synthesis of (R)-fluoxetine, a potent and selective serotonin reuptake inhibitor

    International Nuclear Information System (INIS)

    Fatima, Angelo de; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A.

    2005-01-01

    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (author)

  4. Antioxidant activities of isolated compounds from stems of Mimosa invisa Mart. ex Colla

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Rosane M. [Departamento de Quimica e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequie, BA (Brazil); Alves, Clayton Q.; David, Jorge M.; Rezende, Larissa C. de; Lima, Luciano S., E-mail: jmdavid@ufba.br [Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); David, Juceni P. [Faculdade de Farmacia, Universidade Federal da Bahia, Salvador, BA (Brazil); Queiroz, Luciano P. de [Departamento de Ciencias Biologicas, Universidade Estadual de Feira de Santana, BA (Brazil)

    2012-07-01

    This work describes the phytochemical study of stems of Mimosa invisa (Mimosaceae) and the evaluation of the antioxidant potential of isolated compounds. Chromatographic techniques were employed to isolate salicifoliol, pinoresinol, quercetin, quercetin-3-Orhamnopyranosyl, quercetin-3-O-arabinofuranosyl lupeol, -amyrin, sitosterol, p-hydroxy coumaric acid, 4-hydroxy-3-methoxy benzaldehyde (vanillin), 4-hydroxy-3,5-dimethoxy benzaldehyde, 4-hydroxy-3-methoxy benzoic acid and 4',6,7- trimethoxy flavonol. The latter had been previously described but the spectrometric data shown indicated the structure required review. The antioxidant activity of the compounds was evaluated by the DPPH test and capability of NBT reduction by superoxide radicals. Quercetin glycosides showed lower antioxidant potential than quercetin and, salicifoliol was found to be more active than pinoresinol. (author)

  5. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    International Nuclear Information System (INIS)

    Du, Pei-Yao; Liao, Sheng-Yun; Gu, Wen; Liu, Xin

    2016-01-01

    A 3D lanthanide MOF with formula [Sm 2 (abtc) 1.5 (H 2 O) 3 (DMA)]·H 2 O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  6. Cyanogenic glucoside patterns in sweet and bitter almonds

    DEFF Research Database (Denmark)

    Sánchez Pérez, Raquel; Møller, Birger Lindberg; Olsen, Carl Erik

    2009-01-01

    When an almond (Prunus dulcis (Mill.) D. A. Webb) kernel containing cyanogenic glucosides (prunasin or amygdalin) is disintegrated, the glucosides will typically be hydrolyzed by amygdalin hydrolase, prunasin hydrolase, and mandelonitrile lyase with concomitant release of glucose, benzaldehyde......, and hydrogen cyanide (HCN). Benzaldehyde and HCN, in low amounts, provide the characteristic almond taste and flavour. Because of the toxicity of HCN, low cyanogenic glucoside content in the kernel is a prime breeding target. Biochemical analyses of different almond tissues were carried out to investigate...... their ability to synthesize and degrade prunasin and amygdalin. The analyses were carried out during the entire growth season, from almond tree flowering to kernel ripening using the following tissues: leaves, petioles, and the fruit (endosperm and cotyledon). Four different genotypes were investigated...

  7. Synthesis of some novel fluoro isoxazolidine and isoxazoline ...

    Indian Academy of Sciences (India)

    and N-benzylhydroxylamine, with activated alkenes and electron deficient alkynes to afford enhanced rates and improved .... methodologies in nitrone cycloaddition reactions,14–18 herein ... ro benzaldehyde) were obtained commercially from.

  8. A concise total synthesis of (R)-fluoxetine, a potent and selective serotonin reuptake inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Fatima, Angelo de; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mail: pilli@iqm.unicamp.br

    2005-05-15

    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (author)

  9. Analysis of residual products in benzyl chloride used for the industrial synthesis of quaternary compounds by liquid chromatography with diode-array detection.

    Science.gov (United States)

    Prieto-Blanco, M C; López-Mahía, P; Prada-Rodríguez, D

    2009-02-01

    In industrial and pharmaceutical processes, the study of residual products becomes essential to guarantee the quality of compounds and to eliminate or minimize toxic residual products. Knowledge about the origin of impurities (raw materials, processes, the contamination of industrial plants, etc.) is necessary in preventive treatment and in the control of a product's lifecycle. Benzyl chloride is used as raw material to synthesize several quaternary ammonium compounds, such as benzalkonium chloride, which may have pharmaceutical applications. Benzaldehyde, benzyl alcohol, toluene, chloro derivatives of toluene, and dibenzyl ether are compounds that may be found as impurities in technical benzyl chloride. We proposed a high-performance liquid chromatography method for the separation of these compounds, testing two stationary phases with different dimensions and particle sizes, with the application of photodiode array-detection. The linearity for four possible impurities (benzaldehyde, toluene, alpha,alpha-dichlorotoluene, and 2-chlorotoluene) ranged from 0.1 to 10 microg/mL, limits of detection from 11 to 34 ng/mL, and repeatability from 1% to 2.9% for a 0.3-1.2 microg/mL concentration range. The method was applied to samples of technical benzyl chloride, and alpha,alpha-dichlorotoluene and benzaldehyde were identified by spectral analysis and quantitated. The selection of benzyl chloride with lower levels of impurities is important to guarantee the reduction of residual products in further syntheses.

  10. Co-exposure with fullerene may strengthen health effects of organic industrial chemicals.

    Directory of Open Access Journals (Sweden)

    Maili Lehto

    Full Text Available In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C60 and organic chemicals represent different co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C60 that is more cytotoxic than benzaldehyde alone, and for a filtered mixture of m-cresol and C60 that is slightly less cytotoxic than m-cresol. Hydrophobicity of chemicals correlates with co-effects when secretion of pro-inflammatory cytokines IL-1β and TNF-α is considered. Complementary atomistic molecular dynamics simulations reveal that C60 co-aggregates with all chemicals in aqueous environment. Stable aggregates have a fullerene-rich core and a chemical-rich surface layer, and while essentially all C60 molecules aggregate together, a portion of organic molecules remains in water.

  11. Co-Exposure with Fullerene May Strengthen Health Effects of Organic Industrial Chemicals

    DEFF Research Database (Denmark)

    Lehto, M.; Karilainen, T.; Rog, T.

    2014-01-01

    In vitro toxicological studies together with atomistic molecular dynamics simulations show that occupational co-exposure with C-60 fullerene may strengthen the health effects of organic industrial chemicals. The chemicals studied are acetophenone, benzaldehyde, benzyl alcohol, m-cresol, and toluene...... which can be used with fullerene as reagents or solvents in industrial processes. Potential co-exposure scenarios include a fullerene dust and organic chemical vapor, or a fullerene solution aerosolized in workplace air. Unfiltered and filtered mixtures of C-60 and organic chemicals represent different...... co-exposure scenarios in in vitro studies where acute cytotoxicity and immunotoxicity of C-60 and organic chemicals are tested together and alone by using human THP-1-derived macrophages. Statistically significant co-effects are observed for an unfiltered mixture of benzaldehyde and C-60 that is more...

  12. Investigation of extractive microbial transformation in nonionic surfactant micelle aqueous solution using response surface methodology.

    Science.gov (United States)

    Xue, Yingying; Qian, Chen; Wang, Zhilong; Xu, Jian-He; Yang, Rude; Qi, Hanshi

    2010-01-01

    Extractive microbial transformation of L-phenylacetylcarbinol (L-PAC) in nonionic surfactant Triton X-100 micelle aqueous solution was investigated by response surface methodology. Based on the Box-Behnken design, a mathematical model was developed for the predication of mutual interactions between benzaldehyde, Triton X-100, and glucose on L-PAC production. It indicated that the negative or positive effect of nonionic surfactant strongly depended on the substrate concentration. The model predicted that the optimal concentration of benzaldehyde, Triton X-100, and glucose was 1.2 ml, 15 g, and 2.76 g per 100 ml, respectively. Under the optimal condition, the maximum L-PAC production was 27.6 mM, which was verified by a time course of extractive microbial transformation. A discrete fed-batch process for verification of cell activity was also presented.

  13. A multifunctional chemical sensor based on a three-dimensional lanthanide metal-organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Du, Pei-Yao [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liao, Sheng-Yun [Department of Applied Chemistry, Tianjin University of Technology, Tianjin 300384 (China); Gu, Wen, E-mail: guwen68@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China); Liu, Xin, E-mail: liuxin64@nankai.edu.cn [College of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071 (China)

    2016-12-15

    A 3D lanthanide MOF with formula [Sm{sub 2}(abtc){sub 1.5}(H{sub 2}O){sub 3}(DMA)]·H{sub 2}O·DMA (1) has been successfully synthesized via solvothermal method. Luminescence studies reveal that 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. In addition, 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules, which suggests that 1 is also a promising luminescent probe for high selective sensing of ethanol. - Highlights: • A three-dimensional lanthanide metal-organic framework has been synthesized. • Complex 1 exhibits dual functional detection benzyl alcohol and benzaldehyde among different aromatic molecules. • Complex 1 displays a turn-on luminescence sensing with respect to ethanol among different alcohol molecules.

  14. Determination of volatile compounds by gas liquid chromatography in tropical fruit, guava (psidium guajav L.)

    International Nuclear Information System (INIS)

    Hussain, A.; Zeb-un-Nisa; Asi, M. R.; Ahmad, R.; Iqbal, Z.; Maqbool, A. B.

    2002-01-01

    Volatile flavor components from both white and pink guava fruits were collected using Likens-Nickerson concurrent Distillation Extraction method and were analyzed by GC/FID. In the essence collected by using likens-Nickerson concurrent distillation extraction apparatus, 23 compounds were present in white guava fruit, of which 11 compounds (furfural, alpha-pinene, trans-2-hexene-1-ol, 2-heptanone, benzaldehyde, hexyl acetate Beta-ionone, limonene, 2-nonanone, cinamyl acetate and octyl acetate) were identified. Similarly for pink guava fruit, 13 compounds out of 29 compounds were identified by comparing retention times of unknown with that of standard compounds and sniffing at the odour port. These were hexanal, furfural, 2-heptanone, benzaldehyde, methyl furfural hexyl acetate, beta-ionone, alpha-pinene, 2-nonanone, limonene, cinnamyl acetate, ethyl undecanoate and octyl acetate. (author)

  15. The First Total Synthesis of Isoliquiritin

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A first total synthesis of isoliquiritin was accomplished starting from p-hydroxy- benzaldehyde and 2,4-dihydroxyacetylphenone. The key step is condensation reaction. In synthetic process need not protect the hydroxy group of reacting substance.

  16. Texture of semi-solids : sensory flavor-texture interactions for custard desserts

    NARCIS (Netherlands)

    Wijk, de R.A.; Rasing, F.; Wilkinson, C.L.

    2003-01-01

    Possible interactions between flavor and oral texture sensations were investigated for four flavorants, diacetyl, benzaldehyde, vanillin, and caffeine, added in two concentrations to model vanilla custard desserts. The flavorants affected viscosities and resulted in corresponding changes in

  17. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15 -500 ) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15 -500 supported zirconium complexes were characterized by in situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands

  18. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Keywords. -aryl--mercaptoketones; anhydrous potassium carbonate; amberlyst-15; chalcones; thia-Michael addition. Abstract. Two expedient one-pot methods have been developed for synthesis of -aryl--mercaptoketones using acetophenones, benzaldehydes and thiols as starting materials. The methods involve ...

  19. A novel magnetically recyclable heterogeneous catalyst

    Indian Academy of Sciences (India)

    propanesultone. 1. Introduction ... O. Scheme 2. The reaction of benzaldehyde with 1-phenyl-3- ... (2 mmol), catalyst (2 mol%, except for entries 7 and 9), room temperature. bCatalyst = 1 .... The electronic supporting information can be seen in.

  20. Synthesis of a novel chemotype via sequential metal-catalyzed cycloisomerizations

    Directory of Open Access Journals (Sweden)

    Bo Leng

    2012-08-01

    Full Text Available Sequential cycloisomerizations of diynyl o-benzaldehyde substrates to access novel polycyclic cyclopropanes are reported. The reaction sequence involves initial Cu(I-mediated cycloisomerization/nucleophilic addition to an isochromene followed by diastereoselective Pt(II-catalyzed enyne cycloisomerization.

  1. short communication pcl5 as a mild and efficient catalyst for the ...

    African Journals Online (AJOL)

    a

    1Department of Chemistry, Faculty of Sciences, Persian Gulf University, .... At first, we studied the reaction of indole with benzaldehyde (2/1 molar ratio) in order ... decreased the yields and enhanced reaction times (Table 2, compounds 1m-o).

  2. Untitled

    Indian Academy of Sciences (India)

    ,10-dihalo compounds) and their triplet formation. T Nakayama, K Ibuki and K Hamanoue ... Electron-nuclear cross-relaxation effect on the photochemical reaction of benzaldehyde as studied by CIDNP and DNP Y Yamakage,. Q Meng, S S Ali, ...

  3. Sol-gel process preparation and evaluation of the analytical performances of an hydrazine specific chemical sensor

    International Nuclear Information System (INIS)

    Gojon, C.

    1996-12-01

    The realisation of optical fibers active chemical collector to analyze hydrazine in line, in the spent fuel reprocessing process is the subject of this work. The p.dimethyl-amino-benzaldehyde has been chosen as reagent for its chemical and optical properties

  4. Synthesis of pterostilbene by Julie Olefination

    Science.gov (United States)

    A simple, stereoselective route for the synthesis of the biologically active compounds trans-pterostilbene and tetramethoxy stilbene from the readily available starting materials 3,5-dimethoxy benzyl alcohol and 4-hydroxy benzaldehyde was developed using Julia olefination as a key reaction....

  5. Adsorption, mobility, and dimerization of benzaldehyde on Pt(111)

    DEFF Research Database (Denmark)

    Rasmussen, Anton Michael Havelund; Hammer, Bjørk

    2012-01-01

    to have low energy barriers. Aggregation of molecules in dimers bound by aryl C–H⋯O hydrogen bonds is investigated, and specific configurations are found to be up to 0.15 eV more favorable than optimally configured, separated adsorbates. The binding is significantly stronger than what is found for gas...

  6. Determination of NH_2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    International Nuclear Information System (INIS)

    Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.

    2017-01-01

    Highlights: • A new method for primary amines derivatization is proposed and validated. • The chemical structure of APTES layer is studied. • The derivatization by 5-iodo 2-furaldehyde allowed to avoid side reactions in contrast to 4-trifluoromethyl benzaldehyde derivatization. - Abstract: The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH_2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH_2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH_2 fraction ∼8.5%. This value is closely matching the NH_2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH_2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably

  7. Determination of NH{sub 2} concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Manakhov, Anton, E-mail: ant-manahov@ya.ru [National University of Science and Technology “MISiS”, Leninsky pr. 4, Moscow 119049 (Russian Federation); RG Plasma Technologies, CEITEC—Central European Institute of Technology, Masaryk University, Kotlářská, 2, 61137 Brno (Czech Republic); Čechal, Jan [CEITEC—Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 612 00 Brno (Czech Republic); Institute of Physical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno (Czech Republic); Michlíček, Miroslav [RG Plasma Technologies, CEITEC—Central European Institute of Technology, Masaryk University, Kotlářská, 2, 61137 Brno (Czech Republic); Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno (Czech Republic); Shtansky, Dmitry V. [National University of Science and Technology “MISiS”, Leninsky pr. 4, Moscow 119049 (Russian Federation)

    2017-08-31

    Highlights: • A new method for primary amines derivatization is proposed and validated. • The chemical structure of APTES layer is studied. • The derivatization by 5-iodo 2-furaldehyde allowed to avoid side reactions in contrast to 4-trifluoromethyl benzaldehyde derivatization. - Abstract: The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH{sub 2} groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH{sub 2}/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH{sub 2} fraction ∼8.5%. This value is closely matching the NH{sub 2}/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH{sub 2}/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA

  8. Aldolase catalyzed L-phenylserine synthesis in a slug-flow microfluidic system - Performance and diastereoselectivity studies

    NARCIS (Netherlands)

    Čech, J.; Hessel, V.; Přibyl, M.

    2017-01-01

    We study synthesis of . L-phenylserine catalyzed by the enzyme . L-threonine aldolase in a slug-flow microfluidic system. Slug-flow arrangement allows for the continuous refilling of sparingly soluble substrate (benzaldehyde) into an aqueous reaction mixture. We identified suitable composition of an

  9. Sol-gel process preparation and evaluation of the analytical performances of an hydrazine specific chemical sensor; Preparation par procede sol-gel et evaluation des performances analytiques d`un capteur chimique specifique de l`hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Gojon, C

    1996-12-01

    The realisation of optical fibers active chemical collector to analyze hydrazine in line, in the spent fuel reprocessing process is the subject of this work. The p.dimethyl-amino-benzaldehyde has been chosen as reagent for its chemical and optical properties. 186 refs.

  10. Substituent effect of phenolic aldehyde inhibition on alcoholic fermentation by Saccharomyces cerevisiae

    Science.gov (United States)

    Rui Xie; Maobing Tu; Thomas Elder

    2016-01-01

    Phenolic compounds significantly inhibit microbial fermentation of biomass hydrolysates. To understand thequantitative structure-inhibition relationship of phenolic aldehydes on alcoholic fermentation, the effect of 11 differentsubstituted benzaldehydes on the final ethanol yield was examined. The results showed that the degree of phenolic...

  11. Azeotropic Preparation of a "C"-Phenyl "N"-Aryl Imine: An Introductory Undergraduate Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Silverberg, Lee J.; Coyle, David J.; Cannon, Kevin C.; Mathers, Robert T.; Richards, Jeffrey A.; Tierney, John

    2016-01-01

    Imines are important in biological chemistry and as intermediates in organic synthesis. An experiment for introductory undergraduate organic chemistry is presented in which benzaldehyde was condensed with "p"-methoxyaniline in toluene to give 4-methoxy-"N"-(phenylmethylene)benzenamine. Water was removed by azeotropic…

  12. Ultrasound-assisted synthesis of curcumin analogs promoted by activated chicken eggshells

    Science.gov (United States)

    Mardiana, L.; Ardiansah, B.; Septiarti, A.; Bakri, R.; Kosamagi, G.

    2017-07-01

    Curcumin has been widely known as a multifunctional natural product which has many biological activities. However, the biggest limitation for the large scale application of curcumin is its poor bioavailability. This research presented a cheap, mild and efficient solvent-free synthesis of monocarbonyl analogs of curcumin via Aldol condensation using activated chicken eggshells (ACE). Dibenzalpropanone as a product of Aldol condensation was prepared by mixing benzaldehyde and acetone using a simple glass tube in the presence of ACE under ultrasound irradiation (78 % yield), while dibenzalcyclohexanone was produced from the reaction of benzaldehyde with cyclohenxanone (81 %). The products have been characterized by FTIR, UV-Vis spectrophotometer and GC-MS instruments. The FTIR spectra show a significant absorption of carbonyl group that attached to the double bond in α,β-position at 1630-1660 cm-1. The molecular cation of m/z of 234 and 274 is in agreement with the products structures.

  13. Analysis and optimization of a synthetic milkweed floral attractant for mosquitoes.

    Science.gov (United States)

    Otienoburu, Philip E; Ebrahimi, Babak; Phelan, P Larry; Foster, Woodbridge A

    2012-07-01

    A pentane extract of flowers of common milkweed, Asclepias syriaca (Asclepiadaceae), elicited significant orientation from both male and female Culex pipiens in a dual-port flight olfactometer. Analysis of the extract by gas chromatography-mass spectrometry revealed six major constituents in order of relative abundance: benzaldehyde, (E)-β-ocimene, phenylacetaldehyde, benzyl alcohol, nonanal, and (E)-2-nonenal. Although not all were collected from the headspace profile of live flowers, a synthetic blend of these six compounds, when presented to mosquitoes in the same levels and proportions that occur in the extract, elicited a response comparable to the extract. Subtractive behavioral bioassays demonstrated that a three-component blend consisting of benzaldehyde, phenylacetaldehyde, and (E)-2-nonenal was as attractive as the full blend. These findings suggest the potential use of synthetic floral-odor blends for monitoring or control of both male and female disease-vectoring mosquitoes.

  14. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    Graphical abstract: Ligand-modified signal-site SBA-15 supported zirconium catalysts were synthesized by SOMC method and characterized by a variety of techniques. The zirconium surface complexes show high catalytic efficiency for cyanosilylation of benzaldehyde. - Highlights: • Some Zr active species have been anchored on the surface of SBA-15 by SOMC technique. • The structures of the Zr species have been characterized by a variety of techniques. • The anchored Zr species are single-sited surface complexes. • The Zr surface complexes are catalytic active for cyanosilylation of benzaldehyde. - Abstract: A successive anchoring of Zr(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15{sub -500}) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15{sub -500} supported zirconium complexes were characterized by in situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  15. Oxygen-rich molybdenum and chromium complexes: Synthesis ...

    Indian Academy of Sciences (India)

    Administrator

    with high turnover, but this apart, (3) catalytically reduces water present in organic solvent to dihydrogen while oxidising benzaldehyde and cinnamaldehyde to the respective acids. The same catalyst shows catalase type behaviour bringing out dioxygen from hydrogen peroxide. Reference. 1. Bandyopadhyay R, Biswas S, ...

  16. Synthesis and crystal structure of a dinuclear rhodium complex. Catalytic activity of mono- and di-nuclear rhodium phosphite complexes in hydroformylation

    NARCIS (Netherlands)

    Beuken, Esther K. van den; Lange, Wim G.J. de; Leeuwen, Piet W.N.M. van; Veldman, Nora; Spek, Anthony L.; Feringa, Bernard

    1996-01-01

    A new bidentate phosphite, {bis[2-(diphenoxyphosphinoxy)-1-naphthyl]methyl}benzene L(1) and a tetradentate phosphite, 1,4-bis{bis[2-(diphenoxyphosphinoxy)-1-naphthyl]methyl}benzene L(2) were prepared in a facile two-step procedure involving condensation of 2-naphthol with respectively benzaldehyde

  17. synthesis, characterization, electrical and catalytic studies of some

    African Journals Online (AJOL)

    B. S. Chandravanshi

    catalytic activity of the VO(IV) and Mn(III) complexes have been tested in the epoxidation reaction of styrene ... Vanadyl sulfate pentahydrate, chromium chloride hexahydrate, anhydrous ferric ..... The catalytic oxidation of styrene gives the products styrene oxide, benzaldehyde, benzoic acid, ... bond via a radical mechanism.

  18. Fast and Green Microwave-Assisted Conversion of Essential Oil Allylbenzenes into the Corresponding Aldehydes via Alkene Isomerization and Subsequent Potassium Permanganate Promoted Oxidative Alkene Group Cleavage

    DEFF Research Database (Denmark)

    Luu, Thi Xuan Thi; Lam, Trinh To; Le, Thach Ngoc

    2009-01-01

    Essential oil allylbenzenes from have been converted quickly and efficiently into the corresponding benzaldehydes in good yields by a two-step "green" reaction pathway based on a solventless alkene group isomerization by KF/Al2O3 to form the corresponding 1-arylpropene and a subsequent solventles...

  19. Synthesis of 4-aryl-3,4-dihydrocoumarin derivatives catalyzed by NbCl{sub 5}; Sintese de derivados 4-aril-3,4-di-hidrocuraminicos catalisada por NbCl{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Willian Henrique dos; Siqueira, Mayara de Souza; Silva-Filho, Luiz Carlos da, E-mail: lcsilva@fc.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Bauru, SP (Brazil). Faculdade de Ciencias

    2013-11-01

    Multicomponent reactions between phenols, {beta}-diesters and benzaldehydes for the synthesis of 4-aryl-3,4-dihydrocoumarin derivatives were carried out under mild conditions (room temperature) and presented moderate yields (38-88%) and reasonable reaction times (2-4 days), using niobium pentachloride as a catalyst. (author)

  20. Deoxygenation of benzoic acid on metal oxides. 2. Formation of byproducts.

    NARCIS (Netherlands)

    de Lange, M.W.; van Ommen, J.G.; Lefferts, Leonardus

    2002-01-01

    Benzene, benzophenone, toluene and benzylalcohol are byproducts in the selective deoxygenation of benzoic acid to benzaldehyde on ZnO and ZrO2. In this paper, the pathways to the byproducts are discussed and a complete overview of the reaction network is presented. Benzene and benzophenone are

  1. Comparative reactivity of different types of stable cyclic and acyclic mono- and diamino carbenes with simple organic substrates.

    Science.gov (United States)

    Martin, David; Canac, Yves; Lavallo, Vincent; Bertrand, Guy

    2014-04-02

    A series of stable carbenes, featuring a broad range of electronic properties, were reacted with simple organic substrates. The N,N-dimesityl imidazolylidene (NHC) does not react with isocyanides, whereas anti-Bredt di(amino)carbene (pyr-NHC), cyclic (alkyl)(amino)carbene (CAAC), acyclic di(amino)carbene (ADAC), and acyclic (alkyl)(amino)carbene (AAAC) give rise to the corresponding ketenimines. NHCs are known to promote the benzoin condensation, and we found that the CAAC, pyr-NHC, and ADAC react with benzaldehyde to give the ketone tautomer of the Breslow intermediate, whereas the AAAC first gives the corresponding epoxide and ultimately the Breslow intermediate, which can be isolated. Addition of excess benzaldehyde to the latter does not lead to benzoin but to a stable 1,3-dioxolane. Depending on the electronic properties of carbenes, different products are also obtained with methyl acrylate as a substrate. The critical role of the carbene electrophilicity on the outcome of reactions is discussed.

  2. OH-radical induced degradation of hydroxybenzoic- and hydroxycinnamic acids and formation of aromatic products-A gamma radiolysis study

    Energy Technology Data Exchange (ETDEWEB)

    Krimmel, Birgit; Swoboda, Friederike [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Solar, Sonja, E-mail: sonja.solar@univie.ac.a [University of Vienna, Department of Nutritional Sciences, Section Radiation Biology (Austria); Reznicek, Gottfried [Department of Pharmacognosy, Althanstrasse 14, A-1090 Vienna (Austria)

    2010-12-15

    The OH-radical induced degradation of hydroxybenzoic acids (HBA), hydroxycinnamic acids (HCiA) and methoxylated derivatives, as well as of chlorogenic acid and rosmarinic acid was studied by gamma radiolysis in aerated aqueous solutions. Primary aromatic products resulting from an OH-radical attachment to the ring (hydroxylation), to the position occupied by the methoxyl group (replacement -OCH{sub 3} by -OH) as well as to the propenoic acid side chain of the cinnamic acids (benzaldehyde formations) were analysed by HPLC-UV and LC-ESI-MS. A comparison of the extent of these processes is given for 3,4-dihydroxybenzoic acid, vanillic acid, isovanillic acid, syringic acid, cinnamic acid, 4-hydroxycinnamic acid, caffeic acid, ferulic acid, isoferulic acid, chlorogenic acid, and rosmarinic acid. For all cinnamic acids and derivatives benzaldehydes were significant oxidation products. With the release of caffeic acid from chlorogenic acid the cleavage of a phenolic glycoside could be demonstrated. Reaction mechanisms are discussed.

  3. Condensation reactions of glucose and aromatic ring; Glucose to hokokan tono shukugo hanno

    Energy Technology Data Exchange (ETDEWEB)

    Komano, T.; Mashimo, K.; Wainai, T.; Tanaka, C.; Yoshioka, T. [Nihon University, Tokyo (Japan). College of Science and Technology; Sugimoto, Y.; Miki, Y. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1996-10-28

    For artificial coalification, condensation reactions of aromatic ring and activated compounds produced by dehydrating reaction of glucose were studied experimentally. In heat treatment experiment in water, three reaction specimens such as glucose, glucose and phenol, and glucose and benzaldehyde were fed into an autoclave together with distilled water, and subjected to reaction at 180{degree}C under spontaneous pressure for 50 hours. In hydrogenation experiment, the specimens were fed into an autoclave together with tetradecane and sulfurization catalyst, and subjected to reaction at 350{degree}C under initial pressure of 9.8MPa for 2 hours for gas chromatography (GC) analysis of products. As the experimental result, the reaction between glucose and aromatic ring in heat treatment in water occurred between aromatic ring and active fragment with a mean carbon number of 4-5 produced by decomposition of glucose. The reactivity was higher in benzaldehyde addition than phenol addition. 3 refs., 4 figs., 1 tab.

  4. Conformational and vibrational analysis of 5-hydroxy 2-nitrobenzaldehyde by AB initio hartree-fock, density functional theory calculations

    International Nuclear Information System (INIS)

    Cinakli, S.; Sert, Y.; Boeyuekata, M.; Ucun, F.

    2010-01-01

    The vibrational spectra of benzaldehyde and its derivatives have been studied earlier. The substitution of a functional group changes the spectra markedly. Recent spectroscopic studies of the benzaldehyde and their derivatives have been motivated because the vibrational spectra are very useful for understanding of specific biological process and in the analysis of relatively complex systems. The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments, the total energy calculations, relative energies, the mean vibrational deviations of the two planar O-cis and O-trans roomers of 5-Hydroxy 2-nitrobenzaldehydes have been calculated using ab initio Hartree Fock (HF) and Density Functional Theory (B3LYP) with 6-311++G(d,p) basis set. All computations have been performed on personal computer using the Gaussian 03 program package. The calculations were adapted to Cs symmetries of all the molecules. The O-trans rotomers with lower energy of all the molecules have been found as preferential rotomers in the ground state.

  5. Aldol Reactions of Axially Chiral 5-Methyl-2-(o-arylimino-3-(o-aryl-thiazolidine-4-ones

    Directory of Open Access Journals (Sweden)

    Sule Erol Gunal

    2016-06-01

    Full Text Available Axially chiral 5-methyl-2-(o-arylimino-3-(o-aryl-thiazolidine-4-ones have been subjected to aldol reactions with benzaldehyde to produce secondary carbinols which have been found to be separable by HPLC on a chiral stationary phase. Based on the reaction done on a single enantiomer resolved via a chromatographic separation from a racemic mixture of 5-methyl-2-(α-naphthylimino-3-(α-naphthyl-thiazolidine-4-one by HPLC on a chiral stationary phase, the aldol reaction was shown to proceed via an enolate intermediate. The axially chiral enolate of the thiazolidine-4-one was found to shield one face of the heterocyclic ring rendering face selectivity with respect to the enolate. The selectivities observed at C-5 of the ring varied from none to 11.5:1 depending on the size of the ortho substituent. Although the aldol reaction proceeded with a lack of face selectivity with respect to benzaldehyde, recrystallization returned highly diastereomerically enriched products.

  6. Hydrodeoxygenation of aldehydes catalyzed by supported palladium catalysts

    Czech Academy of Sciences Publication Activity Database

    Procházková, D.; Zámostný, P.; Voláková, Martina; Červený, L.; Čejka, Jiří

    2007-01-01

    Roč. 332, č. 1 (2007), s. 56-64 ISSN 0926-860X Grant - others:GA ČR GA104/06/0684 Program:GA Institutional research plan: CEZ:AV0Z40400503 Keywords : hydrogenation * hydrodeoxygenation * benzaldehyde * cinnamaldehyde Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2007

  7. Less common patterns of reduction of some oximes

    Czech Academy of Sciences Publication Activity Database

    Celik, H.; Ludvík, Jiří; Zuman, P.

    2007-01-01

    Roč. 52, č. 5 (2007), s. 1990-2000 ISSN 0013-4686 R&D Projects: GA MŠk 1P05ME785 Institutional research plan: CEZ:AV0Z40400503 Keywords : polarography * benzaldehyde oximes * acetophenone oximes * isomeric monoximes Subject RIV: CG - Electrochemistry Impact factor: 2.848, year: 2007

  8. Probing the Rate-Determining Step of the Claisen-Schmidt Condensation by Competition Reactions

    Science.gov (United States)

    Mak, Kendrew K. W.; Chan, Wing-Fat; Lung, Ka-Ying; Lam, Wai-Yee; Ng, Weng-Cheong; Lee, Siu-Fung

    2007-01-01

    Competition experiments are a useful tool for preliminary study of the linear free energy relationship of organic reactions. This article describes a physical organic experiment for upper-level undergraduates to identify the rate-determining step of the Claisen-Schmidt condensation of benzaldehyde and acetophenone by studying the linear free…

  9. Synthesis and Characterization of Multimetallic Fe(II) and Mn(II ...

    African Journals Online (AJOL)

    MBI

    It is derived from the condensation reactions of tris(2-aminoethyl)amine (tren), with 3 equivalents of ... from condensation of 5-bromo-2-hydroxy benzaldehyde with tris-(2-aminoethyl)amine and complex it with either ... temperature was obtained using capillary tube and molar conductance of 10-3M was determined at.

  10. Electronic Effects in the Cyclocondensation of Benzil

    Indian Academy of Sciences (India)

    IAS Admin

    This is attributed to the reduced availability of the lone pair of electrons on nitrogen in urea that is needed for assisting the dehydration of the intermediate. Introduction. A popular experiment performed in MSc organic chemistry labo- ratory classes is the following sequence of simple preparations starting from benzaldehyde ...

  11. Multiple-division of self-propelled oil droplets through acetal formation.

    Science.gov (United States)

    Banno, Taisuke; Kuroha, Rie; Miura, Shingo; Toyota, Taro

    2015-02-28

    We demonstrate a novel system that exhibits both self-propelled motion and division of micrometer-sized oil droplets induced by chemical conversion of the system components. Such unique dynamics were observed in an oil-in-water emulsion of a benzaldehyde derivative, an alkanol and a cationic surfactant at a low pH.

  12. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    International Nuclear Information System (INIS)

    Elhadi, S. A.

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, 1 H-and 13 C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  13. Synthesis of 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Elhadi, S A [Department of Chemistry, Faculty of Education, University of Khartoum, Khartoum (Sudan)

    2004-09-01

    Quinolin derivatives are a group of compounds known to possess a wide range of biological activities. The chemistry of quinolines together with their corresponding aldehydes were dealt with in chapter one of this study. Special emphasis was given to the chemistry of benzaldehyde. Twenty five 2-phenyl- and 2,3-diphenyl-quinolin-4-carboxylic acid derivatives together with their corresponding intermediates were prepared in this work. Basically, the synthetic design of these compounds arise from the appropriate disconnections of the target 2-phenyl and 2,3-diphenyl-quinolin-4-carboxylic acids. The retro synthesis analysis of these compounds reveals pyruvic acid, aromatic amine and benzaldehyde or phenyl pyruvic acid, aromatic amine and benzaldehyde as possible logical precursors for 2-phenyl-and 2,3-diphenyl- quinoline-4-carboxylic acids respectively. The purity and identities of the synthesized compounds were elucidated through chromatographic and spectroscopic techniques. The compounds were heavily subjected to spectroscopic analysis (UV, IR, GC/MS, {sup 1}H-and {sup 13}C- NMR). The appropriate disconnections and the mechanisms of the corresponding reactions were given and discussed in chapter three. The spectral data were interpreted and correlated with the target structures. The prepared 2-phenyl- and 2,3-diphenyl-quinoline-4-carboxylic acid derivatives were screened for their antibacterial activity. The compounds were tested against the standard bacterial organisms B. subtilis, S. aureus, E. coli and P. vulgaris. Some of these compounds were devoid of antibacterial activity against S. aureus and P. vulgaris, while others showed moderate activity. All of the tested compounds showed an activity against B. subtilis and E. coli. 2,3-diphenyl -6-sulphanilamide-quinolin-4-carboxylic acid showed the highest activity against the four standard tested organisms.(Author)

  14. Amides and an alkaloid from Portulaca oleracea.

    Science.gov (United States)

    Kokubun, Tetsuo; Kite, Geoffrey C; Veitch, Nigel C; Simmonds, Monique S J

    2012-08-01

    A total of 16 phenolic compounds, including one new and five known N-cinnamoyl phenylethylamides, one new pyrrole alkaloid named portulacaldehyde, five phenylpropanoid acids and amides, and derivatives of benzaldehyde and benzoic acid, were isolated and identified from a polar fraction of an extract of Portulaca oleracea. Their structures were determined through spectroscopic analyses.

  15. Synthesis and characterization of a novel series of meso (nitrophenyl and meso (carboxyphenyl substituted porphyrins

    Directory of Open Access Journals (Sweden)

    Schiavon Marco A.

    2000-01-01

    Full Text Available The anionic 5,10,15-tris(4-carboxyphenyl, 20-mono(2-nitrophenyl porphyrin (1, 5,10(or 15-bis(4-carboxyphenyl, 15(or 10,20-bis(2-nitrophenylporphyrin (2 and 5-mono(4-carboxyphenyl, 10,15,20-tris(2-nitrophenylporphyrin (3 were sinthesized directly by reaction of pyrrole with substituted benzaldehydes in nitrobenzene/propionic acid media. The benzaldehydes molar ratio was controlled to optimize the synthesis and purification of the desired porphyrins. This new series of porphyrins was characterised by TLC, mass spectrometry (FAB MS, ¹H NMR, UV/Vis, IR and electrochemistry. 5,10,15,20-Tetrakis(4-carboxyphenylporphyrin (4 and 5,10,15,20-Tetrakis(2-nitrophenylporphyrin (5 were also characterised for comparative purposes, completing the series The electrochemical reduction was investigated for the free base and corresponding iron(III porphyrins on glassy carbon and mercury electrodes. The reduction potentials showed the expected dependence on the number of electron-withdrawing nitro groups present on the porphyrin ring providing additional evidences for the characterisation of the synthesised compounds.

  16. Radiolysis of benzyl alcohol in aqueous solution by external gamma-irradiation

    International Nuclear Information System (INIS)

    Ikebuchi, Hideharu; Kido, Yasumasa; Urakubo, Goro

    1977-01-01

    Radiolysis of 0.05% aqueous solution of benzyl alcohol with 60 Co γ-rays ranging from 1 x 10 4 to 7 x 10 5 rad was investigated, in order to presume the change of it contained in radiopharmaceuticals. For both O 2 free and oxygenated solutions, an approximately linear relationship holds between the retaining benzyl alcohol and dose in the range from 1 x 10 5 to 7 x 10 5 rads. The G(-M) values of benzyl alcohol calculated from the relation were 2.34 in the absence and 1.92 in presence of oxygen. In the presence of oxygen, a main product was benzaldehyde and its G value was 0.87. In the absence of oxygen, the main products of the radiolysis were dibenzyl, benzyl phenylcalbinol and hydrobenzoin, which were regarded as the radical-reaction products of PhCH 2 and PhCHOH, and the yield of benzaldehyde was negligible. Irrespective of the presence of oxygen, o- and p-hydroxylated products of benzyl alcohol were found only in small quantity. (auth.)

  17. Reactive mesogen photoalignment on photopolymerizable composite layer

    International Nuclear Information System (INIS)

    Mahilny, U V; Stankevich, A I; Trofimova, A V

    2016-01-01

    The volume photoanisotropy (photoinduced birefringence) and surface photoanisotropy (LC photoalignment) of compositions of LC monomer - benzaldehyde polymer upon polarized UV radiation have been revealed and investigated. A high quality of photoalignment is confirmed by an extreme value of birefringence and low imperfection of phase plates fabricated on the basis of LC monomer on composite layer. (paper)

  18. Author Details

    African Journals Online (AJOL)

    Akinchan, Narayan T. Vol 9, No 1 (2003) - Articles Identification of Trimer and Dimer of 4-hydroxy-3-methoxy benzaldehyde in crystal structure of Vanillin Abstract PDF. ISSN: 1118-0579. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL · AJOL's ...

  19. Role and structural characterization of plant aldehyde dehydrogenases from family 2 and family 7

    Czech Academy of Sciences Publication Activity Database

    Končitíková, R.; Vigouroux, A.; Kopečná, M.; Andree, T.; Bartoš, Jan; Šebela, M.; Moréra, S.; Kopečný, D.

    2015-01-01

    Roč. 468, Part: 1 (2015), s. 109-123 ISSN 0264-6021 R&D Projects: GA ČR GA15-22322S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : aldehyde dehydrogenase 2 (ALDH2) * aldehyde dehydrogenase 7 (ALDH7) * benzaldehyde Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.562, year: 2015

  20. The synthesis of N–Zn, N–Cu complexes involving 2-amino pyridine ...

    Indian Academy of Sciences (India)

    Administrator

    alcohol, and the reaction mixture was refluxed for. 14 h. The mixture was filtered to furnish white cry- .... benzaldehyde to 2-nitro-1-phenylethanol was esta- blished according to the content ratio of the remin- ... Zn(OAc)2 ·2 H2O in ethanol, THF or acetonitrile, the corresponding complexes were obtained after reflux- ing for 14 ...

  1. Synthesis of 14C analogue of 1,2-diaryl-[2-14C]-pyrroles

    International Nuclear Information System (INIS)

    Saemian, N.; Shirvani, G.; Matloubi, H.

    2007-01-01

    Three 1,2-diaryl pyrroles selective COX-2 inhibitors, 2-(4-fluorophenyl)-5-methyl-1-(4-methylsulfonyl-phenyl)-1H pyrrole, 2-(4-fluorophenyl)-1- [4-(methylsulfonyl) phenyl]-1H-pyrrole and 4-[2-(4-fluorophenyl)-1H-pyrrol-1-yl]benzenesulfon-amide, all three labeled with 14 C in the 2-position were prepared from para-fluoro-benzaldehyde-[carbonyl- 14 C]. (author)

  2. Synthesis, characterization, scale-up and catalytic behaviour of ...

    Indian Academy of Sciences (India)

    The convenience of the production of catalyst can be exploited for its large-scale production and use in laboratories, R&Ds .... the XRD data using Scherrer formula and are found to be ... where Z is the number of molecules per unit cell, M the molecular ... tion of benzaldehyde (2.12 g; 0.02 m), the required oxygen. (320 mg ...

  3. Toxicity of benzyl alcohol in adult and neonatal mice

    International Nuclear Information System (INIS)

    McCloskey, S.E.

    1987-01-01

    Benzyl alcohol (BA) is an aromatic alcohol, which is used as a bacteriostat in a variety of parenteral preparations. In 1982, it was implicated as the agent responsible for precipitating The Gasping Syndrome in premature neonates. The investigate further this toxicity, BA was administered, intraperiotoneally, to adult and neonatal CD-1 male mice. Gross behavioral changes were monitored. Low doses produced minimal toxic effects within an initial 4 hour observation period. At the end of this time, the LD 50 was determined to be 1000 mg/kg for both age groups. Death was due to respiratory arrest in all cases. Rapid absorption and conversion of BA to its primary metabolite, benzaldehyde, was demonstrated by gas chromatographic analysis of plasma from both experimental groups. The conversion of BA to benzaldehyde was confirmed in in vitro by using both horse-liver and mouse liver ADH. The inhibition of alcohol dehydrogenase (ADH) by pyrazole was similarly demonstrated in both enzyme systems. 14 C-labelled BA was utilized to determine the distribution of BA and its metabolites in the body, and to possibly pinpoint a target organ of toxicity

  4. A comparative study on the radiation induced degradation of chlorinated organics and water

    International Nuclear Information System (INIS)

    Bekboelet, M.; Balcioglu, A.I.; Getoff, N.

    1998-01-01

    Complete text of publication follows. Radiation induced degradation of chlorinated benzaldehydes has been studied by the application of UV-photolysis, UV-assisted catalytic oxidation and gamma radiolysis processes. The degradation was followed in terms of the substrate removal and formation of the decomposition products such as chloride and formaldehyde. Formation of the acidic compounds were also determined by the pH decrease during irradiation periods. The below given table summarizes the obtained results in terms of photochemical G (G PH )values. The main idea of this paper was to evaluate the applied processes in relation to the end products rather and to compare the efficiency of the methods. Besides, chloride and formaldehyde formation, the substrate degradation and formation of the stable end products, were followed by HPLC analyses. Hydroxylated parent compounds chlorophenols, benzaldehyde were also detected. Formation of muconic acid through ring opening as well as the formation of lower molecular weight organic acids by decomposition such as oxalic, citric, tartaric and formic acids were observed with respect the applied oxidation process. Depending on the formed stable end products and the related probable reaction mechanisms, isomeric positions were found to be selective toward oxidative degradation

  5. Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus cerasus L.) used in the production of special fruit beers.

    Science.gov (United States)

    Daenen, Luk; Sterckx, Femke; Delvaux, Freddy R; Verachtert, Hubert; Derdelinckx, Guy

    2008-11-01

    The glycoside hydrolase activity of Saccharomyces cerevisiae and Brettanomyces custersii was examined on sour cherry (Prunus cerasus L.) glycosides with bound volatile compounds. Refermentations by the beta-glucosidase-negative S. cerevisiae strains LD25 and LD40 of sour cherry juice-supplemented beer demonstrated only a moderate increase of volatiles. In contrast, the beta-glucosidase-positive B. custersii strain LD72 showed a more pronounced activity towards glycosides with aliphatic alcohols, aromatic compounds and terpenoid alcohols. Important contributors to sour cherry aroma such as benzaldehyde, linalool and eugenol were released during refermentation as shown by analytical tools. A gradually increasing release was observed during refermentations by B. custersii when whole sour cherries, sour cherry pulp or juice were supplemented in the beer. Refermentations with whole sour cherries and with sour cherry stones demonstrated an increased formation of benzyl compounds. Thus, amygdalin was partially hydrolysed, and a large part of the benzaldehyde formed was mainly reduced to benzyl alcohol and some further esterified to benzyl acetate. These findings demonstrate the importance and interesting role of certain Brettanomyces species in the production of fruit lambic beers such as 'Kriek'.

  6. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  7. UV-Induced [2+2] Grafting-To Reactions for Polymer Modification of Cellulose.

    Science.gov (United States)

    Conradi, Matthias; Ramakers, Gijs; Junkers, Thomas

    2016-01-01

    Benzaldehyde-functional cellulose paper sheets have been synthesized via tosylation of cellulose (Whatman No 5) followed by addition of p-hydroxy benzaldehyde. Via UV-induced Paterno-Büchi [2+2] cycloaddition reactions, these aldehyde functional surfaces are grafted with triallylcyanurate, trimethylolpropane allyl ether, and vinyl chloroacetate. In the following, allyl-functional polymers (poly(butyl acrylate), pBA, Mn = 6990 g mol(-1) , Đ = 1.12 and poly(N-isopropyl acrylamide), pNIPAAm, Mn = 9500 g mol(-1) , Đ = 1.16) synthesized via reversible addition fragmentation chain transfer polymerization are conjugated to the celloluse surface in a UV-induced grafting-to approach. With pBA, hydrophobic cellulose sheets are obtained (water contact angle 116°), while grafting of pNIPAAm allows for generation of "smart" surfaces, which are hydrophilic at room temperature, but that become hydrophobic when heated above the characteristic lower critical solution temperature (93° contact angle). The Paterno-Büchi reaction has been shown to be a versatile synthetic tool that also performs well in grafting-to approaches whereby its overall performance seems to be close to that of radical thiol-ene reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Activation and odor conditioning of suckling behavior in 3-day-old albino rats.

    Science.gov (United States)

    Pedersen, P E; Williams, C L; Blass, E M

    1982-10-01

    The circumstances under which a novel odor could elicit nipple attachment behavior in 3-day-old albino rats were investigated. In Experiment 1, rats suckled washed nipples scented with citral (a lemon odor) only if they either had received tactile stimulation (by stroking with a soft artist's brush) or had been administered amphetamine in the presence of citral prior to the suckling test. Pups stimulated in citral's absence or simply exposed to citral without stimulation failed to suckle such nipples. In Experiment 2, rats stimulated in a benzaldehyde (an almond odor) ambience suckled washed nipples scented with benzaldehyde but not those with citral scent. The opposite held for rats stimulated in a citral-rich environment. The stimulus conditions that support this conditioning were investigated in Experiment 3. Simultaneously increasing citral concentration and raising ambient temperature markedly attenuated the phenomenon. Experiment 4 demonstrated that not all classes of stimulation produced conditioning. Caffeine, in a wide range of doses, did not allow citral to elicit suckling on washed nipples. These findings are discussed within a framework of higher order conditioning. They may provide a mechanism by which naturally occurring stimuli come to elicit the species- and age-typical behavior of suckling.

  9. Characterization of the Key Aroma Compounds in Proso Millet Wine Using Headspace Solid-Phase Microextraction and Gas Chromatography-Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jingke Liu

    2018-02-01

    Full Text Available The volatile compounds in proso millet wine were extracted by headspace solid-phase microextraction (85 μm polyacrylate (PA, 100 μm polydimethylsiloxane (PDMS, 75 μm Carboxen (CAR/PDMS, and 50/30 μm divinylbenzene (DVB/CAR/PDMS fibers, and analyzed using gas chromatography-mass spectrometry; the odor characteristics and intensities were analyzed by the odor activity value (OAV. Different sample preparation factors were used to optimize this method: sample amount, extraction time, extraction temperature, and content of NaCl. A total of 64 volatile compounds were identified from the wine sample, including 14 esters, seven alcohols, five aldehydes, five ketones, 12 benzene derivatives, 12 hydrocarbons, two terpenes, three phenols, two acids, and two heterocycles. Ethyl benzeneacetate, phenylethyl alcohol, and benzaldehyde were the main volatile compounds found in the samples. According to their OAVs, 14 volatile compounds were determined to be odor-active compounds (OAV > 1, and benzaldehyde, benzeneacetaldehyde, 1-methyl-naphthalene, 2-methyl-naphthalene, and biphenyl were the prominent odor-active compounds (OAV > 50, having a high OAV. Principal component analysis (PCA showed the difference of distribution of the 64 volatile compounds and 14 odor-active compounds with four solid-phase microextraction (SPME fibers.

  10. Band alignment in organic devices: Photoemission studies of model oligomers on In2O3

    International Nuclear Information System (INIS)

    Blyth, R. I. R.; Duschek, R.; Koller, G.; Netzer, F. P.; Ramsey, M. G.

    2001-01-01

    The interfaces of In 2 O 3 , a model for indium - tin - oxide (ITO), with benzene, thiophene, and benzaldehyde, models for technologically important organic molecules, are studied using angle resolved ultraviolet photoemission and work function measurements. Band alignment diagrams for hypothetical Al/organic/ITO devices have been drawn, using values determined from this work and previously published studies of these molecules on Al(111). The similarity between the bonding of benzene and thiophene on Al(111) and In 2 O 3 , i.e., largely electrostatic, leads to near identical alignment at both metal and oxide interfaces. This indicates that clean Al and ITO will make a very poor electron/hole injecting pair. We suggest that the apparent efficiency of Al as an electron injecting contact in real devices is due to the presence of oxygen at the Al/organic interface. For benzaldehyde the interaction with In 2 O 3 is largely electrostatic, in contrast to the covalent bonds formed on Al(111). This leads to very different alignment at the Al and oxide interfaces, showing the importance of the particular organic - inorganic interaction in determining band alignment. [copyright] 2001 American Institute of Physics

  11. Aroma peculiarities of apricot (Armeniaca vulgaris Lam. and cherry-plum (Prunus cerasifera Ehrh. flowers

    Directory of Open Access Journals (Sweden)

    В. М. Горіна

    2013-02-01

    Full Text Available In the component composition of volatile solutions determining fragrance of the flowers in apricot and cherry-plum varieties and Prunus brigantiaca Vill. x Armeniaca vulgaris Lam. hybrids there are 36 highest hydrocarbons and benzaldehyde that prevail. There are fewer amounts of the solutions which scare bees (benzaldehyde in the fragrance of cherry-plum varieties as compared to the flowers of apricot and hybrids. At the same time, the content of tricosane, pentacosane, docosane, heneycosane, eicosane, nonadecan that probably attract bees is higher in the cherry-plum flowers than in the fragrance of apricot and hybrid flowers. The average three years yield of cherry-plum plants (Nikitska Zhovta 10,7 and Salgirskaya Rumjanaya 28,5 t/ ha is higher than for apricot (Recolte de Schatene 0,3; Rodnik 2,9; Ananasniy Tsurupinsky 7,4 t/ha and hybrids (8110 – 5,2; 8098 – 6,4 t/ha that could be explained with better pollination of flowers and better fruit formation. Prevailing components of flower aroma of these plants    and their possible link with yield of the objects in questions have been analyzed.

  12. Benzene formation in electronic cigarettes.

    Directory of Open Access Journals (Sweden)

    James F Pankow

    Full Text Available The heating of the fluids used in electronic cigarettes ("e-cigarettes" used to create "vaping" aerosols is capable of causing a wide range of degradation reaction products. We investigated formation of benzene (an important human carcinogen from e-cigarette fluids containing propylene glycol (PG, glycerol (GL, benzoic acid, the flavor chemical benzaldehyde, and nicotine.Three e-cigarette devices were used: the JUULTM "pod" system (provides no user accessible settings other than flavor cartridge choice, and two refill tank systems that allowed a range of user accessible power settings. Benzene in the e-cigarette aerosols was determined by gas chromatography/mass spectrometry. Benzene formation was ND (not detected in the JUUL system. In the two tank systems benzene was found to form from propylene glycol (PG and glycerol (GL, and from the additives benzoic acid and benzaldehyde, especially at high power settings. With 50:50 PG+GL, for tank device 1 at 6W and 13W, the formed benzene concentrations were 1.9 and 750 μg/m3. For tank device 2, at 6W and 25W, the formed concentrations were ND and 1.8 μg/m3. With benzoic acid and benzaldehyde at ~10 mg/mL, for tank device 1, values at 13W were as high as 5000 μg/m3. For tank device 2 at 25W, all values were ≤~100 μg/m3. These values may be compared with what can be expected in a conventional (tobacco cigarette, namely 200,000 μg/m3. Thus, the risks from benzene will be lower from e-cigarettes than from conventional cigarettes. However, ambient benzene air concentrations in the U.S. have typically been 1 μg/m3, so that benzene has been named the largest single known cancer-risk air toxic in the U.S. For non-smokers, chronically repeated exposure to benzene from e-cigarettes at levels such as 100 or higher μg/m3 will not be of negligible risk.

  13. Determination of NH2 concentration on 3-aminopropyl tri-ethoxy silane layers and cyclopropylamine plasma polymers by liquid-phase derivatization with 5-iodo 2-furaldehyde

    Science.gov (United States)

    Manakhov, Anton; Čechal, Jan; Michlíček, Miroslav; Shtansky, Dmitry V.

    2017-08-01

    The quantification of concentration of primary amines, e.g. in plasma polymerized layers is a very important task for surface analysis. However, the commonly used procedure, such as gas phase derivatization with benzaldehydes, shows several drawbacks, the most important of which are the side reaction effects. In the present study we propose and validate a liquid phase derivatization using 5-iodo 2-furaldehyde (IFA). It was demonstrated that the content of NH2 groups can be determined from the atomic concentrations measured by X-ray photoelectron spectroscopy (XPS), in particular from the ratio of I 3d and N 1s peak intensities. First, we demonstrate the method on a prototypical system such as 3-aminopropyl tri-ethoxy silane (APTES) layer. Here the XPS analysis carried out after reaction of APTES layer with IFA gives the fraction of primary amines (NH2/N) of 38.3 ± 7.9%. Comparing this value with that obtained by N 1s curve fitting of APTES layer giving 40.9 ± 9.5% of amine groups, it can be concluded that all primary amines were derivatized by reaction with IFA. The second system to demonstrate the method comprises cyclopropylamine (CPA) plasma polymers that were free from conjugated imines. In this case the method gives the NH2 fraction ∼8.5%. This value is closely matching the NH2/N ratio estimated by 4-trifluoromethyl benzaldehyde (TFBA) derivatization. The reaction of IFA with CPA plasma polymer exhibiting high density of conjugated imines revealed the NH2/N fraction of ∼10.8%. This value was significantly lower compared to 17.3% estimated by TFBA derivatization. As the overestimated density of primary amines measured by TFBA derivatization is probably related to the side reaction of benzaldehydes with conjugated imines, the proposed IFA derivatization of primary amines can be an alternative procedure for the quantification of surface amine groups.

  14. Phenolic compounds and flavonoids as plant growth regulators from fruit and leaf of Vitex rotundifolia.

    Science.gov (United States)

    Yoshioka, Takeo; Inokuchi, Tomohisa; Fujioka, Shozo; Kimura, Yasuo

    2004-01-01

    Five phenolic compounds, 4-hydroxybenzoic acid methyl ester (1), vanillic acid methyl ester (2), 4-hydroxy benzaldehyde (3), 4-hydroxybenzoic acid (4) and ferulic acid (5), and four flavonoids, 5,5'-dihydroxy-4',6,7-trimethoxyflavanone (6), luteolin (7), vitexicarpin (8) and artemetin (9), were isolated from fruits and leaves of Vitex rotundifolia L. The biological activities of these nine compounds have been examined using a bioassay with lettuce seedlings.

  15. Selective and Efficient Solvent Extraction of Copper(II Ions from Chloride Solutions by Oxime Extractants

    Directory of Open Access Journals (Sweden)

    Zahra Kaboli Tanha

    2016-06-01

    Full Text Available Oxime extractants 3-tert-butyl-2-hydroxy-5-methyl benzaldehyde oxime (HL1 and 3-tert-butyl-2-hydroxy-5-methoxy benzaldehyde oxime (HL2 were synthesized and characterized by conventional spectroscopic methods. Suitable lipophilic nature of the prepared extractants allowed examining the ability of these molecules for extraction-separation of copper from its mixture with normally associated metal ions by performing competitive extraction experiments of Cu(II, Co(II, Ni(II, Zn(II, Cd(II and Pb(II ions from chloride solutions. Both ligands transfer selectively the copper ions into dichloromethane by a cation exchange mechanism. Conventional log-log analysis and isotherm curves showed that Cu(II ions are extracted as the complexes with 1:2 metal to ligand ratio by both extractants. Verification of the effect of the organic diluent used in the extraction of copper ions by HL1 and HL2 demonstrated that the extraction efficiency varies as: dichloromethane ~ dichloroethane > toluene > xylene > ethylacetate. Time dependency investigation of the extraction processes revealed that the kinetics of the extraction of copper by HL2 is more rapid than that of HL1. The application of the ligands for extraction-separation of copper ions from leach solutions of cobalt and nickel-cadmium filter-cakes of a zinc production plants was evaluated.

  16. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    International Nuclear Information System (INIS)

    Haedener, A.; Tamm, Ch.

    1987-01-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-[2- 2 H]phenyl-[2- 2 H]alanine was formed from (E) -[2,2'- 2 H 2 ]cinnamic acid and ammonia in 46% yield, whereas L-phenyl-[2- 13 C, 15 N]alanine was obtained from (E)-[2- 13 C]cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged 15 NH 3 was reisolated as 15 NH 4 Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. [2- 2 H]Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with 2 H 2 O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines. (author)

  17. Pulsed corona discharge oxidation of aqueous carbamazepine micropollutant.

    Science.gov (United States)

    Ajo, Petri; Krzymyk, Ewelina; Preis, Sergei; Kornev, Iakov; Kronberg, Leif; Louhi-Kultanen, Marjatta

    2016-08-01

    The anti-epileptic drug carbamazepine (CBZ) receives growing attention due to slow biodegradation and inherent accumulation in the aquatic environment. The application of a gas-phase pulsed corona discharge (PCD) was investigated to remove CBZ from synthetic solutions and spiked wastewater effluent from a municipal wastewater treatment facility. The treated water was showered between high voltage (HV) wires and grounded plate electrodes, to which ultra-short HV pulses were applied. CBZ was readily oxidized and 1-(2-benzaldehyde)-4-hydroquinazoline-2-one (BQM) and 1-(2-benzaldehyde)-4-hydro-quinazoline-2,4-dione (BQD) were identified as the most abundant primary transformation products, which, contrary to CBZ ozonation data available in the literature, were further easily oxidized with PCD: BQM and BQD attributed to only a minor portion of the target compound oxidized. In concentrations commonly found in wastewater treatment plant effluents (around 5 µg L(-1)), up to 97% reduction in CBZ concentration was achieved at mere 0.3 kW h m(-3) energy consumption, and over 99.9% was removed at 1 kW h m(-3). The PCD application proved to be efficient in the removal of both the parent substance and its known transformation products, even with the competing reactions in the complex composition of wastewater.

  18. Changes in the viability of Strongyloides ransomi larvae (Nematoda, Rhabditida under the influence of synthetic flavourings

    Directory of Open Access Journals (Sweden)

    A. A. Boyko

    2017-01-01

    Full Text Available One of the most common nematodes of pigs globally is Strongyloides ransomi Schwartz and Alicata 1930. It usually causes aggravation of physiological indicators of its hosts and damage to their immune system. Also it is a good modelling object for the evaluation of the antiparasitic activity of new antihelminthic drugs. We conducted laboratory experiments to assess the effect of flavouring additives with flower odour (benzaldehyde, citral, D-limonene and β-ionone upon the viability of S. ransomi larvae. The mortality rate was calculated for 24 hours exposure at four concentrations of each substance (10, 1, 0.1 и 0.01 g/l with eight replications. The lowest LD50 values were obtained for citral (97 mg/l and benzaldehyde (142 mg/l. These substances are recommended for further evaluation of their antihelminthic effect in experiments using laboratory animals. Unlike other substances, the effect of β-ionone and D-limonene even at a concentration of 10 g/l after 24 hours caused the death of <50% of S. ransomi larvae. The study of flavouring additives with flowery odour, which are permitted to be used in food for humans and also to be used in cosmetics, is a promising field for research aimed at the development of new antiparasitic drugs.

  19. Materials for Nonlinear Optics Chemical Perspectives

    Science.gov (United States)

    1991-01-01

    potassium iodide for 15 h at reflux. The benzaldehyde product was then allowed to react with diethyl(4-nitrobenzyl)phosphonate in the presence of ...photocrosslinking of NLO-inactive polyacrylate monomers. Recent advances in optical technology have created great interest in the construction of second-order...might be potassium niobate.) Because of this, the value of finding an "improved" material can be accurately gauged in a relative sense, and compared to

  20. Impact du polylactide (PLA) sur la qualité des bioproduits au contact

    OpenAIRE

    Salazar Gonzalez , Romulo Vinicio

    2013-01-01

    Packaging plays a major role in the preservation of food but mass transfer between the packaging material and foodstuff occurs during shelf life leading to the quality deterioration. Polylactide (PLA) is a novel packaging material; therefore its interaction with food was investigated at service conditions. The sorption of ethyl esters, benzaldehyde and 2-nonanone at low concentrations and in mixture and the effects on the thermal properties of PLA were studied. Multiple Headspace Extraction (...

  1. Reductive Bis-addition of Aromatic Aldehydes to α,β-Unsaturated Esters via the Use of Sm/Cu(I) in Air: A Route to the Construction of Furofuran Lignans.

    Science.gov (United States)

    Liu, Yongjun; Tian, Guang; Li, Jingjing; Qi, Yan; Wen, Yonghong; Du, Feng

    2017-06-02

    The novel bis-addition of benzaldehydes to acrylates or maleates was achieved by the direct use of samarium metal with the assistance of CuI under mild conditions under dry air, and the useful 2-hydroxylalkyl-γ-butyrolactons and lignan derivatives were thus constructed with high efficiency. The key factors that influence the reaction efficiency were investigated. The use of potassium iodide and molecular sieves as additives can improve the reaction efficiency remarkably.

  2. Diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c]coumarins by MgO nanoparticles under ultrasonic irradiation

    OpenAIRE

    Javad Safaei-Ghomi; Pouria Babaei; Hossein Shahbazi-Alavi; Safura Zahedi

    2017-01-01

    MgO nanoparticles have been used as an efficient catalyst for the diastereoselective preparation of trans-2-benzoyl-3-(aryl)-2H-furo[3,2-c]chromen-4(3H)-ones by the multi-component reaction of 2,4â²-dibromoacetophenone, pyridine, benzaldehydes and 4-hydroxycoumarin under ultrasonic irradiation. This interesting result revealed that the pyridiniumylide assisted tandem three-component coupling reaction is highly diastereoselective. Atom economy, wide range of products, high catalytic activity, ...

  3. Exploiting the CNC side chain in heterocyclic rearrangements: synthesis of 4(5)-acylamino-imidazoles.

    Science.gov (United States)

    Piccionello, Antonio Palumbo; Buscemi, Silvestre; Vivona, Nicolò; Pace, Andrea

    2010-08-06

    A new variation on the Boulton-Katritzky reaction is reported, namely, involving use of a CNC side chain. A novel Montmorillonite-K10 catalyzed nonreductive transamination of a 3-benzoyl-1,2,4-oxadiazole afforded a 3-(alpha-aminobenzyl)-1,2,4-oxadiazole, which was condensed with benzaldehydes to afford the corresponding imines. In the presence of strong base, these imines underwent Boulton-Katritzky-type rearrangement to afford novel 4(5)-acylaminoimidazoles.

  4. Imidazolium ionic liquids as solvents for cerium(IV)-mediated oxidation reactions

    OpenAIRE

    Mehdi, Hasan; Bodor, Andrea; Lantos, Diana; Horváth, István T; De Vos, Dirk; Binnemans, Koen

    2007-01-01

    Use of imidazolium ionic liquids as solvents for organic transformations with tetravalent cerium salts as oxidizing agents was evaluated. Good solubility was found for ammonium hexanitratocerate(IV) (ceric ammonium nitrate, CAN) and cerium(IV) triflate in 1-alkyl-3-methylimidazolium triflate ionic liquids. Oxidation of benzyl alcohol to benzaldehyde in 1-ethyl-3-methylimidazolium triflate was studied by in-situ FTIR spectroscopy and 13C NMR spectroscopy on carbon-13-labeled benzyl alcohol. Ca...

  5. Synthesis and antibacterial and antifungal studies of novel nitrogen containing heterocycles from 5-Ethylpyridin-2-ethanol

    OpenAIRE

    Patel N; Patel H

    2010-01-01

    A novel series of chalcones, pyrimidines and imidazolinone is described; chalcones (4a-o) were prepared from the lead molecule 4-[2-(5-ethylpyridin-2-yl)ethoxy]benzaldehyde. Pyrimidine (5a-o) derivatives were prepared from the reaction of chalcones and guanidine nitrate in alkali media. Imidazolinones (6a-o) were synthesized from reaction of pyrimidine and oxazolone derivatives (prepared by Erlenmeyer azlactone synthesis). The structures of the synthesized compounds were assigned on the basis...

  6. In situ DRIFTS study of O{sub 3} adsorption on CaO, γ-Al{sub 2}O{sub 3}, CuO, α-Fe{sub 2}O{sub 3} and ZnO at room temperature for the catalytic ozonation of cinnamaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianfeng; Su, Tongming; Jiang, Yuexiu; Xie, Xinling [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Qin, Zuzeng, E-mail: qinzuzeng@gmail.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Ji, Hongbing, E-mail: jihb@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); School of Chemistry, Sun Yat-sen University, Guangzhou 510275 (China)

    2017-08-01

    Highlights: • In situ DRIFTS study of O{sub 3} adsorption on metal oxides at room temperature. • Using acidic probe molecules (DRIFTS) characterization of surface basicity. • Correlation between basic strength of metal oxides and O{sub 3} adsorption. • Study on the competitive adsorption of O{sub 3} and CO{sub 2}. • DRIFTS study of cinnamaldehyde ozonation and benzaldehyde excessive oxidation. - Abstract: In situ DRIFTS were conducted to identify adsorbed ozone and/or adsorbed oxygen species on CaO, ZnO, γ-Al{sub 2}O{sub 3}, CuO and α-Fe{sub 2}O{sub 3} surfaces at room temperature. Samples were characterized by means of TG, XRD, N{sub 2} adsorption–desorption, pyridine-IR, nitrobenzene-IR, chloroform-IR, and CO{sub 2}-TPD. Pyridine-DRIFTS measurements evidence two kinds of acid sites in all the samples. Nitrobenzene, chloroform-DRIFTS, and CO{sub 2}-TPD reveal that there are large amounts of medium-strength base sites on all the metal oxides, and only CaO, ZnO, and γ-Al{sub 2}O{sub 3} have strong base sites. And the benzaldehyde selectivity was increased in the same order of the alkalinity of the metal oxides. With weaker sites, ozone molecules form coordinative complexes bound via the terminal oxygen atom, observed by vibrational frequencies at 2095–2122 and 1026–1054 cm{sup −1}. The formation of ozonide O{sub 3}{sup −} at 790 cm{sup −1}, atomic oxygen at 1317 cm{sup −1}, and superoxide O{sub 2}{sup −} at 1124 cm{sup −1} was detected; these species are believed to be intermediates of O{sub 3} decomposition on strong acid/base sites. The adsorption of ozone on metal oxides is a weak adsorption, and other gases, such as CO{sub 2}, will compete with O{sub 3} adsorption. The mechanism of cinnamaldehyde ozonation at room temperature over CaO shows that cinnamaldehyde can not only be oxidized into cinnamic acid, but also be further oxidized into benzaldehyde, benzoic acid, maleic anhydride, and ultimately mineralized to CO{sub 2} in the

  7. Photochemical reductions of benzil and benzoin in the presence of triethylamine and TiO{sub 2} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon Woo; Kim, Eun Kyung [Ewha Womans Univ., Seoul (Korea, Republic of); Koh Park, Kwang Hee [Chungnam National Univ., Daejon (Korea, Republic of)

    2002-09-01

    This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO{sub 2}. Without TEA or TiO{sub 2}, the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO{sub 2} increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO{sub 2} followed by protonation. In the reaction medium of 88:7:2:3 CH{sub 3}CN/CH{sub 3}OH/H{sub 2}O/TEA with 2.5 mg/mL of TiO{sub 2}, the yield of 2 was as high as 85% at 50% conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of ({+-}) and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO{sub 2}-sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of {alpha}-cleavage. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO{sub 2} by methanol, to product 1,2-diphenylpropenone after dehydration reaction.

  8. Photochemical reductions of benzil and benzoin in the presence of triethylamine and TiO2 photocatalyst

    International Nuclear Information System (INIS)

    Park, Joon Woo; Kim, Eun Kyung; Koh Park, Kwang Hee

    2002-01-01

    This paper reports the photochemical reduction of benzil 1 to benzoin 2 and the reduction of 2 to hydrobenzoin 4 in deoxygenated solvents in the presence of triethylamine (TEA) and/or TiO 2 . Without TEA or TiO 2 , the photolysis of 1 resulted in very low yield of 2. The presence of TEA or TiO 2 increased the rate of disappearance of 1 and the yield of 2, which were further increased considerably by the presence of water. The photoreduction of 1 to 2 proceeds through an electron transfer to 1 from TEA or hole-scavenged excited TiO 2 followed by protonation. In the reaction medium of 88:7:2:3 CH 3 CN/CH 3 OH/H 2 O/TEA with 2.5 mg/mL of TiO 2 , the yield of 2 was as high as 85% at 50% conversion of 1. The photolysis of 2 in homogeneous media resulted in photo-cleavage to benzoyl and hydroxybenzyl radicals, which are mostly converted to benzaldehyde. The reduction product 4 is formed in low yield through the dimerization of hydroxybenzyl radicals. The addition of TEA increased the conversion rate of 2 and the yield of 4 significantly. This was attributed to the scavenging effect of TEA for benzoyl radical to produce N,N-diethylbenzamide and the photoreduction of benzaldehyde in the presence of TEA. The ratio of (±) and meso isomers of 4 obtained from the photochemical reaction is about 1.1. This ratio is the same as that from the photochemical reduction of benzaldehyde in the presence of TEA. In the TiO 2 -sensitized photochemical reduction of 2, meso-4 was obtained in moderate yield. The reduction of 2 to 4 proceeds through two consecutive electron/proton transfer processes on the surface of the photocatalyst without involvement of α-cleavage. The radical 11 initially formed from 2 by one electron/proton process can also combine with hydroxy methyl radical, which is generated after hole trapping of excited TiO 2 by methanol, to product 1,2-diphenylpropenone after dehydration reaction

  9. Analysis of volatile components from Melipona beecheii geopropolis from Southeast Mexico by headspace solid-phase microextraction.

    Science.gov (United States)

    Torres-González, Ahira; López-Rivera, Paulina; Duarte-Lisci, Georgina; López-Ramírez, Ángel; Correa-Benítez, Adriana; Rivero-Cruz, J Fausto

    2016-01-01

    A head space solid-phase microextraction method combined with gas chromatography-mass spectrometry was developed and optimised to extract and analyse volatile compounds of Melipona beecheii geopropolis. Seventy-three constituents were identified using this technique in the sample of geopropolis collected. The main compounds detected include β-fenchene (14.53-15.45%), styrene (8.72-9.98%), benzaldehyde (7.44-7.82%) and the most relevant volatile components presents at high level in the geopropolis were terpenoids (58.17%).

  10. Synthetic Lectins: New Tools for Detection and Management of Prostate Cancer

    Science.gov (United States)

    2015-08-01

    residues were left unmodified or alkylated with benzaldehyde, thereby leaving the charged ammonium at neutral pH, binding affinity was only...the RWPE-1 cell line is also the parent cell line to a series of cell lines transformed by exposure to N-methyl-N- nitrosourea (MNU). These cell lines...targeting agents and metastatic inhibitors, as has been shown with natural lectins.65,66Acknowledgements We thank Dr J. E. Jones and Dr O. Obianyo for their

  11. Influência da temperatura de secagem sobre o rendimento e a composição química do óleo essencial de Tanaecium nocturnum (barb. Rodr.) bur. & K. Shum

    OpenAIRE

    Pimentel, Flávio A.; Cardoso, Maria das Graças; Zacaroni, Lidiany M.; Andrade, Milene Aparecida; Guimarães, Luiz Gustavo de Lima; Salgado, Ana Paula S. P.; Freire, Juliana Mesquita; Muniz, Fabiana R.; Morais, Augusto Ramalho de; Nelson, David Lee

    2008-01-01

    The yields and chemical compositions of the essential oils obtained by steam distillation of the fresh and dried (30 and 40 ºC) leaves, stems and roots of Tanaecium nocturnum are reported. The identification and quantification of the volatile constituents were accomplished by GC/MS and GC/FID, respectively. The essential oils obtained from the various parts of the plant were constituted mainly of benzaldehyde. Large losses and variations in the quantities of the components during the drying p...

  12. Influência da temperatura de secagem sobre o rendimento e a composição química do óleo essencial de Tanaecium nocturnum (barb. Rodr.) bur. & K. Shum The influence of drying temperature on the yield and the chemical composition of the essential oil from Tanaecium nocturnum (Barb. Rodr.) Bur. & K. Shum

    OpenAIRE

    Flávio A. Pimentel; Maria das Graças Cardoso; Lidiany M. Zacaroni; Milene Aparecida Andrade; Luiz Gustavo de Lima Guimarães; Ana Paula S. P. Salgado; Juliana Mesquita Freire; Fabiana R. Muniz; Augusto Ramalho de Morais; David Lee Nelson

    2008-01-01

    The yields and chemical compositions of the essential oils obtained by steam distillation of the fresh and dried (30 and 40 ºC) leaves, stems and roots of Tanaecium nocturnum are reported. The identification and quantification of the volatile constituents were accomplished by GC/MS and GC/FID, respectively. The essential oils obtained from the various parts of the plant were constituted mainly of benzaldehyde. Large losses and variations in the quantities of the components during the drying p...

  13. (1S-1,2-O-Benzylidene-α-d-glucurono-6,3-lactone

    Directory of Open Access Journals (Sweden)

    David J. Watkin

    2009-02-01

    Full Text Available X-ray crystallographic analysis has established that the major product from the protection of d-glucoronolactone with benzaldehyde is (1S-1,2-O-benzylidene-α-d-glucurono-6,3-lactone, C13H12O6, rather than the R epimer. The crystal structure exists as O—H...O hydrogen-bonded chains of molecules lying parallel to the a axis. The absolute configuration was determined by the use of d-glucuronolactone as the starting material.

  14. A tribute to Stanislao Cannizzaro, chemical informationist and photochemist.

    Science.gov (United States)

    Roth, Heinz D

    2011-12-01

    Stanislao Cannizzaro is known widely for the Cannizzaro reaction, the "disproportionation" of benzaldehyde upon reaction with alkali, for his approach to teaching chemistry, "Sunto di un corso di filosofia chimica", which he presented at the Karlsruhe Congress of 1860, and for his work on the photochemistry of santonin. In Cannizzaro's laboratory two research associates, Giacomo Ciamician and Paul Silber, and a senior colleague, Emanuele Paternó, became acquainted with the basic methods of sunlight-inducd photochemistry.

  15. Determination of trace amounts of lead by chelating ion exchange and on-line preconcentration in flow-injection atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Purohit, Rajesh; Devi, Surekha

    1992-01-01

    Resins synthesized from quinolin-8-ol and resorcinol or hydro-quinone, with furfuraldehyde, formaldehyde or benzaldehyde as cross-linking agent, were used for the preconcentration of nanogram amounts of lead. The rate of exchange and activation energy of lead exchange were calculated. Column separations of lead-copper and lead-zinc did not show any cross-contamination. A continuous flow manifold using resin microcolumns was developed for the preconcentration and determination of lead. (author). 24 refs.; 5 figs.; 3 tabs

  16. Synthesize and characterize of Ag{sub 3}VO{sub 4}/TiO{sub 2} nanorods photocatalysts and its photocatalytic activity under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Xuejun [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian 116600 (China); Dong, Yuying, E-mail: dongy@dlnu.edu.cn [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian 116600 (China); Zhang, Xiaodong, E-mail: fatzhxd@126.com [Environment and Low-Carbon Research Center, School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093 (China); Cui, Yubo [Department of Environmental Science and Technology, Dalian Nationalities University, Dalian 116600 (China)

    2016-03-15

    Graphical abstract: - Highlights: • Ag{sub 3}VO{sub 4}/TiO{sub 2} nanorods were prepared by sol–gel with hydrothermal method. • Toluene removal efficiency was 70% in 4 h using the Ag{sub 3}VO{sub 4}/TiO{sub 2}. • Benzyl alcohol and benzaldehyde were intermediates, and partially mineralized. - Abstract: In this paper, in order to expand the light response range of TiO{sub 2}, Ag{sub 3}VO{sub 4}/TiO{sub 2} nanorods photocatalysts were fabricated by a simple sol–gel method with microwave and hydrothermal method. The as-prepared samples were characterized by XRD, SEM, DRS, XPS and N{sub 2} adsorption–desorption. Meanwhile, their photocatalytic properties were investigated by the degradation of toluene under visible light irradiation. The degradation conversation of toluene had gotten to about 70% in 1% Ag{sub 3}VO{sub 4}/TiO{sub 2} nanorods after reaction 4 h. The predominant photocatalytic activity can be attributed to its strong absorption in visible light region and excellent charge separation characteristics. By using in situ FTIR, benzyl alcohol and benzaldehyde species could be observed during the reaction and the formed intermediates would be partially oxidized into CO{sub 2} and H{sub 2}O. Electron spin resonance confirmed that OH· and O{sub 2}·{sup −} were involved in the photocatalytic degradation of toluene.

  17. Seasonal evaluation of disinfection by-products throughout two full-scale drinking water treatment plants.

    Science.gov (United States)

    Zhong, Xin; Cui, Chongwei; Yu, Shuili

    2017-07-01

    Carbonyl compounds can occur alpha-hydrogens or beta-diketones substitution reactions with disinfectants contributed to halogenated by-products formation. The objective of this research was to study the occurrence and fate of carbonyl compounds as ozonation by-products at two full-scale drinking water treatment plants (DWTPs) using different disinfectants for one year. The quality of the raw water used in both plants was varied according to the season. The higher carbonyl compounds concentrations were found in raw water in spring. Up to 15 (as the sum of both DWTPs) of the 24 carbonyl compounds selected for this work were found after disinfection. The dominant carbonyl compounds were formaldehyde, glyoxal, methyl-glyoxal, fumaric, benzoic, protocatechuic and 3-hydroxybenzoic acid at both DWTPs. In the following steps in each treatment plant, the concentration patterns of these carbonyl compounds differed depending on the type of disinfectant applied. Benzaldehyde was the only aromatic aldehyde detected after oxidation with ozone in spring. As compared with DWTP 1, five new carbonyl compounds were formed (crotonaldehyde, benzaldehyde, formic, oxalic and malonic acid) disinfection by ozone, and the levels of the carbonyl compounds increased. In addition, pre-ozonation (PO) and main ozonation (OZ) increased the levels of carbonyl compounds, however coagulation/flocculation (CF), sand filtration (SF) and granular activated carbon filtration (GAC) decreased the levels of carbonyl compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Synthesis of specifically labelled L-phenylalanines using phenylalanine ammonia lyase activity

    Energy Technology Data Exchange (ETDEWEB)

    Haedener, A.; Tamm, Ch.

    1987-11-01

    Specifically labelled L-phenylalanines have been prepared using a variety of classical synthetic methods in combination with phenylalanine ammonia lyase (PAL) enzyme activity of the yeast Rhodosporidium toruloides ATCC 10788 or Rhodotorula glutinis IFO 0559, respectively. Thus, L-(2-/sup 2/H)phenyl-(2-/sup 2/H)alanine was formed from (E) -(2,2'-/sup 2/H/sub 2/)cinnamic acid and ammonia in 46% yield, whereas L-phenyl-(2-/sup 13/C, /sup 15/N)alanine was obtained from (E)-(2-/sup 13/C)cinnamic acid in 45% overall yield. Generally, labelled cinnamic acids were recovered in pure form from the reaction mixture, with a loss of 6-8%. Likewise, unchanged /sup 15/NH/sub 3/ was reisolated as /sup 15/NH/sub 4/Cl after steam distillation with overall losses of less than 4%. Labelled cinnamic acids were prepared by Knoevenagel condensations between appropriately labelled benzaldehydes and malonic acids. (2-/sup 2/H)Benzaldehyde was obtained from 2-bromotoluene by decomposition of the corresponding Grignard reagent with /sup 2/H/sub 2/O and subsequent oxidation. Since simple molecules, most of them commercially available in labelled form or otherwise easily accessible, may serve as starting material, and due to its defined stereochemistry, the reaction catalysed by PAL opens a short and attractive route to specifically labelled L-phenylalanines.

  19. Mechanism of Prototropy. III. Kinetics of the Tautomerization of Benzylidene-Benzylamine. comparison of the influence of hydrogen and alkyl groups on the S{sub E}2' reaction rate; mecanismo de la Prototropia. III. Cinetica de la tautomerizacion de la benciliden-bencilamina. Comparacion de la influencia del hidrogeno y grupos alcohilos sobre la velocidad de la reaccion S{sub E}2'

    Energy Technology Data Exchange (ETDEWEB)

    Perez Ossorio, R; Gamboa, J M; Martinez Utrilla, R

    1961-07-01

    The rate of the proto tropic change of benzylidene-benzylamine has been determined by using azomethine {sup 1}4C-labelled in the methylenic group and measuring the distribution of activity between benzaldehyde and benzylamine obtained by hydrolysis at different reaction times. this rate has been compared with those of tautomerization of benzylidene-{alpha}-alkyl benzylamine and {alpha}-alkyl benzylidene-benzyl amines in the same experimental conditions in order to establish ethe influence of alkyl group on this reaction. (Author) 14 refs.

  20. Synthesis and characterization of novel substituted N-benzothiazole-2-yl-acetamides

    Directory of Open Access Journals (Sweden)

    H.C. Sakarya

    2016-11-01

    Full Text Available Schiff base derivatives of benzothiazole 2a–e have been synthesized by reacting with substituted 2-aminobenzothiazole 1a–e and different substituted benzaldehydes 5a–e. The obtained Schiff bases reaction with NaBH4 has afforded the corresponding some novel amines 3a–e. The condensation of amines with chloroacetylchloride leads to novel amide derivatives 4a–e. The structures of the synthesized compounds are characterized by elemental analysis, IR, MS, 1H NMR and 13C NMR.

  1. Mechanism of Prototropy. III. Kinetics of the Tautomerization of Benzylidene-Benzylamine. comparison of the influence of hydrogen and alkyl groups on the SE2' reaction rate

    International Nuclear Information System (INIS)

    Perez Ossorio, R.; Gamboa, J. M.; Martinez Utrilla, R.

    1961-01-01

    The rate of the proto tropic change of benzylidene-benzylamine has been determined by using azomethine 1 4C-labelled in the methylenic group and measuring the distribution of activity between benzaldehyde and benzylamine obtained by hydrolysis at different reaction times. this rate has been compared with those of tautomerization of benzylidene-α-alkyl benzylamine and α-alkyl benzylidene-benzyl amines in the same experimental conditions in order to establish ethe influence of alkyl group on this reaction. (Author) 14 refs

  2. Mechanism of Prototropy. III. Kinetics of the Tautomerization of Benzylidene-Benzylamine. comparison of the influence of hydrogen and alkyl groups on the S{sub E}2' reaction rate; mecanismo de la Prototropia. III. Cinetica de la tautomerizacion de la benciliden-bencilamina. Comparacion de la influencia del hidrogeno y grupos alcohilos sobre la velocidad de la reaccion S{sub E}2'

    Energy Technology Data Exchange (ETDEWEB)

    Perez Ossorio, R.; Gamboa, J. M.; Martinez Utrilla, R.

    1961-07-01

    The rate of the proto tropic change of benzylidene-benzylamine has been determined by using azomethine {sup 1}4C-labelled in the methylenic group and measuring the distribution of activity between benzaldehyde and benzylamine obtained by hydrolysis at different reaction times. this rate has been compared with those of tautomerization of benzylidene-{alpha}-alkyl benzylamine and {alpha}-alkyl benzylidene-benzyl amines in the same experimental conditions in order to establish ethe influence of alkyl group on this reaction. (Author) 14 refs.

  3. Synthesis, characterization and oxidative behaviour of dioxoruthenium(VI) complexes

    International Nuclear Information System (INIS)

    Agarwal, D.D.; Rastogi, Rachana

    1995-01-01

    Dioxoruthenium(VI) complexes are found to give low yield of epoxide but good yield of cyclohexanone. The complexes are electro active giving metal centered Ru VI /Ru V couple. Cis-stilbene gives trans epoxide and benzaldehyde. Norbornene gives exo epoxy norbornene. The selectivity for allylic oxidation is high. In the present note the synthesis of dioxoruthenium(VI) complexes and their oxidation behaviour is reported. The dioxoruthenium(VI) complexes have been stoichiometrically found to be good oxidants. (author). 21 refs., 1 tab

  4. Rh(III)-catalyzed olefination of N-sulfonyl imines: synthesis of ortho-olefinated benzaldehydes.

    Science.gov (United States)

    Zhang, Tao; Wu, Lamei; Li, Xingwei

    2013-12-20

    Rh(III)-catalyzed olefination of N-sulfonyl imines using acrylates and styrenes has been achieved for the synthesis of ortho-olefinated benaldehydes. This reaction proceeds via a chelation assisted C-H olefination/in situ hydrolysis process.

  5. A Concise Total Synthesis of (R)-Fluoxetine, a Potent and Selective Serotonin Reuptake Inhibitor

    OpenAIRE

    de Fátima, Ângelo; Lapis, Alexandre Augusto M.; Pilli, Ronaldo A.

    2005-01-01

    (R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with Maruoka's catalyst. (R)-Fluoxetina, um inibidor potente e seletivo da recaptação da serotonina, foi sintetizada em seis etapas, 50% de rendimento total e 99% de excesso enantiomérico a partir do benzaldeído via alilação catalítica assimétrica empregando-se o sistema catalítico desenvolvido por Maruoka e...

  6. The synthesis of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides by the microwave-assisted Pudovik reaction

    Directory of Open Access Journals (Sweden)

    Erika Bálint

    2017-01-01

    Full Text Available A family of α-aryl-α-aminophosphonates and α-aryl-α-aminophosphine oxides was synthesized by the microwave-assisted solvent-free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two α-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N–H···O=P intermolecular hydrogen bridges pair.

  7. Zr (IV COMPLEXES OF SOME NITROGEN-OXYGEN DONOR LIGANDS (SEMICARBAZONES & SALICYLALDAZINE

    Directory of Open Access Journals (Sweden)

    Z F DAWOOD

    2002-06-01

    Full Text Available Complexes containing mixed ligands of zirconium (IV have been synthesized by the reaction of zirconium (IV nitrate (Zr(NO34, 5H2O with salicylaldazine (SAH2 and semicarbazone ligands benzaldehyde semicarbazone (BSCH, 4-methoxybenzaldehyde semicarbzone (MBSCH, 2-chlorobenzaldehyde semicrbazone (CISCH and cinnamaldehyde semicarbazone (CinSCH forming complexes of the type [Zr2(SAH2(SCH2](NO38 and [Zr2(SA2 (SC2](NO32 in neutral and basic medium respectively. The ligands and their complexes are characterized physico-chemically.

  8. Synthesize and Characterization of Hydroxypropyl-N-octanealkyl Chitosan Ramification

    Science.gov (United States)

    Tan, Fu-neng

    2018-03-01

    A new type of amphiphilic ramification, hydroxypropyl-N-octanealkyl chitosan was prepared from chitosan via hydrophilic group and hydrophobic group were introduced. We could protect the amino group of chitosan via the reaction of chitosan and benzaldehyde could get Schiff base structure. Structures of the products were characterized with FT-IR, elemental analysis, themogrammetry (TG) analysis and X-ray diffraction. The degree of substitution of hydrophobic group was studied by elemental analysis. The result showed this chitosan ramification was soluble, biocompatible, biodegradable and nontoxic.

  9. Synthesis and Characterization of New Palladium(II) Thiosemicarbazone Complexes and Their Cytotoxic Activity against Various Human Tumor Cell Lines

    Science.gov (United States)

    Hernández, Wilfredo; Paz, Juan; Carrasco, Fernando; Spodine, Evgenia; Manzur, Jorge; Sieler, Joachim; Blaurock, Steffen; Beyer, Lothar

    2013-01-01

    The palladium(II) bis-chelate complexes of the type [Pd(TSC1-5)2] (6–10), with their corresponding ligands 4-phenyl-1-(acetone)-thiosemicarbazone, HTSC1 (1), 4-phenyl-1-(2′-chloro-benzaldehyde)-thiosemicarbazone, HTSC2 (2), 4-phenyl-1-(3′-hydroxy-benzaldehyde)-thiosemicarbazone, HTSC3 (3), 4-phenyl-1-(2′-naphthaldehyde)-thiosemicarbazone, HTSC4 (4), and 4-phenyl-1-(1′-nitro-2′-naphthaldehyde)-thiosemicarbazone, HTSC5 (5), were synthesized and characterized by elemental analysis and spectroscopic techniques (IR and 1H- and 13C-NMR). The molecular structure of HTSC3, HTSC4, and [Pd(TSC1)2] (6) have been determined by single crystal X-ray crystallography. Complex 6 shows a square planar geometry with two deprotonated ligands coordinated to PdII through the azomethine nitrogen and thione sulfur atoms in a cis arrangement. The in vitro cytotoxic activity measurements indicate that the palladium(II) complexes (IC50 = 0.01–9.87 μM) exhibited higher antiproliferative activity than their free ligands (IC50 = 23.48–70.86 and >250 μM) against different types of human tumor cell lines. Among all the studied palladium(II) complexes, the [Pd(TSC3)2] (8) complex exhibited high antitumor activity on the DU145 prostate carcinoma and K562 chronic myelogenous leukemia cells, with low values of the inhibitory concentration (0.01 and 0.02 μM, resp.). PMID:24391528

  10. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    International Nuclear Information System (INIS)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe 2 ) 4 , cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13 C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, 13 C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated

  11. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang, E-mail: gfzhang@snnu.edu.cn; Gao, Ziwei, E-mail: zwgao@snnu.edu.cn

    2015-01-15

    A successive anchoring of Ti(NMe{sub 2}){sub 4}, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1′-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, {sup 13}C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands. - Graphical abstract: The ligand-tailored silica supported “single site” titanium complexes were synthesized by SOMC strategy and fully characterized. Their catalytic activity were evaluated by benzaldehyde silylcyanation. - Highlights: • Single-site silica supported Ti active species was prepared by SOMC technique. • O-donor ligand tailored Ti surface species was synthesized. • The surface species was characterized by XPS, {sup 13}C CP-MAS NMR, XANES etc. • Catalytic activity of the Ti active species in silylcyanation reaction was evaluated.

  12. Field observations of volatile organic compound (VOC) exchange in red oaks

    Science.gov (United States)

    Cappellin, Luca; Algarra Alarcon, Alberto; Herdlinger-Blatt, Irina; Sanchez, Juaquin; Biasioli, Franco; Martin, Scot T.; Loreto, Francesco; McKinney, Karena A.

    2017-03-01

    Volatile organic compounds (VOCs) emitted by forests strongly affect the chemical composition of the atmosphere. While the emission of isoprenoids has been largely characterized, forests also exchange many oxygenated VOCs (oVOCs), including methanol, acetone, methyl ethyl ketone (MEK), and acetaldehyde, which are less well understood. We monitored total branch-level exchange of VOCs of a strong isoprene emitter (Quercus rubra L.) in a mixed forest in New England, where canopy-level fluxes of VOCs had been previously measured. We report daily exchange of several oVOCs and investigated unknown sources and sinks, finding several novel insights. In particular, we found that emission of MEK is linked to uptake of methyl vinyl ketone (MVK), a product of isoprene oxidation. The link was confirmed by corollary experiments proving in vivo detoxification of MVK, which is harmful to plants. Comparison of MEK, MVK, and isoprene fluxes provided an indirect indication of within-plant isoprene oxidation. Furthermore, besides confirming bidirectional exchange of acetaldehyde, we also report for the first time direct evidence of benzaldehyde bidirectional exchange in forest plants. Net emission or deposition of benzaldehyde was found in different periods of measurements, indicating an unknown foliar sink that may influence atmospheric concentrations. Other VOCs, including methanol, acetone, and monoterpenes, showed clear daily emission trends but no deposition. Measured VOC emission and deposition rates were generally consistent with their ecosystem-scale flux measurements at a nearby site.

  13. 6,6'-(1E,1'E-((1R,2R-1,2-Diphenylethane-1,2-diylbis(azan-1-yl-1-ylidenebis(methan-1-yl-1-ylidenebis(2-tert-butyl-4-((trimethylsilylethynylphenol

    Directory of Open Access Journals (Sweden)

    David Díaz Díaz

    2013-03-01

    Full Text Available Functionalizable salen derivative, 6,6'-(1E,1'E-((1R,2R-1,2-diphenylethane-1,2-diylbis(azan-1-yl-1-ylidenebis(methan-1-yl-1-ylidenebis(2-tert-butyl-4-((trimethylsilyl ethyn-ylphenol (3, was synthesized by condensation between (1R,2R-1,2-diphenylethane-1,2-diamine (2 and 3-tert-butyl-2-hydroxy-5-((trimethylsilylethynyl benzaldehyde (1 under refluxing conditions. The title compound was characterized by 1H-NMR, 13C-NMR, FT-IR, high-resolution mass spectrometry, optical rotation and melting point determination.

  14. Microwave-Assisted Synthesis of Some Quinoxaline-Incorporated Schiff Bases and Their Biological Evaluation

    Directory of Open Access Journals (Sweden)

    L. Achutha

    2013-01-01

    Full Text Available Quinoxaline-incorporated Schiff bases (4a–j were synthesized by the condensation of 2-[(3-methylquinoxalin-2-yloxy]acetohydrazide (3 with indole-3-carbaldehyde, furfuraldehyde, 5-(4-nitrophenyl-2-furfuraldehyde, and substituted benzaldehydes under conventional and microwave irradiation methods. The microwave method was found to be remarkably successful with higher yields, less reaction time, and environmentally friendly compared to conventional heating method. The chemical structures of the synthesized compounds have been confirmed by analytical and spectral data. All the compounds have been evaluated for antitubercular and anti-inflammatory activities.

  15. Fate of Carbamazepine during Water Treatment

    DEFF Research Database (Denmark)

    Kosjek, T.; Andersen, Henrik Rasmus; Kompare, Boris

    2009-01-01

    of acridone, hydroxy-(9H,10H)-acridine-9-carbaldehyde, acridone-N-carbaldehyde, and 1-(2-benzaldehyde)-(1H,3H-quinazoline-2,4-dione, while biological breakdown of acridine yielded acridone. In parallel, the transformation product iminostilbene was observed during sample analysis. In addition,this study...... compared the treatment technologies according to the removal of carbamazepine and the production and decay of its transformation products. The most successful method for the removal of carbamazepine was UV treatment, while acridine and acridone were more susceptible to biological treatment. Therefore...

  16. Fluorescence method for enzyme analysis which couples aromatic amines with aromatic aldehydes

    Science.gov (United States)

    Smith, R.E.; Dolbeare, F.A.

    1980-10-21

    Analysis of proteinases is accomplished using conventional amino acid containing aromatic amine substrates. Aromatic amines such as 4-methoxy-2-naphthylamine (4M2NA), 2-naphthylamine, aminoisophthalic acid dimethyl ester, p-nitroaniline, 4-methoxy-1-aminofluorene and coumarin derivatives resulting from enzymatic hydrolysis of the substrate couples with aromatic aldehydes such as 5-nitrosalicylaldehyde (5-NSA), benzaldehyde and p-nitrobenzaldehyde to produce Schiff-base complexes which are water insoluble. Certain Schiff-base complexes produce a shift from blue to orange-red (visible) fluorescence. Such complexes are useful in the assay of enzymes. No Drawings

  17. Synthesis of Chalcone and Flavanone Compound Using Raw Material of Acetophenone and Benzaldehyde Derivative

    Directory of Open Access Journals (Sweden)

    Ismiyarto Ismiyarto

    2010-06-01

    Full Text Available Synthesis of flavanoid compounds of chalcone and flavanone groups have been conducted. Flavanoid Is one of the group natural products which is mostly found in plants and have been proved to have physiological activity as drug. In this research, chalcone proup compounds that being synthesized are: chalcone, 3,4-dimethoxychalcone, 2'-hidroxy-3,4-dimethoxychalcone where as compound of flavanone group that being synthesized is 3',4'-dimethoxyflavanone. The synthesis of chalcone group are carried out based on Claisen-Schmidt reaction by using raw material of aromatic aldehydes and aromatic ketones. The synthesis in carried out by stirring at the room temperature using alkali solution as catalyst and ethanol as solvent. The synthesis of 3',4'-dimethoxyflanone is made based on the nucleophilic 1,4 addition of the unsaturated α,β ketone. The synthesis is made by refluxing 2'-hydroxy-3,4-dimethoxychalcone in alkali condition for 12 hours. The identification of flavanoid compound is carried out by using spectroscopic IR, GC-MS and 1H-NMR methods. The result of each synthesis chalcone group are follows: chalcone as yellowish solid with m.p= 50 °C and the yield is 83.39%; 3,4-dimethoxychalcone as yellow solid with m.p= 57°C and the yield is 76.00% ; 2'-hydroxy-3,4-dimethoxychalcone as orange solid with m.p= 90 °C and the yield is 74.29%, for 3',4'-dimethoxyflavanone as pale yellow solid with m.p= 80 °C and the yield is 72.00%.

  18. The volatile profiles of a rare apple (Malus domestica Borkh.) honey: shikimic acid-pathway derivatives, terpenes, and others.

    Science.gov (United States)

    Kuś, Piotr Marek; Jerković, Igor; Tuberoso, Carlo Ignazio Giovanni; Šarolić, Mladenka

    2013-09-01

    The volatile profiles of rare Malus domestica Borkh. honey were investigated for the first time. Two representative samples from Poland (sample I) and Spain (sample II) were selected by pollen analysis (44-45% of Malus spp. pollen) and investigated by GC/FID/MS after headspace solid-phase microextraction (HS-SPME) and ultrasonic solvent extraction (USE). The apple honey is characterized by high percentage of shikimic acid-pathway derivatives, as well as terpenes, norisoprenoids, and some other compounds such as coumaran and methyl 1H-indole-3-acetate. The main compounds of the honey headspace were (sample I; sample II): benzaldehyde (9.4%; 32.1%), benzyl alcohol (0.3%; 14.4%), hotrienol (26.0%, 6.2%), and lilac aldehyde isomers (26.3%; 1.7%), but only Spanish sample contained car-2-en-4-one (10.2%). CH2 Cl2 and pentane/Et2 O 1 : 2 (v/v) were used for USE. The most relevant compounds identified in the extracts were: benzaldehyde (0.9-3.9%), benzoic acid (2.0-11.2%), terpendiol I (0.3-7.4%), coumaran (0.0-2.8%), 2-phenylacetic acid (2.0-26.4%), methyl syringate (3.9-13.1%), vomifoliol (5.0-31.8%), and methyl 1H-indole-3-acetate (1.9-10.2%). Apple honey contained also benzyl alcohol, 2-phenylethanol, (E)-cinnamaldehyde, (E)-cinnamyl alcohol, eugenol, vanillin, and linalool that have been found previously in apple flowers, thus disclosing similarity of both volatile profiles. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Mechanism of intermolecular hydroacylation of vinylsilanes catalyzed by a rhodium(I) olefin complex: a DFT study.

    Science.gov (United States)

    Meng, Qingxi; Shen, Wei; Li, Ming

    2012-03-01

    Density functional theory (DFT) was used to investigate the Rh(I)-catalyzed intermolecular hydroacylation of vinylsilane with benzaldehyde. All intermediates and transition states were optimized completely at the B3LYP/6-31G(d,p) level (LANL2DZ(f) for Rh). Calculations indicated that Rh(I)-catalyzed intermolecular hydroacylation is exergonic, and the total free energy released is -110 kJ mol(-1). Rh(I)-catalyzed intermolecular hydroacylation mainly involves the active catalyst CA2, rhodium-alkene-benzaldehyde complex M1, rhodium-alkene-hydrogen-acyl complex M2, rhodium-alkyl-acyl complex M3, rhodium-alkyl-carbonyl-phenyl complex M4, rhodium-acyl-phenyl complex M5, and rhodium-ketone complex M6. The reaction pathway CA2 + R2 → M1b → T1b → M2b → T2b1 → M3b1 → T4b → M4b → T5b → M5b → T6b → M6b → P2 is the most favorable among all reaction channels of Rh(I)-catalyzed intermolecular hydroacylation. The reductive elimination reaction is the rate-determining step for this pathway, and the dominant product predicted theoretically is the linear ketone, which is consistent with Brookhart's experiments. Solvation has a significant effect, and it greatly decreases the free energies of all species. The use of the ligand Cp' (Cp' = C(5)Me(4)CF(3)) decreased the free energies in general, and in this case the rate-determining step was again the reductive elimination reaction.

  20. FeF(3) catalyzed cascade C-C and C-N bond formation: synthesis of differentially substituted triheterocyclic benzothiazole functionalities under solvent-free condition.

    Science.gov (United States)

    Atar, Amol B; Jeong, Yeon Tae

    2014-05-01

    A series of diverse polyfunctionalized triheterocyclic benzothiazoles were easily prepared in excellent yields via the Biginelli reaction of 2-aminobenzothiazole with substituted benzaldehydes and α-methylene ketones using FeF(3) as an expeditious catalyst under solvent-free conditions. The protocol provides a practical and straightforward approach toward highly functionalized triheterocyclic benzothiazole derivatives in excellent yields. The reaction was conveniently promoted by FeF(3) and the catalyst could be recovered easily after the reaction and reused without any loss of its catalytic activity. The advantageous features of this methodology are high atom economy, operational simplicity, shorter reaction time, convergence, and facile automation.

  1. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  2. Influência da temperatura de secagem sobre o rendimento e a composição química do óleo essencial de Tanaecium nocturnum (barb. Rodr. bur. & K. Shum The influence of drying temperature on the yield and the chemical composition of the essential oil from Tanaecium nocturnum (Barb. Rodr. Bur. & K. Shum

    Directory of Open Access Journals (Sweden)

    Flávio A. Pimentel

    2008-01-01

    Full Text Available The yields and chemical compositions of the essential oils obtained by steam distillation of the fresh and dried (30 and 40 ºC leaves, stems and roots of Tanaecium nocturnum are reported. The identification and quantification of the volatile constituents were accomplished by GC/MS and GC/FID, respectively. The essential oils obtained from the various parts of the plant were constituted mainly of benzaldehyde. Large losses and variations in the quantities of the components during the drying process were observed. The presence of mandelonitrile in higher concentration in the stem and roots indicates that this species produces cyanogenic glycosides.

  3. Simple Method of Preparation and Characterization of New Antifungal Active Biginelli Type Heterocyclic Compounds

    Science.gov (United States)

    Velan, A. Senthilkumara; Joseph, J.; Raman, N.

    2008-01-01

    A simple, efficient and cost effective method is described for the synthesis of Biginelli type heterocyclic compounds of dihydropyrimidinones analogous. They were prepared from a reaction mixture consisting of substituted benzaldehydes, thiourea and ethylacetoacetate using ammonium dihydrogenphosphate as catalyst. The procedure for the preparation of the compounds is environmentally benign and safe which is advantageous in terms of experimentation, catalyst reusability, yields of the products, shorter reaction times and preclusion of toxic solvents. The four new synthesised compounds were tested for their antifungal activity. They have good antifungal activity comparing to the standard (Fluconazole). PMID:23997611

  4. Synthesis and Antimicrobial Activity of Newer Quinazolinones

    Directory of Open Access Journals (Sweden)

    J. A. Patel

    2006-01-01

    Full Text Available 2–alkyl–6–bromo–3,1–benzoxazine–4–one (2 is synthesized by treating p–Bromoanthranilic acid and Acetylechoride or Benzoylchloride. Reaction of 2–alkyl–6–bromo–3,1–benzoxazine–4–one (2. with hydrazinehydrate furnish the corresponding 3–Amino–2–methyl–6–bromoquinazoline–4(3H–one (3 which on reaction with benzaldehyde afford N,N – arylidene derivative (4. Reaction of 4 with various diazonium salts yields 6–bromo–2–alkyl/aryl–3{[phenyl(phenyldiazenylmethylene]amino}quinazolin–4(3H–one .

  5. Jaspiferin A and B: Two New Secondary Metabolites from the South China Sea Sponge Jaspis stellifera

    Directory of Open Access Journals (Sweden)

    Shengan Tang

    2012-07-01

    Full Text Available A chemical investigation of marine sponge Jaspis stellifera, collected from South China Sea, led to the isolation of two new compounds, Jaspiferin A and B (1-2, and six known compounds, gibepyrone F (3 , p- hydroxy benzaldehyde (4 , 3-Indole-3-aldehyde (5 , Thymine (6 , 24(28-dehydroaplysterol (7 , (25s-26- methylene-cholest-4-en-3-one (8. Their structures were determined by extensive spectroscopic analysis in association with physical and chemical properties, as well as comparison of their spectral data with these reported in literatures. The biogenetic transformation of compound 2 was also speculated.

  6. Atualizando a química orgânica experimental da licenciatura

    Directory of Open Access Journals (Sweden)

    Navarro Marcelo

    2005-01-01

    Full Text Available The present contribution describes three different modern experiments for possible adoption in undergraduate organic chemistry laboratories. These are: 1. electrocatalytic hydrogenation of benzaldehyde to benzyl alcohol; 2. identification of three volatile components, obtained from pineapple fruit, by mass spectrometry and 3. microwave mediated fast synthesis of N-(p-chlorophenylphthalamic acid from phthalic anhydride and p-chloroaniline under solvent-free conditions. The experiments can be executed in a short period of time, putting the undergraduate student in contact with a variety of topics in organic chemistry and several techniques of analysis, showing multidisciplinarity in organic chemistry.

  7. Synthesis and anticandidal activity of some imidazopyridine derivatives.

    Science.gov (United States)

    Kaplancikli, Zafer Asim; Turan-Zitouni, Gülhan; Ozdemir, Ahmet; Revial, Gilbert

    2008-12-01

    New hydrazide derivatives of imidazo[1,2-a]pyridine have been synthesized and evaluated for anticandidal activity. The reaction of imidazo[1,2-a]pyridine-2-carboxylic acid hydrazides with various benzaldehydes gave N-(benzylidene)imidazo[ 1,2-a]pyridine-2-carboxylic acid hydrazide derivatives. Their anticandidal activities against Candida albicans and Candida glabrata (isolates obtained from Osmangazi University, Faculty of Medicine, Eskisehir, Turkey), Candida albicans (ATCC 90028), Candida utilis (NRLL Y-900), Candida tropicalis (NRLL Y-12968), Candida krusei (NRLL Y-7179), Candida zeylanoides (NRLL Y-1774), and Candida parapsilosis (NRLL Y-12696) were investigated.

  8. KF/Al2O3 as a Recyclable Basic Catalyst for 1,3-Dipolar Cycloaddition Reaction: Synthesis of Indolizine-1-Carbonitrile Derivatives

    Directory of Open Access Journals (Sweden)

    Abaszadeh Mehdi

    2017-07-01

    Full Text Available KF/Al2O3 as a green and efficient catalyst has been used for synthesis of indolizine-1-carbonitrile derivatives. It can be proceeded by using 1,3-dipolar cycloaddition reaction of 1-alkyl-2-chloropyridinium bromides, malononitrile and benzaldehyde in ethanol, at reflux. The great advantage of this catalyst is the ease of handling. KF/Al2O3 can be used and removed by filtration, avoiding cumbersome aqueous workups and decreasing solvent waste handling issues. High conversions, short reaction times and a cleaner reaction profiles are some of the outstanding advantages of this method.

  9. Anchoring Tri(8-QuinolinolatoIron Onto Sba-15 for Partial Oxidation of Benzyl Alcohol Using Water as the Solvent

    Directory of Open Access Journals (Sweden)

    Yang Xiaoyuan

    2014-09-01

    Full Text Available Tri(8-quinolinolatoiron complex immobilized onto SBA-15 catalyst has been synthesized through a stepwise procedure. The characterization results indicated that the BET surface area, total pore volume and average pore width decrease after stepwise modification of SBA-15, while the structure keeps intact. Catalytic tests showed that FeQ3-SBA-15 catalyzes the oxidation reaction well with 34.8% conversion of benzyl alcohol and 74.7% selectivity to benzaldehyde when water is used as the solvent after 1 h reaction. In addition, homogeneous catalyst tri(8-quinolinolatoiron exhibits very bad catalytic behavior using water as the solvent.

  10. Alkyne Benzannulation Reactions for the Synthesis of Novel Aromatic Architectures.

    Science.gov (United States)

    Hein, Samuel J; Lehnherr, Dan; Arslan, Hasan; J Uribe-Romo, Fernando; Dichtel, William R

    2017-11-21

    Aromatic compounds and polymers are integrated into organic field effect transistors, light-emitting diodes, photovoltaic devices, and redox-flow batteries. These compounds and materials feature increasingly complex designs, and substituents influence energy levels, bandgaps, solution conformation, and crystal packing, all of which impact performance. However, many polycyclic aromatic hydrocarbons of interest are difficult to prepare because their substitution patterns lie outside the scope of current synthetic methods, as strategies for functionalizing benzene are often unselective when applied to naphthalene or larger systems. For example, cross-coupling and nucleophilic aromatic substitution reactions rely on prefunctionalized arenes, and even directed metalation methods most often modify positions near Lewis basic sites. Similarly, electrophilic aromatic substitutions access single regioisomers under substrate control. Cycloadditions provide a convergent route to densely functionalized aromatic compounds that compliment the above methods. After surveying cycloaddition reactions that might be used to modify the conjugated backbone of poly(phenylene ethynylene)s, we discovered that the Asao-Yamamoto benzannulation reaction is notably efficient. Although this reaction had been reported a decade earlier, its scope and usefulness for synthesizing complex aromatic systems had been under-recognized. This benzannulation reaction combines substituted 2-(phenylethynyl)benzaldehydes and substituted alkynes to form 2,3-substituted naphthalenes. The reaction tolerates a variety of sterically congested alkynes, making it well-suited for accessing poly- and oligo(ortho-arylene)s and contorted hexabenzocoronenes. In many cases in which asymmetric benzaldehyde and alkyne cycloaddition partners are used, the reaction is regiospecific based on the electronic character of the alkyne substrate. Recognizing these desirable features, we broadened the substrate scope to include silyl

  11. Brønsted instead of Lewis acidity in functionalized MIL-101Cr MOFs for efficient heterogeneous (nano-MOF) catalysis in the condensation reaction of aldehydes with alcohols.

    Science.gov (United States)

    Herbst, Annika; Khutia, Anupam; Janiak, Christoph

    2014-07-21

    Porous chromium(III) 2-nitro-, 2-amino-, and nonfunctionalized terephthalate (MIL-101Cr) metal organic frameworks are heterogeneous catalysts for diacetal formation from benzaldehyde and methanol (B-M reaction) as well as other aldehydes and alcohols. MIL-101Cr-NO2 obtained by direct reaction between CrO3 and 2-nitro-terephthalate showed the highest activity with 99% conversion in the B-M reaction in 90 min and turnover numbers of 114. The activity decreased in the order MIL-101Cr-NO2 > MIL-101Cr > MIL-101Cr-NH2. Within different samples of nonfunctionalized MIL-101Cr the activity increased with surface area. Methanol gas sorption of the different MIL materials correlates with the BET surface area and pore volume but not with the diacetalization activity. Benzaldehyde adsorption from heptane showed no significant difference for the different MILs. Gas sorption studies of CD3CN to probe for a higher Lewis acidity in MIL-101Cr-NO2 remained inconclusive. A high B-M catalytic activity of wet MIL-101Cr-NO2 excluded significant contributions from coordinatively unsaturated Lewis-acid sites. pH measurements of methanol dispersions of the MIL materials gave the most acidic pH (as low as 1.9) for MIL-101Cr-NO2, which significantly increased over MIL-101Cr (3.0) to MIL-101Cr-NH2 (3.3). The increase in acidity is of short range or a surface effect to the heterogeneous MIL particles as protons dissociating from the polarized aqua ligands (Cr-OH2) have to stay near the insoluble counteranionic framework. The variation in Brønsted acidity of MIL-101Cr-NO2 > MIL-101Cr ≈ MIL-101Cr-NH2 correlates with the withdrawing effect of NO2 and the diacetalization activity. The catalytic B-M activity of soluble, substitution-inert, and acidic Cr(NO3)3·9H2O supports the Brønsted-acid effect of the MIL materials. Filtration and centrifugation experiments with MIL-101Cr-NO2 revealed that about 2/3 of the catalytic activity comes from nano-MOF particles with a diameter below 200 nm. The MIL

  12. Development and application of a validated stability-indicating HPLC method for simultaneous determination of granisetron hydrochloride, benzyl alcohol and their main degradation products in parenteral dosage forms.

    Science.gov (United States)

    Hewala, Ismail; El-Fatatre, Hamed; Emam, Ehab; Mubrouk, Mokhtar

    2010-06-30

    A simple, rapid and sensitive reversed phase high performance liquid chromatographic method using photodiode array detection was developed and validated for the simultaneous determination of granisetron hydrochloride, benzyl alcohol, 1-methyl-1H-indazole-3-carboxylic acid (the main degradation product of granisetron) and benzaldehyde (the main degradation product of benzyl alcohol) in granisetron injections. The separation was achieved on Hypersil BDS C8 (250 mm x 4.6 mm i.d., 5 microm particle diameter) column using a mobile phase consisted of acetonitrile:0.05 M KH(2)PO(4):triethylamine (22:100:0.15) adjusted to pH 4.8. The column was maintained at 25 degrees C and 20 microL of solutions was injected. Photodiode array detector was used to test the peak purity and the chromatograms were extracted at 210 nm. Naphazoline hydrochloride was used as internal standard. The method was validated with respect to specificity, linearity, accuracy, precision, limit of quantitation and limit of detection. The validation acceptance criteria were met in all cases. Identification of the pure peaks was carried out using library match programmer and wavelengths of derivative optima of the spectrograms of the peaks. The method was successfully applied to the determination of the investigated drugs and their degradation products in different batches of granisetron injections. The method was proved to be sensitive for the determination down to 0.03 and 0.01% of granisetron degradation product and benzaldehyde, respectively, which are far below the compendia limits for testing these degradation products in their corresponding intact drugs. Copyright 2010 Elsevier B.V. All rights reserved.

  13. Fate of free radicals generated during one-electron reductions of 4-alkyl-1,4-peroxyquinols by cytochrome P-450

    International Nuclear Information System (INIS)

    Yumibe, N.P.; Thompson, J.A.

    1988-01-01

    Free radicals resulting from the one-electron reduction and subsequent homolytic cleavage of oxygen-oxygen bonds by heme proteins are likely to be responsible for some aspects of the toxicity of organic hydroperoxides. In the present work, effects of the 4-alkyl substituent of 2,6-di-tert-butyl-4-alkyl-4-hydroperoxycytohexa-2,5-dienones on radical production were investigated with microsomal cytochrome P-450 from rat liver. Quinoxy radicals from homolysis of the peroxyquinols underwent β-scission to produce a quinone and an alkyl radical, and this process occurred with increasing frequency as the stability of the alkyl radical increased. The fate of benzyl and 2-phenylethyl radicals generated from the appropriately substituted peroxyquinols was investigated also. The former was converted to benzyl alcohol, benzaldehyde, and toluene and the latter to 2-phenylethanol, phenylacetaldehyde, ethylbenzene, styrene, and benzaldehyde. Oxygen-18 labeling studies demonstrate that 80-85% of the benzyl alcohol incorporated oxygen from the hydroperoxide and the balance from molecular oxygen. This indicates that the predominant reaction pathway involved recombination between the benzyl radical and the iron-bound hydroxyl radical of the P-450 intermediate complex. By contrast, about 50% of 2-phenylethanol from the 2-phenylethyl radical incorporated oxygen from water and the balance from O 2 . Two alternative mechanisms are proposed to explain the formation of 2-phenylethanol that contained oxygen from water and the concurrent formation of styrene: (a) oxygen exchange of the P-450 intermediate with water, followed by hydrogen abstraction and radical recombination reactions with the P-450 complex, or (b) oxidation of the radical to the 2-phenylethyl cation followed by proton elimination and hydration

  14. Direct Synthesis of Protoberberine Alkaloids by Rh-Catalyzed C-H Bond Activation as the Key Step.

    Science.gov (United States)

    Jayakumar, Jayachandran; Cheng, Chien-Hong

    2016-01-26

    A one-pot reaction of substituted benzaldehydes with alkyne-amines by a Rh-catalyzed C-H activation and annulation to afford various natural and unnatural protoberberine alkaloids is reported. This reaction provides a convenient route for the generation of a compound library of protoberberine salts, which recently have attracted great attention because of their diverse biological activities. In addition, pyridinium salt derivatives can also be formed in good yields from α,β-unsaturated aldehydes and amino-alkynes. This reaction proceeds with excellent regioselectivity and good functional group compatibility under mild reaction conditions by using O2 as the oxidant. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. synthesis and labelling of some nitrogenous heterocyclic compounds

    International Nuclear Information System (INIS)

    Mahmoud, A.A.L.

    2002-01-01

    the imidazole nucleus has wide range of pharmaceutical activities . also , radioiodinated compounds are used in nuclear medicine. this thesis deals with the synthesis of 2-(iodophenyl)-4-oxazoline-5-ons e, which are used as starting materials in the synthesis of the corresponding imidazolinone derivatives. also, it deals with radioiodination f the synthesized compounds to evaluate their application in nuclear medicine. interaction of o- iodo hippuric acid (I) with aromatic aldehydes (i.e., benzaldehyde, p- methoxybenzaldehyde and p- nitrobenzaldehyde) in acetic anhydride and in the presence of fused sodium acetate effected cyclization to afford the corresponding 2-(2-iodophenyl)-4-arylidene- 2-oxazoline-5-ones(l l a-c )

  16. Synthesis of Renewable meta-Xylylenediamine from Biomass-Derived Furfural.

    Science.gov (United States)

    Scodeller, Ivan; Mansouri, Samir; Morvan, Didier; Muller, Eric; de Oliveira Vigier, Karine; Wischert, Raphael; Jérôme, François

    2018-04-30

    We report the synthesis of biomass-derived functionalized aromatic chemicals from furfural, a building block nowadays available in large scale from low-cost biomass. The scientific strategy relies on a Diels-Alder/aromatization sequence. By controlling the rate of each step, it was possible to produce exclusively the meta aromatic isomer. In particular, through this route, we describe the synthesis of renewably sourced meta-xylylenediamine (MXD). Transposition of this work to other furfural-derived chemicals is also discussed and reveals that functionalized biomass-derived aromatics (benzaldehyde, benzylamine, etc.) can be potentially produced, according to this route. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Isolation and characterization of Lactobacillus helveticus DSM 20075 variants with improved autolytic capacity.

    Science.gov (United States)

    Spus, Maciej; Liu, Hua; Wels, Michiel; Abee, Tjakko; Smid, Eddy J

    2017-01-16

    Lactobacillus helveticus is widely used in dairy fermentations and produces a range of enzymes, which upon cell lysis can be released into the cheese matrix and impact degradation of proteins, peptides and lipids. In our study we set out to explore the potential of Lb. helveticus DSM 20075 for increased autolytic capacity triggered by conditions such as low pH and high salt concentrations encountered in cheese environments. Lb. helveticus DSM 20075 was subjected to varied incubation temperatures (ranging from 37 to 50°C). High-temperature incubation (in the range of 45 to 50°C) allowed us to obtain a collection of six variant strains (V45-V50), which in comparison to the wild-type strain, showed higher growth rates at elevated temperatures (42°C-45°C). Moreover, variant strain V50 showed a 4-fold higher, in comparison to wild type, autolytic capacity in cheese-like conditions. Next, strain V50 was used as an adjunct in lab-scale cheese making trials to measure its impact on aroma formation during ripening. Specifically, in cheeses made with strain V50, the relative abundance of benzaldehyde increased 3-fold compared to cheeses made with the wild-type strain. Analysis of the genome sequence of strain V50 revealed multiple mutations in comparison to the wild-type strain DSM 20075 including a mutation found in a gene coding for a metal ion transporter, which can potentially be linked to intracellular accumulation of Mn 2+ and benzaldehyde formation. The approach of high-temperature incubation can be applied in dairy industry for the selection of (adjunct) cultures targeted at accelerated cheese ripening and aroma formation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Investigation of molecular metabolites in expired air of healthy man in condition of long-term isolation in hermetical confined environment

    Science.gov (United States)

    Tsarkov, Dmitriy; Mardanov, Robert; Markin, Andrey; Moukhamedieva, Lana

    Investigation of intermediary metabolites, produced in cells, in expired air of healthy man is directed on determination of molecular markers which are reflecting normal physiological pro-cesses in an organism, as well as on determination and validation of biomarkers for objective screening and non-invasive prenosological diagnostics of disorders in metabolic processes caused by negative effect of live environment. Investigation of influence of long-term isolation in her-metical confined environment on composition of healthy human expired air was made during experiment with 105 days isolation in condition of controlled environment and standard food ra-tion. Expired air samples were analyzed on gas chromatograph associated with the quadrupole mass spectrometer. The investigation results show that at rest hydroxy ketones, mostly 1-hydroxy-prorapanone-2 (acetol), aldehydes (decenal, benzaldehyde), acetophenone, phenol and fatty acids were determined. After physical performance (oxidative stress) the content of ke-tones (heptanone-2, heptanone-3), phenol, determined aldehydes (decenal, octadecenal) and acetol in expired air of volunteers decreased. It can be concerned with prevailing of alternative -methylglyoxalic metabolic pathway and caused by oxidative stress. Analysis of expired air samples taken on 30, 60 and 90 day of isolation showed that in conditions of long-term iso-lation concentration of heptanone-2, heptanone-3, 2,3-butadione, acetol, furanones, aldehydes (decenal, benzaldehyde) and acetophenone is increasing while concentration of phenol and fatty acids is decreasing as compared to samples taken before isolation. It was shown that dynamics of concentration of saturated hydrocarbons in expired air can be informative marker for estima-tion of organism response to oxidative stress, while the level of acetol can be used as indicator of man's training status, validity of exercise load and as a marker of hypoxic state.

  19. Toluene metabolism in isolated rat hepatocytes: effects of in vivo pretreatment with acetone and phenobarbital

    Energy Technology Data Exchange (ETDEWEB)

    Smith-Kielland, A.; Ripel, A. (National Inst. of Forensic Toxicology, Oslo (Norway))

    1993-02-01

    Hepatocytes isolated from control, acetone- and phenobarbital-pretreated rats were used to study the metabolic conversion of toluene to benzyl alcohol, benzaldehyde, benzoic acid and hippuric acid at low (<100 [mu]M) and high (100-500 [mu]M) toluene concentrations. The baseline formation rates of toluene metabolites (benzyl alcohol, benzoic acid and hippuric acid) were 2.9[+-]1.7 and 10.0[+-]2.3 nmol/mg cell protein/60 min at low and high toluene concentrations, respectively. In vivo pretreatment of rats with acetone and phenobarbital increased the formation of metabolites: at low toluene concentrations 3- and 5-fold, respectively; at high toluene concentrations no significant increase (acetone) and 8-fold increase (phenobarbital). Apparent inhibition by ethanol, 7 and 60 mM, was most prominent at low toluene concentrations: 63% and 69%, respectively, in control cells; 84% and 91% in acetone-pretreated cells, and 32% (not significant) and 51% in phenobarbital-pretreated cells. Ethanol also caused accumulation of benzyl alcohol. The apparent inhibition by isoniazid was similar to that of ethanol at low toluene concentrations. Control and acetone-pretreated cells were apparently resistant towards metyrapone; the decrease was 49% and 64% in phenobarbital-pretreated cells at low and high toluene concentrations, respectively. In these cells, the decrease in presence of combined ethanol and metyrapone was 95% (low toluene concentrations). 4-Methylpyrazole decreased metabolite formation extensively in all groups. Benzaldehyde was only found in the presence of an aldehyde dehydrogenase inhibitor. Increased ratio benzoic/hippuric acid was observed at high toluene concentrations. These results demonstrate that toluene oxidation may be studied by product formation in isolated hepatocytes. However, the influence of various enzymes in the overall metabolism could not be ascertained due to lack of inhibitor specificity. (orig.).

  20. Synthesis of cobalt-containing mesoporous catalysts using the ultrasonic-assisted “pH-adjusting” method: Importance of cobalt species in styrene oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Baitao, E-mail: btli@scut.edu.cn; Zhu, Yanrun; Jin, Xiaojing

    2015-01-15

    Cobalt-containing SBA-15 and MCM-41 (Co-SBA-15 and Co-MCM-41) mesoporous catalysts were prepared via ultrasonic-assisted “pH-adjusting” technique in this study. Their physiochemical structures were comprehensively characterized and correlated with catalytic activity in oxidation of styrene. The nature of cobalt species depended on the type of mesoporous silica as well as pH values. The different catalytic performance between Co-SBA-15 and Co-MCM-41 catalysts originated from cobalt species. Cobalt species were homogenously incorporated into the siliceous framework of Co-SBA-15 in single-site Co(II) state, while Co{sub 3}O{sub 4} particles were loaded on Co-MCM-41 catalysts. The styrene oxidation tests showed that the single-site Co(II) state was more beneficial to the catalytic oxidation of styrene. The higher styrene conversion and benzaldehyde selectivity over Co-SBA-15 catalysts were mainly attributed to single-site Co(II) state incorporated into the framework of SBA-15. The highest conversion of styrene (34.7%) with benzaldehyde selectivity of 88.2% was obtained over Co-SBA-15 catalyst prepared at pH of 7.5, at the mole ratio of 1:1 (styrene to H{sub 2}O{sub 2}) at 70 °C. - Graphical abstract: Cobalt-containing mesoporous silica catalysts were developed via ultrasonic-assisted “pH-adjusting” technique. Compared with Co{sub 3}O{sub 4} in Co-MCM-41, the single-site Co(II) state in Co-SBA-15 was more efficient for the styrene oxidation. - Highlights: • Fast and cost-effective ultrasonic technique for preparing mesoporous materials. • Incorporation of Co via ultrasonic irradiation and “pH-adjusting”. • Physicochemical comparison between Co-SBA-15 and Co-MCM-41. • Correlation of styrene oxidation activity and catalyst structural property.

  1. Preparation of Different Substitued Polypyridine Ligands, Ruthenium(II)-Bridged Complexes and Spectoscopıc Studies.

    Science.gov (United States)

    Obali, Aslihan Yilmaz; Ucan, Halil Ismet

    2016-09-01

    Novel different substitued polypyridine ligands 4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzaldehyde (BA-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10]phenanthroline-2-yl)phenoxy)methyl)benzylidene)-pyrene-4-amine (PR-PPY), (E)-N-(4-((4-(1H-imidazo[4,5-f][1,10] phenanthroline-2-yl)phenoxy)methyl)benzylidene)-1,10-phenanthroline-5amine (FN-PPY), 2-(4-(bromomethyl)phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline (BR-PPY), 2-(4-(azidomethyl)phenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (N3-PPY) and triazole containing polypyridine ligand 3,4-bis[(4-(metoxy)-1,2,3-triazole)1-methylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline)] benzaldehyde (BA-DIPPY) and Ruthenium(II) complexes were synthesized and characterized. Their photopysical properties were investigated. The complexes RuP(PR-PPY), RuB(PR-PPY, RuP(FN-PPY) and RuB(FN-PPY) exhibited a broad absorption bands at 485, 475, 476, and 453 nm, respectively, assignable to the spin-allowed MLCT (dπ-π*) transition. The emission maxima of the pyrene-appended polypyridine ligand PR-PPY was observed at λems = 616 nm and the phenanthroline-appended polypyridine ligand FN-PPY was observed at λems = 668 nm. And the emission maxima of the complexes RuP(PR-PPY), RuB(PR-PPY), RuP(FN-PPY) and RuB(FN-PPY) were observed at λems = 646, 646, 685 and 685 nm, respectively. As seen in fluorescence spectra, the fluorescence intensities of the ligands are higher than their metal complexes. This is because of quenching effect of Ruthenium(II) metal on chromophore groups.

  2. NCA nucleophilic radiofluorination on substituted benzaldehydes for the preparation of [18F]fluorinated aromatic amino acids

    International Nuclear Information System (INIS)

    Wadsak, Wolfgang; Wirl-Sagadin, Barbara; Mitterhauser, Markus; Mien, Leonhard-Key; Ettlinger, Dagmar E.; Keppler, Bernhard K.; Dudczak, Robert; Kletter, Kurt

    2006-01-01

    Nucleophilic aromatic substitution is a challenging task in radiochemistry. Therefore, a thorough evaluation and optimisation of this step is needed to provide a satisfactory tool for the routine preparation of [ 18 F]fluorinated aromatic amino acids. Two methods, already proposed elsewhere, were evaluated and improved. The yields for the radiofluorination were increased whereas activity loss during solid phase extraction was observed. Radiochemical yields for the two methods were 92.7±5.5% (method 1) and 92.1±12.3% (method 2) for conversion and 11.1±2.8% (method 1) and 34.8±0.6% (method 2) for purification, respectively. In total, we demonstrate an optimised method for the preparation of this important class of [ 18 F]fluorinated synthons for PET

  3. Solvent for urethane adhesives and coatings and method of use

    Science.gov (United States)

    Simandl, Ronald F.; Brown, John D.; Holt, Jerrid S.

    2010-08-03

    A solvent for urethane adhesives and coatings, the solvent having a carbaldehyde and a cyclic amide as constituents. In some embodiments the solvent consists only of miscible constituents. In some embodiments the carbaldehyde is benzaldehyde and in some embodiments the cyclic amide is N-methylpyrrolidone (M-pyrole). An extender may be added to the solvent. In some embodiments the extender is miscible with the other ingredients, and in some embodiments the extender is non-aqueous. For example, the extender may include isopropanol, ethanol, tetrahydro furfuryl alcohol, benzyl alcohol, Gamma-butyrolactone or a caprolactone. In some embodiments a carbaldehyde and a cyclic amide are heated and used to separate a urethane bonded to a component.

  4. Solvent-free synthesis of azomethines, spectral correlations and antimicrobial activities of some E-benzylidene-4-chlorobenzenamines

    Directory of Open Access Journals (Sweden)

    R. Suresh

    2015-07-01

    Full Text Available Some azomethines including substituted benzylidene-4-chlorobenzenamines (E-imines have been synthesized by fly-ash: PTS catalyzed microwave assisted condensation of 4-chloroaniline and substituted benzaldehydes under solvent-free conditions. The yield of the imines has been found to be more than 85%. The purity of all imines has been checked using their physical constants and UV, IR and NMR spectral data. These spectral data have been correlated with Hammett substituent constants and F and R parameters using single and multi-linear regression analysis. From the results of statistical analysis, the effect of substituents on the above spectral data has been studied. The antimicrobial activities of all imines have been studied using standard methods.

  5. A matrix-focused structure-activity and binding site flexibility study of quinolinol inhibitors of botulinum neurotoxin serotype A.

    Science.gov (United States)

    Harrell, William A; Vieira, Rebecca C; Ensel, Susan M; Montgomery, Vicki; Guernieri, Rebecca; Eccard, Vanessa S; Campbell, Yvette; Roxas-Duncan, Virginia; Cardellina, John H; Webb, Robert P; Smith, Leonard A

    2017-02-01

    Our initial discovery of 8-hydroxyquinoline inhibitors of BoNT/A and separation/testing of enantiomers of one of the more active leads indicated considerable flexibility in the binding site. We designed a limited study to investigate this flexibility and probe structure-activity relationships; utilizing the Betti reaction, a 36 compound matrix of quinolinol BoNT/A LC inhibitors was developed using three 8-hydroxyquinolines, three heteroaromatic amines, and four substituted benzaldehydes. This study has revealed some of the most effective quinolinol-based BoNT/A inhibitors to date, with 7 compounds displaying IC 50 values ⩽1μM and 11 effective at ⩽2μM in an ex vivo assay. Published by Elsevier Ltd.

  6. Potential antisecretory antidiarrheals. 1. Alpha 2-adrenergic aromatic aminoguanidine hydrazones.

    Science.gov (United States)

    Pitzele, B S; Moormann, A E; Gullikson, G W; Albin, D; Bianchi, R G; Palicharla, P; Sanguinetti, E L; Walters, D E

    1988-01-01

    Guanabenz, a centrally acting antihypertensive agent, has been shown to have intestinal antisecretory properties. A series of aromatic aminoguanidine hydrazones was made in an effort to separate the antisecretory and cardiovascular activities. Benzaldehyde, naphthaldehyde, and tetralone derivatives were synthesized. The compounds were evaluated in the cholera toxin treated ligated jejunum of the rat and in the Ussing chamber using a rabbit ileum preparation. A number of compounds, including members of each structural class, were active upon subcutaneous administration in the rat. Active compounds were determined to be alpha 2-adrenergic agonists by yohimbine reversals of their Ussing chamber activities. The compound displaying the best separation of activities was the aminoguanidine hydrazone of 2,6-dimethyl-4-hydroxybenzaldehyde (20).

  7. Diastereoselective synthesis of trans-2,3-dihydrofuro[3,2-c]coumarins by MgO nanoparticles under ultrasonic irradiation

    Directory of Open Access Journals (Sweden)

    Javad Safaei-Ghomi

    2017-12-01

    Full Text Available MgO nanoparticles have been used as an efficient catalyst for the diastereoselective preparation of trans-2-benzoyl-3-(aryl-2H-furo[3,2-c]chromen-4(3H-ones by the multi-component reaction of 2,4′-dibromoacetophenone, pyridine, benzaldehydes and 4-hydroxycoumarin under ultrasonic irradiation. This interesting result revealed that the pyridiniumylide assisted tandem three-component coupling reaction is highly diastereoselective. Atom economy, wide range of products, high catalytic activity, excellent yields in short reaction times, diastereoselective synthesis and environmental benignity are some of the important features of this protocol. Keywords: Furo[3,2-c]coumarins, Ultrasonic irradiation, MgO nanoparticles, Diastereoselective, One-pot syntheses

  8. Hydrazine determination in presence of uranium by modified spectrophotometric method

    International Nuclear Information System (INIS)

    Velavendan, P.; Pandey, N.K.; Kamachi Mudali, U.; Natarajan, R.

    2011-01-01

    In the present work an indirect, sensitive and accurate method for the determination of hydrazine is described. The method is based on the formation of yellow coloured azine complex by post column derivatization of hydrazine with P-dimethylamino benzaldehyde. The formed yellow coloured complex is stable in acidic medium and has a maximum absorption at 460 nm. Interference due to uranium was studied and the method was applied for the determination of hydrazine in presence of uranium in aqueous stream of nuclear fuel reprocessing. A calibration graph was made for the concentration range of hydrazine from 0.05 ppm to 10 ppm with RSD 0.807% and correlation coefficient of 0.99996. (author)

  9. Volatile oils from the aerial parts of Eremophila maculata and their antimicrobial activity.

    Science.gov (United States)

    Youssef, Fadia S; Hamoud, Razan; Ashour, Mohamed L; Singab, Abdel Nasser; Wink, Michael

    2014-05-01

    The essential oils isolated from the fresh flowers, fresh leaves, and both fresh and air-dried stems of Eremophila maculata (Scrophulariaceae) were characterized by GC-FID and GC/MS analyses. Sabinene was the major component in most of the oils, followed by limonene, α-pinene, benzaldehyde, (Z)-β-ocimene, and spathulenol. The leaf and flower essential oils showed antibacterial and antifungal activity against five Gram-positive and four Gram-negative bacterial strains, multi-resistant clinical isolates from patients, i.e., methicillin-resistant Staphylococcus aureus (MRSA), as well as two yeasts. Minimum inhibitory concentrations (MICs) and minimum microbicidal concentrations (MMCs) were between 0.25 and 4 mg/ml. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  10. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.

    Science.gov (United States)

    Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing

    2014-03-12

    Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple.

  11. Effects of Gamma Irradiation on Active Components in Essential Oils of Cinnamomum verum J.S.Presl

    International Nuclear Information System (INIS)

    Thongphasuk, Piyanuch; Thongphasuk, Jarunee; Eamsiri, Jarurut; Pongpat, Suchada

    2009-07-01

    Full text: Gamma irradiation is one of the methods utilized to reduce microbial contamination of medicinal herbs. Since irradiation may also affect active compounds of the irradiated herbs, the objective of this research is to study the effect of gamma irradiation (10 and 25 kGy) from cobalt-60 on active compounds in essential oils of Cinnamomum verum J.S.Presl by using GC-MS. The results showed that gamma irradiation at the dose of 10 and 25 kGy does not significantly affect active components in essential oils such as alpha-pinene, camphene, 1,8-cineole, alpha-copaene, benzaldehyde, linalool, bornyl acetate, terpinen-4-0l, alpha-terpineol, benzylacetaldehyde, Z-cinnamaldehyde, E-cinnamaldehyde, and cinnamic acid

  12. Synthesis, characterization and application of a nano-manganese-catalyst as an efficient solid catalyst for solvent free selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol

    Science.gov (United States)

    Habibi, Davood; Faraji, Ali Reza

    2013-07-01

    The object of this study is to synthesize the heterogeneous Mn-nano-catalyst (MNC) which has been covalently anchored on a modified nanoscaleSiO2/Al2O3, and characterized by FT-IR, UV-Vis, CHN elemental analysis, EDS, TEM, and EDX. The method is efficient for the highly selective oxidation of ethylbenzene, cyclohexene, and benzylalcohol without the need to any solvents, using tert-butyl hydroperoxide (TBHP) as an oxidant. Oxidation of ethylbenzene, cyclohexene, and benzylalcohol gave acetophenone, 2-cyclohexene-1-one and benzaldehyde, respectively, as major products. Reaction conditions have been optimized by considering the effect of various factors such as reaction time, amounts of substrates and oxidant, Mn-nano-catalyst and application of various solvents.

  13. Camphor-10-sulfonic acid catalyzed condensation of 2-naphthol with aromatic/aliphatic aldehydes to 14-aryl/alkyl-14H-dibenzo[a,j]xanthenes

    Directory of Open Access Journals (Sweden)

    Kundu Kshama

    2014-01-01

    Full Text Available (±-Camphor-10-sulfonic acid (CSA catalyzed condensation of 2-naphthol with both aliphatic/aromatic aldehydes at 80°C yielded 14-alkyl/aryl-dibenzoxanthenes as the sole product in high yields. However, the same condensation with benzaldehyde at 25°C afforded a mixture of intermediate 1,1-bis-(2-hydroxynaphthylphenylmethane and 14-phenyl-dibenzoxanthene while the condensation with aliphatic aldehydes at 25°C furnished the corresponding 14-alkyl-dibenzoxanthenes as the sole product. Moreover, condensation of 2-naphthol with aromatic/aliphatic aldehydes with low catalyst loading (2 mol% was greatly accelerated under microwave irradiation to afford the corresponding 14-aryl/alkyl-dibenzoxanthenes as the sole product in high yields.

  14. Synthesis and characterization of Mn(III) chloro complexes with salen-type ligands

    International Nuclear Information System (INIS)

    Byun, Jong Chul; Han, Chung Hun; Lee, Nam Ho; Baik, Jong Seok; Park, Yu Chul

    2002-01-01

    A series of novel salen-type complexes ((Mn(III)(L acn )Cl): n=1∼11) containing Cl - ion were obtained by reactions of the Mn(CH 3 COO) 2 ·4H 2 O with the potentially tetradentate compartmental ligand (H 2 L acn ), prepared by condensation the of one mole of diamine (ethylenediamine, 1,3-propanediamine, o-phenylenediamine, and 2,2-dimethyl-1,3-propanediamine) with two moles of aldehyde (salicylaldehyde, 5-chloro- salicylaldehyde, 3,5-dichlorosalicylal-dehyde, and 3,5-di-tert-butyl-2-hydroxy-benzaldehyde) in a methanol solution . The resulting salen-type ligands and their Mn(III) complexes were identified and characterized by elemental analysis, conductivity, thermogravimetry and UV-VIS, IR, and NMR spectroscopy

  15. "Chemical composition and antimicrobial activity of the essential oil of Ferulago Bernardii Tomk. and M. Pimen"

    Directory of Open Access Journals (Sweden)

    "Farahnaz Khalighi-Sigaroodi

    2005-05-01

    Full Text Available The chemical composition of the essential oil of the aerial parts of Ferulago Bernardii from Iran was analysed by GC and GC/MS. Sixty constituents were found representing 87.9% of the oil. The main constituents of the essential oil were 2,4,5-trimethyl-benzaldehyde (21.2%, α-pinene (17.0%,spathulenol (5.0%, cis-chrysanthenyl acetate (4.4% and caryophyllene oxide (3.2%. Antimicrobial activity of the essential oil of Ferulago Bernardii by the broth dilution method in comparison with Gentamycin and Fluconazole as standard showed weak activity against Staphylococcus aureus, Bacilus subtilis, Escherichia coli, Candida albicans and Aspergillus niger. The essential oil did not show any activity against Pseudomonas aeruginosa.

  16. Characterizing the Smell of Marijuana by Odor Impact of Volatile Compounds: An Application of Simultaneous Chemical and Sensory Analysis.

    Directory of Open Access Journals (Sweden)

    Somchai Rice

    Full Text Available Recent U.S. legislation permitting recreational use of marijuana in certain states brings the use of marijuana odor as probable cause for search and seizure to the forefront of forensic science, once again. This study showed the use of solid-phase microextraction with multidimensional gas chromatography--mass spectrometry and simultaneous human olfaction to characterize the total aroma of marijuana. The application of odor activity analysis offers an explanation as to why high volatile chemical concentration does not equate to most potent odor impact of a certain compound. This suggests that more attention should be focused on highly odorous compounds typically present in low concentrations, such as nonanal, decanol, o-cymene, benzaldehyde, which have more potent odor impact than previously reported marijuana headspace volatiles.

  17. Phenolic compound from Sidastrum micranthum (A. St.-Hill.) fryxell and evaluation of acacetin and 7,4'-di-o-methylisoscutellarein as motulator of bacterial drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Roosevelt A.; Ramirez, Rafael R.A.; Maciel, Jessica Karina da S.; Agra, Maria de Fatima; Souza, Maria de Fatima Vanderlei de, E-mail: mfvanderlei@ltf.ufpb.br [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Centro de Ciencias da Saude. Lab. de Tecnologia Farmaceutica Delby Fernandes de Medeiros; Falcao-Silva, Vivyanne S.; Siqueira-Junior, Jose P. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Dept. de Biologia Molecular

    2011-07-01

    From the aerial parts of Sidastrum micranthum (A. St.-Hill.) Fryxell (Malvaceae) were isolated m-methoxy-p-hydroxy-benzaldehyde, o-hydroxy-benzoic acid, acacetin, quercetin, 7,4'-Di-O-methylisoscutellarein, genkwanin and tiliroside. These compounds were identified by data analyses of spectroscopic methods. Although acacetin and 7,4'-Di-O-methylisoscutellarein did not display relevant antibacterial activity (MIC = 256 {mu}g/mL), they modulated the activity of antibiotics, i.e. in combination with antibiotics at 64 {mu}g/mL (. MIC), a two-fold reduction in the MIC was observed for norfloxacin and ethidium bromide; regarding tetracycline and erythromycin a two-fold reduction in the MIC was observed only with 7,4'-Di-O-methylisoscutellarein. (author)

  18. Aerobic oxidation of aldehydes under ambient conditions using supported gold nanoparticle catalysts

    DEFF Research Database (Denmark)

    Marsden, Charlotte Clare; Taarning, Esben; Hansen, David

    2008-01-01

    A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient cond...... conditions; the reactions can be performed in an open flask and at room temperature. Benzaldehyde is even oxidised at a reasonable rate below -70 degrees C. Acrolein is oxidised to methyl acrylate in high yield using the same protocol.......A new, green protocol for producing simple esters by selectively oxidizing an aldehyde dissolved in a primary alcohol has been established, utilising air as the oxidant and supported gold nanoparticles as catalyst. The oxidative esterifications proceed with excellent selectivities at ambient...

  19. Cationic two-dimensional inorganic networks of antimony oxide hydroxide for Lewis acid catalysis.

    Science.gov (United States)

    Yin, Jinlin; Fei, Honghan

    2018-03-28

    We have successfully synthesized a rare example of inorganic layered materials possessing a positive charge, which is well outside the isostructural set of layered double hydroxides. This layered architecture consists of two-dimensional corrugated [Sb 2 O 2 (OH)] + layers with linear α,ω-alkanedisulfonate anions residing in the interlamellar space. This cationic material displays a chemical robustness under highly acidic aqueous conditions (pH = 1). Combining the robust nature and the high density of Sb III sites on the exposed crystal facets, our cationic layered material is an efficient, recyclable catalyst for cyanosilylation of benzaldehyde derivatives with trimethylsilyl cyanide. In addition, the Lewis acidity of the Sb III sites also catalyzes the ketalization of carbonyl groups under "green" solvent-free conditions.

  20. Molecular Structure, Spectroscopic and DFT Computational Studies of Arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H-trione

    Directory of Open Access Journals (Sweden)

    Assem Barakat

    2016-09-01

    Full Text Available Reaction of barbituric acid derivatives and di-substituted benzaldehyde in water afforded arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H-trione derivatives (1 and 2. The one step reaction proceeded efficiently, smoothly, and in excellent yield. The arylidene compounds were characterized by spectrophotometric tools plus X-ray single crystal diffraction technique. Quantum chemical calculations were performed using the DFT/B3LYP method to optimize the structure of the two isomers (1 and 2 in the gas phase. The optimized structures were found to agree well with the experimental X-ray structure data. The highest occupied (HOMO and lowest unoccupied (LUMO frontier molecular orbitals analyses were performed and the atomic charges were calculated using natural populationanalysis.

  1. Adding Value to Bioethanol through a Purification Process Revamp

    DEFF Research Database (Denmark)

    Bisgaard, Thomas; Mauricio Iglesias, Miguel; Huusom, Jakob Kjøbsted

    2017-01-01

    distillation columns and a dehydration step using molecular sieves. This separation unit did not permit sufficient removal of crotonaldehyde and methanol for obtaining solvent-grade ethanol. Therefore, an additional distillation column after the dehydration step was investigated by simulation. It is operated...... at subatmospheric pressure and enables simultaneous removal of methanol, crotonaldehyde, and water in the distillate. The distillate meets the fuel-grade ethanol specifications, while the bottom product meets the solvent-grade specifications. It enables around 70% solvent-grade ethanol production and employs...... analyzed experimentally: Acetaldehyde, 1-propanal, 1-butanal, crotonaldehyde, benzaldehyde, ethyl acetate, methanol, 1-propanol, 1-butanol, 2-butanol, 2-methyl-l-propanol, 2-methyl-l-butanol, and 3-methyl-1-butanol. A simulation platform was established and evaluated with excellent agreement compared...

  2. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    Science.gov (United States)

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. N-Alkylated dinitrones from isosorbide as cross-linkers for unsaturated bio-based polyesters

    Directory of Open Access Journals (Sweden)

    Oliver Goerz

    2014-04-01

    Full Text Available Isosorbide was esterified with acryloyl chloride and crotonic acid yielding isosorbide diacrylate (9a and isosorbide dicrotonate (9b, which were reacted with benzaldehyde oxime in the presence of zinc(II iodide and boron triflouride etherate as catalysts to obtain N-alkylated dinitrones 10a/b. Poly(isosorbide itaconite -co- succinate 13 as a bio-based unsaturated polyester was cross-linked by a 1,3-dipolar cycloaddition with the received dinitrones 10a/b. The 1,3-dipolar cycloaddition led to a strong change of the mechanical properties which were investigated by rheological measurements. Nitrones derived from methyl acrylate (3a and methyl crotonate (3b were used as model systems and reacted with dimethyl itaconate to further characterize the 1,3-dipolaric cycloaddition.

  4. Synthesis of [methyl-[sup 14]C]-N-methylputrescine

    Energy Technology Data Exchange (ETDEWEB)

    Secor, H.V.; Izac, R.R.; Hassam, S.B.; Frisch, A.F. (Philip Morris Research Center, Richmond, VA (United States))

    1994-05-01

    [Methyl-[sup 14]C]-N-methylputrescine was prepared from [[sup 14]C]methylamine hydrochloride in five steps. Reaction of benzaldehyde and [[sup 14]C]methylamine (10 mCi) followed by catalytic hydrogenation yielded [methyl-[sup 14]C]-N-methylbenzylamine. The key step in this process is the alkylation of [methyl-[sup 14]C]-N-methylbenzylamine in aqueous medium with 4-bromobutyronitrile. The radiochemical purity of the final product after two successive catalytic hydrogenations was in excess of 97%. The radiochemical yields in two successive runs were 26 and 38%, based on starting [[sup 14]C]methylamine, with specific activities of 22 and 23 mCi/mmol, respectively. This sequence provides a convenient and efficient regioselective radiosynthesis of [methyl-[sup 14]C]-N-methylputrescine. (author).

  5. Synthesis and antiedematogenic activity of some N-tryptophyl-5-benzylidene-2,4-thiazolidinedione and N-tryptophyl-5-benzylidene-rhodanine derivatives; Sintese e atividade antiedematogenica de derivados N-triptofil-5-benzilideno-2,4-tiazolidinadiona e N-triptofil-5-benzilideno-rodanina

    Energy Technology Data Exchange (ETDEWEB)

    Goes, Alexandre Jose da Silva; Lima, Waldir Tavares de; Nagy, Helena Juliana [Pernambuco Univ., Recife, PE (Brazil). Dept. de Antibioticos]. E-mail: ajsg@ufpe.br; Alves, Antonio Jose; Faria, Antonio Rodolfo de; Lima, Jose Gildo de [Pernambuco Univ., Recife, PE (Brazil). Dept. de Ciencias Farmaceuticas; Maia, Maria Bernadete de Souza [Pernambuco Univ., Recife, PE (Brazil). Dept. de Fisiologia e Farmacologia

    2004-12-01

    Derivatives of N tryptophyl-5-benzylidene-2,4-thiazolidinedione (7a-c) and N-tryptophyl-5-benzylidene-rhodanine (7d-f) were prepared by condensation of the intermediates 5 and 6 with different benzaldehydes, respectively. Their structural elucidation was carried through by IR, {sup 1}H NMR and MS. The acute toxicity and antiedematogenic activity of the compounds 7b,c and 7e,f were evaluated. The data did not reveal any sign of toxicity, and no mortality was registered. As indomethacin (10 mg/kg; v.o.), the antiedematogenic activity of the compounds 7b (50 mg/kg; v.o.) and 7e, 7f (50 or 100 mg/kg; v.o.) against carrageenan-induced paw edema was verified at time intervals of 180 min. (author)

  6. Pot-Economy Autooxidative Condensation of 2-Aryl-2-lithio-1,3-dithianes.

    Science.gov (United States)

    Vale, João R; Rimpiläinen, Tatu; Sievänen, Elina; Rissanen, Kari; Afonso, Carlos A M; Candeias, Nuno R

    2018-02-16

    The autoxidative condensation of 2-aryl-2-lithio-1,3-dithianes is here reported. Treatment of 2-aryl-1,3-dithianes with n-BuLi in the absence of any electrophile leads to condensation of three molecules of 1,3-dithianes and formation of highly functionalized α-thioether ketones orthothioesters in 51-89% yields upon air exposure. The method was further expanded to benzaldehyde dithioacetals, affording corresponding orthothioesters and α-thioether ketones in 48-97% yields. The experimental results combined with density functional theory studies support a mechanism triggered by the autoxidation of 2-aryl-2-lithio-1,3-dithianes to yield a highly reactive thioester that undergoes condensation with two other molecules of 2-aryl-2-lithio-1,3-dithiane.

  7. Discovery and biological evaluation of some (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety as potent xanthine oxidase inhibitors.

    Science.gov (United States)

    Zhang, Ting-Jian; Li, Song-Ye; Yuan, Wei-Yan; Wu, Qing-Xia; Wang, Lin; Yang, Su; Sun, Qi; Meng, Fan-Hao

    2017-02-15

    A series of (1H-1,2,3-triazol-4-yl)methoxybenzaldehyde derivatives containing an anthraquinone moiety were synthesized and identified as novel xanthine oxidase inhibitors. Among them, the most promising compounds 1h and 1k were obtained with IC 50 values of 0.6μM and 0.8μM, respectively, which were more than 10-fold potent compared with allopurinol. The Lineweaver-Burk plot revealed that compound 1h acted as a mixed-type xanthine oxidase inhibitor. SAR analysis showed that the benzaldehyde moiety played a more important role than the anthraquinone moiety for inhibition potency. The basis of significant inhibition of xanthine oxidase by 1h was rationalized by molecular modeling studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis and antiedematogenic activity of some N-tryptophyl-5-benzylidene-2,4-thiazolidinedione and N-tryptophyl-5-benzylidene-rhodanine derivatives

    International Nuclear Information System (INIS)

    Goes, Alexandre Jose da Silva; Lima, Waldir Tavares de; Nagy, Helena Juliana; Alves, Antonio Jose; Faria, Antonio Rodolfo de; Lima, Jose Gildo de; Maia, Maria Bernadete de Souza

    2004-01-01

    Derivatives of N tryptophyl-5-benzylidene-2,4-thiazolidinedione (7a-c) and N-tryptophyl-5-benzylidene-rhodanine (7d-f) were prepared by condensation of the intermediates 5 and 6 with different benzaldehydes, respectively. Their structural elucidation was carried through by IR, 1 H NMR and MS. The acute toxicity and antiedematogenic activity of the compounds 7b,c and 7e,f were evaluated. The data did not reveal any sign of toxicity, and no mortality was registered. As indomethacin (10 mg/kg; v.o.), the antiedematogenic activity of the compounds 7b (50 mg/kg; v.o.) and 7e, 7f (50 or 100 mg/kg; v.o.) against carrageenan-induced paw edema was verified at time intervals of 180 min. (author)

  9. Preparation of C{sup 14}-labelled tetrazolium salts and tracer study of the tetrazene-formazan rearrangement; Preparation de sels de tetrazolium marques au carbone-14 et etude de la transposition tetrazene-formazan, au moyen d'indicateurs radioactifs; Izgotovlenie mechennykh C{sup 14} solej tetrazosoedinenij i issledovanie pri pomoshchi indikatorov peregruppirovok tetrazona-formazana; Preparacion de sales de tetrazolio marcadas con {sup 14}C y estudio de la transposicion tetraceno-formazan con ayuda de trazadores

    Energy Technology Data Exchange (ETDEWEB)

    Marton, Joseph; Meisel, Julia [Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary); Gosztonyi, Thomas [Institute of Organic Chemical Technology, Technical University, Budapest (Hungary)

    1962-03-15

    The preparation of [5-C{sup 14}]-TTC, [5, 5'-di-C{sup 14}]NT (neotetrazolium) and [5, 5'-di-C{sup 14}]-BT (tetrazolium blue) starting from benzaldehyde- [1-C{sup 14}] has been accomplished. The yields for both mono- and ditetrazolium salts are high, and the products can be obtained with high sp. activity. The purity of the samples was investigated by paper chromatography. In the case of ditetrazolium salts some impurities could be detected and conclusions drawn as to their structure and quantity. A method has been developed to prepare C{sup 14}- labelled ditetrazolium salts of high purity. The formation of the formazan, the precursor of the tetrazolium salt, goes through an unstable intermediate of tetrazene-type structure which rearranges rapidly in basic medium, to yield the formazan. The tetrazene intermediate can be isolated under suitable conditions. By using C{sup 14}-labelled benzaldehyde phenylhydrazone this rearrangement was investigated and a verification of its intramolecular character given. (author) [French] On a procede a la preparation de [5-C{sup 14}]-TTC, de [5,5'-di-C{sup 14}] NT (neotetrazolium) et de [5,5'-di-C{sup 14}]-VT (bleu de tetrazolium), en partant du benzaldehyde-[1-C{sup 14}]. On a pu obtenir un grand rendement, tant pour les sels de monotetrazolium que pour les sels de ditetrazolium, et des produits d'une activite specifique elevee. La purete des echantillons a ete examinee par chromatographie sur papier. Dans le cas des sels de ditetrazolium, on a pu deceler quelques impuretes et tirer des conclusions quant a leur structure et quantite. On a mis au point une methode permettant de preparer des sels de ditetrazolium marques au carbone-14 et presentant une grande purete. Dans la synthese du formazan, precurseur du sel de tetrazolium, on obtient un produit intermediaire instable d'une structure analogue a celle du tetrazene; ce produit se transforme rapidement en milieu alcalin pour donner du formazan. Le tetrazene intermediaire peut

  10. Mechanistic aspects of hydrosilylation catalyzed by (ArN=)Mo(H)(Cl)(PMe3)3.

    Science.gov (United States)

    Khalimon, Andrey Y; Shirobokov, Oleg G; Peterson, Erik; Simionescu, Razvan; Kuzmina, Lyudmila G; Howard, Judith A K; Nikonov, Georgii I

    2012-04-02

    The reaction of (ArN=)MoCl(2)(PMe(3))(3) (Ar = 2,6-diisopropylphenyl) with L-Selectride gives the hydrido-chloride complex (ArN=)Mo(H)(Cl)(PMe(3))(3) (2). Complex 2 was found to catalyze the hydrosilylation of carbonyls and nitriles as well as the dehydrogenative silylation of alcohols and water. Compound 2 does not show any productive reaction with PhSiH(3); however, a slow H/D exchange and formation of (ArN=)Mo(D)(Cl)(PMe(3))(3) (2(D)) was observed upon addition of PhSiD(3). Reactivity of 2 toward organic substrates was studied. Stoichiometric reactions of 2 with benzaldehyde and cyclohexanone start with dissociation of the trans-to-hydride PMe(3) ligand followed by coordination and insertion of carbonyls into the Mo-H bond to form alkoxy derivatives (ArN=)Mo(Cl)(OR)(PMe(2))L(2) (3: R = OCH(2)Ph, L(2) = 2 PMe(3); 5: R = OCH(2)Ph, L(2) = η(2)-PhC(O)H; 6: R = OCy, L(2) = 2 PMe(3)). The latter species reacts with PhSiH(3) to furnish the corresponding silyl ethers and to recover the hydride 2. An analogous mechanism was suggested for the dehydrogenative ethanolysis with PhSiH(3), with the key intermediate being the ethoxy complex (ArN=)Mo(Cl)(OEt)(PMe(3))(3) (7). In the case of hydrosilylation of acetophenone, a D-labeling experiment, i.e., a reaction of 2 with acetophenone and PhSiD(3) in the 1:1:1 ratio, suggests an alternative mechanism that does not involve the intermediacy of an alkoxy complex. In this particular case, the reaction presumably proceeds via Lewis acid catalysis. Similar to the case of benzaldehyde, treatment of 2 with styrene gives trans-(ArN=)Mo(H)(η(2)-CH(2)═CHPh)(PMe(3))(2) (8). Complex 8 slowly decomposes via the release of ethylbenzene, indicating only a slow insertion of styrene ligand into the Mo-H bond of 8.

  11. Retinoic acid signaling plays a restrictive role in zebrafish primitive myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Dong Liang

    Full Text Available Retinoic acid (RA is known to regulate definitive myelopoiesis but its role in vertebrate primitive myelopoiesis remains unclear. Here we report that zebrafish primitive myelopoiesis is restricted by RA in a dose dependent manner mainly before 11 hpf (hours post fertilization when anterior hemangioblasts are initiated to form. RA treatment significantly reduces expressions of anterior hemangioblast markers scl, lmo2, gata2 and etsrp in the rostral end of ALPM (anterior lateral plate mesoderm of the embryos. The result indicates that RA restricts primitive myelopoiesis by suppressing formation of anterior hemangioblasts. Analyses of ALPM formation suggest that the defective primitive myelopoiesis resulting from RA treatment before late gastrulation may be secondary to global loss of cells for ALPM fate whereas the developmental defect resulting from RA treatment during 10-11 hpf should be due to ALPM patterning shift. Overexpressions of scl and lmo2 partially rescue the block of primitive myelopoiesis in the embryos treated with 250 nM RA during 10-11 hpf, suggesting RA acts upstream of scl to control primitive myelopoiesis. However, the RA treatment blocks the increased primitive myelopoiesis caused by overexpressing gata4/6 whereas the abolished primitive myelopoiesis in gata4/5/6 depleted embryos is well rescued by 4-diethylamino-benzaldehyde, a retinal dehydrogenase inhibitor, or partially rescued by knocking down aldh1a2, the major retinal dehydrogenase gene that is responsible for RA synthesis during early development. Consistently, overexpressing gata4/6 inhibits aldh1a2 expression whereas depleting gata4/5/6 increases aldh1a2 expression. The results reveal that RA signaling acts downstream of gata4/5/6 to control primitive myelopoiesis. But, 4-diethylamino-benzaldehyde fails to rescue the defective primitive myelopoiesis in either cloche embryos or lycat morphants. Taken together, our results demonstrate that RA signaling restricts

  12. Photochemical organic oxidations and dechlorinations with a mu-oxo bridged heme/non-heme diiron complex.

    Science.gov (United States)

    Wasser, Ian M; Fry, H Christopher; Hoertz, Paul G; Meyer, Gerald J; Karlin, Kenneth D

    2004-12-27

    Steady state and laser flash photolysis studies of the heme/non-heme mu-oxo diiron complex [((6)L)Fe(III)-O-Fe(III)-Cl](+) (1) have been undertaken. The anaerobic photolysis of benzene solutions of 1 did not result in the buildup of any photoproduct. However, the addition of excess triphenylphosphine resulted in the quantitative photoreduction of 1 to [((6)L)Fe(II)...Fe(II)-Cl](+) (2), with concomitant production by oxo-transfer of 1 equiv of triphenylphosphine oxide. Under aerobic conditions and excess triphenylphosphine, the reaction produces multiple turnovers (approximately 28) before the diiron complex is degraded. The anaerobic photolysis of tetrahydrofuran (THF) or toluene solutions of 1 likewise results in the buildup of 2. The oxidation products from these reactions included gamma-butyrolactone (approximately 15%) for the reaction in THF and benzaldehyde (approximately 23%) from the reaction in toluene. In either case, the O-atom which is incorporated into the carbonyl product is derived from dioxygen present under workup or under aerobic photolysis conditions. Transient absorption measurements of low-temperature THF solutions of 1 revealed the presence of an (P)Fe(II)-like [P = tetraaryl porphyrinate dianion] species suggesting that the reactive species is a formal (heme)Fe(II)/Fe(IV)=O(non-heme) pair. The non-heme Fe(IV)=O is thus most likely responsible for C-H bond cleavage and subsequent radical chemistry. The photolysis of 1 in chlorobenzene or 1,2-dichlorobenzene resulted in C-Cl cleavage reactions and the formation of [[((6)L)Fe(III)-Cl...Fe(III)-Cl](2)O](2+) (3), with chloride ligands that are derived from solvent dehalogenation chemistry. The resulting organic products are biphenyl trichlorides or biphenyl monochlorides, derived from dichlorobenzene and chlorobenzene, respectively. Similarly, product 3 is obtained by the photolysis of benzene-benzyl chloride solutions of 1; the organic product is benzaldehyde (approximately 70%). A brief

  13. BENZYLIDENESALICYLOYLHYDRAZINATO- N,OTIN(IV] (R = OCH3, Br, N(CH32 AND THEIR ANTI-INFLAMMATORY ACTIVITY

    Directory of Open Access Journals (Sweden)

    N. V. Shmatkova

    2014-11-01

    Full Text Available The complexes [SnCl4(2-OH-HB-4R-b] ·CH3CN (R = 4-OCH3 (І, 4-Br(II were obtained by interaction of SnCl4 with salicyloylhydrazones 4–R- benzaldehydes (2-OH-HB-4R-b in acetonitrile. The composition and structure (O(C=O-N(CH=N – the coordination of ligand’s amide form were established by element analysis methods, conductometry, thermogravimetry and IR spectroscopy. It was studied the anti-inflammatory activity of (I, II and previously synthesized, structurally characterized [SnCl4(2-OH-HB-4R-b∙H] (R=N (CH32 (III in model of aseptic carrageenan induced swelling, and it is shown that compound (II demonstrates the highest activity.

  14. Síntese e atividade antiedematogênica de derivados N-triptofil-5-benzilideno-2,4-tiazolidinadiona e N-triptofil-5-benzilideno-rodanina Synthesis and antiedematogenic activity of some N-trypthophyl-5-benzylidene-2,4-thiazolidinedione and N-trypthophyl-5-benzylidene-rhodanine derivatives

    Directory of Open Access Journals (Sweden)

    Alexandre José da Silva Góes

    2004-12-01

    Full Text Available Derivatives of N-tryptophyl-5-benzylidene-2,4-thiazolidinedione (7a-c and N-tryptophyl-5-benzylidene-rhodanine (7d-f were prepared by condensation of the intermediates 5 and 6 with different benzaldehydes, respectively. Their structural elucidation was carried through by IR, ¹H NMR and MS. The acute toxicity and antiedematogenic activity of the compounds 7b,c and 7e,f were evaluated. The data did not reveal any sign of toxicity, and no mortality was registered. As indomethacin (10 mg/kg; v.o., the antiedematogenic activity of the compounds 7b (50 mg/kg; v.o. and 7e, 7f (50 or 100 mg/kg; v.o. against carrageenan-induced paw edema was verified at time intervals of 180 min.

  15. Ni-Catalyzed Carbon-Carbon Bond-Forming Reductive Amination.

    Science.gov (United States)

    Heinz, Christoph; Lutz, J Patrick; Simmons, Eric M; Miller, Michael M; Ewing, William R; Doyle, Abigail G

    2018-02-14

    This report describes a three-component, Ni-catalyzed reductive coupling that enables the convergent synthesis of tertiary benzhydryl amines, which are challenging to access by traditional reductive amination methodologies. The reaction makes use of iminium ions generated in situ from the condensation of secondary N-trimethylsilyl amines with benzaldehydes, and these species undergo reaction with several distinct classes of organic electrophiles. The synthetic value of this process is demonstrated by a single-step synthesis of antimigraine drug flunarizine (Sibelium) and high yielding derivatization of paroxetine (Paxil) and metoprolol (Lopressor). Mechanistic investigations support a sequential oxidative addition mechanism rather than a pathway proceeding via α-amino radical formation. Accordingly, application of catalytic conditions to an intramolecular reductive coupling is demonstrated for the synthesis of endo- and exocyclic benzhydryl amines.

  16. Conducting nanofibres produced by electrospinning

    Science.gov (United States)

    Sen, S.; Davis, F. J.; Mitchell, G. R.; Robinson, E.

    2009-08-01

    Electrospun fibres based on polypyrrole have been prepared. The incorporation of preformed polypyrrole into fibres electrospun from a carrier polymer can only be achieved when materials are prepared with particulates smaller than the cross-section of the fibre; even so there are some problems, with the substantial loss of material from the electrode tip. As an alternative approach, soluble polypyrroles can be prepared but these are not of sufficient viscosity to prepare electrospun fibres, once again a carrier polymer must be employed. More effective loadings are gained by the process of coating the outer surface of a pre-spun fibre; in this way electrospun fibres coated with polypyrrole can be prepared. This approach has been adapted to produce silver coated polymer fibres by the use of copolymers of styrene and 3-vinyl benzaldehyde.

  17. Conducting nanofibres produced by electrospinning

    International Nuclear Information System (INIS)

    Sen, S; Mitchell, G R; Robinson, E; Davis, F J

    2009-01-01

    Electrospun fibres based on polypyrrole have been prepared. The incorporation of preformed polypyrrole into fibres electrospun from a carrier polymer can only be achieved when materials are prepared with particulates smaller than the cross-section of the fibre; even so there are some problems, with the substantial loss of material from the electrode tip. As an alternative approach, soluble polypyrroles can be prepared but these are not of sufficient viscosity to prepare electrospun fibres, once again a carrier polymer must be employed. More effective loadings are gained by the process of coating the outer surface of a pre-spun fibre; in this way electrospun fibres coated with polypyrrole can be prepared. This approach has been adapted to produce silver coated polymer fibres by the use of copolymers of styrene and 3-vinyl benzaldehyde.

  18. Synthesis of racemic [3-11C]phenylalanine and [3-11C] DOPA

    International Nuclear Information System (INIS)

    Halldin, C.; Laangstroem, B.

    1984-01-01

    The synthesis of racemic [3- 11 C]phenylalanine and [3- 11 C]DOPA is reported. The [ 11 C]benzaldehyde and [ 11 C]veratraldehyde prepared in a two-step reaction from the corresponding [ 11 C]acid salt and [ 11 C]alcohol, by means of selective oxidation with tetrabutylammonium hydrogen chromate, were reacted with 2-phenyl-5-oxazolone or 2-(4-chloro)phenyl-5-oxazolone in the presence of a tertiary amine to give the corresponding [α- 11 C]-4-arylene-2-aryl-5-oxazolones. Ring opening of these olefins, hydrogenation, and removal of protecting groups was carried out in one step using hydroiodic cid/phosphorus, with the production of the racemic [3- 11 C]amino acids in 8-30% radiochemical yield (starting with 11 CO 2 ) within 52-60 min (including LC separation). (author)

  19. Synthesis and studies of some magnesium complexes of aromatic hydrazones

    International Nuclear Information System (INIS)

    Adeniyi, A.A.; Oyedeji, O.O.; Aremu, J.A.; Okedeyi, J.O.; Bourne, S.A.

    2006-01-01

    Six esters were synthesized from their parent acids, while their corresponding hydrazides were subsequently synthesized from these asters. The hydrazides, on reaction with benzaldehyde, produced their respective hydrazones, namely, benzoic hydrazone (BH), m-nitrobenzoic hydrazone (m-NBH), p-nitrobenzoic hydrazone (p-NBH), 3,5 dinitrobenzoic hydrazone (3,5-dnbh), m-aminobenzoic hydrazone (m-ABH), and p-aminobenzoic hydrazone (p-ABH). These hydrazones, on interaction with magnesium chloride yielded their corresponding magnesium complexes. These complexes were off-white, grey or brownish in colour. These complexes were characterized on the basis of spectral data and metal analysis. Metal to ligand stoichiometry of 1: 3/2 and 1: 5/2 has been proposed for the complexes. The relevant infrared bands in the ligands and complexes were used to assign the probable point(s) of coordination. (author)

  20. Flavonoids and other constituents from Aletris spicata and their chemotaxonomic significance.

    Science.gov (United States)

    Li, Lin-Zhen; Wang, Meng-Hua; Sun, Jian-Bo; Liang, Jing-Yu

    2014-01-01

    Eleven compounds, including four flavonoids [(2R,3R)-2,3-dihydro-3,5-dihydroxy-7,4'-dimethoxyflavone (1), 5-hydroxy-7,8,4'-trimethoxy-flavone (2), amentoflavone (10) and apigenin (11)], two penylpropanoids [sinapaldehyde (3) and 3-methoxy-4-hydroxy-cinnamic aldehyde (4)], three phenolic acids [4-hydroxyl-3,5-dimethoxy-benzaldehyde (5), 4-hydroxyacetophen-one (6) and p-hydroxybenzaldehyde (7)], one furan derivative [5-hydroxymethyl furfural (8)] and one steroid saponin [β-sitosterol-3-O-β-d-glucoside (9)], were isolated and identified from Aletris spicata. Among them, compounds 1-7, 9 and 10 were reported from the genus Aletris for the first time. Furthermore, seven of them (1-6, 10) were obtained from the family Liliaceae for the first time. Chemotaxonomy of the isolated compounds is discussed briefly.

  1. Enzim Papain: Aspek Green Chemistry pada Reaksi Knoevenagel

    Directory of Open Access Journals (Sweden)

    Laurentius Haryanto

    2015-08-01

    Full Text Available Green chemistry aspect is the chemical approach that has been studied in the past two decades. One of the principles is the development of green synthesis process that is friendly for the environment. This research showed that papain can be used as catalyst for Knoevenagel reaction with 3 kinds of substituted-benzaldehyde and malononitrile as substrates in aqueous medium. The best reaction condition with 80% yield was reached by utilizing of 25 mg papain/mmol substrate. Reaction was conducted at ambient temperature and pressure for 30 min. Products were yellowish to yellow needle crystals and successfully characterized by melting point, UV-Vis, IR, mass spectra, and 13C & 1H-NMR, named as 2-(4-hydroxybenzylidene-malononitrile; 2-(3-hydroxybenzylidene-malononitrile; and 2-(4-hydroxy-3-methoxybenzylidene-malononitrile.

  2. Composition of volatile aromatic compounds and minerals of tarhana enriched with cherry laurel (Laurocerasus officinalis).

    Science.gov (United States)

    Temiz, Hasan; Tarakçı, Zekai

    2017-03-01

    Different concentrations of cherry laurel pulp (0, 5, 10, 15 and 20%) were used to produce tarhana samples. Volatile aromatic compounds and minor mineral content were investigated. Volatile aromatic compounds were analyzed by using GC-MS with SPME fiber and minor mineral values were evaluated with inductively coupled plasma optical emission spectrometer. The statistical analysis showed that addition of pulp affected volatile aromatic compounds and minor mineral content significantly. Thirty five volatile aromatic compounds were found in tarhana samples. The octanoic acid from acids, benzaldehyde (CAS) phenylmethanal from aldehydes, 6-methyl-5-hepten-2-one from ketones, octadecane (CAS) n -octadecane form terpenes, ethyl caprylate from esters and benzenemethanol (CAS) benzyl alcohol from alcohols had the highest percentage of volatile aromatic compounds. Tarhana samples were rich source of Mn, Cu and Fe content.

  3. Synthesis of [sup 13]C warfarin labelled at the hemiketal carbon, and its resolution

    Energy Technology Data Exchange (ETDEWEB)

    Savell, V.H. Jr.; Valente, E.J. (Mississippi College, Clinton. MS (United States). Dept. of Chemistry); Eggleston, D.S. (Smith, Kline and French Labs., King of Prussia, PA (United States). Physical and Structural Chemistry)

    1989-06-01

    Warfarin (cyclic hemiketal form: 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benz opyran-5-one) is labeled with 98+% [sup 13]C at the anomeric carbon (C2) and resolved into its enantiomers. Acetone-2-[sup 13]C(98.6%) condenses with benzaldehyde in aqueous base to produce 4-phenyl-3-buten-2-one-2-[sup 13]C(98+%). Michael-type addition of this to 4-hydroxycoumarin in methanol produces the labeled diastereomeric warfarin methyl ketals which on deprotection form racemic warfarin-2-[sup 13]C(98+%). Classical resolution of labeled warfarin with quinidine produces partly resolved (S)-(-)-warfarin-2-[sup 13]C(98+%). Labeled warfarin is a suitable probe for warfarin configuration for which three distinct isomeric forms are known. (Author).

  4. Synthesis of 13C warfarin labelled at the hemiketal carbon, and its resolution

    International Nuclear Information System (INIS)

    Savell, V.H. Jr.; Valente, E.J.; Eggleston, D.S.

    1989-01-01

    Warfarin (cyclic hemiketal form: 2-hydroxy-2-methyl-4-phenyl-3,4-dihydro-2H,5H-pyrano[3,2-c][1]benz opyran-5-one) is labeled with 98+% 13 C at the anomeric carbon (C2) and resolved into its enantiomers. Acetone-2- 13 C(98.6%) condenses with benzaldehyde in aqueous base to produce 4-phenyl-3-buten-2-one-2- 13 C(98+%). Michael-type addition of this to 4-hydroxycoumarin in methanol produces the labeled diastereomeric warfarin methyl ketals which on deprotection form racemic warfarin-2- 13 C(98+%). Classical resolution of labeled warfarin with quinidine produces partly resolved (S)-(-)-warfarin-2- 13 C(98+%). Labeled warfarin is a suitable probe for warfarin configuration for which three distinct isomeric forms are known. (Author)

  5. Method for aquatic multiple species toxicant testing: acute toxicity of 10 chemicals to 5 vertebrates and 2 invertebrates. [Pimephales promelas; Carassius auratus; Ictalurus punctatus; Lepomis macrochirus; Salmo gairdneri; Orconectes immunis; Aplexa hypnorum

    Energy Technology Data Exchange (ETDEWEB)

    Phipps, G.L.; Holcombe, G.W.

    1985-01-01

    A method was developed to simultaneously ascertain 96 h LC/sub 50/ values for seven freshwater species in a single flow through test with measured concentrations. It allows interspecific comparisons, easy determination of the most sensitive species, and cuts cost of labor, materials and chemical analysis for measured concentration tests. Species tested included fathead minnows Pimephales promelas, goldfish Carassius auratus, channel catfish Ictalurus punctatus, bluegill Lepomis macrochirus, rainbow trout Salmo gairdneri, crayfish Orconectes immunis and snails Aplexa hypnorum. Compounds tested were pentachlorophenol, 2-chloroethanol, 2,4-pentanedione, hexachloroethane, ..cap alpha..-bromo-2',5'-dimethoxyacetophenone, benzaldehyde, 1,3-dichloro-4,6-dinitro-benzene, dursban, sevin and cadmium chloride. The LC/sub 50/ values from these multiple species tests compared favourably with those determined using single species tests at this laboratory, usually within 20%.

  6. Synthesis of naphthalenes through three-component coupling of alkynes, Fischer carbene complexes, and benzaldehyde hydrazones via isoindole intermediates.

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K; Herndon, James W

    2008-04-17

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels-Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  7. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    Science.gov (United States)

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes. PMID:18351767

  8. Synthesis of Naphthalenes through Three-Component Coupling of Alkynes, Fischer Carbene Complexes, and Benzaldehyde Hydrazones via Isoindole Intermediates

    OpenAIRE

    Duan, Shaofeng; Sinha-Mahapatra, Dilip K.; Herndon, James W.

    2008-01-01

    The synthesis of naphthalene derivatives through three-component coupling of 2-alkynylbenzaldehyde hydrazones with carbene complexes and electron-deficient alkynes has been examined. The reaction involves formation of an isoindole derivative, followed by intramolecular Diels–Alder reaction, followed by nitrene extrusion. The reaction was highly regioselective using unsymmetrical alkynes.

  9. Highly Regio- and Stereoselective Diels-Alder Cycloadditions via Two-Step and Multicomponent Reactions Promoted by Infrared Irradiation under Solvent-Free Conditions

    Science.gov (United States)

    Flores-Conde, Maria Ines; Reyes, Leonor; Herrera, Rafael; Rios, Hulme; Vazquez, Miguel A.; Miranda, Rene; Tamariz, Joaquin; Delgado, Francisco

    2012-01-01

    Infrared irradiation promoted the Diels-Alder cycloadditions of exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 and 13–17), under solvent-free conditions. These cycloadditions were performed with good regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in the final adducts 13–16 in similar yields. These procedures are environmentally benign, because no solvent and no catalyst were employed in these processes. The regioselectivity of these reactions was rationalized by Frontier Molecular Orbital (FMO) calculations. PMID:22489113

  10. Highly Regio- and Stereoselective Diels-Alder Cycloadditions via Two-Step and Multicomponent Reactions Promoted by Infrared Irradiation under Solvent-Free Conditions

    Directory of Open Access Journals (Sweden)

    Francisco Delgado

    2012-02-01

    Full Text Available Infrared irradiation promoted the Diels-Alder cycloadditions of exo-2-oxazolidinone dienes 1–3 with the Knoevenagel adducts 4–6, as dienophiles, leading to the synthesis of new 3,5-diphenyltetrahydrobenzo[d]oxazol-2-one derivatives (7, 9, 11 and 13–17, under solvent-free conditions. These cycloadditions were performed with good regio- and stereoselectivity, favoring the para-endo cycloadducts. We also evaluated the one-pot three-component reaction of active methylene compounds 20, benzaldehydes 21 and exo-2-oxazolidinone diene 2 under the same reaction conditions. A cascade Knoevenagel condensation/Diels-Alder cycloaddition reaction was observed, resulting in the final adducts 13–16 in similar yields. These procedures are environmentally benign, because no solvent and no catalyst were employed in these processes. The regioselectivity of these reactions was rationalized by Frontier Molecular Orbital (FMO calculations.

  11. ALÉM DA CAIPIRINHA: CACHAÇA COMO SOLVENTE PARA SÍNTESE ORGÂNICA E EXTRAÇÃO DE PIGMENTO

    Directory of Open Access Journals (Sweden)

    Silvio Cunha

    Full Text Available Cachaça (brazilian sugarcane spirit was applied for the first time as an alternative solvent in undergraduate experiments of organics synthesis, and natural dye extraction. The classical Claisen-Schmidt condensation of benzaldehyde with acetophenone and with acetone were employed to demonstrate the cachaça viability as solvent. Cachaça was also the recrystallization solvent of obtained benzalacetophenone and dibenzalacetone. The natural pigment of urucum (Bixa orellana L. was obtained using as extractor solvent a 5% NaOH solution in cachaça. Considering that in Brazil cachaça is easily available and cheaper than the 40% mixture of ethanol/water, it can be found in every marketplace and is exported to 54 countries, the cachaça use as solvent is viable and attractive to green chemistry experiments in undergraduate courses, in Brazil and abroad.

  12. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Tobias, E-mail: tobias.schulze@ufz.d [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Weiss, Sara [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Fraunhofer Institute of Toxicology and Experimental Medicine, Department of Chemical Risk Assessment, Nikolai-Fuchs-Strasse 1, 30625 Hannover (Germany); Schymanski, Emma; Ohe, Peter Carsten von der [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany); Schmitt-Jansen, Mechthild; Altenburger, Rolf [UFZ Helmholtz-Centre for Environmental Research, Department of Bioanalytical Ecotoxicology, Permoserstrasse 15, 04318 Leipzig (Germany); Streck, Georg; Brack, Werner [UFZ Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstrasse 15, 04318 Leipzig (Germany)

    2010-05-15

    The pharmaceutical diclofenac (DCF) is released in considerably high amounts to the aquatic environment. Photo-transformation of DCF was reported as the main degradation pathway in surface waters and was found to produce metabolites with enhanced toxicity to the green algae Scenedesmus vacuolatus. We identified and subsequently confirmed 2-[2-(chlorophenyl)amino]benzaldehyde (CPAB) as a transformation product with enhanced toxicity using effect-directed analysis. The EC{sub 50} of CPAB (4.8 mg/L) was a factor of 10 lower than that for DCF (48.1 mg/L), due to the higher hydrophobicity of CPAB (log K{sub ow} = 3.62) compared with DCF (log D{sub ow} = 2.04) at pH 7.0. - Effect-directed analysis of irradiated diclofenac results in the identification of one photo-transformation product responsible for the enhanced toxicity to Scenedesmus vacuolatus.

  13. Compostos voláteis em méis florais Volatile compounds in floral honeys

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Bastos De Maria

    2003-01-01

    Full Text Available A review about origin, composition and importance of volatile compounds in floral honeys is presented. Hydrocarbons, aromatic components, acids, diacids, terpenoids, ketones, aldehydes, esters and alcohols have been found in honey aroma of different botanical origin. Cis-rose oxide has been proposed as an indicator for Tilia cordata honey. Citrus honeys are known to contain methyl anthranilate, a compound which other honeys virtually lack. Linalool, phenylethylalcohol, phenylacetaldehyde, p-anisaldehyde and benzaldehyde are important contributors for the aroma of different unifloral honeys. Both isovaleric acid, gama-decalactone and benzoic acid appears to be important odourants for Anarcadium occidentale and Croton sp. honeys from Brazil. The furfurylmercaptan, benzyl alcohol, delta-octalactone, eugenol, phenylethylalcohol and guaiacol appear to be only relevant compounds for Anarcadium occidentale. The vanillin was considered an important odourant only for Croton sp..

  14. Interaction of oxides of nitrogen and aromatic hydrocarbons under simulated atmospheric conditions

    International Nuclear Information System (INIS)

    Obrien, R.J.; Green, P.J.; Doty, R.A.; Vanderzanden, J.W.; Easton, R.R.; Irwin, R.P.

    1979-01-01

    The reactions of nitrogen oxides with aromatic hydrocarbons under simulated atmospheric conditions are investigated. Gaseous reaction products formed when toluene is irradiated under simulated atmospheric conditions in the presence of nitrogen oxides were analyzed by gas chromatography. Reaction products detected include acetylene, water, acetaldehyde, acetone, toluene, benzaldehyde, ortho-, meta- and para-cresol, benzyl nitrate and meta- and para-nitrotoluene. Reaction mechanisms yielding the various products are illustrated. The assumption that all the nitrogen oxides observed to be lost from the reaction products can be accounted for by nitric acid formation in the absence of ozone formation is verified by a model in which the hydroxyl radical is assumed to be the only means of removing toluene. Under conditions in which ozone is formed, nitrogen oxide loss is accounted for by ozone formation in addition to nitric acid formation

  15. Comparative study of volatile components from male and female flower buds of Populus × tomentosa by HS-SPME-GC-MS.

    Science.gov (United States)

    Xu, Liang; Liu, Haiping; Ma, Yucui; Wu, Cui; Li, Ruiqi; Chao, Zhimao

    2018-06-13

    The differences of volatile components in male (MFB) and female flower buds (FFB) of Populus × tomentosa were analysed and compared by HS-SPME with GC-MS for the first time. A total of 34 compounds were identified. Two clusters were clearly divided into male and female by hierarchical clustering analysis. Both the male and female flower buds showed methyl salicylate (22.83 and 24.09%, respectively) and 2-hydroxy-benzaldehyde (10.05 and 12.41%, respectively) as the main volatile constituents. The content of 2-cyclohexen-1-one, benzyl benzoate, and methyl benzoate in FFB was remarkably higher than in MFB. In contrast, the content of ethyl benzoate in MFB was greater than that in FFB. The phenomena showed the characteristic differences between MFB and FFB of P. × tomentosa, which enriched the basic studies on dioecious plant.

  16. Myoglobin-Catalyzed Olefination of Aldehydes.

    Science.gov (United States)

    Tyagi, Vikas; Fasan, Rudi

    2016-02-12

    The olefination of aldehydes constitutes a most valuable and widely adopted strategy for constructing carbon-carbon double bonds in organic chemistry. While various synthetic methods have been made available for this purpose, no biocatalysts are known to mediate this transformation. Reported herein is that engineered myoglobin variants can catalyze the olefination of aldehydes in the presence of α-diazoesters with high catalytic efficiency (up to 4,900 turnovers) and excellent E diastereoselectivity (92-99.9 % de). This transformation could be applied to the olefination of a variety of substituted benzaldehydes and heteroaromatic aldehydes, also in combination with different alkyl α-diazoacetate reagents. This work provides a first example of biocatalytic aldehyde olefination and extends the spectrum of synthetically valuable chemical transformations accessible using metalloprotein-based catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Chemical components and their bioactivities of artemisis austro-yunanensis

    International Nuclear Information System (INIS)

    Li, J.C.; Yang, B.T.; Zhang, M.

    2016-01-01

    Artemisia austro-yunnanensis is a semi-herbaceous shrub, distributed in the tropical and subtropical areas. In this study, ten compounds were isolated from ethyl acetate fraction of its whole plant for the first time, and identified to be 7-(3-ethoxy-5-methoxyphenyl) propane-7,8,9-triol (1), secoisolariciresinol (2), (+)-pinoresinol (3), syringaresinol (4), eugenyl-O-beta-D-glucopyranoside (5), benzyl-O-beta-D-glucopyranoside (6), p-hydroxy-benzaldehyde (7), vanillin (8), syringaldehyde (9), 3-hydroxy-l-(4-hydroxy-3, 5-dimethoxyphenyl)-1-propanone (10) on the basis of ESI-MS and NMR spectra. This is the first report the occurrence of 1 from the family Asteraceae, whereas 2, 5 and 6 from the genus Artemisia. Meantime, all the isolates (1-10) were evaluated for their anti-oxidative and inhibiting neutrophil elastase activities by the bioassays in vitro. (author)

  18. Characterization of some Pr(III) complexes in terms of electronic spectral parameters

    International Nuclear Information System (INIS)

    Bhati, P.R.; Soni, K.P.; Joshi, G.K.; Swami, S.N.

    1992-01-01

    Pr(III) complexes from the ligands derived from methyl acetoacetate, ethyl acetoacetate, veratraldehyde, ethyl vanillin and 2,5 dimethoxy benzaldehyde forming Schiff-bases with ortho, meta and para phenylene diamines have been synthesized. The complexes have been characterized in terms of various Slater-Condon Lande and Judd-Ofelt parameters. The various trends in the parametric values have also been described. The involvement of 4f-orbital in the Pr(III) complexes including deviation in the symmetry have been discussed on the basis of electronic spectral parameters. The validity of the theories used has been established while comparing observed and calculated energies and intensities of the various bands in the present complexes on the basis of r.m.s deviation. The trends of the curves observed in the solution spectra have also been discussed. (author). 21 refs., 5 tabs., 2 figs

  19. AMYGDALIN AND ITS EFFECTS ON ANIMAL CELLS

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2013-02-01

    Full Text Available Amygdalin is a natural compound whose anticancer, anti-inflammatory activity and other medicinal benefits have been known for many years. It has been isolated in 1830 by the French chemists Robiquet and Boutron-Charlard from kernels of the bitter almond (Prunus amygdalus. It is a major component of the seeds of prunasin family plants, such as apricots, almonds, peaches, apples, and other rosaceous plants. Amygdalin is composed of two molecules of glucose, one of benzaldehyde, which induces an analgesic action, and one of hydrocyanic acid, which is an anti-neoplastic compound. It has been used as a traditional drug because of its wide range of medicinal benefits. Amygdalin can be used in medicine for preventing and treating migraine, hypertension, chronic inflammation, and other reaction source diseases. This review is focused on the effects of amygdalin on the animal system.

  20. Simultaneous determination of paracetamol, 4-Aminophenol, 4-Chloroacetanilid, Benzyl alcohol,Benzaldehyde and EDTA by HPLC methodin paracetamol injection ampoule

    OpenAIRE

    Ali Merrikhi Khosroshahi; Fereydoon Aflaki; Nader Saemiyan; Assem Abdollahpour; Ramin Asgharian

    2016-01-01

    Paracetamol that is known as acetaminophen have the most consume as an analgesic and antipyretic drug in the world. That is formulated in single compound or mixture at many forms such as tablets, syrups, suspensions and drops. The last form is intravenous injections. Paracetamol derived from 4-minophenol which is synthesized by acylated the P-acetaminophenol and acetic anhydride. 4-aminophenol is the main impurity at manufacturing of paracetamol which could produce by hydrolysis during sto...

  1. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  2. Synthesis, structural, antibacterial and spectral studies of Co (II) complexes with salicylaldehyde and p-chloro-benzaldehyde 4-phenyl thiosemicarbazone

    International Nuclear Information System (INIS)

    Nur Nadia Dzulkifli; Yang Farina; Ibrahim Baba; Nazlina Ibrahim

    2012-01-01

    The Co(II) complexes derived from salicylaldehyde 4-phenyl thiosemicarbazone; SaOHtsc, p-chlorobenzaldehyde 4-phenyl thiosemicarbazone; ph-HClbtsc is reported and characterized based on elemental analysis, IR, magnetic susceptibility measurement, 1 H and 13 C NMR spectra. The Co(II) complexes have the molecular formula CoL 2 where the ligand corresponding to SaOHtsc and ph-HClbtsc. The elemental analysis for the ligands and complexes were in a good agreement with the theoretical values. The ligands coordinate to metal ions in different ways which is through mono negative bidentate or di negative tridentate. The magnetic susceptibility measurements showed that the CoL 2 complexes with ligand SaOHtsc are diamagnetic thus making this complexes suitable for NMR studies. The signals at the 10.04 ppm were assigned to N 2 H in the 1 H-NMR spectra of the free ligands was absent in the spectra of the complexes due to the deprotonation of the N 2 H and coordination to the metal centres. The absence of the band in IR spectrum which is assigned to v(N 2 -H) in the spectra of CoL 2 complexes is due to the deprotonation of the ligands upon complexation through azomethine nitrogen and thionic sulphur atom to metal ion. The thiosemicarbazones and its Co(II) complexes showed moderate inhibitory against bacteria Bacillus Subtilis, Staphylococcus Epidermis, Escherichia Coli and Proteus Mirabilis in 10 μg/ disc. (author)

  3. Fragmentation of deuteronated aromatic derivatives: The role of ion-neutral complexes

    Science.gov (United States)

    Harrison, Alex G.; Wang, Jian-Yao

    1997-01-01

    The low-energy collision-induced dissociation reactions of the MD+ ions of a number of alkyl phenyl ethers, alkylbenzenes, acetophenones and benzaldehyde have been studied as a function of collision energy to establish qualitatively the dependence of the fragmentation reactions observed on internal energy. Deuteronated alkyl phenyl ethers (ROC6H5·D+, R = C3H7, C4H9) fragment at low collision energies to form C6H5OHD+ + (R-H), the thermochemically favoured products; with increasing collision energy (and, hence, internal energy) formation of the alkyl ion R+ increases significantly in importance. Deuteronated alkylbenzenes (RC6H5, RC6H4R', R = C2H5, C3H7) similarly form the deuteronated benzene (the thermochemically favoured product) at low collision energies with formation of the alkyl ion R+ being observed at higher collision energies. The results for both systems are consistent with a fragmentation mechanism involving initial formation of an R+/aromatic ion/neutral complex. At low internal energies proton transfer occurs within this complex to form an ion/neutral complex consisting of the deuteronated aromatic and a neutral olefin; this complex fragments to the thermochemically favoured products. Since the transition state leading to these products is a "tight" transition state involving loss of rotational degrees of freedom, the proton transfer reaction is unfavourable entropically with respect to simple dissociation of the R+/aromatic complex to R+ + ArD. Consequently, these products increase in importance as the internal energy is increased. The fragmentation of deuteronated aromatic carbonyl compounds can also be rationalized by similar mechanisms involving the intermediacy of ion/neutral complexes. Deuteronated acetophenone forms only CH3CO+ at all collision energies; this is both the thermochemically and entropically favoured product. However, deuteronated p-aminoacetophenone forms deuteronated aniline, the thermochemically favoured product at low collision

  4. pH-Responsive Tumor-Targetable Theranostic Nanovectors Based on Core Crosslinked (CCL Micelles with Fluorescence and Magnetic Resonance (MR Dual Imaging Modalities and Drug Delivery Performance

    Directory of Open Access Journals (Sweden)

    Sidan Tian

    2016-06-01

    Full Text Available The development of novel theranostic nanovectors is of particular interest in treating formidable diseases (e.g., cancers. Herein, we report a new tumor-targetable theranostic agent based on core crosslinked (CCL micelles, possessing tumor targetable moieties and fluorescence and magnetic resonance (MR dual imaging modalities. An azide-terminated diblock copolymer, N3-POEGMA-b-P(DPA-co-GMA, was synthesized via consecutive atom transfer radical polymerization (ATRP, where OEGMA, DPA, and GMA are oligo(ethylene glycolmethyl ether methacrylate, 2-(diisopropylaminoethyl methacrylate, and glycidyl methacrylate, respectively. The resulting diblock copolymer was further functionalized with DOTA(Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid or benzaldehyde moieties via copper(I-catalyzed alkyne-azide cycloaddition (CuAAC chemistry, resulting in the formation of DOTA(Gd-POEGMA-b-P(DPA-co-GMA and benzaldehyde-POEGMA-b-P(DPA-co-GMA copolymers. The resultant block copolymers co-assembled into mixed micelles at neutral pH in the presence of tetrakis[4-(2-mercaptoethoxyphenyl]ethylene (TPE-4SH, which underwent spontaneous crosslinking reactions with GMA residues embedded within the micellar cores, simultaneously switching on TPE fluorescence due to the restriction of intramolecular rotation. Moreover, camptothecin (CPT was encapsulated into the crosslinked cores at neutral pH, and tumor-targeting pH low insertion peptide (pHLIP, sequence: AEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG moieties were attached to the coronas through the Schiff base chemistry, yielding a theranostic nanovector with fluorescence and MR dual imaging modalities and tumor-targeting capability. The nanovectors can be efficiently taken up by A549 cells, as monitored by TPE fluorescence. After internalization, intracellular acidic pH triggered the release of loaded CPT, killing cancer cells in a selective manner. On the other hand, the nanovectors labeled with DOTA

  5. Improvement of catalytic activity in selective oxidation of styrene with H{sub 2}O{sub 2} over spinel Mg–Cu ferrite hollow spheres in water

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Jinhui, E-mail: jinhuitong@126.com [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China); Cai, Xiaodong; Wang, Haiyan; Zhang, Qianping [Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Lanzhou 730070 (China); Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070 (China)

    2014-07-01

    Graphical abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. Solid spinel Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods for comparison. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be magnetically separated easily for reuse and no obvious loss of activity was observed when reused in six consecutive runs. - Highlights: • Uniform spinel ferrite hollow spheres were prepared by a simple method. • The catalyst has been proved much more efficient for styrene oxidation than the reported analogues. • The catalyst can be easily separated by external magnetic field and has exhibited excellent reusability. • The catalytic system is environmentally friendly. - Abstract: Uniform spinel Mg–Cu ferrite hollow spheres were prepared using carbon spheres as templates. For comparison, solid Mg–Cu ferrite nanocrystals were also prepared by sol–gel auto-combustion, hydrothermal and coprecipitation methods. All the samples were characterized by Fourier transform infrared spectrophotometry (FT-IR), X-ray diffractometry (XRD), transmission electron microscopy (TEM) and N{sub 2} physisorption. The samples were found to be efficient catalysts for oxidation of styrene using hydrogen peroxide as oxidant. Especially, in the case of Mg{sub 0.5}Cu{sub 0.5}Fe{sub 2}O{sub 4} hollow spheres, obvious improvement on catalytic activity was observed, and 21.2% of styrene conversion and 75.2% of selectivity for benzaldehyde were obtained at 80 °C for 6 h reaction in water. The catalyst can be

  6. Synthesis of Some New 1,3,4-Thiadiazole, Thiazole and Pyridine Derivatives Containing 1,2,3-Triazole Moiety

    Directory of Open Access Journals (Sweden)

    Nadia A. Abdelriheem

    2017-02-01

    Full Text Available In this study, 1-(5-Methyl-1-(p-tolyl-1H-1,2,3-triazol-4-ylethan-1-one, was reacted with Thiosemicarbazide, alkyl carbodithioate and benzaldehyde to give thiosemicarbazone, alkylidenehydrazinecarbodithioate and 3-phenylprop-2-en-1-one-1,2,3-triazole derivatives. The 1,3,4-thiadiazole derivatives containing the 1,2,3-triazole moiety were obtained via reaction of alkylidenecarbodithioate with hydrazonoyl halides. Also, hydrazonoyl halides were reacted with thiosemicarbazone and pyrazolylthioamide to give 1,3-thiazoles derivatives. Subsequently, 3-phenyl2-en-1-one was used to synthesize substituted pyridines and substituted nicotinic acid ester. The latter was converted to its azide compound which was reacted with aromatic amines and phenol to give substituted urea and phenylcarbamate containing 1,2,3-triazole moiety. The newly synthesized compounds were established by elemental analysis, spectral data and alternative synthesis whenever possible.

  7. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: their evaluation as inhibitors of SIRT1.

    Science.gov (United States)

    Manjulatha, Khanapur; Srinivas, S; Mulakayala, Naveen; Rambabu, D; Prabhakar, M; Arunasree, Kalle M; Alvala, Mallika; Basaveswara Rao, M V; Pal, Manojit

    2012-10-01

    An improved synthesis of functionalized aurones has been accomplished via the reaction of benzofuran-3(2H)-one with a range of benzaldehydes in the presence of a mild base EDDA under ultrasound. A number of aurones were synthesized (within 5-30min) and the molecular structure of a representative compound determined by single crystal X-ray diffraction study confirmed Z-geometry of the C-C double bond present within the molecule. Some of the compounds synthesized have shown SIRT1 inhibiting as well as anti proliferative properties against two cancer cell lines in vitro. Compound 3a [(Z)-2-(5-bromo-2-hydroxybenzylidene) benzofuran-3(2H)-one] was identified as a potent inhibitor of SIRT1 (IC(50)=1μM) which showed a dose dependent increase in the acetylation of p53 resulting in induction of apoptosis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang; Li, Benxia; Gu, Ting; Ming, Tian; Wang, Junxin; Wang, Peng; Yu, Jimmy C.

    2014-01-01

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  9. Analysis of volatiles in silver carp by headspace solid phase micro-extraction coupled with GC-MS

    International Nuclear Information System (INIS)

    Yang Yuping; Xiong Guangquan; Cheng Wei; Liao Tao; Lin Ruotai; Geng Shengrong; Li Xin; Li Xiaoding; Wu Wenjin

    2010-01-01

    In this paper, a method for the determination of volatiles using headspace solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) was presented. The extraction conditions were optimized with reference to these volatiles as hexanal, heptanal, benzaldehyde, 1-Octen-3-ol, octanal, nonanal, decenal, 2,4-heptadienal and 2,4-decadienal. The extraction of fish muscle followed by incubation on a StableFlex divinyl benzene/Carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber during 50 in at 60 obtained the most effective extraction of the analytes. The methods by HS-SPME and GC-MS were effective in detecting volatiles in the gills, scales, viscera and fish muscles. The types of volatiles in the gill were more than other organs and the number of odors compounds was 63, and the number of volatiles in scales, viscera and fish muscles was 48, 44 and 42 respectively. (authors)

  10. Hydrazine Determination in Sludge Samples by High Performance Liquid Chromatography

    Energy Technology Data Exchange (ETDEWEB)

    G. Elias; G. A. Park

    2006-02-01

    A high-performance liquid chromatographic method using ultraviolet (UV) detection was developed to detect and quantify hydrazine in a variety of environmental matrices. The method was developed primarily for sludge samples, but it is also applicable to soil and water samples. The hydrazine in the matrices was derivatized to their hydrazones with benzaldehyde. The derivatized hydrazones were separated using high performance liquid chromatography (HPLC) with a reversed-phase C-18 column in an isocratic mode with methanol-water (95:5, v/v), and detected with UV detection at 313 nm. The detection limit (25 ml) for the new analytical method is 0.0067 mg ml-1of hydrazine. Hydrazine showed low recovery in soil samples because components in soil oxidized hydrazine. Sludge samples that contained relatively high soil content also showed lower recovery. The technique is relatively simple and cost-effective, and is applicable for hydrazine analysis in different environmental matrices.

  11. Nanoscale Assembly of Actuating Cilia-Mimetic

    Science.gov (United States)

    Baird, Lance; Breidenich, Jennifer; Land, Bruce; Hayes, Allen; Benkoski, Jason; Keng, Pei; Pyun, Jeffrey

    2009-03-01

    The cilium is among the smallest mechanical actuators found in nature. We have taken inspiration from this design to create magnetic nanochains, measuring approximately 1-5 μm long and 25 nm in diameter. Fabricated from the self-assembly of cobalt nanoparticles, these flexible filaments actuate in an oscillating magnetic field. The cobalt nanoparticles were functionalized with a polystyrene/benzaldehyde surface coating, thus allowing the particles to form imine bonds with one another in the presence of a diamine terminated polyethylene glycol. These imine bonds effectively cross-linked the particles and held the nanochains together in the absence of a magnetic field. Using design of experiments (DOE) to efficiently screen the effects of cobalt nanoparticle concentration, crosslinker concentration, and surface chemistry, we determined that the morphology of the final structures could be explained primarily by physical interactions (i.e. magnetic forces) rather than chemistry.

  12. Differential presence of anthropogenic compounds dissolved in the marine waters of Puget Sound, WA and Barkley Sound, BC.

    Science.gov (United States)

    Keil, Richard; Salemme, Keri; Forrest, Brittany; Neibauer, Jaqui; Logsdon, Miles

    2011-11-01

    Organic compounds were evaluated in March 2010 at 22 stations in Barkley Sound, Vancouver Island Canada and at 66 locations in Puget Sound. Of 37 compounds, 15 were xenobiotics, 8 were determined to have an anthropogenic imprint over natural sources, and 13 were presumed to be of natural or mixed origin. The three most frequently detected compounds were salicyclic acid, vanillin and thymol. The three most abundant compounds were diethylhexyl phthalate (DEHP), ethyl vanillin and benzaldehyde (∼600 n g L(-1) on average). Concentrations of xenobiotics were 10-100 times higher in Puget Sound relative to Barkley Sound. Three compound couplets are used to illustrate the influence of human activity on marine waters; vanillin and ethyl vanillin, salicylic acid and acetylsalicylic acid, and cinnamaldehyde and cinnamic acid. Ratios indicate that anthropogenic activities are the predominant source of these chemicals in Puget Sound. Published by Elsevier Ltd.

  13. (Gold core) at (ceria shell) nanostructures for plasmon-enhanced catalytic reactions under visible light

    KAUST Repository

    Wang, Jianfang

    2014-08-26

    Driving catalytic reactions with sunlight is an excellent example of sustainable chemistry. A prerequisite of solar-driven catalytic reactions is the development of photocatalysts with high solar-harvesting efficiencies and catalytic activities. Herein, we describe a general approach for uniformly coating ceria on monometallic and bimetallic nanocrystals through heterogeneous nucleation and growth. The method allows for control of the shape, size, and type of the metal core as well as the thickness of the ceria shell. The plasmon shifts of the Au@CeO2 nanostructures resulting from the switching between Ce(IV) and Ce(III) are observed. The selective oxidation of benzyl alcohol to benzaldehyde, one of the fundamental reactions for organic synthesis, performed under both broad-band and monochromatic light, demonstrates the visible-light-driven catalytic activity and reveals the synergistic effect on the enhanced catalysis of the Au@CeO2 nanostructures. © 2014 American Chemical Society.

  14. Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

    International Nuclear Information System (INIS)

    Dadapeer, Echchukattula; Rasheed, Syed; Raju, Chamarthi Naga

    2011-01-01

    The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using P(O)Cl 3 , P(S)Cl 3 , 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ( 1 H, 13 C and 31 P), LC-Mass and C, H, N analysis. The structure of the final dendrimer was confirmed by IR, NMR ( 1 H, 13 C and 31 P), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis

  15. Content of the cyanogenic glucoside amygdalin in almond seeds related to the bitterness genotype

    Directory of Open Access Journals (Sweden)

    Guillermo Arrázola

    2012-08-01

    Full Text Available Almond kernels can be sweet, slightly bitter or bitter. Bitterness in almond (Prunus dulcis Mill. and other Prunus species is related to the content of the cyanogenic diglucoside amygdalin. When an almond containing amygdalin is chopped, glucose, benzaldehyde (bitter flavor and hydrogen cyanide (which is toxic are released. This two-year-study with 29 different almond cultivars for bitterness was carried out in order to relate the concentration of amygdalin in the kernel with the phenotype (sweet, slightly bitter or bitter and the genotype (homozygous: sweet or bitter or heterozygous: sweet or slightly bitter with an easy analytical test. Results showed that there was a clear difference in the amount of amygdalin between bitter and non-bitter cultivars. However, the content of amygdalin did not differentiate the other genotypes, since similar amounts of amygdalin can be found in the two different genotypes with the same phenotype

  16. Synthesis and pharmacological investigation of 2-(4-dimethylaminophenyl)-3,5-disubstituted thiazolidin-4-ones as anticonvulsants.

    Science.gov (United States)

    Senthilraja, Manavalan; Alagarsamy, Veerachamy

    2012-10-01

    A new series of 2-(4-dimethylaminophenyl)-3-substituted thiazolidin-4-one-5-yl-acetyl acetamides/benzamides were synthesized by the nucleophilic substitution of 3-substituted-2-(4-dimethylaminophenyl)-thiazolidin-4-one-5-yl-acetylchloride with acetamide and benzamide. The starting material 3-substituted-2-(4-dimethylaminophenyl)-thiazolidin-4-one-5-yl-acetylchloride was synthesized from 3-substituted-2-(4-dimethylaminophenyl)-thiazolidin-4-one-5-yl-acetic acid, which in turn was prepared by one-pot reaction of amino component, p-dimethylamino benzaldehyde and mercapto succinic acid. The title compounds were investigated for their anticonvulsant activities; among the test compounds, compound 2-(4-dimethylaminophenyl)-3-phenylamino-thiazolidine-4-one-5-yl-acetylbenzamide (14) emerged as the most active compound of the series and as moderately more potent than the reference standard diazepam. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  18. Structural Correlation of Some Heterocyclic Chalcone Analogues and Evaluation of Their Antioxidant Potential

    Directory of Open Access Journals (Sweden)

    Hoong-Kun Fun

    2013-09-01

    Full Text Available A series of six novel heterocyclic chalcone analogues 4(a–f has been synthesized by condensing 2-acetyl-5-chlorothiophene with benzaldehyde derivatives in methanol at room temperature using a catalytic amount of sodium hydroxide. The newly synthesized compounds are characterized by IR, mass spectra, elemental analysis and melting point. Subsequently; the structures of these compounds were determined using single crystal X-ray diffraction. All the synthesized compounds were screened for their antioxidant potential by employing various in vitro models such as DPPH free radical scavenging assay, ABTS radical scavenging assay, ferric reducing antioxidant power and cupric ion reducing antioxidant capacity. Results reflect the structural impact on the antioxidant ability of the compounds. The IC50 values illustrate the mild to good antioxidant activities of the reported compounds. Among them, 4f with a p-methoxy substituent was found to be more potent as antioxidant agent.

  19. Sequential meta-C-H olefination of synthetically versatile benzyl silanes: effective synthesis of meta-olefinated toluene, benzaldehyde and benzyl alcohols.

    Science.gov (United States)

    Patra, Tuhin; Watile, Rahul; Agasti, Soumitra; Naveen, Togati; Maiti, Debabrata

    2016-02-04

    Tremendous progress has been made towards ortho-selective C-H functionalization in the last three decades. However, the activation of distal C-H bonds and their functionalization has remained fairly underdeveloped. Herein, we report sequential meta-C-H functionalization by performing selective mono-olefination and bis-olefination with late stage modification of the C-Si as well as Si-O bonds. Temporary silyl connection was found to be advantageous due to its easy installation, easy removal and wide synthetic diversification.

  20. Origin of low-molecular mass aldehydes as disinfection by-products in beverages.

    Science.gov (United States)

    Serrano, María; Gallego, Mercedes; Silva, Manuel

    2017-09-01

    A novel, simple and automatic method based on static headspace-gas chromatography-mass spectrometry has been developed to determine 10 low-molecular mass aldehydes that can be found in beverages, coming from the treated water used in their production. These aldehydes are the most frequently found in treated water as water disinfection by-products, so they can be used as indicators of the addition of treated water to beverages. The study covered a large number of fruit juices and soft drinks. The presence of the whole array of analytes is related to the contact with treated water during beverage production, mainly by the addition of treated water as ingredient. In particular, propionaldehyde, valeraldehyde and benzaldehyde can be used as indicators of the addition of treated water in these kinds of beverages. Among the ten aldehydes, only formaldehyde and acetaldehyde are naturally present in all kinds of fruit, and their concentrations are related to stage of the ripening of the fruit.

  1. The Variation of Oncidium Rosy Sunset Flower Volatiles with Daily Rhythm, Flowering Period, and Flower Parts

    Directory of Open Access Journals (Sweden)

    Yi-Tien Chiu

    2017-09-01

    Full Text Available Oncidium is an important ornamental crop worldwide, and in recent years, the characteristics of the flower aroma have become a concern for breeders. This study used headspace solid-phase microextraction (HS-SPME and gas chromatography/mass spectrometry (GC-MS analysis of the volatile compounds to study the aroma characteristics of Onc. Rosy Sunset. A total of 45 compounds were identified, with the major compound being linalool. Onc. Rosy Sunset had the highest odor concentration from 10:00 to 12:00 and lowest from 20:00 to 24:00. The inflorescence emitted the highest quantities of volatile compounds during stages 3–6, which then decreased with the aging of the flowers. In Onc. Rosy Sunset, the sepals and petals were the major parts for the floral fragrance emission, in which linalool content was the highest, whereas the lip and column had a different composition of major volatile compounds, of which benzaldehyde, β-myrcene, and β-caryophyllene dominated.

  2. Efficient synthesis of benzothiazine and acrylamide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Ana Maria Alves; Walfrido, Simone Torres Padua; Leite, Lucia Fernanda Costa; Lima, Maria Carmo Alves; Galdino, Suely Lins; Pitta, Ivan Rocha [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos; Barbosa Filho, Jose Maria [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Simone, Carlos Alberto de; Ellena, Javier Alcides, E-mail: irpitta@gmail.co [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica

    2010-07-01

    This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazine-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazine-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazine-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4] -thiazine-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl) -3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide. (author)

  3. Efficient synthesis of benzothiazine and acrylamide compounds

    International Nuclear Information System (INIS)

    Souza, Ana Maria Alves; Walfrido, Simone Torres Padua; Leite, Lucia Fernanda Costa; Lima, Maria Carmo Alves; Galdino, Suely Lins; Pitta, Ivan Rocha; Simone, Carlos Alberto de; Ellena, Javier Alcides

    2010-01-01

    This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazine-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazine-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazine-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4] -thiazine-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl) -3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide. (author)

  4. An experimental study on regulated and unregulated pollutants from a spark ignition car fuelled on liquefied petroleum gas and Gasoline

    International Nuclear Information System (INIS)

    Shah, A.N.; Yun-shan, G.E.; Jun-fang, W.; Jian-wei, T.; Gardezi, S.A.R.

    2010-01-01

    In the experimental study conducted on a spark ignition (SI) car running on a chassis dynamometer, fuelled on liquefied petroleum gas (LPG) and gasoline, carbon monoxide (CO) and total hydrocarbons (HC) decreased by 37.3% and 46.8%, respectively, while oxides of nitrogen (NOx) increased by 59.7% due to higher compression ratio with LPG, compared with gasoline. In case of LPG fuel, formaldehyde, acetaldehyde, propionaldehyde, 2-butanone, butyraldehyde, benzaldehyde and valeraldehyde decreased, leading to an over all decrease of about 35% and 26% in carbonyls and their ozone forming potential (OFP), respectively, compared with gasoline. Furthermore, benzene, toluene, ethyl benzene, xylene and styrene decreased, resulting in an overall decrease of 38.8% in volatile organic compounds (VOCs) and 39.2% in BTEX (benzene, toluene, ethyl benzene and xylene) species due to more complete combustion with LPG, compared with gasoline. Further, the OFP of VOCs with LPG was 6% lower than that with gasoline fuel. (author)

  5. Electrocatalysis of anodic oxygen-transfer reactions at modified lead dioxide electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Yun-Lin.

    1990-09-21

    The electrocatalytic activities were compared for pure and chloride-doped beta-PbO{sub 2} (Cl-PbO{sub 2}) films on gold and platinum substrates. Rate constants were increased significantly for oxidations of Mn{sup 2+}, toluene, benzyl alcohol, dimethylsulphoxide (DMSO) and benzaldehyde in acidic media by the incorporation of Cl{sup {minus}} into the oxide films. These reactions are concluded to occur by the electrocatalytic transfer of oxygen from H{sub 2}O to the reaction products. Results of x-ray diffraction studies indicate the Cl-PbO{sub 2} film continues to have the slightly distorted rutile structure of pure beta-PbO{sub 2}. The observed electrocatalytic phenomena are concluded to be the beneficial consequence of surface defects generated when Cl{sup {minus}} serves for charge compensation within the surface matrix and, thereby, increases the number of surface sites capable of adsorbing hydroxyl radicals which are transferred in the electrocatalytic O-transfer reactions. 91 refs., 44 figs., 10 tabs.

  6. Ligand-tailored single-site silica supported titanium catalysts: Synthesis, characterization and towards cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Li, Yani; Yu, Bo; Yang, Jindou; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Ti(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on silica was conducted by SOMC strategy in moderate conditions. The silica, monitored by in-situ Fourier transform infrared spectroscopy (in-situ FT-IR), was pretreated at different temperatures (200, 500 and 800 °C). The ligand tailored silica-supported titanium complexes were characterized by in-situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), X-ray absorption near edge structure (XANES) and elemental analysis in detail, verifying that the surface titanium species are single sited. The catalytic activity of the ligand tailored single-site silica supported titanium complexes was evaluated by a cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the dehydroxylation temperatures of silica and the configuration of the ligands.

  7. Fotólise no estado estacionário e com pulso de laser de 1-benzociclanonas e de seus derivados a,a -dimetilados Steady-state and laser flash photolysis of 1 - benzocyclanones and their a,a -dimethyl derivatives

    Directory of Open Access Journals (Sweden)

    José Carlos Netto-Ferreira

    1999-07-01

    Full Text Available Laser excitation of 0.01 M solutions of 1-indanone (Ia, 1-tetralone (Ib, 1-benzosuberone (Ic, and their a,a -dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum absorption at 425 nm, and lifetimes ranging from 62 ns (IIa to 5.5ms (Ic. Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, i.e. IIIa-c, which show absorption spectra very similar to the parent ketone, with lmax at 430 nm and lifetime in excess of 20 ms. Steady state irradiations show that the a,a -dimethyl ketones IIa and IIc form ortho-alkyl benzaldehydes probably derived from an initial a-cleavage of the corresponding triplet excited states.

  8. Volatile components of vine leaves from two Portuguese grape varieties (Vitis vinifera L.), Touriga Nacional and Tinta Roriz, analysed by solid-phase microextraction.

    Science.gov (United States)

    Fernandes, Bruno; Correia, Ana C; Cosme, Fernanda; Nunes, Fernando M; Jordão, António M

    2015-01-01

    The purpose of this work was to study the volatile composition of vine leaves and vine leaf infusion prepared from vine leaves collected at 30 and 60 days after grape harvest of two Vitis vinifera L. species. Eighteen volatile compounds were identified by gas chromatography-mass spectrometry in vine leaves and in vine leaf infusions. It was observed that the volatile compounds present in vine leaves are dependent on the time of harvest, with benzaldehyde being the major volatile present in vine leaves collected at 30 days after harvesting. There are significant differences in the volatile composition of the leaves from the two grape cultivars, especially in the sample collected at 60 days after grape harvest. This is not reflected in the volatile composition of the vine leaf infusion made from this two cultivars, the more important being the harvesting date for the volatile profile of vine leaf infusion than the vine leaves grape cultivar.

  9. New Approaches for the Synthesis, Cytotoxicity and Toxicity of Heterocyclic Compounds Derived from 2-Cyanomethylbenzo[c]imidazole.

    Science.gov (United States)

    Mohareb, Rafat M; Mohamed, Abeer A; Abdallah, Amira E M

    2016-01-01

    The reaction of ethyl cyanoacetate with o-phenylenediamine gave the 2-cyanomethylbenzo[c]imidazole (1). The latter compound was used as the key starting material to synthesise biologically active heterocyclic derivatives. Thus, the reaction of 1 with cyclohexanone and either of benzaldehyde, 4-methoxybenzaldehyde or 4-chlorobenzaldehyde gave the annulated derivatives 2a-c, respectively. The antitumor evaluations of the newly synthesized products against the three cancer cell lines MCF-7 (breast adeno-carcinoma), NCI-H460 (non-small cell lung cancer) and SF-268 (CNS cancer) showed that compounds 2b, 6, 11b, 11c, 12b, 16a, 16b and 18a exhibited optimal cytotoxic effect against cancer cell lines, with IC50 values in the nM range. Bioactive compounds are often toxic to shrimp larvae. Thus, in order to monitor these chemicals in vivo lethality to shrimp larvae (Artemia salina), Brine-Shrimp Lethality Assay was used. Compounds 11b, 12b and 16b showed no toxicity against the tested organisms.

  10. Reaction of phosphorus ylides with carbonyl compounds in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Jeong, Kyung Il; Kim, Hak Do; Shim, Jae Jin; Ra, Choon Sup

    2004-01-01

    The condensation reaction of (benzylene)triphenylphosphoranes with carbonyl compounds in supercritical carbon dioxide was examined. Reactions of (benzylene)phosphoranes (ca. 1 mmol) with several benzaldehydes in a supercritical carbon dioxide (80 .deg. C, 2,000 psi) containing THF entrainer (5%) in a 24 mL reactor proceed smoothly to yield olefination products in fairly good to excellent yields but slower, compared to reactions in a conventional THF solvent. Generally, phosphoranes that are not substituted with a nitro group show more (Z)-selective reactions with aromatic aldehydes under scCO 2 condition than in THF. The reaction of (benzylene)triphenylphosphosphoranes with 4-t-butylcyclohexanone gave the corresponding olefin compounds with a low conversion under both the supercritical carbon dioxide and the organic THF solvent. Our preliminary study showed the Wittig reaction carries out smoothly in supercritical carbon dioxide medium and also a possible tunability of this reaction pathway by adding a entrainer. The results would be useful for devising a novel process for the environmentally friendly Wittig reaction

  11. Metabolic production of a novel polymer feedstock, 3-carboxy muconate, from vanillin.

    Science.gov (United States)

    Gosling, Aaron; Fowler, S Jane; O'Shea, Michael S; Straffon, Melissa; Dumsday, Geoff; Zachariou, Michael

    2011-04-01

    Vanillin can be produced on a commercial scale by depolymerising renewable lignin. One product of microbial metabolism of vanillin by common soil microbes, such as Acinetobacter baylyi, is a tricarboxylic acid with a butadiene backbone known as 3-carboxy muconate (3CM). Three enzymes, 4-hydroxy benzaldehyde dehydrogenase, vanillate monooxygenase and protocatechuate 3,4-dioxygenase, catalyse the biotransformation of vanillin to 3CM. These three enzymes were metabolically engineered into an Escherichia coli host, giving a biocatalyst that converted vanillin into 3CM. The biocatalyst was found to give 100% yield of 3CM from 1 mM of vanillin after 39 h. The rate-limiting reaction was identified as the conversion of vanillate to 3,4-dihydroxybenzoate catalysed by vanillate monooxygenase. Low expression of the reductase subunit of this enzyme was identified as contributing to the reduced rate of this reaction. Proof of principle of a novel application for 3CM was demonstrated when it was converted into a trimethyl ester derivative and copolymerised with styrene.

  12. Effect of gamma-irradiation on flavor compounds of fresh mushrooms

    International Nuclear Information System (INIS)

    Mau, J.L.; Hwang, S.J.

    1997-01-01

    Fresh mushrooms (Agaricus bisporus) were gamma-irradiated with doses of 1,2, and 5 kGy. The volatile compounds were isolated using a Lickens-Nickerson apparatus and analyzed using gas chromatography and gas chromatography-mass spectrometry. The amount of total volatiles was greatly affected by the doses applied. The amounts of benzaldehyde and benzyl alcohol were not affected by gamma-irradiation and ranged from 8.94 to 11.79 and from 0.696 to 1.503 micrograms/g, respectively. The amounts of eight-carbon compounds decreased as the doses of gamma-irradiation increased, from 41.73 for the control (0 kGy) to 20.06 (1 kGy), 8.77 (2 kGy), and 4.04 micrograms/g (5 kGy irradiated mushrooms). The major eight-carbon compound was 1-octen-3-ol, and its amount decreased from 30.34 (the control) to 14.18 (1 kGy), 6.22 (2 kGy), and 2.92 micrograms/g (5 kGy)

  13. Synthesis,

    Directory of Open Access Journals (Sweden)

    Ganesan Vanangamudi

    2017-02-01

    Full Text Available Twelve 2,5-dimethyl-3-thienyl chalcones [E-1-(2,5-dimethyl-3-thienyl-3-(substituted phenyl-2-propen-1-ones] have been synthesized by Claisen–Schmidt condensation of 3-acetyl-2,5-dimethyl furon and substituted benzaldehydes. Yields of the chalcones are more than 80%. These chalcones were characterized by their physical constants and spectral data. The group frequencies of infrared ν(cm−1 of CO s-cis and s-trans, CH in-plane and out of plane, CHCH out of plane, >CC< out of plane modes, NMR chemical shifts δ(ppm of Hα, Hβ, CO, Cα and Cβ of these chalcones were correlated with Hammett substituent constants, F and R parameters using single and multi-regression analyses. From the results of statistical analyses, the effects of substituents on the group frequencies are explained. Antibacterial, antifungal, antioxidant and insect antifeedant activities of these chalcones have been studied.

  14. Identification of volatile organic compounds (VOCs in plastic products using gas chromatography and mass spectrometry (GC/MS

    Directory of Open Access Journals (Sweden)

    Nerlis Pajaro-Castro

    2014-10-01

    Full Text Available Plastic materials are widely used in daily life. They contain a wide range of compounds with low molecular mass, including monomeric and oligomeric residues of polymerization, solvent-related chemicals residues, and various additives. Plastic products made of expanded polystyrene (EPS are currently employed as food containers. This study therefore sought to identify volatile organic compounds released by EPS from food packages and utensils used in Cartagena, Colombia. EPS-based plates, food and soup containers were subjected to various temperatures and released chemicals captured by solid phase microextraction, followed by on-column thermal desorption and gas chromatography/mass spectrometry analysis. The results revealed the presence of at least 30 different compounds in the EPS-based products examined; the most frequently found were benzaldehyde, styrene, ethylbenzene and tetradecane. The release of these molecules was temperature-dependent. It is therefore advisable to regulate the use of EPS products which may be subjected to heating in order to protect human health by decreasing the exposure to these chemicals.

  15. Dynamic covalent chemistry of bisimines at the solid/liquid interface monitored by scanning tunnelling microscopy.

    Science.gov (United States)

    Ciesielski, Artur; El Garah, Mohamed; Haar, Sébastien; Kovaříček, Petr; Lehn, Jean-Marie; Samorì, Paolo

    2014-11-01

    Dynamic covalent chemistry relies on the formation of reversible covalent bonds under thermodynamic control to generate dynamic combinatorial libraries. It provides access to numerous types of complex functional architectures, and thereby targets several technologically relevant applications, such as in drug discovery, (bio)sensing and dynamic materials. In liquid media it was proved that by taking advantage of the reversible nature of the bond formation it is possible to combine the error-correction capacity of supramolecular chemistry with the robustness of covalent bonding to generate adaptive systems. Here we show that double imine formation between 4-(hexadecyloxy)benzaldehyde and different α,ω-diamines as well as reversible bistransimination reactions can be achieved at the solid/liquid interface, as monitored on the submolecular scale by in situ scanning tunnelling microscopy imaging. Our modular approach enables the structurally controlled reversible incorporation of various molecular components to form sophisticated covalent architectures, which opens up perspectives towards responsive multicomponent two-dimensional materials and devices.

  16. An Efficient Synthesis of Novel Pyrazole-Based Heterocycles as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Magda A. Abdallah

    2017-08-01

    Full Text Available A new series of pyrazolylpyridines was prepared by reaction of ethyl-3-acetyl-1,5-diphenyl-1H-pyrazole-4-carboxylate with the appropriate aldehyde, malononitrile, or ethyl acetoacetate and an excess of ammonium acetate under reflux in acetic acid. Similarly, two novel bipyridine derivatives were prepared by the above reaction using terephthaldehyde in lieu of benzaldehyde derivatives. In addition, a series of 1,2,4-triazolo[4,3-a]pyrimidines was synthesized by a reaction of 6-(pyrazol-3-ylpyrimidine-2-thione with a number of hydrazonoyl chlorides in dioxane and in the presence of triethylamine. The structure of the produced compounds was established by elemental analyses and spectral methods, and the mechanisms of their formation was discussed. Furthermore, the pyrazolyl-pyridine derivatives were tested as anticancer agents and the results obtained showed that some of them revealed high activity against human hepatocellular carcinoma (HEPG2 cell lines.

  17. Carbonyl atmospheric reaction products of aromatic hydrocarbons in ambient air

    Science.gov (United States)

    Obermeyer, Genevieve; Aschmann, Sara M.; Atkinson, Roger; Arey, Janet

    To convert gaseous carbonyls to oximes during sampling, an XAD-4 resin denuder system pre-coated with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine and followed by analysis with methane positive chemical ionization gas chromatography/mass spectrometry was used to measure carbonyls in ambient air samples in Riverside, CA. In conjunction with similar analyses of environmental chamber OH radical-initiated reactions of o- and p-xylene, 1,2,4-trimethylbenzene, ethylbenzene, 4-hydroxy-2-butanone and 1,4-butanediol, we identified benzaldehyde, o-, m- and p-tolualdehyde and acetophenone and the dicarbonyls glyoxal, methylglyoxal, biacetyl, ethylglyoxal, 1,4-butenedial, 3-hexene-2,5-dione, 3-oxo-butanal, 1,4-butanedial and malonaldehyde in the ambient air samples. As discussed, these carbonyls and dicarbonyls can be formed from the OH radical-initiated reactions of aromatic hydrocarbons and other volatile organic compounds emitted into the atmosphere, and we conclude that in situ atmospheric formation is a major source of these carbonyls in our Riverside, CA, ambient air samples.

  18. Reaction Acceleration in Thin Films with Continuous Product Deposition for Organic Synthesis.

    Science.gov (United States)

    Wei, Zhenwei; Wleklinski, Michael; Ferreira, Christina; Cooks, R Graham

    2017-08-01

    Thin film formats are used to study the Claisen-Schmidt base-catalyzed condensation of 6-hydroxy-1-indanone with substituted benzaldehydes and to compare the reaction acceleration relative to the bulk. Relative acceleration factors initially exceeded 10 3 and were on the order of 10 2 at steady state, although the confined volume reaction was not electrostatically driven. Substituent effects were muted compared to those in the corresponding bulk and microdroplet reactions and it is concluded that the rate-limiting step at steady state is reagent transport to the interface. Conditions were found that allowed product deposition from the thin film to occur continuously as the reaction mixture was added and as the solvent evaporated. Yields of 74 % and production rates of 98 mg h -1 were reached in a very simple experimental system that could be multiplexed to greater scales. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Single-site SBA-15 supported zirconium catalysts. Synthesis, characterization and toward cyanosilylation reaction

    Science.gov (United States)

    Xu, Wei; Yu, Bo; Zhang, Ying; Chen, Xi; Zhang, Guofang; Gao, Ziwei

    2015-01-01

    A successive anchoring of Zr(NMe2)4, cyclopentadiene and a O-donor ligand, 1-hydroxyethylbenzene (PEA), 1,1‧-bi-2-naphthol (Binol) or 2,3-dihydroxybutanedioic acid diethyl ester (Tartrate), on dehydroxylated SBA-15 pretreated at 500 °C for 16 h (SBA-15-500) was conducted by SOMC strategy in moderate conditions. The dehydoxylation of SBA-15 was monitored by in situ Fourier transform infrared spectroscopy (in situ FT-IR). The ligand-modified SBA-15-500 supported zirconium complexes were characterized by in situ FT-IR, 13C CP MAS-NMR, X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICP-MAS) and elemental analysis in detail, verifying that the surface zirconium species are single-sited. The catalytic activity of these complexes was evaluated by cyanosilylation of benzaldehyde. The results showed that the catalytic activity is dependent strongly on the structure of surface species and the configuration of the ligands.

  20. Green One-pot Synthesis of Novel Polysubstituted Pyrazole Derivatives as Potential Antimicrobial Agents.

    Science.gov (United States)

    Beyzaei, Hamid; Motraghi, Zahra; Aryan, Reza; Zahedi, Mohammad Mehdi; Samzadeh-Kermani, Alireza

    2017-12-01

    Various biological properties of natural and synthetic pyrazole derivatives such as anti-inflammatory, antimicrobial, neuroprotective, anticonvulsant, antidepressant and anticancer activities encouraged us to propose a new, fast, green and eco-friendly procedure for the preparation of some novel 5-amino-3-(aryl substituted)-1-(2,4-dinitrophenyl)-1H-pyrazole-4-carbonitriles. They were efficiently synthesized via one-pot two-step process reaction of malononitrile, 2,4-dinitrophenylhydrazine and different benzaldehydes in deep eutectic solvent (DES) glycerol/potassium carbonate. The products yield and reaction times were considerably improved in the presence of applied DES. Antibacterial effects of all newly synthesized pyrazoles in comparison with several common antibiotics were evaluated against a variety of Gram-positive and Gram-negative pathogenic bacteria. In addition to, their inhibitory activities on three fungi were compared to some current antifungal agents. The moderate to good antimicrobial potentials particularly against fungi were observed in the major heterocyclic compounds according to the IZD, MIC, MBC and MFC results.

  1. [Mechanism and performance of styrene oxidation by O3/H2O2].

    Science.gov (United States)

    He, Jue-Cong; Huang, Qian-Ru; Ye, Qi-Hong; Luo, Yu-Wei; Zhang, Zai-Li; Fan, Qing-Juan; Wei, Zai-Shan

    2013-10-01

    It can produce a large number of free radicals in O3/H2O2, system, ozone and free radical coupling oxidation can improve the styrene removal efficiency. Styrene oxidation by O3/H2O2 was investigated. Ozone dosage, residence time, H2o2 volume fraction, spray density and molar ratio of O3/C8H8 on styrene removal were evaluated. The experimental results showed that styrene removal efficiency achieved 85.7%. The optimal residence time, H2O2, volume fraction, spray density and O3/C8H8 molar ratio were 20. 6 s, 10% , 1.72 m3.(m2.h)-1 and 0.46, respectively. The gas-phase degradation intermediate products were benzaldehyde(C6H5CHO) and benzoic acid (C6H5 COOH) , which were identified by means of gas chromatography-mass spectrometry(GC-MS). The degradation mechanism of styrene is presented.

  2. Sequence-controlled copolymers of 2,3,4,5-pentafluorostyrene: Mechanistic insight and application to organocatalysis

    KAUST Repository

    O'Shea, John Paul; Solov'eva, Vera A.; Guo, Xianrong; Zhao, Junpeng; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2014-01-01

    A number of copolymers between styrene (St) or 4-azidomethylstyrene (N 3St) and 2,3,4,5,6-pentafluorostyrene (FSt) have been prepared by atom-transfer radical polymerization (ATRP) and conventional free radical polymerization (FRP). The mode of monomer alternation in copolymers has been established unambiguously using heteronuclear multiple bond correlation (HMBC) NMR. The degree and nature of monomer alternation was found to be strongly dependent on both the solvent (or lack thereof) and the polymerization initiator. These results are in contrast to previously published studies, which rely primarily on classic analysis of monomer reactivity ratios. We proceeded to independently functionalize the N3St and FSt moieties using orthogonal "click" chemistries: copper-catalyzed azide-alkyne cycloaddition (CuAAC) and fluoroarene-thiol coupling (FTC). An alternating copolymer bearing -NH2 and -SO3 - functional groups was found to be a competent organocatalyst for a Henry reaction between benzaldehyde and nitromethane. This journal is © 2014 The Royal Society of Chemistry.

  3. pH and Glucose Dual-Responsive Injectable Hydrogels with Insulin and Fibroblasts as Bioactive Dressings for Diabetic Wound Healing.

    Science.gov (United States)

    Zhao, Lingling; Niu, Lijing; Liang, Hongze; Tan, Hui; Liu, Chaozong; Zhu, Feiyan

    2017-11-01

    pH and glucose dual-responsive injectable hydrogels were prepared through the cross-linking of Schiff's base and phenylboronate ester using phenylboronic-modified chitosan, poly(vinyl alcohol) and benzaldehyde-capped poly(ethylene glycol). Protein drugs and live cells could be incorporated into the hydrogels during the in situ cross-linking, displaying sustained and pH/glucose-triggered drug release from the hydrogels and cell viability and proliferation in the three-dimensional hydrogel matrix as well. Hence, the hydrogels with insulin and fibroblasts were considered as bioactive dressings for diabetic wound healing. A streptozotocin-induced diabetic rat model was used to evaluate the efficacy of hydrogel dressings in wound repair. The results revealed that the incorporation of insulin and L929 in the hydrogels could promote neovascularization and collagen deposition and enhance the wound-healing process of diabetic wounds. Thus, the drug- and cell-loaded hydrogels have promising potential in wound healing as a medicated system for various therapeutic proteins and live cells.

  4. Steady-state and laser flash photolysis of 1 - benzocyclanones and their α, α - dimethyl derivatives

    International Nuclear Information System (INIS)

    Netto-Ferreira, Jose Carlos; Scaiano, J.C.

    1999-01-01

    Laser excitation of 0.01 M solutions of 1-indanone (Ia), 1-tetralone )ib), 1-benzo suberone (lc), and their α, α-dimethyl derivatives IIa-c, respectively, in benzene, produced transients with maximum adsorption at 425 nm, and lifetimes ranging from 62 ns (IIIa) to 5.5μs (Ic). Quenching studies using well known triplet quenchers such as 1,3-cyclohexadiene and oxygen demonstrated the triplet nature of these transients. In the presence of hydrogen donors, such as 2-propanol, the triplet state decay of the ketones Ia-c leads to the formation of the corresponding ketyl radicals, IIIa-c, which show absorption spectra very similar to the parent ketone, with λ max at 430 nm and lifetime in excess of 20 μs. Steady state irradiations show that the α, α,-dimethyl ketones IIa form ortho-alkyl benzaldehydes probably derived from an initial α-cleavage of the corresponding triplet excited states. The characterization of products has been carried out using 1 H NMR. (author)

  5. 4-Diethylamino-3,5-diisopropylbenzaldehyde

    Directory of Open Access Journals (Sweden)

    Christoph Wink

    2011-12-01

    Full Text Available The title benzaldehyde, C17H27NO, was prepared via lithiation of bromoaniline and reaction with DMF. In the crystal, the molecule adopts a C2-symmetrical conformation; nevertheless, two modes of disorder are present: the orientation of the aldehyde group (occupancy ratio 0.5:0.5 and of symmetry-equivalent ethyl groups [occupancy ratio 0.595 (7:0.405 (7]. The phenylene ring and the carbonyl group are essentially coplanar [C—C—C—O torsion angle = −179.0 (4°] but the dihedral angle between the mean planes of the phenylene ring and the amino group = 67.5 (2°. This and the long [1.414 (3 Å] aniline C—N bond indicate electronic decoupling between the carbonyl and amino groups. The angle sum of 359.9 (2° around the N atom results from steric compression-induced rehybridization.

  6. Synthesis, Spectral Characterization, Electron Microscopic Study and Influence on the Thermal Stability of Phosphorus-containing Dendrimer with a 4,4'-Sulphonyldiphenol at the Core

    Energy Technology Data Exchange (ETDEWEB)

    Dadapeer, Echchukattula; Rasheed, Syed; Raju, Chamarthi Naga [Sri Venkateswara University, Tirupat (India)

    2011-02-15

    The divergent synthesis of novel phosphorus-containing dendrimer with 4,4'-sulphonyldiphenol at the core has been accomplished involving simple condensation reactions using P(O)Cl{sub 3}, P(S)Cl{sub 3}, 3-amino-phenol, 3-hydroxy-benzaldehyde, and 2-butyn 1, 4-diol. The final compound was a Schiff's base macromolecule possessing 4 imine bonds, 8 acetylenic bonds and 8 OH groups at the periphery. The structures of intermediate compounds were confirmed by IR, NMR ({sup 1}H, {sup 13}C and {sup 31}P), LC-Mass and C, H, N analysis. The structure of the final dendrimer was confirmed by IR, NMR ({sup 1}H, {sup 13}C and {sup 31}P), MALDI-TOF-MS, and C, H, N analysis. The surface morphological characteristics of the final dendrimer were understood by Scanning Electronic Microscopic study (SEM). The thermal stability of the final dendrimer was studied by TGA/DTA analysis.

  7. Ligand-protein conjugated quantification assay by UV spectrophotometry in 99mTc indirect labeling

    International Nuclear Information System (INIS)

    Basualdo, Daniel A.; Rabiller, Graciela; Poch, Carolina; El Tamer, Elias A.

    2009-01-01

    Objective: Quantify IgG-HYNIC conjugated for obtaining substitution ratio and as a chemical quality control for 99m Tc labeling of this immunoglobulin. Introduction: The Operational Guidance on Hospital Radiopharmacy by IAEA states that the procedures performed in a Radiopharmacy Laboratory fall into three operational levels. At present, Nuclear Medicine Centre of 'Hospital de Clinicas' has an operational level 2b which requires the preparation of radiopharmaceuticals from approved reagent kits and radionuclide generators, and labeling of autologous blood cells. Centre's goal is to reach an operational level 3a, which allows us to compounding radiopharmaceuticals from drugs and radionuclides for diagnosis; modification to existing commercial kits; related research and development. In approach of that goal, we addressed the optimization of conjugation of proteins and peptides with S-HYNIC so as to bring about the procedures involved. In this work, was conjugated nonspecific polyclonal immunoglobulin G (IgG) with S-HYNIC. Our interest was focused in calculate how many HYNIC groups were incorporated per IgG molecule so that in later stages can be obtained a correlate with labeling efficiency. Materials and methods: A sample of IgG-HYNIC conjugate of 0.2 ml was diluted in 4 ml of benzaldehyde o-sulfonic acid (1 mg / ml, 0.1 M NaAc, pH 4.7). The reaction was incubated at room temperature overnight in darkness. As a negative control took 0.2 ml of IgG-HYNIC conjugate in 4 ml of NaAc buffer 0.1 M. 3 ml of benzaldehyde o-sulfonic acid (1 mg / ml 0.1 M NaAc, pH 4.7) was used as blank. The absorption of the hydrazone was read at 343 nm. The hydrazine concentration was calculated using a molar extinction coefficient ε (343 nm) 17000 M-1cm-1. Results: Molar substitution ratio (MSR) was calculated. The MSR indicates the number of HYNIC groups incorporated in the IgG-HYNIC conjugate determined by the spectrophotometric assay. Conclusions: In labeling with a bifunctional

  8. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    International Nuclear Information System (INIS)

    Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio

    2013-01-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ BP3 = (3.1 ± 0.3) · 10 −5 and the following second-order reaction rate constants: with • OH, k BP3, • OH = (2.0 ± 0.4) · 10 10 M −1 s −1 ; with the triplet states of chromophoric dissolved organic matter ( 3 CDOM*), k BP3, 3 CDOM* = (1.1 ± 0.1) · 10 9 M −1 s −1 ; with 1 O 2 , k BP3, 1 O 2 = (2.0 ± 0.1) · 10 5 M −1 s −1 , and with CO 3 −• , k BP3,CO 3 −• 7 M −1 s −1 . These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with • OH and 3 CDOM* would be the main processes of BP3 phototransformation. Reaction with • OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L −1 ), and reaction with 3 CDOM* at high DOC. If the reaction rate constant with CO 3 −• is near the upper limit of experimental measures (5 · 10 7 M −1 s −1 ), the CO 3 −• degradation process could be somewhat important for DOC −1 . The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with • OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, • OH and 3 CDOM*. • Two methylated isomers, benzaldehyde and benzoic acid detected as intermediates. • Phototransformation would be faster in shallow and DOM-poor water. • Half-life times of benzophenone-3 are in the range of weeks to a couple of months.

  9. PENGARUH GUGUS p-METOKSI PADA REAKSI KONDENSASI CLAYSEN-SCHMIDT MENGGUNAKAN METODA GRINDING

    Directory of Open Access Journals (Sweden)

    Karim Theresih

    2016-10-01

      This research aims to synthesize the compound dibenzalaceton, 4-methoksikalkon and dianisalaceton through Claysen Schmidt condensation reaction with grinding method and to determine the effect of p-methoxy groups on the reaction. Dibenzalaceton compound was synthesized from benzaldehyde, acetone, and NaOH. Synthesis of compound 4-metoksikhalkon was done using 4-methoxybenzaldehyde, acetophenone, and NaOH. Dianisalceton compound was synthesized through Claysen-schmidt reaction between acetone, anisaldehide, and the catalysts NaOH. This synthesis were performed through solvent-free grinding method. Catalyst base material and simultaneously crushed in mortar for 15 minutes to form a paste. The pasta is dried and recrystallized. The resulted compounds were characterized by TLC, FTIR and GC-MS. Based on the results of the analysis of FTIR and GC-MS showed that dibenzalaceton, 4-methoksikhalkon and dianisalaceton can be synthesized and have succession yield 59.93%, 86.21% and 70.39% . There is the influence of p-methoxy groups in a condensation reaction Claysen-Schmidt on the synthesis of compounds dibenzalaceton, 4-methoksikhalkon and dianizalaceton use grinding method.   Keywords: dibenzalaceton, 4-methoksikhalkon, dianizalaceton, grinding method

  10. Ytterbia doped nickel–manganese mixed oxide catalysts for liquid phase oxidation of benzyl alcohol

    Directory of Open Access Journals (Sweden)

    S.S.P. Sultana

    2017-11-01

    Full Text Available Nickel–manganese mixed oxides doped with 1, 3, 5 mol% ytterbia have been prepared by co-precipitation method and used in the catalytic oxidation of benzyl alcohol. Catalytic activity of these oxides calcined at 400 °C and 500 °C was studied for selective oxidation of benzyl alcohol to the corresponding aldehyde using molecular oxygen as an oxidizing agent. The results showed that thermally stable 5 mol% ytterbia doped nickel–manganese oxide [Yb2O3-(5%-Ni6MnO8] exhibited highest catalytic performance when it was calcined at 400 °C. A 100% conversion of the benzyl alcohol was achieved with >99% selectivity to benzaldehyde within a reaction period of 5 h at 100 °C. The mixed oxide prepared has been characterized by scanning election microscopy (SEM and energy dispersive X-ray analysis (EDXA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FT-IR, thermogravimetric analysis (TGA, Brunauer–Emmett–Teller (BET and temperature programed reduction (H2-TPR.

  11. Sol-gel based sensor for selective formaldehyde determination

    Energy Technology Data Exchange (ETDEWEB)

    Bunkoed, Opas [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Davis, Frank [Cranfield Health, Cranfield University, Bedford MK43 0AL (United Kingdom); Kanatharana, Proespichaya, E-mail: proespichaya.K@psu.ac.th [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Thavarungkul, Panote [Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Higson, Seamus P.J., E-mail: s.p.j.higson@cranfield.ac.uk [Cranfield Health, Cranfield University, Bedford MK43 0AL (United Kingdom)

    2010-02-05

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with {beta}-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  12. Sol-gel based sensor for selective formaldehyde determination

    International Nuclear Information System (INIS)

    Bunkoed, Opas; Davis, Frank; Kanatharana, Proespichaya; Thavarungkul, Panote; Higson, Seamus P.J.

    2010-01-01

    We report the development of transparent sol-gels with entrapped sensitive and selective reagents for the detection of formaldehyde. The sampling method is based on the adsorption of formaldehyde from the air and reaction with β-diketones (for example acetylacetone) in a sol-gel matrix to produce a yellow product, lutidine, which was detected directly. The proposed method does not require preparation of samples prior to analysis and allows both screening by visual detection and quantitative measurement by simple spectrophotometry. The detection limit of 0.03 ppmv formaldehyde is reported which is lower than the maximum exposure concentrations recommended by both the World Health Organisation (WHO) and the Occupational Safety and Health Administration (OSHA). This sampling method was found to give good reproducibility, the relative standard deviation at 0.2 and 1 ppmv being 6.3% and 4.6%, respectively. Other carbonyl compounds i.e. acetaldehyde, benzaldehyde, acetone and butanone do not interfere with this analytical approach. Results are provided for the determination of formaldehyde in indoor air.

  13. Large-scale solvothermal synthesis of fluorescent carbon nanoparticles

    International Nuclear Information System (INIS)

    Ku, Kahoe; Park, Jinwoo; Kim, Nayon; Kim, Woong; Lee, Seung-Wook; Chung, Haegeun; Han, Chi-Hwan

    2014-01-01

    The large-scale production of high-quality carbon nanomaterials is highly desirable for a variety of applications. We demonstrate a novel synthetic route to the production of fluorescent carbon nanoparticles (CNPs) in large quantities via a single-step reaction. The simple heating of a mixture of benzaldehyde, ethanol and graphite oxide (GO) with residual sulfuric acid in an autoclave produced 7 g of CNPs with a quantum yield of 20%. The CNPs can be dispersed in various organic solvents; hence, they are easily incorporated into polymer composites in forms such as nanofibers and thin films. Additionally, we observed that the GO present during the CNP synthesis was reduced. The reduced GO (RGO) was sufficiently conductive (σ ≈ 282 S m −1 ) such that it could be used as an electrode material in a supercapacitor; in addition, it can provide excellent capacitive behavior and high-rate capability. This work will contribute greatly to the development of efficient synthetic routes to diverse carbon nanomaterials, including CNPs and RGO, that are suitable for a wide range of applications. (paper)

  14. Quantitative analysis by GC-MS/MS of 18 aroma compounds related to oxidative off-flavor in wines.

    Science.gov (United States)

    Mayr, Christine M; Capone, Dimitra L; Pardon, Kevin H; Black, Cory A; Pomeroy, Damian; Francis, I Leigh

    2015-04-08

    A quantitation method for 18 aroma compounds reported to contribute to "oxidative" flavor in wines was developed. The method allows quantitation of the (E)-2-alkenals ((E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, and (E)-2-nonenal), various Strecker aldehydes (methional, 2-phenylacetaldehyde, 3-methylbutanal, and 2-methylpropanal), aldehydes (furfural, 5-methylfurfural, hexanal, and benzaldehyde), furans (sotolon, furaneol, and homofuraneol), as well as alcohols (methionol, eugenol, and maltol) in the same analysis. The aldehydes were determined after derivatization directly in the wine with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride; the formed oximes along with the underivatized aroma compounds were isolated by solid-phase extraction and analyzed by means of GC-MS/MS. The method was used to investigate the effect of different closures (synthetic closures, natural corks, and screw cap) on the formation of oxidation-related compounds in 14 year old white wine. Results showed a significant increase in the concentration of some of the monitored compounds in the wine, particularly methional, 2-phenylacetaldehyde, and 3-methylbutanal.

  15. Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation.

    Science.gov (United States)

    Udomsil, Natteewan; Rodtong, Sureelak; Choi, Yeung Joon; Hua, Yanglin; Yongsawatdigul, Jirawat

    2011-08-10

    The potential of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation was elucidated. Four strains of T. halophilus isolated from fish sauce mashes were inoculated to anchovy mixed with 25% NaCl with an approximate cell count of 10(6) CFU/mL. The α-amino content of 6-month-old fish sauce samples inoculated with T. halophilus was 780-784 mM. The addition of T. halophilus MRC10-1-3 and T. halophilus MCD10-5-10 resulted in a reduction of histamine (P sauce inoculated with T. halophilus showed high contents of total amino acids with predominantly high glutamic acid. Major volatile compounds in fish sauce were 2-methylpropanal, 2-methylbutanal, 3-methylbutanal, and benzaldehyde. T. halophilus-inoculated fish sauce samples demonstrated the ability to reduce dimethyl disulfide, a compound contributing to a fecal note. The use of T. halophilus for fish sauce fermentation improves amino acid profiles and volatile compounds as well as reduces biogenic amine content of a fish sauce product.

  16. Synthesis, characterization and evaluation of green catalytic activity of nano Ag–Pt doped silicate

    International Nuclear Information System (INIS)

    Murugavelu, M.; Karthikeyan, B.

    2013-01-01

    Highlights: ► Nanosized Ag–Pt loaded SiO 2 was prepared by sol–gel method. ► This catalyst has been characterized by different techniques. ► Catalyst induces the reaction of condensation of indole and aldehyde in lesser time. ► The coupled product is confirmed by spectral and DFT theoretical methods. - Abstract: In order to get materials with enhanced adsorption and organic transformation performance, nanosized Ag–Pt nanoparticles loaded SiO 2 was prepared by sol–gel method. This catalyst has been characterized by Fourier transform infrared (FT-IR) spectra, diffuse reflectance spectra (DRS), fluorescence, high-resolution scanning electron microscopy (HR-SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and atomic force microscopy (AFM). Ag–Pt/SiO 2 catalyst induces the reaction of condensation of indole and aldehyde to give bis(indolyl)methanes in striking lesser time under microwave (MW) irradiation and it has been examined with different substituted benzaldehydes. The coupled product is confirmed by FT-IR, 1 H, 13 C NMR and DFT theoretical methods.

  17. Effective Recovery of Vanadium from Oil Refinery Waste into Vanadium-Based Metal-Organic Frameworks.

    Science.gov (United States)

    Zhan, Guowu; Ng, Wei Cheng; Lin, Wenlin Yvonne; Koh, Shin Nuo; Wang, Chi-Hwa

    2018-03-06

    Carbon black waste, an oil refinery waste, contains a high concentration of vanadium(V) leftover from the processing of crude oil. For the sake of environmental sustainability, it is therefore of interest to recover the vanadium as useful products instead of disposing of it. In this work, V was recovered in the form of vanadium-based metal-organic frameworks (V-MOFs) via a novel pathway by using the leaching solution of carbon black waste instead of commercially available vanadium chemicals. Two different types of V-MOFs with high levels of crystallinity and phase purity were fabricated in very high yields (>98%) based on a coordination modulation method. The V-MOFs exhibited well-defined and controlled shapes such as nanofibers (length: > 10 μm) and nanorods (length: ∼270 nm). Furthermore, the V-MOFs showed high catalytic activities for the oxidation of benzyl alcohol to benzaldehyde, indicating the strong potential of the waste-derived V-MOFs in catalysis applications. Overall, our work offers a green synthesis pathway for the preparation of V-MOFs by using heavy metals of industrial waste as the metal source.

  18. Studies on the effect of a newly synthesized Schiff base compound from phenazone and vanillin on the corrosion of steel in 2M HCl

    International Nuclear Information System (INIS)

    Emreguel, Kaan C.; Hayvali, Mustafa

    2006-01-01

    The inhibiting action of a Schiff base 4-[(4-hydroxy-3-hydroxymethyl-benzylidene)-amino]-1,5-dimethyl-2-phenyl-1,2 -dihydro-pyrazol-3-one (phv), derived from 4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one (phz) and 4-hydroxy-3-methoxy-benzaldehyde (vn), towards the corrosion behavior of steel in 2M HCl solution has been studied using weight loss, polarization and electrochemical impedance spectroscopy (EIS) techniques. Although vn and phz were found to retard the corrosion rate of steel, the compound synthesized from vn and phz was seen to retard the corrosion rate even more. At constant temperature, the corrosion rate decreases with increasing inhibitor concentration. However, at any inhibitor concentration the increase in temperature leads to an increase in the corrosion rate of steel. The activations energies, ΔE a , as well as other thermodynamic parameters (ΔG ads 0 , ΔH ads 0 ) for the inhibitor process were calculated. The inhibitor efficiencies calculated from all the applied methods were in agreement and were found to be in the order: phv>phz>vn

  19. Asymmetric synthesis of L-[3-11C]phenylalanine using chiral hydrogenation catalysts

    International Nuclear Information System (INIS)

    Halldin, C.; Langstroem, B.

    1984-01-01

    The seven-step synthesis of L-[3- 11 C]phenylalanine using chiral diphosphines as ligands in rhodium catalysts is reported. [ 11 C]Benzaldehyde, prepared in a three-step reaction from [ 11 C]carbon dioxide, as reported elsewhere, was reacted with 2-phenyl-5-oxazolone or 2-(4-chloro)phenyl-5-oxazolone in the presence of the tertiary amine diazabicyclooctane (DABCO). The resultant [α- 11 C]-4-arylene-2-atyl-5-oxazolones were hydrogenated after ring opening, using the chiral rhodium complex of (R)-1,2-bis(diphenylphosphino)propane [(R)-PROPHOS] or (+)-2,3-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane [(+)-DIOP]. After removal of the amino protecting group, the labelled amino acid was obtained on purification by preparative LC in 10-15% radiochemical yield, and radiochemical purity higher than 95% from [ 11 C]carbon dioxide within 60 min. The optical purity of the products determined by the tRNA method and capillary GC, was 80 and 60% e.e., respectively (i.e. L/D=90/10 and 80/20). (author)

  20. Polarized Emission of Wholly Aromatic Bio-Based Copolyesters of a Liquid Crystalline Nature

    Directory of Open Access Journals (Sweden)

    Daisaku Kaneko

    2011-05-01

    Full Text Available A novel thermotropic liquid crystalline polymers poly{3-benzylidene amino-4-hydroxybenzoic acid (3,4-BAHBA-co-trans-4-hydroxycinnamic acid (4HCA: trans-coumaric acid} (Poly(3,4-BAHBA-co-4HCA, was synthesized by the thermal polycondensation of 4HCA and 3,4-BAHBA, which was synthesized by a reaction of 3-amino-4-hydroxybenzoic acid (3,4-AHBA with benzaldehyde. When the 4HCA compositions of Poly(3,4-BAHBA-co-4HCAs were above 55 mol%, the copolymers showed a nematic, liquid crystalline phase. Differential scanning calorimetry (DSC measurements of the copolymers showed a high glass transition temperature of more than 100 °C, sufficient for use in engineering plastics. Furthermore, the copolymers showed photoluminescence in an N-methylpyrrolidone (NMP solution under ultraviolet (UV light with a wavelength of 365 nm. Oriented film of Poly(3,4-BAHBA-co-4HCA with a 4HCA composition of 75 mol% emitted polarized light, which was confirmed by fluorescent spectroscopy equipped with parallel and crossed polarizers.

  1. Synthesis, solvatochromaticity and bioactivities of some transition metal complexes with 2-(R-benzylideneamino)-pyridin-3-ol Schiff base derivatives

    Science.gov (United States)

    Ahmed, I. S.; Kassem, M. A.

    2010-10-01

    New four Schiff bases are prepared by condensation of 2-amino-pyridin-3-ol with 3, 4-dihydroxy-benzaldehyde (I), 2-hydroxybenzaldehyde (II), 5-bromo-2-hydroxybenzaldehyde (III), and 4-dimethylaminobenzaldehyde (IV). The structures of these compounds are characterized based on elemental analyses (C. H. N), IR and 1H NMR. Also, the electronic absorption spectra are recorded in organic solvents of different polarity. The solvents are selected to be covered a wide range of parameters (refractive index, dielectric constant and hydrogen bonding capacity). The UV-vis absorption spectra of Schiff base compounds are investigated in aqueous buffer solutions of varying pH and utilized for the determination of ionization constant, p Ka and activation free energy, Δ G* of the ionization process. The biological activity against bacterial species and fungi as microorganisms representing different microbial categories such as (two Gram-negative bacteria, Eschericha coli and Agrobacterium sp.),three Gram-positive bacteria ( Staphylococcus aureus, Bacillus subtlus and Bacillus megatherium), yeast ( Candida albicans), and fungi ( Aspergillus niger) were studied.

  2. Skin diseases in workers at a perfume factory.

    Science.gov (United States)

    Schubert, Hans-Jürgen

    2006-08-01

    The aim of this study is to find out the causes of skin diseases in one-third of the staff of a perfume factory, in which 10 different perfume sprays were being manufactured. Site inspection, dermatological examination and patch testing of all 26 persons at risk with 4 perfume oils and 30 ingredients of them. The results showed 6 bottlers were found suffering from allergic contact dermatitis, 2 from irritant contact dermatitis, 12 workers showed different strong reactions to various fragrances. The main causes of allergic contact dermatitis were 2 perfume oils (12 cases) and their ingredients geraniol (12 cases), benzaldehyde(9), cinnamic aldehyde (6), linalool, neroli oil, terpenes of lemon oil and orange oil (4 each). Nobody was tested positive to balsam of Peru. Job changes for office workers, packers or printers to other rooms, where they had no longer contact with fragrances, led to a settling. To conclude, automation and replacement of glass bottles by cartridges from non-fragile materials and using gloves may minimize the risk.

  3. Emission of floral volatiles from Mahonia japonica (Berberidaceae).

    Science.gov (United States)

    Picone, Joanne M; MacTavish, Hazel S; Clery, Robin A

    2002-07-01

    Flowering Mahonia japonica plants were subjected to controlled environments and the floral volatiles emitted from whole racemes (laterals) were trapped by Porapak Q adsorbent and analysed by GC-FID. An experiment with photoperiods of 6 and 9 h at constant temperature (10+/-1 degrees C) demonstrated that photoperiod was the stimulus for enhanced emission of most volatiles. Small quantitative differences in emitted fragrance composition were observed between light and dark periods and between plants acclimatised to different photoperiods. Maximum rates of emission occurred in the middle of the light period; aromatic compounds (benzaldehyde, benzyl alcohol and indole) displayed a more rapid increase and subsequent decline compared with monoterpenes (cis- and trans-ocimene and linalool). When the photoperiod was extended from 6 to 9 h, maximum rates of emission continued throughout the additional 3 h. Total emission (microg/h) of volatiles was 2-fold greater in the day-time (DT) (39.7 microg/h) compared with the night-time (NT) (19.8 microgg/h) under a 6 h photoperiod and was not significantly different from total emission under a 9 h photoperiod.

  4. Thermophilic enzymes and their applications in biocatalysis: a robust aldo-keto reductase.

    Science.gov (United States)

    Willies, Simon; Isupov, Misha; Littlechild, Jennifer

    2010-09-01

    Extremophiles are providing a good source of novel robust enzymes for use in biocatalysis for the synthesis of new drugs. This is particularly true for the enzymes from thermophilic organisms which are more robust than their mesophilic counterparts to the conditions required for industrial bio-processes. This paper describes a new aldo-keto reductase enzyme from a thermophilic eubacteria, Thermotoga maritima which can be used for the production of primary alcohols. The enzyme has been cloned and over-expressed in Escherichia coli and has been purified and subjected to full biochemical characterization. The aldo-keto reductase can be used for production of primary alcohols using substrates including benzaldehyde, 1,2,3,6-tetrahydrobenzaldehyde and para-anisaldehyde. It is stable up to 80 degrees C, retaining over 60% activity for 5 hours at this temperature. The enzyme at pH 6.5 showed a preference for the forward, carbonyl reduction. The enzyme showed moderate stability with organic solvents, and retained 70% activity in 20% (v/v) isopropanol or DMSO. These properties are favourable for its potential industrial applications.

  5. Microbial biodiesel production from oil palm biomass hydrolysate using marine Rhodococcus sp. YHY01.

    Science.gov (United States)

    Bhatia, Shashi Kant; Kim, Junyoung; Song, Hun-Seok; Kim, Hyun Joong; Jeon, Jong-Min; Sathiyanarayanan, Ganesan; Yoon, Jeong-Jun; Park, Kyungmoon; Kim, Yun-Gon; Yang, Yung-Hun

    2017-06-01

    The effect of various biomass derived inhibitors (i.e. furfural, hydroxymethylfurfural (HMF), vanillin, 4-hydroxy benzaldehyde (4-HB) and acetate) was investigated for fatty acid accumulation in Rhodococcus sp. YHY 01. Rhodococcus sp. YHY01 was able to utilize acetate, vanillin, and 4-HB for biomass production and fatty acid accumulation. The IC 50 value for furfural (3.1mM), HMF (3.2mM), vanillin (2.0mM), 4-HB (2.7mM) and acetate (3.7mM) was calculated. HMF and vanillin affect fatty acid composition and increase saturated fatty acid content. Rhodococcus sp. YHY 01 cultured with empty fruit bunch hydrolysate (EFBH) as the main carbon source resulted in enhanced biomass (20%) and fatty acid productivity (37%), in compression to glucose as a carbon source. Overall, this study showed the beneficial effects of inhibitory molecules on growth and fatty acid production, and support the idea of biomass hydrolysate utilization for biodiesel production by avoiding complex efforts to remove inhibitory compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Enantioselective Synthesis of Various Cyanohydrins Using Covalently Immobilized Preparations of Hydroxynitrile Lyase from Prunus dulcis.

    Science.gov (United States)

    Alagöz, Dilek; Tükel, S Seyhan; Yildirim, Deniz

    2015-11-01

    The carrier-based and carrier-free (cross-linked enzyme aggregate) covalent immobilizations of Prunus dulcis hydroxynitrile lyase were investigated. The immobilized preparations were tested for enantioselective carbon-carbon bond formation activity in the biphasic medium. Of the tested preparations, only cross-linked enzyme aggregate of P. dulcis hydroxynitrile lyase (PdHNL-CLEA) achieved the synthesis of (R)-mandelonitrile with 93% yield and 99% enantiopurity. PdHNL-CLEA was also used in the synthesis of various (R)-cyanohydrins from corresponding aldehydes/ketones and hydrocyanic acid. When 4-methoxybenzaldehyde, 4-methyl benzaldehyde, and 4-hydroxybenzaldehyde were used as substrates, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were obtained as 95-95, 85-79, and 2-25%, respectively, after 96 h at pH 4.0 and 5 °C. For acetophenone, 4-fluoroacetophenone, 4-chloroacetophenone, 4-bromoacetophenone, and 4-iodoacetophenone, the yield-enantiomeric excess of corresponding (R)-cyanohydrins were 1-99, 20-84, 11-95, 5-99, and 3-24%, respectively at the same conditions. The results demonstrate PdHNL-CLEA can be effectively used in the synthesis of (R)-mandelonitrile.

  7. Radiolysis of Aqueous Toluene Solutions

    International Nuclear Information System (INIS)

    Christensen, H.C.; Gustafson, R.

    1971-04-01

    Aqueous toluene solutions have been irradiated with Co γ-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N 2 O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N 2 O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H 2 ). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  8. Characterization of volatile profile from ten different varieties of Chinese jujubes by HS-SPME/GC-MS coupled with E-nose.

    Science.gov (United States)

    Chen, Qinqin; Song, Jianxin; Bi, Jinfeng; Meng, Xianjun; Wu, Xinye

    2018-03-01

    Volatile profile of ten different varieties of fresh jujubes was characterized by HS-SPME/GC-MS (headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry) and E-nose (electronic nose). GC-MS results showed that a total of 51 aroma compounds were identified in jujubes, hexanoic acid, hexanal, (E)-2-hexenal, (Z)-2-heptenal, benzaldehyde and (E)-2-nonenal were the main aroma components with contributions that over 70%. Differentiation of jujube varieties was conducted by cluster analysis of GC-MS data and principal component analysis & linear discriminant analysis of E-nose data. Both results showed that jujubes could be mainly divided into two groups: group A (JZ, PDDZ, JSXZ and LWZZ) and group B (BZ, YZ, MZ, XZ and DZ). There were significant differences in contents of alcohols, acids and aromatic compounds between group A and B. GC-MS coupled with E-nose could be a fast and accurate method to identify the general flavor difference in different varieties of jujubes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Selective solvent extraction of oils

    Energy Technology Data Exchange (ETDEWEB)

    1938-04-09

    In the selective solvent extraction of naphthenic base oils, the solvent used consists of the extract obtained by treating a paraffinic base oil with a selective solvent. The extract, or partially spent solvent is less selective than the solvent itself. Selective solvents specified for the extraction of the paraffinic base oil are phenol, sulphur dioxide, cresylic acid, nitrobenzene, B:B/sup 1/-dichlorethyl ether, furfural, nitroaniline and benzaldehyde. Oils treated are Coastal lubricating oils, or naphthenic oils from the cracking, or destructive hydrogenation of coal, tar, lignite, peat, shale, bitumen, or petroleum. The extraction may be effected by a batch or counter-current method, and in the presence of (1) liquefied propane, or butane, or naphtha, or (2) agents which modify the solvent power such as, water, ammonia, acetonitrile, glycerine, glycol, caustic soda or potash. Treatment (2) may form a post-treatment effected on the extract phase. In counter-current treatment in a tower some pure selective solvent may be introduced near the raffinate outlet to wash out any extract therefrom.

  10. Effectiveness of water-air and octanol-air partition coefficients to predict lipophilic flavor release behavior from O/W emulsions.

    Science.gov (United States)

    Tamaru, Shunji; Igura, Noriyuki; Shimoda, Mitsuya

    2018-01-15

    Flavor release from food matrices depends on the partition of volatile flavor compounds between the food matrix and the vapor phase. Thus, we herein investigated the relationship between released flavor concentrations and three different partition coefficients, namely octanol-water, octanol-air, and water-air, which represented the oil, water, and air phases present in emulsions. Limonene, 2-methylpyrazine, nonanal, benzaldehyde, ethyl benzoate, α-terpineol, benzyl alcohol, and octanoic acid were employed. The released concentrations of these flavor compounds from oil-in-water (O/W) emulsions were measured under equilibrium using static headspace gas chromatography. The results indicated that water-air and octanol-air partition coefficients correlated with the logarithms of the released concentrations in the headspace for highly lipophilic flavor compounds. Moreover, the same tendency was observed over various oil volume ratios in the emulsions. Our findings therefore suggest that octanol-air and water-air partition coefficients can be used to predict the released concentration of lipophilic flavor compounds from O/W emulsions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Volatile Flavor Compounds Produced by Molds of Aspergillus, Penicillium, and Fungi imperfecti.

    Science.gov (United States)

    Kaminski, E; Stawicki, S; Wasowicz, E

    1974-06-01

    Strains of molds Aspergillus niger, A. ochraceus, A. oryzae, A. parasiticus, Penicillium chrysogenum, P. citrinum, P. funiculosum, P. raistrickii, P. viridicatum, Alternaria, Cephalosporium, and Fusarium sp. were grown on sterile coarse wheat meal at 26 to 28 C for 120 h. The volatiles from mature cultures were distilled at low temperature under reduced pressure. The distillates from traps -40 and -78 C were extracted with methylene chloride and subsequently concentrated. All the concentrates thus obtained were analyzed by gas-liquid chromatography, mass spectrometry, chemical reactions of functional groups, and olfactory evaluation. Six components detected in the culture distillates were identified positively: 3-methylbutanol, 3-octanone, 3-octanol, 1-octen-3-ol, 1-octanol, and 2-octen-1-ol. They represented 67 to 97% of all the volatiles occurring in the concentrated distillate. The following 14 components were identified tentatively: octane, isobutyl alcohol, butyl alcohol, butyl acetate, amyl acetate, octyl acetate, pyridine, hexanol, nonanone, dimethylpyrazine, tetramethylpyrazine, benzaldehyde, propylbenzene, and phenethyl alcohol. Among the volatiles produced by molds, 1-octen-3-ol yielding a characteristic fungal odor was found predominant.

  12. Multiple headspace-solid-phase microextraction: an application to quantification of mushroom volatiles.

    Science.gov (United States)

    Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi

    2013-04-03

    Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC-MS) and flame ionization detection (GC-FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033-0.078 ng), limit of quantification (LoQ, range 0.111-0.259 ng) and analyte recovery (92.3-108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Odor of the muskox : A preliminary investigation.

    Science.gov (United States)

    Flood, P F; Abrams, S R; Muir, G D; Rowell, J E

    1989-08-01

    The behavior of captive male muskoxen was observed closely during their characteristic superiority display, the anatomy of the preputial region was studied in two adults and three calves, and preputial washings and preorbital gland secretion were subjected to gas chromatography and mass spectroscopy. During the superiority display, the prepuce was everted to form a pendulous tube tipped with a fringe of matted hair. Owing to the movement of the animal, the urine that dribbled from the preputial opening was liberally applied to the long guard hairs of the belly. The superiority display was almost exclusively confined to dominant males and apparently accounted for their odor. In the quiescent state, the hair seen around the preputial opening was drawn inside and formed an 8 cm-wide band on the lining of the prepuce. The preputial washings contained large amounts of benzoic acid andp-cresol. The infraorbital gland secretion contained cholesterol, benzaldehyde, and a homologous series of saturated γ-lactones ranging from 8 to 12 carbons. The latter compounds and the natural secretion smell similar to the human nose.

  14. Mechanistic Investigation of Molybdate-Catalysed Transfer Hydrodeoxygenation.

    Science.gov (United States)

    Larsen, Daniel B; Petersen, Allan R; Dethlefsen, Johannes R; Teshome, Ayele; Fristrup, Peter

    2016-11-07

    The molybdate-catalysed transfer hydrodeoxygenation (HDO) of benzyl alcohol to toluene driven by oxidation of the solvent isopropyl alcohol to acetone has been investigated by using a combination of experimental and computational methods. A Hammett study that compared the relative rates for the transfer HDO of five para-substituted benzylic alcohols was carried out. Density-functional theory (DFT) calculations suggest a transition state with significant loss of aromaticity contributes to the lack of linearity observed in the Hammett study. The transfer HDO could also be carried out in neat PhCH 2 OH at 175 °C. Under these conditions, PhCH 2 OH underwent disproportionation to yield benzaldehyde, toluene, and significant amounts of bibenzyl. Isotopic-labelling experiments (using PhCH 2 OD and PhCD 2 OH) showed that incorporation of deuterium into the resultant toluene originated from the α position of benzyl alcohol, which is in line with the mechanism suggested by the DFT study. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Novel Chiral Bis-Phosphoramides as Organocatalysts for Tetrachlorosilane-Mediated Reactions

    Directory of Open Access Journals (Sweden)

    Sergio Rossi

    2017-12-01

    Full Text Available The formation of novel chiral bidentate phosphoroamides structures able to promote Lewis base-catalyzed Lewis acid-mediated reactions was investigated. Two different classes of phosphoroamides were synthetized: the first class presents a phthalic acid/primary diamine moiety, designed with the aim to perform a self-assembly recognition process through hydrogen bonds; the second one is characterized by the presence of two phosphoroamides as side arms connected to a central pyridine unit, able to chelate SiCl4 in a 2:1 adduct. These species were tested as organocatalysts in the stereoselective allylation of benzaldehyde and a few other aromatic aldehydes with allyl tributyltin in the presence of SiCl4 with good results. NMR studies confirm that only pyridine-based phosphoroamides effectively coordinate tetrachlorosilane and may lead to the generation of a self-assembled entity that would act as a promoter of the reaction. Although further work is necessary to clarify and confirm the formation of the hypothesized adduct, the study lays the foundation for the design and the synthesis of chiral supramolecular organocatalysts.

  16. Benzoylformate analogues exhibit differential rate-determining steps in the benzoylformate decarboxylase reaction

    International Nuclear Information System (INIS)

    Garcia, G.A.; Weiss, P.M.; Cook, P.F.; Kenyon, G.L.; Cleland, W.W.

    1987-01-01

    Benzoylformate decarboxylase from Pseudomonas putida is a thiamine pyrophosphate (TPP)-dependent enzyme which converts benzoylformate to benzaldehyde and CO 2 . The rate-determining step(s) in the benzoylformate decarboxylase reaction for a series of substituted benzoylformates (p-CH 3 O, p-CH 3 , p-Cl, and m-F) were studied using solvent deuterium and 13 C kinetic isotope effects. The normal substrate was found to have two partially rate-determining steps; initial tetrahedral adduct formation (D 2 O-sensitive) and decarboxylation ( 13 C-sensitive). D 2 O and 13 C isotope effects indicate that electron-withdrawing substituents (p-Cl and m-F) remove the rate dependence upon decarboxylation such that only a D 2 O effect on (V/K) is observed. Conversely, electron-donating substituents increase the rate-dependence upon decarboxylation such that a larger 13 (V/K) is seen while the D 2 O effects on (V) and (V/K) are not dramatically different from those for benzoylformate. All of the data are consistent with substituent stabilization or destabilization of the carbanionic intermediate formed upon decarboxylation

  17. Synthesis and Anticancer Activity of Some Novel Tetralin-6-yl-pyrazoline, 2-Thioxopyrimidine, 2-Oxopyridine, 2-Thioxo-pyridine and 2-Iminopyridine Derivatives

    Directory of Open Access Journals (Sweden)

    Ebtehal S. Al-Abdullah

    2011-04-01

    Full Text Available The title compounds were prepared by reaction of 6-acetyltetralin (1 with different aromatic aldehydes 2a-c, namely 2,6-dichlorobenzaldehyde, 2,6-diflouro-benzaldehyde, and 3-ethoxy-4-hydroxybenzaldehyde, to yield the corresponding a,b-unsaturated ketones 3a-c. Compound 3b was reacted with hydrazine hydrate to yield the corresponding 2-pyrazoline 4, while compounds 3a,b reacted with thiourea to afford the 2-thioxopyrimidine derivatives 5a,b, respectively. The reaction of 1, and the aromatic aldehydes 2a-c with ethyl cyanoacetate, 2-cyano-thioacetamide or malononitrile in the presence of ammonium acetate yielded the corresponding 2-oxopyridines 6a,b, 2-thioxopyridines 7a-c or 2-iminopyridines 8a,b, respectively. The newly prepared compounds were evaluated for anticancer activity against two human tumor cell lines. Compound 3a showed the highest potency with IC50 = 3.5 and 4.5 μg/mL against a cervix carcinoma cell line (Hela and breast carcinoma cell line (MCF7, respectively.

  18. Phytochemical Analysis of Leaf Extract of Abutilon hirtum (Lam. Sweet by GC-MS Method

    Directory of Open Access Journals (Sweden)

    Vivekraj P.

    2015-08-01

    Full Text Available Abutilon hirtum (Lam. Sweet (Malvaceae commonly known as Vadathuthi. It is used as one of the most important drugs in traditional system of medicine to treat various ailments. The plant is used for to its various properties as demulcent, diuretics, anti-diabetics, anthelmintic, laxative, wound healing properties, antibacterial and antifungal properties. The present study revealed the presence of phytochemicals like Diethyl Phthalate (19.171%,Benzaldehyde 4-propyl (5.219%,Methoxyacetic acid 3-tridecyl ester (5.196%,Sulfurous acid dodecyl 2-propyl ester (0.455%,Sulfurous acid, butyl dodecyl ester (0.442%etc., from the chloroform extracts of leaves in A. hirtum. In the present study an attempt was made to investigate the phytochemical present in the extracts in the preliminary level by using Gas Chromatography coupled with Mass Spectrometry (GC-MS. The study will provide information for the correct identification of the crude drug. This will be further considered for pharmacological activities and isolation of individual components would however, help to find new drugs.The results are reported for the first time in A. hirtum.

  19. Modelling and Simulation of the Radiant Field in an Annular Heterogeneous Photoreactor Using a Four-Flux Model

    Directory of Open Access Journals (Sweden)

    O. Alvarado-Rolon

    2018-01-01

    Full Text Available This work focuses on modeling and simulating the absorption and scattering of radiation in a photocatalytic annular reactor. To achieve so, a model based on four fluxes (FFM of radiation in cylindrical coordinates to describe the radiant field is assessed. This model allows calculating the local volumetric rate energy absorption (LVREA profiles when the reaction space of the reactors is not a thin film. The obtained results were compared to radiation experimental data from other authors and with the results obtained by discrete ordinate method (DOM carried out with the Heat Transfer Module of Comsol Multiphysics® 4.4. The FFM showed a good agreement with the results of Monte Carlo method (MC and the six-flux model (SFM. Through this model, the LVREA is obtained, which is an important parameter to establish the reaction rate equation. In this study, the photocatalytic oxidation of benzyl alcohol to benzaldehyde was carried out, and the kinetic equation for this process was obtained. To perform the simulation, the commercial software COMSOL Multiphysics v. 4.4 was employed.

  20. SYNTHESIS OF FLAVANONE-6-CARBOXYLIC ACID DERIVATIVES FROM SALICYLIC ACID DERIVATIVE

    Directory of Open Access Journals (Sweden)

    Muhammad Idham Darussalam Mardjan

    2012-02-01

    Full Text Available Synthesis of flavanone-6-carboxylic acid derivatives had been conducted via the route of chalcone. The synthesis was carried out from salicylic acid derivative, i.e. 4-hydroxybenzoic acid, via esterification, Fries rearrangement, Claisen-Schmidt condensation and 1,4-nucleophilic addition reactions. Structure elucidation of products was performed using FT-IR, 1H-NMR, GC-MS and UV-Vis spectrometers. Reaction of 4-hydroxybenzoic acid with methanol catalyzed with sulfuric acid produced methyl 4-hydroxybenzoate in 87% yield. The acid-catalyzed-acetylation of the product using acetic anhydride gave methyl 4-acetoxybenzoate in 75% yield. Furthermore, solvent-free Fries rearrangement of methyl 4-acetoxybenzoate in the presence of AlCl3 produced 3-acetyl-4-hydroxybenzoic acid as the acetophenone derivatives in 67% yield. Then, Claisen-Schmidt condensation of the acetophenone and benzaldehyde derivatives of p-anisaldehyde and veratraldehyde in basic condition gave 2'-hydroxychalcone-5'-carboxylic acid derivatives  in 81 and 71 % yield, respectively. Finally, the ring closure reaction of the chalcone yielded the corresponding flavanone-6-carboxylic acids in 67 and 59% yield, respectively.

  1. [Chemical constituents from whole plants of Aconitum tanguticum (III)].

    Science.gov (United States)

    Li, Yan-Rong; Li, Chun; Wang, Zhi-Min; Yang, Li-Xin

    2014-04-01

    Nineteen compounds were isolated from the whole plants of Aconitum tanguticum by various of chromatographic techniques and their structures were determined through spectral analysis (1D, 2D-NMR and MS) and comparison with the literature data. These compounds were identified as 5-hydroxymethy furfural (1), 5-acetoxymethyl furfural (2), pyrrolezanthine [5-hydroxymethyl-1-[2-(4-hydroxyphenyl) -ethyl] -1H-pyrrole-2-carbaldehyde] (3), lichiol B (4), phthalic acid dibutyl ester (5), 3, 4-dihydroxy phenylethanol (6), 3, 4-dihydroxy phenylethanol glucoside (7), salidroside (8), p-hydroxy phenylethanol (9), p-hydroxybenzoie acid glucoside (10), p-hydroxybenzoic acid (11), gastrodin (12), 1-(3, 4-dimethoxyphenyl) -1, 2-ethanediol (13), p-hydroxy benzaldehyde (14), p-hydroxy acetophenone (15), 3, 4-dihydroxy phenyl ethyl acetate (16), syringic aldehyde (17), ethyl beta-D-fructopyranoside (18), and p-hydroxybenzoic acid methyl ester (19). Compounds 3 and 4 were isolated from the Ranunculaceae family for the first time, and compounds 2, 6 and 9-19 were isolated from the Aconitum genus for the first time, and compounds 1 and 5 were isolated from the species for the first time.

  2. MgAl-Layered Double Hydroxide Solid Base Catalysts for Henry Reaction: A Green Protocol

    Directory of Open Access Journals (Sweden)

    Magda H. Abdellattif

    2018-03-01

    Full Text Available A series of MgAl-layered double hydroxide (MgAl-HT, the calcined form at 500 °C (MgAlOx, and the rehydrated one at 25 °C (MgAl-HT-RH were synthesized. Physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD and scanning electron microscopy (SEM. Surface area of the as-synthesized, calcined, and rehydrated catalysts was determined by N2 physisorption at −196 °C. CO2 temperature-programmed desorption (CO2-TPD was applied to determine the basic sites of catalysts. The catalytic test reaction was carried out using benzaldehyde and their derivatives with nitromethane and their derivatives. The Henry products (1–15 were obtained in a very good yield using MgAl-HT-RH catalyst either by conventional method at 90 °C in liquid phase or under microwave irradiation method. The mesoporous structure and basic nature of the rehydrated solid catalyst were responsible for its superior catalytic efficiency. The robust nature was determined by using the same catalyst five times, where the product % yield was almost unchanged significantly.

  3. Transition metal-induced activation of alkynes leading to metal carbene species: synthetic application to new {pi}-conjugated molecules

    Energy Technology Data Exchange (ETDEWEB)

    Abo, T; Ohe, K [Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)], E-mail: ohe@scl.kyoto-u.ac.jp

    2008-03-15

    The in situ generation of furylcarbene complexes by means of transition metals was applied to catalytic carbene reactions, such as Wittig-type olefination and cycloisomerization reactions. In the presence of [Rh(OAc){sub 2}]{sub 2} as a catalyst and triphenylphosphine as a carbene accepter, carbonyl-ene-ynes 1a reacted with benzaldehyde to give a 2-styrylfuran derivative 3a. The reaction involving phosphine-ylide formation followed by Wittig-type olefination with aldehydes was applied to synthesis of furfurylidene-containing p-extended conjugated molecules. A Ruthenium catalyst underwent cycloisomerization of 1,2-bis(carbonylenyl)acetylene 10a,b to afford 2,2'-bifuran structures. The crystal structure of 5,5'-diphenyl-2,2'-bifuran 11b was determined by X-ray crystallography. The ORTEP drawings of 11b exhibited transoid and highly planar structure. The emission bands of the bisfuran 11b were observed at 414 and 440 nm, its quantum yield (84%) was higher than that of a similar 5,5'-diphenyl-2,2'-bithiophene.

  4. Reaction of phosphorus ylides with carbonyl compounds in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Il; Kim, Hak Do; Shim, Jae Jin; Ra, Choon Sup [Yeungnam Univ., Gyongsan (Korea, Republic of)

    2004-02-15

    The condensation reaction of (benzylene)triphenylphosphoranes with carbonyl compounds in supercritical carbon dioxide was examined. Reactions of (benzylene)phosphoranes (ca. 1 mmol) with several benzaldehydes in a supercritical carbon dioxide (80 .deg. C, 2,000 psi) containing THF entrainer (5%) in a 24 mL reactor proceed smoothly to yield olefination products in fairly good to excellent yields but slower, compared to reactions in a conventional THF solvent. Generally, phosphoranes that are not substituted with a nitro group show more (Z)-selective reactions with aromatic aldehydes under scCO{sub 2} condition than in THF. The reaction of (benzylene)triphenylphosphosphoranes with 4-t-butylcyclohexanone gave the corresponding olefin compounds with a low conversion under both the supercritical carbon dioxide and the organic THF solvent. Our preliminary study showed the Wittig reaction carries out smoothly in supercritical carbon dioxide medium and also a possible tunability of this reaction pathway by adding a entrainer. The results would be useful for devising a novel process for the environmentally friendly Wittig reaction.

  5. New URJC-1 Material with Remarkable Stability and Acid-Base Catalytic Properties

    Directory of Open Access Journals (Sweden)

    Pedro Leo

    2016-02-01

    Full Text Available Emerging new metal-organic structures with tunable physicochemical properties is an exciting research field for diverse applications. In this work, a novel metal-organic framework Cu(HIT(DMF0.5, named URJC-1, with a three-dimensional non-interpenetrated utp topological network, has been synthesized. This material exhibits a microporous structure with unsaturated copper centers and imidazole–tetrazole linkages that provide accessible Lewis acid/base sites. These features make URJC-1 an exceptional candidate for catalytic application in acid and base reactions of interest in fine chemistry. The URJC-1 material also displays a noteworthy thermal and chemical stability in different organic solvents of different polarity and boiling water. Its catalytic activity was evaluated in acid-catalyzed Friedel–Crafts acylation of anisole with acetyl chloride and base-catalyzed Knoevenagel condensation of benzaldehyde with malononitrile. In both cases, URJC-1 material showed very good performance, better than other metal organic frameworks and conventional catalysts. In addition, a remarkable structural stability was proven after several consecutive reaction cycles.

  6. Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite.

    Science.gov (United States)

    Tamizhdurai, P; Sakthinathan, Subramanian; Chen, Shen-Ming; Shanthi, K; Sivasanker, S; Sangeetha, P

    2017-04-13

    Cerium oxide nanoparticles (CeO 2 NPs) are favorable in nanotechnology based on some remarkable properties. In this study, the crystalline CeO 2 NPs are successfully prepared by an efficient microwave combustion (MCM) and conventional route sol-gel (CRSGM) methods. The structural morphology of the as-prepared CeO 2 NPs was investigated by various spectroscopic and analytical techniques. Moreover, the XRD pattern confirmed the formation of CeO 2 NPs as a face centered cubic structure. The magnetometer studies indicated the low saturation magnetization (23.96 emu/g) of CeO 2 NPs for weak paramagnetic and high saturation magnetization (32.13 emu/g) of CeO 2 NPs for super paramagnetic. After that, the oxidation effect of benzyl alcohol was investigated which reveals good conversion and selectivity. Besides, the CeO 2 NPs modified glassy carbon electrode (GCE) used for the detection of nitrite with linear concentration range (0.02-1200 μM), low limit of detection (0.21 μM) and higher sensitivity (1.7238 μAμM -1 cm -2 ). However, the CeO 2 NPs modified electrode has the fast response, high sensitivity and good selectivity. In addition, the fabricated electrode is applied for the determination of nitrite in various water samples. Eventually, the CeO 2 NPs can be regarded as an effective way to enhance the catalytic activity towards the benzyl alcohol and nitrite.

  7. Structural transformations of 3-fluoro and 3-fluoro-4-methoxy benzaldehydes under cryogenic conditions: A computational and low temperature infrared spectroscopy investigation

    Science.gov (United States)

    Ogruc Ildiz, G.; Konarska, J.; Fausto, R.

    2018-05-01

    Structural transformations of 3-fluorobenzaldehyde (C7H5FO; 3FBA) and 3-fluoro-4-methoxybenzaldehyde (C8H7FO2; 3F4MBA), taking place in different solid phase environments and at low temperature, were investigated by infrared spectroscopy, complemented by quantum chemistry calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of approximation. The studied compounds were isolated from gas phase into cryogenic inert matrices (Ar, Xe), allowing to characterize their equilibrium conformational composition in gas-phase at room temperature. In both cases, two conformers differing by the orientation of the aldehyde moiety (with the carbonyl aldehyde bond cis or trans in relation to the aromatic ring fluorine substituent) were found to coexist, with the cis conformer being slightly more populated than the trans form. In situ narrowband UV irradiation of the as-deposited matrices led either to preferential isomerization of the cis conformer into the trans form or decarbonylation of both conformers, depending on the used excitation wavelength. Deposition of the vapours of 3F4MBA only, onto the cold (15 K) substrate, produced an amorphous solid containing also both the cis and trans conformers of the compound. Subsequent heating of the amorphous phase up to 268 K led to crystallization of the compound, which is accompanied by conformational selection, the cis form being the single species present in the crystal. The experimentally observed transformations of the studied compounds, together with the structural and vibrational results obtained from the performed quantum chemical calculations, allowed a detailed structural and vibrational characterization of the individual conformers.

  8. Metal- and Ligand-Accelerated Catalysis of the Baylis-Hillman Reaction.

    Science.gov (United States)

    Aggarwal, Varinder K.; Mereu, Andrea; Tarver, Gary J.; McCague, Ray

    1998-10-16

    The Baylis-Hillman reaction, the coupling of an unsaturated carbonyl compound/nitrile with aldehydes, is a valuable reaction but is limited in its practicality by poor reaction rates. We have endeavored to accelerate the reaction using Lewis acids and found that while conventional Lewis acids gave reduced rates group III, and lanthanide triflates (5 mol %) gave increased rates. The optimum metal salts were La(OTf)(3) and Sm(OTf)(3), which gave rate accelerations (k(rel)) of approximately 4.7 and 4.9, respectively, in reactions between tert-butyl acrylate and benzaldehyde when using stoichiometric amounts of DABCO. At low loadings of DABCO (up to 10 mol %), no reaction occurred due to association of DABCO with the metal. Use of additional ligands to displace the DABCO from the metal was studied, and the rate of reaction was found to increase further in most cases. Of the ligands tested, at 5 mol %, (+)-binol gave one of the largest rate accelerations (3.4-fold) and was studied in more detail. It was found that reactions occurred even at low DABCO concentration so that here the Lewis base and Lewis acid were able to promote the reaction without interference from each other. While the (+)-binol (and other chiral ligands) failed to provide any significant asymmetric induction, a substantial nonlinear effect was observed with binol. Thus, use of racemic binol gave no effect on the rate. In seeking to maximize the rate attainable, more soluble (liquid) ligands were studied. Diethyl tartrate and triethanolamine gave rate enhancements of 5.2x and 3.5x at 50 mol %, respectively, versus 1.5x and 2.3x at 5 mol %. The best protocol was to use 100 mol % DABCO, 50 mol % triethanolamine, and 5 mol % La(OTf)(3). This gave overall rate accelerations of between 23-fold and 40-fold depending on the acrylate and approximately 5-fold for acrylonitrile. A simple acid wash removed the reagents, leaving the product in the organic phase. While triethanolamine accelerated the reaction

  9. Synthesis of formazans from Mannich base of 5-(4-chlorophenyl amino-2-mercapto-1,3,4-thiadiazole as antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Pramilla Sah

    2014-04-01

    Full Text Available 5-(4-Chlorophenyl amino-2-mercapto-1,3,4-thiadiazole (I was refluxed with formaldehyde and ammonium chloride in ethanol yielding the Mannich base 5-(4-chloro phenyl amino-3-aminomethyl-2-mercapto-1,3,4-thiadiazole (II. Esterification with 4-chloro-(2,6-dinitro phenoxy-ethyl acetate (III under anhydrous conditions gave the intermediate (IV. Subsequent hydrazinolysis with hydrazine hydrate gave the corresponding hydrazide 3-amino methyl-5-(4-chloro phenyl amino-2-mercapto-4′-(2′,6′-dinitro phenoxy-acetyl hydrazide (V. The hydrazide was converted into the Schiff bases (VIa–b by reacting with 2-chlorobenzaldehyde and 3-methoxy-4-hydroxy benzaldehyde in presence of methanol containing 2–3 drops of acetic acid. Diazotisation with aromatic amines, sulphanilic acid and sulphur drugs gave the formazans (VIIa–g respectively. Chemical structures have been established by elemental analysis and the spectral techniques of FTIR, 1H NMR and mass. Antimicrobial activity (in vitro was evaluated against the two pathogenic bacterial strains. Escherichia coli and Salmonella typhi, three fungal strains Aspergillus niger, Penicillium species and Candida albicans. The compounds have shown moderate activity.

  10. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    Science.gov (United States)

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Determination of volatile compounds in four commercial samples of Japanese green algae using solid phase microextraction gas chromatography mass spectrometry.

    Science.gov (United States)

    Yamamoto, Masayoshi; Baldermann, Susanne; Yoshikawa, Keisuke; Fujita, Akira; Mase, Nobuyuki; Watanabe, Naoharu

    2014-01-01

    Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS), has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera), Tokushima (Ulva prolifera), and Ehime prefecture (Ulva linza). Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera) and Tokushima prefecture (Ulva prolifera). Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum). Multivariant statistical analysis (PCA) enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  12. Yogurt produced with cajuí (Anacardium othonianum Rizz

    Directory of Open Access Journals (Sweden)

    Camila Martins Fonseca

    2014-09-01

    Full Text Available Yogurt added with 0%, 5%, 10%, 15% and 20% of cajuí pulp (Anacardium othonianum Rizz were characterized. Acidity, pH, protein, dry matter, firmness, consistency, cohesiveness and quantification of lactic acid bacteria were conducted at 0, 10, 20 and 30 days. Identification of volatiles compounds and sensory tests of preference, acceptance and consumption intention were performed on the first day of shelf-life. Preferred formulations are those that contain smaller proportions of pulp (5% which coincide with lower acidity. There was no significant effect (P>0.05 of the amount of pulp added and storage time on dry matter, lactic acid bacteria count, firmness, consistency and cohesiveness. Acidity and pH were significantly influenced (P <0.05 by the amount of pulp added and storage time. Protein levels were significantly lower (P <0.05 with the increase in the quantity of pulp added. Volatiles compounds in cajuí yogurt include ethyl butanoate, methyl butanoate, ethanol, hexanal, benzaldehyde and 3-methyl butanoate. There are technological potential in the production of yoghurt with cajuí with addition of 5% in proportion to the total volume of yogurt produced.

  13. Synthesis and Spectroscopic Characterization of Some New Biological Active Azo–Pyrazoline Derivatives

    Directory of Open Access Journals (Sweden)

    Farouq E. Hawaiz

    2012-01-01

    Full Text Available A number of 3-[4-(benzyloxy-3-(2-Chlorophenylazo-phenyl]-5-(substituted-phenyl-1-substituted-2-pyrazolines( 4a-j and (5a-j have been synthesized by diazotization of 2-chloroaniline and its coupling reaction with 4-hydroxy acetophenone, followed by benzyloxation of the hydroxyl group to give the substrate [4-benzyloxy-3-(2-chlorophenylazo-acetophenone (1].The prepared starting material (1 has been reacted with different substituted benzaldehydes to give a new series of chalcone derivatives 1-[(4-benzyloxy-3-(2-chloro-phenylazo-phenyl]-3-(substituted phenyl-2-propen-1-one (3a-j, in high yields and in a few minutes, and the later compounds were treated with hydrazine hydrate according to Michael addition reaction to afford a new biolological active target compounds (4a-j and (5a-j. Furthermore, The structures of the newly synthesized compounds were confirmed by FT-IR, 13C-NMR,13C-DEPT & 1H-NMR spectral data. The chalcone and pyrazoline derivatives were evaluated for their anti bacterial activity against Escherichia coli as gram negative and Staphylococcus aureus as gram positive, the results showed significant activity against both types of bacteria.

  14. Radiolysis of Aqueous Toluene Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, H C; Gustafson, R

    1971-04-15

    Aqueous toluene solutions have been irradiated with Co gamma-rays. In unbuffered solutions the various cresol isomers are formed in a total yield of 0.45, 0.87 and 0.94 molecules/100 eV absorbed energy in argon-, N{sub 2}O- and air - saturated solutions, respectively. The yields are reduced in acid (pH 3) solutions (G = 0.14, 0.14 and 0.52, respectively) but the reduction is compensated by the formation of 1,2-di-phenylethane in yields of 0.49 and 1.60 in argon- and N{sub 2}O-saturated solutions, respectively. Benzyl radicals are formed through an acid catalysed water elimination reaction from the initially formed hydroxymethylcyclohexadienyl radical. Phenyltolylmethanes, dimethylbiphenyls and partly reduced dimers are also formed during the radiolysis. Hydrogen is formed in the same yield as the molecular yield, g(H{sub 2}). Xylene isomers and benzene are formed in trace quantities. The most remarkable effects of the addition of Fe(III) ions to deaerated acid toluene solutions are the formation of benzyl alcohol and benzaldehyde and an increase in the yield of 1,2-diphenylethane

  15. Impacto de las condiciones de beneficio sobre los compuestos precursores de aroma en granos de cacao (Theobroma cacao L del clon CCN-51.

    Directory of Open Access Journals (Sweden)

    Andrea Pallares Pallares

    2016-01-01

    Full Text Available Abstract The influence of the days of fermentation and drying in the aroma compounds (volatile fraction of cocoa beans CCN-51 was evaluated. The method used was Gas ChromatographyMass Spectrometry, coupled to Head Space Solid Phase Micro Extraction (HS-SPMEGC-GS. A multifactorial experimental design was created, containing 15 experiments per repetition. The fermentation technique was microfermentation in boxes, while drying was achieved by exposing the samples to the sun. A Principal Component Analysis (PCA allowed to explain 68% of the total variability associated with aroma characteristics (volatile compounds. Both, desirable and undesirable compounds were identified throughout the processes of fermentation and drying. The benefit process (fermentation and drying was divided in stages depending on the degree of fermentation. The desirable compounds identified were: 3-methy-1-butanol, 2-phenyl-ethanol, benzaldehyde, phenyl acetaldehyde, ethylhexanoate, ethyl benzoate, ethylphenyl acetate and 2-phenyl ethyl acetate, which are associated with odoriferous notes very nice (chocolate, candy, sweet, nutty, honey, fruity, floral. Finally, a pre-treatment of cocoa beans CCN-51 prior to fermentation was proposed to be incorporated during the benefit of the beans as it seems to enhance the formation of desirable aroma compounds.

  16. Functionalized 3-(benzofuran-2-yl-5-(4-methoxyphenyl-4,5-dihydro-1H-pyrazole scaffolds: A new class of antimicrobials and antioxidants

    Directory of Open Access Journals (Sweden)

    Javarappa Rangaswamy

    2017-05-01

    Full Text Available A new class of functionalized 3-(benzofuran-2-yl-5-(4-methoxyphenyl-4,5-dihydro-1H-pyrazole scaffolds (4a–q was synthesized by a four step reaction in good yields. Initially, o-alkyl derivative of salicyaldehyde (1 readily furnished corresponding 2-acetyl benzofuran (2 on treatment with potassium tert-butoxide (t-BuOK in the presence of molecular sieves. Further, Claisen–Schmidt condensation reaction with 4-methoxy benzaldehyde and hydrazine hydrate followed by coupling of benzoyl chlorides afforded target compounds (4a–q. Representative of the synthesized compounds was characterized by IR, 1H NMR, 13C NMR, mass, elemental analysis and evaluated for antimicrobial and antioxidant activities. The results gathered are allowed to conclude that, all newly synthesized analogues exhibit a certain degree of antimicrobial and antioxidant activities. Among the analogues, compounds (4h and (4j showed an excellent antimicrobial activity in the well plate method. Meanwhile, compounds (4e–f, (4l and (4p showed good antioxidant activity, whereas compound (4g and (4q displayed dominant antioxidant efficacy compared to standard butylated hydroxy anisole (BHA.

  17. Low temperature oxidation of benzene and toluene in mixture with n-decane.

    Science.gov (United States)

    Herbinet, Olivier; Husson, Benoit; Ferrari, Maude; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique

    2013-01-01

    The oxidation of two blends, benzene/ n -decane and toluene/ n -decane, was studied in a jet-stirred reactor with gas chromatography analysis (temperatures from 500 to 1100 K, atmospheric pressure, stoichiometric mixtures). The studied hydrocarbon mixtures contained 75% of aromatics in order to highlight the chemistry of the low-temperature oxidation of these two aromatic compounds which have a very low reactivity compared to large alkanes. The difference of behavior between the two aromatic reactants is highly pronounced concerning the formation of derived aromatic products below 800 K. In the case of benzene, only phenol could be quantified. In the case of toluene, significant amounts of benzaldehyde, benzene, and cresols were also formed, as well as several heavy aromatic products such as bibenzyl, phenylbenzylether, methylphenylbenzylether, and ethylphenylphenol. A comparison with results obtained with neat n -decane showed that the reactivity of the alkane is inhibited by the presence of benzene and, to a larger extent, toluene. An improved model for the oxidation of toluene was developed based on recent theoretical studies of the elementary steps involved in the low-temperature chemistry of this molecule. Simulations using this model were successfully compared with the obtained experimental results.

  18. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  19. Volatiles released from Vaccinium corymbosum were attractive to Aegorhinus superciliosus (Coleoptera: Curculionidae) in an olfactometric bioassay.

    Science.gov (United States)

    Parra, Leonardo; Mutis, Ana; Ceballos, Ricardo; Lizama, Marcelo; Pardo, Fernando; Perich, Fernando; Quiroz, Andrés

    2009-06-01

    The objective of this study was to evaluate the role of host volatiles in the relationship between a blueberry plant Vaccinium corymbosum L. and the raspberry weevil Aegorhinus superciliosus (Guérin) (Coleoptera: Curculionidae), the principal pest of blueberry in the south of Chile. Volatiles from the aerial part of different phenological stages of the host were collected on Porapak Q and analyzed by coupled gas chromatography-mass spectrometry (GC-MS). Several chemical groups were identified including green leaf volatiles, aromatic compounds, and terpenes. The olfactometric responses of A. superciliosus toward different odor sources were studied in a four-arm olfactometer. Blueberry shoots at the phenological stages of fruit set, and blue-pink fruit color elicited the greatest behavioral responses from weevils. Five compounds (2-nonanone, eucalyptol, R- and S-limonene, and 4-ethyl benzaldehyde) elicited an attractant behavioral response from A. superciliosus. The results suggest the host location behavior of A. superciliosus could be mediated by volatiles derived from V. corymbosum. This work has identified a number of compounds with which it is possible to develop a lure for the principal pest of blueberry in southern Chile.

  20. Purification, cloning, functional expression and characterization of perakine reductase: the first example from the AKR enzyme family, extending the alkaloidal network of the plant Rauvolfia.

    Science.gov (United States)

    Sun, Lianli; Ruppert, Martin; Sheludko, Yuri; Warzecha, Heribert; Zhao, Yu; Stöckigt, Joachim

    2008-07-01

    Perakine reductase (PR) catalyzes an NADPH-dependent step in a side-branch of the 10-step biosynthetic pathway of the alkaloid ajmaline. The enzyme was cloned by a "reverse-genetic" approach from cell suspension cultures of the plant Rauvolfia serpentina (Apocynaceae) and functionally expressed in Escherichia coli as the N-terminal His(6)-tagged protein. PR displays a broad substrate acceptance, converting 16 out of 28 tested compounds with reducible carbonyl function which belong to three substrate groups: benzaldehyde, cinnamic aldehyde derivatives and monoterpenoid indole alkaloids. The enzyme has an extraordinary selectivity in the group of alkaloids. Sequence alignments define PR as a new member of the aldo-keto reductase (AKR) super family, exhibiting the conserved catalytic tetrad Asp52, Tyr57, Lys84, His126. Site-directed mutagenesis of each of these functional residues to an alanine residue results in >97.8% loss of enzyme activity, in compounds of each substrate group. PR represents the first example of the large AKR-family which is involved in the biosynthesis of plant monoterpenoid indole alkaloids. In addition to a new esterase, PR significantly extends the Rauvolfia alkaloid network to the novel group of peraksine alkaloids.

  1. Ultrasound accelerated Claisen-Schmidt condensation: A green route to chalcones

    International Nuclear Information System (INIS)

    Calvino, V.; Picallo, M.; Lopez-Peinado, A.J.; Martin-Aranda, R.M.; Duran-Valle, C.J.

    2006-01-01

    Chalcones have been synthesized under sonochemical irradiation by Claisen-Schmidt condensation between benzaldehyde and acetophenone. Two basic activated carbons (Na and Cs-Norit) have been used as catalysts. The effect of the ultrasound activation has been studied. A substantial enhancing effect in the yield was observed when the carbon catalyst was activated under ultrasonic waves. This 'green' method (combination of alkaline-doped carbon catalyst and ultrasound waves) has been applied to the synthesis of several chalcones with antibacterial properties achieving, in all cases, excellent activities and selectivities. A comparative study under non-sonic activation has showed that the yields are lower in silent conditions, indicating that the sonication exerts a positive effect on the activity of the catalyst. Cs-doped carbon is presented as the optimum catalyst, giving excellent activity for this type of condensation. Cs-Norit carbon catalyst can compete with the traditional NaOH/EtOH when the reaction is carried out under ultrasounds. The role of solvent in this reaction was studied with ethanol. High conversion was obtained in absence of solvent. The carbons were characterized by thermal analysis, nitrogen adsorption and X-ray photoelectron spectroscopy

  2. Desalination of fish sauce by electrodialysis: effect on selected aroma compounds and amino acid compositions.

    Science.gov (United States)

    Chindapan, Nathamol; Devahastin, Sakamon; Chiewchan, Naphaporn; Sablani, Shyam S

    2011-09-01

    Fish sauce is an ingredient that exhibits unique flavor and is widely used by people in Southeast Asia. Fish sauce, however, contains a significant amount of salt (sodium chloride). Recently, electrodialysis (ED) has been successfully applied to reduce salt in fish sauce; however, no information is available on the effect of ED on changes in compounds providing aroma and taste of ED-treated fish sauce. The selected aroma compounds, amino acids, and sensory quality of the ED-treated fish sauce with various salt concentrations were then analyzed. The amounts of trimethylamine, 2,6-dimethylpyrazine, phenols, and all carboxylic acids except for hexanoic acid significantly decreased, whereas benzaldehyde increased significantly when the salt removal level was higher. The amounts of all amino acids decreased with the increased salt removal level. Significant difference in flavor and saltiness intensity among ED-treated fish sauce with various salt concentrations, as assessed by a discriminative test, were observed. Information obtained in this work can serve as a guideline for optimization of a process to produce low-sodium fish sauce by ED. It also forms a basis for further in-depth sensory analysis of low-sodium fish sauce. © 2011 Institute of Food Technologists®

  3. Determination of starting materials, intermediates, and subsidiary colors in the color additive Food Red No. 106 (Sulforhodamine B) using high-performance liquid chromatography.

    Science.gov (United States)

    Tatebe, Chiye; Ohtsuki, Takashi; Fujita, Tsuyoshi; Nishiyama, Koji; Itoh, Sumio; Sugimoto, Naoki; Kubota, Hiroki; Tada, Atsuko; Sato, Kyoko; Akiyama, Hiroshi

    2017-12-15

    The main subsidiary color of structure in Food Red No. 106 (R106) was identified to be a desethyl derivative (R106-SubA). High-performance liquid chromatography (HPLC) was performed for the quantitative determination of benzaldehyde-2,4-disulfonic acid, N,N-diethyl-m-aminophenol, leuco acid, pyrone acid, R106-SubA, etc. in R106. An ammonium acetate solution (20mM) and acetonitrile:water (7:3) were used to stabilize the retention time of the HPLC analytes. The linearity of the calibration curves was in the range of 0.05-10μg/mL, with good correlation coefficients (R 2 >0.9983). The recoveries of impurities at levels 0.1%, 0.5% and 1% ranged from 94.2% to 106.6% with relative standard deviations of 0.1%-1.0%. While surveying commercial R106, the amounts obtained by area% determination were similar to those obtained by the calibration-curve determination. The area% determination by HPLC for the determinations of impurities in R106 is a simple and reliable method and can be applied in routine analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A vanillin derivative causes mitochondrial dysfunction and triggers oxidative stress in Cryptococcus neoformans.

    Science.gov (United States)

    Kim, Jin Hyo; Lee, Han-Ok; Cho, Yong-Joon; Kim, Jeongmi; Chun, Jongsik; Choi, Jaehyuk; Lee, Younghoon; Jung, Won Hee

    2014-01-01

    Vanillin is a well-known food and cosmetic additive and has antioxidant and antimutagenic properties. It has also been suggested to have antifungal activity against major human pathogenic fungi, although it is not very effective. In this study, the antifungal activities of vanillin and 33 vanillin derivatives against the human fungal pathogen Cryptococcus neoformans, the main pathogen of cryptococcal meningitis in immunocompromised patients, were investigated. We found a structural correlation between the vanillin derivatives and antifungal activity, showing that the hydroxyl or alkoxy group is more advantageous than the halogenated or nitrated group in benzaldehyde. Among the vanillin derivatives with a hydroxyl or alkoxy group, o-vanillin and o-ethyl vanillin showed the highest antifungal activity against C. neoformans. o-Vanillin was further studied to understand the mechanism of antifungal action. We compared the transcriptome of C. neoformans cells untreated or treated with o-vanillin by using RNA sequencing and found that the compound caused mitochondrial dysfunction and triggered oxidative stress. These antifungal mechanisms of o-vanillin were experimentally confirmed by the significantly reduced growth of the mutants lacking the genes involved in mitochondrial functions and oxidative stress response.

  5. Characterization of Botanical and Geographical Origin of Corsican “Spring” Honeys by Melissopalynological and Volatile Analysis

    Directory of Open Access Journals (Sweden)

    Yin Yang

    2014-01-01

    Full Text Available Pollen spectrum, physicochemical parameters and volatile fraction of Corsican “spring” honeys were investigated with the aim of developing a multidisciplinary method for the qualification of honeys in which nectar resources are under-represented in the pollen spectrum. Forty-one Corsican “spring” honeys were certified by melissopalynological analysis using directory and biogeographical origin of 50 representative taxa. Two groups of honeys were distinguished according to the botanical origin of samples: “clementine” honeys characterized by the association of cultivated species from oriental plain and other “spring” honeys dominated by wild herbaceous taxa from the ruderal and/or maquis area. The main compounds of the “spring” honey volatile fraction were phenylacetaldehyde, benzaldehyde and methyl-benzene. The volatile composition of “clementine” honeys was also characterized by three lilac aldehyde isomers. Statistical analysis of melissopalynological, physicochemical and volatile data showed that the presence of Citrus pollen in “clementine” honeys was positively correlated with the amount of linalool derivatives and methyl anthranilate. Otherwise, the other “spring” honeys were characterized by complex nectariferous species associations and the content of phenylacetaldehyde and methyl syringate.

  6. The enhanced radiation response of an in vitro tumour model by cyanide released from hydrolysed amygdalin

    International Nuclear Information System (INIS)

    Biaglow, J.E.; Durand, R.E.

    1978-01-01

    Any inhibition of oxygen consumption by respiring cells should result in indirect radiosensitization of the more centrally located hypoxic cells of a tumour. Amygdalin (D-mandelonitrile-β-D-glucosido-6-β-D-glucoside) when hydrolysed by the enzyme β-D-glucoside glycohydrolase (β-glucosidase) releases the respiratory inhibitor cyanide. A study has been made of the conditions for enhancing the gamma radiation response of multi-cell spheroids of V79 cells by cyanide or by cyanide released by enzymatic hydrolysis of amygdalin. Amygdalin hydrolysis was monitored by the increase in absorbancy at 250nm (production of benzaldehyde). Oxygen utilization was recorded by an oxygen electrode. The respiratory effects produced by the additon of amygdalin to cell suspensions containing β-glucosidase were immediate and essentially the same as those obtained by adding the equivalent amounts of KCN to the cell suspensions. The radio-resistant 'tail' of the survival curve of multi-cell spheroids was reduced in the presence of cyanide (added directly or secondarily released). The radiation response of the spheroids in the presence of cyanide was slightly greater than that for reoxygenation alone. (U.K.)

  7. Radiosynthesis of 3-{l_brace}[4-(4-[{sup 18}F]fluorobenzyl)]piperazin-1-yl{r_brace}methyl-1H-pyrrolo[2,3-b]pyridine: A potential dopamine D{sub 4} receptor imaging agent

    Energy Technology Data Exchange (ETDEWEB)

    Haibin Tian; Duanzhi Yin; Junling Li; Lan Zhang; Cunfu Zhang; Yongxian Wang; Wei Zhou [Radiopharmaceutical Research Center, Shanghai Inst. of Nuclear Research, The Chinese Academy of Sciences, Shanghai, SH (China)

    2003-07-01

    The dopamine D{sub 4} receptor (D{sub 4}R) is expressed in low density in various extrastriatal brain regions. This receptor subtype is discussed in relation to the pathophysiology and treatment of schizophrenia but to date no selective positron emission tomography (PET) ligand is available to study its distribution in vivo. The 7-azaindole derivative 3-([4-(4-iodophenyl)piperazin-1-yl]-methyl)-1H-pyrrolo [2,3-b]pyridine (L-750,667) is a novel, high-affinity (K{sub i}=0.51nM) and selective D{sub 4}R ligand. L-750,667 analogue 3-[4-(4-[{sup 18}F]fluorobenzyl)]piperazin-1-yl methyl-1H-pyrrolo[2,3-b]-pyridine was prepared by reacting 3-(piperazin-1-yl)-methyl-1H-pyrrolo[2,3-b]pyridine with 4-[ 18F]fluorobenzaldehyde, which was labeled with no carrier added [ 18F]fluoride. The radiochemical yield of 3-[4-(4-[{sup 18}F]fluorobenzyl)]piperazin-1-yl methyl-1H-pyrrolo[2,3-b]pyridine was 12.0% at end of synthesis (EOS), and the synthesis time was 73min. The labeled benzaldehydes may be useful precursors for the radiosyntheses of other complex radiotracers for PET.

  8. Volatiles from a rare Acer spp. honey sample from Croatia.

    Science.gov (United States)

    Jerković, Igor; Marijanović, Zvonimir; Malenica-Staver, Mladenka; Lusić, Drazen

    2010-06-24

    A rare sample of maple (Acer spp.) honey from Croatia was analysed. Ultrasonic solvent extraction (USE) using: 1) pentane, 2) diethyl ether, 3) a mixture of pentane and diethyl ether (1:2 v/v) and 4) dichloromethane as solvents was applied. All the extracts were analysed by GC and GC/MS. The most representative extracts were 3) and 4). Syringaldehyde was the most striking compound, being dominant in the extracts 2), 3) and 4) with percentages 34.5%, 33.1% and 35.9%, respectively. In comparison to USE results of other single Croatian tree honey samples (Robinia pseudoacacia L. nectar honey, Salix spp. nectar and honeydew honeys, Quercus frainetto Ten. honeydew as well as Abies alba Mill. and Picea abies L. honeydew) and literature data the presence of syringaldehyde, previously identified in maple sap and syrup, can be pointed out as a distinct characteristic of the Acer spp. honey sample. Headspace solid-phase microextraction (HS-SPME) combined with GC and GC/MS identified benzaldehyde (16.5%), trans-linalool oxide (20.5%) and 2-phenylethanol (14.9%) as the major compounds that are common in different honey headspace compositions.

  9. A microfluidic device for open loop stripping of volatile organic compounds.

    Science.gov (United States)

    Cvetković, Benjamin Z; Dittrich, Petra S

    2013-03-01

    The detection of volatile organic compounds is of great importance for assessing the quality of water. In this contribution, we describe a miniaturized stripping device that allows fast online detection of organic solvents in water. The core component is a glass microfluidic chip that facilitates the creation of an annular-flowing stream of water and nitrogen gas. Volatile compounds are transferred efficiently from the water into the gas phase along the microfluidic pathway at room temperature within less than 5 s. Before exiting the microchip, the liquid phase is separated from the enriched gas phase by incorporating side capillaries through which the hydrophilic water phase is withdrawn. The gas phase is conveniently collected at the outlet reservoir by tubing. Finally, a semiconductor gas sensor analyzes the concentration of (volatile) organic compounds in the nitrogen gas. The operation and use of the stripping device is demonstrated for the organic solvents THF, 1-propanol, toluene, ethylbenzene, benzaldehyde, and methanol. The mobile, inexpensive, and continuously operating system with liquid flow rates in the low range of microliters per minute can be connected to other detectors or implemented in chemical production line for process control.

  10. Trichocyanines: a Red-Hair-Inspired Modular Platform for Dye-Based One-Time-Pad Molecular Cryptography.

    Science.gov (United States)

    Leone, Loredana; Pezzella, Alessandro; Crescenzi, Orlando; Napolitano, Alessandra; Barone, Vincenzo; d'Ischia, Marco

    2015-06-01

    Current molecular cryptography (MoCryp) systems are almost exclusively based on DNA chemistry and reports of cryptography technologies based on other less complex chemical systems are lacking. We describe herein, as proof of concept, the prototype of the first asymmetric MoCryp system, based on an 8-compound set of a novel bioinspired class of cyanine-type dyes called trichocyanines. These novel acidichromic cyanine-type dyes inspired by red hair pigments were synthesized and characterized with the aid of density functional theory (DFT) calculations. Trichocyanines consist of a modular scaffold easily accessible via an expedient condensation of 3-phenyl- or 3-methyl-2H-1,4-benzothiazines with N-dimethyl- or o-methoxyhydroxy-substituted benzaldehyde or cinnamaldehyde derivatives. The eight representative members synthesized herein can be classified as belonging to two three-state systems tunable through four different control points. This versatile dye platform can generate an expandable palette of colors and appears to be specifically suited to implement an unprecedented single-use asymmetric molecular cryptography system. With this system, we intend to pioneer the translation of digital public-key cryptography into a chemical-coding one-time-pad-like system.

  11. Persistence of Long-Term Memory in Vitrified and Revived Caenorhabditis elegans.

    Science.gov (United States)

    Vita-More, Natasha; Barranco, Daniel

    2015-10-01

    Can memory be retained after cryopreservation? Our research has attempted to answer this long-standing question by using the nematode worm Caenorhabditis elegans, a well-known model organism for biological research that has generated revolutionary findings but has not been tested for memory retention after cryopreservation. Our study's goal was to test C. elegans' memory recall after vitrification and reviving. Using a method of sensory imprinting in the young C. elegans, we establish that learning acquired through olfactory cues shapes the animal's behavior and the learning is retained at the adult stage after vitrification. Our research method included olfactory imprinting with the chemical benzaldehyde (C6H5CHO) for phase-sense olfactory imprinting at the L1 stage, the fast-cooling SafeSpeed method for vitrification at the L2 stage, reviving, and a chemotaxis assay for testing memory retention of learning at the adult stage. Our results in testing memory retention after cryopreservation show that the mechanisms that regulate the odorant imprinting (a form of long-term memory) in C. elegans have not been modified by the process of vitrification or by slow freezing.

  12. Synthesis, characterization and biological activity of C6-Schiff bases derivatives of chitosan.

    Science.gov (United States)

    Xu, Ruibo; Aotegen, Bayaer; Zhong, Zhimei

    2017-12-01

    C 6 -Schiff bases derivatives of chitosan were synthesized for the first time. C 2 -amino groups and C 3 -hydroxy groups were firstly protected by CuSO 4 ·5H 2 O, and the C 6 -hydroxy was then transformed into aldehyde, which then reacted with anilines through nucleophilic addition to introduce the CN group at C 6 -position in chitosan chain. Finally, C 6 -Schiff bases derivatives of chitosan were got by the deprotection of C 2 -NH 2 with cation exchange resin. The structures and properties of the new synthesized products were characterized by Fourier transform infrared spectroscopy, 13 C NMR, SEM image, and elemental analysis. The antibacterial activities of derivatives were tested in the experiment, and the results showed that the prepared chitosan derivatives had significantly improved antibacterial activity toward Staphylococcus aureus and Escherichia coli. The Cytotoxicity test showed that the prepared chitosan derivatives had low Cytotoxicity, compared with chitosan and C 2 -benzaldehyde Schiff bases of chitosan. This paper allowed a new method for the synthesis of Schiff bases of chitosan, which was enlightening. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthesis, characterization, antibacterial and antifungal studies of some transition and rare earth metal complexes of N-benzylidene-2-hydroxybenzohydrazide

    Directory of Open Access Journals (Sweden)

    T.K. Chondhekar

    2011-12-01

    Full Text Available The solid complexes of Cu(II, Co(II, Mn(II, La(III and Ce(III were prepared from bidentate Schiff base, N-benzylidene-2-hydroxybenzohydrazide. The Schiff base ligand was synthesized from 2-hyhdroxybenzohydrazide and benzaldehyde. These metal complexes were characterized by molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, FTIR, 1H-NMR, UV-Vis and mass spectroscopy. The analytical data of these metal complexes showed metal:ligand ratio of 1:2. The physico-chemical study supports the presence of square planar geometry around Cu(II and octahedral geometry around Mn(II, Co(II, La(III and Ce(III ions. The IR spectral data reveal that the ligand behaves as bidentate with ON donor atom sequence towards central metal ion. The molar conductance values of metal complexes suggest their non-electrolyte nature. The X-ray diffraction data suggest monoclinic crystal system for these complexes. Thermal behavior (TG/DTA and kinetic parameters calculated by Coats-Redfern method are suggestive of more ordered activated state in complex formation. The ligand and their metal complexes were screened for antibacterial activity against Staphylococcus aureus and Escherichia coli and fungicidal activity against Aspergillus niger and Trichoderma.

  14. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions.

    Science.gov (United States)

    Liu, Di; Gao, Yuan; Li, Xiao-Xi; Li, Zheng; Pan, Qiu-Hong

    2015-09-17

    This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv.) under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A) and 99% (film B) invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA) revealed that (E)-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E)-2-heptenal, styrene, α-phenylethanol, and (Z)-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  15. Attenuated UV Radiation Alters Volatile Profile in Cabernet Sauvignon Grapes under Field Conditions

    Directory of Open Access Journals (Sweden)

    Di Liu

    2015-09-01

    Full Text Available This study aimed to explore the effect of attenuated UV radiation around grape clusters on the volatile profile of Cabernet Sauvignon grapes (Vitis vinifera L. cv. under field conditions. Grape bunches were wrapped with two types of polyester films that cut off 89% (film A and 99% (film B invisible sunlight of less than 380 nm wavelength, respectively. Solar UV radiation reaching the grape berry surface was largely attenuated, and an increase in the concentrations of amino acid-derived benzenoid volatiles and fatty acid-derived esters was observed in the ripening grapes. Meanwhile, the attenuated UV radiation significantly reduced the concentrations of fatty acid-derived aldehydes and alcohols and isoprenoid-derived norisoprenoids. No significant impact was observed for terpenes. In most case, these positive or negative effects were stage-dependent. Reducing UV radiation from the onset of veraison to grape harvest, compared to the other stages, caused a larger alteration in the grape volatile profile. Partial Least Square Discriminant Analysis (PLS-DA revealed that (E-2-hexenal, 4-methyl benzaldehyde, 2-butoxyethyl acetate, (E-2-heptenal, styrene, α-phenylethanol, and (Z-3-hexen-1-ol acetate were affected most significantly by the attenuated UV radiation.

  16. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.

    Science.gov (United States)

    Chhabra, Meenu; Mishra, Saroj; Sreekrishnan, Trichur Ramaswamy

    2009-08-10

    Laccase/mediator systems are important bioremediation agents as the rates of reactions can be enhanced in the presence of the mediators. The decolorization mechanism of two triarylmethane dyes, namely, Basic Green 4 and Acid Violet 17 is reported using Cyathus bulleri laccase. Basic Green 4 was decolorized through N-demethylation by laccase alone, while in mediator assisted reactions, dye breakdown was initiated from oxidation of carbinol form of the dye. Benzaldehyde and N,N-dimethyl aniline were the major end products. With Acid Violet 17, laccase carried out N-deethylation and in mediator assisted reactions, oxidation of the carbinol form of the dye occurred resulting in formation of formyl benzene sulfonic acid, carboxy benzene sulfonic acid and benzene sulfonic acid. Toxicity analysis revealed that Basic Green 4 was toxic and treatment with laccase/mediators resulted in 80-100% detoxification. The treatment of the textile dye solution using laccase and 2,2'-azino-di-(-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was demonstrated in an enzyme membrane reactor. At a hydraulic retention time of 6h, the process was operated for a period of 15 days with nearly 95% decolorization, 10% reduction in flux and 70% recovery of active ABTS.

  17. Some advances in the knowledge of grape, wine and distillates chemistry as achieved by mass spectrometry.

    Science.gov (United States)

    Flamini, Riccardo

    2005-06-01

    Mass spectrometry plays a very important role in acquiring knowledge of the chemistry of grape and its derivative products. By liquid mass spectrometry, anthocyanins of grape were studied, and in hybrid grape extracts, delphinidin, cyanidin, petunidin and malvidin 3-O-(6-O-p-coumaroyl)-5-O-diglucosides were found. A semiquantitative procedure to estimate the amounts and percentages of monoglucoside and diglucoside anthocyanins without chromatography was developed. By gas chromatography mass spectrometry (GC/MS), aroma compounds of grape, wine and the distillate Italian grappa were studied, and molecular structures characterized. The representative aroma profile of Muscat grape was characterized by 23 terpenols, present in both free and bonded form, and direct correlation between aroma and genetic profile permitted to distinguish between different Muscat grape varieties. Aroma of Italian grappa resulted from and was characterized by several compounds linked to the grape variety, such as vitispiranes, terpenols, ethyl cinnamate, salicylic esters, benzaldehyde and farnesol. Synthesis of O-(2,3,4,5,6-pentafluorobenzyl)-hydroxylamine (PFBOA) derivatives and GC/MS analysis resulted in a sensitive and selective method to study carbonyl compounds at the low levels occurring in wine.

  18. The effects of the fermentation with immobilized yeast and different cherry varieties on the quality of cherry brandy

    Directory of Open Access Journals (Sweden)

    R. Miličević

    2014-01-01

    Full Text Available The aim of this research was to investigate influence of different fermentation processes (by immobilized yeast cells and classical fermentation and different cherry varieties (Maraska, Montmorencys and Kelleris on the chemical and sensorial characteristics of cherry brandies. Cherry brandies were analyzed to determine chemical composition, aroma profile and sensory properties. Cherry brandies produced by immobilized yeast cells had a higher content of aldehydes, but lower content of total acids, total extract, higher alcohols and esters compared to the samples produced by classical fermentation process. Furfural was not detected in cherry distillates produced by immobilized yeast cells, while distillates produced by classical fermentation process had very low content. Cherry brandies produced by classical fermentation process had significantly higher content of benzaldehyde which has great influence on aroma of cherry brandies. Ethyl octanoate which is considered one of the most important contributors to the aroma of alcoholic distillates was found in the highest concentrations in Maraska distillates. The best evaluated sample was brandy produced from Maraska cherry variety fermented by immobilized yeast cells followed by brandy produced also from Maraska cherry variety, but by classical fermentation process.

  19. Optimization of reaction conditions in selective oxidation of styrene over fine crystallite spinel-type CaFe2O4 complex oxide catalyst

    International Nuclear Information System (INIS)

    Pardeshi, Satish K.; Pawar, Ravindra Y.

    2010-01-01

    The CaFe 2 O 4 spinel-type catalyst was synthesized by citrate gel method and well characterized by thermogravimetric analysis, atomic absorption spectroscopy, Fourier-transform infrared spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallization temperature of the spinel particle prepared by citrate gel method was 600 o C which was lower than that of ferrite prepared by other methods. CaFe 2 O 4 catalysts prepared by citrate gel method show better activity for styrene oxidation in the presence of dilute H 2 O 2 (30%) as an oxidizing agent. In this reaction the oxidative cleavage of carbon-carbon double bond of styrene takes place selectively with 38 ± 2 mol% conversion. The major product of the reaction is benzaldehyde up to 91 ± 2 mol% and minor product phenyl acetaldehyde up to 9 ± 2 mol%, respectively. The products obtained in the styrene oxidation reaction were analyzed by gas chromatography and mass spectroscopy. The influence of the catalyst, reaction time, temperature, amount of catalyst, styrene/H 2 O 2 molar ratio and solvents on the conversion and product distribution were studied.

  20. Determination of Carbonyl Compounds in Cork Agglomerates by GDME-HPLC-UV: Identification of the Extracted Compounds by HPLC-MS/MS.

    Science.gov (United States)

    Brandão, Pedro Francisco; Ramos, Rui Miguel; Almeida, Paulo Joaquim; Rodrigues, José António

    2017-02-08

    A new approach is proposed for the extraction and determination of carbonyl compounds in solid samples, such as wood or cork materials. Cork products are used as building materials due to their singular characteristics; however, little is known about its aldehyde emission potential and content. Sample preparation was done by using a gas-diffusion microextraction (GDME) device for the direct extraction of volatile aldehydes and derivatization with 2,4-dinitrophenylhydrazine. Analytical determination of the extracts was done by HPLC-UV, with detection at 360 nm. The developed methodology proved to be a reliable tool for aldehyde determination in cork agglomerate samples with suitable method features. Mass spectrometry studies were performed for each sample, which enabled the identification, in the extracts, of the derivatization products of a total of 13 aldehydes (formaldehyde, acetaldehyde, furfural, propanal, 5-methylfurfural, butanal, benzaldehyde, pentanal, hexanal, trans-2-heptenal, heptanal, octanal, and trans-2-nonenal) and 4 ketones (3-hydroxy-2-butanone, acetone, cyclohexanone, and acetophenone). This new analytical methodology simultaneously proved to be consistent for the identification and determination of aldehydes in cork agglomerates and a very simple and straightforward procedure.

  1. Synthesis, characterization and biological studies of metal complexes of Co (II), Ni (II), Cu (II), Zn (II) with sulphadimidine-benzylidene

    International Nuclear Information System (INIS)

    Tahira, F.; Imran, M.; Iqbal, J.

    2009-01-01

    Some novel complexes of Co (II), Ni (II), Cu (II), and Zn (II) have been synthesized with a Schiff base ligand derived from sulphadimidine and benzaldehyde. The structural features of the complexes have been determined by elemental analysis, magnetic susceptibility, conductance measurement, UV/ Vis. and infrared spectroscopy. IR studies revealed that the Schiff base ligand Sulphadimidine-benzylidene has monoanionic bidendate nature and coordinate with metal ions through nitrogen atom of azomethine (>C = N) and deprotonated -NH group. All the complexes were assigned octahedral geometry on the basis of magnetic moment and electronic spectroscopic data. Low value of conductance supports their non-electrolytic nature. The ligand, as well as its complexes were checked for their in vitro antimicrobial activities against two gram positive bacterial strains, Bacillus subtillus. Staphylococcus aureus and one gram negative Salmonella typhae and five fungal strains, Nigrospora oryzae, Curvularia lunata, Drechslera rostrata, Aspergillus niger and Candida olbicans by disc diffusion method and agar plate technique, respectively. Both the antibacterial and antitungal activities of the synthesized metal complexes were found to be more as compared to parent drug and uncomplexed ligand. All the complexes contain coordinated water, which is lost at 141-160 degree C. (author)

  2. New Approach to Evaluate the Antennal Response of an Adult Predator Insect to Different Volatile Chemical Compounds by using Electroantennogram Technique

    Science.gov (United States)

    Shonouda, Mourad L.

    The antennal response of adult syrphid flies to selected plant volatile chemical compounds was investigated in the present study. The main chemical classes and their chemical compounds were aldehydes (nonanal and benzaldehyde), monoterpene-alcohols (linalool and alpha-terpineol), ketones (6-methyl-5-heptene-2-one and 2-undecanone), hydrocarbons (tetradecane) and benzoids (methyl salicylate). Electroantennogram (EAG) records showed that the syrphid antennae were strongly responded to linalool, 6-methyl-5-heptene-2-one and methyl salicylate even at low concentrations, in addition to the high dose concentration of nonanal comparably to the other chemical compounds. The antennae of old syrphid adults were more responsive and elicited higher levels of responses to all compounds rather than young syrphid adults. The antennal sensitivity may differ from one compound to another according to the sex. The difference in responses could be attributed to the sensitivity of olfactory receptors and/or the characterization of binding protein(s). The quality of biocontrol agent could be improved if the chemical interaction between beneficial natural enemies and the surrounding environment is intensively studied and we clearly understand the chemical ecology of each natural enemy.

  3. In-tube extraction for the determination of the main volatile compounds in Physalis peruviana L.

    Science.gov (United States)

    Kupska, Magdalena; Jeleń, Henryk H

    2017-01-01

    An analytical procedure based on in-tube extraction followed by gas chromatography with mass spectrometry has been developed for the analysis of 24 of the main volatile components in cape gooseberry (Physalis peruviana L.) samples. According to their chemical structure, the compounds were organized into different groups: one hydrocarbon, one aldehyde, four alcohols, four esters, and 14 monoterpenes. By single-factor experiments, incubation temperature, incubation time, extraction volume, extraction strokes, extraction speed, desorption temperature, and desorption speed were determined as 60°C, 20 min, 1000 μL, 20, 50:50 μL/s, 280°C, 100 μL/s, respectively. Quantitative analysis using authentic standards and external calibration curves was performed. The limit of detection and limit of quantification for the analytical procedure were calculated. Results shown the benzaldehyde, ethyl butanoate, 2-methyl-1-butanol, 1-hexanol, 1-butanol, α-terpineol, and terpinen-4-ol were the most abundant volatile compounds in analyzed fruits (68.6-585 μg/kg). The obtained data may contribute to qualify cape gooseberry to the group of superfruits and, therefore, increase its popularity. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Indoor aldehydes: measurement of contamination levels and identification of their determinants in Paris dwellings

    International Nuclear Information System (INIS)

    Clarisse, B.; Laurent, A.M.; Seta, N.; Le Moullec, Y.; El Hasnaoui, A.; Momas, I.

    2003-01-01

    The recent increased prevalence of childhood asthma and atopy has brought into question the impact of outdoor pollutants and indoor air quality. The contributory role of aldehydes to this problem and the fact that they are mainly derived from the domestic environment make them of particular interest. This study therefore measures six different aldehyde levels in Paris dwellings from potentially different sources and identifies their indoor determinants. The study was carried out in the three principal rooms of 61 flats with no previous history of complaint for olfactory nuisance or specific symptoms, two-thirds of the flats having been recently refurbished. Aldehydes were sampled in these rooms using passive samplers, and a questionnaire on potential aldehyde sources was filled out at the same time. A multiple linear regression model was used to investigate indoor aldehyde determinants. Our study revealed that propionaldehyde and benzaldehyde were of minor importance compared to formaldehyde, acetaldehyde, pentanal, and hexanal. We found that levels of these last four compounds depended on the age of wall or floor coverings (renovations less than 1 year old), smoking, and ambient parameters (carbon dioxide levels, temperature). These results could help in the assessment of indoor aldehyde emissions

  5. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Vione, Davide, E-mail: davide.vione@unito.it [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy); Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (Italy); Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio [Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino (Italy)

    2013-10-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield Φ{sub BP3} = (3.1 ± 0.3) · 10{sup −5} and the following second-order reaction rate constants: with {sup •} OH, k{sub BP3,{sup •}} {sub OH} = (2.0 ± 0.4) · 10{sup 10} M{sup −1} s{sup −1}; with the triplet states of chromophoric dissolved organic matter ({sup 3}CDOM*), k{sub BP3,{sup 3}CDOM*} = (1.1 ± 0.1) · 10{sup 9} M{sup −1} s{sup −1}; with {sup 1}O{sub 2}, k{sub BP3,{sup 1}O{sub 2}} = (2.0 ± 0.1) · 10{sup 5} M{sup −1} s{sup −1}, and with CO{sub 3}{sup −•} , k{sub BP3,CO{sub 3{sup −}{sup •}}} < 5 · 10{sup 7} M{sup −1} s{sup −1}. These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with {sup •} OH and {sup 3}CDOM* would be the main processes of BP3 phototransformation. Reaction with {sup •} OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L{sup −1}), and reaction with {sup 3}CDOM* at high DOC. If the reaction rate constant with CO{sub 3}{sup −•} is near the upper limit of experimental measures (5 · 10{sup 7} M{sup −1} s{sup −1}), the CO{sub 3}{sup −•} degradation process could be somewhat important for DOC < 1 mg C L{sup −1}. The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with {sup •} OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ∼ 10% of initial BP3) and benzaldehyde (1%). Highlights: • Benzophenone-3 is mainly photodegraded by direct photolysis, {sup •} OH and {sup 3}CDOM*.

  6. New fluorescent azo-Schiff base Cu(II) and Zn(II) metal chelates; spectral, structural, electrochemical, photoluminescence and computational studies

    Science.gov (United States)

    Purtas, Fatih; Sayin, Koray; Ceyhan, Gokhan; Kose, Muhammet; Kurtoglu, Mukerrem

    2017-06-01

    A new Schiff base containing azo chromophore group obtained by condensation of 2-hydroxy-4-[(E)-phenyldiazenyl]benzaldehyde with 3,4-dimethylaniline (HL) are used for the syntheses of new copper(II) and zinc(II) chelates, [Cu(L)2], and [Zn(L)2], and characterized by physico-chemical and spectroscopic methods such as 1H and 13C NMR, IR, UV.-Vis. and elemental analyses. The solid state structure of the ligand was characterized by single crystal X-ray diffraction study. X-ray diffraction data was then used to calculate the harmonic oscillator model of aromaticity (HOMA) indexes for the rings so as to investigate of enol-imine and keto-amine tautomeric forms in the solid state. The phenol ring C10-C15 shows a considerable deviation from the aromaticity with HOMA value of 0.837 suggesting the shift towards the keto-amine tautomeric form in the solid state. The analytical data show that the metal to ligand ratio in the chelates was found to be 1:2. Theoretical calculations of the possible isomers of the ligand and two metal complexes are performed by using B3LYP method. Electrochemical and photoluminescence properties of the synthesized azo-Schiff bases were also investigated.

  7. A Convenient Ultrasound-Promoted Synthesis of Some New Thiazole Derivatives Bearing a Coumarin Nucleus and Their Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Sobhi M. Gomha

    2012-08-01

    Full Text Available Successful implementation of ultrasound irradiation for the rapid synthesis of a novel series of 3-[1-(4-substituted-5-(aryldiazenylthiazol-2-ylhydrazonoethyl]-2H-chromen-2-ones 5ah, via reactions of 2-(1-(2-oxo-2H-chromen-3-ylethylidene thiosemicarbazide (2 and the hydrazonoyl halides 3(4, was demonstrated. Also, a new series of 5-arylidene-2-(2-(1-(2-oxo-2H-chromen-3-ylethylidenehydrazinylthiazol-4(5H-ones 10ad were synthesized from reaction of 2 with chloroacetic acid and different aldehydes. Moreover, reaction of 2-cyano-N'-(1-(2-oxo-2H-chromen-3-ylethylidene-acetohydrazide (12 with substituted benzaldehydes gave the respective arylidene derivatives 13ac under the conditions employed. The structures of the synthesized compounds were assigned based on elemental analyses and spectral data. Also, the cytototoxic activities of the thiazole derivative 5a was evaluated against HaCaT cells (human keratinocytes. It was found that compound 5a possess potent cytotoxic activity.

  8. Bis(μ-oxo) dicopper(III) species of the simplest peralkylated diamine: enhanced reactivity toward exogenous substrates.

    Science.gov (United States)

    Kang, Peng; Bobyr, Elena; Dustman, John; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Stack, T Daniel P

    2010-12-06

    N,N,N',N'-tetramethylethylenediamine (TMED), the simplest and most extensively used peralkylated diamine ligand, is conspicuously absent from those known to form a bis(μ-oxo)dicopper(III) (O) species, [(TMED)(2)Cu(III)(2)(μ(2)-O)(2)](2+), upon oxygenation of its Cu(I) complex. Presented here is the characterization of this O species and its reactivity toward exogenous substrates. Its formation is complicated both by the instability of the [(TMED)Cu(I)](1+) precursor and by competitive formation of a presumed mixed-valent trinuclear [(TMED)(3)Cu(III)Cu(II)(2)(μ(3)-O)(2)](3+) (T) species. Under most reaction conditions, the T species dominates, yet, the O species can be formed preferentially (>80%) upon oxygenation of acetone solutions, if the copper concentration is low (theory (DFT) computational methods for geometry optimization and spectroscopic predictions. The enhanced thermal stability of [(TMED)(2)Cu(III)(2)(μ(2)-O)(2)](2+) and its limited steric demands compared to other O species allows more efficient oxidation of exogenous substrates, including benzyl alcohol to benzaldehyde (80% yield), highlighting the importance of ligand structure to not only enhance the oxidant stability but also maintain accessibility to the nascent metal/O(2) oxidant.

  9. Volatile metabolites associated with one aflatoxigenic and one nontoxigenic Aspergillus flavus strain grown on two different substrates

    Directory of Open Access Journals (Sweden)

    Z. Jurjevic

    2009-01-01

    Full Text Available Aflatoxigenic and non-toxigenic Aspergillus flavus strains were grown on corn and on peanut substrates. Microbial volatile organic compounds (MVOCS were collected by trapping headspace volatiles using thermal desorption tubes (TDT packed with Tenax® TA and Carbotrap™ B. Samples were collected at various fungal growth stages. Trapped compounds were thermally desorbed from the adsorbent tubes, separated by gas chromatography, and identified by mass spectrometry. The fungal stage did not have many differences in the MVOCs but the concentrations of some volatiles changed over time depending on the substrate. Volatiles that were associated with both the aflatoxigenic A. flavus strain and the nontoxigenic strain on both substrates included: ethanol, 1-propanol, butanal, 2-methyl-1-propanol, 3-methylfuran, ethyl acetate, 1-butanol, 3-methylbutanal, 3-methyl-1-butanol, propanoic acid-2-methyl-ethyl-ester, 2-methyl-1-butanol, 1-pentanol, 2-pentanol, 3-methyl-3-buten-1-ol, benzaldehyde, 3-octanone, 2-ethyl-1-hexanol and octane. Volatiles that were associated only with the aflatoxigenic A. flavus strain included: dimethyl disulfide and nonanal. Volatiles that were associated only with the nontoxigenic A. fl avus strain included: hexanal, 1-hexanol, 1-octene-3-ol, 1-octen-3-one and 2-pentyl furan.

  10. Determination of Volatile Compounds in Four Commercial Samples of Japanese Green Algae Using Solid Phase Microextraction Gas Chromatography Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Masayoshi Yamamoto

    2014-01-01

    Full Text Available Green algae are of great economic importance. Seaweed is consumed fresh or as seasoning in Japan. The commercial value is determined by quality, color, and flavor and is also strongly influenced by the production area. Our research, based on solid phase microextraction gas chromatography mass spectrometry (SPME-GC-MS, has revealed that volatile compounds differ intensely in the four varieties of commercial green algae. Accordingly, 41 major volatile compounds were identified. Heptadecene was the most abundant compound from Okayama (Ulva prolifera, Tokushima (Ulva prolifera, and Ehime prefecture (Ulva linza. Apocarotenoids, such as ionones, and their derivatives were prominent volatiles in algae from Okayama (Ulva prolifera and Tokushima prefecture (Ulva prolifera. Volatile, short chained apocarotenoids are among the most potent flavor components and contribute to the flavor of fresh, processed algae, and algae-based products. Benzaldehyde was predominant in seaweed from Shizuoka prefecture (Monostroma nitidum. Multivariant statistical analysis (PCA enabled simple discrimination of the samples based on their volatile profiles. This work shows the potential of SPME-GC-MS coupled with multivariant analysis to discriminate between samples of different geographical and botanical origins and form the basis for development of authentication methods of green algae products, including seasonings.

  11. Synthesis, characterization, spectroscopic and theoretical studies of new zinc(II), copper(II) and nickel(II) complexes based on imine ligand containing 2-aminothiophenol moiety

    Science.gov (United States)

    Shafaatian, Bita; Mousavi, S. Sedighe; Afshari, Sadegh

    2016-11-01

    New dimer complexes of zinc(II), copper(II) and nickel(II) were synthesized using the Schiff base ligand which was formed by the condensation of 2-aminothiophenol and 2-hydroxy-5-methyl benzaldehyde. This tridentate Schiff base ligand was coordinated to the metal ions through the NSO donor atoms. In order to prevent the oxidation of the thiole group during the formation of Schiff base and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structure of the Schiff base ligand showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff base as a new double Schiff base ligand. The molar conductivity values of the complexes in dichloromethane implied the presence of non-electrolyte species. The fluorescence properties of the Schiff base ligand and its complexes were also studied in dichloromethane. The products were characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis, and conductometry. The crystal structure of the double Schiff base was determined by single crystal X-ray diffraction. Furthermore, the density functional theory (DFT) calculations were performed at the B3LYP/6-31G(d,p) level of theory for the determination of the optimized structures of Schiff base complexes.

  12. Evaluating the antibacterial and anticandidal potency of mangrove, Avicennia marina

    Directory of Open Access Journals (Sweden)

    Aseer Manilal

    2016-02-01

    Full Text Available Objective: To evaluate the antibiotic activity of mangrove plant, Avicennia marina (A. marina against human and shrimp pathogens and to delineate bioactive constituents by gas chromatography-mass spectrometer (GC-MS profiling. Methods: The antimicrobial activity of the different polar and non-polar extracts of A. marina was inspected by well diffusion technique against 16 bacterial pathogens and two fungal pathogens. Results: Of the six organic extracts examined, methanolic extract of A. marina fairly repressed the growth of all bacterial and fungal pathogenic strains tested. In general, mangrove extract was more active against the bacterial pathogens while against yeasts, the activity was lesser. The antibiotic activity was attributed to the presence of diverse bioactive secondary metabolites. The chemical profiling of the methanolic extract was performed by GC combined with mass spectrometry. The results of GC-MS showed that the main phytoconstituents were benzeneethanol,4-hydroxy- (RT = 12.173, followed by benzaldehyde,3-methyl- (RT = 6.811. Finally, the GC-MS data evinced that the antimicrobial activity of A. marina was due to the synergistic effect of all constituents or the activity of major constituents. Conclusions: Considering the urgent need of novel antibiotics, the present study brings out a new insight on the exploration of mangroves for antibiotic production in future.

  13. Chemical Profile of Monascus ruber Strains

    Directory of Open Access Journals (Sweden)

    Ahamed M. Moharram

    2012-01-01

    Full Text Available Chemical profile of Monascus ruber strains has been studied using gas chromatography-mass spectrometry (GC/MS analysis. The colour intensity of the red pigment and secondary metabolic products of two M. ruber strains (AUMC 4066 and AUMC 5705 cultivated on ten different media were also studied. Metabolic products can be classified into four categories: anticholesterol, anticancer, food colouring, and essential fatty acids necessary for human health. Using GC/MS, the following 88 metabolic products were detected: butyric acid and its derivatives (25 products, other fatty acids and their derivatives (19 products, pyran and its derivatives (22 products and other metabolites (22 products. Among these, 32 metabolites were specific for AUMC 4066 strain and 34 for AUMC 5705 strain, whereas 22 metabolites were produced by both strains on different tested substrates. Production of some metabolites depended on the substrate used. High number of metabolites was recorded in the red pigment extract obtained by both strains grown on malt broth and malt agar. Also, 42 aroma compounds were recorded (4 alcohols, 2 benzaldehydes, 27 esters, 3 lactones, 1 phenol, 1 terpenoid, 3 thiol compounds and acetate-3-mercapto butyric acid. Thin layer chromatography and GC/MS analyses revealed no mycotoxin citrinin in any media used for the growth of the two M. ruber strains.

  14. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity

    Directory of Open Access Journals (Sweden)

    Ajmal R. Bhat

    2015-11-01

    Full Text Available An efficiently simple protocol for the synthesis of methyl 7 amino-4-oxo-5-phenyl-2-thioxo-2, 3, 4,5-tetrahydro-1H-pyrano[2,3-d]pyrimidine-6-carboxylates via one-pot three component condensation pathway is established via microwave irradiation using varied benzaldehyde derivatives, methylcyanoacetate and thio-barbituric acid in water as a green solvent. A variety of functionalized substrates were found to react under this methodology due to its easy operability and offers several advantages like, high yields (78–94%, short reaction time (3–6 min, safety and environment friendly without used any catalyst. The synthesized compounds (4a–4k showed comparatively good in vitro antimicrobial and antifungal activities against different strains. The Compounds 4a, 4b, 4c, 4d 4e and 4f showed maximum antimicrobial activity against Staphylococcus aureus, Bacillus cereus (gram-positive bacteria, Escherichia coli, Klebshiella pneumonia, Pseudomonas aeruginosa (gram-negative bacteria. The synthesized compound 4f showed maximum antifungal activity against Aspergillus Niger and Penicillium chrysogenum strains. Streptomycin is used as standard for bacterial studies and Mycostatin as standards for fungal studies. Structure of all newly synthesized products was characterized on the basis of IR, 1H NMR, 13C NMR and mass spectral analysis.

  15. Surface functional group characterization using chemical derivatization X-ray photoelectron spectroscopy (CD-XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Jagst, Eda

    2011-03-18

    Chemical derivatization - X-ray photolectron spectroscopy (CD-XPS) was applied successfully in order to determine different functional groups on thin film surfaces. Different amino group carrying surfaces, prepared by spin coating, self-assembly and plasma polymerization, were successfully investigated by (XPS) and near edge X-ray absorption fine structure (NEXAFS) spectroscopy. Amino groups were derivatized with the widely used primary amino group tags, pentafluorobenzaldehyde (PFB) and 4-(trifluoromethyl)-benzaldehyde (TFBA), prior to analysis. Primary amino group quantification was then carried out according to the spectroscopical data. Self-assembled monolayers (SAMs) of different terminal groups were prepared and investigated with XPS and spectra were compared with reference surfaces. An angle resolved NEXAFS measurement was applied to determine the orientation of SAMs. Plasma polymerized allylamine samples with different duty cycle, power and pressure values were prepared in order to study the effects of external plasma parameters on the primary amino group retention. CD-XPS was used to quantify the amino groups and experiments show, that the milder plasma conditions promote the retention of amino groups originating from the allylamine monomer. An interlaboratory comparison of OH group determination on plasma surfaces of polypropylene treated with oxygen plasma, was studied. The surfaces were investigated with XPS and the [OH] amount on the surfaces was calculated. (orig.)

  16. Physico-chemical properties and sensory profile of durum wheat Dittaino PDO (Protected Designation of Origin) bread and quality of re-milled semolina used for its production.

    Science.gov (United States)

    Giannone, Virgilio; Giarnetti, Mariagrazia; Spina, Alfio; Todaro, Aldo; Pecorino, Biagio; Summo, Carmine; Caponio, Francesco; Paradiso, Vito Michele; Pasqualone, Antonella

    2018-02-15

    To help future quality checks, we characterized the physico-chemical and sensory properties of Dittaino bread, a sourdough-based durum wheat bread recently awarded with Protected Designation of Origin mark, along with the quality features of re-milled semolina used for its production. Semolina was checked for Falling Number (533-644s), protein content (12.0-12.3g/100gd.m.), gluten content (9.7-10.5g/100gd.m.), yellow index (18.0-21.0), water absorption (59.3-62.3g/100g), farinograph dough stability (171-327s), softening index (46-66B.U.), alveograph W (193×10 -4 -223×10 -4 J) and P/L (2.2-2.7). Accordingly, bread crumb was yellow, moderately hard (16.4-27.1N) and chewy (88.2-109.2N×mm), with low specific volume (2.28-3.03mL/g). Bread aroma profile showed ethanol and acetic acid, followed by hexanol, 3-methyl-1-butanol, 2-phenylethanol, 3-methylbutanal, hexanal, benzaldehyde, and furfural. The sensory features were dominated by a thick brown crust, with marked toasted odor, coupled to yellow and consistent crumb, with coarse grain and well-perceivable sour taste and odor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Identification and quantification of organic pollutants in the air of the city of Astana using solid phase microextraction

    Directory of Open Access Journals (Sweden)

    Dina Orazbayeva

    2017-06-01

    Full Text Available Solid-phase microextraction in combination with gas chromatography and mass-spectrometry (GC-MS was used for determination of benzene, toluene, ethylbenzene and o-xylene (BTEX, polycyclic aromatic hydrocarbons (PAH, and for identification of volatile organic compounds (VOCs in ambient air of the city of Astana, Kazakhstan. The screening of the samples showed the presence of mono- and polycyclic aromatic hydrocarbons, alkanes, alkenes, phenols, and benzaldehydes. The concentrations of naphthalene were 5-7 times higher than the permissible value, it was detected in all studied air samples. Average concentration of naphthalene was 18.4 μg/m3, acenaphthylene – 0.54 μg/m3, acenaphthene – 1.63 μg/m3, fluorene – 0.79 μg/m3, anthracene – 3.27 μg/m3, phenanthrene – 0.22 μg/m3, fluorantene – 0.74 μg/m3, pyrene – 0.73 μg/m3. Average concentrations of BTEX in the studied samples were 31.1, 84.9, 10.8 and 11.6 μg/m3, respectively. Based on the statistical analysis of the concentrations of BTEX and PAH, the main source of city air pollution with them was assumed to be vehicle emissions.

  18. Dissecting the role of TRPV1 in detecting multiple trigeminal irritants in three behavioral assays for sensory irritation [v1; ref status: indexed, http://f1000r.es/p8

    Directory of Open Access Journals (Sweden)

    CJ Saunders

    2013-03-01

    Full Text Available Polymodal neurons of the trigeminal nerve innervate the nasal cavity, nasopharynx, oral cavity and cornea. Trigeminal nociceptive fibers express a diverse collection of receptors and are stimulated by a wide variety of chemicals. However, the mechanism of stimulation is known only for relatively few of these compounds. Capsaicin, for example, activates transient receptor potential vanilloid 1 (TRPV1 channels. In the present study, wildtype (C57Bl/6J and TRPV1 knockout mice were tested in three behavioral assays for irritation to determine if TRPV1 is necessary to detect trigeminal irritants in addition to capsaicin. In one assay mice were presented with a chemical via a cotton swab and their response scored on a 5 level scale. In another assay, a modified two bottle preference test, which avoids the confound of mixing irritants with the animal’s drinking water, was used to assess aversion. In the final assay, an air dilution olfactometer was used to administer volatile compounds to mice restrained in a double-chambered plethysmograph where respiratory reflexes were monitored. TRPV1 knockouts showed deficiencies in the detection of benzaldehyde, cyclohexanone and eugenol in at least one assay. However, cyclohexanone was the only substance tested that appears to act solely through TRPV1.

  19. Efficient synthetic protocols in glycerol under heterogeneous catalysis.

    Science.gov (United States)

    Cravotto, Giancarlo; Orio, Laura; Gaudino, Emanuela Calcio; Martina, Katia; Tavor, Dorith; Wolfson, Adi

    2011-08-22

    The massive increase in glycerol production from the transesterification of vegetable oils has stimulated a large effort to find novel uses for this compound. Hence, the use of glycerol as a solvent for organic synthesis has drawn particular interest. Drawbacks of this green and renewable solvent are a low solubility of highly hydrophobic molecules and a high viscosity, which often requires the use of a fluidifying co-solvent. These limitations can be easily overcome by performing reactions under high-intensity ultrasound and microwaves in a stand-alone or combined manner. These non-conventional techniques facilitate and widen the use of glycerol as a solvent in organic synthesis. Glycerol allows excellent acoustic cavitation even at high temperatures (70-100 °C), which is otherwise negligible in water. Herein, we describe three different types of applications: 1) the catalytic transfer hydrogenation of benzaldehyde to benzyl alcohol in which glycerol plays the dual role of the solvent and hydrogen donor; 2) the palladium-catalyzed Suzuki cross-coupling; and (3) the Barbier reaction. In all cases glycerol proved to be a greener, less expensive, and safer alternative to the classic volatile organic solvents. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Functional characterization of a vanillin dehydrogenase in Corynebacterium glutamicum

    Science.gov (United States)

    Ding, Wei; Si, Meiru; Zhang, Weipeng; Zhang, Yaoling; Chen, Can; Zhang, Lei; Lu, Zhiqiang; Chen, Shaolin; Shen, Xihui

    2015-01-01

    Vanillin dehydrogenase (VDH) is a crucial enzyme involved in the degradation of lignin-derived aromatic compounds. Herein, the VDH from Corynebacterium glutamicum was characterized. The relative molecular mass (Mr) determined by SDS-PAGE was ~51kDa, whereas the apparent native Mr values revealed by gel filtration chromatography were 49.5, 92.3, 159.0 and 199.2kDa, indicating the presence of dimeric, trimeric and tetrameric forms. Moreover, the enzyme showed its highest level of activity toward vanillin at pH 7.0 and 30C, and interestingly, it could utilize NAD+ and NADP+ as coenzymes with similar efficiency and showed no obvious difference toward NAD+ and NADP+. In addition to vanillin, this enzyme exhibited catalytic activity toward a broad range of substrates, including p-hydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde, o-phthaldialdehyde, cinnamaldehyde, syringaldehyde and benzaldehyde. Conserved catalytic residues or putative cofactor interactive sites were identified based on sequence alignment and comparison with previous studies, and the function of selected residues were verified by site-directed mutagenesis analysis. Finally, the vdh deletion mutant partially lost its ability to grow on vanillin, indicating the presence of alternative VDH(s) in Corynebacterium glutamicum. Taken together, this study contributes to understanding the VDH diversity from bacteria and the aromatic metabolism pathways in C. glutamicum. PMID:25622822

  1. Volatile organic emissions from the distillation and pyrolysis of vegetation

    Directory of Open Access Journals (Sweden)

    J. P. Greenberg

    2006-01-01

    Full Text Available Leaf and woody plant tissue (Pinus ponderosa, Eucalyptus saligna, Quercus gambelli, Saccharum officinarum and Oriza sativa were heated from 30 to 300°C and volatile organic compound (VOC emissions were identified and quantified. Major VOC emissions were mostly oxygenated and included acetic acid, furylaldehyde, acetol, pyrazine, terpenes, 2,3-butadione, phenol and methanol, as well as smaller emissions of furan, acetone, acetaldehyde, acetonitrile and benzaldehyde. Total VOC emissions from distillation and pyrolysis were on the order of 10 gC/kgC dry weight of vegetation, as much as 33% and 44% of CO2 emissions (gC(VOC/gC(CO2 measured during the same experiments, in air and nitrogen atmospheres, respectively. The emissions are similar in identity and quantity to those from smoldering combustion of woody tissue and of different character than those evolved during flaming combustion. VOC emissions from the distillation of pools and endothermic pyrolysis under low turbulence conditions may produce flammable concentrations near leaves and may facilitate the propagation of wildfires. VOC emissions from charcoal production are also related to distillation and pyrolysis; the emissions of the highly reactive VOCs from production are as large as the carbon monoxide emissions.

  2. An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees.

    Science.gov (United States)

    Eltz, Thomas; Zimmermann, Yvonne; Pfeiffer, Carolin; Pech, Jorge Ramirez; Twele, Robert; Francke, Wittko; Quezada-Euan, J Javier G; Lunau, Klaus

    2008-12-09

    Saltational changes may underlie the diversification of pheromone communication systems in insects, which are normally under stabilizing selection favoring high specificity in signals and signal perception. In orchid bees (Euglossini), the production of male signals depends on the sense of smell: males collect complex blends of volatiles (perfumes) from their environment, which are later emitted as pheromone analogs at mating sites. We analyzed the behavioral and antennal response to perfume components in two male morphotypes of Euglossa cf. viridissima from Mexico, which differ in the number of mandibular teeth. Tridentate males collected 2-hydroxy-6-nona-1,3-dienyl-benzaldehyde (HNDB) as the dominant component of their perfume. In bidentate males, blends were broadly similar but lacked HNDB. Population genetic analysis revealed that tri- and bidentate males belong to two reproductively isolated lineages. Electroantennogram tests (EAG and GC-EAD) showed substantially lower antennal responses to HNDB in bidentate versus tridentate males, revealing for the first time a mechanism by which closely related species acquire different chemical compounds from their habitat. The component-specific differences in perfume perception and collection in males of two sibling species are in agreement with a saltational, olfaction-driven mode of signal perfume evolution. However, the response of females to the diverged signals remains unknown.

  3. Structural and kinetic basis for substrate selectivity in Populus tremuloides sinapyl alcohol dehydrogenase.

    Science.gov (United States)

    Bomati, Erin K; Noel, Joseph P

    2005-05-01

    We describe the three-dimensional structure of sinapyl alcohol dehydrogenase (SAD) from Populus tremuloides (aspen), a member of the NADP(H)-dependent dehydrogenase family that catalyzes the last reductive step in the formation of monolignols. The active site topology revealed by the crystal structure substantiates kinetic results indicating that SAD maintains highest specificity for the substrate sinapaldehyde. We also report substantial substrate inhibition kinetics for the SAD-catalyzed reduction of hydroxycinnamaldehydes. Although SAD and classical cinnamyl alcohol dehydrogenases (CADs) catalyze the same reaction and share some sequence identity, the active site topology of SAD is strikingly different from that predicted for classical CADs. Kinetic analyses of wild-type SAD and several active site mutants demonstrate the complexity of defining determinants of substrate specificity in these enzymes. These results, along with a phylogenetic analysis, support the inclusion of SAD in a plant alcohol dehydrogenase subfamily that includes cinnamaldehyde and benzaldehyde dehydrogenases. We used the SAD three-dimensional structure to model several of these SAD-like enzymes, and although their active site topologies largely mirror that of SAD, we describe a correlation between substrate specificity and amino acid substitution patterns in their active sites. The SAD structure thus provides a framework for understanding substrate specificity in this family of enzymes and for engineering new enzyme specificities.

  4. Studying Plant–Insect Interactions with Solid Phase Microextraction: Screening for Airborne Volatile Emissions Response of Soybeans to the Soybean Aphid, Aphis glycines Matsumura (Hemiptera: Aphididae

    Directory of Open Access Journals (Sweden)

    Lingshuang Cai

    2015-05-01

    Full Text Available Insects trigger plants to release volatile compounds that mediate the interaction with both pest and beneficial insects. Soybean aphids (Aphis glycines induces soybean (Glycine max leaves to produce volatiles that attract predators of the aphid. In this research, we describe the use of solid-phase microextraction (SPME for extraction of volatiles from A. glycines-infested plant. Objectives were to (1 determine if SPME can be used to collect soybean plant volatiles and to (2 use headspace SPME-GC-MS approach to screen compounds associated with A. glycines-infested soybeans, grown in the laboratory and in the field, to identify previously known and potentially novel chemical markers of infestation. A total of 62 plant volatiles were identified, representing 10 chemical classes. 39 compounds had not been found in previous studies of soybean volatile emissions. 3-hexen-1-ol, dimethyl nonatriene, indole, caryophyllene, benzaldehyde, linalool, methyl salicylate (MeSA, benzene ethanol, and farnesene were considered herbivore-induced plant volatiles (HIPVs. For reproductive field-grown soybeans, three compounds were emitted in greater abundance from leaves infested with A. glycines, cis-3-hexen-1-ol acetate, MeSA and farnesene. In summary, SPME can detect the emission of HIPVs from plants infested with insect herbivores.

  5. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Rachidi, Mariam El

    2014-05-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  6. Synthesis, antifungal evaluation and in silico study of novel Schiff bases derived from 4-amino-5(3,5-dimethoxy-phenyl-4H-1,2,4-triazol-3-thiol

    Directory of Open Access Journals (Sweden)

    N.S. Hari Narayana Moorthy

    2017-05-01

    Full Text Available A novel series of Schiff bases based on of 4-amino-5-(3,5-dimethoxy-phenyl-4H-1,2,4-triazol-3-thiol scaffold was prepared by heating thiocarbohydrazide and 3,5,-dimethoxy benzoic acid at the temperature above its meting point, and subsequently, treating with substituted benzaldehydes. The chemical constituents in the synthesized compounds were confirmed by IR, Mass, 1H NMR spectroscopy and elemental analysis and the antifungal activity was evaluated against Candida albicans. The structure activity relationship analysis shows that the chloride substituted derivatives possess promising activity in micromolar concentration and also the hydroxy phenyl derivatives exhibited considerable activity at 128 μg/ml. But other compounds with amino, furan and methoxy substitutions did not show antifungal activity till the concentration of 512 μg/ml. In silico pharmacokinetic prediction shows that all the compounds obeyed Lipinski rule of 5 and are free of toxicity and metabolically stable. Pharmacophore analysis revealed that the aromatic/hydrophobic and aromatic/acceptor/donor features in the compounds are essential for the activity. The predicted cardiotoxicity (hERG and lethal effect of the synthesized compounds will permit us to carry out further in vitro and in vivo toxicity studies.

  7. Synthesis and reactions of triphenylphosphine-O-benzophenonimine and derivatives

    International Nuclear Information System (INIS)

    Elamin, Manahil Babiker

    1999-08-01

    O-Amino benzophenone and its para and meta isomers were prepared using Friedl-Craft benzoylation. Their azides were also prepared via their diazonium salts. The azide of o-amino benzophenone in its reduced form (o-benzylaniline) and its cyclic ketal were synthesised. All azides thus formed were reacted separately with triphenylphosphine to give the corresponding phosphinimines, the Wittig reagents nitrogen analog. The reactivity of the phosphorous bond. (P=N) in the different phosphoranes were studied by two types of reactions: (1) the Wittig type of reaction using benzaldehyde and its into derivatives with each of the above prepared phosphinimines. While triphenylphosphine-m-benzophenonimine (ii) and the triphenylphosphine benzophenonimine ethylene acetal (v) and it's reduced form triphenylphosphine-o-benzophenonimine (iv) react giving the corresponding schiffis bases. However, the ortho (i) and the para (iii) isomers failed to react. This lack of reactivity is presumably due to their great stability which came about through the extensive resonance that reduced the nucleophilicity of the nitrogen nucleophiles. (2) The phophinimines each was irradiated using Hanovia medium pressure UV lamp. Also the ortho and para isomers were not affected while others reacted giving the corresponding azo-compound and triphenylphosphine. they were separated and detected by chromatography.(Author)

  8. Bifunctional nanocrystalline MgO for chiral epoxy ketones via Claisen-Schmidt condensation-asymmetric epoxidation reactions.

    Science.gov (United States)

    Choudary, Boyapati M; Kantam, Mannepalli L; Ranganath, Kalluri V S; Mahendar, Koosam; Sreedhar, Bojja

    2004-03-24

    Design and development of a truly nanobifunctional heterogeneous catalyst for the Claisen-Schmidt condensation (CSC) of benzaldehydes with acetophenones to yield chalcones quantitatively followed by asymmetric epoxidation (AE) to afford chiral epoxy ketones with moderate to good yields and impressive ee's is described. The nanomagnesium oxide (aerogel prepared) NAP-MgO was found to be superior over the NA-MgO and CM-MgO in terms of activity and enantioselectivity as applicable in these reactions. An elegant strategy for heterogenization of homogeneous catalysts is presented here to evolve single-site chiral catalysts for AE by a successful transfer of molecular chemistry to surface metal-organic chemistry with the retention of activity, selectivity/enantioselectivity. Brønsted hydroxyls are established as sole contributors for the epoxidation reaction, while they add on to the CSC, which is largely driven by Lewis basic O2-sites. Strong hydrogen-bond interactions between the surface -OH on MgO and -OH groups of diethyl tartrate are found inducing enantioselectivity in the AE reaction. Thus, the nanocrystalline NAP-MgO with its defined shape, size, and accessible OH groups allows the chemisorption of TBHP, DET, and olefin on its surface to accomplish single-site chiral catalysts to provide optimum ee's in AE reactions.

  9. Time-Related Changes in Volatile Compounds during Fermentation of Bulk and Fine-Flavor Cocoa (Theobroma cacao Beans

    Directory of Open Access Journals (Sweden)

    Juan Manuel Cevallos-Cevallos

    2018-01-01

    Full Text Available Chocolate is one of the most consumed foods worldwide and cacao fermentation contributes to the unique sensory characteristics of chocolate products. However, comparative changes in volatiles occurring during fermentation of Criollo, Forastero, and Nacional cacao—three of the most representative cultivars worldwide—have not been reported. Beans of each cultivar were fermented for five days and samples were taken every 24 hours. Volatiles from each sample were adsorbed into a solid phase microextraction fiber and analyzed by gas chromatography-mass spectrometry. Aroma potential of each compound was determined using available databases. Multivariate data analyses showed partial clustering of samples according to cultivars at the start of the fermentation but complete clustering was observed at the end of the fermentation. The Criollo cacao produced floral, fruity, and woody aroma volatiles including linalool, epoxylinalool, benzeneethanol, pentanol acetate, germacrene, α-copaene, aromadendrene, 3,6-heptanedione, butanal, 1-phenyl ethenone, 2-nonanone, and 2-pentanone. Nacional cacao produced fruity, green, and woody aroma volatiles including 2-nonanone, 3-octen-1-ol, 2-octanol acetate, 2-undecanone, valencene, and aromadendrene. The Forastero cacao yielded floral and sweet aroma volatiles such as epoxylinalool, pentanoic acid, benzeneacetaldehyde, and benzaldehyde. This is the first report of volatiles produced during fermentation of Criollo, Forastero, and Nacional cacao from the same origin.

  10. Emissions of carbonyl compounds from various cookstoves in China

    International Nuclear Information System (INIS)

    Zhang, J.; Smith, K.R.; Univ. of California, Berkeley, CA

    1999-01-01

    This paper presents a new database of carbonyl emission factors for commonly used cookstoves in China. The emission factors, reported both on a fuel-mass basis (mg/kg) and on a defined cooking-task basis (mg/task), were determined using a carbon balance approach for 22 types of fuel/stove combinations. These include various stoves using different species of crop residues and wood, kerosene, and several types of coals and gases. The results show that all the tested cookstoves produced formaldehyde and acetaldehyde and that the vast majority of the biomass stoves produced additional carbonyl compounds such as acetone, acrolein, propionaldehyde, crotonaldehyde, 2-butanone, isobutyraldehyde, butyraldehyde, isovaleraldehyde, valeraldehyde, hexaldehyde, benzaldehyde, o-tolualdehyde, m,p-tolualdehyde, and 2,4-dimethylbenzaldehyde. Carbonyls other than formaldehyde and acetaldehyde, however, were rarely generated by burning coal, coal gas, and natural gas. Kerosene and LPG stoves generated more carbonyl compounds than coal, coal gas, and natural gas stoves, but less than biomass stoves. Indoor levels of carbonyl compounds for typical village houses during cooking hours, estimated using a mass balance model and the measured emission factors, can be high enough to cause acute health effects documented for formaldehyde exposure, depending upon house parameters and individuals' susceptibility

  11. Liquid crystalline polymers IX Main chain thermotropic poly (azomethine – ethers containing thiazole moiety linked with polymethylene spacers

    Directory of Open Access Journals (Sweden)

    2007-04-01

    Full Text Available A new homologous series of thermally stable thermotropic liquid crystalline poly(azomethine-ethers based on thiazole moiety were synthesized by solution polycondensation of 4,4`-diformyl-α,ω-diphenoxyalkanes, I–IV or 4,4`-diformyl-2,2`-dimethoxy-α,ω-diphenoxyalkanes V–VIII with the new bis(2-aminothiazole monomer X. A model compound XI was synthesized from X with benzaldehyde and characterized by elemental and spectral analyses. The inherent viscosities of the resulting polymers were in the range 0.43–1.34 dI/g. All the poly(azomethine-ethers were insoluble in common organic solvents but dissolved completely in concentrated H2SO4 and formic acid. The mesomorphic properties of these polymers were studied as a function of the diphenoxyalkane space length. Their thermotropic liquid crystalline properties were examined by DSC and optical polarizing microscopy and demonstrated that the resulting polymers form nematic mesophases over wide temperature ranges. The thermogravimetric analyses of those polymers were evaluated by TGA and DSC measurements and correlated to their structural units. X-ray analysis showed that polymers having some degree of crystallinity in the region 2θ = 5–60°. In addition, the morphological properties of selected examples were tested by scanning electron microscopy.

  12. Small-Sized Mg–Al LDH Nanosheets Supported on Silica Aerogel with Large Pore Channels: Textural Properties and Basic Catalytic Performance after Activation

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    2018-02-01

    Full Text Available Layered double hydroxides (LDHs have been widely used as an important subset of solid base catalysts. However, developing low-cost, small-sized LDH nanoparticles with enhanced surface catalytic sites remains a challenge. In this work, silica aerogel (SA-supported, small-sized Mg–Al LDH nanosheets were successfully prepared by one-pot coprecipitation of Mg and Al ions in an alkaline suspension of crushed silica aerogel. The supported LDH nanosheets were uniformly dispersed in the SA substrate with the smallest average radial diameter of 19.2 nm and the thinnest average thickness of 3.2 nm, both dimensions being significantly less than those of the vast majority of LDH nanoparticles reported. The SA/LDH composites also showed large pore volume (up to 1.3 cm3·g and pore diameter (>9 nm, and therefore allow efficient access of reactants to the edge catalytic sites of LDH nanosheets. In a base-catalyzed Henry reaction of benzaldehyde with nitromethane, the SA/LDH catalysts showed high reactant conversions and favorable stability in 6 successive cycles of reactions. The low cost of the SA carrier and LDH precursors, easy preparation method, and excellent catalytic properties make these SA/LDH composites a competitive example of solid-base catalysts.

  13. Cooxidation of styrene by horseradish peroxidase and phenols. A biochemical model for protein-mediated cooxidation

    International Nuclear Information System (INIS)

    Ortiz de Montellano, P.R.; Grab, L.A.

    1987-01-01

    Styrene is oxidized to styrene oxide and benzaldehyde when incubated with horseradish peroxidase, H 2 O 2 , and 4-methylphenol. Styrene oxide is not formed in the absence of any of these reaction components or of molecular oxygen. The coupling products 2-(4-methylphenoxy)-1-phenylethane, 2-(4-methylphenoxy)-1-phenylethan-1-ol, and 2-(4-methylphenoxy)-2-phenylethan-1-ol are not formed, but the ortho-linked dimer of 4-methylphenol is a major product. The epoxide oxygen is labeled in the presence of 18 O 2 but not H 2 18 O 2 . Styrene oxide formation is not inhibited by mannitol or superoxide dismutase. The stereochemistry of trans-[1- 2 H]styrene is partially scrambled in the epoxide product. EPR signals attributable to the 2,4-dihydroxyl-5-methylphenoxy radical, a product of the oxidation of 4-methylcatechol, are observed if Zn 2+ is added to stabilize the radical. This radical is only detected in the presence of styrene. The results imply that styrene is epoxidized by the hydroperoxy radical generated by addition of molecular oxygen to the 4-methylphenoxy radical. The epoxidation mimics the chemistry proposed to occur in the protein-mediated cooxidation of styrene by hemoglobin and myoglobin

  14. Phytochemical study of Pilosocereus pachycladus and antibiotic-resistance modifying activity of syringaldehyde

    Directory of Open Access Journals (Sweden)

    Severino Gonçalves de Brito-Filho

    Full Text Available ABSTRACT Pilosocereus pachycladus F. Ritter, Cactaceae, popularly known as "facheiro", is used as food and traditional medicine in Brazilian caatinga ecoregion. The plant is used to treat prostate inflammation and urinary infection. The present work reports the first secondary metabolites isolated from P. pachycladus. Therefore, the isolated compound 4-hydroxy-3,5-dimethoxy benzaldehyde (syringaldehyde was evaluated as modulator of Staphylococcus aureus pump efflux-mediated antibiotic resistance. The isolation of compounds was performed using chromatographic techniques and the structural elucidation was carried out by spectroscopic methods. In order to evaluate syringaldehyde ability to modulate S. aureus antibiotic resistance, its minimum inhibitory concentrations (µg/ml was first determinate, then, the tested antibiotics minimum inhibitory concentrations were determined in the presence of the syringaldehyde in a sub-inhibitory concentration. The chromatographic procedures led to isolation of twelve compounds from P. pachycladus including fatty acids, steroids, chlorophyll derivatives, phenolics and a lignan. The syringaldehyde did not show any antibacterial activity at 256 µg/ml against S. aureus. On the other hand the compound was able to reduce the antibiotic concentration (tetracycline, norfloxacin, ethidium bromide required to inhibit the growth of drug-resistant bacteria, showing the ability of syringaldehyde of inhibiting the efflux pump on these bacteria.

  15. UV spectra and OH-oxidation kinetics of gaseous phase morpholinic compounds

    KAUST Repository

    Rachidi, Mariam El; El Masri, A.; Roth, E.; Chakir, A.

    2014-01-01

    This paper presents an experimental study of the UV spectra as well as the kinetics of gaseous phase OH-oxidation of morpholine, N-formylmorpholine (NFM) and N-acetlymorpholine (NAM). The spectra recorded using a UV spectrometer in the spectral range 200-280nm show that the analytes mainly absorb at wavelengths less than 280nm. This indicates that their photolysis potential in the troposphere is insignificant. Meanwhile, the OH-reactivity of these analytes was studied using a triple-jacket 2m long reactor equipped with a multi-reflection system and coupled to an FTIR spectrometer. The experiments were carried out at 295 and 313K for the amine and amides, respectively. The study was conducted in the relative mode using isoprene and benzaldehyde as reference compounds. The rate constants obtained are 14.0±1.9, 4.0±1.1 and 3.8±1.0 (in units of 10-11cm3molecule-1s-1) for morpholine, NFM and NAM respectively. These results are discussed in terms of reactivity and compared to those obtained for other oxy-nitrogenated species. In addition, the determined rate constants are used to estimate effective atmospheric lifetimes of the investigated morpholinic compounds with respect to reaction with OH radicals. © 2014 Elsevier Ltd.

  16. High throughput Screening to Identify Natural Human Monoamine Oxidase B Inhibitors

    Science.gov (United States)

    Mazzio, E; Deiab, S; Park, K; Soliman, KFA

    2012-01-01

    Age-related increase in monoamine oxidase B (MAO-B) may contribute to CNS neurodegenerative diseases. Moreover, MAO-B inhibitors are used in the treatment of idiopathic Parkinson disease as preliminary monotherapy or adjunct therapy with L-dopa. To date, meager natural sources of MAO-B inhibitors have been identified, and the relative strength, potency and rank of many plants relative to standard drugs such as Selegiline (L-deprenyl, Eldepryl) are not known. In this work, we developed and utilized a high throughput enzyme microarray format to screen and evaluate 905 natural product extracts (0.025–.7 mg/ml) to inhibit human MAO-B derived from BTI-TN-5B1-4 cells infected with recombinant baculovirus. The protein sequence of purified enzyme was confirmed using 1D gel electrophoresis-matrix assisted laser desorption ionization-time-of-flight-tandem mass spectroscopy, and enzyme activity was confirmed by [1] substrate conversion (3-mM benzylamine) to H202 and [2] benzaldehyde. Of the 905 natural extracts tested, the lowest IC50s [Comfrey, Bringraj, Skullcap, Kava-kava, Wild Indigo, Gentian and Green Tea. In conclusion, the data reflect relative potency information by rank of commonly used herbs and plants that contain human MAO-B inhibitory properties in their natural form. PMID:22887993

  17. OVARIAN HORMONE PRODUCTION AFFECTED BY AMYGDALIN ADDITION IN VITRO

    Directory of Open Access Journals (Sweden)

    Marek Halenár

    2015-02-01

    Full Text Available Amygdalin, a natural substance, is a cyanogenic glycoside occurring in the seeds of apricots and bitter almonds. It is a controversial anti-tumor compound that has been used as an alternative cancer drug for many years. Amygdalin is composed of two molecules of glucose, one of benzaldehyde, which induces an analgesic action, and one of hydrocyanic acid, which is an anti-neoplastic compound. This in vitro study was performed to evaluate the possible impact of amygdalin (1, 10, 100, 1000, 10 000 μg/mL on the secretory activity of granulosa cells (GCs from porcine cyclic ovaries. The release of progesterone and estradiol-17β by GCs were evaluated by ELISA. In our study, the noticeable changes in estradiol-17β release by ovarian GCs were determined after the amygdalin addition. Amygdalin, at the highest dose (10 000 μg/mL, significantly (P≤0.05 stimulated the release of estradiol-17β by GCs, in comparison to the untreated control cells. On the contrary, no significant (P≥0.05 changes in the progesterone release by GCs caused by amygdalin addition were observed. In conclusion, obtained results showed that the amygdalin application (various doses to ovarian GCs caused a dose-dependent stimulation of the estradiol-17β release, but not progesterone, and its possible modulatory impact on the steroid production in porcine ovaries.

  18. Quantification of Carbonyl Compounds Generated from Ozone-Based Food Colorants Decomposition Using On-Fiber Derivatization-SPME-GC-MS

    Directory of Open Access Journals (Sweden)

    Wenda Zhu

    2014-12-01

    Full Text Available Fruit leathers (FLs production produces some not-to-specification material, which contains valuable ingredients like fruit pulp, sugars and acidulates. Recovery of FL for product recycling requires decolorization. In earlier research, we proved the efficiency of an ozone-based decolorization process; however, it produces carbonyls as major byproducts, which could be of concern. A headspace solid-phase microextraction with on-fiber derivatization followed by gas chromatography-mass spectrometry was developed for 10 carbonyls analysis in ozonated FL solution/suspension. Effects of dopant concentration, derivatization temperature and time were studied. The adapted method was used to analyze ozonated FL solution/suspension samples. Dopant concentration and derivatization temperature were optimized to 17 mg/mL and 60 °C, respectively. Competitive extraction was studied, and 5 s extraction time was used to avoid non-linear derivatization of 2-furfural. The detection limits (LODs for target carbonyls ranged from 0.016 and 0.030 µg/L. A much lower LOD (0.016 ppb for 2-furfural was achieved compared with 6 and 35 ppb in previous studies. Analysis results confirmed the robustness of the adapted method for quantification of carbonyls in recycled process water treated with ozone-based decolorization. Ethanal, hexanal, 2-furfural, and benzaldehyde were identified as byproducts of known toxicity but all found below levels for concern.

  19. A rhodamine-based turn-on nitric oxide sensor in aqueous medium with endogenous cell imaging: an unusual formation of nitrosohydroxylamine.

    Science.gov (United States)

    Alam, Rabiul; Islam, Abu Saleh Musha; Sasmal, Mihir; Katarkar, Atul; Ali, Mahammad

    2018-05-10

    A new sensor (L3) based on Rhodamine-B-en (2) and 2-(pyridin-2-ylmethoxy)benzaldehyde (1) has been developed for highly sensitive and selective recognition of NO in purely aqueous medium where the reaction of NO with the fluorophore leads to an unusual formation of nitrosohydroxylamine with the selective opening of the spirolactam ring over different cations, anions, amino-acids and other biological species with prominent enhancement in absorption and emission intensities. A large enhancement of fluorescence intensity for NO (11 fold) was observed upon addition of 3 equivalents of NO into the sensor in aqueous HEPES buffer (20 mM) at pH 7.20, μ = 0.05 M NaCl with naked eye detection. The corresponding Kf value was evaluated to be (7.55 ± 2.04) × 104 M-1 from the fluorescence titration plot. Quantum yields of L3 and the [L3 + NO] compound are found to be 0.07 and 0.77, respectively, using Rhodamine-6G as the standard. The LOD for NO was determined by the 3σ method and found to be 83.4 nM. The L3 sensor has low cytotoxicity, and is cell permeable and suitable for in vitro NO sensing. The in vivo compatibility of the sensor was also checked on zebrafish.

  20. Photocatalytic degradation properties of α-Fe2O3 nanoparticles for dibutyl phthalate in aqueous solution system

    Science.gov (United States)

    Liu, Yue; Sun, Nan; Hu, Jianshe; Li, Song; Qin, Gaowu

    2018-04-01

    The phthalate ester compounds in industrial wastewater, as kinds of environmental toxic organic pollutants, may interfere with the body's endocrine system, resulting in great harm to humans. In this work, the photocatalytic degradation properties of dibutyl phthalate (DBP) were investigated using α-Fe2O3 nanoparticles and H2O2 in aqueous solution system. The optimal parameters and mechanism of degradation were discussed by changing the morphology and usage amount of catalysts, the dosage of H2O2, pH value and the initial concentration of DBP. Hollow α-Fe2O3 nanoparticles showed the highest degradation efficiency when 30 mg of catalyst and 50 µl of H2O2 were used in the DBP solution with the initial concentration of 13 mg l-1 at pH = 6.5. When the reaction time was 90 min, DBP was degraded 93% for the above optimal parameters. The photocatalytic degradation mechanism of DBP was studied by the gas chromatography-mass spectrometry technique. The result showed that the main degradation intermediates of DBP were ortho-phthalate monobutyl ester, methyl benzoic acid, benzoic acid, benzaldehyde, and heptyl aldehyde when the reaction time was 2 h. DBP and its intermediates were almost completely degraded to CO2 and H2O in 12 h in the α-Fe2O3/ H2O2/UV system.

  1. Facile fabrication of highly controllable gating systems based on the combination of inverse opal structure and dynamic covalent chemistry.

    Science.gov (United States)

    Wang, Chen; Yang, Haowei; Tian, Li; Wang, Shiqiang; Gao, Ning; Zhang, Wanlin; Wang, Peng; Yin, Xianpeng; Li, Guangtao

    2017-06-01

    A three-dimensional (3D) inverse opal with periodic and porous structures has shown great potential for applications not only in optics and optoelectronics, but also in functional membranes. In this work, the benzaldehyde group was initially introduced into a 3D nanoporous inverse opal, serving as a platform for fabricating functional membranes. By employing the dynamic covalent approach, a highly controllable gating system was facilely fabricated to achieve modulable and reversible transport features. It was found that the physical/chemical properties and pore size of the gating system could easily be regulated through post-modification with amines. As a demonstration, the gated nanopores were modified with three kinds of amines to control the wettability, surface charge and nanopore size which in turn was exploited to achieve selective mass transport, including hydrophobic molecules, cations and anions, and the transport with respect to the physical steric hindrance. In particular, the gating system showed extraordinary reversibility and could recover to its pristine state by simply changing pH values. Due to the unlimited variety provided by the Schiff base reaction, the inverse opal described here exhibits a significant extendibility and could be easily post-modified with stimuli-responsive molecules for special purposes. Furthermore, this work can be extended to employ other dynamic covalent routes, for example Diels-Alder, ester exchange and disulfide exchange-based routes.

  2. Synthesis of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl-2H-chromen-2-one derivatives and evaluation of their anticancer activity

    Directory of Open Access Journals (Sweden)

    Nitin Kumar

    2017-05-01

    Full Text Available A novel series of 3-(4, 5-dihydro-1-phenyl-5-substituted phenyl-1H-pyrazol-3-yl-2H-chromen-2-one derivatives were synthesized. In the first step salicylaldehyde was reacted with ethylacetoacetate at room temperature by stirring which gives compound (I. Compound (I when refluxed with substituted benzaldehyde and diethylamine in the presence of n-butanol for 4–5 h gives substituted derivatives (IIa–d. Compounds synthesized in step 2 when refluxed with phenyl hydrazine in the presence of pyridine for 6–7 h gives the title compounds (IIIa–d. All the synthesized compounds were sent to NCI for anticancer activity. Synthesized compounds were tested for anticancer activity against 60 different cell lines. From the data thus obtained it was observed that simple coumarin ring derivatives were more effective in inhibiting the growth of cancerous cell lines, than coumarin-pyrazoline derivatives. Among all the synthesized compounds, irrespective of compounds having simple coumarin ring and coumarin-pyrazoline combination, compounds IIa–c, IIIb and IIId were potent anticancer agents. Compounds were active for the single dose therapeutic program at the dose of 1.00E-5 molar concentration. The main anti cancer activity is assumed to be due to the presence of the lactone structure in coumarin moiety.

  3. Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation.

    Science.gov (United States)

    Roy, Mouni; Basak, Somjyoti; Naskar, Milan Kanti

    2016-02-21

    A simple soft bi-templating process was used for the synthesis of mesoporous manganese oxide nanostructures using KMnO4 as a precursor and polyethylene glycol and cetyltrimethylammonium bromide as templates in the presence of benzaldehyde as an organic additive in alkaline media, followed by calcination at 400 °C. X-ray diffraction and Raman spectroscopic analysis of the calcined products confirmed the existence of stoichiometric (MnO2 and Mn5O8) and non-stoichiometric mixed phases (MnO2 + Mn5O8) of Mn oxides obtained by tuning the concentration of the additive and the synthesis time. The surface properties of the prepared Mn oxides were determined by X-ray photoelectron spectroscopy. The mesoporosity of the samples was confirmed by N2 adsorption-desorption. Different synthetic conditions resulted in the formation of different morphologies of the Mn oxides (α-MnO2, Mn5O8, and α-MnO2 + Mn5O8), such as nanoparticles, nanorods, and nanowires. The synthesized mesoporous Mn oxide nanostructures were used for the catalytic oxidation of the harmful air pollutant carbon monoxide. The Mn5O8 nanoparticles with the highest Brunauer-Emmett-Teller surface area and the non-stoichiometric manganese oxide (α-MnO2 + Mn5O8) nanorods with a higher Mn(3+) concentration had the best catalytic efficiency.

  4. PERUBAHAN KOMPONEN VOLATIL SELAMA FERMENTASI KECAP [Change Volatile Components During Soy Sauce Fermentation

    Directory of Open Access Journals (Sweden)

    Anton Apriyantono1

    2004-08-01

    Full Text Available A study has been conducted to investigate changes of volatile components during soy sauce fermentation. During the fermentation, many volatile components produced may contribute to soy sauce flavor. THe volatile identified by GC-MS werw classified into hydrocarbon (15, alcohol (15, aldehyde (14, ester (14, ketone (9, benzene derivative (11, fatty acid (9, furan (5, terpenoid (18, pyrazine (3, thiazole (1, pyridine (1 and sulfur containing compound (2.Concentration of compounds found in almost all fermentation steps, such as hexanal and benzaldehyde did. These compounds may be derived from raw soybean, since they were all present in raw soybean and their concentration did not change during fermentation. Concentration of palmitic acid and benzeneacetaldehyde, in general, increased during all fermentation steps. They are probably derived from lipid degradation or microorganism activities. Concentrations of some fatty acids, esters and hydrocarbons, such as linoleic acid, methyl palmitate and heptadecane increased during salt fermentation only. Concentration of some other compounds, such as 2,4 decadienal decreased or undetected during fermentation.The absence of some volatile compounds, e.g. (E-nerolidol and (E,E-famesol in boiled soybean which were previously present in raw soybean may be due to evaporation of these compounds during boiling. Some volatile compounds such as, methyl heptadecanoate and few aromatic alcohols are likely derived from Aspergillus sojae, since these compounds were identified only in 0 day koji

  5. Olfactory memories are intensity specific in larval Drosophila.

    Science.gov (United States)

    Mishra, Dushyant; Chen, Yi-Chun; Yarali, Ayse; Oguz, Tuba; Gerber, Bertram

    2013-05-01

    Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour-sugar associative conditioning in larval Drosophila, we first describe the dose-effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in 'content' of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.

  6. Biocatalytic Behaviour of Immobilized Rhizopus oryzae Lipase in the 1,3-Selective Ethanolysis of Sunflower Oil to Obtain a Biofuel Similar to Biodiesel

    Directory of Open Access Journals (Sweden)

    Carlos Luna

    2014-08-01

    Full Text Available A new biofuel similar to biodiesel was obtained in the 1,3-selective transesterification reaction of sunflower oil with ethanol using as biocatalyst a Rhizopus oryzae lipase (ROL immobilized on Sepiolite, an inorganic support. The studied lipase was a low cost powdered enzyme preparation, Biolipase-R, from Biocon-Spain, a multipurpose additive used in food industry. In this respect, it is developed a study to optimize the immobilization procedure of these lipases on Sepiolite. Covalent immobilization was achieved by the development of an inorganic-organic hybrid linker formed by a functionalized hydrocarbon chain with a pendant benzaldehyde, bonded to the AlPO4 support surface. Thus, the covalent immobilization of lipases on amorphous AlPO4/sepiolite (20/80 wt % support was evaluated by using two different linkers (p-hydroxybenzaldehyde and benzylamine-terephthalic aldehyde, respectively. Besides, the catalytic behavior of lipases after physical adsorption on the demineralized sepiolite  was also evaluated. Obtained results indicated that covalent immobilization with the p-hydroxybenzaldehyde linker gave the best biocatalytic behavior. Thus, this covalently immobilized lipase showed a remarkable stability as well as an excellent capacity of reutilization (more than five successive reuses without a significant loss of its initial catalytic activity. This could allow a more efficient fabrication of biodiesel minimizing the glycerol waste production.

  7. Mechanistic Investigation of Oxidation of Phenylpropanolamine with N-Bromobenzenesulfonamide in Alkaline Medium: A Kinetic Approach

    Directory of Open Access Journals (Sweden)

    Ningegowda Prasad

    2008-01-01

    Full Text Available The kinetics of oxidation of phenylpropanolamine (PPA with sodium N-bromobenzenesulfonamide or bromamine-B (BAB has been investigated in alkaline medium at 308 K. The oxidation reaction obeys the rate law, – d[BAB]/dt = k [BAB] [PPA]x [OH-], where x is less than unity. The variation of ionic strength of the medium, addition of the reduction product, benzenesulfonamide, and chloride ion had no pronounced effect on the reaction rate. Decrease of dielectric permittivity of the medium by increasing the CH3CN content increased the rate. The reaction was studied at different temperatures and the activation parameters have been evaluated from the Arrhenius plot. The stiochiometry of the reaction was found to be 1:1, and the oxidation product of phenylpropanolamine was identified as benzaldehyde and ethylideneamine. The rate decreased in D2O medium and the normal isotope effect k' (H2O / k' (D2O is 2.18. Proton inventory studies have been made in H2O - D2O mixtures. Formation and decomposition constant of BAB-PPA complexes in the reaction scheme have been determined. The conjugate acid, C6H5SO2NHBr is assumed to be the reactive species. The proposed mechanism and the derived rate law are consistent with the observed experimental results.

  8. The assesment of the food quality by 13 C isotope ratio mass spectrometry

    International Nuclear Information System (INIS)

    Cuna, Stela; Cuna, Cornel

    2001-01-01

    Carbon 13 analysis can be a key analytical technique used in the fight to detect undeclared addition of low cost adulterants to high value foods. The natural abundance of 13 C in food is related to how the plant fix the carbon during photosynthesis. Plants that use a C3 photosynthetic cycle discriminate against 13 C more than plants with C4 cycle. We developed a method for analysis of 13 C isotope in organic samples. Because of instrumental requirements carbon must be converted to CO 2 for stable isotope ratio measurements. Conversion of organic samples to CO 2 was accomplished by combustion in an excess oxygen atmosphere. This technique involves the combustion of individual samples in sealed, evacuated quartz tubes containing CuO as the oxygen source. Because each sample is prepared in its own container, there is no chance for memory effects. The method was tested for sensitivity (the smallest increment of the isotope ratio that must be detected with confidence), sample size (the minimum quantity of a pure molecular species available to achieve the desired accuracy) and precision. The method was utilised for the detection of a synthetic flavour from natural one, namely the natural oil bitter almond from the synthetic benzaldehyde. The method can be validated for the detection or establishment of authenticity in food products. (authors)

  9. Synthesis and Antiplasmodial Activity of 2-(4-Methoxyphenyl-4-Phenyl-1,10-Phenanthroline Derivative Compounds

    Directory of Open Access Journals (Sweden)

    Nazudin

    2012-08-01

    Full Text Available A unique of synthetic methods was employed to prepare 2-(4-methoxyphenyl-4-phenyl-1,10-phenanthroline (5 derivatives from 4-methoxy-benzaldehyde (1, acetophenone (2, and 8-aminoquinoline (4 with aldol condensation and cyclization reactions. The derivatives were tested through antiplasmodial test. The synthesis of derivatives compound 5 was conducted in three steps. The 3-(4-methoxyphenyl-1-phenylpropenone 3 was synthesized through aldol condensation of 1 and 2 which has a yield of 96.42%. The compound 5 was synthesized through cyclization of compound 4 and 3 with 84.55% yield. The derivative of compound 5 was synthesized from compound 5 using DMS and DES reagents which refluxed for 21 and 22 h, to produce (1-N-methyl-9-(4-methoxyphenyl-7-phenyl-1,10-phenanthrolinium sulfate (6 and (1-N-ethyl-9-(4-methoxyphenyl-7-phenyl-1,10-phenanthrolinium sulfate (7 with 91.42 and 86.36% yields, respectively. Results of in vitro testing of antiplasmodial activity of compound 5 derivatives (i.e., compound 6 and 7 against chloroquine-resistant P. falciparum FCR3 strain showed that compound 7 had higher antimalarial activity than compounds 5 and 6. Whereas, results of in vitro testing against chloroquine-sensitive P. falciparum D10 strain showed that compound 6 has higher antimalarial activity than compounds 5 and 7.

  10. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamylalcohol dehydrogenase and cinnamoyl-CoA reductase.

    Science.gov (United States)

    Ralph, J; Hatfield, R D; Piquemal, J; Yahiaoui, N; Pean, M; Lapierre, C; Boudet, A M

    1998-10-27

    Homologous antisense constructs were used to down-regulate tobacco cinnamyl-alcohol dehydrogenase (CAD; EC 1.1.1.195) and cinnamoyl-CoA reductase (CCR; EC 1.2.1.44) activities in the lignin monomer biosynthetic pathway. CCR converts activated cinnamic acids (hydroxycinnamoyl-SCoAs) to cinnamaldehydes; cinnamaldehydes are then reduced to cinnamyl alcohols by CAD. The transformations caused the incorporation of nontraditional components into the extractable tobacco lignins, as evidenced by NMR. Isolated lignin of antisense-CAD tobacco contained fewer coniferyl and sinapyl alcohol-derived units that were compensated for by elevated levels of benzaldehydes and cinnamaldehydes. Products from radical coupling of cinnamaldehydes, particularly sinapaldehyde, which were barely discernible in normal tobacco, were major components of the antisense-CAD tobacco lignin. Lignin content was reduced in antisense-CCR tobacco, which displayed a markedly reduced vigor. That lignin contained fewer coniferyl alcohol-derived units and significant levels of tyramine ferulate. Tyramine ferulate is a sink for the anticipated build-up of feruloyl-SCoA, and may be up-regulated in response to a deficit of coniferyl alcohol. Although it is not yet clear whether the modified lignins are true structural components of the cell wall, the findings provide further indications of the metabolic plasticity of plant lignification. An ability to produce lignin from alternative monomers would open new avenues for manipulation of lignin by genetic biotechnologies.

  11. Spectroscopic studies of the intramolecular hydrogen bonding in o-hydroxy Schiff bases, derived from diaminomaleonitrile, and their deprotonation reaction products

    Science.gov (United States)

    Szady-Chełmieniecka, Anna; Kołodziej, Beata; Morawiak, Maja; Kamieński, Bohdan; Schilf, Wojciech

    2018-01-01

    The structural study of five Schiff bases derived from diaminomaleonitrile (DAMN) and 2-hydroxy carbonyl compounds was performed using 1H, 13C and 15N NMR methods in solution and in the solid state as well. ATR-FTIR and X-Ray spectroscopies were used for confirmation of the results obtained by NMR method. The imine obtained from DAMN and benzaldehyde was synthesized as a model compound which lacks intramolecular hydrogen bond. Deprotonation of all synthesized compounds was done by treating with tetramethylguanidine (TMG). NMR data revealed that salicylidene Schiff bases in DMSO solution exist as OH forms without intramolecular hydrogen bonds and independent on the substituents in aromatic ring. In the case of 2-hydroxy naphthyl derivative, the OH proton is engaged into weak intramolecular hydrogen bond. Two of imines (salDAMN and 5-BrsalDAMN) exist in DMSO solution as equilibrium mixtures of two isomers (A and B). The structures of equilibrium mixture in the solid state have been studied by NMR, ATR-FTIR and X-Ray methods. The deprotonation of three studied compounds (salDAMN, 5-BrsalDAMN, and 5-CH3salDAMN) proceeded in two different ways: deprotonation of oxygen atom (X form) or of nitrogen atom of free primary amine group of DAMN moiety (Y form). For 5-NO2salDAMN and naphDAMN only one form (X) was observed.

  12. Inhibition of Pseudogymnoascus destructans growth from conidia and mycelial extension by bacterially produced volatile organic compounds.

    Science.gov (United States)

    Cornelison, Christopher T; Gabriel, Kyle T; Barlament, Courtney; Crow, Sidney A

    2014-02-01

    The recently identified causative agent of white-nose syndrome (WNS), Pseudogymnoascus destructans, has been implicated in the mortality of an estimated 5.5 million North American bats since its initial documentation in 2006 (Frick et al. in Science 329:679-682, 2010). In an effort to identify potential biological and chemical control options for WNS, 6 previously described bacterially produced volatile organic compounds (VOCs) were screened for anti-P. destructans activity. The compounds include decanal; 2-ethyl-1-hexanol; nonanal; benzothiazole; benzaldehyde; andN,N-dimethyloctylamine. P. destructans conidia and mycelial plugs were exposed to the VOCs in a closed air space at 15 and 4 °C and then evaluated for growth inhibition. All VOCs inhibited growth from conidia as well as inhibiting radial mycelial extension, with the greatest effect at 4 °C. Studies of the ecology of fungistatic soils and the natural abundance of the fungistatic VOCs present in these environments suggest a synergistic activity of select VOCs may occur. The evaluation of formulations of two or three VOCs at equivalent concentrations was supportive of synergistic activity in several cases. The identification of bacterially produced VOCs with anti-P. destructans activity indicates disease-suppressive and fungistatic soils as a potentially significant reservoir of biological and chemical control options for WNS and provides wildlife management personnel with tools to combat this devastating disease.

  13. Spectroscopic characterization of some Cu(II) complexes

    International Nuclear Information System (INIS)

    Singh, Puja; Sharma, S.

    2014-01-01

    3-hydroxy-4-methoxy benzaldehyde semicarbazone (HMBS) is a biologically active compound which has several potential donor sites. This compound has been used for complexation with Cu(II) ions to synthesize complexes of general formula [Cu(HMBS) 2 X 2 ] where X is Cl − , NO 3 − and CH 3 COO − . Cu(II) is a d 9 system for which 2 D term is generated. Under O h symmetry, this term splits into 2 E g and 2 T 2g . the ground term 2 Eg is doubly degenerate and hence suffers strong Jahn-Teller effect and accordingly the further splitting of terms occur to lower the symmetry from perfect O h . Here, the ligand occupies four planar positions while the two axial positions have been varied by using different ions like Cl − , NO 3 − and CH 3 COO − . These variations on the axial positions also add to the distortion in O h symmetry. Under strong distortion, the electronic spectral band splits into multiplets exhibiting tetragonal distortion in complexes. The extent of distortion has been derived by the derivation of the two radial parameters D s and D t from electronic spectral bands. The ESR spectra of complexes reveal the real position of the only unpaired electron of the d 9 system in complexes

  14. Economic injury level for the coffee berry borer (Coleoptera: Curculionidae: Scolytinae) using attractive traps in Brazilian coffee fields.

    Science.gov (United States)

    Fernandes, F L; Picanço, M C; Campos, S O; Bastos, C S; Chediak, M; Guedes, R N C; Silva, R S

    2011-12-01

    The currently existing sample procedures available for decision-making regarding the control of the coffee berry borer Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae: Scolytinae) are time-consuming, expensive, and difficult to perform, compromising their adoption. In addition, the damage functions incorporated in such decision levels only consider the quantitative losses, while dismissing the qualitative losses. Traps containing ethanol, methanol, and benzaldehyde may allow cheap and easy decision-making. Our objective was to determine the economic injury level (EIL) for the adults of the coffee berry borer by using attractant-baited traps. We considered both qualitative and quantitative losses caused by the coffee borer in estimating the EILs. These EILs were determined for conventional and organic coffee under high and average plant yield. When the quantitative losses caused by H. hampei were considered alone, the EILs ranged from 7.9 to 23.7% of bored berries for high and average-yield conventional crops, respectively. For high and average-yield organic coffee the ELs varied from 24.4 to 47.6% of bored berries, respectively. When qualitative and quantitative losses caused by the pest were considered together, the EIL was 4.3% of bored berries for both conventional and organic coffee. The EILs for H. hampei associated to the coffee plants in the flowering, pinhead fruit, and ripening fruit stages were 426, 85, and 28 adults per attractive trap, respectively.

  15. Efficient visible light photocatalysis of benzene, toluene, ethylbenzene and xylene (BTEX) in aqueous solutions using supported zinc oxide nanorods

    Science.gov (United States)

    Bora, Tanujjal; Al-Abri, Mohammed; Dutta, Joydeep

    2017-01-01

    Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the common environmental pollutants originating mainly from oil and gas industries, which are toxic to human as well as other living organisms in the ecosystem. Here we investigate photocatalytic degradation of BTEX under visible light irradiation using supported zinc oxide (ZnO) nanorods grown on glass substrates using a microwave assisted hydrothermal method. ZnO nanorods were characterized by electron microscopy, X-ray diffraction (XRD), specific surface area, UV/visible absorption and photoluminescence spectroscopy. Visible light photocatalytic degradation products of BTEX are studied for individual components using gas chromatograph/mass spectrometer (GC/MS). ZnO nanorods with significant amount of electronic defect states, due to the fast crystallization of the nanorods under microwave irradiation, exhibited efficient degradation of BTEX under visible light, degrading more than 80% of the individual BTEX components in 180 minutes. Effect of initial concentration of BTEX as individual components is also probed and the photocatalytic activity of the ZnO nanorods in different conditions is explored. Formation of intermediate byproducts such as phenol, benzyl alcohol, benzaldehyde and benzoic acid were confirmed by our HPLC analysis which could be due to the photocatalytic degradation of BTEX. Carbon dioxide was evaluated and showed an increasing pattern over time indicating the mineralization process confirming the conversion of toxic organic compounds into benign products. PMID:29261711

  16. A comparative study of silver-graphene oxide nanocomposites as a recyclable catalyst for the aerobic oxidation of benzyl alcohol: Support effect

    Energy Technology Data Exchange (ETDEWEB)

    Zahed, Bahareh; Hosseini-Monfared, Hassan, E-mail: monfared@znu.ac.ir

    2015-02-15

    Graphical abstract: - Highlights: • Characteristics of three different graphene oxide (GO) are studied as a support for Ag nanoparticles. • The required conditions for a best support are determined. • For the first time the silver nanoparticles decorated GO as catalyst for aerobic oxidation of benzyl alcohol and the effects of the degree of reduction of GO on AgNPs on GO are reported. - Abstract: Three different nanocomposites of silver and graphene oxide, namely silver nanoparticles (AgNPs) immobilized on reduced graphene oxide (AgNPs/rGO), partially reduced graphene oxide (AgNPs/GO) and thiolated partially reduced graphene oxide (AgNPs/GOSH), were synthesized in order to compare their properties. Characterizations were carried out by infrared and UV–Vis and Raman spectroscopy, ICP, X-ray diffraction, SEM and TEM, confirming both the targeted chemical modification and the composite formation. The nanocomposites were successfully employed in the aerobic oxidation of benzyl alcohol at atmospheric pressure. AgNPs/GOSH is stable and recyclable catalyst which showed the highest activity in the aerobic oxidation of benzyl alcohol in the presence of N-hydroxyphthalimide (NHPI) to give benzaldehyde with 58% selectivity in 24 h at 61% conversion. The favorite properties of AgNPs/GOSH are reasonably attributed to the stable and well distributed AgNPs over GOSH due to strong adhesion between AgNPs and GOSH.

  17. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts.

    Science.gov (United States)

    Hadrich, Fatma; Cher, Slim; Gargouri, Youssef Talel; Adel, Sayari

    2014-01-01

    The chemical composition of essential oil, antioxidant and pancreatic lipase inhibitory activities of various solvent extracts obtained from pomegranate peelTunisian cultivar was evaluated. Gas chromatography/mass spectrometry was used to determine the composition of the PP essential oil. Nine-teen components were identified and the main compounds were the camphor (60.32%) and the benzaldehyde (20.98%). The phenolic and flavonoids content varied from 0 to 290.10 mg Gallic acid equivalent and from 5.2 to 20.43 mg catechin equivalent/g dried extract. The antioxidant activity of various solvent extracts from pomegranate peel was also investigated using various in vitro assays as the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical method, β-carotene bleaching and reducing power assays.Methanol and ethanol extracts showed the most potent antioxidant activity in all assays tested followed by water and acetone extracts. The inhibitory effect of the pomegranate peelextracts on porcine pancreatic lipase was evaluated and the results showed that ethanol and methanol extracts markedly reduced lipase activity. Generally, the highestlipase activity inhibitory (100%) was observed at a concentration of 1 mg/ml after 30 min of incubation. LC-MS analysis of ethanol extract showed the presence of four components which are cholorogenic acid, mannogalloylhexoside, gallic acid and ellagic acid. Our findings demonstrate that the ethanol extract from pomegranate peel might be a good candidate for furtherinvestigations of new bioactive substances.

  18. Selective Production of Toluene from Biomass-Derived Isoprene and Acrolein.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Zhang, Bo; Guo, Haiwei; Pan, Xiaoli; Li, Lin; Wang, Aiqin; Zhang, Tao

    2016-12-20

    Toluene is a basic chemical that is currently produced from petroleum resources. In this paper, we report a new route for the effective synthesis of toluene from isoprene and acrolein, two reactants readily available from biomass, through a simple two-step reaction. The process includes Diels-Alder cycloaddition of isoprene and acrolein in a Zn-containing ionic liquid at room temperature to produce methylcyclohex-3-enecarbaldehydes (MCHCAs) as intermediates, followed by M (M=Pt, Pd, Rh)/Al 2 O 3 -catalyzed consecutive dehydrogenation-decarbonylation of the MCHCAs at 573 K to generate toluene with an overall yield up to 90.7 %. Model reactions indicated that a synergistic inductive effect of the C=C double bond and the aldehyde group in MCHCA plays a key role in initiating the consecutive dehydrogenation-decarbonylation, and that methyl benzaldehydes are the key intermediates in the gas-phase transformation of MCHCAs. Microcalorimetric adsorption of CO on different catalysts showed that decarbonylation of the substrate occurs more likely on the strong adsorption sites. To the best of our knowledge, it is the first report of Pt/Al 2 O 3 -catalyzed consecutive dehydrogenation-decarbonylation of a given compound in one reactor. This work provides a highly efficient and environmental friendly route to toluene by utilizing two compounds that can be prepared from biomass. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Simple-structured, hydrazinecarbothioamide derivatived dual-channel optical probe for Hg{sup 2+} and Ag{sup +}

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei [Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 83004 (China); Chen, Yabin [Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 83004 (China); Chen, Xin [Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Xie, Zhengfeng, E-mail: xiezhf@swpu.edu.cn [Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500 (China); Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 83004 (China); Hui, Yonghai [Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 83004 (China)

    2016-06-15

    A type of simple-structured, hydrazinecarbothioamide-containing Schiff-base derivative, 2-(4-(diphenylamino)benzylidene)hydrazinecarbothioamide (M1), was synthesized through condensation reaction between 4-(diphenylamino)benzaldehyde and thiosemicarbazide. In the mixture of DMSO/H{sub 2}O (DMSO/H{sub 2}O=9:1(v:v), pH=4.5), distinct “turn-off” fluorescence alterations of M1 were observed upon the addition of Hg{sup 2+}, and the addition of Ag{sup +} induced fluorescence bathochromic shift. The detection limits of Hg{sup 2+} and Ag{sup +} reach~0.19 μM and ~0.59 μM, respectively, as evaluated by the detailed fluorescence response of M1 toward incremental target ions. The different extent of photo-induced electron transfer (PET) between M1 and these two ions might be the plausible reason for such different optical response behaviors. - Highlights: • Hydrazinecarbothioamide-containing Schiff-base derivative (M1) was synthesized. • “Turn-off” fluorescence alterations of M1 were observed upon the addition of Hg{sup 2+}. • The addition of Ag{sup +} induced fluorescence bathochromic shift of M1. • Detection limits of Hg{sup 2+} and Ag{sup +} reaches ~0.19 μM and ~0.59 μM, respectively. • Hg{sup 2+} and Ag{sup +} can be detected in independent channels by M1 thus.

  20. Solid-phase microextraction Ni-Ti fibers coated with functionalised silica particles immobilized in a sol-gel matrix.

    Science.gov (United States)

    Azenha, Manuel; Ornelas, Mariana; Fernando Silva, A

    2009-03-20

    One of the possible approaches for the development of novel solid-phase microextraction (SPME) fibers is the physical deposition of porous materials onto a support using high-temperature epoxy glue. However, a major drawback arises from decomposition of epoxy glue at temperatures below 300 degrees C and instability in some organic solvents. This limitation motivated us to explore the possibility of replacing the epoxy glue with a sol-gel film, thermally more stable and resistant to organic solvents. We found that functionalised silica particles could be successfully attached to a robust Ni-Ti wire by using a UV-curable sol-gel film. The particles were found to be more important than the sol-gel layer during the microextraction process, as shown by competitive extraction trials and by the different extraction profiles observed with differently functionalised particles. If a quality control microscopic-check aiming at the rejection of fibers exhibiting unacceptably low particle load was conducted, acceptable (6-14%) reproducibility of preparation of C(18)-silica fibers was observed, and a strong indication of the durability of the fibers was also obtained. A cyclohexyldiol-silica fiber was used, as a simple example of applicability, for the successful determination of benzaldehyde, acetophenone and dimethylphenol at trace level in spiked tap water. Recoveries: 95-109%; limits of detection: 2-7 microg/L; no competition effects within the studied range (

  1. Recognition of Bread Key Odorants by Using Polymer Coated QCMs

    Science.gov (United States)

    Nakai, Takashi; Kouno, Shinji; Hiruma, Naoya; Shuzo, Masaki; Delaunay, Jean-Jacques; Yamada, Ichiro

    Polyisobutylene (PIB) polymer and methylphenylsiloxane (25%) diphenylsiloxane (75%) copolymer (OV25) were coated on Quartz Crystal Microbalance (QCM) sensors and used in recognition of bread key odorants. Representative compounds of key roasty odorants of bread were taken as 3-acetylpyridine and benzaldehyde, and representative key fatty odorants were hexanal and (E)-2-nonenal. Both OV25- and PIB-coated QCM fabricated sensors could detect concentration as low as 0.9 ppm of 3-acetylpyridine and 1.2 ppm of (E)-2-nonenal. The sensitivity to 3-acetylpyridine of the OV25-coated QCM was about 1000 times higher than that of ethanol, the major interference compound in bread key odorant analysis. Further, the OV25-coated QCM response was 5-6 times and 2-3 times larger than that of the PIB-coated QCM when exposed to roasty odorants and to fatty odorants, respectively. The difference in sensitivity of the OV25- and PIB-coated QCMs we fabricated made possible to discriminate roasty from fatty odorants as was evidenced by the odor recognition map representing the frequency shifts of the OV25-coated QCM against the frequency shift of the PIB-coated QCM. In conclusion, we found that the combination of an OV25-coated QCM and a PIB-coated QCM was successful in discriminating roasty odorants from fatty odorants at the ppm level.

  2. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.

    Science.gov (United States)

    So, Man-Ho; Liu, Yungen; Ho, Chi-Ming; Che, Chi-Ming

    2009-10-05

    Selective oxidation of amines using oxygen as terminal oxidant is an important area in green chemistry. In this work, we describe the use of graphite-supported gold nanoparticles (AuNPs/C) to catalyze aerobic oxidation of cyclic and acyclic benzylic amines to the corresponding imines with moderate-to-excellent substrate conversions (43-100%) and product yields (66-99%) (19 examples). Oxidation of N-substituted 1,2,3,4-tetrahydroisoquinolines in the presence of aqueous NaHCO3 solution gave the corresponding amides in good yields (83-93%) with high selectivity (up to amide/enamide=93:4) (6 examples). The same protocol can be applied to the synthesis of benzimidazoles from the reaction of o-phenylenediamines with benzaldehydes under aerobic conditions (8 examples). By simple centrifugation, AuNPs/C can be recovered and reused for ten consecutive runs for the oxidation of dibenzylamine to N-benzylidene(phenyl)methanamine without significant loss of catalytic activity and selectivity. This protocol "AuNPs/C+O2" can be scaled to the gram scale, and 8.9 g (84 % isolated yield) of 3,4-dihydroisoquinoline can be obtained from the oxidation of 10 g 1,2,3,4-tetrahydroisoquinoline in a one-pot reaction. Based on the results of kinetic studies, radical traps experiment, and Hammett plot, a mechanism involving the hydrogen-transfer reaction from amine to metal and oxidation of M-H is proposed.

  3. Measurements of VOC adsorption/desorption characteristics of typical interior building materials

    Energy Technology Data Exchange (ETDEWEB)

    An, Y.; Zhang, J.S.; Shaw, C.Y.

    2000-07-01

    The adsorption/desorption of volatile organic compounds (VOCs) on interior building material surfaces (i.e., the sink effect) can affect the VOC concentrations in a building, and thus need to be accounted for an indoor air quality (IAQ) prediction model. In this study, the VOC adsorption/desorption characteristics (sink effect) were measured for four typical interior building materials including carpet, vinyl floor tile, painted drywall, and ceiling tile. The VOCs tested were ethylbenzene, cyclohexanone, 1,4-dichlorobenzene, benzaldehyde, and dodecane. These five VOCs were selected because they are representative of hydrocarbons, aromatics, ketones, aldehydes, and chlorine substituted compounds. The first order reversible adsorption/desorption model was based on the Langmuir isotherm was used to analyze the data and to determine the equilibrium constant of each VOC-material combination. It was found that the adsorption/desorption equilibrium constant, which is a measure of the sink capacity, increased linearly with the inverse of the VOC vapor pressure. For each compound, the adsorption/desorption equilibrium constant, and the adsorption rate constant differed significantly among the four materials tested. A detailed characterization of the material structure in the micro-scale would improve the understanding and modeling of the sink effect in the future. The results of this study can be used to estimate the impact of sink effect on the VOC concentrations in buildings.

  4. Secondary deuterium isotope effects in the hydrolysis of some acetals

    International Nuclear Information System (INIS)

    Paterson, R.V.

    Secondary α-deuterium kinetic isotope effects have been determined in the hydrolyses of some acetals. Benzaldehyde dimethyl acetal and 2-phenyl-1,3-dioxolan show isotope effects in agreement with an A1 mechanism. 2-Phenyl-4,4,5,5-tetramethyl-1,3-dioxolan, which has been shown to undergo hydrolysis by an A2 type mechanism, has an isotope effect in agreement with participation by water in the transition state. Hydrolysis of benzylidene norbornanediols, although complicated by isomerisation, has an isotope effect in agreement with an A2 mechanism. Kinetic isotope effects in acetals which have a neighbouring carboxyl group have also been determined. Hydrolysis of 2-carboxybenzaldehyde dimethyl acetal in aqueous and 82% w/w dioxan-water buffers has isotope effects in agreement with a large degree of carbonium ion character in the transition state. Anderson and Capon proposed nucleophilic participation in the hydrolysis of this acetal in 82% dioxan-water. The isotope effect determined in this study is not in agreement with this finding. Hydrolysis of 2-(2'-carboxyphenyl)-4,4,5,5-tetramethyl-1,3-dioxolan shows an isotope effect larger than the corresponding dioxolan without the carboxyl group in agreement with some carbonium ion character in the transition state. A new synthesis of a deuterated aldehyde is described which might be general for aldehydes which will not form benzoins readily. (author)

  5. Low-lying excited states by constrained DFT

    Science.gov (United States)

    Ramos, Pablo; Pavanello, Michele

    2018-04-01

    Exploiting the machinery of Constrained Density Functional Theory (CDFT), we propose a variational method for calculating low-lying excited states of molecular systems. We dub this method eXcited CDFT (XCDFT). Excited states are obtained by self-consistently constraining a user-defined population of electrons, Nc, in the virtual space of a reference set of occupied orbitals. By imposing this population to be Nc = 1.0, we computed the first excited state of 15 molecules from a test set. Our results show that XCDFT achieves an accuracy in the predicted excitation energy only slightly worse than linear-response time-dependent DFT (TDDFT), but without incurring into problems of variational collapse typical of the more commonly adopted ΔSCF method. In addition, we selected a few challenging processes to test the limits of applicability of XCDFT. We find that in contrast to TDDFT, XCDFT is capable of reproducing energy surfaces featuring conical intersections (azobenzene and H3) with correct topology and correct overall energetics also away from the intersection. Venturing to condensed-phase systems, XCDFT reproduces the TDDFT solvatochromic shift of benzaldehyde when it is embedded by a cluster of water molecules. Thus, we find XCDFT to be a competitive method among single-reference methods for computations of excited states in terms of time to solution, rate of convergence, and accuracy of the result.

  6. Synthesis and luminescence properties of novel 4-(N-carbazole methyl) benzoyl hydrazone Schiff bases

    International Nuclear Information System (INIS)

    Guo Dongcai; Wu Panliang; Tan Hui; Xia Long; Zhou Wenhui

    2011-01-01

    4-(N-carbazole methyl) benzoyl hydrazine was synthesized on the basis of carbazole, and then nine novel carbazolyl acylhydrazone Schiff bases were synthesized by the condensation reaction between 4-(N-carbazole methyl) benzoyl hydrazine and the substituted benzaldehydes. The relationships between the substituted group types and the UV fluorescence spectral properties, as well as the fluorescence quantum yields of the title Schiff bases were also investigated. The results show that the introduction of both the donating and accepting electron groups causes various grade redshifts of the fluorescence characteristic emission peak of the title Schiff bases to occur.The fluorescence quantum yields of the title Schiff bases with the donating group are increased, and the highest fluorescence quantum yield is up to 0.703. - Highlights: → Nine novel Schiff bases have been designed and synthesized. → Introduction of the donating electron groups causes various grade red shifts of the fluorescence characteristic emission peak and the UV characteristic absorption peak of the synthesized Schiff bases. → Introduction of the donating electron groups causes the fluorescence quantum yields to be increased considerably. →Introduction of the accepting electron groups causes the fluorescence intensity and quantum yield of the synthesized Schiff bases to be reduced. → Fluorescence quantum yield of o-hydroxyl-substituted Schiff base is up to 0.703; this Schiff base is expected to be used as hole transport optical material.

  7. Preparation of Chitosan-based Injectable Hydrogels and Its Application in 3D Cell Culture.

    Science.gov (United States)

    Li, Yongsan; Zhang, Yaling; Wei, Yen; Tao, Lei

    2017-09-29

    The protocol presents a facile, efficient, and versatile method to prepare chitosan-based hydrogels using dynamic imine chemistry. The hydrogel is prepared by mixing solutions of glycol chitosan with a synthesized benzaldehyde terminated polymer gelator, and hydrogels are efficiently obtained in several minutes at room temperature. By varying ratios between glycol chitosan, polymer gelator, and water contents, versatile hydrogels with different gelation times and stiffness are obtained. When damaged, the hydrogel can recover its appearances and modulus, due to the reversibility of the dynamic imine bonds as crosslinkages. This self-healable property enables the hydrogel to be injectable since it can be self-healed from squeezed pieces to an integral bulk hydrogel after the injection process. The hydrogel is also multi-responsive to many bio-active stimuli due to different equilibration statuses of the dynamic imine bonds. This hydrogel was confirmed as bio-compatible, and L929 mouse fibroblast cells were embedded following standard procedures and the cell proliferation was easily assessed by a 3D cell cultivation process. The hydrogel can offer an adjustable platform for different research where a physiological mimic of a 3D environment for cells is profited. Along with its multi-responsive, self-healable, and injectable properties, the hydrogels can potentially be applied as multiple carriers for drugs and cells in future bio-medical applications.

  8. Synthesis and studies on structural, optical and nonlinear optical properties of novel organic inter-molecular compounds: 4-chloro-3-nitroaniline-3-hydroxy benzaldehyde and urea-4-dimethylaminopyridine

    Science.gov (United States)

    Pandey, Priyanka; Rai, R. N.

    2018-05-01

    Two novel organic inter-molecular compounds (IMCs), (3-(4-chloro-3-nitrophenylimino) methyl) phenol) (CNMP) and urea ̶ 4-dimethylaminopyridine complex (UDMAP), have been synthesized by solid state reaction. These two IMCs were identified by phase diagram study of CNA-HB and U-DMAP systems. The single crystals of newly obtained IMCs were grown by slow solvent evaporation technique at room temperature. Both the IMCs were further studied for their thermal, spectral, single crystal XRD for their atomic packing in molecule, crystallinity, optical and nonlinear optical behaviour. In both the cases, melting point of inter-molecular compounds was found to be higher than that of their parent components, CNMP was found to be thermally stable up to 158 °C while UDMAP was stable up to 144 °C, which indicate their extra stability than their parents. The single crystal XRD studies confirmed that CNMP has crystallized in orthorhombic unit cell with non-centrosymmetric space group P212121 while UDMAP has crystallized in monoclinic unit cell with centrosymmetric space group C2/c. The absorption spectrum of CNMP was found to be in between the absorption of parents, while broadening of peak and red shift was observed in UDMAP as compared to the parents. Second order nonlinear optical property of CNMP and UDMAP was studied using Kurtz Perry powder technique and intense green light emission was observed with CNMP on excitation with 1064 nm of Nd:YAG laser while no emission was observed with UDMAP.

  9. Effect of Pulsed Electric Fields on the Flavour Profile of Red-Fleshed Sweet Cherries (Prunus avium var. Stella

    Directory of Open Access Journals (Sweden)

    Kristine Ann Gualberto Sotelo

    2015-03-01

    Full Text Available The aim of this research was to study the effect of pulsed electric fields (PEF on the flavour profile of red-fleshed sweet cherries (Prunus avium variety Stella. The cherry samples were treated at a constant pulse frequency of 100 Hz, a constant pulse width of 20 μs, different electric field strengths between 0.3 and 2.5 kV/cm and specific energy ranging from 31 to 55 kJ/kg. Volatile compounds of samples were analysed using an automated headspace solid phase microextraction (HS–SPME method coupled with gas chromatography-mass spectrometry (GC–MS. A total of 33 volatile compounds were identified with benzaldehyde, hexanal, (E-2-hexenal, (Z-2-hexen-1-ol, and benzyl alcohol being the predominant volatiles in different PEF-treated samples. Aldehydes namely butanal, octanal, 2-octenal, and nonanal, and (Z-2-hexen-1-ol increased significantly 24 h after PEF treatment at electric field strengths of more than 1.0 kV/cm. Samples incubated for 24 h after PEF treatment (S3 generated higher concentrations of volatiles than samples immediately after PEF treatments (S2. Quantitative results revealed that more flavour volatiles were released and associated with S3 samples after 24 h storage and S2 samples immediately after PEF both with the highest electric field intensities. Interestingly, this study found that the PEF treatments at the applied electric field strength and energy did not result in releasing/producing undesirable flavour compounds.

  10. Characterization of fish sauce aroma-impact compounds using GC-MS, SPME-Osme-GCO, and Stevens' power law exponents.

    Science.gov (United States)

    Pham, A J; Schilling, M W; Yoon, Y; Kamadia, V V; Marshall, D L

    2008-05-01

    The objectives of this study were to characterize volatile compounds and to determine the characteristic aromas associated with impact compounds in 4 fish sauces using solid-phase micro-extraction, gas chromatography-mass spectrometry, Osme, and gas chromatography olfactometry (SPME-Osme-GCO) coupled with Stevens' Power Law. Compounds were separated using GCMS and GCO and were identified with the mass spectral database, aroma perceived at the sniffing port, retention indices, and verification of compounds by authentic standards in the GCMS and GCO. Aromas that were isolated and present in all 4 fish sauce samples at all concentrations included fishy (trimethylamine), pungent and dirty socks (combination of butanoic, pentanoic, hexanoic, and heptanoic acids), cooked rice and buttery popcorn (2,6-dimethyl pyrazine), and sweet and cotton candy (benzaldehyde). All fish sauces contained the same aromas as determined by GCO and GCMS (verified using authentic standard compounds), but the odor intensity associated with each compound or group of compounds was variable for different fish sauce samples. Stevens' Power Law exponents were also determined using this analytical technique, but exponents were not consistent for the same compounds that were found in all fish sauces. Stevens' Power Law exponents ranged from 0.14 to 0.37, 0.24 to 0.34, 0.09 to 0.21, and 0.10 to 0.35 for dirty socks, fishy, buttery popcorn, and sweet aromas, respectively. This demonstrates that there is variability in Stevens' Power Law exponents for odorants within fish sauce samples.

  11. Monitoring of selected skin- and breath-borne volatile organic compounds emitted from the human body using gas chromatography ion mobility spectrometry (GC-IMS).

    Science.gov (United States)

    Mochalski, Paweł; Wiesenhofer, Helmut; Allers, Maria; Zimmermann, Stefan; Güntner, Andreas T; Pineau, Nicolay J; Lederer, Wolfgang; Agapiou, Agapios; Mayhew, Christopher A; Ruzsanyi, Veronika

    2018-02-15

    Human smuggling and associated cross-border crimes have evolved as a major challenge for the European Union in recent years. Of particular concern is the increasing trend of smuggling migrants hidden inside shipping containers or trucks. Therefore, there is a growing demand for portable security devices for the non-intrusive and rapid monitoring of containers to detect people hiding inside. In this context, chemical analysis of volatiles organic compounds (VOCs) emitted from the human body is proposed as a locating tool. In the present study, an in-house made ion mobility spectrometer coupled with gas chromatography (GC-IMS) was used to monitor the volatile moieties released from the human body under conditions that mimic entrapment. A total of 17 omnipresent volatile compounds were identified and quantified from 35 ion mobility peaks corresponding to human presence. These are 7 aldehydes (acrolein, 2-methylpropanal, 3-methylbutanal, 2-ethacrolein, n-hexanal, n-heptanal, benzaldehyde), 3 ketones (acetone, 2-pentanone, 4-methyl-2-pentanone), 5 esters (ethyl formate, ethyl propionate, vinyl butyrate, butyl acetate, ethyl isovalerate), one alcohol (2-methyl-1-propanol) and one organic acid (acetic acid). The limits of detection (0.05-7.2 ppb) and relative standard deviations (0.6-11%) should be sufficient for detecting these markers of human presence in field conditions. This study shows that GC-IMS can be used as a portable field detector of hidden or entrapped people. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Donor-π-bridge-acceptor type polymeric materials with pendant electron-withdrawing groups for electrochromic applications

    International Nuclear Information System (INIS)

    Du, Qing; Wei, Youxiu; Zheng, Jianming; Xu, Chunye

    2014-01-01

    Highlights: • Donor-π-bridge-acceptor copolymers with different electrophilic groups were synthesized. • Electrochromic devices composed of PBDTTPAs layers, as the working electrode, and vanadium pentoxide, as the counter electrode, were fabricated and evaluated. • The PBDTTPA-CHO film and device show multicolor electrochromic behavior which exhibited vivid yellow, green, and gray with better electrochromic performance than PBDTTPA-COOH. - Abstract: A novel donor-π-bridge-acceptor copolymer, PBDTTPA-CHO, containing 4-(Bis(4-bromophenyl)-amino)benzaldehyde (TPA-CHO) and 4,8-bis-(2-ethyl- hexyloxy)-oxybenzo-[1,2-b:3,4-b’]dithiophene (BDT), was successfully synthesized using Stille coupling polymerization, and the pendant aldehyde group was modified with cyanoacetic acid to synthesize another polymer, PBDTTPA-COOH. Each of these new polymers are soluble in organic solvents and can be cast onto rigid or flexible substrates. The polymers with different electrophilic groups exhibit different electrochromic behaviors, including different colors, driving voltages and transmittances. The polymer film of PBDTTPA-CHO manifests reversible electrochemical oxidation and reduction accompanied by multicolor changes from its yellow neutral state to a highly absorbent green semi-oxidized state and a gray fully oxidized state, its transmittance change at 601 nm is 43%. PBDTTPA-COOH switches between orange and light green. We fabricated and evaluated electrochromic devices using a PBDTTPA layer as the working electrode and vanadium pentoxide as the counter electrode. With the contribution of counter electrodes, devices of both polymers show similar color changes but higher transmittance than their films

  13. Interdisciplinary investigation on ancient Ephedra twigs from Gumugou Cemetery (3800 B.P.) in Xinjiang region, northwest China.

    Science.gov (United States)

    Xie, Mingsi; Yang, Yimin; Wang, Binghua; Wang, Changsui

    2013-07-01

    In the dry northern temperate regions of the northern hemisphere, the genus Ephedra comprises a series of native shrub species with a cumulative application history reaching back well over 2,000 years for the treatment of asthma, cold, fever, as well as many respiratory system diseases, especially in China. There are ethnological and philological evidences of Ephedra worship and utilization in many Eurasia Steppe cultures. However, no scientifically verifiable, ancient physical proof has yet been provided for any species in this genus. This study reports the palaeobotanical finding of Ephedra twigs discovered from burials of the Gumugou archaeological site, and ancient community graveyard, dated around 3800 BP, in Lop Nor region of northwestern China. The macro-remains were first examined by scanning electron microscope (SEM) and then by gas chromatography-mass spectrometry (GC-MS) for traits of residual biomarkers under the reference of modern Ephedra samples. The GC-MS result of chemical analysis presents the existence of Ephedra-featured compounds, several of which, including benzaldehyde, tetramethyl-pyrazine, and phenmetrazine, are found in the chromatograph of both the ancient and modern sample. These results confirm that the discovered plant remains are Ephedra twigs. Although there is no direct archaeological evidence for the indication of medicinal use of this Ephedra, the unified burial deposit in which the Ephedra was discovered is a strong indication of the religious and medicinal awareness of the human inhabitants of Gumugou towards this plant. Copyright © 2013 Wiley Periodicals, Inc.

  14. [Determination of flavor compounds in foxtail millet wine by gas chromatography-mass spectrometry coupled with headspace solid phase microextraction].

    Science.gov (United States)

    Liu, Jingke; Zhang, Aixia; Li, Shaohui; Zhao, Wei; Zhang, Yuzong; Xing, Guosheng

    2017-11-08

    To comprehensively understand flavor compounds and aroma characteristics of foxtail millet wine, extraction conditions were optimized with 85 μm polyacrylate (PA), 100 μm polydimethylsiloxane (PDMS), 75 μm carboxen (CAR)/PDMS and 50/30 μm divinylbenzene (DVB)/CAR/PDMS fibers. The flavor compounds in foxtail millet wine were investigated by gas chromatography-mass spectrometry (GC-MS) coupled with headspace solid phase microextraction (HS-SPME), and the odor characteristics and intensity were analyzed by odor active values (OAVs). The samples of 8 mL were placed in headspace vials with 1.5 g NaCl, then the headspace vials were heated at 60℃ for 40 min. Using HS-SPME with different fibers, a total of 55 flavor compounds were identified from the samples, including alcohols, esters, benzene derivatives, hydrocarbons, acids, aldehydes, ketones, terpenes, phenols and heterocycle compounds. The main flavor compounds were alcohols compounds. According to their OAVs, phenylethyl alcohol, styrene, 1-methyl-naphthalene, 2-methyl-naphthalene, benzaldehyde, benzeneacetaldehyde and 2-methoxy-phenol were established to be odor-active compounds. Phenylethyl alcohol and benzeneacetaldehyde were the most prominent odor-active compounds. PA and PDMS fibers had good extraction effect for polar and nonpolar compounds, respectively. CAR/PDMS and DVB/CAR/PDMS provided a similar compounds profile for moderate polar compounds. This research comprehensively determined flavor compounds of foxtail millet wine, and provided theoretical basis for product development and quality control.

  15. Phototransformation of the sunlight filter benzophenone-3 (2-hydroxy-4-methoxybenzophenone) under conditions relevant to surface waters.

    Science.gov (United States)

    Vione, Davide; Caringella, Rosalinda; De Laurentiis, Elisa; Pazzi, Marco; Minero, Claudio

    2013-10-01

    The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield ΦBP3=(3.1±0.3)·10(-5) and the following second-order reaction rate constants: with (•)OH, k(BP3,(•)OH)=(2.0±0.4)·10(10) M(-1) s(-1); with the triplet states of chromophoric dissolved organic matter ((3)CDOM*), K(BP3,(3)CDOM*)=(1.1±0.1)·10(9) M(-1) s(-1); with (1)O2, k(BP3,(1)O2)=(2.0±0.1)·10(5) M(-1) s(-1), and with CO3(-•), k(BP3,CO3(-•))CDOM* would be the main processes of BP3 phototransformation. Reaction with (•)OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L(-1)), and reaction with (3)CDOM* at high DOC. If the reaction rate constant with CO3(-•) is near the upper limit of experimental measures (5·10(7) M(-1) s(-1)), the CO3(-•) degradation process could be somewhat important for DOCDOC. BP3 transformation intermediates were detected upon reaction with (•)OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ~10% of initial BP3) and benzaldehyde (1%). Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Rosaria; Tedone, Laura; De Grazia, Selenia [Dipartimento Farmaco-chimico, University of Messina, viale Annunziata, 98168 Messina (Italy); Dugo, Paola [Dipartimento Farmaco-chimico, University of Messina, viale Annunziata, 98168 Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus-Biomedico, Via Álvaro del Portillo, 21, 00128 Roma (Italy); Mondello, Luigi, E-mail: lmondello@unime.it [Dipartimento Farmaco-chimico, University of Messina, viale Annunziata, 98168 Messina (Italy); Centro Integrato di Ricerca (C.I.R.), Università Campus-Biomedico, Via Álvaro del Portillo, 21, 00128 Roma (Italy)

    2013-04-03

    Highlights: ► Multiple headspace extraction-solid phase microextraction (MHS-SPME) has been applied to the analysis of Agaricus bisporus. ► Mushroom flavor is characterized by the presence of compounds with a 8-carbon atoms skeleton. ► Formation of 8-carbon compounds involves a unique fungal biochemical pathway. ► The MHS-SPME allowed to determine quantitatively 5 target analytes of A. bisporus for the first time. -- Abstract: Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC–MS) and flame ionization detection (GC–FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033–0.078 ng), limit of quantification (LoQ, range 0.111–0.259 ng) and analyte recovery (92.3–108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented.

  17. Synthesis of new α-amino nitriles with insecticidal action on Aedes aegypti (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Andrés G. Rueda

    2018-04-01

    Full Text Available Aedes aegypti is the principal vector of arboviral pathogens that may cause diseases as dengue fever, chikungunya and zika. The harmful environmental effects of commercial pesticides coalesced with the development of insecticide-resistant populations encourage the discovery and generation of new alternative products as a tool to reduce the incidence of vector-borne diseases. In this work, through the classic three component Strecker reaction of commercial benzaldehydes, cyclic secondary amines and KCN, a new series of nine α-amino nitriles, girgensohnine analogs, has been synthetized and screened for larvicide and adulticide properties against A. aegypti, one of the dominant vectors of dengue, chikungunya and zika in tropical and subtropical areas all over the world. Molecules 3 and 4 were identified as potential larvicidal agents with LC50 values of 50.55 and 69.59 ppm, respectively. Molecule 3 showed 100% of mortality after 2 h of treatment when a concentration of 30 ppm in adulticidal assays was evaluated. Additionally, in order to elucidate the mode of action of these molecules, their acetylcholinesterase (AChE inhibitory properties were evaluated using the Ellman assay. It was found that the molecules possess a weak AChE inhibitory activity with IC50 values between 148.80 and 259.40 μM, indicating that AChE could not be a principal target for insecticide activity. Keywords: Arthropod-borne diseases, Girgensohnine analogs, Strecker reaction, Insecticidal activity, Vector control

  18. De Novo Synthesis of Benzenoid Compounds by the Yeast Hanseniaspora vineae Increases the Flavor Diversity of Wines.

    Science.gov (United States)

    Martin, Valentina; Giorello, Facundo; Fariña, Laura; Minteguiaga, Manuel; Salzman, Valentina; Boido, Eduardo; Aguilar, Pablo S; Gaggero, Carina; Dellacassa, Eduardo; Mas, Albert; Carrau, Francisco

    2016-06-08

    Benzyl alcohol and other benzenoid-derived metabolites of particular importance in plants confer floral and fruity flavors to wines. Among the volatile aroma components in Vitis vinifera grape varieties, benzyl alcohol is present in its free and glycosylated forms. These compounds are considered to originate from grapes only and not from fermentative processes. We have found increased levels of benzyl alcohol in red Tannat wine compared to that in grape juice, suggesting de novo formation of this metabolite during vinification. In this work, we show that benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde, and p-hydroxybenzyl alcohol are synthesized de novo in the absence of grape-derived precursors by Hanseniaspora vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20-200 times higher than those measured in fermentations with Saccharomyces cerevisiae strains. These results show that H. vineae contributes to flavor diversity by increasing grape variety aroma concentration in a chemically defined medium. Feeding experiments with phenylalanine, tryptophan, tyrosine, p-aminobenzoic acid, and ammonium in an artificial medium were tested to evaluate the effect of these compounds either as precursors or as potential pathway regulators for the formation of benzenoid-derived aromas. Genomic analysis shows that the phenylalanine ammonia-lyase (PAL) and tyrosine ammonia lyase (TAL) pathways, used by plants to generate benzyl alcohols from aromatic amino acids, are absent in the H. vineae genome. Consequently, alternative pathways derived from chorismate with mandelate as an intermediate are discussed.

  19. Synergistic effect in the oxidation of benzyl alcohol using citrate-stabilized gold bimetallic nanoparticles supported on alumina

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Villarraga, Fernando, E-mail: ferchogomezv@gmail.com; Radnik, Jörg; Martin, Andreas; Köckritz, Angela [Leibniz-Institut für Katalyse e.V. an der Universität Rostock (Germany)

    2016-06-15

    Bimetallic nanoparticles (NPs) containing gold and various second metals (M = Pd, Pt, Cu, and Ag) supported on alumina (AuM/Alumina) were prepared using sodium citrate as stabilizer. In addition, supported monometallic Au/Alumina and Pd/Alumina were synthesized and tested to reveal synergistic effects in the catalytic evaluation of the bimetallic catalysts. The monometallic and bimetallic NPs revealed average sizes below 10 nm. The oxidation of benzyl alcohol with molecular oxygen as oxidant at mild conditions in liquid phase in the absence and presence (toluene or NaOH aqueous solution, 0.2 M) of a solvent was selected as test reaction to evaluate the catalytic properties of the above-mentioned solids. AuPd/Alumina exhibited the best catalytic activity among all bimetallic catalysts using toluene as solvent and under solvent-free conditions, respectively. In comparison to the monometallic catalysts, a synergistic effect with AuPd/Alumina was only evident in the solvent-free reaction. The AuPd/Alumina catalyst was able to oxidize benzyl alcohol selectively depending on the reaction medium into benzaldehyde (toluene or solvent-free) or benzoic acid (NaOH aqueous solution, 0.2 M). However, the catalyst deactivated due to particle growth of the bimetallic AuPd NPs by Ostwald ripening and leaching was not observed in the oxidation using toluene as solvent. The size of the catalytically active NPs, the metal composition of the particles, and the reaction conditions greatly influenced the catalytic oxidation results.Graphical Abstract.

  20. Kinetic Studies on the Selective Oxidation of Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis

    Directory of Open Access Journals (Sweden)

    K. Bijudas

    2014-07-01

    Full Text Available Kinetic studies on the oxidation of benzyl alcohol and substituted benzyl alcohols in benzene as the reaction medium have been studied by using potassium dichromate under phase transfer catalysis (PTC. The phase transfer catalysts (PT catalysts used were tetrabutylammonium bromide (TBAB and tetrabutylphosphonium bromide (TBPB.  Benzyl alcohols were selectively oxidised to corresponding benzaldehydes in good yield (above 90%.  The order of reactivity among the studied benzyl alcohols is p - OCH3 > p - CH3 > - H > p - Cl.  Plots of log k2 versus Hammett's substituent constant (s has been found to be curve shaped and this suggests that there should be a continuous change in transition state with changes in substituent present in the substrate from electron donating to electron withdrawing. A suitable mechanism has been suggested in which the rate determining step involves both C - H bond cleavage and C - O bond formations in concerted manner. © 2014 BCREC UNDIP. All rights reserved.Received: 16th March 2014; Revised: 18th May 2014; Accepted: 18th May 2014[How to Cite: Bijudas, K., Bashpa, P., Nair, T.D.R. (2014. Kinetic Studies on the Selective Oxidation of Benzyl Alcohol and Substituted Benzyl Alcohols in Organic Medium under Phase Transfer Catalysis. Bulletin of Chemical Reaction Engineering & Catalysis, 9 (2: 142-147. (doi:10.9767/bcrec.9.2.6476.142-147][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.9.2.6476.142-147] 

  1. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine

    Directory of Open Access Journals (Sweden)

    Wang Li-Hua

    2017-04-01

    Full Text Available In order to study the catalytic activity of Cu(II coordination polymer material, a novel 1D chained Cu(II coordination polymer material, [CuL(bipy(H2O5]n (A1 (H2L = 1,4-phenylenediacetic acid, bipy = 2,2’-bipyridine, has been prepared by the reaction of 1,4-phenylenediacetic acid, 2,2’-bipyridine, Cu(CH3COO2·H2O and NaOH. The composition of A1 was determined by elemental analysis, IR spectra and single crystal X-ray diffraction. The results of characterization show that each Cu(II atom adopts six-coordination and forms a distorted octahedral configuration. The catalytic activity and reusability of A1 catalyst for A3 coupling reaction of benzaldehyde, piperidine, and phenylacetylene have been investigated. And the results show that the Cu(II complex catalyst has good catalytic activity with a maximum yield of 54.3% and stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 21st October 2016; Revised: 17th November 2016; Accepted: 22nd November 2016 How to Cite: Li-Hua, W., Lei, L., Xin, W. (2017. Synthesis, Structural Characterization and Catalytic Activity of A Cu(II Coordination Polymer Constructed from 1,4-Phenylenediacetic Acid and 2,2’-Bipyridine. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (1: 113-118 (doi:10.9767/bcrec.12.1.735.113-118 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.735.113-118

  2. Effect of the type of frying culinary fat on volatile compounds isolated in fried pork loin chops by using SPME-GC-MS.

    Science.gov (United States)

    Ramírez, María Rosario; Estévez, Mario; Morcuende, David; Cava, Ramón

    2004-12-15

    The effect of the type of frying culinary fat (olive oil, sunflower oil, butter, and pig lard) on volatile compounds isolated from fried pork loin chops (m. Longissimus dorsi) was measured by SPME-GC-MS. Frying modified the fatty acid composition of lipids from pork loin chops, which tended to be similar to that of the culinary fat used to fry. Volatile compounds formed from the oxidation of fatty acids increased, such as aldehydes, ketones, alcohols, and hydrocarbons. Besides, each culinary fat used modified the volatile profiles in fried meat differently. Sunflower oil-fried pork loin chops presented the highest aldehyde aliphatic content, probably due to their highest content of polyunsaturated acids. Hexanal, the most abundant aldehyde in fried samples, presented the most elevated content in sunflower oil-fried pork loin chops. In addition, these samples presented more heterocyclic compounds from the Maillard reaction than other fried samples. Volatiles detected in olive oil-fried pork loin chops were mainly lipid-derived compounds such as pentan-1-ol, hexanal, hept-2-enal, nonanal, decanal, benzaldehyde, and nonan-2-one. Butter-fried pork loins were abundant in ketones with a high number of carbons (heptan-2-one, nonan-2-one, undecan-2-one, tridecanone, and heptadecan-2-one). Pig lard-fried pork loin chops presented some Strecker aldehydes isolated in only these samples, such as 2-methylbutanal and 3-(methylthio)propanal, and a sulfur compound (dimethyl disulfide) related to Strecker aldehydes.

  3. Secondary Interactions Arrest the Hemiaminal Intermediate To Invert the Modus Operandi of Schiff Base Reaction: A Route to Benzoxazinones.

    Science.gov (United States)

    Patel, Ketan; Deshmukh, Satej S; Bodkhe, Dnyaneshwar; Mane, Manoj; Vanka, Kumar; Shinde, Dinesh; Rajamohanan, Pattuparambil R; Nandi, Shyamapada; Vaidhyanathan, Ramanathan; Chikkali, Samir H

    2017-04-21

    Discovered by Hugo Schiff, condensation between amine and aldehyde represents one of the most ubiquitous reactions in chemistry. This classical reaction is widely used to manufacture pharmaceuticals and fine chemicals. However, the rapid and reversible formation of Schiff base prohibits formation of alternative products, of which benzoxazinones are an important class. Therefore, manipulating the reactivity of two partners to invert the course of this reaction is an elusive target. Presented here is a synthetic strategy that regulates the sequence of Schiff base reaction via weak secondary interactions. Guided by the computational models, reaction between 2,3,4,5,6-pentafluoro-benzaldehyde with 2-amino-6-methylbenzoic acid revealed quantitative (99%) formation of 5-methyl-2-(perfluorophenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one (15). Electron donating and electron withdrawing ortho-substituents on 2-aminobenzoic acid resulted in the production of benzoxazinones 9-36. The mode of action was tracked using low temperature NMR, UV-vis spectroscopy, and isotopic ( 18 O) labeling experiments. These spectroscopic mechanistic investigations revealed that the hemiaminal intermediate is arrested by the hydrogen-bonding motif to yield benzoxazinone. Thus, the mechanistic investigations and DFT calculations categorically rule out the possibility of in situ imine formation followed by ring-closing, but support instead hydrogen-bond assisted ring-closing to prodrugs. This unprecedented reaction represents an interesting and competitive alternative to metal catalyzed and classical methods of preparing benzoxazinone.

  4. The identification of polar organic compounds found in consumer products and their toxicological properties.

    Science.gov (United States)

    Cooper, S D; Raymer, J H; Pellizzari, E D; Thomas, K W

    1995-01-01

    Exposure to volatile organic compounds (VOCs) in the indoor environment has received substantial research attention in the past several years, with the goal of better understanding the impact of such exposures on human health and well-being. Many VOCs can arise from consumer products used within the indoor environment. The VOCs emitted from five representative consumer products were collected onto Tenax-GC and subjected to thermal desorption and analysis by gas chromatography, in combination with low-resolution mass spectrometry (MS), high-resolution MS, and matrix-isolation Fourier transform infrared spectroscopy for structural characterization. An emphasis was placed on the polar organic compounds often used to provide fragrance in these products. The structures of a number of these compounds were confirmed, and an electronic literature search was carried out on them to determine any known toxic properties. The search revealed that many of the VOCs possess toxic properties when studied at acute, relatively high-level exposures. In addition, toxic effects were reported for a few of the chemicals, such as benzaldehyde, alpha-terpineol, benzyl acetate, and ethanol, at relatively low dose levels of 9-14 mg/kg. In general, the data were unclear as to the effect of chronic, low-level exposures. The widespread use of such chemicals suggests that the health effects of chronic exposures need to be determined. Validated analytical methods for the quantitative characterization of polar organic compounds at low concentrations will be required to make such work possible.

  5. Multiple headspace-solid-phase microextraction: An application to quantification of mushroom volatiles

    International Nuclear Information System (INIS)

    Costa, Rosaria; Tedone, Laura; De Grazia, Selenia; Dugo, Paola; Mondello, Luigi

    2013-01-01

    Highlights: ► Multiple headspace extraction-solid phase microextraction (MHS-SPME) has been applied to the analysis of Agaricus bisporus. ► Mushroom flavor is characterized by the presence of compounds with a 8-carbon atoms skeleton. ► Formation of 8-carbon compounds involves a unique fungal biochemical pathway. ► The MHS-SPME allowed to determine quantitatively 5 target analytes of A. bisporus for the first time. -- Abstract: Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC–MS) and flame ionization detection (GC–FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033–0.078 ng), limit of quantification (LoQ, range 0.111–0.259 ng) and analyte recovery (92.3–108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented

  6. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

    Directory of Open Access Journals (Sweden)

    Yan-Yang Lu

    2016-06-01

    Full Text Available An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs and carbonyl compounds (CCs in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches.

  7. Amino-functionalized metal-organic frameworks as tunable heterogeneous basic catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, M.; Hartmann, M. [Erlangen-Nuernberg Univ., Erlangen (Germany). Erlangen Catalysis Resource Center

    2011-07-01

    Metal-organic framework (MOF) materials have been explored for applications in heterogeneous catalysis in recent years. In addition to the use of MOFs as supports for the deposition of highly dispersed metal particles, the incorporation of active centers such as coordinatively unsaturated metal sites and the functionalization of the organic linkers with acidic or basic groups seems to be most promising. In our contribution, three different MOFs carrying amino groups at their organic linkers, namely Fe-MIL-101-NH{sub 2} (S{sub BET} = 3438 m{sup 2}g{sup -1}), Al-MIL-101-NH{sub 2} (S{sub BET} = 3099 m{sup 2}g{sup -1}) and CAU-1 (S{sub BET} = 1492 m{sup 2}g{sup -1}), were synthesized and tested in the Knoevenagel condensation of benzaldehyde with malononitrile and with ethyl cyanoacetate, respectively. It is shown that the expected products benzylidenemalononitrile (BzMN) and ethyl a-cyanocinnamate (EtCC) are formed with selectivities of more than 99 % and yields of 90 to 95 % after 3 h (for BzMN). Due to the very small pore windows of CAU-1 (0.3 to 0.4 nm) the reaction proceeds much slower over this catalyst in comparison to the amino-MIL-101 derivatives, which possess open pore windows of up to 1.6 nm. Finally, leaching tests confirm that the reaction is heterogeneously catalyzed. Moreover, the catalysts are recyclable without significant loss of activity. (orig.)

  8. Different specificities of two aldehyde dehydrogenases from Saccharomyces cerevisiae var. boulardii.

    Science.gov (United States)

    Datta, Suprama; Annapure, Uday S; Timson, David J

    2017-04-30

    Aldehyde dehydrogenases play crucial roles in the detoxification of exogenous and endogenous aldehydes by catalysing their oxidation to carboxylic acid counterparts. The present study reports characterization of two such isoenzymes from the yeast Saccharomyces cerevisiae var. boulardii (NCYC 3264), one mitochondrial (Ald4p) and one cytosolic (Ald6p). Both Ald4p and Ald6p were oligomeric in solution and demonstrated positive kinetic cooperativity towards aldehyde substrates. Wild-type Ald6p showed activity only with aliphatic aldehydes. Ald4p, on the contrary, showed activity with benzaldehyde along with a limited range of aliphatic aldehydes. Inspection of modelled structure of Ald6p revealed that a bulky amino acid residue (Met 177 , compared with the equivalent residue Leu 196 in Ald4p) might cause steric hindrance of cyclic substrates. Therefore, we hypothesized that specificities of the two isoenzymes towards aldehyde substrates were partly driven by steric hindrance in the active site. A variant of wild-type Ald6p with the Met 177 residue replaced by a valine was also characterized to address to the hypothesis. It showed an increased specificity range and a gain of activity towards cyclohexanecarboxaldehyde. It also demonstrated an increased thermal stability when compared with both the wild-types. These data suggest that steric bulk in the active site of yeast aldehyde dehydrogenases is partially responsible for controlling specificity. © 2017 The Author(s).

  9. Effect of Diamine in Amine-Functionalized MIL-101 for Knoevenagel Condensation

    International Nuclear Information System (INIS)

    Kasinathan, Palraj; Seo, You Kyong; Shim, Kyu Eun; Hwang, Young Kyu; Lee, U Hwang; Hwang, Dong Won; Hong, Do Young; Halligudi, Shiva B.; Chang, Jong San

    2011-01-01

    Have demonstrated that amines with different basicities successfully functionalized into the pores of MIL-101 and amine functionalized chromium terephthalate used as a base catalyst. The catalytic activity of amine functionalized MIL-101 in Knoevenagel condensation of ethylcyanoacetate and benzaldehyde depends on their basi-cities. The reactivity of these catalytic materials could be also affected by their pore size and/or surface area, which governs the facile diffusion of the molecules through the channels of the MIL-101. The present strategy ensures the development of new functionalities and lead to MOF applications of practically useful heterogeneous base catalysts for chemical transformations. Crystalline Metal-Organic Frameworks (MOFs) are currently an important kind of advanced functional materials due to their novel coordination structures, diverse topologies, and potential applications. As one of topical MOFs, porous chromium terephthalate with giant pores labeled MIL-101(Cr) possesses several unique features such as hierarchical pore structure including a mesoporous zeotype architecture, mesoporous cages and microporous windows, outstanding sorption properties, numerous unsaturated metal cation sites, and high hydrothermal and chemical stability. These properties have led to a number of application potential in catalysis, gas storage, drug delivery and adsorptive separation. One important challenge has to realize is funtionalization via incorporation of binding site or reactive centers for catalysis. The functionalization methods of metal organic frameworks (MOFs) in a wide range of applications are two possible approaches including pre- and post-modification with functional groups

  10. Determination of Phenols Isomers in Water by Novel Nanosilica/Polydimethylsiloxane-Coated Stirring Bar Combined with High Performance Liquid Chromatography-Fourier Transform Infrared Spectroscopy.

    Science.gov (United States)

    Zheng, Bei; Li, Wentao; Liu, Lin; Wang, Xin; Chen, Chen; Yu, Zhiyong; Li, Hongyan

    2017-08-18

    A novel nanosilica/polydimethylsiloxane (SiO 2 /PDMS) coated stirring bar was adopted in the sorption extraction (SBSE) of phenols in water, and the high performance liquid chromatography-fourier transform infrared spectroscopy (HPLC-FTIR) was subsequently used to determination of phenol concentration. The SiO 2 /PDMS coating was prepared by sol-gel method and characterized with respect to morphology and specific surface area. The results of field-emission scanning electron microscope (FE-SEM) and N 2 adsorption-desorption as well as phenol adsorption experiments denoted that SiO 2 /PDMS has larger surface area and better adsorption capacity than commercial PDMS. The extraction efficiency of phenol with SiO 2 /PDMS coated stirring bar was optimized in terms of ion strength, flow rate of phenol-involved influent, type of desorption solvent and desorption time. More than 75% of phenol desorption efficiency could be kept even after 50 cycles of extraction, indicating the high stability of the SiO 2 /PDMS coated stirring bar. Approximately 0.16 mg/L 2, 5-dimethylphenol (2, 5-DMP), which was 34-fold more toxic than phenol, was detected in water through HPLC-FTIR. However, 2, 5-DMP could be oxidized to 5-methy-2-hydroxy benzaldehyde after disinfection in drinking water treatment process. Therefore, the proposed method of SiO 2 /PDMS-SBSE-HPLC-FTIR is successfully applied in the analysis of phenols isomers in aqueous environment.

  11. Crystal structures, DFT calculations, and Hirshfeld surface analyses of two new copper(II) and nickel(II) Schiff base complexes derived from meso-1,2-diphenyl-1,2-ethylenediamine

    Science.gov (United States)

    Seifikar Ghomi, Leila; Behzad, Mahdi; Tarahhomi, Atekeh; Arab, Ali

    2017-12-01

    Two new Ni(II) and Cu(II) complexes of a tetradentate Schiff base ligand (1 and 2, respectively), derived from the condensation of meso-1,2-diphenyl-1,2-ethylenediamine with 2-hydroxy-6-methoxy benzaldehyde, were synthesized and characterized by IR, UV-Vis, 1H NMR spectroscopy, and X-Ray crystallography. The central metal ions in both complexes are coordinated via the N2O2 coordination sphere of the ligand with square-planar geometry. DFT results revealed that the Msbnd N and Msbnd O interactions (M = Ni, Cu) are weaker than the typical covalent single bond indicating that ionic and electrostatic interactions are dominated in Msbnd N and Msbnd O bonds. Hirshfeld surface (HS) analyses of the studied structures 1 and 2 have been performed. The study using 3D HSs and 2D fingerprint plots (FPs) highlighted the dominant contacts H⋯H, C⋯H/H⋯C and O⋯H/H⋯O in both structures, and H⋯Cl in 2. The molecular assemblies held by C⋯O/O⋯C (in 1) and C⋯C (in 1 and 2) type dipole-dipole interactions are also found in the crystal packing contributing towards stability. The significant contributions arising from the mentioned interactions in crystal packing are also revealed from the Hirshfeld surface FPs showing a major contribution to total HS area for the H⋯H contacts for both structures.

  12. Organolanthanide reagents and the Mukaiyama reaction

    International Nuclear Information System (INIS)

    Gong, L.

    1989-01-01

    The bis(pentamethylcyclopentadienyl) lutetium halide complex [(C 5 Me 5 ) 2 LuCl/center dot/THF] was synthesized and characterized. The crystal structure of this complex shows that the Lu is at the center of a distorted tetrahedron consisting of the centroids of two cyclopentadienyl rings, the oxygen atom of a tetrahydrofuran molecule and a chlorine atom. 1 H NMR studies of toluene-d 8 solutions of (C 5 Me 5 LuCl(THF) + THF, (TMS 2 CP) 2 LuCl(THF) + THF, and (MeCp) 2 LuCl(THF) + THF at various temperatures showed exchange processes between co- ordinated THF and free THF with average values of ΔG/sup ne/ of 13.0 /+-/ 0.3 kcal/mol, 11.1 /+-/ 0.1 kcal/mol and 2 Cp) 2 YbCl dimer, silyl enol ethers (R 1 R 2 C = C(OR 3 )OSiMe 3 )) react with benzaldehyde smoothly in dichloromethane at room temperature, giving >99% of the aldol silyl ether (isolated yield: 90%) within 3 h. At /minus/78/degrees/C, the reaction gives kinetically controlled diastereoselectivity, which was not observed in the TiCl 4 -mediated aldol reaction. The use of organoytterbium enolates shows promise result with respect to increased stereoselectivity, and indicates the importance of the bulky ligands on the metal center. In addition, Yb(III) species can retard retroaldol reaction owing to its mild Lewis acidity. 118 refs., 14 figs., 30 tabs

  13. Molecular Switch for Sub-Diffraction Laser Lithography by Photoenol Intermediate-State Cis-Trans Isomerization.

    Science.gov (United States)

    Mueller, Patrick; Zieger, Markus M; Richter, Benjamin; Quick, Alexander S; Fischer, Joachim; Mueller, Jonathan B; Zhou, Lu; Nienhaus, Gerd Ulrich; Bastmeyer, Martin; Barner-Kowollik, Christopher; Wegener, Martin

    2017-06-27

    Recent developments in stimulated-emission depletion (STED) microscopy have led to a step change in the achievable resolution and allowed breaking the diffraction limit by large factors. The core principle is based on a reversible molecular switch, allowing for light-triggered activation and deactivation in combination with a laser focus that incorporates a point or line of zero intensity. In the past years, the concept has been transferred from microscopy to maskless laser lithography, namely direct laser writing (DLW), in order to overcome the diffraction limit for optical lithography. Herein, we propose and experimentally introduce a system that realizes such a molecular switch for lithography. Specifically, the population of intermediate-state photoenol isomers of α-methyl benzaldehydes generated by two-photon absorption at 700 nm fundamental wavelength can be reversibly depleted by simultaneous irradiation at 440 nm, suppressing the subsequent Diels-Alder cycloaddition reaction which constitutes the chemical core of the writing process. We demonstrate the potential of the proposed mechanism for STED-inspired DLW by covalently functionalizing the surface of glass substrates via the photoenol-driven STED-inspired process exploiting reversible photoenol activation with a polymerization initiator. Subsequently, macromolecules are grown from the functionalized areas and the spatially coded glass slides are characterized by atomic-force microscopy. Our approach allows lines with a full-width-at-half-maximum of down to 60 nm and line gratings with a lateral resolution of 100 nm to be written, both surpassing the diffraction limit.

  14. Identification of odor volatile compounds and deodorization of Paphia undulata enzymatic hydrolysate

    Science.gov (United States)

    Chen, Deke; Chen, Xin; Chen, Hua; Cai, Bingna; Wan, Peng; Zhu, Xiaolian; Sun, Han; Sun, Huili; Pan, Jianyu

    2016-12-01

    Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) of Paphia undulata enzymatic hydrolysate revealed that the compounds contributing to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodorizing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata enzymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80°C, 40 min), YE masking (7 mg mL-1, 45°C, 30 min) and TP treatment (0.4 mg mL-1, 40°C, 50 min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of aldehydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. undulate hydrolysate solution for a period of 72 h.

  15. Optimizing complex scandium-3,3 benzilidene BIS [4-hydroxycoumarin] with 46Sc radiotracer

    International Nuclear Information System (INIS)

    Khanza Aktari Dewi; Muhamad Basit Febrian; Duyeh Setiawan

    2015-01-01

    Coumarin, coumarin derivatives and coumarin complex compounds known to possess biological activities such as anticancer and antiviral. The reaction between the active compound coumarin derivatives with radioisotopes Sc-46 is expected to give a complex that will be marked for further investigation of its biological activity in purpose of drug development based on coumarin. This study aims to determine the optimum conditions in the synthesis of its complex compounds as well as the physico chemical characteristics including physical properties and radiochemical purity of the complex. 3.3 benzilidene bis [4-hydroxycoumarin] ligand has successfully synthesized by reacting 4-hydroxycoumarin with benzaldehyde. Complex solids formed instantly when the solution ScCl 3 labeled by Sc-46 with a pH of 5 is reacted with a ligand solution with a pH of 11 with the optimum ratio of Sc: ligand were 1:2 with optimum labeling percentage of 99,75 ± 0,02%. FTIR analysis of complex compounds and ligands show some shift in absorption due to the formation of complex. Melting point of ligand was 234°C whilst complex compound was not yet melted in maximum range of Fischer-Jons instrument at 300°C. The complex was white reddish coloured and well soluble in DMSO. Radiochemical purity of the complex Sc-(3,3 benzilidene bis [4-hydroxycoumarin]) 2 .2H 2 O was 91.22%. Complex compound of coumarin labeled by Sc-46 has been successfully synthesized and characterized with proposed molecular formula of Sc-(3,3 benzilidene bis [4-hydroxycoumarin]) 2 .2H 2 O. (author)

  16. Template synthesis, characterization and antimicrobial activity of some new complexes with isonicotinoyl hydrazone ligands

    Directory of Open Access Journals (Sweden)

    LIVIU MITU

    2009-09-01

    Full Text Available Complexes of Cu(II, Ni(II, Co(II with the 9-anthraldehyde iso-nicotinoyl hydrazone ligand (HL1 and the 3,5-di-tert-butyl-4-hydroxy-benzaldehyde isonicotinoyl hydrazone ligand (H2L2 were synthesized by the template method. The complexes were characterized by analytical analysis, IR, UV-Vis and ESR spectroscopy, magnetic measurements, conductometry and thermal analysis and the two ligands by 1H-NMR spectroscopy. From the elemental analysis, 1:2 (metal:ligand stoichiometry for the complexes of Cu(II, Ni(II with the ligands HL1 and H2L2 and 1:1 (metal:ligand stoichiometry for the complex of Co(II with the ligand HL1 are proposed. The molar conductance data showed that the complexes are non-electrolytes. The magnetic susceptibility results coupled with the electronic and ESR spectra suggested a distorted octahedral geometry for the complexes Ni(II/HL1, Ni(II/H2L2 and Cu(II/H2L2, a tetrahedral stereochemistry for the complex Cu/HL1 and a square-planar geometry for the complex Co/HL1. The IR spectra demonstrated the bidentate coordination of the ligands HL1 and H2L2 by the O=C amide oxygen and the azomethine nitrogen, as well as monodentate coordination of the ligand HL1 by the azomethine nitrogen in the Cu(IIcomplex. The antibacterial activity of the ligands and their metallic complexes were tested against Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae.

  17. The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization.

    Science.gov (United States)

    Kauppila, Tiina J; Kersten, Hendrik; Benter, Thorsten

    2014-11-01

    A novel, gas-tight API interface for gas chromatography-mass spectrometry was used to study the ionization mechanism in direct and dopant-assisted atmospheric pressure photoionization (APPI) and atmospheric pressure laser ionization (APLI). Eight analytes (ethylbenzene, bromobenzene, naphthalene, anthracene, benzaldehyde, pyridine, quinolone, and acridine) with varying ionization energies (IEs) and proton affinities (PAs), and four common APPI dopants (toluene, acetone, anisole, and chlorobenzene) were chosen. All the studied compounds were ionized by direct APPI, forming mainly molecular ions. Addition of dopants suppressed the signal of the analytes with IEs above the IE of the dopant. For compounds with suitable IEs or Pas, the dopants increased the ionization efficiency as the analytes could be ionized through dopant-mediated gas-phase reactions, such as charge exchange, proton transfer, and other rather unexpected reactions, such as formation of [M + 77](+) in the presence of chlorobenzene. Experiments with deuterated toluene as the dopant verified that in case of proton transfer, the proton originated from the dopant instead of proton-bound solvent clusters, as in conventional open or non-tight APPI sources. In direct APLI using a 266 nm laser, a narrower range of compounds was ionized than in direct APPI, because of exceedingly high IEs or unfavorable two-photon absorption cross-sections. Introduction of dopants in the APLI system changed the ionization mechanism to similar dopant-mediated gas-phase reactions with the dopant as in APPI, which produced mainly ions of the same form as in APPI, and ionized a wider range of analytes than direct APLI.

  18. Preparation of acid-base bifunctional mesoporous KIT-6 (KIT: Korea Advanced Institute of Science and Technology) and its catalytic performance in Knoevenagel reaction

    International Nuclear Information System (INIS)

    Xu, Ling; Wang, Chunhua; Guan, Jingqi

    2014-01-01

    Acid-base bifunctional mesoporous catalysts Al-KIT-6-NH 2 containing different aluminum content have been synthesized through post synthetic grafting method. The materials were characterized by X-ray diffraction (XRD), scanning electron micrographs (SEM), transmission electron micrographs (TEM), Fourier-transform infrared spectroscopy (FTIR), IR spectra of pyridine adsorption, NH 3 -TPD and TG analysis. The characterization results indicated that the pore structure of KIT-6 was well kept after the addition of aluminum and grafting of aminopropyl groups. The acid amount of Al-KIT-6 increased with enhancing aluminum content. Catalytic results showed that weak acid and weak base favor the Knoevenagel reaction, while catalysts with strong acid and weak base exhibited worse catalytic behavior. - Graphical abstract: The postulated steps of mechanism for the acid-base catalyzed process are as follows: (1) the aldehyde gets activated by the surface acidic sites which allow the amine undergoes nucleophilic to attack the carbonyl carbon of benzaldehyde. (2) Water is released in the formation of imine intermediate. (3) The ethyl cyanoacetate reacts with the intermediate. (4) The benzylidene ethyl cyanoacetate is formed and the amine is regenerated. - Highlights: • KIT-6 and Al-KIT-6-NH 2 with different Si/Al ratios has been successfully prepared. • 79.4% Yield was obtained over 46-Al-KIT-6-NH 2 within 20 min in Knoevenagel reaction. • Low Al-content Al-KIT-6-NH 2 shows better catalytic stability than high Al-content catalysts. • There is acid-base synergistic effect in Knoevenagel reaction

  19. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion as a Potential Source of Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Katy Díaz

    2018-01-01

    Full Text Available Currently, the most effective treatment for recurrent urinary tract infections in women is antibiotics. However, the limitation for this treatment is the duration and dosage of antibiotics and the resistance that bacteria develop after a long period of administration. With the aim of identifying mainly novel natural agents with antibacterial activity, the present study was undertaken to investigate the biological and phytochemical properties of extracts from the leaves Taraxacum officinale. The structural identification of compounds present in hexane (Hex and ethyl acetate (AcOEt extracts was performed by mass spectrometry (GC-MS spectroscopic techniques and nuclear magnetic resonance (NMR with the major compounds corresponding to different sesquiterpene lactones (α-santonin, glabellin, arborescin, and estafiatin, monoterpene (9,10-dimethyltricycle [4.2.1.1 (2,5]decane-9,10-diol, phytosterol (Stigmasta-5,22-dien-3β-ol acetate, terpenes (lupeol acetate, pregn-5-en-20-one-3β-acetyloxy-17-hydroxy, 2-hydroxy-4-methoxy benzaldehyde, and coumarin (benzofuranone 5,6,7,7-a-tetraaldehyde-4,4,7a-trimethyl. The results obtained show that the Hex extract was highly active against Staphylococcus aureus showing a MIC of 200 μg/mL and moderately active against Escherichia coli and Klebsiella pneumoniae with MIC values of 400 μg/mL and 800 μg/mL for the other Gram-negative strains tested with Proteus mirabilis as uropathogens in vitro. Therefore, the effective dandelion extracts could be used in the development of future products with industrial application.

  20. Isolation and Identification of Compounds from Bioactive Extracts of Taraxacum officinale Weber ex F. H. Wigg. (Dandelion) as a Potential Source of Antibacterial Agents.

    Science.gov (United States)

    Díaz, Katy; Espinoza, Luis; Madrid, Alejandro; Pizarro, Leonardo; Chamy, Rolando

    2018-01-01

    Currently, the most effective treatment for recurrent urinary tract infections in women is antibiotics. However, the limitation for this treatment is the duration and dosage of antibiotics and the resistance that bacteria develop after a long period of administration. With the aim of identifying mainly novel natural agents with antibacterial activity, the present study was undertaken to investigate the biological and phytochemical properties of extracts from the leaves Taraxacum officinale. The structural identification of compounds present in hexane (Hex) and ethyl acetate (AcOEt) extracts was performed by mass spectrometry (GC-MS) spectroscopic techniques and nuclear magnetic resonance (NMR) with the major compounds corresponding to different sesquiterpene lactones ( α -santonin, glabellin, arborescin, and estafiatin), monoterpene (9,10-dimethyltricycle [4.2.1.1 (2,5)]decane-9,10-diol), phytosterol (Stigmasta-5,22-dien-3 β -ol acetate), terpenes (lupeol acetate, pregn-5-en-20-one-3 β -acetyloxy-17-hydroxy, 2-hydroxy-4-methoxy benzaldehyde), and coumarin (benzofuranone 5,6,7,7-a-tetraaldehyde-4,4,7a-trimethyl). The results obtained show that the Hex extract was highly active against Staphylococcus aureus showing a MIC of 200  μ g/mL and moderately active against Escherichia coli and Klebsiella pneumoniae with MIC values of 400  μ g/mL and 800  μ g/mL for the other Gram-negative strains tested with Proteus mirabilis as uropathogens in vitro . Therefore, the effective dandelion extracts could be used in the development of future products with industrial application.