WorldWideScience

Sample records for benthic denitrification nitrate

  1. Denitrification, nitrate turnover, and aerobic respiration by benthic foraminiferans in the oxygen minimum zone off Chile

    DEFF Research Database (Denmark)

    Høgslund, Signe; Revsbech, Niels Peter; Cedhagen, Tomas;

    2008-01-01

    Population density, nitrate turnover, and oxygen respiration of benthic foraminiferans were investigated in the oxygen minimum zone (OMZ) off the Chilean coast. Live foraminiferans were found predominantly in the upper 3 mm of the sediment, and the nitrate accumulating species Nonionella cf. stella...... and Stainforthia sp. dominated with a combined standing stock of 2.0 × 106 Rose Bengal stained specimens m−2. The rate of denitrification in cells of N. cf. stella analyzed with nitrous oxide microsensors during acetylene inhibition was 84 ± 33 pmol C individual−1 d−1. Multiplied with the standing...... stock of N. cf. stella and Stainforthia sp. this yielded a minimum benthic denitrification rate of 173 μmol N m−2 d−1 by foraminiferans. Foraminiferal denitrification, which seemed to account for almost all benthic denitrification at the investigated site will be overlooked by most conventional methods...

  2. Modeling nitrate removal in a denitrification bed

    Science.gov (United States)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  3. Denitrification inhibition by high nitrate wastes

    International Nuclear Information System (INIS)

    The processing of radioactive metal products at nuclear weapons plants and research labs has produced wastewaters containing high concentrations of nitrate, often greater than 50,000 mg/l N. The adaptation of activated sludge and inhibition of denitrification at high nitrate concentrations was studied using pH controlled bench-scale sequencing batch reactors (SBRs), operated with 50% of the SBR volume recycled (recycle volume = influent volume). Denitrification of 1,350 and 2,700 mg/l NO3--N was completed after approximately 5 hours and 15 hours, respectively. No denitrification of 5,400 mg/l NO3--N was observed. These results suggest that there is a progressive inhibition of denitrification as nitrate concentrations increase from 1,350 to 5,400 mg/l NO3--N. In a subsequent series of experiments at an initial reactor nitrate concentration of 1,350 mg/l N, a significant accumulation of nitrate was observed, resulting once in destabilization with loss of denitrification and once in successful adaptation of the activated sludge. At a nitrate concentration of 1,350 mg/l N, the adaptation of activated sludge appears to be unstable, resulting sometimes in stable denitrification and sometimes in biomass washout

  4. Biological denitrification of high nitrate waste solutions

    International Nuclear Information System (INIS)

    Biological denitrification of solutions of nitrate salts and weak solutions of nitric acid used in the purification of uranium at the Oak Ridge Y-12 Plant is briefly discussed. Advantages of this system over others are mentioned. Techniques and accumulated experience are covered

  5. Biological denitrification of nitrate wastes

    International Nuclear Information System (INIS)

    Enriched uranium wastes are purified in the Y-12 Plant, and the uranium product is recycled. One purification method involves dissolving the waste in nitric acid followed by solvent extraction to recover uranium. The process generates nitrate waste solutions which must be discarded. For many years, these wastes were stored in unlined ponds. In 1976 a recycle process was installed, and about half of the wastes were recovered and reused. A biological process (stirred tank) was installed, and the remaining nitrate wastes were biologically decomposed to produce nitrogen gas. Some additional nitrate wastes, generated in other parts of the plant, continued to be placed in the open ponds which must now be decommissioned. In 1983 an in-situ biological process was developed and tested whereby the open ponds were successfully biologically treated. This paper describes the results of the stirred tank and the in-situ pond treatment processes used in the plant to decompose nitrate ions

  6. Biological denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    The studies leading to the design of the Oak Ridge Y-12 plant biological denitrification system are briefly described. The system uses a flow-through stirred-bed reactor. Methanol and lime-neutralized acetic acid were evaluated as C sources. The acetic acid was selected because the calcium carbonate generated in the process is needed for neutralization of the acid wastes. Excess organic will be used to ensure maximum amount of nitrate destroyed. The system will generate solids in the form of calcium carbonate, aluminum hydroxide, and organic carbon and N2 and CO2 gases. (JSR)

  7. Anaerobic ammonium oxidation, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment

    Directory of Open Access Journals (Sweden)

    G. D. Song

    2013-03-01

    Full Text Available Benthic nitrogen transformation pathways were investigated in the sediment of the East China Sea in June of 2010 using the 15N isotope pairing technique. Slurry incubations indicated that denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA as well as nitrate release by nitrate storing organisms occurred in the East China Sea sediments. These four processes did not exist independently, the nitrate release therefore diluted the 15N labeling fraction of NO3−, a part of the 15NH4+ derived from DNRA also formed 30N2 via anammox. Therefore current methods of rate calculations led to over and underestimations of anammox and denitrification respectively. Following the procedure outlined in Thampdrup and Dalsgaard (2002, denitrification rates were slightly underestimated by on average 6% without regard to the effect of nitrate release, while this underestimation could be counteracted by the presence of DNRA. On the contrary, anammox rates calculated from 15NO3− experiment were significantly overestimated by 42% without considering nitrate release. In our study this overestimation could only be compensated 14% by taking DNRA into consideration. In a parallel experiment amended with 15NH4+ + 14NO3−, anammox rates were not significantly influenced by DNRA due to the high background of 15NH4+ addition. Excluding measurements in which bioirrigation was present, integrated denitrification rates decreased from 10 to 4 mmol N m−2 d−1 with water depth, while integrated anammox rates increased from 1.5 to 4.0 mmol N m−2 d−1. Consequently, the relative contribution of anammox to the total N-loss increased from 13% at the shallowest site near the Changjiang estuary to 50% at the deepest site on the outer shelf. This study represents the first time in which anammox has been demonstrated to play a significant role in benthic nitrogen cycling in the East China Sea sediment, especially on the outer shelf. N

  8. Nitrate removal and denitrification affected by soil characteristics in nitrate treatment wetlands.

    Science.gov (United States)

    Lin, Ying-Feng; Jing, Shuh-Ren; Lee, Der-Yuan; Chang, Yih-Feng; Shih, Kai-Chung

    2007-03-01

    Several small-scale surface flow constructed wetlands unplanted and planted (monoculture) with various macrophytes (Phragmites australis, Typha orientalis, Pennisetum purpureum, Ipomoea aquatica, and Pistia stratiotes) were established to continuously receive nitrate-contaminated groundwater. Soil characteristics and their effects on nitrate removal and soil denitrification were investigated. The results showed that planted wetland cells exhibited significantly higher (P < 0.05) nitrate removal efficiencies (70-99%) and soil denitrification rates (3.78-15.02 microg N2O-N/g dry soil/h) than an unplanted covered wetland cell (1%, 0.11 microg N2O-N/g/h). However, the unplanted uncovered wetland cell showed a nitrate removal efficiency (55%) lower than but a soil denitrification rate (9.12 microg N2O-N/g/h) comparable to the planted cells. The nitrate removal rate correlated closely and positively with the soil denitrification rate for the planted cells, indicating that soil denitrification is an important process for removing nitrate in constructed wetlands. The results of nitrogen budget revealed that around 68.9-90.7% of the overall nitrogen removal could be attributed to the total denitrification. The soil denitrification rate was found to correlate significantly (P < 0.01) with the extractable organic carbon, organic matter, and in situ-measured redox potential of wetland soil, which accordingly were concluded as suitable indicators of soil denitrification rate and nitrate removal rate in nitrate treatment wetlands. PMID:17365317

  9. Biological denitrification of high sodium nitrate bearing actual reprocessing waste

    International Nuclear Information System (INIS)

    High nitrate bearing alkaline waste solution of reprocessing plant origin was decontaminated by adopting an ion exchange followed by a chemical treatment based process. The resulting effluent was then subjected to nitrate removal by biodenitrification. A flow through bioreactor provided with stainless steel modules as support for biomass growth was setup and the biomass in reactor was acclimatized to a NaNO3 solution of concentration level comparable to actual effluents. The bioreactor was used for denitrification of the actual effluent in continuous mode and complete denitrification of the actual reprocessing waste solution containing 17,500 ppm of nitrate has been successfully demonstrated. (author)

  10. Waste generation reduction - nitrates. Comprehensive report of denitrification technologies

    International Nuclear Information System (INIS)

    A five-year denitrification technology development program has been conducted at the Rocky Flats Plant and has identified several promising denitrification methods. DOE sites were first surveyed to determine nitrate waste generation rates, inventory and regulatory concerns. The need for processes to handle this waste category was evident, both from the survey results and comments of site operations. The denitrification methods identified are classified as thermal, aqueous and biological; physical disposal is also discussed. Thermal processes were demonstrated to destroy the nitrates with the creation of less than 500 ppM NO/sub x/ as a by-product. Studies were performed on a molten salt destructor, a high temperature fluid wall reactor (HTFWR), a glass furnace, a plasma arc furnace, laser excitation and microwave heating. A preliminary design and cost estimate report was prepared for a one million kilogram-per-year process for denitrification using the HTFWR. Monsanto Research Corporation-Mound published a report of their glass furnace denitrification efforts. An aqueous process consisting of formic acid and sulfuric acid reflux was developed which converts the nitrate to other forms, but results in slightly elevated NO/sub x/ emissions. Biodenitrification was developed at Oak Ridge National Laboratory and is in production use at Oak Ridge Y-12 Plant. Results and conclusions on the program are discussed. 17 refs., 10 figs., 26 tabs

  11. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes.

    Science.gov (United States)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Ni, Bing-Jie

    2016-02-01

    Sulfur-based autotrophic denitrification and heterotrophic denitrification have been demonstrated to be promising technological processes for simultaneous removal of nitrate NO3(-) and chromate (Cr (VI)), two common contaminants in surface and ground waters. In this work, a mathematical model was developed to describe and evaluate the microbial and substrate interactions among sulfur oxidizing denitrifying organism, methanol-based heterotrophic denitrifiers and chromate reducing bacteria in the biofilm systems for simultaneous nitrate and chromate removal. The concomitant multiple chromate reduction pathways by these microbes were taken into account in this model. The validity of the model was tested using experimental data from three independent biofilm reactors under autotrophic, heterotrophic and mixotrophic conditions. The model sufficiently described the nitrate, chromate, methanol, and sulfate dynamics under varying conditions. The modeling results demonstrated the coexistence of sulfur-oxidizing denitrifying bacteria and heterotrophic denitrifying bacteria in the biofilm under mixotrophic conditions, with chromate reducing bacteria being outcompeted. The sulfur-oxidizing denitrifying bacteria substantially contributed to both nitrate and chromate reductions although heterotrophic denitrifying bacteria dominated in the biofilm. The mixotrophic denitrification could improve the tolerance of autotrophic denitrifying bacteria to Cr (VI) toxicity. Furthermore, HRT would play an important role in affecting the microbial distribution and system performance, with HRT of higher than 0.15 day being critical for a high level removal of nitrate and chromate (over 90%). PMID:26619398

  12. Denitrification studies with 13N-labeled nitrate

    International Nuclear Information System (INIS)

    Nitrate labeled with 13N(13NO3-) was produced in a cyclotron by the 16O(p, α)13N reaction with protons having energies of 14.5 million electron volts. The 13NO3 was used as a tracer for direct quantitative measurements of denitrification rates in soils from flooded rice fields. The 13N technique provides a new tracer method for the measurement of denitrification rates in natural systems over short time intervals, without changing the concentration of NO3- in the system

  13. Reductive denitrification of nitrate by scrap iron filings

    Institute of Scientific and Technical Information of China (English)

    HAO Zhi-wei; XU Xin-hua; WANG Da-hui

    2005-01-01

    Reduction of nitrate by zero-valent iron is a highly exergonic reaction that has long been known to occur. Use of scrap iron filings (SIF) as the PRB (Permeable Reactive Barrier) material can be used to recycle certain by-products, and identify cheaper replacements for expensive conventional PRB materials, especially pure metallic iron. The feasibility of reductive denitrification of nitrate by SIF was studied by batch experiments. Operational parameters such as pH value, SIF dosage and initial concentration of nitrate were investigated. The removal efficiency of nitrate reached 80% under the conditions of pH of 2.5, nitrate initial concentration of 45 mg/L and SIF dosage of 100 g/L within 4 h. Results indicated that nitrate removal is inversely related to pH. Low pH value condition favors for the nitrate transformation. Different from the results of others who studied nitrate reduction using iron powder, we found that there was a lag time before nitrate reduction occurs, even at low pH. Finally, the possible mechanism of nitrate reduction by Fe0 is discussed.

  14. Biological denitrification of nitrate waste solutions

    International Nuclear Information System (INIS)

    Based on careful laboratory and pilot-plant work, the Y-12 Plant of the Nuclear Division of Union Carbide has designs to construct and operate a three-phase plant to eliminate nitrate as a potential pollutant of ground water. A still is being installed to distill and recover free nitric acid from condensates and raffinate for recycle in production operations. A crystallizer is in the process of being purchased and installed to recover and recycle Al(NO3)3.9H2O. The 25,000-gallon (95 m3) modified water-softening tanks with associated stirring equipment, plumbing, pumps and controls have been purchased. Either one or both of these vessels will be utilized as biological denitrifiers dependent upon the quantity of nitrate requiring disposal at any given time. One denitrifier may be utilized to maintain a standby working colony or culture of bacteria and simultaneously achieve an even lower nitrate concentration in the effluent stream than the present 40 to 100 mg/dm3 of solution. (U.S.)

  15. Isolation of biomass for denitrification of sodium nitrate bearing nuclear waste effluents

    International Nuclear Information System (INIS)

    Isolation of biomass and identification of suitable growth medium was carried out for denitrification of nitrate present as sodium nitrate. The biomass after acclimatization was used for denitrification of 0.1% NaNO3 solution in batch bioreactor and the progress of denitrification was monitored for 10 consecutive cycles. The denitrification performance was also studied using harvested cells in the batch bioreactor. Complete denitrification of different concentrations of NaNO3 solution up to 8800 ppm (NO3- ) was achieved. (author)

  16. Chironomus plumosus larvae increase fluxes of denitrification products and diversity of nitrate-reducing bacteria in freshwater sediment

    DEFF Research Database (Denmark)

    Poulsen, Morten; W. V. Kofoed, Michael; H. Larsen, Lone;

    2014-01-01

    Benthic invertebrates affect microbial processes and communities in freshwater sediment by enhancing sediment-water solute fluxes and by grazing on bacteria. Using microcosms, the effects of larvae of thewidespread midge Chironomus plumosus on the efflux of denitrification products (N2O and N2+ N2O......) and the diversity and abundance of nitrate- and nitrous-oxide-reducing bacteria were investigated. Additionally, the diversity of actively nitrate- and nitrous-oxide-reducing bacteria was analyzed in the larval gut.The presence of larvae increased the total effluxes of N2O and N2+N2O up to 8.6- and 4...... neither narG, nor nosZ wasdifferent in sediments with and without larvae. Hence, C. plumosus increases activity and diversity, but not overall abundance of nitrate-reducing bacteria, probably by providing additional ecological niches in its burrow and gut....

  17. Evidence for complete denitrification in a benthic foraminifer

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Langezaal, Alexandra; Ingvardsen, Signe; Schmid, Markus; Derksen, Jan W.M.; Op den Camp, Huup; Pina-Ochoa, Elisa; Eriksson, Susanne; Nielsen, Lars Peter; Revsbech, Niels Peter; Cedhagen, Tomas; van der Zwaan, Gilbert J.

    2006-01-01

    Benthic foraminifera are unicellular eukaryotes found abundantly in many types of marine sediments. Many species survive and possibly reproduce in anoxic habitats1, but sustainable anaerobic metabolism has not been previously described. Here we demonstrate that the foraminifer Globobulimina pseud...

  18. Development of electrochemical denitrification from waste water containing ammonium nitrate

    International Nuclear Information System (INIS)

    The authors developed processes to dentrify waste water containing ammonium nitrate discharged from the nuclear fuel manufacturing works and to recover nitric acid and ammonia. For denitrification they applied the operating method and the conditions of operation to make 0.4mM or less from NH4NO3 waste water of 1.5 M by 3 stages of electrodialysis cells. To recover nitric acid and ammonium water, they separated HNO3 solution of 6 M and NH4OH solution with one unit of electrolysis cell, then absorbed NH3 gas from NH4OH solution with water and applied the condition of operation to recover 8 M NH4OH solution. The authors demonstrated that treatment and recovery can be carried out stably with actual waste water with a system through the combination of previously mentioned electrodialysis cells, electrolysis cells and an ammonia gas absorber. At present they are planning a plant where NH4NO3 waste water of 4,500 mol can be treated per day

  19. Nitrification and denitrification in a midwestern stream containing high nitrate: In situ assessment using tracers in dome-shaped incubation chambers

    Science.gov (United States)

    Smith, R.L.; Böhlke, J.K.; Repert, D.A.; Hart, C.P.

    2009-01-01

    The extent to which in-stream processes alter or remove nutrient loads in agriculturally impacted streams is critically important to watershed function and the delivery of those loads to coastal waters. In this study, patch-scale rates of in-stream benthic processes were determined using large volume, open-bottom benthic incubation chambers in a nitrate-rich, first to third order stream draining an area dominated by tile-drained row-crop fields. The chambers were fitted with sampling/mixing ports, a volume compensation bladder, and porewater samplers. Incubations were conducted with added tracers (NaBr and either 15N[NO3-], 15N[NO2-], or 15N[NH4+]) for 24-44 h intervals and reaction rates were determined from changes in concentrations and isotopic compositions of nitrate, nitrite, ammonium and nitrogen gas. Overall, nitrate loss rates (220-3,560 ??mol N m-2 h-1) greatly exceeded corresponding denitrification rates (34-212 ??mol N m-2 h-1) and both of these rates were correlated with nitrate concentrations (90-1,330 ??M), which could be readily manipulated with addition experiments. Chamber estimates closely matched whole-stream rates of denitrification and nitrate loss using 15N. Chamber incubations with acetylene indicated that coupled nitrification/denitrification was not a major source of N2 production at ambient nitrate concentrations (175 ??M), but acetylene was not effective for assessing denitrification at higher nitrate concentrations (1,330 ??M). Ammonium uptake rates greatly exceeded nitrification rates, which were relatively low even with added ammonium (3.5 ??mol N m-2 h-1), though incubations with nitrite demonstrated that oxidation to nitrate exceeded reduction to nitrogen gas in the surface sediments by fivefold to tenfold. The chamber results confirmed earlier studies that denitrification was a substantial nitrate sink in this stream, but they also indicated that dissolved inorganic nitrogen (DIN) turnover rates greatly exceeded the rates of

  20. Bio-Denitrification of the Nitrate Waste Solution from the Lagoon Sludge in a Batch Fermenter

    International Nuclear Information System (INIS)

    It is a serious task to the decommissioning of the uranium conversion plant that the demolition of the lagoon sludge. The main component of the sludge is ammonium nitrate and that is the very explosive material. Therefore, the bio-denitrification is a attractive process to remove the nitrate. In this work, some process variables was tested such as incubation temperature, nitrate concentration, electron donor, C/N ratio, seeding ratio, and pH with an anaerobic bacteria as Pseudomonas halodenitrificans. The results would be used as basic data to the continuous bio-denitrification process.

  1. Biological nitrate removal from water and wastewater by solid-phase denitrification process.

    Science.gov (United States)

    Wang, Jianlong; Chu, Libing

    2016-11-01

    Nitrate pollution in receiving waters has become a serious issue worldwide. Solid-phase denitrification process is an emerging technology, which has received increasing attention in recent years. It uses biodegradable polymers as both the carbon source and biofilm carrier for denitrifying microorganisms. A vast array of natural and synthetic biopolymers, including woodchips, sawdust, straw, cotton, maize cobs, seaweed, bark, polyhydroxyalkanoate (PHA), polycaprolactone (PCL), polybutylene succinate (PBS) and polylactic acid (PLA), have been widely used for denitrification due to their good performance, low cost and large available quantities. This paper presents an overview on the application of solid-phase denitrification in nitrate removal from drinking water, groundwater, aquaculture wastewater, the secondary effluent and wastewater with low C/N ratio. The types of solid carbon source, the influencing factors, the microbial community of biofilm attached on the biodegradable carriers, the potential adverse effect, and the cost of denitrification process are introduced and evaluated. Woodchips and polycaprolactone are the popular and competitive natural plant-like and synthetic biodegradable polymers used for denitrification, respectively. Most of the denitrifiers reported in solid-phase denitrification affiliated to the family Comamonadaceae in the class Betaproteobacteria. The members of genera Diaphorobacter, Acidovorax and Simplicispira were mostly reported. In future study, more attention should be paid to the simultaneous removal of nitrate and toxic organic contaminants such as pesticide and PPCPs by solid-phase denitrification, to the elucidation of the metabolic and regulatory relationship between decomposition of solid carbon source and denitrification, and to the post-treatment of the municipal secondary effluent. Solid-phase denitrification process is a promising technology for the removal of nitrate from water and wastewater. PMID:27396522

  2. Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediments

    Directory of Open Access Journals (Sweden)

    Pierluigi VIAROLI

    2009-02-01

    Full Text Available This study aims at comparing biogeochemical processes in a Vallisneria spiralis meadow and in unvegetated sediments in the upper reach of the Mincio River (Northern Italy. The main hypothesis of this work is that meadows of rooted macrophytes affect benthic metabolism, enhancing capacity to retain nutrients (assimilation and dissipate (denitrification nitrogen loadings. In order to highlight how plants affect benthic processes in the riverbed, oxygen, dissolved inorganic carbon (DIC, soluble reactive phosphorus (SRP and inorganic nitrogen fluxes, together with denitrification rates, were measured from February to November 2007 in intact cores collected from stands of V. spiralis and bare sediments. V. spiralis biomass, elemental composition and growth rates were concurrently measured. Macrophyte biomass ranged from 60 to 120 g m-2 (as dry matter; growth rates followed a seasonal pattern from 0.001 in winter up to 0.080 d-1 in summer. On an annual basis, the macrophyte meadow was autotrophic with net O2 production and dissolved inorganic carbon uptake, while the bare sediment was net heterotrophic. The concurrent N assimilation by macrophytes and losses through denitrification led to similar N uptake/dissipation rates, up to 2500 mmol m-2 y-1. Under the very high NO3 - concentrations of the Mincio River, the competition between primary production and denitrification processes was also avoided. A significant ammonium regeneration from sediments to the water column occurred in the V. spiralis meadow, where plant debris and particulate matter accumulated. Here, SRP was also released into the water column, whilst in the bare sediment SRP fluxes were close to zero. Overall, V. spiralis affected the benthic metabolism enhancing the ecosystem capacity to control nitrogen contamination. However, the actual N removal rates were not sufficient to mitigate the pollution discharge.

  3. Stream denitrification across biomes and its response to anthropogenic nitrate loading

    Science.gov (United States)

    Mulholland, P.J.; Helton, A.M.; Poole, G.C.; Hall, R.O., Jr.; Hamilton, S.K.; Peterson, B.J.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C. N.; Dodds, W.K.; Findlay, S.E.G.; Gregory, S.V.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Meyer, J.L.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Johnson, L.T.; Niederlehner, B.R.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2008-01-01

    Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing and terrestrial ecosystems are becoming increasingly nitrogen-saturated, causing more bioavailable nitrogen to enter groundwater and surface waters. Large-scale nitrogen budgets show that an average of about 20-25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating that substantial sinks for nitrogen must exist in the landscape. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks. ??2008 Nature Publishing Group.

  4. Woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process for nitrate contaminated water remediation.

    Science.gov (United States)

    Li, Rui; Feng, Chuanping; Hu, Weiwu; Xi, Beidou; Chen, Nan; Zhao, Baowei; Liu, Ying; Hao, Chunbo; Pu, Jiaoyang

    2016-02-01

    Nitrate contaminated water can be effectively treated by simultaneous heterotrophic and autotrophic denitrification (HAD). In the present study, woodchips and elemental sulfur were used as co-electron donors for HAD. It was found that ammonium salts could enhance the denitrifying activity of the Thiobacillus bacteria, which utilize the ammonium that is produced by the dissimilatory nitrate reduction to ammonium (DNRA) in the woodchip-sulfur based heterotrophic and autotrophic denitrification (WSHAD) process. The denitrification performance of the WSHAD process (reaction constants range from 0.05485 h(-1) to 0.06637 h(-1)) is better than that of sulfur-based autotrophic denitrification (reaction constants range from 0.01029 h(-1) to 0.01379 h(-1)), and the optimized ratio of woodchips to sulfur is 1:1 (w/w). No sulfate accumulation is observed in the WSHAD process and the alkalinity generated in the heterotrophic denitrification can compensate for alkalinity consumption by the sulfur-based autotrophic denitrification. The symbiotic relationship between the autotrophic and the heterotrophic denitrification processes play a vital role in the mixotrophic environment. PMID:26650451

  5. Biosensor Determination of the Microscale Distribution of Nitrate, Nitrate Assimilation, Nitrification, and Denitrification in a Diatom-Inhabited Freshwater Sediment

    OpenAIRE

    Lorenzen, Jan; Larsen, Lars Hauer; Kjær, Thomas; Revsbech, Niels-Peter

    1998-01-01

    High-resolution NO3− profiles in freshwater sediment covered with benthic diatoms were obtained with a new microscale NO3− biosensor characterized by absence of interference from chemical species other than NO2− and N2O. Analysis of the microprofiles obtained indicated no nitrification during darkness, high rates of nitrification and a tight coupling between nitrification and denitrification during illumination, and substantial rates of NO3− assimilation during illumination. Nitrification dur...

  6. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments

    Science.gov (United States)

    Pfenning, K.S.; McMahon, P.B.

    1997-01-01

    A study conducted in 1994 as part of the US Geological Survey's National Water-Quality Assessment Program, South Platte River Basin investigation, examined the effect of certain environmental factors on potential denitrification rates in nitrate-rich riverbed sediments. The acetylene block technique was used to measure nitrous oxide (N2O) production rates in laboratory incubations of riverbed sediments to evaluate the effect of varying nitrate concentrations, organic carbon concentrations and type, and water temperature on potential denitrification rates. Sediment incubations amended with nitrate, at concentrations ranging from 357 to 2142 ??mol l-1 (as measured in the field), produced no significant increase (P > 0.05) in N2O production rates, indicating that the denitrification potential in these sediments was not nitrate limited. In contrast, incubations amended with acetate as a source of organic carbon, at concentrations ranging from 0 to 624 ??mol l-1, produced significant increases (P organic carbon concentration, indicating that the denitrification potential in these sediments was organic carbon limited. Furthermore, N2O production rates also were affected by the type of organic carbon available as an electron donor. Acetate and surface-water-derived fulvic acid supported higher N2O production rates than groundwater-derived fulvic acid or sedimentary organic carbon. Lowering incubation temperatures from 22 to 4??C resulted in about a 77% decrease in the N2O production rates. These results help to explain findings from previous studies indicating that only 15-30% of nitrate in groundwater was denitrified before discharging to the South Platte River and that nitrate concentrations in the river generally were higher in winter than in summer.

  7. CHEMICAL DENITRIFICATION OF NITRATE FROM GROUNDWATER VIA SULFAMIC ACID AND ZINC METAL

    Directory of Open Access Journals (Sweden)

    A. Sabzali, M. Gholami, A. R. Yazdanbakhsh, A. Khodadadi, B. Musavi, R. Mirzaee

    2006-07-01

    Full Text Available Nitrate contamination in drinking water can cause methemoglobinemia, which is especially detrimental to infants and nursing mothers. Batch experiments in two units for catalytic reduction of nitrate from groundwater with Zn catalyst and sulfamic acid were conducted. The system includes chemical denitriphication (ChemDen reactor and electrolytic recovery reactoers. A batch study was conducted to optimize parameters like pH, sulfamic acid concentration, Zn concentration, temperature and reaction time governing the ChemDen process. The concentrations of remained nitrate and Zn were measured at the end of the reactions. Results showed that near to 100% of nitrate decreased and the quantity of remained nitrate was <1 mg/L. pH and agitation had great effect on denitrification, and the nitrate removal rate changed rapidly when pH value ranged between 3-4. Two water quality parameters which limit this process were sulfate and chloride ions concentrations in nitrate contaminated water.

  8. Effect of growing plants on denitrification at high soil nitrate concentrations

    International Nuclear Information System (INIS)

    The availability of plant rhizosphere C deposits and its influence on microbial denitrification is not clearly defined. Conflicting reports as to the influence of plants and root exudation on denitrification continue to appear in the literature. The results of the authors earlier phytotron study indicated that denitrification was not stimulated in soils planted with corn or wheat compared to unplanted soils. Lower nitrate concentrations in the planted soils, however, may have led to misinterpretation of this data. A second study was conducted, to evaluate the effect of actively growing plants on denitrification where the NO37 content of planted soils was maintained similar to unplanted soils. Simultaneously the C fixed by corn (Zea mays) and the fate of fertilizer N applied to the soil during the growing season were quantified. The corn was grown in a phytotron under a continuous supply of 14CO2 in 15N fertilized soils to which 15N-NO3- was added periodically during the growing season. The results of these studies showed that denitrification was not stimulated in soils planted with corn during active plant growth phase even when soil NO3- was relatively high. Denitrification was, however, greater in corn planted than unplanted soil when the recoverable root biomass began to decrease. Less N was immobilized and net 15N immobilization was lower in planted soils than in unplanted soils. As denitrification was lower in planted soils during the time of active plant growth, the study suggests that root exudates did not stimulate either process

  9. Woodchip denitrification bioreactors: Impact of temperature and hydraulic retention time on nitrate removal

    Science.gov (United States)

    Woodchip denitrification bioreactors, a relatively new technology for edge-of-field treatment of subsurface agricultural drainage water, have shown potential for nitrate removal. However, very few studies have evaluated the performance of these reactors under controlled conditions similar to the fie...

  10. Turnover of 15N labelled nitrate with special emphasis on denitrification in the field

    International Nuclear Information System (INIS)

    This study establishes a mass balance for 15N-labelled nitrate added to soil planted with a nitrogen-fixing crop (pea) and a non-fixing crop (barley). The results indicate that 15N unaccounted for in a mass balance is not necessarily lost by denitrification. Processes such as volatilization of ammonia should also be considered. 1 fig

  11. Nitrate removal effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for recirculating aquaculture systems

    Science.gov (United States)

    There is a need to develop practical methods to reduce nitrate -nitrogen loads from recirculating aqua-culture systems to facilitate increased food protein production simultaneously with attainment of water quality goals. The most common wastewater denitrification treatment systems utilize methanol-...

  12. Electrolytic denitrification of alkaline nitrate and nitrite solution

    International Nuclear Information System (INIS)

    Processing of high-level waste at the Savannah River Plant (SRP) will produce a low-level alkaline salt solution, containing approximately 17% sodium nitrate and sodium nitrite. This solution will be incorporated into a cement wasteform, saltstone, and placed in an engineered landfill. Laboratory experiments have demonstrated the technical feasibility of electrochemically reducing the nitrate and nitrite in a synthetic, nonradioactive salt solution similar in composition to that expected to be produced at SRP. Greater than ninety-five percent of the sodium nitrate and sodium nitrite can be reduced electrolytically, producing ammonia, nitrogen, oxygen, and sodium hydroxide. Reduction of the nitrate and nitrite will reduce the leaching of nitrate and nitrite from the saltstone monolith. In addition, significant reductions in the volume of saltstone may be realized if the sodium hydroxide produced by electrolysis can be recycled

  13. Bioelectrochemical denitrification on biocathode buried in simulated aquifer saturated with nitrate-contaminated groundwater.

    Science.gov (United States)

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-08-01

    Nitrate contamination in aquifers has posed human health under high risk because people still rely on groundwater withdrawn from aquifers as drinking water and running water sources. These days, bioelectrochemical technologies have shown a great number of benefits for nitrate remediation via autotrophic denitrification in groundwater. This study tested the working possibility of a denitrifying biocathode when installed into a simulated aquifer. The reactors were filled with sand and synthetic groundwater at various ratios (10, 50, and 100 %) to clarify the effect of various biocathode states (not-buried, half-buried, and fully buried) on nitrate reduction rate and microbial communities. Decreases in specific nitrate reduction rates were found to be correlated with increases in sand/medium ratios. A specific nitrate reduction rate of 322.6 mg m(-2) day(-1) was obtained when the biocathode was fully buried in an aquifer. Microbial community analysis revealed slight differences in the microbial communities of biocathodes at various sand/medium ratios. Various coccus- and rod-shaped bacteria were found to contribute to bioelectrochemical denitrification including Thiobacillus spp. and Paracoccus spp. This study demonstrated that the denitrifying biocathode could work effectively in a saturated aquifer and confirmed the feasibility of in situ application of microbial electrochemical denitrification technology. PMID:27117152

  14. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Sahinkaya, Erkan, E-mail: erkansahinkaya@yahoo.com [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey); Kilic, Adem [Harran University, Environmental Engineering Department, Osmanbey Campus, 63000 Sanliurfa (Turkey); Calimlioglu, Beste; Toker, Yasemin [Istanbul Medeniyet University, Bioengineering Department, Goztepe, Istanbul (Turkey)

    2013-11-15

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased <50 μg/L when the influent Cr(VI) was ≤5 mg/L. -- Abstract: This study aims at evaluating simultaneous chromate and nitrate reduction using sulfur-based mixotrophic denitrification process in a column reactor packed with elemental sulfur and activated carbon. The reactor was supplemented with methanol at C/N ratio of 1.33 or 2. Almost complete denitrification was achieved at influent NO{sub 3}{sup −}–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO{sub 3}{sup −}–N/(L.d) when the bioreactor was fed with 75 mg/L NO{sub 3}{sup −}–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 μg/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed.

  15. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    International Nuclear Information System (INIS)

    Highlights: → Intensified biofilm-electrode reactor using cooperative denitrification is developed. → IBER combines heterotrophic and autotrophic denitrification. → CO2 formed by heterotrophic denitrification is used by autotrophic bacteria. → Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. → A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO3-N50 mg L-1) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO3-N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO2 produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  16. Nitrate removal from groundwater by cooperating heterotrophic with autotrophic denitrification in a biofilm-electrode reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yingxin [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan); Feng, Chuanping, E-mail: fengchuangping@gmail.com [School of Water Resources and Environment, China University of Geosciences, Beijing 100083 (China); Wang, Qinghong; Yang, Yingnan; Zhang, Zhenya; Sugiura, Norio [Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 3058572 (Japan)

    2011-09-15

    Highlights: {yields} Intensified biofilm-electrode reactor using cooperative denitrification is developed. {yields} IBER combines heterotrophic and autotrophic denitrification. {yields} CO{sub 2} formed by heterotrophic denitrification is used by autotrophic bacteria. {yields} Optimum running conditions are C/N = 0.75, HRT = 8 h, and I = 40 mA. {yields} A novel degradation mechanism for cooperating denitrification process is proposed. - Abstract: An intensified biofilm-electrode reactor (IBER) combining heterotrophic and autotrophic denitrification was developed for treatment of nitrate contaminated groundwater. The reactor was evaluated with synthetic groundwater (NO{sub 3}{sup -}N50 mg L{sup -1}) under different hydraulic retention times (HRTs), carbon to nitrogen ratios (C/N) and electric currents (I). The experimental results demonstrate that high nitrate and nitrite removal efficiency (100%) were achieved at C/N = 1, HRT = 8 h, and I = 10 mA. C/N ratios were reduced from 1 to 0.5 and the applied electric current was changed from 10 to 100 mA, showing that the optimum running condition was C/N = 0.75 and I = 40 mA, under which over 97% of NO{sub 3}{sup -}N was removed and organic carbon (methanol) was completely consumed in treated water. Simultaneously, the denitrification mechanism in this system was analyzed through pH variation in effluent. The CO{sub 2} produced from the anode acted as a good pH buffer, automatically controlling pH in the reaction zone. The intensified biofilm-electrode reactor developed in the study was effective for the treatment of groundwater polluted by nitrate.

  17. Study of a combined heterotrophic and sulfur autotrophic denitrification technology for removal of nitrate in water

    International Nuclear Information System (INIS)

    A combined two-step process of heterotrophic denitrification in a fluidized reactor and sulfur autotrophic denitrification processes (CHSAD) was developed for the removal of nitrate in drinking water. In this process, the advantage of high efficiency of heterotrophic denitrification with non-excessive methanol and the advantage of non-pollution of sulfur autotriphic denitrification were integrated in this CHSAD process. And, this CHSAD process had the capacity of pH balance and could control the concentration of SO42- in effluent by adjusting the operation condition. When the influent nitrate was 30 mg NO3--N/L, the reactor could be operated efficiently at the hydraulic retention time (HRT) ranging from 20 to 40 min with C:N ratio (mg CH3OH:mg NO3--N) of 2.0 (methanol as carbon source). The nitrate removal was nearly 100% and there was no accumulated nitrite or residual methanol in the effluent. The effluent pH was about 7.5 and the sulfate concentration was lower than 130 mg/L. The maximum volume-loading rate of the reactor was 2.16 kg NO3--N/(m3 d). The biomass and scanning electron microscopy graphs of biofilm were also analyzed.

  18. Nitrate removal in stream ecosystems measured by 15N addition experiments: Denitrification

    Science.gov (United States)

    Mulholland, P.J.; Hall, R.O., Jr.; Sobota, D.J.; Dodds, W.K.; Findlay, S.E.G.; Grimm, N. B.; Hamilton, S.K.; McDowell, W.H.; O'Brien, J. M.; Tank, J.L.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C. N.; Gregory, S.V.; Johnson, S.L.; Meyer, J.L.; Peterson, B.J.; Poole, G.C.; Valett, H.M.; Webster, J.R.; Arango, C.P.; Beaulieu, J.J.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; Niederlehner, B.R.; Potter, J.D.; Sheibley, R.W.; Thomasn, S.M.

    2009-01-01

    We measured denitrification rates using a field 15N-NO- 3 tracer-addition approach in a large, cross-site study of nitrate uptake in reference, agricultural, and suburban-urban streams. We measured denitrification rates in 49 of 72 streams studied. Uptake length due to denitrification (SWden) ranged from 89 m to 184 km (median of 9050 m) and there were no significant differences among regions or land-use categories, likely because of the wide range of conditions within each region and land use. N2 production rates far exceeded N2O production rates in all streams. The fraction of total NO-3 removal from water due to denitrification ranged from 0.5% to 100% among streams (median of 16%), and was related to NHz 4 concentration and ecosystem respiration rate (ER). Multivariate approaches showed that the most important factors controlling SWden were specific discharge (discharge / width) and NO-3 concentration (positive effects), and ER and transient storage zones (negative effects). The relationship between areal denitrification rate (Uden) and NO- 3 concentration indicated a partial saturation effect. A power function with an exponent of 0.5 described this relationship better than a Michaelis-Menten equation. Although Uden increased with increasing NO- 3 concentration, the efficiency of NO-3 removal from water via denitrification declined, resulting in a smaller proportion of streamwater NO-3 load removed over a given length of stream. Regional differences in stream denitrification rates were small relative to the proximate factors of NO-3 concentration and ecosystem respiration rate, and land use was an important but indirect control on denitrification in streams, primarily via its effect on NO-3 concentration. ?? 2009.

  19. Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water

    Directory of Open Access Journals (Sweden)

    Arzu KILIÇ

    2012-12-01

    Full Text Available In recent years, nitrogenous fertilizers used in agriculture, unconscious and without treatment wastewater is discharged led to an increase in groundwater nitrate pollution. In many countries, nitrate concentration in the ground waters used as drinking water source exceeded the maximum allowable concentration of 10 mg/L NO3-N. According to a study, some wells in the Harran Plain contain nitrate as high as 180 mg/L NO3--N and the average concentration for whole plain is 35 mg/L NO3--N (Yesilnacar et al., 2008. Additionally, increased water consumption, unconscious use of fertilizers and pesticides has led to the emergence of co-contaminant in drinking water. Recently, hazardous to human health co-contaminant such as arsenic, pesticides, perchlorate, selenate, chromate, uranium are observed in the nitrate pollution drinking water. There are many processes used for the removal of nitrate. The physical–chemical technologies that can be used for nitrate removal are reverse osmosis, ion exchange and electrodialysis (Alvarez et al., 2007. Important disadvantages of these processes are their poor selectivity, high operation and maintenance costs and the generation of brine wastes after treatment. Consequently, biological treatment processes to convert nitrates to benign dinitrogen gas, could be an interesting alternative for the remediation of groundwater contaminated with nitrates. The aim of this article, effective and cheap method for the removal of nitrate from drinking water biological denitrification is to examine the usability of contaminated drinking water with co-contaminant pollutions.

  20. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    Science.gov (United States)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  1. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    Science.gov (United States)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (treatment and promoted the utilization of pyrite in the field of environmental remediation.

  2. Biological denitrification of high-nitrates wastes generated in the nuclear industry

    International Nuclear Information System (INIS)

    Biological denitrification appears to be one of the most effective methods to remove nitrates from wastewater streams (Christenson and Harremoes, 1975). However, most of the research and development work has been centered on removal of nitrates from sewage or agricultural drainage waters, nitrate nitrogen concentration usually less than 50 g/m3. Work was initiated at Oak Ridge National Laboratory (ORNL) in 1974 to test the use of biological nitrification in the removal of high concentrations of nitrate (in excess of 1.0 kg NO3-N/m3) from uranium purification waste streams. Since then, a full-scale treatment facility, a stirred reactor, has been installed at the Y-12 plant; and a pilot-plant, using a fluidized bed, has been proposed at Portsmouth Gaseous Diffusion Plant. The objective of this manuscript is to present some applied microbiological research relating to possible constraints in biologically denitrifying certain waste streams in the nuclear industry and comparing the effectiveness of denitrification of these waste streams in three bench scale reactors, (1) a continuous flow-stirred reactor, (2) stirred bed rector, and (3) a fluidized bed reactor

  3. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system.

    Science.gov (United States)

    Pungrasmi, Wiboonluk; Playchoom, Cholticha; Powtongsook, Sorawit

    2013-08-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed. The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area), packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria. An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g. > 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer. The results showed that, among the four substrates tested (soil, sand, pumice stone and vermiculite), pumice was the most preferable material. Comparing carbon supplementation using methanol and molasses, methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses. When methanol was applied at the optimal COD:N ratio of 5:1, a nitrate removal rate of 4591 +/- 133 mg-N/m2 tank bottom area/day was achieved. Finally, nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system. Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD:N ratio of 5:1. The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia. The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 +/- 945 mg-N/m2 tank bottom area/day or 126 +/- 18 mg-N/L of pumice packing volume/day. PMID:24520693

  4. Optimization and evaluation of a bottom substrate denitrification tank for nitrate removal from a recirculating aquaculture system

    Institute of Scientific and Technical Information of China (English)

    Wiboonluk Pungrasmi; Cholticha Playchoom; Sorawit Powtongsook

    2013-01-01

    A bottom substrate denitrification tank for a recirculating aquaculture system was developed.The laboratory scale denitrification tank was an 8 L tank (0.04 m2 tank surface area),packed to a depth of 5 cm with a bottom substrate for natural denitrifying bacteria.An aquarium pump was used for gentle water mixing in the tank; the dissolved oxygen in the water was maintained in aerobic conditions (e.g.> 2 mg/L) while anoxic conditions predominated only at the bottom substrate layer.The results showed that,among the four substrates tested (soil,sand,pumice stone and vermiculite),pumice was the most preferable material.Comparing carbon supplementation using methanol and molasses,methanol was chosen as the carbon source because it provided a higher denitrification rate than molasses.When methanol was applied at the optimal COD∶N ratio of 5∶1,a nitrate removal rate of 4591 ± 133 mg-N/m2 tank bottom area/day was achieved.Finally,nitrate removal using an 80 L denitrification tank was evaluated with a 610 L recirculating tilapia culture system.Nitrate treatment was performed by batch transferring high nitrate water from the nitrification tank into the denitrification tank and mixing with methanol at a COD∶N ratio of 5∶1.The results from five batches of nitrate treatment revealed that nitrate was successfully removed from water without the accumulation of nitrite and ammonia.The average nitrate removal efficiency was 85.17% and the average denitrification rate of the denitrification tank was 6311 ± 945 mg-N/m2 tank bottom area/day or 126 ± 18 mg-N/L of pumice packing volume/day.

  5. Denitrification and Nitrate Reduction to Ammonium in Taihu Lake and Yellow sea Inter—Tidal Marine Sediments

    Institute of Scientific and Technical Information of China (English)

    YINSHIXUE; SHENQIRONG; 等

    1999-01-01

    Denitrification and nitrate reduction to ammonium in Taihu Lake and Yellow Sea inter-tidal marine sediments were studied.The sediment samples were made slurry containing 150g dry matter per liter.Various of glucose-C to nitrate-N.Acetylene inhibition technique was applied to measure denitrification in the slurres,All samples were incubated anaerobically under argon atmosphere,Data showed that Taihu Lake sediment produced more N2O than marine sediment,Denitrification potential was higher in Taihu Lake sediment than in marine one,Glucose added increase denitrification activity but not the denitrification potential of the sediments.Dissimilatory nitrate reduction to ammonium seemed to occur in marine sediment,but not in freshwater one.When the marine sediment was treated with 25mmol L-1 glucose,its denitrification potentail,as indicated by maximum N2O production by acetylene blockage,was lower than that treated with no or 2.5mmol L-1 glucose.Acetylene was suspected to have inhibitory effect on dissimilatory nitrate reduction to ammonium.

  6. Denitrification rate determined by nitrate disapperance is higher than determined by nitrous oxide production with acetylene blockage

    DEFF Research Database (Denmark)

    Yu, Kewei; Struwe, Sten; Kjøller, Annelise;

    2008-01-01

    A mixed beech and spruce forest soil was incubated under potential denitrification assay (PDA) condition with 10% acetylene (C2H2) in the headspace of soil slurry bottles. Nitrous oxide (N2O) concentration in the headspace, as well as nitrate, nitrite and ammonium concentrations in the soil...... different treatments. Commonly applied PDA measurement likely underestimates the nitrate removal capacity of a system. Incubation time and organic matter/nitrate ratio are the most critical factors to consider using C2H2 inhibition technique to quantify denitrification. By comparing the treatments with and...... slurries were monitored during the incubation. Results show that nitrate disappearance rate was higher than N2O production rate with C2H2 blockage during the incubation. Sum of nitrate, nitrite, and N2O with C2H2 blockage could not recover the original soil nitrate content, showing an N imbalance in such a...

  7. A new method for in situ nitrate removal from groundwater using submerged microbial desalination-denitrification cell (SMDDC)

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2013-01-01

    A considerable increase in nitrate concentration in groundwater has become a serious concern worldwide. We developed a novel submerged microbial desalination-denitrification cell (SMDDC) to in situ remove nitrate from groundwater, produce electric energy, and potentially treat wastewater. The SMD....... Results clearly indicate that this system holds a great potential for efficient and cost-effective treatment of nitrate-containing groundwater and energy recovery....

  8. The role of benthic foraminifera in the benthic nitrogen cycle of the Peruvian oxygen minimum zone

    Directory of Open Access Journals (Sweden)

    N. Glock

    2012-12-01

    Full Text Available The discovery that foraminifera are able to use nitrate instead of oxygen as energy source for their metabolism has challenged our understanding of nitrogen cycling in the ocean. It was evident before that only prokaryotes and fungi are able to denitrify. Rate estimates of foraminiferal denitrification were very sparse on a regional scale. Here, we present estimates of benthic foraminiferal denitrification rates from six stations at intermediate water depths in and below the Peruvian oxygen minimum zone (OMZ. Foraminiferal denitrification rates were calculated from abundance and assemblage composition of the total living fauna in both, surface and subsurface sediments, as well as from individual species specific denitrification rates. A comparison with total benthic denitrification rates as inferred by biogeochemical models revealed that benthic foraminifera account for the total denitrification on the shelf between 80 and 250 m water depth. They are still important denitrifiers in the centre of the OMZ around 320 m (29–56% of the benthic denitrification but play only a minor role at the lower OMZ boundary and below the OMZ between 465 and 700 m (3–7% of total benthic denitrification. Furthermore, foraminiferal denitrification was compared to the total benthic nitrate loss measured during benthic chamber experiments. Foraminiferal denitrification contributes 1 to 50% to the total nitrate loss across a depth transect from 80 to 700 m, respectively. Flux rate estimates ranged from 0.01 to 1.3 mmol m−2 d−1. Furthermore we show that the amount of nitrate stored in living benthic foraminifera (3 to 705 µmol L−1 can be higher by three orders of magnitude as compared to the ambient pore waters in near surface sediments sustaining an important nitrate reservoir in Peruvian OMZ sediments. The substantial contribution of foraminiferal nitrate respiration to total benthic nitrate loss at the Peruvian margin

  9. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant.

    Science.gov (United States)

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Lukasz

    2012-05-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l(-1) nitrate, 4.8 mg l(-1) nitroglycerin, 1.9 mg l(-1) nitroglycol and 1,200 mg l(-1) chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic conditions was used. Complete removal of nitrates with simultaneous elimination of nitroglycerin and ethylene glycol dinitrate (nitroglycol) was achieved as a result of the conducted research. Specific nitrate reduction rate was estimated at 12.3 mg N g(-1) VSS h(-1). Toxicity of wastewater samples during the denitrification process was studied by measuring the activity of dehydrogenases in the activated sludge. Mutagenicity was determined by employing the Ames test. The maximum mutagenic activity did not exceed 0.5. The obtained results suggest that the studied wastewater samples did not exhibit mutagenic properties. PMID:22593607

  10. Denitrification of high concentrations of nitrites and nitrates in synthetic medium with different sources of organic carbon. III. Methanol.

    Science.gov (United States)

    Błaszczyk, M; Gałka, E; Sakowicz, E; Mycielski, R

    1985-01-01

    The denitrification of nitrites and nitrates (1000 mg N/l) in medium containing methanol as a source of organic carbon was studied. Continuous cultures of mixed population of autochtonic microflora from bottom sludge of nitrogenous wastewater reservoir were set up in a chemostat-type column and packed bed reactor. The efficiency of denitrification of nitrates in packed bed reactor was 506.7 mg N/l/h whereas denitrification of nitrites was from 8.7 to 16.0 mg N/l/h depending on the granulation of the filing material. In the latter case 83% nitrogen was removed from the medium. One of the factors causing low efficiency of denitrification of nitrites is excessive alkalization of the medium in the bed. The use of a three-step bed with adjusted pH resulted in complete denitrification of nitrites with efficiency 60 mg N/l/h. The bacteria inside the bed were dominated by Paracoccus denitrificans and by Pseudomonas aeruginosa when nitrates were present. The sensitivity of P. denitrificans to high concentrations of nitrites seems to be the second factor contributing to low efficiency of denitrification with methanol as organic substrate. PMID:2412408

  11. Simultaneous bioreduction of nitrate and chromate using sulfur-based mixotrophic denitrification process

    International Nuclear Information System (INIS)

    Highlights: • Simultaneous heterotrophic and autotrophic denitrification was stimulated. • Simultaneous bioreduction of nitrate and chromate was achieved. • Total chromium decreased 3−–N and Cr(VI) concentrations of 75 mg/L and 10 mg/L, respectively, and 3.7 h HRT. Maximum denitrification rate was 0.5 g NO3−–N/(L.d) when the bioreactor was fed with 75 mg/L NO3−–N, 150 mg/L methanol and 10 mg/L Cr(VI). The share of autotrophic denitrification was between 12% and 50% depending on HRT, C/N ratio and Cr(VI) concentration. Effluent total chromium was below 50 μg/L provided that influent Cr(VI) concentration was equal or below 5 mg/L. DGGE results showed stable microbial community throughout the operation and the presence of sulfur oxidizing denitrifying bacteria (Thiobacillus denitrificans) and Cr(VI) reducing bacteria (Exiguobacterium spp.) in the column bed

  12. Acid Fermentation Process Combined with Post Denitrification for the Treatment of Primary Sludge and Wastewater with High Strength Nitrate

    Directory of Open Access Journals (Sweden)

    Allen Kurniawan

    2016-03-01

    Full Text Available In this study, an anaerobic baffled reactor (ABR, combined with a post denitrification process, was applied to treat primary sludge from a municipal wastewater treatment plant and wastewater with a high concentration of nitrate. The production of volatile fatty acids (VFAs was maximized with a short hydraulic retention time in the acid fermentation of the ABR process, and then the produced VFAs were supplied as an external carbon source for the post denitrification process. The laboratory scale experiment was operated for 160 days to evaluate the VFAs’ production rate, sludge reduction in the ABR type-acid fermentation process, and the specific denitrification rate of the post denitrification process. As results, the overall removal rate of total chemical oxygen demand (TCOD, total suspended solids (TSS, and total nitrogen (TN were found to be 97%, 92%, 73%, respectively, when considering the influent into ABR type-acid fermentation and effluent from post denitrification. We observed the specific VFAs production rate of 0.074 gVFAs/gVSS/day for the ABR type-acid fermentation, and an average specific denitrification rate of 0.166 gNO3−-N/gVSS/day for the post denitrification. Consequently, we observed that a high production of VFAs from a primary sludge, using application of the ABR type acid fermentation process and the produced VFAs were then successfully utilized as an external carbon source for the post denitrification process, with a high removal rate of nitrogen.

  13. Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean

    International Nuclear Information System (INIS)

    The isotopic composition (delta15N) of dissolved nitrate was measured at five stations within the oxygen-deficient region of the eastern tropical North Pacific Ocean (ETNP) and at one station 900km northeast of Hawaii which was considered to be representative of all major water masses of the Pacific. At this last station, the delta15N composition of dissolved nitrate decreased systematically from about 0.6% at 400m to approximately 0.5% at 5,000m; these results are consistent with other estimates from the western Pacific. In contrast, vertical profiles of delta15N of dissolved nitrate from the ETNP showed a marked departure from the above observed trend and correlated with losses of nitrate arising from denitrification. Instantaneous fractionation factors (α) were estimated using the one dimensional vertical diffusion-advection model. These results suggest that 14NO3- is consumed 3-4% faster than 15NO3-, significantly larger than fractionations (-1yr-1 for the stations investigated. The above upper limit is probably excessive, but the average maximum for the four stations analyzed is estimated to be 3.5 μg-at NO3-1-1yr-1. These results compare favorably with suitably corrected oxygen utilization rates derived from electron transport activity measurements

  14. Direct contribution of clams (Ruditapes philippinarum) to benthic fluxes, nitrification, denitrification and nitrous oxide emission in a farmed sediment

    Science.gov (United States)

    Welsh, David T.; Nizzoli, Daniele; Fano, Elisa A.; Viaroli, Pierluigi

    2015-03-01

    The influence of the manila clam (Ruditapes philippinarum) on N-cycle processes, and oxygen and nutrient fluxes in a farmed sediment was investigated using a multiple core incubation approach and parallel incubations of individual clams. Clam population/biomass density varied ∼8-fold between cores and all sediment-water column solute (O2. N2, N2O, NH4+, NOX and DIN) fluxes and benthic process (N-regeneration, nitrification and denitrification) rates were strongly and significantly correlated with clam density/biomass. Isolated clams exhibited high rates of respiration, N-excretion, nitrification and denitrification of 2050 ± 70, 395 ± 49, 201 ± 42 and 235 ± 40 nmol individual-1 h-1, respectively. The direct contribution of the clams and their associated microbiota to benthic processes was estimated by multiplying the per individual rates by the number of clams in each incubated core. The clams on average directly accounted for 64-133% of total rates of sediment oxygen demand, N-regeneration, nitrification and denitrification, indicating that they regulated processes primarily through their own metabolic activity and that of bacteria that colonise them. Clams and the farmed sediments were significant sources of the greenhouse gas N2O, but this was primarily due to their high nitrification and denitrification rates, rather than high specific N2O yields, as N2O emissions represented environmental cost of increased N-regeneration and N2O emission rates. The measured N2O emissions indicate that bivalve aquaculture may be a significant source of N2O. It is therefore recommended that N2O emissions should be included in the impact assessments of current and future bivalve-farming projects.

  15. Effect of the cathode potential and sulfate ions on nitrate reduction in a microbial electrochemical denitrification system.

    Science.gov (United States)

    Nguyen, Van Khanh; Park, Younghyun; Yang, Heechun; Yu, Jaecheul; Lee, Taeho

    2016-06-01

    Recently, bioelectrochemical systems have been demonstrated as advantageous for denitrification. Here, we investigated the nitrate reduction rate and bacterial community on cathodes at different cathode potentials [-300, -500, -700, and -900 mV vs. standard hydrogen electrode (SHE)] in a two-chamber microbial electrochemical denitrification system and effects of sulfate, a common nitrate co-contaminant, on denitrification efficiency. The results indicated that the highest nitrate reduction rates (3.5 mg L(-1) days(-1)) were obtained at a cathode potential of -700 mV, regardless of sulfate presence, while a lower rate was observed at a more negative cathode potential (-900 mV). Notably, although sulfate ions generally inhibited nitrate reduction, this effect was absent at a cathode potential of -700 mV. Polymerase chain reaction-denaturing gradient gel electrophoresis revealed that bacterial communities on the graphite-felt cathode were significantly affected by the cathode potential change and sulfate presence. Shinella-like and Alicycliphilus-like bacterial species were exclusively observed on cathodes in reactors without sulfate. Ochrobactrum-like and Sinorhizobium-like bacterial species, which persisted at different cathode potentials irrespective of sulfate presence, were shown to contribute to bioelectrochemical denitrification. This study suggested that a cathode potential of around -700 mV versus SHE would ensure optimal nitrate reduction rate and counteract inhibitory effects of sulfate. Additionally, sulfate presence considerably affects denitrification efficiency and microbial community of microbial electrochemical denitrification systems. PMID:27021845

  16. Woodchip Denitrification Bioreactors: Impact of Temperature and Hydraulic Retention Time on Nitrate Removal.

    Science.gov (United States)

    Hoover, Natasha L; Bhandari, Alok; Soupir, Michelle L; Moorman, Thomas B

    2016-05-01

    Woodchip denitrification bioreactors, a relatively new technology for edge-of-field treatment of subsurface agricultural drainage water, have shown potential for nitrate removal. However, few studies have evaluated the performance of these reactors under varied controlled conditions including initial woodchip age and a range of hydraulic retention times (HRTs) and temperatures similar to the field. This study investigated (i) the release of total organic C (TOC) during reactor start up for fresh and weathered woodchips, (ii) nitrate (NO-N) removal at HRTs ranging from 2 to 24 h, (iii) nitrate removal at influent NO-N concentrations of 10, 30, and 50 mg L, and (iv) NO-N removal at 10, 15, and 20°C. Greater TOC was released during bioreactor operation with fresh woodchips, whereas organic C release was low when the columns were packed with naturally weathered woodchips. Nitrate-N concentration reductions increased from 8 to 55% as HRT increased. Nitrate removal on a mass basis (g NO-N m d) did not follow the same trend, with relatively consistent mass removal measured as HRT increased from 1.7 to 21.2 h. Comparison of mean NO-N load reduction for various influent NO-N concentrations showed lower reduction at an influent concentration of 10 mg L and higher NO-N reductions at influent concentrations of 30 and 50 mg L. Nitrate-N removal showed a stepped increase with temperature. Temperature coefficient () factors calculated from NO-N removal rates ranged from 2.2 to 2.9. PMID:27136145

  17. [Influence of nitrate on the simultaneous methanogenesis and denitrification reaction of anaerobic biofilm and granular sludge].

    Science.gov (United States)

    Zhong, Chen-Yu; Ye, Jie-Xu; Li, Ruo-Yu; Chen, Sheng; Sun, De-Zhi

    2012-12-01

    The aims of this study are to further investigate the impact mechanism of nitrate on the simultaneous methanogenesis and denitrification (SMD) process of anaerobic biofilm, and to extend the application of the biofilm process in the treatment of high nitrogen and COD concentration organic wastewater. The SMD reactions were successfully carried out in a hybrid anaerobic biofilm and sludge reactor (HABSR) and an up-flow anaerobic sludge blanket (UASB), and the influence of nitrate on the performance of simultaneous carbon and nitrogen removal in biofilm and granular sludge were investigated using batch tests. The results showed that the nitrate concentration could obviously affect the carbon and nitrogen removal in both biofilm and granular sludge, and the increase of nitrate concentration had more serious impact on the granular sludge, and the biofilm presented higher COD and nitrogen removal efficiency and stronger resistance to toxic materials than the granular sludge. As the nitrate concentration was increased from 75 to 600 mg x L(-1), the COD removal rates were reduced from 273.26 to 0.1 mg x (h x g)(-1) in granular sludge and reduced from 95 to 1.7 mg x (h x g)(-1) in biofilm. At the same time, the denitrification rate of biofilm and granular sludge were increased form 21.43 and 22.31 mg x (h x g)(-1) to 83.72 and 61.06 mg x (h x g)(-1), respectively. The biofilm recovered the COD degradation rate more quickly and easily than the granular sludge, and the maximum COD removal rate reached 712.44 mg x (h x g)(-1). The nitrite accumulation was observed to be the major cause that affected the simultaneous carbon and nitrogen removal of biofilm and granular sludge. It's found that the maximum nitrite accumulation in biofilm was only one tenth of that of the granular sludge at the same nitrate concentration. The HABSR was proved to be an important alternative for SMD reaction employed in the treatment of high nitrogen and COD concentration organic wastewater. PMID

  18. Summer nitrate uptake and denitrification in an upper Mississippi River backwater lake: The role of rooted aquatic vegetation

    Science.gov (United States)

    Kreiling, Rebecca M.; Richardson, W.B.; Cavanaugh, J.C.; Bartsch, L.A.

    2011-01-01

    In-stream nitrogen processing in the Mississippi River has been suggested as one mechanism to reduce coastal eutrophication in the Gulf of Mexico. Aquatic macrophytes in river channels and flood plain lakes have the potential to temporarily remove large quantities of nitrogen through assimilation both by themselves and by the attached epiphyton. In addition, rooted macrophytes act as oxygen pumps, creating aerobic microsites around their roots where coupled nitrification-denitrification can occur. We used in situ 15N-NO3- tracer mesocosm experiments to measure nitrate assimilation rates for macrophytes, epiphyton, and microbial fauna in the sediment in Third Lake, a backwater lake of the upper Mississippi River during June and July 2005. We measured assimilation over a range of nitrate concentrations and estimated a nitrate mass balance for Third Lake. Macrophytes assimilated the most nitrate (29.5 mg N m-2 d-1) followed by sediment microbes (14.4 mg N m-2 d-1) and epiphytes (5.7 mg N m-2d-1. Assimilation accounted for 6.8% in June and 18.6% in July of total nitrate loss in the control chambers. However, denitrification (292.4 mg N m-2 d-1) is estimated to account for the majority (82%) of the nitrate loss. Assimilation and denitrification rates generally increased with increasing nitrate concentration but denitrification rates plateaued at about 5 mg N L-1. This suggests that backwaters have the potential to remove a relatively high amount of nitrate but will likely become saturated if the load becomes too large. ?? 2010 US Government.

  19. Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification.

    Science.gov (United States)

    Xing, Wei; Li, Desheng; Li, Jinlong; Hu, Qianyi; Deng, Shihai

    2016-07-01

    A process combining micro-electrolysis and autotrophic denitrification (CEAD) with iron-carbon micro-electrolysis carriers was developed for nitrate removal. The process was performed using organic-free influent with a NO3(-)-N concentration of 40.0±3.0mg/L and provided an average nitrate removal efficiency of 95% in stable stages. The total nitrogen removal efficiency reached 75%, with 21% of NO3(-)-N converted into NH4(+)-N. The corresponding hydraulic retention time was 8-10h, and the optimal pH ranged from 8.5 to 9.5. Microbial analysis with high-throughput sequencing revealed that dominant microorganisms in the reactor belonged to the classes of β-, γ-, and α-Proteobacteria. The abundance of the genera Thermomonas significantly increased during the operation, comprising 21.4% and 24.1% in sludge attached to the carriers in the middle and at the bottom of the reactor, respectively. The developed CEAD achieved efficient nitrate removal from water without organics, which is suitable for practical application. PMID:27019127

  20. Denitrification: a Clean-Up Mechanism for High Nitrate Ground Water Near an Active Swine Facility?

    Science.gov (United States)

    Townsend, M. A.

    2001-05-01

    An active swine facility in south central Kansas appears to be cleaning up nitrate in regional ground water in an area with shallow ground water (water chemistry to determine the impact of a bentonite lined hog lagoon on shallow ground-water chemistry. Regional ground water surrounding the facility had nitrate-nitrogen values routinely measured above 10 ppm. Chloride concentrations in the area ranged from 3 to 25 ppm and bicarbonate values ranged from 45 to 200 ppm. Two periods of sampling in the area showed nitrogen isotope values in the fertilizer range (waste range (+13 to +20) which is similar to the value measured for the waste lagoon (+18). Chloride and bicarbonate values at all of the monitoring wells, except the well downgradient from the lagoon, were similar to the regional ground water. The lagoon water had >500 ppm chloride and >1400 ppm ammonium-N. The downgradient monitoring well had chloride values > 100 ppm and bicarbonate values above 400 ppm for the two sampling periods. Use of chloride ratios showed that approximately 30% of the water contributing to the downgradient well sample was from lagoon leakage. Preliminary calculations of the amount of bicarbonate resulting from denitrification processes, chloride ratios, and nitrogen isotope values suggest that the sampled water is a mixture of denitrified regional ground water plus lagoon water. Although the nitrate values near the swine facility appear to be decreasing, the long-term impact of increased salt load on the regional ground water is unknown at this time.

  1. Scale-dependent linkages between nitrate isotopes and denitrification in surface soils: implications for isotope measurements and models.

    Science.gov (United States)

    Hall, Steven J; Weintraub, Samantha R; Bowling, David R

    2016-08-01

    Natural abundance nitrate (NO3 (-)) isotopes represent a powerful tool for assessing denitrification, yet the scale and context dependence of relationships between isotopes and denitrification have received little attention, especially in surface soils. We measured the NO3 (-) isotope compositions in soil extractions and lysimeter water from a semi-arid meadow and lawn during snowmelt, along with the denitrification potential, bulk O2, and a proxy for anaerobic microsites. Denitrification potential varied by three orders of magnitude and the slope of δ(18)O/δ(15)N in soil-extracted NO3 (-) from all samples measured 1.04 ± 0.12 (R (2) = 0.64, p nitrification that was partially overprinted by denitrification. Mean NO3 (-) isotopes in lysimeter water differed from soil extractions by up to 19 ‰ in δ(18)O and 12 ‰ in δ(15)N, indicating distinct biogeochemical processing in relatively mobile water versus soil microsites. This implies that NO3 (-) isotopes in streams, which are predominantly fed by mobile water, do not fully reflect terrestrial soil N cycling. Relationships between potential denitrification and δ(15)N of extracted NO3 (-) showed a strong threshold effect culminating in a null relationship at high denitrification rates. Our observations of (1) competing fractionation from nitrification and denitrification in redox-heterogeneous surface soils, (2) large NO3 (-) isotopic differences between relatively immobile and mobile water pools, (3) and the spatial dependence of δ(18)O/δ(15)N relationships suggest caution in using NO3 (-) isotopes to infer site or watershed-scale patterns in denitrification. PMID:27102809

  2. Meiofauna increases bacterial denitrification in marine sediments.

    Science.gov (United States)

    Bonaglia, S; Nascimento, F J A; Bartoli, M; Klawonn, I; Brüchert, V

    2014-01-01

    Denitrification is a critical process that can alleviate the effects of excessive nitrogen availability in aquatic ecosystems subject to eutrophication. An important part of denitrification occurs in benthic systems where bioturbation by meiofauna (invertebrates macrofauna, on nitrate reduction, carbon mineralization and methane fluxes. In sediments with abundant and diverse meiofauna, denitrification is double that in sediments with low meiofauna, suggesting that meiofauna bioturbation has a stimulating effect on nitrifying and denitrifying bacteria. However, high meiofauna densities in the presence of bivalves do not stimulate denitrification, while dissimilatory nitrate reduction to ammonium rate and methane efflux are significantly enhanced. We demonstrate that the ecological interactions between meio-, macrofauna and bacteria are important in regulating nitrogen cycling in soft-sediment ecosystems. PMID:25318852

  3. Dynamic Linkages between Denitrification Functional Genes/Enzymes and Biogeochemical Reaction Rates of Nitrate and Its Reduction Products

    Science.gov (United States)

    Li, M.; Shi, L.; Qian, W.; Gao, Y.; Liu, Y.; Liu, C.

    2015-12-01

    Denitrification is a respiratory process in which oxidized nitrogen compounds are used as alternative electron acceptors for energy production when oxygen is limited. Denitrification is an important process that not only accounts for the significant loss of nitrogen fertilizers from soils but also leads to NO, N2O and CO2 emissions, which are important greenhouse gas species. In this study, denitrification was investigated in Columbia River sediments, focusing on the dynamic linkages between functional genes/enzymes and biogeochemical reaction rates of nitrate and its reduction products. NO3-, NO2- and N2O were assayed in different incubation time. DNA was extracted from the sediments and functional genes were quantified as a function of time during the denitrification. Functional enzymes were extracted from the sediments and measured using a newly developed, targeted protein method. The biogeochemical, functional gene, and enzyme data were collectively used to establish the dynamic correlation of functional genes/enzymes and biogeochemical reaction rates. The results provide fundamental insights regarding the dynamic regulation of functional genes and enzymes in the processes of denitrification and greenhouse gas production, and also provide experimental data critical for the development of biogeochemical reaction models that incorporate genome-scale insights and describe macroscopic biogeochemical reaction rates in ecosystems.

  4. Nitrate removal, communities of denitrifiers and adverse effects in different carbon substrates for use in denitrification beds

    OpenAIRE

    Warneke, Sören; Schipper, Louis A.; Matiasek, Michael G.; Scow, Kate M.; Cameron, Stewart; Bruesewitz, Denise A.; McDonald, Ian R.

    2011-01-01

    Denitrification beds are containers filled with wood by-products that serve as a carbon and energy source to denitrifiers, which reduce nitrate ( NO3−) from point source discharges into non-reactive dinitrogen (N2) gas. This study investigates a range of alternative carbon sources and determines rates, mechanisms and factors controlling NO3− removal, denitrifying bacterial community, and the adverse effects of these substrates. Experimental barrels (0.2 m3) filled with either maize cobs, w...

  5. Nitrate denitrification with nitrite or nitrous oxide as intermediate products: Stoichiometry, kinetics and dynamics of stable isotope signatures.

    Science.gov (United States)

    Vavilin, V A; Rytov, S V

    2015-09-01

    A kinetic analysis of nitrate denitrification by a single or two species of denitrifying bacteria with glucose or ethanol as a carbon source and nitrite or nitrous oxide as intermediate products was performed using experimental data published earlier (Menyailo and Hungate, 2006; Vidal-Gavilan et al., 2013). Modified Monod kinetics was used in the dynamic biological model. The special equations were added to the common dynamic biological model to describe how isotopic fractionation between N species changes. In contrast to the generally assumed first-order kinetics, in this paper, the traditional Rayleigh equation describing stable nitrogen and oxygen isotope fractionation in nitrate was derived from the dynamic isotopic equations for any type of kinetics. In accordance with the model, in Vidal-Gavilan's experiments, the maximum specific rate of nitrate reduction was proved to be less for ethanol compared to glucose. Conversely, the maximum specific rate of nitrite reduction was proved to be much less for glucose compared to ethanol. Thus, the intermediate nitrite concentration was negligible for the ethanol experiment, while it was significant for the glucose experiment. In Menyailo's and Hungate's experiments, the low value of maximum specific rate of nitrous oxide reduction gives high intermediate value of nitrous oxide concentration. The model showed that the dynamics of nitrogen and oxygen isotope signatures are responding to the biological dynamics. Two microbial species instead of single denitrifying bacteria are proved to be more adequate to describe the total process of nitrate denitrification to dinitrogen. PMID:25989520

  6. Biological nitrate transport in sediments on the Peruvian margin mitigates benthic sulfide emissions and drives pelagic N loss during stagnation events

    Science.gov (United States)

    Dale, A. W.; Sommer, S.; Lomnitz, U.; Bourbonnais, A.; Wallmann, K.

    2016-06-01

    Benthic N cycling in the Peruvian oxygen minimum zone (OMZ) was investigated at ten stations along 12 °S from the middle shelf (74 m) to the upper slope (1024 m) using in situ flux measurements, sediment biogeochemistry and modeling. Middle shelf sediments were covered by mats of the filamentous bacteria Thioploca spp. and contained a large 'hidden' pool of nitrate that was not detectable in the porewater. This was attributed to a biological nitrate reservoir stored within the bacteria to oxidize sulfide during 'dissimilatory nitrate reduction to ammonium' (DNRA). The extremely high rates of DNRA on the shelf (15.6 mmol m-2 d-1 of N), determined using an empirical steady-state model, could easily supply all the ammonium requirements for anammox in the water column. The model further showed that denitrification by foraminifera may account for 90% of N2 production at the lower edge of the OMZ. At the time of sampling, dissolved oxygen was below detection limit down to 400 m and the water body overlying the shelf had stagnated, resulting in complete depletion of nitrate and nitrite. A decrease in the biological nitrate pool was observed on the shelf during fieldwork concomitant with a rise in porewater sulfide levels in surface sediments to 2 mM. Using a non-steady state model to simulate this natural anoxia experiment, these observations were shown to be consistent with Thioploca surviving on a dwindling intracellular nitrate reservoir to survive the stagnation period. The model shows that sediments hosting Thioploca are able to maintain high ammonium fluxes for many weeks following stagnation, potentially sustaining pelagic N loss by anammox. In contrast, sulfide emissions remain low, reducing the economic risk to the Peruvian fishery by toxic sulfide plume development.

  7. Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment

    Science.gov (United States)

    Stelzer, Robert S.; Scott, J. Thad; Bartsch, Lynn; Parr, Thomas B.

    2014-01-01

    Organic carbon supply is linked to nitrogen transformation in ecosystems. However, the role of organic carbon quality in nitrogen processing is not as well understood. We determined how the quality of particulate organic carbon (POC) influenced nitrogen transformation in stream sediments by burying identical quantities of varying quality POC (northern red oak (Quercus rubra) leaves, red maple (Acer rubrum) leaves, red maple wood) in stream mesocosms and measuring the effects on nitrogen retention and denitrification compared to a control of combusted sand. We also determined how POC quality affected the quantity and quality of dissolved organic carbon (DOC) and dissolved oxygen concentration in groundwater. Nitrate and total dissolved nitrogen (TDN) retention were assessed by comparing solute concentrations and fluxes along groundwater flow paths in the mesocosms. Denitrification was measured by in situ changes in N2 concentrations (using MIMS) and by acetylene block incubations. POC quality was measured by C:N and lignin:N ratios and DOC quality was assessed by fluorescence excitation emission matrix spectroscopy. POC quality had strong effects on nitrogen processing. Leaf treatments had much higher nitrate retention, TDN retention and denitrification rates than the wood and control treatments and red maple leaf burial resulted in higher nitrate and TDN retention rates than burial of red oak leaves. Leaf, but not wood, burial drove pore water to severe hypoxia and leaf treatments had higher DOC production and different DOC chemical composition than the wood and control treatments. We think that POC quality affected nitrogen processing in the sediments by influencing the quantity and quality of DOC and redox conditions. Our results suggest that the type of organic carbon inputs can affect the rates of nitrogen transformation in stream ecosystems.

  8. Formation of nitrous oxide in a gradient of oxygenation and nitrogen loading rate during denitrification of nitrite and nitrate

    International Nuclear Information System (INIS)

    Highlights: ► The correlation of DO to N2O emission under denitrification via nitrite was confirmed. ► The higher nitrite ratio in NOx (nitrite and nitrate) caused the more N2O emission. ► Reactor feed mode and nitrite loading rate had significant impact on N2O emission which was related to nitrite level. - Abstract: Nitrous oxide (N2O) emission has been observed during denitrification of nitrate via nitrite as intermediate. With a laboratory-scale reactor (2.4 L), the N2O emission was characterized under a gradient of DO concentration from 0 to 0.7 mg/L, different ratio of nitrite versus nitrate and different nitrite feed mode. The N2O emission was influenced by the level of dissolved oxygen (DO) and nitrite accumulation. The higher DO level and the higher ratio of nitrite versus nitrate resulted in the higher N2O emission. Using nitrite as sole electron acceptor at the same loading rate, the sequence of N2O emission with three different feed modes was: pulse > step-wise > continuous feed. The N2O emitted in pulse feed reactors was 3.1–4.2 and 8.2–11.7 folds of that in the step-wise feed and continuous feed reactors, respectively. With continuous feed mode, the impact of DO concentration on the mass of N2O emitted was limited while the higher N2O emission occurred at the higher nitrite loading rate.

  9. Remediation of nitrate-nitrogen contaminated groundwater using a pilot-scale two-layer heterotrophic-autotrophic denitrification permeable reactive barrier with spongy iron/pine bark.

    Science.gov (United States)

    Huang, Guoxin; Huang, Yuanying; Hu, Hongyan; Liu, Fei; Zhang, Ying; Deng, Renwei

    2015-07-01

    A novel two-layer heterotrophic-autotrophic denitrification (HAD) permeable reactive barrier (PRB) was proposed for remediating nitrate-nitrogen contaminated groundwater in an oxygen rich environment, which has a packing structure of an upstream pine bark layer and a downstream spongy iron and river sand mixture layer. The HAD PRB involves biological deoxygenation, heterotrophic denitrification, hydrogenotrophic denitrification, and anaerobic Fe corrosion. Column and batch experiments were performed to: (1) investigate the NO3(-)-N removal and inorganic geochemistry; (2) explore the nitrogen transformation and removal mechanisms; (3) identify the hydrogenotrophic denitrification capacity; and (4) evaluate the HAD performance by comparison with other approaches. The results showed that the HAD PRB could maintain constant high NO3(-)-N removal efficiency (>91%) before 38 pore volumes (PVs) of operation (corresponding to 504d), form little or even negative NO2(-)-N during the 45 PVs, and produce low NH4(+)-N after 10 PVs. Aerobic heterotrophic bacteria played a dominant role in oxygen depletion via aerobic respiration, providing more CO2 for hydrogenotrophic denitrification. The HAD PRB significantly relied on heterotrophic denitrification. Hydrogenotrophic denitrification removed 10-20% of the initial NO3(-)-N. Effluent total organic carbon decreased from 403.44mgL(-1) at PV 1 to 9.34mgL(-1) at PV 45. Packing structure had a noticeable effect on its denitrification. PMID:25747301

  10. Performance of nitrate-dependent anaerobic ferrous oxidizing (NAFO) process: a novel prospective technology for autotrophic denitrification.

    Science.gov (United States)

    Zhang, Meng; Zheng, Ping; Li, Wei; Wang, Ru; Ding, Shuang; Abbas, Ghulam

    2015-03-01

    Nitrate-dependent anaerobic ferrous oxidizing (NAFO) is a valuable biological process, which utilizes ferrous iron to convert nitrate into nitrogen gas, removing nitrogen from wastewater. In this work, the performance of NAFO process was investigated as a nitrate removal technology. The results showed that NAFO system was feasible for autotrophic denitrification. The volumetric loading rate (VLR) and volumetric removal rate (VRR) under steady state were 0.159±0.01 kg-N/(m(3) d) and 0.073±0.01 kg-N/(m(3) d), respectively. In NAFO system, the effluent pH was suggested as an indicator which demonstrated a good correlation with nitrogen removal. The nitrate concentration was preferred to be less than 130 mg-N/L. Organic matters had little influence on NAFO performance. Abundant iron compounds were revealed to accumulate in NAFO sludge with peak value of 51.73% (wt), and they could be recycled for phosphorus removal, with capacity of 16.57 mg-P/g VS and removal rate of 94.77±2.97%, respectively. PMID:25576990

  11. Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida

    DEFF Research Database (Denmark)

    Ochoa, Elisa Pina; Høgslund, Signe; Geslin, Emmanuelle; Cedhagen, Tomas; Revsbech, Niels Peter; Nielsen, Lars Peter; Magali Schweizer, Magali; Jorissen, Frans; Rysgaard, Søren; Risgaard-Petersen, Nils

    2010-01-01

    Benthic foraminifers inhabit a wide range of aquatic environments including open marine, brackish, and freshwater environments. Here we show that several different and diverse foraminiferal groups (miliolids, rotaliids, textulariids) and Gromia, another taxon also belonging to Rhizaria, accumulat...

  12. Physiological levels of nitrate support anoxic growth by denitrification of Pseudomonas aeruginosa at growth rates reported in cystic fibrosis lungs and sputum

    DEFF Research Database (Denmark)

    Klitten, Laura Line; Alhede, Morten; Kolpen, Mette;

    2014-01-01

    reported that O2 is mainly consumed by the activated PMNs, while O2 consumption by aerobic respiration is diminutive and nitrous oxide (N2O) is produced in infected CF sputum. This suggests that the reported growth rates of P. aeruginosa in lungs and sputum may result from anaerobic respiration using...... denitrification. The growth rate of P. aeruginosa achieved by denitrification at physiological levels (~400 μM) of nitrate (NO(-) 3) is however, not known. Therefore, we have measured growth rates of anoxic cultures of PAO1 and clinical isolates (n = 12) in LB media supplemented with NO(-) 3 and found a...... significant increase of growth when supplementing PAO1 and clinical isolates with ≥150 μM NO(-) 3 and 100 μM NO(-) 3, respectively. An essential contribution to growth by denitrification was demonstrated by the inability to establish a significantly increased growth rate by a denitrification deficient Δnir...

  13. Effects of solid-phase denitrification on the nitrate removal and bacterial community structure in recirculating aquaculture system.

    Science.gov (United States)

    Qiu, Tianlei; Liu, Lili; Gao, Min; Zhang, Lanhe; Tursun, Haireti; Wang, Xuming

    2016-06-01

    A solid-phase denitrification (SPD) reactor packed with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) as a carbon source was incorporated into a recirculating aquaculture system (RAS) to remove accumulated nitrate. Bacterial community structures in different parts of the RAS, including biofilter unit, SPD reactor, and culture water, were analyzed using Illumina MiSeq sequencing technology. The data showed that nitrate levels decreased remarkably in the RAS connected with SPD reactor (RAS-DR). In contrast, nitrate levels increased continuously in the conventional RAS without SPD reactor (RAS-CK). Biofilter unit and culture water in RAS-DR developed lower species richness and higher bacterial community diversity than that in RAS-CK. The bacterial community structure of RAS was significantly affected by the SPD process and the changes included an increase in the proportion of Proteobacteria and Firmicutes and a decrease in Nitrospira abundance in RAS-DR. Firmicutes was the most abundant phylum (56.9 %) and mainly consisted of Clostridium sensu stricto (48.3 %) in SPD reactor. PMID:27125529

  14. Multi-scale measurements and modeling of denitrification in streams with varying flow and nitrate concentration in the upper Mississippi River basin, USA

    Science.gov (United States)

    Böhlke, J.K.; Antweiler, R.C.; Harvey, J.W.; Laursen, A.E.; Smith, L.K.; Smith, R.L.; Voytek, M.A.

    2009-01-01

    Denitrification is an important net sink for NO3- in streams, but direct measurements are limited and in situ controlling factors are not well known. We measured denitrification at multiple scales over a range of flow conditions and NO3- concentrations in streams draining agricultural land in the upper Mississippi River basin. Comparisons of reach-scale measurements (in-stream mass transport and tracer tests) with local-scale in situ measurements (pore-water profiles, benthic chambers) and laboratory data (sediment core microcosms) gave evidence for heterogeneity in factors affecting benthic denitrification both temporally (e.g., seasonal variation in NO3- concentrations and loads, flood-related disruption and re-growth of benthic communities and organic deposits) and spatially (e.g., local stream morphology and sediment characteristics). When expressed as vertical denitrification flux per unit area of streambed (U denit, in ??mol N m-2 h-1), results of different methods for a given set of conditions commonly were in agreement within a factor of 2-3. At approximately constant temperature (???20 ?? 4??C) and with minimal benthic disturbance, our aggregated data indicated an overall positive relation between Udenit (???0-4,000 ??mol N m-2 h-1) and stream NO3- concentration (???20-1,100 ??mol L-1) representing seasonal variation from spring high flow (high NO3-) to late summer low flow (low NO3-). The temporal dependence of U denit on NO3- was less than first-order and could be described about equally well with power-law or saturation equations (e.g., for the unweighted dataset, Udenit ???26 * [NO 3-]0.44 or Udenit ???640 * [NO3-]/[180 + NO3-]; for a partially weighted dataset, Udenit ???14 * [NO3-]0.54 or Udenit ???700 * [NO 3-]/[320 + NO3-]). Similar parameters were derived from a recent spatial comparison of stream denitrification extending to lower NO3- concentrations (LINX2), and from the combined dataset from both studies over 3 orders of magnitude in NO3

  15. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    DEFF Research Database (Denmark)

    Stief, P.

    2013-01-01

    (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of...... significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii......) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and transport of nitrogen....

  16. Effect of Co-Contaminant on Denitrification Removal of Nitrate in Drinking Water

    OpenAIRE

    KILIÇ, Arzu; Serden BAŞAK; Kevser CIRIK; ÖZGÜN, Dilek; Dilek AKMAN; Şebnem ÖZDEMİR; ÖZER ÇINAR

    2012-01-01

    In recent years, nitrogenous fertilizers used in agriculture, unconscious and without treatment wastewater is discharged led to an increase in groundwater nitrate pollution. In many countries, nitrate concentration in the ground waters used as drinking water source exceeded the maximum allowable concentration of 10 mg/L NO3-N. According to a study, some wells in the Harran Plain contain nitrate as high as 180 mg/L NO3--N and the average concentration for whole plain is 35 mg/L NO3--N (Yesilna...

  17. Biological Denitrification of High Nitrate Processing Wastewaters from Explosives Production Plant

    OpenAIRE

    Cyplik, Paweł; Marecik, Roman; Piotrowska-Cyplik, Agnieszka; Olejnik, Anna; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2011-01-01

    Wastewater samples originating from an explosives production plant (3,000 mg N l−1 nitrate, 4.8 mg l−1 nitroglycerin, 1.9 mg l−1 nitroglycol and 1,200 mg l−1 chemical oxygen demand) were subjected to biological purification. An attempt to completely remove nitrate and to decrease the chemical oxygen demand was carried out under anaerobic conditions. A soil isolated microbial consortium capable of biodegrading various organic compounds and reduce nitrate to atmospheric nitrogen under anaerobic...

  18. Nitrate Removal from Wastewater through Biological Denitrification with OGA 24 in a Batch Reactor

    OpenAIRE

    Federico Rossi; Oriana Motta; Simona Matrella; Antonio Proto; Giovanni Vigliotta

    2014-01-01

    Nitrates pollution of waters is a worldwide problem and its remediation is a big challenge from the technical and the scientific point of view. One of the most used and promising cleaning techniques is the biological treatment of wastewaters operated by denitrifying bacteria. In this paper we begin a thorough study of denitrifying performances of the bacterium Azospira sp. OGA 24, recently isolated from the highly polluted Sarno river in the south of Italy. Here, the kinetics of nitrates co...

  19. Method of denitrification and stabilization of radioactive aqueous solutions of radioisotope nitrates

    International Nuclear Information System (INIS)

    The method is solved of denitrification and of the stabilization of aqueous solutions of radioactive isotopes produced during the reprocessing of nuclear fuel. The aqueous solution is first mixed with the vitreous component, most frequently phosphoric acid, ammonium phosphate or boric acid and if needed with the addition of alkalis, possibly with clarifying or anti-foam components, e.g., arsenic trioxide, antimony or cerium oxide. The mixture is further adjusted with ammonia to pH 5 - 9. The liquid mixture is then thermally and pyrolytically processed, e.g., by calcinator or fluid-bed reactor or by pot melting at temperatures of 3O0 to 900 degC while of a powder product or glass melt is formed in the presence of gaseous emissions composed of nitrous oxide - nitrogen. The resulting product is further processed by containerization or is sealed in a metal matrix. (B.S.)

  20. Potential rates of ammonium oxidation, nitrite oxidation, nitrate reduction and denitrification in the young barley rhizosphere

    DEFF Research Database (Denmark)

    Højberg, Ole; Binnerup, S. J.; Sørensen, Jan

    1996-01-01

    Potential activities (enzyme contents) of ammonium (NH4+) oxidizing, nitrite (NO2-) oxidizing, nitrate (NO3-) reducing and denitrifying bacteria were measured in bulk and rhizosphere soil obtained from young barley plants in the field. The activities as well as pools of inorganic N (NH4+, NO2- and...

  1. Nitrous oxide emissions from denitrification and the partitioning of gaseous losses as affected by nitrate and carbon addition and soil aeration

    International Nuclear Information System (INIS)

    The factors controlling nitrous oxide (N2O) emissions vary with different soil and environmental conditions and management practices. This study was conducted to determine the importance of soil aeration, nitrate (NO3) addition, carbon (C) additions, and C sources on gaseous nitrogen (N) losses from the denitrification of arable soils at a potato farm in Atlantic Canada. Denitrification and N2O emissions were measured using acetylene inhibition. An N2O and nitrogen gas (N2) ratio of 0.7 showed that most emissions occurred as N2O. Emissions at water-filled pore spaces (WFPs) of 0.45 m3 per m3 were negligible. N2O emissions increased with NO3 and C additions. Results suggested that soil aeration plays a dominant role in controlling the magnitude of denitrification and N2O emissions. However, soil NO3 supplies in this study did not limit the denitrification process. The study showed that N2O emissions are controlled by C availability when there is a high degree of soil disturbance and high fertilizer N inputs. The relationship between the demand and supply of terminal electron acceptors (TEAs) was used to explain the spatial distribution of the N2O emissions. Higher WFPs and lower soil NO3 concentrations resulted in higher rates of total denitrification. It was concluded that further research is needed to examine the role of overall soil and crop management in relation to C availability when developing mitigation strategies. 52 refs., 4 tabs

  2. Nitrate Removal from Wastewater through Biological Denitrification with OGA 24 in a Batch Reactor

    Directory of Open Access Journals (Sweden)

    Federico Rossi

    2014-12-01

    Full Text Available Nitrates pollution of waters is a worldwide problem and its remediation is a big challenge from the technical and the scientific point of view. One of the most used and promising cleaning techniques is the biological treatment of wastewaters operated by denitrifying bacteria. In this paper we begin a thorough study of denitrifying performances of the bacterium Azospira sp. OGA 24, recently isolated from the highly polluted Sarno river in the south of Italy. Here, the kinetics of nitrates consumption operated by bacteria in a specifically devised batch bioreactor, in anoxic condition and with acetate as the organic substrate, has been characterized. Experimental data were then used in a simplified model of a real wastewater treatment plant to find that OGA 24 can clean water with efficiency up to 90%. The denitrifying performances of OGA 24 match the requirements of Italian laws and make the bacterium suitable for its employment in treatment plants.

  3. Elucidating the impact of nitrate and labile carbon application on spatial heterogeneity of denitrification by 15N modelling

    Science.gov (United States)

    Cardenas, Laura; Loick, Nadine; Dixon, Liz; Matthews, Peter; Gilsanz, Claudia; Bol, Roland; Lewicka-Szczebak, Dominika; Well, Reinhard

    2016-04-01

    N2O is considered to be an important GHG with soils representing its major source and accounting for approximately 6% of the current global warming and is also implicated in the depletion of stratospheric ozone. The atmospheric N2O concentration has been increasing since the Industrial Revolution making the understanding of its sources and removal processes very important for development of mitigation strategies. Bergstermann et al. (2011) found evidence of the existence of more than one pool of nitrate undergoing denitrification in a silty clay loam arable soil amended with glucose/nitrate solution. The Rayleigh type model was used to simulate d15N of N2O using process rates and associated fractionation factors, but assumptions for some of the model parameters had to be made due to lack of available data. In this study we carried out 2 incubation experiments in order to parameterise the model. To restrict the volume of soil reached by the amendment, we used blocks containing 3 soil cores that were incubated in one vessel to measure emissions of NO, N2O, N2 and CO2 from a clay grassland soil amended with KNO3 (N) and glucose (C) in three treatments: '1C' only 1 core received N and C (the other 2 received water), '3C' 3 cores received N and C, and 'Control' (received water only). The results showed changes in the d15Nbulk trends after day 6 post amendment application, coinciding with the decrease of N2O fluxes. We also report the results in the 15N site preference (SP) and d18O. We will show the results from the model validation based on this data.

  4. Effect of Different Carbon Substrates on Nitrate Stable Isotope Fractionation During Microbial Denitrification

    DEFF Research Database (Denmark)

    Wunderlich, Anja; Meckenstock, Rainer; Einsiedl, Florian

    2012-01-01

    .1 ± 0.8‰; ε18O, −23.7 ± 1.8‰ to −19.9 ± 0.8‰). The observed isotope effects did not depend on the growth kinetics which were similar for the three types of electron donors. We suggest that different carbon sources change the observed isotope enrichment factors by changing the relative kinetics of......-labeled water and 18O-labeled nitrite were added to the microcosm experiments to study the effect of putative backward reactions of nitrite to nitrate on the stable isotope fractionation. We found no evidence for a reverse reaction. Significant variations of the stable isotope enrichment factor ε were observed...

  5. Denitrification-coupled iron(ii) oxidation: a key process regulating the fate and transport of nitrate, phosphate, and arsenic in a wastewater-contaminated aquifer

    Science.gov (United States)

    Smith, Richard L.; Kent, Douglas B.; Repert, Deborah A.; Hart, C. P.

    2008-01-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  6. Denitrification-Coupled Iron(II) Oxidation: A Key Process Regulating the Fate and Transport of Nitrate, Phosphate, and Arsenic in a Wastewater-Contaminated Aquifer

    Science.gov (United States)

    Smith, R. L.; Kent, D. B.; Repert, D. A.; Hart, C. P.

    2007-12-01

    Denitrification in the subsurface is often viewed as a heterotrophic process. However, some denitrifiers can also utilize inorganic electron donors. In particular, Fe(II), which is common in many aquifers, could be an important reductant for contaminant nitrate. Anoxic iron oxidation would have additional consequences, including decreased mobility for species like arsenic and phosphate, which bind strongly to hydrous Fe(III) oxide. A study was conducted in a wastewater contaminant plume on Cape Cod to assess the potential for denitrification- coupled Fe(II) oxidation. Previous changes in wastewater disposal upgradient of the study area had resulted in nitrate being transported into a portion of the anoxic zone of the plume and decreased concentrations of Fe(II), phosphate, and arsenic. A series of anoxic tracers (groundwater + nitrate + bromide) were injected into the unaffected, Fe(II)-containing zone under natural gradient conditions. Denitrification was stimulated within 1 m of transport (4 days) for both low and high (100 & 1000 μM) nitrate additions, initially producing stiochiometric quantities of nitrous oxide (>300 μM N) and trace amounts of nitrite. Subsequent injections at the same site reduced nitrate even more rapidly and produced less nitrous oxide, especially over longer transport distances. Fe(II) and nitrate concentrations decreased together and this was accompanied by an increase in colloidal Fe(III) and decreases in pH, total arsenic, and phosphate concentrations. All plume constituents returned to background levels several weeks after the tracer tests were completed. Groundwater microorganisms collected on filters during the tracer test rapidly and immediately reduced nitrite and oxidized Fe(II) in 3-hr laboratory incubations. Several pure cultures of Fe(II)-oxidizing denitrifying bacteria were isolated from core material and subsequently characterized. All of the isolates were mixotrophic, simultaneously oxidizing organic carbon and Fe

  7. Nitrous oxide emissions and denitrification rates: A blueprint for smart management and remediation of agricultural landscapes.

    Science.gov (United States)

    Tomasek, A.; Hondzo, M.; Kozarek, J. L.

    2015-12-01

    Anthropogenic activities have greatly altered the global nitrogen cycle, especially in the agriculturally dominated Midwest, with severe consequences on human and aquatic health. Complete microbial denitrification can be viewed as a nitrogen sink, converting soluble nitrate into inert nitrogen gas. This research aims to quantify and correlate the driving parameters in microbial denitrification and explore the relationship to the abundance of denitrifying genes and the microbial communities at these sites. Denitrifying genes for each step in the denitrification process have been quantified. Data from a field site in Southern Minnesota has been collected throughout the season for two years enabling investigation into the temporal variability of denitrification. Data was collected at two cross-sections across the channel to determine the effect of bank location and moisture content on denitrification. Data were collected in an experimental basin in the summer of 2015 to determine the effect of flooding and benthic organic matter content and quality on microbial denitrification and nitrous oxide production. Four sediment types were investigated in three different flood regimes. After each raising or lowering of the water level, soil cores were taken to determine soil characteristics, the potential denitrification using the denitrification enzyme activity method, nitrous oxide production using a static core method, and the denitrifying gene abundance. Chambers were also deployed over each soil amendment in each flood regime to determine the nitrous oxide production over time. Results from these studies will convey a more complete explanation of denitrification and nitrous oxide production under varying environmental conditions. By determining the driving parameters for microbial denitrification, denitrification hot spots and hot moments can be created and enhanced. One potential consequence of increased denitrification is the possibility of incomplete denitrification

  8. Comparison of Whole-stream and Hyporheic-zone Estimates of Denitrification Determined Simultaneously During an Isotope Tracer Injection in a Nitrate-Rich Stream

    Science.gov (United States)

    Harvey, J. W.; Bohlke, J. K.; Voytek, M. A.

    2005-05-01

    15N labeled nitrate is increasingly being used as a reactive tracer in stream tracer tests to estimate whole-stream denitrification averaged at a spatial scale large enough to allow comparisons across disparate stream ecosystems. No matter how valuable, these whole-stream estimates are not very informative about controlling processes and will have limited transfer value unless processes controlling denitrification are investigated simultaneously at finer scales. Insights about the processes that influence the whole-stream rates could be especially informative if simultaneous rate measurements are made representing variable hydrologic and biogeochemical conditions near reactive surfaces in the stream and in the streambed. Our approach was to investigate factors that control denitrification by simultaneously measuring denitrification in-situ in a variety of streambed environments by sampling evolution of the (15NO3-) tracer during transport through shallow hyporheic flow paths. Here we report results from two tracer studies conducted in Sugar Creek, western Indiana, in a basin dominated by corn and soybean agriculture. The two tracer experiments were conducted in September 2001 and September 2003, when streamflows (40 and 20 L s-1) and stream NO3- concentrations (70 and 175 μmoles L-1) in the two reaches were near their annual minimum values. The experiments involved co-injection of conservative (Br), reactive (15NO3-), and dissolved gas (SF6) tracers into streamflow allowing quantification of advection, dispersion, gas evasion, hydrologic retention in "storage" zones, and also allowing in-situ estimation of denitrification within selected hyporheic flow paths. The experiments resulted in estimates of both whole-stream and hyporheic-zone rates of denitrification and related nitrogen reactions. The streambed of Sugar Creek is covered in most areas with a relatively thin layer (ranging from <1 to 3 cm) of fine granular and organic sediment and periphyton, overlying a

  9. Depletion of oxygen, nitrate and nitrite in the Peruvian oxygen minimum zone cause an imbalance of benthic nitrogen fluxes

    Science.gov (United States)

    Sommer, S.; Gier, J.; Treude, T.; Lomnitz, U.; Dengler, M.; Cardich, J.; Dale, A. W.

    2016-06-01

    Oxygen minimum zones (OMZ) are key regions for fixed nitrogen loss in both the sediments and the water column. During this study, the benthic contribution to N cycling was investigated at ten sites along a depth transect (74-989 m) across the Peruvian OMZ at 12°S. O2 levels were below detection limit down to ~500 m. Benthic fluxes of N2, NO3-, NO2-, NH4+, H2S and O2 were measured using benthic landers. Flux measurements on the shelf were made under extreme geochemical conditions consisting of a lack of O2, NO3- and NO2- in the bottom water and elevated seafloor sulphide release. These particular conditions were associated with a large imbalance in the benthic nitrogen cycle. The sediments on the shelf were densely covered by filamentous sulphur bacteria Thioploca, and were identified as major recycling sites for DIN releasing high amounts of NH4+up to 21.2 mmol m-2 d-1 that were far in excess of NH4+ release by ammonification. This difference was attributed to dissimilatory nitrate (or nitrite) reduction to ammonium (DNRA) that was partly being sustained by NO3- stored within the sulphur oxidizing bacteria. Sediments within the core of the OMZ (ca. 200-400 m) also displayed an excess flux of N of 3.5 mmol m-2 d-1 mainly as N2. Benthic nitrogen and sulphur cycling in the Peruvian OMZ appears to be particularly susceptible to bottom water fluctuations in O2, NO3- and NO2-, and may accelerate the onset of pelagic euxinia when NO3- and NO2- become depleted.

  10. Nitrate elimination by denitrification in hardwood forest soils of the Upper Rhine floodplain - correlation with redox potential and organic matter

    OpenAIRE

    Brettar, Ingrid; Trémolières, Michèle; Sanchez-Pérez, José-Miguel

    2002-01-01

    Denitrification in floodplains is a major issue for river- and groundwater quality. In the Upper Rhine valley, floodplain forests are about to be restored to serve as flood retention areas (polders). Besides flood attenuation in downstream areas, improvement of water quality became recently a major goal for polder construction. Redox potential monitoring was suggested as a means to support assessment of nitrogen elimination in future floodplains by denitrification during controlled flooding. ...

  11. Buried particulate organic carbon stimulates denitrification and nitrate retention in stream sediments at the groundwater-surface water interface

    Science.gov (United States)

    Stelzer, Robert S.; Scott, J. Thad; Bartsch, Lynn

    2015-01-01

    The interface between ground water and surface water in streams is a hotspot for N processing. However, the role of buried organic C in N transformation at this interface is not well understood, and inferences have been based largely on descriptive studies. Our main objective was to determine how buried particulate organic C (POC) affected denitrification and NO3− retention in the sediments of an upwelling reach in a sand-plains stream in Wisconsin. We manipulated POC in mesocosms inserted in the sediments. Treatments included low and high quantities of conditioned red maple leaves (buried beneath combusted sand), ambient sediment (sand containing background levels of POC), and a control (combusted sand). We measured denitrification rates in sediments by acetylene-block assays in the laboratory and by changes in N2 concentrations in the field using membrane inlet mass spectrometry. We measured NO3−, NH4+, and dissolved organic N (DON) retention as changes in concentrations and fluxes along groundwater flow paths in the mesocosms. POC addition drove oxic ground water to severe hypoxia, led to large increases in dissolved organic C (DOC), and strongly increased denitrification rates and N (NO3− and total dissolved N) retention relative to the control. In situ denitrification accounted for 30 to 60% of NO3− retention. Our results suggest that buried POC stimulated denitrification and NO3− retention by producing DOC and by creating favorable redox conditions for denitrification.

  12. Potential denitrification rates of subsurface soil under paddy fields receiving ground water with high nitrate concentration; Konodo shosantai chisso gan`yu chikasui no ryunyusuru suiden kasodo ni okeru dacchitsu kassei

    Energy Technology Data Exchange (ETDEWEB)

    Toda, H. [Shizuoka Agricultural Experiment Station, Shizuoka (Japan); Hidaka, S. [Saitama Agricultural Experiment Station, Saitama (Japan)

    1996-02-10

    It is well known that the concentration of nitrate nitrogen in the surface water decreases as it flows downward in rice paddies irrigated with water high in nitrate nitrogen concentration. The decrease is attributed to absorption by rice plants and algae adherent thereto and denitrification in the reduction layer well developed in the rice paddy surface soil. In paddy fields downstream of the Kushibiki plateau in the northwestern part of Saitama Prefecture, it is occasionally observed that nitrate nitrogen concentration in the ground water decreases as it flows down (farther from the plateau) not only in the flooded period but also in the non-flooded period. This suggests that in the said paddy field denitrification takes place not only in the rice paddy surface layer soil but also in the lower layer soil. Under the circumstances, the denitrification rate in the rice paddy lower layer soil was measured using the acetylene inhibition method under anaerobic and added nitrate conditions. A denitrification rate of 0.4-46ngN/g{sup -1} wet soil/h{sup -1} was obtained from a 40-150cm deep layer soil, smaller by the order of 1-2 than that in the surface layer soil. This suggests that the lower layer soil contributes to denitrification. 17 refs., 3 figs., 1 tab.

  13. Nitrate removal properties of solid-phase denitrification processes using acid-blended poly(L-lactic acid) as the sole substrate

    Science.gov (United States)

    Yamada, T.; Matsuoka, H.; Sun, J.; Yoshikawa, S.; Tsuji, H.; Hiraishi, A.

    2013-04-01

    The large amount of waste that is discharged along with the diffusion of poly(L-lactic acid) (PLLA) articles in use is persistent concern. Previously, we studied solid-phase denitrification (SPD) processes using PLLA to establish an effective re-use of PLLA waste. We found that PLLA with a weight-average molecular weight (Mw) of approximately 10,000 was suitable for SPD processes; however, the recycling of PLLA waste consumes a high energy. A new PLLA plastic including 5% poly(ethylene oxalate) (PEOxPLLA) as a blend material has attracted attention because recycling of PEOxPLLA consumes less electricity than that of PLLA. In this study, our main objectives were to evaluate whether PEOxPLLA can be used for SPD processes by changing its Mw and to investigate the bioavailability for denitrification of hydrolysates released from PEOxPLLA. The predicted hydrolysates, including oxalic acid, ethylene glycol, and lactate, are abiotically released, leading to different biological nitrate removal rates. Consequently, the nitrate removal rate of PEOxPLLA ranged from 0.9-4.1 mg-NO3--N·g-MLSS·h-1 by changing the Mw in the range of 8,500-238,000. In culture-dependent approaches, denitrifying bacteria using each substrate as an electron donor are found in activated sludge, suggesting that all hydrolysates functioned in the SPD processes using PEOxPLLA.

  14. Nitrate removal properties of solid-phase denitrification processes using acid-blended poly(L-lactic acid) as the sole substrate

    International Nuclear Information System (INIS)

    The large amount of waste that is discharged along with the diffusion of poly(L-lactic acid) (PLLA) articles in use is persistent concern. Previously, we studied solid-phase denitrification (SPD) processes using PLLA to establish an effective re-use of PLLA waste. We found that PLLA with a weight-average molecular weight (Mw) of approximately 10,000 was suitable for SPD processes; however, the recycling of PLLA waste consumes a high energy. A new PLLA plastic including 5% poly(ethylene oxalate) (PEOxPLLA) as a blend material has attracted attention because recycling of PEOxPLLA consumes less electricity than that of PLLA. In this study, our main objectives were to evaluate whether PEOxPLLA can be used for SPD processes by changing its Mw and to investigate the bioavailability for denitrification of hydrolysates released from PEOxPLLA. The predicted hydrolysates, including oxalic acid, ethylene glycol, and lactate, are abiotically released, leading to different biological nitrate removal rates. Consequently, the nitrate removal rate of PEOxPLLA ranged from 0.9–4.1 mg-NO3−-N·g-MLSS·h−1 by changing the Mw in the range of 8,500–238,000. In culture-dependent approaches, denitrifying bacteria using each substrate as an electron donor are found in activated sludge, suggesting that all hydrolysates functioned in the SPD processes using PEOxPLLA.

  15. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration.

    Science.gov (United States)

    Bardon, Clément; Poly, Franck; Piola, Florence; Pancton, Muriel; Comte, Gilles; Meiffren, Guillaume; Haichar, Feth El Zahar

    2016-05-01

    Recently, it has been shown that procyanidins fromFallopiaspp. inhibit bacterial denitrification, a phenomenon called biological denitrification inhibition (BDI). However, the mechanisms involved in such a process remain unknown. Here, we investigate the mechanisms of BDI involving procyanidins, using the model strainPseudomonas brassicacearumNFM 421. The aerobic and anaerobic (denitrification) respiration, cell permeability and cell viability ofP. brassicacearumwere determined as a function of procyanidin concentration. The effect of procyanidins on the bacterial membrane was observed using transmission electronic microscopy. Bacterial growth, denitrification, NO3- and NO2-reductase activity, and the expression of subunits of NO3- (encoded by the genenarG) and NO2-reductase (encoded by the genenirS) under NO3or NO2were measured with and without procyanidins. Procyanidins inhibited the denitrification process without affecting aerobic respiration at low concentrations. Procyanidins also disturbed cell membranes without affecting cell viability. They specifically inhibited NO3- but not NO2-reductase.Pseudomonas brassicacearumresponded to procyanidins by over-expression of the membrane-bound NO3-reductase subunit (encoded by the genenarG). Our results suggest that procyanidins can specifically inhibit membrane-bound NO3-reductase inducing enzymatic conformational changes through membrane disturbance and thatP. brassicacearumresponds by over-expressing membrane-bound NO3-reductase. Our results lead the way to a better understanding of BDI. PMID:26906096

  16. Effects of Nitrate and Labile Carbon on Denitrification of Southern Temperate Forest Soils Efectos del Nitrato y Carbono Lábil en la Desnitrificación en Suelos de Bosques Templados Australes

    Directory of Open Access Journals (Sweden)

    Cecilia A Pérez

    2010-06-01

    Full Text Available The pressure for anthropogenic land use changes and logging of temperate forests in southern Chile is rapidly increasing, with its potentially high impacts on the capacity of soils to retain important limiting elements. We tested the hypotheses that logging increases the denitrification rates and nitrate and C limitation of denitrifiers activity would be higher in soils of unlogged, old-growth forests than in soils of logged forests. Potential denitrification rates were estimated by the acetylene inhibition assay in intact soil cores in laboratory short-term aerobic incubations using the following treatments: 0.7 mmol NO3-N addition, the same nitrate addition plus 23.3 mmol C-glucose, and controls (no additions with and without 10% v/v acetylene. Forest logging did not significantly change soil nitrate content and C lability (e.g. soil C/N ratio. A nested two-factor ANOVA for repeated measures showed that denitrification was enhanced by nitrate plus labile C additions in both forests, suggesting that in both logged and unlogged forests labile C and nitrate limit denitrifiers activity. Increases were up to one order of magnitude when glucose was added to nitrate treated soils; from 373 ± 113 to 3353 ± 451 µg N2O-N m-2 d-1 in the unlogged, old-growth forest and from 1 369 ± 941 to 12 192 ± 7 474 µg N2O-N m-2 d-1 in the logged forest. We conclude that, denitrification would be enhanced in logged forests in the longer term due to a greater nitrate and labile C availability of both in disturbed soils.

  17. Role of Hyporheic Flow in Enhancing Denitrification in a Nitrate-Rich Stream, Upper Mississippi Basin, USA

    Science.gov (United States)

    Harvey, J. W.; Bohlke, J. K.; Voytek, M. A.

    2004-05-01

    Statistical approaches at the national scale suggest that NO3- losses from the stream network are most pronounced in headwater streams where stream-water interactions with anoxic bed sediments promote denitrification. At the scale of stream reaches (kilometers), there is still relatively little understanding of the interactions between flow, channel physical characteristics, and biogeochemical processes that determine downstream transport and removal of NO3-. Denitrification has been observed in stream water that moves temporarily though subsurface (hyporheic) flow paths, but few studies have determined the significance of that process to the overall flux of NO3- in the stream. Our studies were conducted in early fall in first- and second-order reaches of Sugar Creek, western Indiana, in a basin dominated by corn and soybean agriculture. Stream NO3- concentrations ranged from 15-150 μ moles L-1 at that time, and streamflows were near their annual minimum values of 20-50 L s-1. The experiments involved co-injection of conservative (Br) and reactive (15N-NO3-) tracers into streamflow to quantify advection, dispersion, hydrologic retention in "storage" environments including hyporheic flow paths, and reach-scale rates of denitrification and related processes. Here we compare surface-water results of those experiments (Bohlke et al., Limnol. Oceanog., 2004) with results obtained simultaneously by observing transport and reaction processes in porewater beneath the streambed at depths ranging from 1.5 to 90 cm. The streambed is covered in most areas with a relatively thin (1-5 cm) layer of fine granular and organic sediment and periphyton, overlying a thicker layer (30-100 cm) of relatively coarse granular sediment with a median grain size of 2 mm. Depending on location in the stream, the stream tracers were advected into the bed to depths ranging from less than 2 to greater than 15 cm, over timescales ranging from minutes to tens of hours. Comparisons of Br transport

  18. Denitrification by Rhizobium meliloti

    Energy Technology Data Exchange (ETDEWEB)

    Rosen, A.

    1996-10-01

    Rhizobium meliloti strains were investigated for their denitrification activity as free-living cells and in nodules on lucerne (Medicago sativa) roots. They were also investigated for presence of nitrous oxide reductase (nos) activity and for genes using a nosZ probe derived from the Pseudomonas stutzeri. To decide whether R. meliloti strains used as inoculants contribute to the total denitrification activity in a lucerne ley, strains with different denitrifying capacities were used in field and laboratory experiments. The nitrate reduction activity of R. meliloti during anaerobic respiration was compared with that of a strain of Pseudomonas aeruginosa. A great diversity in the denitrification activity was found within strains of R. meliloti, and four of thirteen investigated strains showed an obvious denitrification activity. Two denitrifying bacteria were used as references, one strain each of Bradyrhizobium japonicum and P. aeruginosa. All but one of the R. meliloti strains hybridized to the PstI-fragment of the nosZ-gene from P. stutzeri. Two sizes of the hybridizing fragment, 5 and 7 kb, were noticed. Nos activity was only shown in three R. meliloti strains, and these were all characterized by a high denitrification activity. The potential denitrification activity was about 20, 40, and 80 times higher than the actual denitrification activity for lucerne, fallow, and grass, respectively. The potential denitrification activity was almost the same in lucerne and grass planted soils. Compared with the unplanted soil, the presence of lucerne roots in the soil increased the actual denitrification activity, while roots of both plant species, grass and lucerne, increased the potential denitrification activity in the soil. 32 refs, 7 figs, 1 tab

  19. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: mechanisms and environmental implications

    Science.gov (United States)

    Stief, P.

    2013-12-01

    Invertebrate animals that live at the bottom of aquatic ecosystems (i.e., benthic macrofauna) are important mediators between nutrients in the water column and microbes in the benthos. The presence of benthic macrofauna stimulates microbial nutrient dynamics through different types of animal-microbe interactions, which potentially affect the trophic status of aquatic ecosystems. This review contrasts three types of animal-microbe interactions in the benthos of aquatic ecosystems: (i) ecosystem engineering, (ii) grazing, and (iii) symbiosis. Their specific contributions to the turnover of fixed nitrogen (mainly nitrate and ammonium) and the emission of the greenhouse gas nitrous oxide are evaluated. Published data indicate that ecosystem engineering by sediment-burrowing macrofauna stimulates benthic nitrification and denitrification, which together allows fixed nitrogen removal. However, the release of ammonium from sediments is enhanced more strongly than the sedimentary uptake of nitrate. Ecosystem engineering by reef-building macrofauna increases nitrogen retention and ammonium concentrations in shallow aquatic ecosystems, but allows organic nitrogen removal through harvesting. Grazing by macrofauna on benthic microbes apparently has small or neutral effects on nitrogen cycling. Animal-microbe symbioses provide abundant and distinct benthic compartments for a multitude of nitrogen-cycle pathways. Recent studies reveal that ecosystem engineering, grazing, and symbioses of benthic macrofauna significantly enhance nitrous oxide emission from shallow aquatic ecosystems. The beneficial effect of benthic macrofauna on fixed nitrogen removal through coupled nitrification-denitrification can thus be offset by the concurrent release of (i) ammonium that stimulates aquatic primary production and (ii) nitrous oxide that contributes to global warming. Overall, benthic macrofauna intensifies the coupling between benthos, pelagial, and atmosphere through enhanced turnover and

  20. Denitrification in Marl and Peat Sediments in the Florida Everglades

    OpenAIRE

    Gordon, A S; Cooper, W. J.; Scheidt, D. J.

    1986-01-01

    The potential for denitrification in marl and peat sediments in the Shark River Slough in the Everglades National Park was determined by the acetylene blockage assay. The influence of nitrate concentration on denitrification rate and N2O yield from added nitrate was examined. The effects of added glucose and phosphate and of temperature on the denitrification potential were determined. The sediments readily denitrified added nitrate. N2O was released from the sediments both with and without a...

  1. Temporal variability of denitrification in estuarine sediments

    Science.gov (United States)

    Law, C. S.; Rees, A. P.; Owens, N. J. P.

    1991-07-01

    Sediment denitrification rates and fluxes of nitrous oxide, nitrate, nitrite and ammonium were determined at two intertidal sites in the Tamar estuary (S.W. England). High sediment nitrate uptake rates were recorded throughout the year, whereas the nitrite and ammonium fluxes were positive (from sediment to water column), with the former resulting from nitrification. Nitrous oxide flux was also positive, being largely attributable to denitrification with some contribution from nitrification or nitrification-denitrification coupling. No relationship was apparent between denitrification rate and nitrate concentration in the overlying water, invalidating the notion that denitrification automatically regulates nitrate during periods of elevated ambient concentration. However, denitrification exhibited a strong covariance with the degree of sediment bioturbation ( Nereis diversicolor), which was considered to be attributable to increased transport and supply of nitrate via Nereis burrows. Denitrification accounted for 8·5% of the annual total nitrate loading to the Tamar estuary, although a maximum of 100% was observed in summer when the phytoplankton nutrient requirement would also be highest.

  2. Denitrification of Spent Regenerated Brine Using Molasses

    OpenAIRE

    Tepuš, Brigita; Simonič, Marjana; Petrovič, Aleksandra; Filipič, Jasmina

    2014-01-01

    Spent BRINE from the regeneration of exhausted resins has to be properly treated before its disposal. The heterotrophic denitrification of regenerated brine was studied in present work. Molasses which served as a carbon source has until now not been applied during brine denitrification. The nitrate and nitrite consumptions were observed according to different ratios between total organic carbon and nitrate (TOC / NO3 ratios) and the influence of NaCl was studied during batch experiments. ...

  3. The enzymes associated with denitrification

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  4. Low cost bioremediation of petroleum contamination using denitrification

    International Nuclear Information System (INIS)

    Denitrification is the use of nitrate in place of oxygen in the metabolism of certain microorganisms. Under the appropriate conditions, these microorganisms can be stimulated to degrade petroleum and other contaminants in soils and groundwaters. Denitrification eliminates the problems of subsurface aeration with the addition of nitrate salts that are inexpensive, very soluble in water, and mobile in subsurface environments. This paper describes the process and examines the use of denitrification in bioremediation projects

  5. NITRATE REMOVAL IN URBAN WETLANDS: EXAMINING THE ROLES OF VEGETATION, SOILS, AND HYDROLOGY IN THE CREATION OF ‘HOT SPOTS’ AND ‘HOT MOMENTS’ OF DENITRIFICATION

    Science.gov (United States)

    The combination of high NO3-, high labile C, high temperature, and low oxygen results in the highest levels of denitrification, a measure of NO3- removal. It is expected that soils with the highest C content, the highest root biomass at the deepest dep...

  6. The potential of dairy wastewater for denitrification

    Directory of Open Access Journals (Sweden)

    Tibela Landeka Dragičević

    2010-09-01

    Full Text Available In this work the potential of dairy wastewater for denitrification process by means of a microbial culture of nitrificants and denitrificants was investigated. The aim of this work was to remove nitrate by using organic compounds from the dairy wastewater as an electron donors. The minimal ratio of COD/NO3-N of 10 (COD-chemical oxygen demand/NO3-N-nitrate nitrogen was required to achieve complete reduction of NO3-N. The microbial culture of nitrificants and denitrificants, that was previously adapted on the dairy wastewater, carried out nitrate reduction with a different substrate utilization rate. The denitrification rate of 5.75 mg NO3-N/Lh was achieved at the beginning of denitrification when the microbial culture utilizes readily biodegradable COD. Further degradation occurred with the denitrification rate of 1.7 mg NO3-N/Lh.

  7. NOx reduction is the main pathway for benthic N2O production in a eutrophic, monomictic south-alpine lake

    Directory of Open Access Journals (Sweden)

    C. V. Freymond

    2013-03-01

    Full Text Available Nitrous oxide (N2O is a potent greenhouse gas, generated through microbial nitrogen (N turnover processes, such as nitrification, nitrifier denitrification, and denitrification. Previous studies quantifying natural sources have mainly focused on soils and the ocean, but the potential role of terrestrial water bodies in the global N2O budget has been widely neglected. Furthermore, the biogeochemical controls on the production rates and the microbial pathways that produce benthic N2O in lakes are essentially unknown. In this study, benthic N2O fluxes and the contributions of the microbial pathways that produce N2O were assessed using 15N label flow-through sediment incubations in the eutrophic, monomictic south basin of Lake Lugano in Switzerland. The sediments were a significant source of N2O throughout the year, with production rates ranging between 140 and 2605 nmol N2O h−1 m−2, and the highest observed rates coinciding with periods of water column stratification and stably anoxic conditions in the overlying bottom water. Nitrate (NO3– reduction via denitrification was found to be the major N2O production pathway in the sediments under both oxygen-depleted and oxygen-replete conditions in the overlying water, while ammonium oxidation did not significantly contribute to the benthic N2O flux. A significant portion (up to 15% of the total NO3– consumed by denitrification was reduced only to N2O, without complete denitrification to N2. These fluxes were highest when the bottom water had completely stabilized to a low-oxygen state, in contrast with the notion that stable anoxia is particularly conducive to complete denitrification without accumulation of N2O. This study provides evidence that lake sediments are a~significant source of N2O to the overlying water and may produce large N2O fluxes to the atmosphere during seasonal mixing events.

  8. 饮用水中硝酸盐的反硝化动力学及微生物群落研究%Study on Denitrification Kinetics and Bacterial Community of Nitrate-contaminated Drinking Water

    Institute of Scientific and Technical Information of China (English)

    叶正芳; 王凤; 王中友

    2013-01-01

    Objective Denitrification kinetics under different carbon source and bacterial community are investigated,which provides technical support for the denitrification of drinking water in the regenerative life support system.Methods Immobilized microorganisms biological filters were used for removing nitrate in drinking water.PCR-DGGE was nsed to analyze bacterial community.Results The results showed that,when the reactors used ethanol and sodium acetate as carbon source,denitrification reaction followed zero-order kinetics in the first 2 and 1.5 h respectively,with a denitrification rate of 11.913 g NO3--N/(gVSS · d) and 15.633 g NO3--N/(gVSS · d).Moreover,when glucose was used as carbon source,NO3--N concentration curve could be fitted using two order polynomial and the mean value of denitrification rate was 7.177 g NO3--N/(gVSS ·d).Conclusion Denitrification reaction follows zero-order kinetics when carbon source is sufficient in drinking water.Nitrite first accumulates and then consumes.The denitrifying Pseudomona,Aquabacterium and Rhodocyclaceae are dominant among the immobilized microorganisms.%目的 分析饮用水中不同碳源条件下的反硝化反应动力学,研究微生物群落结构变化,鉴定出优势菌种,为解决再生式生命保障系统中饮用水的脱氮难题提供技术支持.方法 采用固定化微生物滤池工艺去除饮用水中的硝酸盐,并进行水质分析;利用PCR-DGGE技术分析微生物群落结构变化.结果 乙醇和乙酸钠系统分别在前0~2 h和0~1.5h内表现为零级动力学反应,线性拟合得出的反硝化速率分别为11.913 g NO3--N/(gVSS·d)和15.633 g NO3--N/(gVSS·d),而葡萄糖系统在0~3h内,硝态氮浓度曲线可由二阶多项式拟合,平均反硝化速率为7.177 g NO3--N/(gVSS·d).结论 饮用水中碳源充足时反硝化过程遵循零级反应,亚硝酸盐先累积后消耗,脱氮效果较好的微生物种属主要有假单胞菌属Pseudomona、水杆菌属Aquabacterium和红环菌科Rhodocyclaceae.

  9. Denitrification gene density across a wastewater-impacted riparian buffer zone

    Science.gov (United States)

    Riparian buffers are a best management practice used extensively to protect water bodies from agriculturally-generated nitrate pollution. In particular, the biological process of denitrification has been shown to be a sink for this nitrate. Denitrification results in the reduction of nitrate under a...

  10. Denitrification in groundwater at uranium mill tailings sites

    International Nuclear Information System (INIS)

    Nitrates are a major contaminant in groundwater at many Uranium Mill Tailings Remedial Action (UMTRA) sites. Microbial denitrification, the transformation of nitrate to nitrogen gas, may be occurring in groundwater at several UMTRA sites. Denitrification is a biologically mediated process whereby facultative anaerobes use nitrate for respiration under anaerobic conditions. Denitrifying bacteria are ubiquitous in soils, sediments, and water. Denitrification requires nitrate, organic carbon, oxygen-limiting conditions, and trace nutrients, especially phosphorus. The lack of organic carbon is the most common limiting factor for denitrification. Denitrification occurs under a limited range of temperature and pH. The uranium milling processes used at UMTRA sites provided a readily available source of carbon and nitrates for denitrifying bacteria. At the Maybell, Colorado, site, the denitrifying organisms Pseudomonas, Flavobacterium and Acinetobacter were identified in core samples of materials from beneath the tailings. In addition, microcosm experiments simulating aquifer conditions beneath the tailings pile showed an average 40 percent decrease in nitrate concentrations over 13 days. At the New Rifle, Colorado, site, aquifer conditions appear favorable for denitrification. Nitrate and organic carbon are readily available in the groundwater, and redox conditions beneath and downgradient of the tailings pile are relatively anoxic. Downgradient from the tailings, total nitrogen is being removed from the groundwater system at a greater rate than the geochemically conservative anion, chloride. This removal may be due to denitrification and adsorption of ammonium onto clay and silt particles. (author)

  11. [Heterotrophic Nitrification and Aerobic Denitrification of the Hypothermia Aerobic Denitrification Bacterium: Arthrobacter arilaitensis].

    Science.gov (United States)

    He, Teng-xia; Ni, Jiu-pai; Li, Zhen-lun; Sun, Quan; Ye Qing; Xu, Yi

    2016-03-15

    High concentrations of ammonium, nitrate and nitrite nitrogen were employed to clarify the abilities of heterotrophic nitrification and aerobic denitrification of Arthrobacter arilaitensis strain Y-10. Meanwhile, by means of inoculating the strain suspension into the mixed ammonium and nitrate, ammonium and nitrite nitrogen simulated wastewater, we studied the simultaneous nitrification and denitrification ability of Arthrobacter arilaitensis strain Y-10. In addition, cell optical density was assayed in each nitrogen removal process to analyze the relationship of cell growth and nitrogen removal efficiency. The results showed that the hypothermia denitrification strain Arthrobacter arilaitensis Y-10 exhibited high nitrogen removal efficiency during heterotrophic nitrification and aerobic denitrification. The ammonium, nitrate and nitrite removal rates were 65.0%, 100% and 61.2% respectively when strain Y-10 was cultivated for 4 d at 15°C with initial ammonium, nitrate and nitrite nitrogen concentrations of 208.43 mg · L⁻¹, 201.16 mg · L⁻¹ and 194.33 mg · L⁻¹ and initial pH of 7.2. Nitrite nitrogen could only be accumulated in the medium containing nitrate nitrogen during heterotrophic nitrification and aerobic denitrification process. Additionally, the ammonium nitrogen was mainly removed in the inorganic nitrogen mixed synthetic wastewater. In short, Arthrobacter arilaitensis Y-10 could conduct nitrification and denitrification effectively under aerobic condition and the ammonium nitrogen removal rate was more than 80.0% in the inorganic nitrogen mixed synthetic wastewater. PMID:27337904

  12. Hydrogenotrophic denitrification of potable water: A review

    International Nuclear Information System (INIS)

    Several approaches of hydrogenotrophic denitrification of potable water as well as technical data and mathematical models that were developed for the process are reviewed. Most of the applications that were tested for hydrogenotrophic process achieved great efficiency, high denitrification rates, and operational simplicity. Moreover, this paper reviews the variety of reactor configurations that have been used for hydrogen gas generation and efficient hydrogen delivery. Microbial communities and species that participate in the denitrification process are also reported. The variation of nitrate concentration, pH, temperature, alkalinity, carbon and microbial acclimation was found to affect the denitrification rates. The main results regarding research progress on hydrogenotrophic denitrification are evaluated. Finally, the commonly used models and simulation approaches are discussed.

  13. Denitrification in Rhisobium in sterile soil

    International Nuclear Information System (INIS)

    The process of denitrification has been studied in two strains of root nodule bacteria, R. vigna 164 and R. meliloti 425a, introduced into soil samples sterilized by γ-irradiation. Intensity of denitrification was shown to depend on the type of soil, wetness, introduction of glucose. 57.3-78% of the introduced nitrates have been consumed by R. vigna, and 21.1-29.1 %, by R. melioti by the end of incubation (22 days)

  14. Microbial Denitrification of Groundwater using Microporous Membranes

    OpenAIRE

    Reising, Andrew R; McCleaf, Phillip R; Mansell, Bruce O; Brenner, Asher; Schroeder, Edward D

    1996-01-01

    Microbial denitrification, a frequently used and relatively inexpensive method of removing nitrate from wastewater, has been applied to the treatment of potable water supplies, on a limited scale, using packed bed reactors. However, two significant drawbacks exist in transferring wastewater denitrification technology to the treatment of domestic water supplies: (1) the water is intimately mixed with microbial cultures and (2) organic compounds must be supplied as an energy source to drive the...

  15. Denitrification in the Antarctic stratosphere

    Science.gov (United States)

    Salawitch, R. J.; Gobbi, G. P.; Wofsy, S. C.; Mcelroy, M. B.

    1989-01-01

    Rapid loss of ozone over Antarctica in spring requires that the abundance of gaseous nitric acid be very low. Precipitation of particulate nitric acid has been assumed to occur in association with large ice crystals, requiring significant removal of H2O and temperatures well below the frost point. However, stratospheric clouds exhibit a bimodal size distribution in the Antarctic atmosphere, with most of the nitrate concentrated in particles with radii of 1 micron or greater. It is argued here that the bimodal size distribution sets the stage for efficient denitrification, with nitrate particles either falling on their own or serving as nuclei for the condensation of ice. Denitrification can therefore occur without significant dehydration, and it is unnecessary for temperatures to drop significantly below the frost point.

  16. Denitrification in human dental plaque

    OpenAIRE

    Verstraete Willy; Heisterkamp Ines M; Gieseke Armin; Stief Peter; Schreiber Frank; de Beer Dirk; Stoodley Paul

    2010-01-01

    Abstract Background Microbial denitrification is not considered important in human-associated microbial communities. Accordingly, metabolic investigations of the microbial biofilm communities of human dental plaque have focused on aerobic respiration and acid fermentation of carbohydrates, even though it is known that the oral habitat is constantly exposed to nitrate (NO3-) concentrations in the millimolar range and that dental plaque houses bacteria that can reduce this NO3- to nitrite (NO2-...

  17. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez-Pérez

    2003-01-01

    Full Text Available This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France. Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3 106 cell m L-1 in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90% in the fraction Keywords: riparian zone, nitrate removal, spatial variations, alluvial groundwater

  18. Nitrogen dynamics in the shallow groundwater of a riparian wetland zone of the Garonne, SW France: nitrate inputs, bacterial densities, organic matter supply and denitrification measurements

    Science.gov (United States)

    Sánchez-Pérez, J. M.; Vervier, P.; Garabétian, F.; Sauvage, S.; Loubet, M.; Rols, J. L.; Bariac, T.; Weng, P.

    This study highlights the role of interactions between surface and sub-surface water of the riparian zone of a large river (the Garonne, SW France). Information is given about the role of surface water in supplying Dissolved Organic Carbon (DOC ) to the riparian zone for nitrate removal processes. The densities of bacteria (up to 3.3 106 cell m L-1) in groundwater are strongly conditioned by the water moving during flood events. Total bacterial densities in groundwater were related to surface water bacterial densities. In sediment, total bacteria are attached mainly to fine particles (90% in the fraction organic carbon and nitrate content in groundwater at the site studied are correlated with exchanges between the groundwater and the river, from the upstream to the downstream part of the meander. Total bacterial densities, nitrate and decressing organic carbon concentrations follow the same pattern. These results suggest that, in this kind of riparian wetland, nitrate from alluvial groundwater influenced by agricultural practices may be denitrified by bacteria in the presence of organic carbon from river surface water.

  19. Mechanism Study on a Combined Denitrification Approach for Nitrate-Contaminated Groundwater Remediation%联合脱氮法用于硝酸盐污染地下水修复的机理研究

    Institute of Scientific and Technical Information of China (English)

    黄国鑫; 高云鹤; Howard Fallowfield; Huade Guan; 刘菲

    2012-01-01

    Nitrate in groundwater has become a worldwide environmental and public health issue. Nitrate can cause methaemoglobinaemia, septicemia, hepatopathy, and even cancers. Currently, single chemical reduction (CR), autotrophic denitrification (AD) and heterotrophic denitrification (HD) have been reported worldwide, however theircombined denitrification approaches are rarely studied. In this paper the denitrification capacities, by products, pathways and mechanisms of a combined denitrification approach via batch experiments are explored, which are supported by zero valent iron, methanol and mixed bacteria. The results indicate that the elimination rates of 5.79% , 14.30% and 63. 03% were achieved by single zero valent iron-based CR, AD and HD respectively after 5 days, whereas close to 100% was attained by the combined approach. The combined approach is superior to single CR, AD or HD. Nitrite accumulation did not occur in the single CR or AD, but did take place in the single HD. Ammonium variations of <0. 6 mg/L were respectively found in CR, AD and HD. Nitrate was reduced to nitrogenous gas by CR, AD and HD. The combined system, in which HD played a dominant role, included three denitrification pathways, those of CR, AD and HD. Anaerobic zero valent iron corrosion provided cathodic hydrogen and ferrous iron for autotrophic denitrifiers. HD provided carbon dioxide for autotrophic denitrifiers. The combined system improved the elimination rate, which was not achieved by single AD and HD system. This combined approach was a potential, feasible and effective approach for groundwater in situ remediation.%地下水硝酸盐已经成为了世界性环境和健康问题.目前针对硝酸盐的化学还原脱氮、自养脱氮、异养脱氮等单一脱氮方法研究较多;联合脱氮体系包括化学还原、自养脱氮和畀养脱氮三种脱氮途径,综合了单一脱氮法的优点,但研究甚少.本研究通过静态批试验,采用零价铁、甲醇和混合菌

  20. Warming Can Boost Denitrification Disproportionately Due to Altered Oxygen Dynamics

    OpenAIRE

    2011-01-01

    Background Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising te...

  1. Warming can boost denitrification disproportionately due to altered oxygen dynamics

    OpenAIRE

    Veraart, A.J.; Klein,, J.; M. Scheffer

    2011-01-01

    Background - Global warming and the alteration of the global nitrogen cycle are major anthropogenic threats to the environment. Denitrification, the biological conversion of nitrate to gaseous nitrogen, removes a substantial fraction of the nitrogen from aquatic ecosystems, and can therefore help to reduce eutrophication effects. However, potential responses of denitrification to warming are poorly understood. Although several studies have reported increased denitrification rates with rising ...

  2. Effects of nitrate contamination and seasonal variation on the denitrification and greenhouse gas production in La Rocina stream (Doñana National Park, SW Spain)

    OpenAIRE

    Tortosa, Germán; Galeote, David; Sánchez-Raya, Juan A.; Delgado Huertas, Antonio; Sánchez-Monedero, Miguel Ángel; Bedmar, Eulogio J.

    2011-01-01

    Climatic influence (global warming and decreased rainfall) could lead to an increase in the ecological and toxicological effects of the pollution in aquatic ecosystems, especially contamination from agricultural nitrate (NO3 −) fertilizers. Physicochemical properties of the surface waters and sediments of four selected sites varying in NO3 − concentration along La Rocina Stream, which feeds Marisma del Rocio in Do˜nana National Park (South West, Spain), were studied. Electri...

  3. Bioaugmentation of nitrate-dependent anaerobic ferrous oxidation by heterotrophic denitrifying sludge addition: A promising way for promotion of chemoautotrophic denitrification.

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Zhang, Meng; Zhao, He-Ping; Ji, Jun-Yuan; Zhou, Xiao-Xin; Li, Wei

    2015-12-01

    Nitrate-dependent anaerobic ferrous oxidation (NAFO) is a new and valuable bio-process for the treatment of wastewaters with low C/N ratio, and the NAFO process is in state of the art. The heterotrophic denitrifying sludge (HDS), possessing NAFO activity, was used as bioaugmentation to enhance NAFO efficiency. At a dosage of 6% (V/V), the removal of nitrate and ferrous was 2.4 times and 2.3 times of as primary, and the volumetric removal rate (VRR) of nitrate and ferrous was 2.4 times and 2.2 times of as primary. Tracing experiments of HDS indicated that the bioaugmentation on NAFO reactor was resulted from the NAFO activity by HDS itself. The predominant bacteria in HDS were identified as Thauera (52.5%) and Hyphomicrobium (20.0%) which were typical denitrifying bacteria and had potential ability to oxidize ferrous. In conclusion, HDS could serve as bioaugmentation or a new seeding sludge for operating high-efficiency NAFO reactors. PMID:26348287

  4. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters

    Science.gov (United States)

    The ability to consistently and cost-effectively reduce nitrate-nitrogen loads in effluent from recirculating aquaculture systems would enhance the industry's environmental stewardship and allow improved facility proximity to large markets in sensitive watersheds. Heterotrophic denitrification techn...

  5. Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process

    Institute of Scientific and Technical Information of China (English)

    PENG Yong-zhen; MA Yong; WANG Shu-ying

    2007-01-01

    The aim of this study is to investigate the denitrification potential enhancement by addition of external carbon sources and to estimate the denitrification potential for the predenitrification system using nitrate utilization rate(NUR)batch tests.It is shown that the denitrification potential Can be substantially increased with the addition of three external carbon sources,i.e.methanol,ethanol,and acetate.and the denitrification rates of ethanol,acetate,and methanol reached up to 9.6,12,and 3.2 mgN/(gVSS·h),respectively,while mat of starch wastewater was only 0.74 mgN/(gVSS·h).By comparison,ethanol was found to be the best extemal carbon source.NUR batch tests with starch wastewater and waste ethanol were carried out.The denitrification potential increased from 5.6 to 16.5 mg NO.-N/L owing to waste ethanol addition.By means of NUR tests,the wastewater characteristics and kinetic parameters can be estimated.which are used to determine the denitrification potential of wastewater,to calculate the denitrification potential of the plant and to predict the nitrate effluent quality,as well as provide information for developing carbon dosage conlxol strategy.

  6. Modeling nitrate fluxes at the catchment scale using the integrated tool CAWAQS.

    Science.gov (United States)

    Flipo, Nicolas; Even, Stéphanie; Poulin, Michel; Théry, Sylvain; Ledoux, Emmanuel

    2007-04-01

    Nitrates fluxes in the Grand Morin basin (1200 km(2)), that is subjected to intense agricultural pressure, are considered using in-stream observations (around 250 sampling days over 5 years) and physically based simulations using the CAWAQS model (CAtchment WAter Quality Simulator). In-stream nitrate concentration averaged 6 mg N L(-1), increasing by approximately 0.2 mg N L(-1) yr(-1) around this value (period 1991-1996). Our results show that, over the period of 1991-1996, the differences between in-stream observed nitrate concentrations and simulated nitrate concentrations result from nitrate losses at the basin scale. These losses are due to denitrification by transfer through wetlands, alluvial plains, the hyporheic zone, and by benthic processes in rivers. A mean annual mass balance at the basin scale indicates that 40% of the infiltration flux (3360 kg N km(-2) yr(-1)) is removed from the system via the river network, 40% is stored in aquifers and 20% is lost by denitrification (period 1991-1996). PMID:17331565

  7. Directly measured denitrification reveals oyster aquaculture and restored oyster reefs remove nitrogen at comparable high rates

    Science.gov (United States)

    Coastal systems are increasingly impacted by over-enrichment of nutrients, which has cascading effects for ecosystem functioning. Oyster restoration and aquaculture are both hypothesized to mitigate excessive nitrogen (N) loads via benthic denitrification (DNF). However, this has...

  8. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA

    Science.gov (United States)

    Denitrification is known as an important pathway for nitrate loss in agroecosystems. It is important to estimate denitrification fluxes to close field and watershed N mass balances, determine greenhouse gas emissions (N2O), and help constrain estimates of other major N fluxes (e.g., nitrate leaching...

  9. Comparison of denitrification between Paracoccus sp. and Diaphorobacter sp.

    Science.gov (United States)

    Chakravarthy, Srinandan S; Pande, Samay; Kapoor, Ashish; Nerurkar, Anuradha S

    2011-09-01

    Denitrification was compared between Paracoccus sp. and Diaphorobacter sp. in this study, both of which were isolated from activated sludge of a denitrifying reactor. Denitrification of both isolates showed contrasting patterns, where Diaphorobacter sp. showed accumulation of nitrite in the medium while Paracoccus sp. showed no accumulation. The nitrate reduction rate was 1.5 times more than the nitrite reduction in Diaphorobacter sp., as analyzed by the resting state denitrification kinetics. Increasing the nitrate concentration in the medium increased the nitrite accumulation in Diaphorobacter sp., but not in Paracoccus sp., indicating a branched electron transfer during denitrification. Diaphorobacter sp. was unable to denitrify efficiently at high nitrate concentrations from 1 M, but Paracoccus sp. could denitrify even up to 2 M nitrate. Paracoccus sp. was found to be an efficient denitrifier with insignificant amounts of nitrite accumulation, and it could also denitrify high amounts of nitrate up to 2 M. Efficient denitrification without accumulation of intermediates like nitrite is desirable in the removal of high nitrates from wastewaters. Paracoccus sp. is shown to suffice this demand and could be a potential organism to remove high nitrates effectively. PMID:21509603

  10. The kinetics of denitrification in permeable sediments

    Science.gov (United States)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.

    2013-04-01

    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments to study experimentally. The realistic implementation of such models requires reliable experimentally derived data on the kinetics of denitrification. Here we undertook measurements of denitrification kinetics as a function of nitrate concentration and in the presence and absence of oxygen, in carefully controlled flow through reactor experiments on sediments taken from six shallow coastal sites in Port Phillip Bay, Victoria, Australia. The results showed that denitrification commenced rapidly (within 30 min) after the onset of anoxia and the kinetics could be well described by Michaelis-Menten kinetics with half saturation constants (apparent Km) ranging between 1.5 and 19.8 μM, and maximum denitrification rate (Vmax) were in the range of 0.9-7.5 nmol mL-1 h-1. The production of N2 through anaerobic ammonium oxidation (anammox) was generally found to be less than 10% that of denitrification. Vmax were in the same range as previously reported in cohesive sediments despite organic carbon contents one order of magnitude lower for the sediments studied here. The ratio of sediment O2 consumption to Vmax was in the range of 0.02-0.09, and was on average much lower than the theoretical ratio of 0.8. The most likely explanation for this is that the microbial community is not able to instantaneously shift or optimally use a particular electron acceptor in the highly dynamic redox environment experienced in permeable sediments. Consistent with this explanation, subsequent longer-term experiments over 5 days showed that denitrification rates increased by a factor of 10 within 3 days of the permanent onset of anoxia. In contrast to previous studies, we did not observe any significant

  11. Linkages between denitrification and dissolved organic matter quality, Boulder Creek watershed, Colorado

    Science.gov (United States)

    Barnes, Rebecca T.; Smith, Richard L.; Aiken, George R.

    2012-03-01

    Dissolved organic matter (DOM) fuels the majority of in-stream microbial processes, including the removal of nitrate via denitrification. However, little is known about how the chemical composition of DOM influences denitrification rates. Water and sediment samples were collected across an ecosystem gradient, spanning the alpine to plains, in central Colorado to determine whether the chemical composition of DOM was related to denitrification rates. Laboratory bioassays measured denitrification potentials using the acetylene block technique and carbon mineralization via aerobic bioassays, while organic matter characteristics were evaluated using spectroscopic and fractionation methods. Denitrification potentials under ambient and elevated nitrate concentrations were strongly correlated with aerobic respiration rates and the percent mineralized carbon, suggesting that information about the aerobic metabolism of a system can provide valuable insight regarding the ability of the system to additionally reduce nitrate. Multiple linear regressions (MLR) revealed that under elevated nitrate concentrations denitrification potentials were positively related to the presence of protein-like fluorophores and negatively related to more aromatic and oxidized fractions of the DOM pool. Using MLR, the chemical composition of DOM, carbon, and nitrate concentrations explained 70% and 78% of the observed variability in denitrification potential under elevated and ambient nitrate conditions, respectively. Thus, it seems likely that DOM optical properties could help to improve predictions of nitrate removal in the environment. Finally, fluorescence measurements revealed that bacteria used both protein and humic-like organic molecules during denitrification providing further evidence that larger, more aromatic molecules are not necessarily recalcitrant in the environment.

  12. Denitrification activity is closely linked to the total ambient Fe concentration in mangrove sediments of Goa, India

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Gonsalves, Maria-Judith; Michotey, Valérie D.; Bonin, Patricia C.; Loka, A.; Bharathi, P.

    2013-10-01

    Denitrification activity (DNT) and associated environmental parameters were examined in two mangrove ecosystems of Goa, India - the relatively unimpacted Tuvem and the anthropogenically-influenced Divar. Sampling was carried out at every 2 cm interval within the 0-10 cm depth range to determine (1) seasonal (pre-monsoon, monsoon and post-monsoon) down-core variation in DNT (2) assess the environmental factors influencing the DNT and (3) to build predictive models for benthic DNT. Denitrification generally decreased with depth and showed marked seasonal variation at both the locations. Denitrification peaked during the pre-monsoon occurring at a rate of up to 21.00 ± 12.84 nmol N2O g-1 h-1 within 0-4 cm at both the locations. Further, DNT at pre-monsoon was significantly influenced by Fe content at Tuvem and Divar suggesting Fe-mediated nitrate respiration. The influence of other limiting substrates such as NO3- and NO2- was most important during the monsoon and post-monsoon especially at Divar. The multiple regression models developed could predict 67-98% of the observed variability in DNT through the seasons. About 6-9 environmental variables were required to relatively well-predict DNT in these sediments with the complexity governing DNT decreasing from pre-monsoon to post-monsoon. Our results reveal that seasonal dynamics of DNT in tropical mangrove sediments are closely linked to the total Fe at the prevailing ambient concentration in both the systems.

  13. Deconstructing nitrate isotope dynamics in aquifers

    Science.gov (United States)

    Granger, J.

    2012-12-01

    The natural abundance N and O stable isotope ratios of nitrate provide an invaluable tool to differentiate N sources to the environment, track their dispersal, and monitor their attenuation by biological transformations. The interpretation of patterns in isotope abundances relies on knowledge of the isotope ratios of the source end-members, as well as on constraints on the isotope discrimination imposed on nitrate by respective biological processes. Emergent observations from mono-culture experiments of denitrifying bacteria reveal nitrate fractionation trends that appear at odds with trends ascribed to denitrification in soils and aquifers. This discrepancy raises the possibility that additional biological N transformations may be acting in tandem with denitrification. Here, the N and O isotope enrichments associated with nitrate removal by denitrification in aquifers are posited to bear evidence of coincident biological nitrate production - from nitrification and/or from anammox. Simulations are presented from a simple time-dependent one-box model of a groundwater mass ageing that is subject to net nitrate loss by denitrification with coincident nitrate production by nitrification or anammox. Within boundary conditions characteristic of freshwater aquifers, the apparent slope of the parallel enrichments in nitrate N and O isotopes associated with net N loss to denitrification can vary in proportion to the nitrate added simultaneous by oxidative processes. Pertinent observations from nitrate plumes in suboxic to anoxic aquifers are examined to validate this premise. In this perspective, nitrate isotope distributions suggest that we may be missing important N fluxes inherent to most aquifers.

  14. Saturated Zone Denitrification at California Dairies

    International Nuclear Information System (INIS)

    Denitrification can effectively mitigate the problem of high nitrate concentrations in groundwater under dairy operations by reducing nitrate to N2 gas, at sites where biogeochemical conditions are favorable. We present results from field studies at central California dairies that document the occurrence of saturated-zone denitrification in shallow groundwater using biomolecular indicators, stable isotope compositions of nitrate, and measurements of dissolved excess N2 gas. Excess N2 concentrations provide a measure of the extent to which nitrate in groundwater has been partially or completely denitrified. Abundant excess N2 and young 3H/3He apparent groundwater ages indicate high denitrification rates near manure lagoons where multiple lines of evidence indicate seepage of lagoon water into the groundwater system. Natural tracers of lagoon water include high chloride and dissolved organic carbon concentrations, distinctive trace organic compounds, and high groundwater (delta)18O values (relative to other recharge sources). Proximal to the lagoons, NH4+ may be present in groundwater, but is strongly adsorbed on to sediment particles. Bubble formation in the lagoons causes the exsolution of other gases (N2, Ar, Ne, He, etc.), which partition into the gas phase and strip the lagoon water of its dissolved gas load, providing a unique tracer of lagoon seepage in groundwater

  15. Modelling crop root development and nitrate uptake

    OpenAIRE

    Pedersen, Anders

    2008-01-01

    Nitrate leaching from agricultural areas is a political and environmental issue at both local scale in Denmark and at global scale. Plant-available nitrogen and nitrate in the rooting zone in the growing season is necessary in order to obtain satisfactory crop yields. However, surplus nitrogen leads to a risk of nitrate losses through leaching and denitrification. In addition to artificial applications of nitrate, nitrate is produced by mineralisation processes in the soil from plant residues...

  16. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium

    OpenAIRE

    Fernandes, Sheryl Oliveira; Bonin, Patricia C.; Michotey, Valérie D.; Garcia, Nicole; P.A. Lokabharathi

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss1. However, percentage of total nitrate transformed through complete denitrification accounted for

  17. Alternative nitrate reduction pathways in experimentally fertilized New England salt marshes

    DEFF Research Database (Denmark)

    Uldahl, Anne; Banta, Gary Thomas; Boegh, Eva;

    ongoing ecosystem level nutrient additions experiments in two New England salt marshes, Plum Island Sound (NO3- additions since 2003) and Great Sippewissett Marsh (fertilizer additions since the 1970's) to examine the relative importance of these NO3- reduction pathways in salt marshes. Sediments from......Nitrate present or generated in any benthic ecosystem can be reduced by a number of microbial pathways, most notably denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA). The first two processes remove of biologically available N from...... the ecosystem in the form of gaseous N2, while the last process transforms of NO3- to another biologically available form, NH4+, and thus merely recycles N. Salt marshes are important ecosystems for the cycling, retention and removal of biologically available N transported from land to the oceans. We used...

  18. Comparing the environmental impact of a nitrifiying biotrickling filter with or without denitrification for ammonia abatement at animal houses

    OpenAIRE

    Vries, de, H.J.C.; Melse, R.W.

    2014-01-01

    The aim was to assess the environmental impact of a biotrickling filter with nitrification only and with subsequent denitrification. Life cycle assessment was applied to assess greenhouse gases, nitrate, ammonia and fossil fuel depletion. The biotrickling filter with nitrification and denitrification had higher greenhouse gas emission, whereas nitrification only had higher nitrate leaching and ammonia emission from field application of discharge water

  19. Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream

    Science.gov (United States)

    Roley, Sarah S.; Tank, Jennifer L.; Williams, Maureen A.

    2012-09-01

    Stream ecotones, specifically the lateral floodplain and subsurface hyporheic zone, can be important sites for nitrogen (N) removal via denitrification, but their role in streams with constructed floodplains has not been examined. We studied denitrification in the hyporheic zone and floodplains of an agriculturally influenced headwater stream in Indiana, USA, that had floodplains added as part of a "two-stage ditch" restoration project. To examine the potential for N removal in the hyporheic zone, we seasonally measured denitrification rates and nitrate concentrations by depth into the stream sediments. We found that nitrate concentration and denitrification rates declined with depth into the hyporheic zone, but denitrification was still measureable to a depth of at least 20 cm. We also measured denitrification rates on the restored floodplains over the course of a flood (pre, during, and post-inundation), and also compared denitrification rates between vegetated and non-vegetated areas of the floodplain. We found that floodplain denitrification rates increased over the course of a floodplain inundation event, and that the presence of surface water increased denitrification rates when vegetation was present. Stream ecotones in midwestern, agriculturally influenced streams have substantial potential for N removal via denitrification, particularly when they are hydrologically connected with high-nitrate surface water.

  20. Nitrogen isotope effects of denitrification reactions under natural conditions

    International Nuclear Information System (INIS)

    Determinations of isotope effects during denitrification of nitrate show greater values under laboratory conditions than under natural ones. The paper examines the reasons for these differences which are discussed on the way of diffusion effects. Solving the partial differential equation for diffusion processes it can be shown that the diffusion plays a part for understanding the smaller isotope effects at the denitrification proceeding in ground water reservoirs. Assuming a few suitable parameters of diffusion some examples are estimated and presented. 51 refs. (author)

  1. Correlations between in situ denitrification activity and nir-gene abundances in pristine and impacted prairie streams

    International Nuclear Information System (INIS)

    Denitrification is a process that reduces nitrogen levels in headwaters and other streams. We compared nirS and nirK abundances with the absolute rate of denitrification, the longitudinal coefficient of denitrification (i.e., Kden, which represents optimal denitrification rates at given environmental conditions), and water quality in seven prairie streams to determine if nir-gene abundances explain denitrification activity. Previous work showed that absolute rates of denitrification correlate with nitrate levels; however, no correlation has been found for denitrification efficiency, which we hypothesise might be related to gene abundances. Water-column nitrate and soluble-reactive phosphorus levels significantly correlated with absolute rates of denitrification, but nir-gene abundances did not. However, nirS and nirK abundances significantly correlated with Kden, as well as phosphorus, although no correlation was found between Kden and nitrate. These data confirm that absolute denitrification rates are controlled by nitrate load, but intrinsic denitrification efficiency is linked to nirS and nirK gene abundances. - Denitrification efficiency best correlated to nirS and nirK gene abundances.

  2. Analysis of denitrification process in the groundwater of floodplains using a modelling approach

    Science.gov (United States)

    Bernard-Jannin, Léonard; Brito, David; Sun, Xiaoling; Teissier, Samuel; Neves, Ramiro; Sauvage, Sabine; Sánchez-Pérez, José-Miguel

    2016-04-01

    Nitrate contamination of freshwater systems is a global concern. In alluvial floodplains, highly vulnerable to nitrate pollution due to widespread agricultural activities, riparian areas have been proven to be efficient in nitrate removal through denitrification. However, denitrification presents complex spatio-temporal patterns and is controlled by many factors. Hence, modelling can provide useful knowledge about this biogeochemical process, by helping to identify key factors involved in denitrification process and its spatio-temporal variability. In this study, a modelling approach combining i) a distributed hydrodynamic model, coupling surface and subsurface flow (MOHID Land), with ii) a simplified denitrification calculation module including dissolved organic carbon (DOC borned by the river) and particulate organic carbon (POC present in soil) have been applied to a monitored meander area of the Garonne river (6.6 km²). The dataset include hydrological data and nitrates concentrations collected in a network of 25 piezometers during 12 monthly campaigns allowing the set up and the validation of the model application. The average denitrification rate was estimated to 28 kg N/ha/yr representing 38% of the lateral nitrate input from the agricultural area. Denitrification was the highest in the low elevation riparian area in relation with inundated soils releasing topsoil organic carbon fueling denitrification. In addition high denitrification rates were simulated in downstream part of the meander in relation with the high nitrates flux coming from the agricultural area. Geomorphological settings and groundwater flows in the area play a major role in controlling denitrification in floodplain area. Flood events lead to high denitrification periods by increasing topsoil layer POC availability with higher water level in the aquifer. However, the role of DOC borne by the river seems restricted. The model can be applied to estimate nitrate removal capacity of riparian

  3. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    Science.gov (United States)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field. PMID:26529303

  4. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    Science.gov (United States)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  5. The relationship between anammox and denitrification in the sediment of an inland river

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Sheng, E-mail: zhous@outlook.com [Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, No. 1000 Jinqi Road, Shanghai 201403 (China); Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan); Borjigin, Sodbilig; Riya, Shohei; Terada, Akihiko; Hosomi, Masaaki [Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588 (Japan)

    2014-08-15

    This study measured the microbial processes of anaerobic ammonium oxidation (anammox) and denitrification in sediment sampled from two sites in the estuary of an inland river (Koisegawa River, Ibaragi prefecture, Japan) using a nitrogen isotope pairing technique (IPT). The responses of anammox and denitrification activities to temperature and nitrate concentration were also evaluated. Further, to elucidate the correlation between anammox and denitrification processes, an inhibition experiment was conducted, using chlorate to inhibit the first step of denitrification. Denitrification activity was much higher than anammox activity, and it reached a maximum at the surface layer in February 2012. Denitrification activity decreased as sediment depth increased, and a similar phenomenon was observed for anammox activity in the sediment of site A, where aquatic plants were absent from the surroundings. The activities of both denitrification and anammox were temperature-dependent, but they responded differently to changes in incubation temperature. Compared to a linear increase in denitrification as temperature rose to 35 °C, the optimal temperature for anammox was 25 °C, after which the activity decreased sharply. At the same time, both anammox and denitrification activities increased with NO{sub 3}{sup −} concentration. The Michaelis–Menten kinetic constants (V{sub max} and K{sub m}) of denitrification were significantly higher than those of the anammox process. Furthermore, anammox activity decreased accordingly when the first step of denitrification was inhibited, which probably reduced the amount of the intermediate NO{sub 2}{sup −}. Our study provides the first direct exploration of the denitrification-dependent correlation of anammox activity in the sediment of inland river. - Highlights: • The activity of denitrification in river sediment was much higher than anammox. • Denitrification and anammox respond differently to changes in temperature.

  6. Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea

    Directory of Open Access Journals (Sweden)

    K. Dähnke

    2013-05-01

    Full Text Available The global marine nitrogen cycle is constrained by nitrogen fixation as a source of reactive nitrogen, and denitrification or anammox on the sink side. These processes with their respective isotope effects set the marine nitrate 15N-isotope value (δ15N to a relatively constant average of 5‰. This value can be used to better assess the magnitude of these sources and sink terms, but the underlying assumption is that sedimentary denitrification and anammox, processes responsible for approximately one-third of global nitrogen removal, have little to no isotope effect on nitrate in the water column. We investigated the isotope fractionation in sediment incubations, measuring net denitrification and nitrogen and oxygen stable isotope fractionation in surface sediments from the coastal Baltic Sea (Boknis Eck, northern Germany, a site with seasonal hypoxia and dynamic nitrogen turnover. Sediment denitrification was fast, and regardless of current paradigms assuming little fractionation during sediment denitrification, we measured fractionation factors of 18.9‰ for nitrogen and 15.8‰ for oxygen in nitrate. While the input of nitrate to the water column remains speculative, these results challenge the current view of fractionation during sedimentary denitrification and imply that nitrogen budget calculations may need to consider this variability, as both preferential uptake of light nitrate and release of the remaining heavy fraction can significantly alter water column nitrate isotope values at the sediment–water interface.

  7. Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea

    Directory of Open Access Journals (Sweden)

    K. Dähnke

    2013-01-01

    Full Text Available The global marine nitrogen cycle is constrained by nitrogen fixation as a source of reactive nitrogen, and denitrification or anammox on the sink side. These processes with their respective isotope effects set the marine nitrate 15N-isotope value (δ15N to a relatively constant average of 5‰. This value can be used to better assess the magnitude of these sources and sink terms, but the underlying assumption is that sedimentary denitrification and anammox, processes responsible for approximately one third of global nitrogen removal, have little to no isotope effect on nitrate in the water column.

    We investigated the isotope fractionation in sediment incubations, measuring net denitrification and nitrogen and oxygen stable isotope fractionation in surface sediments from the coastal Baltic Sea (Boknis Eck, Northern Germany, a site with seasonal hypoxia and dynamic nitrogen turnover.

    We found tremendously high denitrification rates, and regardless of current paradigms assuming little fractionation during sediment denitrification, we measured fractionation factors of 18.9‰ for nitrogen and 15.8‰ for oxygen in nitrate. While the input of nitrate to the water column remains speculative, these results challenge the current view of fractionation during sedimentary denitrification and imply that nitrogen budget calculations may need to consider this variability, as both preferential uptake of light nitrate and release of the remaining heavy fraction can significantly alter water column nitrate isotope vales at the sediment-water interface.

  8. The efficiency of a membrane bioreactor in drinking water denitrification

    Directory of Open Access Journals (Sweden)

    Petrovič Aleksandra

    2015-01-01

    Full Text Available The membrane bioreactor (MBR system was investigated regarding its nitrate removal capacity from drinking water. The performance of a pilot-scale MBR was tested, depending on the operational parameters, using sucrose as a carbon source. Drinking water from the source was introduced into the reactor in order to study the influence of flow-rate on the nitrate removal and denitrification efficiency of drinking water. The content of the nitrate was around 70 mg/L and the C/N ratio was 3:1. Nitrate removal efficiencies above 90% were obtained by flow-rates lower than 4.8 L/h. The specific denitrification rates varied between 0.02 and 0.16 g/L NO3/ (g/L MLSS•d. The efficiencies and nitrate removal were noticeably affected by the flow-rate and hydraulic retention times. At the maximum flow-rate of 10.2 L/h still 68% of the nitrate had been removed, whilst the highest specific denitrification rate was achieved at 0.2738 g/L NO3/ (g/L MLSS•d. The maximum reactor removal capacity was calculated at 8.75 g NO3/m3•h.

  9. Combined denitrification and phosphorus removal in a biofilter

    DEFF Research Database (Denmark)

    Falkentoft, Christina Maria; Harremoes, Poul; Mosbæk, Hans; Wilderer, P. A.

    A lab-scale biofilter was run continuously for 11/2 years for combined denitrification and phosphorus removal. Alternation between anaerobic and anoxic (nitrate) conditions was used to obtain an enriched culture of denitrifying, phosphate accumulating organisms. Batch experiments were performed to...

  10. Internal hydraulics of an agricultural drainage denitrification bioreactor

    Science.gov (United States)

    Denitrification bioreactors to reduce the amount of nitrate-nitrogen in agricultural drainage are now being deployed across the U.S. Midwest. However, there are still many unknowns regarding internal hydraulic-driven processes in these "black box" engineered treatment systems. To improve this unders...

  11. Combined denitrification and phosphorus removal in a biofilter

    DEFF Research Database (Denmark)

    Falkentoft, Christina Maria; Harremoes, Poul; Mosbæk, Hans;

    2000-01-01

    A lab-scale biofilter was run continuously for 11/2 years for combined denitrification and phosphorus removal. Alternation between anaerobic and anoxic (nitrate) conditions was used to obtain an enriched culture of denitrifying, phosphate accumulating organisms. Batch experiments were performed...

  12. The role of benthic macrofauna on nitrogen cycling in eutrophic lake sediment

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, J.M.

    1998-12-01

    This thesis concerns the role of sediment-living macrobenthos in the cycling of nitrogen species and nitrogen transformation in eutrophic freshwater sediments. In my thesis I have, employing {sup 15}N-isotope techniques in laboratory experiments, shown the importance of infaunal chironomid larvae and oligochaetes on denitrification in eutrophic lake sediments. Investigated benthic organisms not only expand the sediment surface with their permanent or non-permanent burrow constructions, they also transport water through the burrows continuously. This behaviour of intermittent water-pumping activity, provides the burrows with oxygen, and in addition, mediates the supply of nitrate to denitrifying zones. The highly dynamic oxygen climate within and narrow oxic zones around burrows, due to their radial geometry, provides a very short diffusion path for nitrate into surrounding anoxic zones. In my studies rates of denitrification were enhanced c. 3 to 6-fold by the influence of chironomids (Chironomus plumosus) and c. 2-fold by the influence of oligochaetes at comparable biomass. The difference in degree of stimulation is explained by species-specific habitat exploitation which could also be observed between different tube-dwelling species of chironomids. Besides chironomid biomass, the degree of enhancement of denitrification by chironomids was dependent on nitrate concentration in the overlying water, and water temperature. Nitrification was also seen to be stimulated by the infaunal macrobenthos but to a lesser degree than denitrification. It is suggested that bioturbated eutrophic sediment, under predominantly oxic bottom water conditions may act more pronouncedly as a sink for inorganic nitrogen relative to non-bioturbated sediment, and that bioturbated sediment above all, may be an important factor contributing to lowered transport of nitrogen to the coast. In order to sustain high nitrogen removal capacity in wetlands, ponds and lakes, it is further suggested

  13. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to...

  14. Regulation of denitrification in the genus Thauera; response pattern in the transition from oxic to anoxic environment, life on the energetic edge

    OpenAIRE

    Andreassen, Øystein Andre

    2010-01-01

    Denitrification is a taxonomically widespread process used by more than 60 different genera of bacteria including archaea and some fungi, where nitrate is reduced to dinitrogen gas (N2) by four enzymes; nitrate reductase (NAR & NAP), nitrite reductase (NIR), nitric oxide reductase (NOR) and nitrous oxide reductase (N2OR). The end product of denitrification depends on the different bacteria species ability to synthesize the required enzymes involved in the denitrification process, some bacteri...

  15. Implications for oxygen, nutrient fluxes and denitrification rates during the early stage of sediment colonisation by the polychaete Nereis spp. in four estuaries

    Science.gov (United States)

    Nizzoli, Daniele; Bartoli, Marco; Cooper, Martin; Welsh, David T.; Underwood, Graham J. C.; Viaroli, Pierluigi

    2007-10-01

    In this work, bioturbation effects by the polychaete Nereis spp. on oxygen demand, denitrification and solute fluxes in four European coastal areas (Goro lagoon in Italy, Tagus estuary in Portugal, Colne estuary in England and Tjärnö bay in Sweden) are compared. The studied areas are very heterogeneous with respect to tidal regimes, primary producers communities, sediment composition and organic matter content and nutrient concentrations in the water column. At each site, with the same methodological approach, undisturbed sediment cores and cores with different numbers of polychaetes added were incubated in the dark. Oxygen, inorganic nutrients (NH 4+, NO 3-, Dissolved Reactive Silica-SiO 2 and Soluble Reactive Phosphorous-SRP) fluxes and coupled-uncoupled denitrification rates were quantified on the same set of cores. Nereis bioturbation had a considerable effect on biogeochemical processes and, at all sites, resulted in an immediate stimulation (from 1.5- to 4-fold higher) of oxygen and ammonium fluxes between the sediment and the water column; on the contrary bioturbation had site specific effects on reactive silica and phosphorus fluxes. Bioturbation also stimulated denitrification of water column nitrate ( Dw, from 1.3 to 3 times higher than in control sediments); this process removed a major fraction (>50%) of the nitrogen lost through denitrification. Overall, the strong relationship between benthic macrofauna activity and sediment biogeochemistry is confirmed by this study. Comparison of the relative stimulation of processes in different geographical areas reveals that the degree by which processes and fluxes (intensity and direction) are affected are site specific and influenced by initial macrofauna densities and sediment and water chemistry.

  16. Nitrous oxide concentration and nitrification and denitrification in Zhujiang River Estuary, China

    Institute of Scientific and Technical Information of China (English)

    XU Jirong; WANG Youshao; WANG Qinji; YIN Jianping

    2005-01-01

    The concentrations of nitrous oxide varies between 57 and 329 nmol/dm3, saturation is 674%~4 134% in the Zhujiang River Estuary.This suggests that the area is an emissive source of nitrous oxide. The acetylene inhibition technique is employed to evaluate the rates ofnitrification, denitrification and nitrate reduction by bacterial activities in the sediments at three sites. The average of nitrification,tical profiles of the sediments show that the nitrification and denitrification processes mainly take place in the depth from 0 to 4 cm and depend on regional conditions. The rates of nitrification, denitrification and nitrate reduction are dominated by Eh, nitrate and ammonium concentrations in sediments and DO in overlay water. There is a coupling between nitrification and denitrification.

  17. Denitrification as an adaptive trait in soil and groundwater bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bergwall, C.

    1997-09-01

    The focus of this thesis is on selection and adaptation processes in bacteria with emphasis on denitrifying bacteria in groundwater. Other nitrogen transformation processes such as dissimilatory nitrate reduction to ammonium (nitrate ammonification) and nitrification of forest soil bacteria are briefly discussed. Microcosms with sterile sediment and groundwater were inoculated with single denitrifying strains isolated from three groundwater aquifers, two of which are agricultural aquifers (in situ NO{sub 3}{sup -}-N was 24.1 and 35.2 mg1{sup -1}) and the third which is a pristine lake water infiltration aquifer (in situ NO{sub 3}{sup -}-N was 6.3 mg1{sup -1}). The average denitrification activity for strains from the nitrate contaminated sites were twice as high as the activity of the strains from the pristine site. Denitrification were carbon limited and glucose amendment increased the denitrification activity about a 2-fold for all strains. The strain specific differences in denitrification rates increased to a 2.5-fold after carbon addition indicating that the differences in reduction rates cannot be explained by different carbon utilisation rates but rather reflect innate differences in the reductases of the strains. A preliminary identification of the molecular target for adaptation was performed with artificial electron donors and electron acceptors for all enzymatic steps in the denitrification pathway. Nitrous oxide reductase activity was significantly higher in denitrifiers from the nitrate contaminated sites. This suggests that nos genes may be the molecular target, possibly by mutation or gene duplication for adaptation to high nitrate concentrations. Two anaerobic denitrifiers from each of the contaminated sites were capable of aerobic denitrification indicating that high nitrate concentrations may select for strains that denitrifies in the presence of both oxygen and nitrate. Microcosm experiments with fertilized coniferous forest soil showed that the

  18. Elucidation of denitrification mechanism in karstic Ryukyu limestone aquifer

    Science.gov (United States)

    Hijikawa, K.

    2014-12-01

    Nitrate (NO3-) concentrations in public water supplies have risen above acceptable levels in many areas of the world including Japan, largely as a result of contamination by human and animal waste and overuse of fertilizers. A previous study has characterized nitrate concentrations in groundwater in this area is a higher than the upper value (44mgL-1) of environmental quality criteria on one hands. On the other hand, there exists points where the concentration of nitric acid is not detected, which suggests the possibility of denitrification. During early 2000, a new analytical procedure for nitrate isotopic measurement, termed the "denitrifier method", was established. With the development of the nitrate isotope tracer method, much research has been reported detailing sources of groundwater nitrate and denitrification mechanisms. This study presents a pilot case study (in the southern part of Okinawa Main Island, Japan, where Ryukyu limestone is extensively distributed) using the combined stable isotope ratios of major elements (C, N and S) as net recorders of the biogeochemical reactions with the aim of elucidation of denitrification mechanism in Ryukyu limestone aquifer. As a result, significant decreases in nitrate concentrations due to denitrification were observed in groundwater at some locations, which induced increases in isotope ratios up to 59.7‰ for δ15NNO3. These points of groundwater were located above the cutoff wall of the underground dam and near the fault. It is considered that the residence time of the groundwater is longer than the other points at these denitrification points, and that reduction condition tends to be formed in the groundwater. However, the rapid rise of the groundwater level due to rainfall is likely to occur in the Ryukyu limestone aquifer, where the ground water was found to have changed dynamically from the reduction condition to the oxidation condition which a denitrification (has not occured)does not occur. Moreover, the

  19. Effect of carbon source on the denitrification in constructed wetlands

    Institute of Scientific and Technical Information of China (English)

    LU Songliu; HU Hongying; SUN Yingxue; YANG Jia

    2009-01-01

    The constructed wetlands with different plants in removal of nitrate were investigated.The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and water temperature in field were systematically investigated.The results showed that the additional carbon source (glucose) can remarkably improve the nitrate removal ability of the constructed wetland.It demonstrated that the nitrate removal rate can increase from 20% to more than 50% in the summer and from 10% to 30% in the winter, when the nitrate concentration was 30-40 mg/L, the retention time was 24 h and 25 mg/L dissolved organic carbon (DOC) was ploughed into the constructed wetland.However, the nitrite in the constructed wetland accumulated a litter with the supply of the additional carbon source in summer and winter, and it increased from 0.15 to 2 mg/L in the effluent.It was also found that the abilities of plant in adjusting pH and temperature can result in an increase of denitrification in wetlands, and the seasonal change may impact the denitrification.

  20. Design of fluidized-bed, biological denitrification systems

    International Nuclear Information System (INIS)

    Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO3-)/m3) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO3-)/m3 range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams

  1. Estimates of Denitrification and Nitrification in Coastal and Estuarine Sediments

    OpenAIRE

    Nishio, Takashi; Koike, Isao; Hattori, Akihiko

    1983-01-01

    Denitrification and nitrification in sediments of Tama Estuary and Odawa Bay, Japan, were investigated by the combined use of a continuous-flow sediment-water system and a 15N tracer technique. At Odawa Bay, the nitrification rate was comparable to the nitrate reduction rate, and 70% of the N2 evolved originated from nitrogenous oxides (nitrate and nitrite) which were produced by the action of nitrifying bacteria in the sediments. At Tama Estuary, the nitrate reduction rate was 11 to 17 times...

  2. Denitrification 'Woodchip' Bioreactors for Productive and Sustainable Agricultural Systems

    Science.gov (United States)

    Christianson, L. E.; Summerfelt, S.; Sharrer, K.; Lepine, C.; Helmers, M. J.

    2014-12-01

    Growing alarm about negative cascading effects of reactive nitrogen in the environment has led to multifaceted efforts to address elevated nitrate-nitrogen levels in water bodies worldwide. The best way to mitigate N-related impacts, such as hypoxic zones and human health concerns, is to convert nitrate to stable, non-reactive dinitrogen gas through the natural process of denitrification. This means denitrification technologies need to be one of our major strategies for tackling the grand challenge of managing human-induced changes to our global nitrogen cycle. While denitrification technologies have historically been focused on wastewater treatment, there is great interest in new lower-tech options for treating effluent and drainage water from one of our largest reactive nitrogen emitters -- agriculture. Denitrification 'woodchip' bioreactors are able to enhance this natural N-conversion via addition of a solid carbon source (e.g., woodchips) and through designs that facilitate development of anoxic conditions required for denitrification. Wood-based denitrification technologies such as woodchip bioreactors and 'sawdust' walls for groundwater have been shown to be effective at reducing nitrate loads in agricultural settings around the world. Designing these systems to be low-maintenance and to avoid removing land from agricultural production has been a primary focus of this "farmer-friendly" technology. This presentation provides a background on woodchip bioreactors including design considerations, N-removal performance, and current research worldwide. Woodchip bioreactors for the agricultural sector are an accessible new option to address society's interest in improving water quality while simultaneously allowing highly productive agricultural systems to continue to provide food in the face of increasing demand, changing global diets, and fluctuating weather.

  3. Potential nitrosamine formation and its prevention during biological denitrification of red beet juice.

    Science.gov (United States)

    Kolb, E; Haug, M; Janzowski, C; Vetter, A; Eisenbrand, G

    1997-02-01

    High nitrate intake has been shown to result in an increased risk of endogenous formation of N-nitroso compounds. Certain vegetables and vegetable juices contain high concentrations of nitrate. Biological denitrification using strains of Paracoccus denitrificans (P.d.) has been proposed as effective means to reduce nitrate contents in such vegetable juices. During this bacterial denitrification process, substantial nitrite concentrations are transiently formed. This study investigated whether N-nitrosation reactions might occur. The easily nitrosatable amine morpholine was added to red beet juice at high concentration (100 ppm) during denitrification 10 different batches of red beet juice served as raw material. Each batch was submitted to denitrification in the presence and absence of ascorbic acid. In the absence of ascorbic acid, formation of N-nitrosomorpholine (NMOR) was observed in the low ppb range (0.5-8 ppb). Addition of ascorbic acid (500 mg/litre) inhibited the formation of NMOR, except for those instances where the pH was less than 6 and/or nitrate turnover was low (high rates of nitrate turnover (> 200 mg NO3-/litre/hr), nitrosamine formation can reliably be prevented by ascorbic acid. The results show that bacterial denitrification of red beet juice high in nitrate can be accomplished without the risk of nitrosamine formation. PMID:9146735

  4. Effects of sulfide on the integration of denitrification with anaerobic digestion.

    Science.gov (United States)

    Yin, Zhixuan; Xie, Li; Zhou, Qi

    2015-10-01

    The effects of sulfide on the integration of denitrification with anaerobic digestion using anaerobic effluents of cassava stillage as carbon source were investigated. Batch tests indicated that nitrate reduction efficiencies decreased from 96.5% to 15.8% as sulfide/nitrate (S/NO3(-)-N) ratios increased from 0.27 to 1.60. At low S/NO3(-)-N ratios (0.27-1.08) anaerobic acidogenesis was accelerated. Nitrate was reduced to nitrite via sulfur-based autotrophic denitrification, after which the formed nitrite and residual nitrate were converted to N2 via heterotrophic denitrification. Increases in the S/NO3(-)-N ratio (1.60) caused a shift (76.3%) in the nitrate reduction pathway from denitrification to dissimilatory nitrate reduction to ammonia (DNRA). Sulfide concentrations (S/NO3(-)-N ratio of 1.60) suppressed not only heterotrophic denitrification but also acidogenesis. The potentially toxic effect of sulfide on acid production was mitigated by its rapid oxidation to sulfur, allowing the recovery of acidogenesis. PMID:25801462

  5. Benthic processes in fresh water fluffy sediments undergoing resuspension

    Directory of Open Access Journals (Sweden)

    Daniele Longhi

    2013-02-01

    Full Text Available In the Po river plain relict freshwater wetlands are characterised by a low free water to emergent macrophyte surface ratio, rapid infilling and fluffy sediments, undergoing frequent resuspension. Particle mixing should alter the steep gradients of dissolved gas, nutrient and organic matter quality that generally characterise sediments, with implications for benthic processes. Sediment features and solute fluxes were studied from December 2003 to February 2005 within the Busatello swamp complex (Northern Italy by means of a combination of core incubation, porewater extraction and microprofiling. At the study site, along a 10 cm vertical profile, sediment organic matter content (32.5%, porosity (0.94 and density (1.02 g cm–3 were nearly constant. Oxygen demand measured by dark core incubation (12.7-56.9 mmol m–2 d–1 was strongly correlated with water temperature. Rates agreed reasonably well with diffusive oxygen fluxes calculated from microprofiles while ammonium and phosphorus regeneration rates predicted from porewater gradients (-309.3-43.4 and -0.1-0.7 μmol m–2 d–1, respectively were significantly lower than rates measured via core incubations (-129.8-5420.5 and -120.4-35.4 μmol m–2 d–1, respectively. This is a probable consequence of insufficient vertical resolution of nutrient profiles and lack of steady state conditions. A sediment resuspension experiment, carried out under controlled laboratory conditions, indicated large instantaneous oxygen and nitrate consumption, a transient increase of denitrification rates and the rapid release of ammonium and soluble reactive phosphorus. In unconsolidated sediments, resuspension and mixing of sediment particles are key processes regulating mineralisation rates and benthic-pelagic coupling.

  6. Benthic macrofauna

    Digital Repository Service at National Institute of Oceanography (India)

    Ansari, Z.A.; Sivadas, S.; Ingole, B.S.

    in these waters has been empirically defined as animals retained by 0.5mm screens. Many organ- isms can thus be seen only on close inspection, while other may weigh several grams while fresh. Benthic macrofauna are good indicators of estuarine conditions because... they are relatively sedentary at the sediment?water interface and within deeper sediments (Dauer and Conner 1980). The abundance of benthic animals in an area is closely related to its environment and reflects the characteristics of an ecological niche (Ansari et al...

  7. Denitrification and a nitrogen budget of created riparian wetlands.

    Science.gov (United States)

    Batson, Jacqulyn A; Mander, Ulo; Mitsch, William J

    2012-01-01

    Riparian wetland creation and restoration have been proposed to mediate nitrate-nitrogen (NO-N) pollution from nonpoint agricultural runoff. Denitrification by anaerobic microbial communities in wetland soils is believed to be one of the main sinks for NO-N as it flows through wetlands. Denitrification rates were quantified using an in situ acetylene inhibition technique at 12 locations in three wetland/riverine sites at the Olentangy River Wetland Research Park, Columbus, Ohio for 1 yr. Sites included two created flow-through experimental wetlands and one bottomland forest/river-edge site. Points were spatially distributed at inflows, center, and outflows of the two wetlands to include permanently flooded open water, intermittently flooded transitions, and upland. Annual denitrification rates (median [mean]) were significantly higher ( wetlands (266 [415] μg NO-N m h) than in shallower transition zones (58 [37.5] μg NO-N m h). Median wetland transition zone denitrification rates did not differ significantly ( ≥ 0.05) from riverside or upland sites. Denitrification rates peaked in spring; for the months of April through June, median denitrification rates ranged from 240 to 1010 μg NO-N m h in the permanently flooded zones. A N mass balance analysis showed that surface water flux of N was reduced by 57% as water flowed through the wetland, but only about 3.5% of the N inflow was permanently removed through denitrification. Most N was probably lost through groundwater seepage. Comparison with denitrification rates measured previously in these wetlands suggests that these rates have remained steady over the past 4 to 5 yr. PMID:23128759

  8. Simultaneous denitrification and anaerobic digestion in GRAnular Bed Baffled Reactor (GRABBR)

    International Nuclear Information System (INIS)

    This study elucidates the characteristics of compartmentalised anaerobic system seeded with UASB granules, called GRAanular Bed Baffled Reactor (GRABBR), for combined denitrification and anaerobic digestion processes. The reactor was used for the treatment of glucose enriched synthetic wastewater with various nitrate concentrations. The study was carried out with a 10 litre working volume GRABBR divided into 5 equal compartments operating at organic loading rate (OLR) of 20 kg COD/m3.d with a hydraulic retention time (HRT) of 6 hours. At these conditions, phase separation (between acidogenesis and methanogenesis) was created in the system and then the effect of varying nitrate concentrations (50-200 mg/l NO3-N) in the acidogenic zone (i.e. first compartment) was studied. Due to its unique compartmentalised design, denitrification was the major pathway for nitrate reduction with no noticeable dissimilatory nitrate reduction to ammonia (DNRA). More than 84% of all added nitrates were removed in the acidogenic zone, showing that acidogens possess high denitrifying capabilities. The denitrification rate increased with increase in nitrate concentration, with maximum value estimated as 175 mg NO3-N/l.h at influent nitrate concentration of 200 mg/l NO3-N in the acidogenic zone. Although nitrate addition resulted in lower methane production, COD removal efficiencies improved by up to 8% when compared with the reactor performance before nitrate addition. Furthermore, the alkalinity produced during denitrification improved the stability of the system by controlling the decrease in pH resulting from acidogenesis. The system encouraged simultaneous denitrification and anaerobic digestion in a single unit by accommodating denitrifiers in the early compartments and allowing methanogenesis to flourish in the downstream compartments of the system, thus minimising inhibition to methane producing bacteria by nitrates. (author)

  9. Isolation and denitrification characteristic of an aerobic denitrifier

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan-dan; MA Fang; WANG Hong-yu; DONG Shuang-shi; WANG Ai-jie

    2006-01-01

    Aerobic denitrifiers were enriched by activated sludge cultivation method. By this way, 105 strains were isolated from the activated sludge and 25 strains were confirmed to be capable of obtaining energy by deoxidization of nitrate to nitrogen gas under aerobic condition. The characteristic of one denitrifier, Pseudomonas chloritidismutans strain, was particularly studied due to its higher nitrogen removal rate. It was found that Pseudomonas chloritidismutans can use nitrite, nitrate and oxygen for aerobic respiration in liquid medium, and the pH increased and ORP decreased by activated denitrifier. When they used nitrite or nitrate for respiration, nitrogen removal effect was high and nitrite could be reduced more efficiently than nitrate. Denitrification process was accomplished faster when both nitrite and nitrate existed in the medium compared to each of which existed alone. Particularly, at denitrifying activity, the nitrogen removal rate of strain was not affected by the DO concentration in the culture media.

  10. Effect of tourmaline on denitrification characteristics of hydrogenotrophic bacteria.

    Science.gov (United States)

    Wang, Wei; Jiang, Hongyan; Zhu, Guangquan; Song, Xueying; Liu, Xingyu; Qiao, Ya

    2016-03-01

    To improve the denitrification characteristics of anaerobic denitrifying bacteria and obviate the disadvantage of use of explosive hydrogen gas, tourmaline, a polar mineral, was added to the hydrogenotrophic denitrification system in this study. Microbial reduction of nitrate in the presence of tourmaline was evaluated to assess the promotion effect of tourmaline on nitrate biodegradation. The experiment results demonstrated that tourmaline speeded up the cultivation process of bacteria from 65 to 36 days. After domestication of the bacteria, nitrate (50 mg NO3 (-)-N L(-1)) was completely removed within 3 days in the combined tourmaline-bacteria system, and the generated nitrite was also removed within 8 days. The reduction rate in this system is higher relative to that in the bacteria system alone. Efficient removal of nitrate by tourmaline-supported anaerobic bacteria (without external hydrogen input) indicated that tourmaline might act as the sole hydrogen donor to sustain autotrophic denitrification. Besides the production of hydrogen, the promoted activity of anaerobic denitrifying bacteria might be caused by the change of water properties, e.g., the pH of aqueous solutions was altered to about 8.0 and the oxidation-reduction potential decreased by 62 % in the tourmaline system. The distinctive effects of tourmaline on bacteria were related to its electric properties. PMID:26545889

  11. Denitrification and inference of nitrogen sources in the karstic Floridan Aquifer

    Science.gov (United States)

    Heffernan, J.B.; Albertin, A.R.; Fork, M.L.; Katz, B.G.; Cohen, M.J.

    2011-01-01

    Aquifer denitrification is among the most poorly constrained fluxes in global and regional nitrogen budgets. The few direct measurements of denitrification in groundwaters provide limited information about its spatial and temporal variability, particularly at the scale of whole aquifers. Uncertainty in estimates of denitrification may also lead to underestimates of its effect on isotopic signatures of inorganic N, and thereby confound the inference of N source from these data. In this study, our objectives are to quantify the magnitude and variability of denitrification in the Upper Floridan Aquifer (UFA) and evaluate its effect on N isotopic signatures at the regional scale. Using dual noble gas tracers (Ne, Ar) to generate physical predictions of N2 gas concentrations for 112 observations from 61 UFA springs, we show that excess (i.e. denitrification-derived) N2 is highly variable in space and inversely correlated with dissolved oxygen (O2). Negative relationship between O2 and ??15NNO 3 across a larger dataset of 113 springs, well-constrained isotopic fractionation coefficients, and strong 15N: 18O covariation further support inferences of denitrification in this uniquely organic-matter-poor system. Despite relatively low average rates, denitrification accounted for 32% of estimated aquifer N inputs across all sampled UFA springs. Back-calculations of source ??15NNO 3 based on denitrification progression suggest that isotopically-enriched nitrate (NO3-) in many springs of the UFA reflects groundwater denitrification rather than urban- or animal-derived inputs. ?? Author(s) 2011.

  12. Marine denitrification rates determined from a global 3-D inverse model

    Directory of Open Access Journals (Sweden)

    T. DeVries

    2013-04-01

    Full Text Available A major impediment to understanding long-term changes in the marine nitrogen (N cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global ocean circulation model to obtain the first 3-D estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of oceanic nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than many other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.

  13. Anammox transited from denitrification in upflow biofilm reactor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shao-hui; ZHENG Ping; HUA Yu-mei

    2004-01-01

    Anammox was successfully transited from heterotrophic denitrification and autotrophic denitrification in two upflow biofilm reactors, respectively. The results showed that the volumetric loading rate and nitrogen removal efficiency in the reactor transited from heterotrophic denitrification were higher than that in its counterpart. When the hydraulic retention time was 12 h or so, the total nitrogen loading rate was about 0.609 kg N/(m3·d), and the effluent ammonia and nitrite concentrations were less than 8.5 mg/L and 2.5 mg/L, respectively. The upflow anammox biofilm reactor was capable of keeping and accumulating the slow-growing bacteria efficiently. During operation of the reactor, the biomass color was gradually turned from brownish to red, and the ratio of ammonia consumption, nitrite consumption and nitrate production approached the theoretical one. These changes could be used as an indicator for working state of the reactor.

  14. Denitrification in the water column of the central Baltic Sea

    DEFF Research Database (Denmark)

    Dalsgaard, Tage; De Brabandere, Loreto; Hall, Per

    2013-01-01

    Removal of fixed nitrogen in the water column of the eastern Gotland Basin, central Baltic Sea, was studied during two cruises in September 2008 and August 2010. The water column was stratified with anoxic sulfidic bottom water meeting oxic nitrate containing water at the oxic–anoxic interface...... View the MathML source or sulfide concentrations were converted to in situ rates using the measured water column concentrations of View the MathML source and sulfide and the actual measured relations between View the MathML source and sulfide concentrations and denitrification rates. In situ...... extrapolated to the entire Baltic Proper (BP) denitrification in the water column was in the range of 132–547 kton N yr−1 and was thus at least as important as sediment denitrification which has recently been estimated to 191 kton N yr−1. With a total external N-input of 773 kton N yr−1 it is clear that...

  15. Benthic foraminifera

    Digital Repository Service at National Institute of Oceanography (India)

    Saraswat, R.; Nigam, R.

    Paula, Goa, India (For Correspondence: rsaraswat@nio.org) (Modified after Paul Loubre# and William Austin$) # Department of Geology and Environmental Geosciences, Davis Hall, Northern Illinois University, DeKalb, Illinois 60115 USA $ School... and trochospiral forms) (Figure 1). The external surface of the shell is often ornamented with pits, ribs, spines, plates, etc. The benthic foraminifers communicate with the surrounding environment through an opening in the shell, called as aperture. A web...

  16. Nitrate reduction functional genes and nitrate reduction potentials persist in deeper estuarine sediments. Why?

    Directory of Open Access Journals (Sweden)

    Sokratis Papaspyrou

    Full Text Available Denitrification and dissimilatory nitrate reduction to ammonium (DNRA are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the

  17. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  18. Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea

    OpenAIRE

    Dähnke, K.; B. Thamdrup

    2013-01-01

    The global marine nitrogen cycle is constrained by nitrogen fixation as a source of reactive nitrogen, and denitrification or anammox on the sink side. These processes with their respective isotope effects set the marine nitrate N-15-isotope value (delta N-15) to a relatively constant average of 5 parts per thousand. This value can be used to better assess the magnitude of these sources and sink terms, but the underlying assumption is that sedimentary denitrification and anammox, processes re...

  19. Biological denitrification of brine: the effect of compatible solutes on enzyme activities and fatty acid degradation

    OpenAIRE

    Cyplik, Paweł; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Czarny, Jakub; Drożdżyńska, Agnieszka; Chrzanowski, Łukasz

    2012-01-01

    The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l−1. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon. The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. ...

  20. Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification

    DEFF Research Database (Denmark)

    Chamchoi, N.; Nitisoravut, S.; Schmidt, Jens Ejbye

    2008-01-01

    A concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification was investigated in a well known UASB reactor seeding with both ANAMMOX and anaerobic granular sludges. ANAMMOX activity was confirmed by hydroxylamine test and the hybridization of biomass using the gene probes of......–nitrate concentrations in all reactors confirmed the undergone concurrent denitrification which thrives when sufficient organic matter is available. COD concentration over 300 mg l−1 was found to inactivate or eradicate ANAMMOX communities....

  1. Autohydrogenotrophic denitrification by a bioelectrochemical process: A viability study

    Directory of Open Access Journals (Sweden)

    Mahdi Safari

    2014-06-01

    Full Text Available ABSTRACT In this study, viability of the autotrophic bacteria was investigated in a denitrification process. Bench-scale bioelectrochemical denitrification with separated chambers reactor were applied for nitrate reduction from synthetic wastewater. The influences of current density, retention time, mixing on viability of autotrophic denitrifying bacteria were investigated in the bioelectrochemical reactor (BER. It was found that by increasing the current density up to 8 mA/cm2, nitrate reduction rate was increased. At higher current density (24 - 32 mA/cm2, denitrification rate due to excess of hydrogen gas on cathode surface and accumulation of nitrite, was decreased. Low current density (<16 mA/cm2 has not had a significant effect on viability of denitrifying bacteria. Mixing of the solution reduced the adverse effects of electric current on bacteria and enhanced the denitrification rate which was mainly due to prevention of bacteria localization, increasing the contact of hydrogen and bacteria, and delay in membrane fouling. The viability of cultivable bacteria has not been significantly influenced by running time.

  2. Denitrification in Low pH Spodosols and Peats Determined with the Acetylene Inhibition Method

    OpenAIRE

    1980-01-01

    Potential denitrification rates were determined for predominantly acid (pH ≥ 3.6) horizons of forestal, miry, and agricultural soils from 22 locations in southern Finland. The acetylene inhibition method was used with nitrate-amended water-logged soils incubated in an N2 atmosphere containing 2.5 or 5% C2H2. Complete inhibition of the reduction of N2O to N2 was observed in 99.3% of the samples. The denitrification rates varied from 0.12 to 53.8 μg of N·cm-3·day-1. Correlation between denitrif...

  3. [Biocatalyst of redox mediators on the denitrification by Paracoccus versutus strain GW1].

    Science.gov (United States)

    Li, Hai-Bo; Lian, Jing; Guo, Yan-Kai; Zhao, Li-Jun; Du, Hai-Feng; Yang, Jing-Liang; Guo, Jian-Bo

    2012-07-01

    The quinone respiration process of Paracoccus versutus strain GW1 was characterized and the effects of the four redox mediators on the denitrification process were studied. The experiment results suggested that quinones were utilized by Paracoccus versutus strain GW1 as electron acceptors in the respiratory chain and reduced to hydroquinone. Batch experiments were carried out to investigate the biocatalyst effect of redox mediators as catalyst on the denitrification process at 35 degrees C. All four redox mediators tested were able to enhance the nitrate removal efficiency and the denitrification efficiency by 1.14-1.63 fold and 1.12-2.02 fold, respectively. The accelerating effect from high to low was AQDS > 1,5-AQDS > AQS > alpha-AQS. In the presence of redox mediators, the stabilized ORP values in the nitrate decomposition process were reduced by 33-75 mV. The pH variations in denitrification with redox mediators showed similar tendency to that of the conventional nitrate removal process. In the concentration range of 0-0.32 mmol x L(-1), AQDS had the best accelerating effect and a linear correlation was found for the denitrification rate K and the AQDS concentration cAQDS. This study indicated that the application of redox mediators significantly improved the denitrification process by enhancing the decomposition rate. PMID:23002627

  4. Inhibition of existing denitrification enzyme activity by chloramphenicol.

    OpenAIRE

    Brooks, M H; Smith, R L; Macalady, D L

    1992-01-01

    Chloramphenicol completely inhibited the activity of existing denitrification enzymes in acetylene-block incubations with (i) sediments from a nitrate-contaminated aquifer and (ii) a continuous culture of denitrifying groundwater bacteria. Control flasks with no antibiotic produced significant amounts of nitrous oxide in the same time period. Amendment with chloramphenicol after nitrous oxide production had begun resulted in a significant decrease in the rate of nitrous oxide production. Chlo...

  5. Dietary carbohydrates and denitrification in recirculating aquaculture systems

    OpenAIRE

    Meriac, A.

    2014-01-01

    Due to overfishing of global fish stocks and increasing fish meal prices, plant ingredients are being increasingly used as an alternative source of protein in fish feeds. However, the inclusion of unpurified plant ingredients will also increase the content of fibers in feeds. Fibers are nearly indigestible and will therefore increase solid waste production in aquaculture. This solid waste can be used to as a carbon source for denitrification to control nitrate levels in recirculating aquacult...

  6. Study of denitrification in Lake Balaton by means of labelling with nitrogen

    International Nuclear Information System (INIS)

    During denitrification, gaseous Nsub(2)O and Nsub(2) evolve from the nitrate and nitrite content of water under anaerob conditions. To follow this process, nitrate ions labelled with sup(15)N were added to the water samples. The rate of Nsub(2) evolution and the isotope distribution of nitrogen were determined in the function of total nitrate and nitrite concentrations under three different experimental conditions. The isotope content was measured by optical spectroscopy. Though laboratory incubation methods have suitable measuring capacity for the purposes of serial analysis, the rate of denitrification is regarded higher than in cases of in situ incubation method according to the changes of the natural conditions. Loose connection between the rate of Nsub(2) evolution and the number of denitrification bacteria could be established. (V.N.)

  7. Treatment of hydroponic wastewater by denitrification filters using plant prunings as the organic carbon source.

    Science.gov (United States)

    Park, J B K; Craggs, R J; Sukias, J P S

    2008-05-01

    This study investigated the feasibility of using pre-treated plant liquors as organic carbon sources for the treatment of hydroponic wastewater containing high nitrate-N (>300 mg N/L). The waste plant material was pre-treated to extract organic carbon-rich liquors. When this plant liquor was used as an organic carbon source in denitrification filters at the organic carbon:nitrogen dose rate of 3C:N, nitrate removal efficiencies were >95% and final effluent nitrate concentrations were consistently 140 mg/L) of organic carbon (fBOD5) remained in the final effluents. Therefore, a 'compromise' organic carbon:nitrogen dose rate (2C:N) was trialled, at which nitrate removal efficiencies were maintained at >85%, final effluent nitrate concentrations were consistently below 45 mg N/L, and effluent fBOD5 concentrations were hydroponic wastewater in a denitrification filter. PMID:17714940

  8. Operation of a fluidized-bed denitrification bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A.

    1978-11-15

    In the fluidized-bed denitrification process developed, bacteria are allowed to grow and attach themselves to 0.25 to 0.60-mm-OD coal particles, and nitrate-containing solution is pumped up through the column at a velocity sufficient to fluidize the bacteria-coated coal particles. The denitrification bacteria convert the nitrate ions to nitrogen gas. A 10-cm-ID column has been operated by Oak Ridge Y-12 Plant personnel to test the scale-up and operational characteristics of the fluidized bed process. The reactor consists of a tapered bottom section for flow distribution, several straight 10-cm-ID cylindrical sections, and a tapered top section for solid/liquid disengaging. Increasing the diameter of the reactor by a factor of two did not cause any decrease in reactor performance. The fluidized-bed reactor is characterized by short-residence-time requirements (about 2 minutes per meter of height), and by high, but variable, denitrification rates (2 to 35 g NO/sub 3//sup -/-N/dm/sup 3//day). The reactor is best suited for relatively low-concentration nitrate wastes (<1 wt% NO/sub 3//sup -/). The economics of using the reactor for high-concentration wastes (>20 wt% NO/sub 3//sup -/) is less favorable, but still may be competitive with other reactor types. 9 figs, 2 tables.

  9. Biological Denitrification Treatment of Wastewater Using Wood Chips

    Science.gov (United States)

    Mizoguchi, Tadaaki; Koremura, Nao; Sato, Aya; Yoshioka, Toshiaki

    A novel method for removing nitrate in waste water which uses wood chips as a reduction agent and growth support mechanism for denitrification bacteria is studied in this report. A higher denitrification rate was obtained when a portion of the wood chips packed in a column were exposed to air than when all of the wood chips were entirely immersed in solution. Cherry tree chips were more effective than cedar chips, as almost a 100% denitirification rate was maintained for at least 69 days at an inlet concentration of 20mg-N/L and HRT of 20 hr. The denitrification rate decreased significantly when the initial nitrate concentration was increased from 21mg-N/L to 46 mg-N/L. It was possible to use wood chips exclusively as a supply source of organic compounds. An excess amount of organic compounds which is discharged from the reactor can be reduced by passing the solution through a column packed with activated carbon. Cedar chips prepared from a fresh log shortly after cutting were used as a supporting material for denitirification bacteria. A satisfactorily high degree of denitirifation was obtained at HRT of 0.76 hr by adding ethanol as a reduction agent for nitrate.

  10. Application of plant carbon source for denitrification by constructed wetland and bioreactor: review of recent development.

    Science.gov (United States)

    Hang, Qianyu; Wang, Haiyan; Chu, Zhaosheng; Ye, Bibi; Li, Chunmei; Hou, Zeying

    2016-05-01

    Water quality standard for nitrate becomes more and more strict, and the plant carbon source is widely used for denitrification by constructed wetland (CW) and bioreactor. However, the nitrate removal efficiency by different types of plant carbon source are not evaluated comprehensively. Denitrification performance of different plant carbon sources, and the influence of dosing method and pretreatment are thoroughly reviewed in this paper, which aims to investigate the accurate utilization of plant carbon source for nitrogen (as nitrate) removal. It is concluded that plant carbon source addition for all types of CWs and bioreactors can improve the nitrate removal efficiency to some extent, and the dosing method of plant carbon source for denitrification should be further studied and optimized in the future. The popular carbon sources for CW and bioreactor denitrification enhancement are woodchip, chopped macrophytes, crop plants, macrophytes litters, etc. The recommended optimum C:N ratios for CW and bioreactor are 4.0:5.0 and 1.8:3.0, respectively. The physical and biological pretreatments are selected to supply organic carbon for long-term denitrification. PMID:26971521

  11. Denitrification in Membrane Bioreactors

    OpenAIRE

    Fonseca, Anabela Duarte

    1999-01-01

    Three membrane bioreactors, a low flux filter (LFF), a diafilter (DF), and an ion-exchange (IE) membrane bioreactor were used to treat water polluted with 50 ppm-N nitrate. The three systems were compared in terms of removal efficiency of nitrate, operational complexity, and overall quality of the treated water. In the low flux filter (LFF) membrane bioreactor an hemo-dialysis hollow fiber module was used and operated continuously for 29 days with a constant flux of permeate. The perform...

  12. Significance of dredging on sediment denitrification in Meiliang Bay, China: A year long simulation study

    Science.gov (United States)

    Zhong, Jicheng; Fan, Chengxin; Zhang, Lu; Edward, Hall; Ding, Shiming; Li, Bao; Liu, Guofeng

    2010-01-01

    An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw) x hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw x hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p < 0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen.

  13. Benthic fluxes of dissolved organic nitrogen in the Lower St. Lawrence Estuary and implications for selective organic matter degradation

    Directory of Open Access Journals (Sweden)

    M. Alkhatib

    2013-05-01

    Full Text Available The distribution of dissolved organic nitrogen (DON and carbon (DOC in sediment pore waters was determined at nine locations along the St. Lawrence Estuary and in the Gulf of St. Lawrence. The study area is characterized by gradients in the sedimentary particulate organic matter (POM reactivity, bottom water oxygen concentrations, as well as benthic respiration rates. Based on pore water profiles we estimated the benthic diffusive fluxes of DON and DOC. Our results show that DON fluxed out of the sediments at significant rates (110 to 430 μmol m−2 d−1. DON fluxes were positively correlated with sedimentary POM reactivity and sediment oxygen exposure time (OET, suggesting direct links between POM quality, aerobic remineralization and the release of DON to the water column. DON fluxes were on the order of 30% to 64% of the total benthic inorganic fixed N loss due to denitrification, and often exceeded the diffusive nitrate fluxes into the sediments. Hence they represented a large fraction of the total benthic N exchange. This result is particularly important in light of the fact that DON fluxes are usually not accounted for in estuarine and coastal zone nutrient budgets. The ratio of the DON to nitrate flux increased from 0.6 in the Lower Estuary to 1.5 in the Gulf. In contrast to DON, DOC fluxes did not show any significant spatial variation along the Laurentian Channel (LC between the Estuary and the Gulf (2100 ± 100μmol m−2 d−1, suggesting that production and consumption of labile DOC components proceed at similar rates, irrespective of the overall benthic characteristics and the reactivity of POM. As a consequence, the molar C/N ratio of dissolved organic matter (DOM in pore water and the overlying bottom water varied significantly along the transect, with lowest C/N in the Lower Estuary (5–6 and highest C/N (> 10 in the Gulf. We observed large differences between the C/N of pore water DOM with respect to POM, and the degree of

  14. Denitrification controls in urban riparian soils: implications for reducing urban nonpoint source nitrogen pollution.

    Science.gov (United States)

    Li, Yangjie; Chen, Zhenlou; Lou, Huanjie; Wang, Dongqi; Deng, Huanguang; Wang, Chu

    2014-09-01

    The purpose of this research was to thoroughly analyze the influences of environmental factors on denitrification processes in urban riparian soils. Besides, the study was also carried out to identify whether the denitrification processes in urban riparian soils could control nonpoint source nitrogen pollution in urban areas. The denitrification rates (DR) over 1 year were measured using an acetylene inhibition technique during the incubation of intact soil cores from six urban riparian sites, which could be divided into three types according to their vegetation. The soil samples were analyzed to determine the soil organic carbon (SOC), soil total nitrogen (STN), C/N ratio, extractable NO3 (-)-N and NH4 (+)-N, pH value, soil water content (SWC), and the soil nitrification potential to evaluate which of these factors determined the final outcome of denitrification. A nitrate amendment experiment further indicated that the riparian DR was responsive to added nitrate. Although the DRs were very low (0.099 ~ 33.23 ng N2O-N g(-1) h(-1)) due to the small amount of nitrogen moving into the urban riparian zone, the spatial and temporal patterns of denitrification differed significantly. The extractable NO3 (-)-N proved to be the dominant factor influencing the spatial distribution of denitrification, whereas the soil temperature was a determinant of the seasonal DR variation. The six riparian sites could also be divided into two types (a nitrate-abundant and a nitrate-stressed riparian system) according to the soil NO3 (-)-N concentration. The DR in nitrate-abundant riparian systems was significantly higher than that in the nitrate-stressed riparian systems. The DR in riparian zones that were covered with bushes and had adjacent cropland was higher than in grass-covered riparian sites. Furthermore, the riparian DR decreased with soil depth, which was mainly attributed to the concentrated nitrate in surface soils. The DR was not associated with the SOC, STN, C/N ratio, and

  15. Membrane bioreactor for drinking water denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Barreiros, A.M. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa (Portugal)]|[Escola Superior de Tecnologia, Instituto Politecnico de Setubal, Rua do Vale de Chaves, Estefanilha, 2900 Setubal (Portugal); Rodrigues, C.M.; Crespo, J.P.S.G.; Reis, M.A.M. [Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa (Portugal)

    1998-04-01

    The aim of this study is to evaluate the performance of a membrane bioreactor with cell recycle to be used for drinking water denitrification, when operated with a high nitrate load (up to 7.68 kgNO{sub 3}{sup -}/m{sup 3} day) and low hydraulic retention time (down to 0.625 h). Nitrate and nitrite were always completely removed for all the operational conditions used. The effluent`s nitrite concentration kept below 0.1 mg NO{sub 2}{sup -}/l with exception of a short period, during the reactor start-up, when it accumulates. The performance of the membrane bioreactor was also evaluated using a groundwater containing 148 mg NO{sub 3}{sup -}/l. Nitrate and nitrite concentration in the effluent were below the recommended values for drinking water when the reactor was controlled at pH 7.0. The membrane flux decreases during operation as a consequence of membrane fouling. The flux decrease was more severe during operation with synthetic medium than with contaminated groundwater due to the existence of molecular complexes in the synthetic broth. A backshock technique was used to reduce the surface fouling of the membrane. Combining this technique with the use of a reserve asymmetric structured membrane it was found that the membrane flux remains nearly unchanged. (orig.) With 7 figs., 14 refs.

  16. Biogas desulfurization using autotrophic denitrification process.

    Science.gov (United States)

    Bayrakdar, Alper; Tilahun, Ebrahim; Calli, Baris

    2016-01-01

    The aim of this study was to evaluate the performance of an autotrophic denitrification process for desulfurization of biogas produced from a chicken manure digester. A laboratory scale upflow fixed bed reactor (UFBR) was operated for 105 days and fed with sodium sulfide or H2S scrubbed from the biogas and nitrate as electron donor and acceptor, respectively. The S/N ratio (2.5 mol/mol) of the feed solution was kept constant throughout the study. When the UFBR was fed with sodium sulfide solution with an influent pH of 7.7, about 95 % sulfide and 90 % nitrate removal efficiencies were achieved. However, the inlet of the UFBR was clogged several times due to the accumulation of biologically produced elemental sulfur particles and the clogging resulted in operational problems. When the UFBR was fed with the H2S absorbed from the biogas and operated with an influent pH of 8-9, around 98 % sulfide and 97 % nitrate removal efficiencies were obtained. In this way, above 95 % of the H2S in the biogas was removed as elemental sulfur and the reactor effluent was reused as scrubbing liquid without any clogging problem. PMID:26428238

  17. Chemical denitrification of water by zero-valent magnesium powder

    International Nuclear Information System (INIS)

    A laboratory-scale study was conducted in batch mode to investigate the feasibility of using zero-valent magnesium (Mg0), for removal of nitrate from aqueous solution. Reaction pH, dose of Mg0, initial nitrate concentration and temperature were considered variable parameters during the study. Strong acidic condition enhanced nitrate reduction and in absence of external proton addition, reaction pH increased rapidly above ten and insignificant nitrate removal (7-16%) was achieved. At Mg0:NO3--N molar ratio of 5.8 and controlled reaction pH of 2, 84% denitrification efficiency was achieved (initial NO3--N 50 mg/L) under ambient temperature and pressure and total nitrogen removal was 70% with 3.2% and 10% conversion of initial NO3--N to NO2--N and NH4+-N, respectively. The reaction was first order with respect to nitrate concentration. Nitrate removal rate decreased with solution pH and increased linearly with Mg0 dose. Nitrate removal was coupled with 96-100% removal of dissolved oxygen and 85-90% generation of soluble Mg2+ ion. An activation energy (E a) of nitrate reduction over the temperature range of 10-50 deg. C was observed as 17.7 kJ mol-1

  18. Applying Reactive Barrier Technology to Enhance Microbially-mediated Denitrification during Managed Aquifer Recharge

    Science.gov (United States)

    Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.

    2015-12-01

    We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.

  19. Denitrification Activity, Wood Loss, and N2O Emissions Over 9 Years From a Wood Chip Bioreactor

    Science.gov (United States)

    Loss of nitrate from agricultural fields in subsurface drainage water is an important problem in the Midwestern United States and elsewhere. One possible strategy for reducing nitrate export is the use of denitrification bioreactors. A variety of experimental bioreactor designs have been shown to re...

  20. Monitoring induced denitrification in an artificial aquifer recharge system.

    Science.gov (United States)

    Grau-Martinez, Alba; Torrentó, Clara; Folch, Albert; Domènech, Cristina; Otero, Neus; Soler, Albert

    2014-05-01

    As demands on groundwater increase, artificial recharge is becoming a common method for enhancing groundwater supply. The Llobregat River is a strategic water supply resource to the Barcelona metropolitan area (Catalonia, NE Spain). Aquifer overexploitation has leaded to both a decrease of groundwater level and seawater intrusion, with the consequent deterioration of water quality. In the middle section of the aquifer, in Sant Vicenç del Horts, decantation and infiltration ponds recharged by water from the Llobregat River (highly affected from wastewater treatment plant effluents), were installed in 2007, in the framework of the ENSAT Life+ project. At the bottom of the infiltration pond, a vegetal compost layer was installed to promote the growth of bacteria, to induce denitrification and to create favourable conditions for contaminant biodegradation. This layer consists on a mixture of compost, aquifer material, clay and iron oxide. Understanding the fate of contaminants, such as nitrate, during artificial aquifer recharge is required to evaluate the impact of artificial recharge in groundwater quality. In order to distinguish the source of nitrate and to evaluate the capability of the organic reactive layer to induce denitrification, a multi-isotopic approach coupled with hydrogeochemical data was performed. Groundwater samples, as well as river samples, were sampled during artificial and natural recharge periods. The isotopic analysis included: δ15N and δ18O of dissolved nitrate, δ34S and δ18O of dissolved sulphate, δ13C of dissolved inorganic carbon, and δ2H and δ18O of water. Dissolved nitrate isotopic composition (δ15NNO3 from +9 to +21 o and δ18ONO3 from +3 to +16 ) demonstrated that heterotrophic denitrification induced by the reactive layer was taking place during the artificial recharge periods. An approximation to the extent of nitrate attenuation was calculated, showing a range between 95 and 99% or between 35 and 45%, by using the extreme

  1. Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ

    International Nuclear Information System (INIS)

    Uranium mining and processing near Monument Valley, Arizona resulted in the formation of a large nitrate plume in a shallow alluvial aquifer. The results of prior field characterization studies indicate that the nitrate plume is undergoing a slow rate of attenuation via denitrification, and the results of bench-scale studies suggest that denitrification rates can potentially be increased by an order of magnitude with the addition of ethanol as a carbon substrate. The objective of the study was to investigate the potential of ethanol amendment for enhancing the natural denitrification occurring in the alluvial aquifer. Pilot tests were conducted using the single well, push-pull method and a natural-gradient test. The results showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicate the ethanol amendment effected a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrogen indicated that the nitrate concentration reductions were biologically mediated. Continued monitoring after completion of the pilot tests has shown that nitrate concentrations in the injection zone have remained at levels three orders of magnitude lower than the initial values, indicating that the impacts of the pilot tests have been sustained for several months.

  2. Nitrate retention and removal in Mediterranean streams with contrasting land uses: a 15N tracer study

    Directory of Open Access Journals (Sweden)

    J. L. Riera

    2008-08-01

    Full Text Available We used 15N-labelled nitrate (NO−3 additions to investigate nitrogen (N cycling at the whole-reach scale in three Mediterranean streams subjected to contrasting land uses (i.e. forested, urban and agricultural. Our aim was to examine: i the magnitude and relative importance of NO−3 retention (i.e. assimilatory uptake, and removal, (i.e. denitrification, ii the relative contribution of the different primary uptake compartments to NO−3 retention, and iii the regeneration, transformation and export pathways of the retained N. The concentration of NO−3 increased and that of dissolved oxygen (DO decreased from the forested to the agricultural stream, with intermediate values in the urban stream. Standing stocks of primary uptake compartments were similar among streams and dominated by detritus compartments (i.e. fine and coarse benthic organic matter. In agreement, metabolism was net heterotrophic in all streams, although the degree of heterotrophy increased from the forested to the agricultural stream. The NO−3 uptake length decreased along this gradient, whereas the NO−3 mass-transfer velocity and the areal NO−3 uptake rate were highest in the urban stream. Denitrification was not detectable in the forested stream, but accounted for 9% and 68% of total NO−3 uptake in the urban and the agricultural stream, respectively. The relative contribution of detritus compartments to NO−3 assimilatory uptake was highest in the forested and lowest in the agricultural stream. In all streams, the retained N was rapidly transferred to higher trophic levels and regenerated back to the water column. Due to a strong coupling between regeneration and nitrification, most retained N was exported from the experimental reaches in the form of NO−3. This study evidences fast N cycling in Mediterranean streams. Moreover, results indicate that permanent NO−3 removal via denitrification may be enhanced over temporary NO−3 retention via assimilatory

  3. Cocurrent biological nitrification and denitrification in wastewater treatment

    Energy Technology Data Exchange (ETDEWEB)

    Spector, M.

    1998-11-01

    Repetitive conditioning of recycle activated sludge (RAS) under strict anaerobic conditions gradually changes the products of ammonia oxidation from nitrite and nitrate to nitrous oxide (N{sub 2}O) and nitrogen (N{sub 2}). Nitrite inhibits oxygen respiration of anaerobically conditioned sludge; biochemical oxygen demand (BOD) is then oxidized by nitrite, which is reduce to N{sub 2}O and N{sub 2}. When anaerobic RAS conditioning is initially imposed on a nitrifying system, Nitrobacter species continue to oxidize nitrite to nitrate and thus reduce the nitrite available to oxidize BOD. However, Nitrobacter in the mixed liquor gradually tend to wash out because the sole source of Nictrobacter energy, the oxidation of nitrite to nitrate, is diminished to the extent that nitrite is reduced. Incorporation of an RAS conditioning zone to the activate-sludge process results in evolution of a nonfilamentous biomass, which affects both cocurrent biological nitrification and denitrification (CBND) and biological phosphorus removal (BPR). The initial feed zone may be either aerobic or anaerobic. A final anoxic denitrification zone is desirable for removal of residual nitrite plus nitrate (NO{sub x}) from aeration effluent. Nitrous oxide, the main reaction product of CBND, promotes both global warming and destruction of the stratospheric ozone layer.

  4. Small-scale, hydrogen-oxidizing-denitrifying bioreactor for treatment of nitrate-contaminated drinking water

    Science.gov (United States)

    Nitrate removal by hydrogen-coupled denitrification was examined using flow-through, packed-bed bioreactors to develop a small-scale, cost effective system for treating nitrate-contaminated drinking-water supplies. Nitrate removal was accomplished using a Rhodocyclus sp., strain HOD 5, isolated fro...

  5. [Effect of PLA/starch slow-release carbon source on biological denitrification].

    Science.gov (United States)

    Tang, Dan-Qi; Wang, Juan; Zheng, Tian-Long; Liu, Jian-Guo; Wang, Qun-Hui

    2014-06-01

    We used polylactic acid (PLA) and starch to develop a slow-release carbon source and biofilm carrier by blending and fusing techniques for removing nitrate contamination from groundwater, investigated the changes of nitrate, nitrite concentrations and COD in denitrification process supplied by the slow-release carbon source in different mass ratios [PLA/starch (P: S) were 8:2, 7:3, 6:4, 5:5, respectively]. The experimental results demonstrated that the best mass ratio of PLA/starch was 5:5, resulting in a nitrate removal rate of more than 99%. A high denitrification performance was achieved in continuous fixed-bed reactor, the effluent nitrate concentration was below 2 mg x L(-1). These experiments provide scientific basis for the development of environmentally-friendly and controllable slow-release carbon source. PMID:25158501

  6. Concurrence of Anaerobic Ammonium Oxidation and Organotrophic Denitrification in Presence of p-Cresol.

    Science.gov (United States)

    González-Blanco, G; Cervantes, F J; Beristain-Cardoso, R; Gómez, J

    2015-08-01

    This study was carried out to evaluate the capacity of anaerobic granular sludge for oxidizing ammonium and p-cresol with nitrate as terminal electron acceptor. Kinetics for the anaerobic oxidation of ammonium and p-cresol is described in this paper. The phenolic compound was very efficiently consumed, achieving 65 % of mineralization. Ammonium and nitrate were also consumed at 83 and 92 %, respectively, being the main product N2. Anaerobic ammonium oxidation was promoted owing to accumulation of nitrite, and it allowed the synergy of anaerobic ammonium oxidation and organotrophic denitrification for the simultaneous removal of ammonium, nitrate, and p-cresol. A carbonaceous intermediate partially identified was transiently accumulated, and it transitorily truncated the respiratory process of denitrification. These experimental results might be considered for defining strategies in order to remove nitrate, ammonium, and phenolic compounds from wastewaters. PMID:26062920

  7. N₂O accumulation from denitrification under different temperatures.

    Science.gov (United States)

    Poh, Leong Soon; Jiang, Xie; Zhang, Zhongbo; Liu, Yu; Ng, Wun Jern; Zhou, Yan

    2015-11-01

    The effects of temperature on nitrous oxide (N2O) accumulation during denitrification and denitritation were investigated. Batch experiments were performed to measure N2O accumulation at 25 and 35 °C. More N2O accumulation was observed during denitritation at the higher temperature as compared with full denitrification and low temperature tests. The highest nitrite concentration tested in this study (25 mg/L NO2 (-)N and pH 8.0) did not show inhibitory effect on N2O reduction. It was found that the major cause of more N2O accumulation during denitrification at higher temperature was due to higher N2O production rate and lower N2O solubility. Specific nitrate, nitrite, and N2O reduction rates increased 62, 61, and 41 %, respectively, when temperature rose from 25 to 35 °C. The decrease of N2O solubility in mixed liquor at 35 °C (when compared to 25 °C) resulted in faster diffusing rate of N2O from liquid to gas phase. It was also more difficult for gas phase N2O to be re-dissolved. The diffused N2O was then accumulated in the headspace, which was not available for denitrification by denitrifiers. The results of this study suggest higher temperature may worsen N2O emission from wastewater treatment plants (WWTPs). PMID:26129949

  8. Microbiological Denitrification and Denitrifying Activity of Paracoccus Denitrificans

    Institute of Scientific and Technical Information of China (English)

    万曦; 万国江; 等

    2000-01-01

    With rapidly industrial and agricultural development,more and more fertilizers,chemicals and heavy ions will be discharged into lakes and rivers,which would cause lake eutrophication and quality deterioration in drinking water sources.Therefore,denitrification is essential for controlling the amounts of nitrogen,During the transformation process from nitrate to the end products-nitrogen and several intermediated[e.g.nitrite(NO2-),nitrous oxide(N2O) and nitric oxide(NO)]may be accumulated,which have more toxic influences on the environment.in This study,the denitrification effect of Paracoccus Denitrificans was examined on the changes between oxic and anoxic conditions at varying pH.At pH=7.5,denitrification proceeded well after 3 switches from oxic to anoxic conditions and vice versa,Production of N2 was constant and the amounts of NO2-,N2O and NO were extremely low.How ever,at pH=6.8,denitrification activity was inhitied and there large amounts of the intermaediates.The denitrifying bacteria decreased violently in dry weight and were washed out.

  9. Operation of a fluidized-bed bioreactor for denitrification

    International Nuclear Information System (INIS)

    Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m3; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO3-)/day-m3 using feed with a nitrate concentration of 1800 g/m3. Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 300C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors

  10. Enhancing denitrification using a carbon supplement generated from the wet oxidation of waste activated sludge.

    Science.gov (United States)

    Strong, P J; McDonald, B; Gapes, D J

    2011-05-01

    This study compared the effect of four pure carbon supplements on biological denitrification to a liquor derived as a by-product from the wet oxidation (WO) of waste activated sludge. Sequencing batch reactors were used to acclimate sludge biomass, which was used in batch assays. Acetate, WO liquor and ethanol-supplementation generated the fastest denitrification rates. Acetate and WO liquor were efficiently utilised by all acclimated biomass types, while poor rates were achieved with methanol and formate. When comparing an inoculum from an ethanol-supplemented and non-supplemented wastewater treatment plant (WWTP), the ethanol-acclimated sludge obtained superior denitrification rates when supplemented with ethanol. Similarly high nitrate removal rates were achieved with both sludge types with acetate and WO liquor supplementation, indicating that WO liquors could achieve excellent rates of nitrate removal. The performance of the WO liquor was attributed to the variety of organic carbon substrates (particularly acetic acid) present within the liquor. PMID:21196117

  11. Kinetic analysis of simultaneous denitrification and biomineralization of novel Acinetobacter sp. CN86.

    Science.gov (United States)

    Su, Jun-Feng; Shi, Jing-Xin; Huang, Ting-Lin; Ma, Fang

    2016-08-15

    A novel aerobic denitrification and biomineralization strain CN86 was isolated from the Qu Jiang artificial lake. Based on phylogenetic characteristics, the isolated strain was identified as Acinetobacter species. Strain CN86 was confirmed to have the ability to perform simultaneous denitrification and biomineralization. Exponential decay equation was used for the matching of kinetic processes on denitrification and biomineralization. A highest nitrate removal rate was achieved at the pH7.0, organic concentration of 1.5g/L and temperature of 30°C. An optimal hardness removal rate was obtained at the pH9.0, organic concentration of 2.0g/L and temperature of 30°C. Strain CN86 is a suitable candidate for the simultaneous removal of nitrate and hardness in groundwater treatment. PMID:27287863

  12. The importance of dissimilatory nitrate reduction to ammonium (DNRA) in the nitrogen cycle of coastal ecosystems

    DEFF Research Database (Denmark)

    Giblin, Anne E.; Tobias, Craig R.; Song, Bongkeun;

    2013-01-01

    Until recently, it was believed that biological assimilation and gaseous nitrogen (N) loss through denitrification were the two major fates of nitrate entering or produced within most coastal ecosystems. Denitrification is often viewed as an important ecosystem service that removes reactive N fro...

  13. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium.

    Science.gov (United States)

    Fernandes, Sheryl Oliveira; Bonin, Patricia C; Michotey, Valérie D; Garcia, Nicole; LokaBharathi, P A

    2012-01-01

    Earlier observations in mangrove sediments of Goa, India have shown denitrification to be a major pathway for N loss. However, percentage of total nitrate transformed through complete denitrification accounted for climate by modulating the production of the greenhouse gas nitrous oxide. PMID:22639727

  14. [Preliminary study on denitrification capacity of constructed wetlands filled by bark].

    Science.gov (United States)

    Jiang, Ying-He; Li, Chao

    2011-01-01

    Constructed wetlands have been widely used for the treatment of outlets of municipal wastewater treatment plants, treatment of agricultural pollution etc, adequate carbon is a very good source for denitrification and it is very crucial for improving the removal rate of nitrate nitrogen in constructed wetlands. An attempt has been made to workout for the nitrate removal by the integrated vertical constructed wetland, the bark was used for carbon source, the results shows the denitrifying bacteria in the constructed wetlands can utilize the carbon source very well, produced by bark to remove nitrate nitrogen. The efficiency of denitrification increases with the increase of the hydraulic loading and the influent nitrate loading,but the rate of the nitrate nitrogen removal decreases. At the condition of influent NO3(-)-N of 50 mg/L and the hydraulic loading of 0.1 m3/(m2 x d), the removal rate of nitrate nitrogen in the wetland system is around 80%. The suitable pH is 7 to 8 and when the pH is out of this range, it restricts the denitrification process. PMID:21404681

  15. Box-modeling of the impacts of atmospheric nitrogen deposition and benthic remineralization on the nitrogen cycle of the eastern tropical South Pacific

    Science.gov (United States)

    Su, B.; Pahlow, M.; Oschlies, A.

    2015-09-01

    Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP) to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000-2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3- loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3- loss in the oxygen minimum zone (OMZ). A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3- loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3- source, the ETSP including benthic denitrification might become a NO3- sink.

  16. Box-modeling of the impacts of atmospheric nitrogen deposition and benthic remineralization on the nitrogen cycle of the eastern tropical South Pacific

    Directory of Open Access Journals (Sweden)

    B. Su

    2015-09-01

    Full Text Available Both atmospheric deposition and benthic remineralization influence the marine nitrogen cycle, and hence ultimately also marine primary production. The biological and biogeochemical relations of the eastern tropical South Pacific (ETSP to nitrogen deposition, benthic denitrification and phosphate regeneration are analysed in a prognostic box model of the oxygen, nitrogen and phosphorus cycles in the ETSP. In the model, atmospheric nitrogen deposition based on estimates for the years 2000–2009 is offset by half by reduced N2 fixation, with the other half transported out of the model domain. Both model- and data-based benthic denitrification are found to trigger nitrogen fixation, partly compensating for the NO3− loss. Since phosphate is the ultimate limiting nutrient in the model, enhanced sedimentary phosphate regeneration under suboxic conditions stimulates primary production and subsequent export production and NO3− loss in the oxygen minimum zone (OMZ. A sensitivity analysis of the local response to both atmospheric deposition and benthic remineralization indicates dominant stabilizing feedbacks in the ETSP, which tend to keep a balanced nitrogen inventory, i.e., nitrogen input by atmospheric deposition is counteracted by decreasing nitrogen fixation; NO3− loss via benthic denitrification is partly compensated by increased nitrogen fixation; enhanced nitrogen fixation stimulated by phosphate regeneration is partly removed by the stronger water-column denitrification. Even though the water column in our model domain acts as a NO3− source, the ETSP including benthic denitrification might become a NO3− sink.

  17. End-of-pipe single-sludge denitrification in pilot-scale recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Suhr, Karin Isabel; Pedersen, Lars-Flemming; Nielsen, J.L.

    2014-01-01

    A step toward environmental sustainability of recirculat aquaculture systems (RAS) is implementation ofsingle-sludge denitrification, a process eliminating nitrate from the aqueous environment while reduc-ing the organic matter discharge simultaneously. Two 1700 L pilot-scale RAS systems each wit...

  18. Fluidization velocity assessment of commercially available sulfur particles for use in autotrophic denitrification biofilters

    Science.gov (United States)

    There has been no evaluation of sulfur-based autotrophic denitrification using fluidized biofilters in a recirculating aquaculture system to mitigate nitrate-nitrogen loads. The objectives of this work were to quantify the particle size distribution, specific surface area, and fluidization velocitie...

  19. On-site denitrification beds could reduce indirect greenhouse gas emissions from agricultural drainage waters

    Science.gov (United States)

    Nitrate (NO3-) laden agricultural drainage waters are non-point sources of indirect nitrous oxide (N2O) emissions, which represent a significant fraction of total N2O emissions in the USA. On-site denitrification beds filled with woodchips were used to reduce NO3- under carbon rich anaerobic conditi...

  20. The use of a rubble chimney for denitrification of irrigation return waters

    International Nuclear Information System (INIS)

    Biological denitrification has been proposed as a means of removing nitrates from waste waters to control eutrophication in receiving waters. A potential use for this method is the treatment of irrigation return waters containing high concentrations of nitrate-nitrogen, since direct discharge of such wastes may cause objectionable algal growth in the receiving waters. For example, the process may be used to treat agricultural waste waters in the San Joaquin Valley in California, where an estimated 580,000 acre-feet/year of return waters, containing 20 mg/l of nitrate-nitrogen, will require disposal by A.D. 2020. Two methods of biological denitrification are presently under study for possible use in the San Joaquin Valley. In one method nitrates are reduced to nitrogen gas by bacterial action in deep ponds; in the other method bacterial denitrification takes place in biological filters. In biological filters, bacteria are grown on columns of submerged stones. A possible alternative to the conventional construction of these filters is the creation of a rubble chimney by a contained nuclear explosion. This paper presents the results of a preliminary investigation of the feasibility of using a rubble chimney as a biological filter for denitrification. (author)

  1. A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    OpenAIRE

    Sánchez-Pérez, J. M.; C. Bouey; Sauvage, S.; Teissier, S.; Antiguedad, I.; Vervier, P.

    2003-01-01

    A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3‾), bromide (Br‾), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simula...

  2. A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    OpenAIRE

    Sánchez-Pérez, J. M.; C. Bouey; Sauvage, S.; Teissier, S.; Antiguedad, I.; Vervier, P.

    2003-01-01

    A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10%) to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3‾), bromide (Br‾), nitrous oxide (N2O) and dissolved organic carbon (DOC) were measured. To calibrate the experimental method, comparison with numerical simulations of the groundwater transfer were carried o...

  3. The Effect of Wheat Straw, Corn Straw and Tobacco Residues on Denitrification Losses in a Field Planted with Wheat

    OpenAIRE

    COŞKAN, Ali; Gök, Mustafa; ONAÇ, Işık

    2002-01-01

    A field experiment was conducted to determine the effects of different organic residues (OR) (e.g., wheat straw corn straw and tobacco residues) on nitrogen mineralization and denitrification loss (N2O-N) using application rates recommended to local farmers. Nitrate and ammonium analyses were carried out on periodically collected soil samples. In-situ denitrification loss was determined using the acetylene inhibition technique (AIT). The results revealed that OR application increased N minera...

  4. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    OpenAIRE

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2013-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functi...

  5. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    OpenAIRE

    Yinglong Su; Xiong Zheng; Yinguang Chen; Mu Li; Kun Liu

    2015-01-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total n...

  6. Benthic fluxes in a tropical estuary and their role in the ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Pratihary, A.K.; Naqvi, S.W.A.; Naik, H.; Thorat, B.R.; Narvenkar, G.; Manjunatha, B.R.; Rao, V.P.

    ) sup(4-) and acted as a net sink of combined N because of the high rate of benthic denitrification as it could remove 22% of riverine DIN influx thereby protecting the eco system from eutrophication and consequent degradation. The estuarine sediment...

  7. Comparative evaluation of nitrate removal technologies

    International Nuclear Information System (INIS)

    Due to the extensive application of artificial nitrogen-based fertilizers and animal manure on land, many water agencies face problems of increasing concentrations of nitrate in groundwater. The contamination of groundwater by nitrate may pose a significant public health problem. The threat of methemoglobinemia is well documented and reflected in the U.S. drinking water standard of 10 mg/L as nitrate-nitrogen. Approximately 45% of Saskatchewan's population use groundwater for drinking purposes, out of which, approximately 23% (230,000) are rural residents. The water used is made available from over 48,000 privately owned wells in regions where there is an extensive application of chemical fertilizers. Biological denitrification, ion exchange and reveres osmosis (RO) processes were selected for further study. Field studies were conducted on these processes. The sulfur/limestone autotrophic denitrification (SLAD) process was selected to achieve biological removal of nitrate from groundwater. The feasibility of the system was evaluated under anaerobic conditions. An ion exchange study was conducted using Ionac A554 which is strong anion exchange resins. In the case of groundwater containing low sulfate concentrations, A554 offered high nitrate removal. However, the disposal of regenerant brine can be a problem. A reverse osmosis unit with Filmtec membrane elements (FT30-Element Family) was used in the study on nitrate removal. The unit effluent average nitrate concentration was less than the maximum allowable concentration. (author)

  8. O 2 reduction and denitrification rates in shallow aquifers

    Science.gov (United States)

    Tesoriero, A.J.; Puckett, L.J.

    2011-01-01

    O 2 reduction and denitrification rates were determined in shallow aquifers of 12 study areas representing a wide range in sedimentary environments and climatic conditions. Zero-and first-order rates were determined by relating reactant or product concentrations to apparent groundwater age. O 2 reduction rates varied widely within and between sites, with zero-order rates ranging from denitrification rates (10-100 ??mol N L -1 yr -1; 0.06-0.30 yr -1) were observed in most areas with O 2 concentrations below 60 mol L -1, while higher rates (>100 mol N L -1 yr -1; >0.36 yr -1) occur when changes in lithology result in a sharp increase in the supply of electron donors. Denitrification lag times (i.e., groundwater travel times prior to the onset of denitrification) ranged from 80 yr. The availability of electron donors is indicated as the primary factor affecting O 2 reduction rates. Concentrations of dissolved organic carbon (DOC) and/or sulfate (an indicator of sulfide oxidation) were positively correlated with groundwater age at sites with high O 2 reduction rates and negatively correlated at sites with lower rates. Furthermore, electron donors from recharging DOC are not sufficient to account for appreciable O 2 and nitrate reduction. These relations suggest that lithologic sources of DOC and sulfides are important sources of electrons at these sites but surface-derived sources of DOC are not. A review of published rates suggests that denitrification tends to occur more quickly when linked with sulfide oxidation than with carbon oxidation. copyright 2011 by the American Geophysical Union.

  9. Denitrification characteristics of a sulfur autotrophic denitrification reactor

    Directory of Open Access Journals (Sweden)

    Chenxiao ZHANG

    2016-02-01

    Full Text Available The denitrification characteristics of a sulfur autotrophic denitrification reactor are investigated. The results show that domestication of sulfur autotrophic bacteria is completed within 15 days after biofilm formation in the reactor, which is shorter than other similar researches. The nitrogen removal rate remains over than 90%, and the denitrification rate reaches 18.5 mg N/(L·h with influent NO-3-N of 70 mg/L , influent pH of 8 and HRT of 4.3 h . Thiobacillus denitrificans are observed in the whole reactor when domestication finishes, while it is more abundant in the middle and lower part. The optimal influent NO-3-N concentration for the reactor is 50 mg/L, the optimal temperature is 30~35 ℃, the optimal influent pH is 7~8, and the nitrogen removal rate is over than 90%.

  10. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    Science.gov (United States)

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  11. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  12. The effect of spatial heterogeneity on nitrate reduction in soil systems

    DEFF Research Database (Denmark)

    Pedersen, Lasse Lu

    hand governed by formation by oxidation of ammonia-N, and on the other hand by removal a removal by two dissimilatory nitrate reduction processes:denitrification, in which nitrate is converted to the gaseous compounds dinitrogen and nitrous oxide, and dissimilatory nitrate reduction to ammonium, DNRA...... nitrate, and can be assimilated into organic matter, effectively bypassing both denitrification and dinitrogen fixation and conserving nitrogen in the ecosystem. It is well established that soil is an extremely heterogeneous environment, not merely on a macroscopic level, but also on a microscopic level...

  13. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of norther France

    International Nuclear Information System (INIS)

    The use of 15N natural isotope tracing in an aquifer contained within chalk rocks in northern France indicates that, under certain hydrogeological conditions, major denitrification occurs. At the boundary where the aquifer becomes confined, the nitrate concentrations decrease in the direction of groundwater flow accompanied by an exponential increase in 15N (expressed in δ15N) of the residual nitrate. This is characteristic of kinetic isotope effects, which accompany the reduction of the nitrate ion during denitrification. Hydrogeochemical and bacteriological observations confirm this process. Natural isotope tracing also permits this process to be distinguished from local dilution with nitrate-free water, which would entail a major drop in nitrate values without 15N isotopic enrichment. A model is proposed to explain the relatively small observed magnitude of the isotopic fractionation effect

  14. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations

  15. Response of benthic metabolism and nutrient cycling to reductions in wastewater loading to Boston Harbor, USA

    Science.gov (United States)

    Tucker, Jane; Giblin, Anne E.; Hopkinson, Charles S.; Kelsey, Samuel W.; Howes, Brian L.

    2014-12-01

    We describe the long-term response of benthic metabolism in depositional sediments of Boston Harbor, MA, to large reductions in organic matter and nutrient loading. Although Boston Harbor received very high loadings of nutrients and solids it differs from many eutrophic estuaries in that severe hypoxia was prevented by strong tidal flushing. Our study was conducted for 9 years during which a series of improvements to sewage treatment were implemented, followed by 10 years after the culminating step in the clean-up, which was to divert all wastewater effluent offshore. Counter to expectations, sediment oxygen demand and nutrient effluxes initially increased at some stations, reaching some of the highest rates recorded in the literature, and were spatially and temporally quite variable. Early increases were attributed to macrofaunal effects, as sediments at some sites were rapidly colonized by tube-building amphipods, Ampelisca spp., which dominated a dense macrofaunal mat community. As reductions in loading progressed, however, mean rates in oxygen uptake and release of ammonium, nitrate, and phosphate all decreased. At the point of outfall diversion, rates and variability had already decreased substantially. By the end of the study, average oxygen uptake had decreased from 74 to 41 mmol m-2 d-1 and spatial and temporal variability had decreased. Similarly, nutrient fluxes were less than half the rates measured at the start of the project and also less variable. Other evidence of improved conditions included a decrease in the carbon content of sediments at most stations and higher Eh values at all stations, illustrating less reducing conditions. Denitrification also showed an overall decrease from the beginning to the end of the 19-year study, but was highest during the intermediate phases of the cleanup, reaching 9 mmol N m-2 d-1. At the end of the study denitrification averaged for all sites was 2.2 mmol N m-2 d-1, but when compared to current loadings, had become

  16. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor.

    Science.gov (United States)

    Fajardo, Carmen; Mora, Mabel; Fernández, Isaac; Mosquera-Corral, Anuska; Campos, José Luis; Méndez, Ramón

    2014-02-01

    Autotrophic denitrification is a suitable technology to simultaneously remove oxidised nitrogen compounds and reduced sulphur compounds yielding nitrogen gas, sulphur and sulphate as the main products. In this work, several batch tests were conducted to investigate the cross effect of temperature, pH and free ammonia on the autotrophic denitrification. Denitrification efficiencies above 95% were achieved at 35°C and pH 7.5-8.0 with maximum specific autotrophic denitrifying activities up to 188mgN2g(-1)VSSd(-1). Free ammonia did not show any effect on denitrification at concentrations up to 53mg NH3-NL(-1). Different sulphide concentrations were also tested with stoichiometric nitrite and nitrate concentrations. Sulphide inhibited denitrification at concentrations higher than 200mgS(2-)L(-1). A 50% inhibition was also found at nitrite concentrations above 48mg NO2(-)-NL(-1). The maximum specific activity decreased until a value of 25mgN2g(-1) VSSd(-1) at 232mg NO2(-)-NL(-1). The Haldane model was used to describe denitrification inhibition caused by nitrite. Kinetic parameters determined from the fitting of experimental data were rmax=176mgN2g(-1)VSSd(-1), Ks=10.7mg NO2(-)-NL(-1) and Ki=34.7mg NO2(-)-NL(-1). The obtained model allowed optimising an autotrophic denitrification process by avoiding situations of inhibition and thus obtaining higher denitrification efficiencies. PMID:24216266

  17. Effect of reactive media composition and co-contaminants on sulfur-based auto trophic denitrification

    International Nuclear Information System (INIS)

    As a part of a study developing a biological reactive barrier system to treat nitrate-contaminated groundwater, the effects of reactive media composition and co-contaminants on sulfur-oxidizing autotrophic denitrification were investigated. The size of sulfur granules affected the denitrification rates; kinetic constants of 2.883, 2.949, and 0.677 mg-N1/2/L1/2/day were obtained when the granule sizes were below 2 mm, between 2 and 5 mm, and over 5 mm, respectively. When the volume ratios of sulfur to limestone were 1:1, 2:1, 3:1, and 4:1, kinetic constants of 5.490, 3.903, 4.072, and 2.984 mg-N1/2/L1/2/day were obtained, respectively. The presence of TCE up to 20 mg/L didn't significantly affect nitrate removal efficiency. At the TCE concentration of 80 mg/L, however, nitrate removal was markedly inhibited. Also, Zn and Cu inhibited the denitrification activity at more than 0.5 mg/L of concentration whereas Cr (VI) did not significantly affect the nitrate removal efficiency at all levels tested. - The effect of co-contaminants on nitrate removal in a biological PRB system

  18. Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor

    International Nuclear Information System (INIS)

    A hollow fiber membrane biofilm reactor (MBfR) using polyvinyl chloride (PVC) hollow fiber was evaluated in removing nitrate form contaminated drinking water. During a 279-day operation period, the denitrification rate increased gradually with the increase of influent nitrate loading. The denitrification rate reached a maximum value of 414.72 g N/m3 d (1.50 g N/m2 d) at an influent NO3--N concentration of 10 mg/L and a hydraulic residence time of 37.5 min, and the influent nitrate was completely reduced. At the same time, the effluent quality analysis showed the headspace hydrogen content (3.0%) was lower enough to preclude having an explosive air. Under the condition of the influent nitrate surface loading of 1.04 g N/m2d, over 90% removal efficiencies of the total nitrogen and nitrate were achieved at the hydrogen pressure above 0.04 MPa. The results of denaturing gel gradient electrophoresis (DGGE), 16S rDNA gene sequence analysis, and hierarchical cluster analysis showed that the microbial community structures in MBfR were of low diversity, simple and stable at mature stages; and the beta-Proteobacteria, including Rhodocyclus, Hydrogenophaga, and beta-Proteobacteria HTCC379, probably play an important role in autohydrogenotrophic denitrification.

  19. The nitrate response of a lowland catchment: on the relation between stream concentration and travel time distribution dynamics

    OpenAIRE

    Velde, van der, A.; Rooij, de, S.E.J.A.; Rozemeijer, J.C.; Geer, van der, R.; Broers, H. P.

    2010-01-01

    Nitrate pollution of surface waters is widespread in lowland catchments with intensive agriculture. For identification of effective nitrate concentration reducing measures the nitrate fluxes within catchments need to be quantified. In this paper we applied a mass transfer function approach to simulate catchment-scale nitrate transport. This approach was extended with time-varying travel time distributions and removal of nitrate along flow paths by denitrification to be applicable for lowland ...

  20. Nitrate response of a lowland catchment: On the relation between stream concentration and travel time distribution dynamics

    OpenAIRE

    Y. van der Velde; De Rooij, G. H.; Rozemeijer, J.C.; F. C. van Geer; Broers, H. P.

    2010-01-01

    Nitrate pollution of surface waters is widespread in lowland catchments with intensive agriculture. For identification of effective nitrate concentration reducing measures the nitrate fluxes within catchments need to be quantified. In this paper we applied a mass transfer function approach to simulate catchment‐scale nitrate transport. This approach was extended with time‐varying travel time distributions and removal of nitrate along flow paths by denitrification to be applicable for lowland ...

  1. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India.

    Science.gov (United States)

    Cathrine, Sumathi J; Raghukumar, Chandralata

    2009-01-01

    Denitrification is a microbial process during which nitrate or nitrite is reduced under anaerobic condition to gaseous nitrogen. The Arabian Sea contains one of the major pelagic denitrification zones and in addition to this, denitrification also takes places along the continental shelf. Prokaryotic microorganisms were considered to be the only players in this process. However recent studies have shown that higher microeukaryotes such as fungi can also adapt to anaerobic mode of respiration and reduce nitrate to harmful green house gases such as NO and N2O. In this study we examined the distribution and biomass of fungi in the sediments of the seasonal anoxic region off Goa from two stations. The sampling was carried out in five different periods from October 2005, when dissolved oxygen levels were near zero in bottom waters to March 2006. We isolated mycelial fungi, thraustochytrids and yeasts. Species of Aspergillus and thraustochytrids were dominant. Fungi were isolated under aerobic, as well as anaerobic conditions from different seasons. Four isolates were examined for their denitrification activity. Two cultures obtained from the anoxic sediments showed better growth under anaerobic condition than the other two cultures that were isolated from oxic sediments. Our preliminary results suggest that several species of fungi can grow under oxygen deficient conditions and participate in denitrification processes. PMID:18834939

  2. Potential denitrification in arable soil samples at winter temperatures - measurements by 15N gas analysis

    International Nuclear Information System (INIS)

    In samples from the plough horizon of five soils taken after cereal harvest, denitrification was measured as volatilization of N2 and N2O from 15N nitrate in the absence of O2. Nitrate contents lower than 50 ppm N (related to soil dry matter) had only a small effect on denitrification velocity in four of the five soils. In a clay soil dependence on nitrate concentration corresponded to a first-order reaction. Available C was no limiting factor. Even at zero temperatures remarkable N amounts (on average 0.2 ppm N per day) were still denitrified. The addition of daily turnover rates in relation to soil temperatures prevailing from December to March revealed potential turnovers in the 0-to-30-cm layer of the soils to average 28 ± 5 ppm N. (author)

  3. Cloth catalysts in water denitrification: I. Pd on glass fibers

    OpenAIRE

    Matatov-Meytal, Y.; Barelko, V.; Yuranov, I.; Sheintuch, M.

    2000-01-01

    Fiber catalysts are easy to handle and free of mass-transfer resistance. This report is the first application of cloth catalysts to water denitrification. In this work, cloths woven from glass fibers (GF) of 7–10 mm in diameter, impregnated with Pd, were tested in a semi-batch reactor to evaluate their effectiveness in the catalytic liquid phase hydrogenation of nitrites and nitrates. The catalytic properties of Pd-GF cloths were evaluated as a function of Pd loading as well of chemical comp...

  4. Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

    OpenAIRE

    Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M; Daniell, Tim J.

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate ( NO 3 − ) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH, and the size and community structure of nitrate reducing organisms responsible for the processes. There...

  5. Soil nitrate reducing processes – drivers, mechanisms for spatial variation and significance for nitrous oxide production

    OpenAIRE

    TimJohnDaniell; MadelineEleanoreGiles

    2012-01-01

    The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for the loss of nitrate (NO3-¬) and production of the potent greenhouse gas, nitrous oxide (N2O). A number of factors are known to control these processes, including O2 concentrations and moisture content, N, C, pH and the size and community structure of nitrate reducing organisms responsible for the processes. Ther...

  6. The kinetics of denitrification in permeable sediments

    DEFF Research Database (Denmark)

    Evrard, Victor; Glud, Ronnie N.; Cook, Perran L. M.

    2013-01-01

    Permeable sediments comprise the majority of shelf sediments, yet the rates of denitrification remain highly uncertain in these environments. Computational models are increasingly being used to understand the dynamics of denitrification in permeable sediments, which are complex environments to...... environment experienced in permeable sediments. In contrast to previous studies, we did not observe any significant rates of oxic denitrification....

  7. Nitrate loss from a restored floodplain on the lower Cosumnes River, California

    Science.gov (United States)

    Sheibley, R. W.; Ahearn, D. S.; Santoriello, P.; Dahlgren, R. A.

    2002-12-01

    Floodplain habit was recreated on the lower Cosumnes River by breaching levees that previously protected agricultural lands from seasonal flooding. This study examined the ability of restored floodplains to retain nutrients from the river during flood events. The study looked at the potential for nitrate loss utilizing two techniques: (i) potential denitrification rates of floodplain soils and (ii) nitrate loss from floodplain waters during in situ microcosm experiments. Soils samples were collected from 13 locations within the floodplain and analyzed for denitrification potential. Denitrification potentials ranged from 0.06 to 27.5 nmol N2O cm-3 hr-1 and correlated with the concentrations of total N, organic C, sand and silt in the soils. Furthermore, denitrification potential correlated well with microbial respiration rates suggesting that concentrations of labile carbon strongly affect microbial activity and subsequent denitrification. Microcosm experiments were conducted by inserting polycarbonate tubes approximately 20 cm into the sediment. In addition, a replicate set of columns was studied which excluded the sediment layer to distinguish water column processes from those occurring within the sediments. The overlying water was spiked with nitrate and bromide to observe changing nitrate concentrations over time. Three different levels of nitrate were examined: ambient, +1 ppm nitrate, and +5 ppm nitrate. Results showed that nitrate loss from the water column was rapid and a function of the initial nitrate concentration. Nitrate was completely removed within 68 to 163 hours for the background and +5ppm treatments, respectively. Rates of nitrate disappearance were ~ 2.5 times greater in the sediment/water treatment, with approximately 20-30% of the nitrate being lost from water column alone. Results from this study document the potential role of these floodplain habitats to reduce the amount of nitrate that is transported downstream to sensitive aquatic

  8. Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes.

    Science.gov (United States)

    Wang, Yue; Bott, Charles; Nerenberg, Robert

    2016-09-01

    Elemental sulfur (S(o)) can serve as an electron donor for denitrification. However, the mechanisms and rates of S(o)-based denitrification, which depend on a biofilm development on a solid S(o) surface, are not well understood. We used completely-mixed reactors packed with S(o) chips to systematically explore the behavior of S(o)-based denitrification as a function of the bulk nitrate (NO3(-)) concentration and biofilm development. High-purity (99.5%) and agricultural-grade (90% purity) S(o) chips were tested to explore differences in performance. NO3(-) fluxes followed a Monod-type relationship with the bulk NO3(-) concentration. For high-purity S(o), the maximum NO3(-) flux increased from 0.4 gN/m(2)-d at 21 days to 0.9 g N/m(2)-d at around 100 days, but then decreased to 0.65 gN/m(2)-d at 161 days. The apparent (extant) half-saturation constant for NO3(-) KSapp, based on the bulk NO3(-) concentration and NO3(-) fluxes into the biofilm, increased from 0.1 mgN/L at 21 days to 0.8 mgN/L at 161 days, reflecting the increasing mass transfer resistance as the biofilm thickness increased. Nitrite (NO2(-)) accumulation became significant at bulk NO3(-) concentration above 0.2 mgN/L. The behavior of the agricultural-grade S(o) was very similar to the high-purity S(o). The kinetic behavior of S(o)-based denitrification was consistent with substrate counter-diffusion, where the soluble sulfur species diffuse from the S(o) particle into the base of the biofilm, while NO3(-) diffuses into the biofilm from the bulk. Initially, the fluxes were low due to biomass limitation (thin biofilms). As the biofilm thickness increased with time, the fluxes first increased, stabilized, and then decreased. The decrease was probably due to increasing diffusional resistance in the thick biofilm. Results suggest that fluxes comparable to heterotrophic biofilm processes can be achieved, but careful management of biofilm accumulation is important to maintain high fluxes. PMID:27187050

  9. Nitrification and denitrification in subalpine coniferous forests of different restoration stages in western Sichuan,China

    Institute of Scientific and Technical Information of China (English)

    LIU Yi; CHEN Jinsong; LIU Qing; WU Yan

    2007-01-01

    Nitrification is the biological conversion of organic or inorganic nitrogen compounds from a reduced to a more oxidized state.Denitrification is generally referred to as the microbial reduction of nitrate to nitrite and further gaseous forms of nitric oxide,nitrous oxide and molecular nitrogen.They are functionally interconnected processes in the soil nitrogen cycle that are involved in the control of longterm nitrogen losses in ecosystems through nitrate leaching and gaseous N losses.In" order to better understand how nitrification and denitrification change during the process of ecosystem restoration and how they are affected by various controlling factors,gross nitrification rates and denitrification rates were determined using the barometric process separation (BaPS) technique in subalpine coniferous forests of different restoration stages.The results showed that forest restoration stage had no significant effects on gross nitrification rates or denitrification rates (One-way ANOVA (analysis of variance),p < 0.05).There was no significant difference in the temperature coefficient (Q10) for gross nitrification rate among all the forest sites (One-wayANOVA,p < 0.05).Gross nitrification rates were positively correlated with water content (p <0.05),but not with soil pH,organic matter,total nitrogen,or C/N ratios.Denitrification rates in all the forest soils were low and not closely correlated with water content,soil pH,organic matter,or total nitrogen.Nevertheless,we found that C/N ratios obviously affected denitrification rates (p < 0.05).Results from this research suggest that gross nitrification is more responsible for the nitrogen loss from soils compared with denitrification.

  10. Limited occurrence of denitrification in four shallow aquifers in agricultural areas of the United States

    Science.gov (United States)

    Green, C.T.; Puckett, L.J.; Böhlke, J.K.; Bekins, B.A.; Phillips, S.P.; Kauffman, L.J.; Denver, J.M.; Johnson, H.M.

    2008-01-01

    The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N2 from denitrification increases with age. Stable isotopes and excess N2 imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 ??mol N L-1d-1, comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  11. Denitrification coupled with methane anoxic oxidation and microbial community involved identification

    Directory of Open Access Journals (Sweden)

    Renata Medici Frayne Cuba

    2011-02-01

    Full Text Available In this work, the biological denitrification associated with anoxic oxidation of methane and the microbial diversity involved were studied. Kinetic tests for nitrate (NO3- and nitrite (NO2- removal and methane uptake were carried out in 100 mL batch reactors incubated in a shaker (40 rpm at 30 ºC. Denitrificant/methanotrophic biomass was taken from a laboratory scale reactor fed with synthetic nitrified substrates (40 mgN L-1 of NO3- and subsequently NO2- and methane as carbon source. Results obtained from nitrate removal followed a first order reaction, presenting a kinetic apparent constant (kNO3 of 0.0577±0.0057d-1. Two notable points of the denitrification rate (0.12gNO3--N g-1 AVS d-1 and 0.07gNO3--N g-1 AVS d-1 were observed in the beginning and on the seventh day of operation. When nitrite was added as an electron acceptor, denitrification rates were improved, presenting an apparent kinetic constant (kNO2 of 0.0722±0.0044d-1, a maximum denitrification rate of 0.6gNO2--N g-1AVS d-1, and minimum denitrification rate of 0.1gNO2--N g-1AVS d-1 at the beginning and end of the test, respectively. Endogenous material supporting denitrification and methane concentration dissolved in the substrate was discarded from the control experiments in the absence of methane and seed, respectively. Methylomonas sp. was identified in the reactors fed with nitrate and nitrite as well as uncultured bacterium.

  12. Denitrification potential and its relation to organic carbon quality in three coastal wetland soils

    International Nuclear Information System (INIS)

    Capacity of a wetland to remove nitrate through denitrification is controlled by its physico-chemical and biological characteristics. Understanding these characteristics will help better to guide beneficial use of wetlands in processing nitrate. This study was conducted to determine the relationship between soil organic carbon (SOC) quality and denitrification rate in Louisiana coastal wetlands. Composite soil samples of different depths were collected from three different wetlands along a salinity gradient, namely, bottomland forest swamp (FS), freshwater marsh (FM), and saline marsh (SM) located in the Barataria Basin estuary. Potential denitrification rate (PDR) was measured by acetylene inhibition method and distribution of carbon (C) moieties in organic C was determined by 13C solid-state NMR. Of the three wetlands, the FM soil profile exhibited the highest PDR on both unit weight and unit volume basis as compared to FS and SM. The FM also tended to yield higher amount of N2O as compared to the FS and SM especially at earlier stages of denitrification, suggesting incomplete reduction of NO3- at FM and potential for emission of N2O. Saline marsh soil profile had the lowest PDR on the unit volume basis. Increasing incubation concentration from 2 to 10 mg NO3--N L-1 increased PDR by 2 to 6 fold with the highest increase in the top horizons of FS and SM soils. Regression analysis showed that across these three wetland systems, organic C has significant effect in regulating PDR. Of the compositional C moieties, polysaccharides positively influenced denitrification rate whereas phenolics (likely phenolic adehydes and ketonics) negatively affected denitrification rate in these wetland soils. These results could have significant implication in integrated assessment and management of wetlands for treating nutrient-rich biosolids and wastewaters, non-point source agricultural runoff, and nitrate found in the diverted Mississippi River water used for coastal restoration

  13. Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer

    Science.gov (United States)

    Critchley, K.; Rudolph, D. L.; Devlin, J. F.; Schillig, P. C.

    2014-12-01

    A preliminary trial of a cross-injection system (CIS) was designed to stimulate in situ denitrification in an aquifer servicing an urban community in southern Ontario. It was hypothesized that this remedial strategy could be used to reduce groundwater nitrate in the aquifer such that it could remain in use as a municipal supply until the beneficial effects of local reduced nutrient loadings lead to long-term water quality improvement at the wellfield. The CIS application involved injecting a carbon source (acetate) into the subsurface using an injection-extraction well pair positioned perpendicular to the regional flow direction, up-gradient of the water supply wells, with the objective of stimulating native denitrifying bacteria. The pilot remedial strategy was targeted in a high nitrate flux zone within an aerobic and heterogeneous section of the glacial sand and gravel aquifer. Acetate injections were performed at intervals ranging from daily to bi-daily. The carbon additions led to general declines in dissolved oxygen concentrations; decreases in nitrate concentration were localized in aquifer layers where velocities were estimated to be less than 0.5 m/day. NO3-15N and NO3-18O isotope data indicated the nitrate losses were due to denitrification. Relatively little nitrate was removed from groundwater in the more permeable strata, where velocities were estimated to be on the order of 18 m/day or greater. Overall, about 11 percent of the nitrate mass passing through the treatment zone was removed. This work demonstrates that stimulating in situ denitrification in an aerobic, highly conductive aquifer is challenging but achievable. Further work is needed to increase rates of denitrification in the most permeable units of the aquifer.

  14. Denitrification, anammox and fixed nitrogen removal in the water column of a tropical great lake

    Science.gov (United States)

    Darchambeau, François; Roland, Fleur; Crowe, Sean A.; De Brabandere, Loreto; Llirós, Marc; Garcia-Armisen, Tamara; Inceoglu, Ozgul; Michiels, Céline; Servais, Pierre; Morana, Cédric D. T.; Bouillon, Steven; Meysman, Filip; Veuger, Bart; Masilya, Pascal M.; Descy, Jean-Pierre; Borges, Alberto V.

    2013-04-01

    If rates of microbial denitrification in aquatic systems are poorly constrained, it is much more the case for tropical water bodies. Lake Kivu [2.50° S 1.59° S, 29.37° E 28.83° E] is one of the great lakes of the East African Rift. It is an oligotrophic lake characterized by anoxic deep waters rich in dissolved gases (methane and carbon dioxide) and nutrients, and by well oxygenated and nutrient-depleted surface waters. During the seasonally stratified rainy season (October to May), a nitrogenous zone characterized by the accumulation of nitrite (NO2-) and nitrate (NO3-) is often observed in the lower layer of the mixolimnion. It results from nitrification of ammonium released by decaying organic matter. With the seasonal uplift of the oxygen minimum zone, the nitrogenous zone becomes anoxic and might be the most preferential area for fixed nitrogen (N) removal in Lake Kivu. Our work aimed at identifying and quantifying the processes of N losses by denitrification and/or anammox in the nitrogenous zone of the Lake Kivu water column. During 5 sampling campaigns (March 2010, October 2010, June 2011, February 2012 and September 2012), isotopic labelling experiments were used to quantify denitrification and anammox rates along vertical profiles at two pelagic stations of the main lake. Moreover, N2:Ar ratios were estimated during the September 2012 campaign, and 16S rDNA pyrosequencing was used to describe bacterial community composition during the last 2 campaigns. No bacteria related to organisms performing anammox was observed and labelling experiments failed to detect anammox at any locations and any depths. In Lake Kivu, denitrifying bacteria were mainly related to Denitratisoma and Thiobacillus genus. Significant denitrification rates were observed at several occasions, especially under the oxic-anoxic interface in the bottom of the nitracline. The annual average denitrification rate was estimated at ~150 μmoles N m-2 d-1. Denitrification was not the only

  15. Quantifying denitrification in rippled permeable sands through combined flume experiments and modeling

    DEFF Research Database (Denmark)

    Kessler, Adam J.; Glud, Ronnie N.; Cardenas, M. Bayani;

    2012-01-01

    insight into the coupled hydrodynamic and biogeochemical processes. There was broad agreement between the model results and experimental data. The model showed that the coupling between nitrification and denitrification was relatively weak in comparison to that in cohesive sediments. This was due to the...... direct advective transport between anoxic pore water and the overlying water column, and little interaction between the mostly oxic advective region and the underlying anoxic region. Denitrification was therefore mainly fueled by nitrate supplied from the water column. This suggests that the capacity of...

  16. ANAEROBIC DIGESTION AND THE DENITRIFICATION IN UASB REACTOR

    Directory of Open Access Journals (Sweden)

    José Tavares de Sousa

    2008-01-01

    Full Text Available The environmental conditions in Brazil have been contributing to the development of anaerobic systems in the treatment of wastewaters, especially UASB - Upflow Anaerobic Sludge Blanket reactors. The classic biological process for removal of nutrients uses three reactors - Bardenpho System, therefore, this work intends an alternative system, where the anaerobic digestion and the denitrification happen in the same reactor reducing the number of reactors for two. The experimental system was constituted by two units: first one was a nitrification reactor with 35 L volume and 15 d of sludge age. This system was fed with raw sanitary waste. Second unit was an UASB, with 7.8 L and 6 h of hydraulic detention time, fed with ¾ of effluent nitrification reactor and ¼ of raw sanitary waste. This work had as objective to evaluate the performance of the UASB reactor. In terms of removal efficiency, of bath COD and nitrogen, it was verified that the anaerobic digestion process was not affected. The removal efficiency of organic material expressed in COD was 71%, performance already expected for a reactor of this type. It was also observed that the denitrification process happened; the removal nitrate efficiency was 90%. Therefore, the denitrification process in reactor UASB is viable.

  17. Simulation of three-phase fluidized bioreactors for denitrification

    International Nuclear Information System (INIS)

    Fluidized-bed bioreactors were developed and operated at three scales (diameters of 0.1, 0.2, and 0.5 m) by the Chemical Technology Division. The performance of these reactors in denitrification was simulated using the following modified form of Monod kinetics to describe the reaction kinetics: rate = V/sub max/ (NO3-/K/sub s/ + NO3-) (% biomass). In the fluids-movement portion of the simulation the tanks-in-series approximation to backmixing was used. This approach yielded a V/sub max/ of 3.5 g/m3-min (% biomass) and a K/sub s/ of 163 g/m3 for the 0.5-m bioreactor. Values of V/sub max/ and K/sub s/ were also determined for data derived from the 0.1-m bioreactor, but inadequate RTD data reduced the confidence level in these results. A complication in denitrification is the multi-step nature of the reduction from nitrate to nitrite to hyponitrite and finally to nitrogen. An experimental study of the effect of biomass loading upon denitrification was begun. It is recommended that the experimental work be continued

  18. High nitrate removal from synthetic wastewater with the mixed bacterial culture.

    Science.gov (United States)

    Foglar, Lucija; Briski, Felicita; Sipos, Laszlo; Vuković, Marija

    2005-05-01

    The applicability of the mixed bacterial culture, originated from two-stage anaerobic-aerobic industrial yeasts production wastewater treatment plant for high rate denitrification processes was investigated. After acclimation to nitrate, the dominant strains were Pseudomonas and Paracoccus sp. Complete denitrification with low accumulation of nitrite-N (0.1 mg/l) was found in synthetic wastewater, obeying a zero-order reaction with respect to nitrate and a first-order reaction with respect to biomass concentration. Denitrification was then monitored in the continuous-flow stirred reactor at different hydraulic retention time, HRT (62-28 h) in order to achieve the optimal HRT. Nitrate was completely removed during following 45 days, at 25 degrees C with HRT, which we reduced from 62 to 28 h. Yet still, at 28 h HRT, high average specific denitrification rate of 142 mg NO3- -N/g VSS h was obtained. PMID:15627558

  19. Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor

    International Nuclear Information System (INIS)

    The contamination of nitrate in groundwater has become an ever-increasing environmental problem. To improve denitrification rate effectively, a novel three-dimensional (3D) bio-electrochemical reactor was developed, which introduced activated carbon (AC) into the cathode chamber as the third bipolar electrode. The influence parameters such as temperature, pH, current and initial nitrate loading were investigated systematically. The role of the third electrode was explored and a possible denitrification mechanism was suggested. The presence of AC not only provided much more sites for biofilm formation and hydrogen gas yield, but also produced carbon dioxide to afford a favorable anoxic environment. Thus, the 3D reactor showed good denitrification performance in wider conditions. The denitrification rate could reach 0.222 mg NO3 N/cm2/d while the current efficiency could reach as high as 227%, indicating promising for nitrate removal from groundwater

  20. Characteristics of hydrogenotrophic denitrification in a combined system of gas-permeable membrane and a biofilm reactor

    International Nuclear Information System (INIS)

    A double Monod form was employed to describe two-step hydrogenotrophic denitrification, and the saturation constants of nitrate, nitrite and hydrogen were determined by batch tests. A combined system of gas-permeable membrane and a biofilm reactor (GPM-BR) was employed to remove nitrate from drinking water. The gas-permeable membrane was tested to exclusively deliver hydrogen to an independent attached growth system. The denitrification performance of the GPM-BR was investigated with different nitrate loadings of 96.78, 163.16 and 342.58 mg N/(L d). The nitrate removal rate (NRR) of the reactor could achieve 471.36 mg N/(L d) with sufficient dissolved hydrogen (DH) in the batch tests. While in the continuous experiments, NRR ranged from 96.72 to 301.44 mg N/(L d) under different nitrate loadings. Although low nitrate loading of 96.78 mg N/(L d) led to better nitrate removal, the denitrification capacity of GPM-BR would be limited and sulfate reduction occurred.

  1. Hyporheic zone denitrification: Controls on effective reaction depth and contribution to whole-stream mass balance

    Science.gov (United States)

    Harvey, Judson W.; Böhlke, J. K.; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.

    2013-10-01

    Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To investigate at a field site, we injected 15NO3-, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.

  2. Hyporheic zone denitrification: controls on effective reaction depth and contribution to whole-stream mass balance

    Science.gov (United States)

    Harvey, Judson W.; Böhlke, John Karl; Voytek, Mary A.; Scott, Durelle; Tobias, Craig R.

    2013-01-01

    Stream denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field. To demonstrate at a field site, we injected 15NO3−, Br (conservative tracer), and SF6 (gas exchange tracer) and compared measured whole-stream denitrification with in situ hyporheic denitrification in shallow and deeper flow paths of contrasting geomorphic units. Hyporheic denitrification accounted for between 1 and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (greater substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance (nirS), and measures of granular surface area and presence of anoxic microzones. The dimensionless product of the reaction rate constant and hyporheic residence time, λhzτhz define a Damköhler number, Daden-hz that was optimal in the subset of hyporheic flow paths where Daden-hz ≈ 1. Optimal conditions exclude inefficient deep pathways transport where substrates are used up and also exclude inefficient shallow pathways that require repeated hyporheic entries and exits to complete the reaction. The whole-stream reaction significance, Rs (dimensionless), was quantified by multiplying Daden-hz by the proportion of stream discharge passing through the hyporheic zone. Together these two dimensionless metrics, one flow-path scale and the other reach-scale, quantify the whole-stream significance of hyporheic denitrification. One consequence is that the effective zone of significant denitrification often differs from the full depth of the hyporheic zone, which is one reason why whole-stream denitrification rates have not previously been explained based on total hyporheic-zone metrics such as hyporheic-zone size or residence time.

  3. Denitrification potential of organic, forest and grassland soils in the Ribble-Wyre and Conwy River catchments, UK.

    Science.gov (United States)

    Sgouridis, Fotis; Ullah, Sami

    2014-07-01

    Soil denitrification activity can be highly variable due to the effects of varied land use management practices within catchments on the biogeochemical regulators of denitrification. To test this assumption in the context of mixed-use rural catchments, it was hypothesised that the relative magnitude of denitrification activity may be regulated, among others, by a gradient of soil nitrate (low to high) between organic (peat bog, heathland, and acid grassland), forest (coniferous and deciduous), and grassland (improved and semi-improved) rural land use types. The denitrification potential (DP) of organic, forest and grassland soils, in two UK catchments was measured in the laboratory. Land use type significantly (p forest soils (1.08 mg N m(-2) h(-1)) was 3 and 10 times less than the DP of semi-improved (4.06 mg N m(-2) h(-1)) and improved (12.09 mg N m(-2) h(-1)) grassland soils, respectively; and among others, nitrate correlated positively (p low in nitrate availability) and grassland soils (nitrate enriched due to land management) partially regulated the extent of DP. In the absence of N fertilisation, except for the atmospheric N deposition, the relatively low net nitrification potential (as a source of nitrate for denitrifiers) of organic and forest soils alone seem to have resulted in lower denitrifier's activity compared to grassland soils. Moreover, the interactions between soil organic carbon, pH, bulk density, water filled pore space, and texture, as these are influenced by the relative degree of land management, exerted additional controls on the DP. The results suggest that land management can have significant effects on denitrification, and thus needs to be considered when modelling and/or predicting the response of denitrification to land use change. PMID:24690876

  4. Modelling the soil nitrogen denitrification

    International Nuclear Information System (INIS)

    The paper presents the differential equations used to compute the daily amounts of N denitrified and to compute the amount of N denitrified in a given period of time. It shows also the equations which compute the correction factors of the maximum denitrification rate as a function of soil temperature (Ftd), moisture (Fmd) and pH (FpHd), original equations used by NICROS - nitrogen crop simulation model to describe the influence of these abiotic factors. The temperature factor, Ftd. The optimum temperature for denitrification is between 25-37 oC. The process is slow at temperatures below 10 oC, there is an increased inhibition below 5 oC and stop completely at 0 oC. The maximum temperature for denitrification is practically that which limits the soil microbiological activity, generally 75 oC. The following relations are used to compute the Ftd factor: Ftd 1/(1 + e-0,3347tmed+4,99) if tmed ≤ 37; Ftd = 1 - (tmed - 37)/38 if 75 > tmed > 37; Ftd = 0 if tmed ≥ 75, where tmed is the average daily soil temperature. The moisture factor, Fmd. The denitrification has maximum intensity at soil water saturation, Usat, and stop below 80 % from Usat. Fmd = 0 if soil moisture Us ≤ 0,8*Usat, and Fmd = (Us - 0,8*Usat)/(Usat - 0,8*Usat) if Us > 0,8*Usat. The pH factor, FpHd. Denitrification takes place at pH between 4-9 and is maximum at pH between 7-8. The relations used to compute the FpHd factor are: FpHd = 1/(1 + e -3,1923pH+18,87) if pH ≤ 8; FpHd = (9 - pH) when pH is between 8-9, and FpHd = 0 if pH > 9. Refs. 6 (author)

  5. Nitrous oxide emission from denitrification in stream and river networks

    Science.gov (United States)

    Beaulieu, J.J.; Tank, J.L.; Hamilton, S.K.; Wollheim, W.M.; Hall, R.O., Jr.; Mulholland, P.J.; Peterson, B.J.; Ashkenas, L.R.; Cooper, L.W.; Dahm, C. N.; Dodds, W.K.; Grimm, N. B.; Johnson, S.L.; McDowell, W.H.; Poole, G.C.; Maurice, Valett H.; Arango, C.P.; Bernot, M.J.; Burgin, A.J.; Crenshaw, C.L.; Helton, A.M.; Johnson, L.T.; O'Brien, J. M.; Potter, J.D.; Sheibley, R.W.; Sobota, D.J.; Thomas, S.M.

    2011-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N 2O via microbial denitrification that converts N to N2O and dinitrogen (N2). The fraction of denitrified N that escapes as N2O rather than N2 (i.e., the N2O yield) is an important determinant of how much N2O is produced by river networks, but little is known about the N2O yield in flowing waters. Here, we present the results of whole-stream 15N-tracer additions conducted in 72 headwater streams draining multiple land-use types across the United States. We found that stream denitrification produces N2O at rates that increase with stream water nitrate (NO3-) concentrations, but that denitrification and concomitant N2O production, but does not increase the N2O yield. In our study, most streams were sources of N2O to the atmosphere and the highest emission rates were observed in streams draining urban basins. Using a global river network model, we estimate that microbial N transformations (e.g., denitrification and nitrification) convert at least 0.68 Tg??y -1 of anthropogenic N inputs to N2O in river networks, equivalent to 10% of the global anthropogenic N2O emission rate. This estimate of stream and river N2O emissions is three times greater than estimated by the Intergovernmental Panel on Climate Change.

  6. Sulfide removal by simultaneous autotrophic and heterotrophic desulfurization-denitrification process

    International Nuclear Information System (INIS)

    An anaerobic attached-growth bioreactor (AAGBR) of 3.52 L was operated for 510 days to treat sulfide-laden organic wastewater where nitrate and nitrite were introduced as electron acceptors. When the influent sulfide was kept at 200 mg S2--S/L and organic carbon was increased from 20 to 33.6 mg C/L, and the hydraulic retention time decreased from 41.4 to 2.67 h, the removal rates of sulfide and organic carbon reached 99.9% and 91.8% at the loading rates of 1800 mg S2--S/(L d) and 302.4 mg C/(L d), respectively. Simultaneously, the introduced electron acceptors of nitrate and nitrite were, respectively, removed by 99.9% and 99.9% at the loading rates of 472.5 mg NO3--N/(L d) and 180 mg NO2--N/(L d). Inside the AAGBR, both autotrophic and heterotrophic denitrification processes were noted to take place. When the influent organic carbon was increased from 20 to 33.6 mg C/L, the nitrate and nitrite consumed for heterotrophic denitrification accounted for 27.3% and 48.5%, respectively. This simultaneous autotrophic and heterotrophic desulfurization-denitrification process has provided a demonstration of the possibility to eliminate sulfide and organic carbon with the presence of nitrate and nitrite

  7. Long term performance of the Waterloo denitrification barrier

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, W.D.; Cherry, J.A. [Univ. of Waterloo, Ontario (Canada)

    1997-12-31

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO{sup -}{sub 3}-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff.

  8. Long term performance of the Waterloo denitrification barrier

    International Nuclear Information System (INIS)

    Beginning in 1991 a series of laboratory tests and small scale field trials were initiated to test the performance of an innovative permeable reactive barrier for treatment of nitrate from septic systems. The barrier promotes denitrification by providing an energy source in the form of solid organic carbon mixed into the porous media material. Advantages of the system for nitrate treatment are that the reaction is passive and in situ and it is possible to incorporate sufficient carbon mass in conveniently sized barriers to potentially provide treatment for long periods (decades) without the necessity for maintenance. However, longevity can only be demonstrated by careful long term monitoring of field installations. This paper documents four years of operating history at three small scale field trials; two where the denitrification barrier is installed as a horizontal layer positioned in the unsaturated zone below conventional septic system infiltration beds and one where the barrier is installed as a vertical wall intercepting a septic system plume at a downgradient location. The barriers have successfully attenuated 50-100% of NO-3-N levels of up to 170 mg/L and treatment has remained consistent over the four year period in each case, thus considerable longevity is indicated. Other field trials have demonstrated this technology to be equally effective in treating nitrogen contamination from other sources such as landfill leachate and farm field runoff

  9. Examining thiosulfate-driven autotrophic denitrification through respirometry.

    Science.gov (United States)

    Mora, Mabel; Guisasola, Albert; Gamisans, Xavier; Gabriel, David

    2014-10-01

    Anoxic respirometry was applied to characterize a sulfide-oxidizing nitrate-reducing (SO-NR) culture obtained from an anoxic biogas desulfurizing biotrickling filter treating high loads of H2S. Immobilized biomass extracted from the biotrickling filter was grown in a suspended culture with thiosulfate as electron donor to obtain the biomass growth yield and the S2O3(2)(-)/NO3(-) consumed ratio. Afterward, respirometry was applied to describe thiosulfate oxidation under anoxic conditions. A pure culture of Thiobacillus denitrificans was also used as a control culture in order to validate the procedure proposed in this work to characterize the SO-NR biomass. Respirometric profiles obtained with this microbial culture showed that nitrite was formed as intermediate during nitrate reduction and revealed that no competitive inhibition appeared when both electron acceptors were present in the medium. Although final bioreaction products depended on the initial S2O3(2)(-)/NO3(-) ratio, such ratio did not affect thiosulfate oxidation or denitrification rates. Moreover, respirometric profiles showed that the specific nitrite uptake rate depended on the biomass characteristics being that of a SO-NR mixed culture (39.8mgNg(-1) VSSh(-1)) higher than that obtained from a pure culture of T. denitrificans (19.7mgNg(-1) VSSh(-1)). For the first time, the stoichiometry of the two-step denitrification mechanism with thiosulfate oxidation and biomass growth associated was solved for both reactions. PMID:25065782

  10. Biological denitrification of brine: the effect of compatible solutes on enzyme activities and fatty acid degradation.

    Science.gov (United States)

    Cyplik, Paweł; Piotrowska-Cyplik, Agnieszka; Marecik, Roman; Czarny, Jakub; Drozdzyńska, Agnieszka; Chrzanowski, Łukasz

    2012-09-01

    The effect of the addition of compatible solutes (ectoine and trehalose) on the denitrification process of saline wastewater was studied. In saline wastewater, it was observed that the initial concentration of nitrates was 500 mg N l⁻¹. A fatty substance isolated from oiled bleaching earth (waste of vegetable oil refining process) was used as a source of carbon.The consortium, which was responsible for the denitrification process originated from the wastewater of the vegetable oil industry. The consortium of microorganisms was identified by the use of restriction fragment length polymorphism of 16S rRNA gene amplicons and sequencing techniques. It was noted that ectoine affects significantly the activity of lipase and nitrate reductase, and resulted in faster denitrification compared to saline wastewater with the addition of trehalose or control saline wastewater (without compatible solutes). It was observed that relative enzyme activities of lipase and nitrate reductase increased by 32 and 35%, respectively, in the presence of 1 mM ectoine. This resulted in an increase in specific nitrate reduction rate in the presence of 1 mM ectoine to 5.7 mg N g⁻¹ VSS h⁻¹, which was higher than in the absence of ectoine (3.2 mg N g⁻¹ VSS h⁻¹). The addition of trehalose did not have an effect on nitrate removals. Moreover, it was found that trehalose was used up completely by bacteria as a source of carbon in the denitrification process. The fatty acids were biodegraded by 74% in the presence of 1 mM ectoine. PMID:22286267

  11. Identifying functional zones of denitrification in heterogeneous aquifer systems by numerical simulations - a case study

    Science.gov (United States)

    Jang, E.; Kalbacher, T.; He, W.; Shao, H.; Schueth, C.; Kolditz, O.

    2014-12-01

    Nitrate contamination in shallow groundwater is still one of the common problems in many countries. Because of its high solubility and anionic nature, nitrate can easily leach through soil and persist in groundwater for decades. High nitrate concentration has been suggested as a major cause of accelerated eutrophication, methemoglobinemia and gastric cancer. There are several factors influencing the fate of nitrate in groundwater system, which is e.g. distribution of N- sources to soil and groundwater, distribution and amount of reactive substances maintaining denitrification, rate of nitrate degradation and its kinetics, and geological characteristics of the aquifer. Nitrate transport and redox transformation processes are closely linked to complex and spatially distributed physical and chemical interaction, therefore it is difficult to predict and quantify in the field and laboratory experiment. Models can play a key role in elucidation of nitrate reduction pathway in groundwater system and in the design and evaluation of field tests to investigate in situ remediation technologies as well. The goal of the current study is to predict groundwater vulnerability to nitrate, to identify functional zones of denitrification in heterogeneous aquifer systems and to describe the uncertainty of the predictions due to scale effects. For this aim, we developed a kinetic model using multi-component mass transport code OpenGeoSys coupling with IPhreeqc module of the geochemical solver PHREEQC. The developed model included sequential aerobic and nitrate-based respiration, multi-Monod kinetics, multi-species biogeochemical reactions, and geological characteristics of the groundwater aquifer. Moreover water-rock interaction such as secondary mineral precipitation was also included in this model. In this presentation, we focused on the general modelling approach and present the simulation results of nitrate transport simulation in a hypothetical aquifer systems based on data from

  12. Effect of Volatile Fatty Acids and Trimethylamine on Denitrification in Activated Sludge

    DEFF Research Database (Denmark)

    Eilersen, Ann Marie; Henze, Mogens; Kløft, Lene

    1995-01-01

    with the strongest effect, n-butyric acid has a moderate effect, while TMA only have a small effect in stimulating the rates. Propionic, isobutyric, n-valeric, isovaleric and caproic acid inhibit denitrification, nitrate reduction being more inhibited than nitrite reduction. The inhibitor concentration......M for n-valeric, 18 mM for isovaleric and 105 mM for caproic acid. KI values for nitrite reduction were found to be 196 mM for propionic, 32 mM for isobutyric, 57 mM for n-valeric, 18 mM for isovaleric and 110 mM for caproic acid. Inhibition of the rate of hydrolysis could not be determined....... Anaerobically treated wastewaters from fish, potato and onion industries all stimulated denitrification. Reject water from anaerobic treatment of excess sludge had no significant effect on the denitrification processes. For isobutyric, isovaleric and n-valeric acid the undissociated compounds appear to act as...

  13. Integrated assessment on groundwater nitrate by unsaturated zone probing and aquifer sampling with environmental tracers

    International Nuclear Information System (INIS)

    By employing chemical and isotopic tracers (15N and 18O in NO3−), we investigated the main processes controlling nitrate distribution in the unsaturated zone and aquifer. Soil water was extracted from two soil cores drilled in a typical agricultural cropping area of the North China Plain (NCP), where groundwater was also sampled. The results indicate that evaporation and denitrification are the two major causes of the distribution of nitrate in soil water extracts in the unsaturated zone. Evaporation from unsaturated zone is evidenced by a positive correlation between chloride and nitrate, and denitrification by a strong linear relationship between δ18ONO3 and ln(NO3−/Cl). The latter is estimated to account for up to 50% of the nitrate loss from soil drainage. In the saturated zone, nitrate is reduced at varying extents (100 mg/L and 10 mg/L at two sites, respectively), largely by dilution of the aquifer water. - Highlights: ► The transport of nitrate in unsaturated zone and saturated zone was integrated in a single investigation. ► Oxygen isotope enrichment factor for denitrification in the unsaturated zone was calculated. ► Denitrification loss in the aquifer was evaluated. - Denitrification loss has been evaluated in the unsaturated zone and saturated zone.

  14. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    Science.gov (United States)

    Stelzer, Robert S.; Bartsch, Lynn A.

    2012-06-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher on average in shallower core sections. However, core sections deeper than 5 cm accounted for 70% on average of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L, but the relationship broke down at higher concentrations (>5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates can

  15. Paracoccus denitrificans for the effluent recycling during continuous denitrification of liquid food.

    Science.gov (United States)

    Tippkötter, Nils; Roikaew, Wipa; Ulber, Roland; Hoffmann, Alexander; Denzler, Hans-Jörg; Buchholz, Heinrich

    2010-01-01

    Nitrate is an undesirable component of several foods. A typical case of contamination with high nitrate contents is whey concentrate, containing nitrate in concentrations up to 25 l. The microbiological removal of nitrate by Paracoccus denitrificans under formation of harmless nitrogen in combination with a cell retention reactor is described here. Focus lies on the resource-conserving design of a microbal denitrification process. Two methods are compared. The application of polyvinyl alcohol-immobilized cells, which can be applied several times in whey feed, is compared with the implementation of a two step denitrification system. First, the whey concentrate's nitrate is removed by ion exchange and subsequently the eluent regenerated by microorganisms under their retention by crossflow filtration. Nitrite and nitrate concentrations were determined by reflectometric color measurement with a commercially available Reflectoquant device. Correction factors for these media had to be determined. During the pilot development, bioreactors from 4 to 250 mg x L(-1) and crossflow units with membrane areas from 0.02 to 0.80 m(2) were examined. Based on the results of the pilot plants, a scaling for the exemplary process of denitrifying 1,000 tons per day is discussed. PMID:20187124

  16. Influence of macrophytes on nitrate removal in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Weisner, S.E.B.; Eriksson, Peder G.; Graneli, W.; Leonardson, L. (Lund Univ. (Sweden). Dept. of Ecology)

    1994-01-01

    Efficient nitrate removal from wetlands depends on denitrification. Macrophytes support denitrification by supplying organic carbon. Organic carbon available to denitrifying bacteria is released from plant litter and from living macrophytes. Macrophytes offer attachment surfaces for epiphytes, also producing organic matter, and for denitrifying bacteria. Emergent macrophytes are generally more productive than submerged macrophytes, but submerged macrophytes have more epiphytes and offer a larger attachment area in the water column for denitrifying bacteria. Emergent and submerged vegetation differ in their seasonal patterns of release of organic carbon. We conclude that a mixture of emergent and submerged macrophytes may be beneficial for nitrogen removal in wetlands with a surface-flow of nitrate-rich water. The influence of vegetation on wetland hydraulics must also be considered. A wetland design with deeper parts favoring submerged macrophytes alternating, along the water flow, with shallower parts covered by emergent macrophytes, may promote denitrification processes and distribution of water flow. 41 refs, 5 figs

  17. The mechanisms governing low denitrification capacity and high nitrogen oxide gas emissions in subtropical forest soils in China

    Science.gov (United States)

    Zhang, Jinbo; Yu, Yongjie; Zhu, Tongbin; Cai, Zucong

    2014-08-01

    Previous studies have demonstrated that denitrification rates are low in subtropical forest soils. However, the mechanisms governing this process are not well known. This study seeks to identify the mechanisms responsible for the low denitrification capacity and high nitrogen oxide gas ratio in subtropical forest soils in China. The denitrification capacity and nitric oxide (NO), nitrous oxide (N2O), and dinitrogen (N2) emission rates were measured using the acetylene inhibition method under conditions of added nitrate and anoxia. The abundance of nitrate reductase (narG), nitrite reductase (nirK), nitric oxide reductase (cnorB), and nitrous oxide reductase (nosZ) was measured using real-time, quantitative polymerase chain reaction, and sequencing of the nirK and norB products was performed to analyze the population structure of denitrifying bacteria. These results showed that the denitrification capacity in subtropical forest soils was lower than in temperate forest soils (p soil pH or soil organic C, was the key soil variable influencing denitrification, and Ehi alone could explain 68% of the variations in denitrification capacity. The high Ehi in subtropical soils led to a low abundance of nirK and significant differences in the population structure of denitrifying bacteria between subtropical and temperate soils. Therefore, Ehi was responsible for the low denitrification capacity in subtropical forest soils. The ratio of NO to total denitrification gas products (p forest soils than in temperate forest soils, while the reverse trend was observed for the ratio of N2 to total denitrification gas products (p soils. Thus, NO and N2O, but not N2, were the dominant denitrification gas products, accounting for 80%, even under the highly anaerobic conditions in subtropical forest soils and despite low denitrification capacity. These results were significant for understanding the "Hole in the Pipe" model and NO and N2O gases emission in subtropical forest soils. Despite

  18. Kinetics of addition of nitrogen-15 labelled nitrates to organic matter in a calcareous soil

    International Nuclear Information System (INIS)

    In a calcareous soil the transformation of added nitrates with or without wheat straw was studied. By using 15N it was possible to compare the net and real nitrification of the organic soil nitrogen, the mineral nitrogen organization and the denitrification losses. The observed priming effect was interpreted as a result of some modifications of nitrification-organization kinetics due to the high nitrate fertilization. The net nitrification is about three times less than the primary nitrification which is likely to be found even in a period of high organization. Finally the losses by denitrification appear even with a straw which immobilizes the nitrate nitrogen

  19. The mechanism of oxygen isotope fractionation during N2O production by denitrification

    Science.gov (United States)

    Lewicka-Szczebak, D.; Dyckmans, J.; Kaiser, J.; Marca, A.; Augustin, J.; Well, R.

    2015-10-01

    The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. We performed several soil incubation experiments. For the first time, Δ17O isotope tracing was applied to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found bacterial denitrification to be typically associated with almost complete oxygen isotope exchange and a stable difference in δ18O between soil water and the produced N2O of δ18O(N2O / H2O) = (17.5 ± 1.2) ‰. However, some experimental setups yielded oxygen isotope exchange as low as 56 % and a higher δ18O(N2O / H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O) showed a very significant correlation (R2 = 0.70, p denitrification. An oxygen isotope fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The results suggest that during denitrification the isotope exchange

  20. Optimizing nitrate removal in woodchip beds treating aquaculture effluents

    DEFF Research Database (Denmark)

    von Ahnen, Mathis; Pedersen, Per Bovbjerg; Hoffmann, Carl Christian;

    2016-01-01

    Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical ...... as it presents an alternative method for removing nitrates from aquaculture effluents especially for less intensive fish farms. Furthermore, it shows how this method can be optimized to yield higher removal rates of nitrate.......Nitrate is typically removed from aquaculture effluents using heterotrophic denitrification reactors. Heterotrophic denitrification reactors, however, require a constant input of readily available organic carbon (C) sources which limits their application in many aquaculture systems for practical...... (HCO3 -) inlet concentration (0.50-1.59 g HCO3 -/l) on the removal rate of NO3 -N, and additional organic and inorganic nutrients, in effluent deriving from an experimental recirculating aquaculture system (RAS).Volumetric NO3 -N removal rates ranged from 5.20 ± 0.02 to 8.96 ± 0.19 g/m3/day and were...

  1. Denitrification alternates between a source and sink of nitrous oxide in the hypolimnion of a thermally stratified reservoir

    Science.gov (United States)

    Nitrogen loading from developed watersheds to aquatic ecosystems can stimulate microbial denitrification, a process which reduces nitrate (NO3-) to dinitrogen (N2) or nitrous oxide (N2O), the latter a potent greenhouse gas. While aquatic ecosystems are a globally significant sou...

  2. Denitrification in restored and constructed wetlands adjacent to crop fields on the Mid-Atlantic coastal plain

    Science.gov (United States)

    Fertilizer applications on crop fields are a significant source of nitrate (NO3), and groundwater concentrations are frequently 500-1000 µM. We show that groundwater transport of agricultural NO3 results in significant denitrification in adjacent wetlands in the Choptank Basin on the Delmarva Penins...

  3. Semitechnical investigations regarding the integration of biological phosphorus elimination and denitrification into two-stage sludge activation plants. Final report

    International Nuclear Information System (INIS)

    Simultaneous denitrification is achieved by a measuring and control device which controls the aeration intensity of the activated sludge basin. Decisive parameters are the concentrations of nitrate or, alternatively, ammonium (higher priority) and oxygen present in the site of reaction (activated sludge tank). The ammonium control device which is to be operated in the second activated sludge unit, first cascade, is described. (orig.)

  4. Denitrification on internal carbon sources in RAS is limited by fibers in fecal waste of rainbow trout

    NARCIS (Netherlands)

    Meriac, A.; Eding, E.H.; Kamstra, A.; Busscher, J.P.; Schrama, J.W.; Verreth, J.A.J.

    2014-01-01

    Denitrification on internal carbon sources offers the advantage to control nitrate levels in recirculating aquaculture systems (RAS) by using the fecal carbon produced within the husbandry system. However, it is not clear to which extent fecal carbon can be utilized by the microbial community within

  5. Use of microbial analysis to evaluate denitrification in the karstic aquifer of Okinawa, Japan

    Science.gov (United States)

    Yasumoto, J.

    2014-12-01

    Denitrification, a microbial process in the nitrogen cycle, is a facultative respiratory pathway in which nitrate (NO3-), nitrite (NO2-), nitric oxide (NO), and nitrous oxide (N2O), successively, are reduced to nitrogen gas (N2). This study explores the use of microbial analysis to evaluate the processes involved in nitrate attenuation in groundwater. Polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) is used to identify denitrifiers based only on their 16SrRNA gene sequences, and Real-Time PCR analysis is used to quantify nitrite reducing genes (nirK and nirS), this suggest that a new methods for detecting denitrification activity by comparing the gene dosage that has been detected by RT-PCR and the value of the δ15NNO3- and δ18ONO3-. This study focuses on a zone of significant NO3- attenuation occurring at underground dam catchment area in the karstic Ryukyu limestone aquifer, which is located southern part of Okinawa, Japan. As a result of microbial analysis, the bacteria were detected at all observation points which have been reported to have denitrification ability. And it has been confirmed that the bacteria has a gene nirS which is related to denitrification. In addition, many bacteria related to denitrification have been extracted from suspended solids more than from groundwater in the aquifer. And, the correlation was high between nirK /nirS gene dosage that has been detected by RT-PCR and the value of the δ15N and δ18O; therefore, this study demonstrates the effectiveness of using Real-Time PCR analysis for providing insights into the processes affecting nitrate attenuation in ground water.

  6. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    International Nuclear Information System (INIS)

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  7. Geomorphic and chemical controls on sediment denitrification in restored urban streams

    Science.gov (United States)

    Tuttle, A. K.; McMillan, S. K.

    2011-12-01

    In the Southeastern United States, recent endeavors in stream restoration address bank destabilization, catastrophic flooding, and water quality issues resulting from urban stream syndrome. Several projects in the city of Charlotte, North Carolina are underway with goals of stabilizing stream banks, improving local water quality and enhancing ecological functions. Restoration of natural stream pattern and profile provides an opportunity to mitigate eutrophication by enhancing nitrogen uptake and removal in stream sediments. Four restored headwater streams, and a degraded and reference stream were included in this study to examine sediment denitrification rates. Several environmental factors (e.g. NO3¬ concentration, dissolved organic carbon, sediment carbon) as well as proximity to engineered grade-control structures, riffles, and pools are examined as possible drivers affecting nitrogen removal. We used an acetylene block method to measure denitrification rates using slurries of stream sediments from different locations in each reach, including steps, riffles, and pools. Although average denitrification rates were variable (ranging from 64 to 864 μmol N hr-1 m-2), restored streams had the highest denitrification rates, especially those with a restored floodplain. At the NO3-concentrations typically observed in these streams during baseflow, (0.50 ±0.2 ¬ mg/L), NO3- availability appears to be the primary limiting factor for denitrification rates. Generally, sediments collected immediately downstream of grade control structures had highest rates of NO3- removal, which we hypothesize is linked to deposition and burial of benthic organic material, enhancing development of active microbial populations at anaerobic microsites. Laboratory experiments amended with NO3- and labile carbon as glucose showed that while NO3- was likely primarily controlling rates, labile carbon increased denitrification rates with NO3- saturation at approximately 1 mg/L.

  8. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost

    International Nuclear Information System (INIS)

    Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost.

  9. Alternative solutions for the bio-denitrification of landfill leachates using pine bark and compost

    Energy Technology Data Exchange (ETDEWEB)

    Trois, Cristina, E-mail: troisc@ukzn.ac.za [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering. School of Civil Engineering, Surveying and Construction. University of KwaZulu-Natal, Howard College Campus, Durban, 4041 (South Africa); Pisano, Giulia [CRECHE Centre for Research in Environmental, Coastal and Hydrological Engineering. School of Civil Engineering, Surveying and Construction. University of KwaZulu-Natal, Howard College Campus, Durban, 4041 (South Africa); Oxarango, Laurent [LTHE (UMR 5564 CNRS/INPG/IRD/UJF), Universite de Grenoble, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-06-15

    Nitrified leachate may still require an additional bio-denitrification step, which occurs with the addition of often-expensive chemicals as carbon source. This study explores the applicability of low-cost carbon sources such as garden refuse compost and pine bark for the denitrification of high strength landfill leachates. The overall objective is to assess efficiency, kinetics and performance of the substrates in the removal of high nitrate concentrations. Garden refuse and pine bark are currently disposed of in general waste landfills in South Africa, separated from the main waste stream. A secondary objective is to assess the feasibility of re-using green waste as by-product of an integrated waste management system. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests and leaching columns packed with immature compost and pine bark. Biologically treated leachate from a Sequencing Batch Reactor (SBR) with nitrate concentrations of 350, 700 and 1100 mgN/l were used for the trials. Preliminary results suggest that, passed the acclimatization step (40 days for both substrates), full denitrification is achieved in 10-20 days for the pine bark and 30-40 days for the compost.

  10. Effect of high electron donor supply on dissimilatory nitrate reduction pathways in a bioreactor for nitrate removal

    DEFF Research Database (Denmark)

    Behrendt, Anna; Tarre, Sheldon; Beliavski, Michael;

    2014-01-01

    The possible shift of a bioreactor for NO3- removal from predominantly denitrification (DEN) to dissimilatory nitrate reduction to ammonium (DNRA) by elevated electron donor supply was investigated. By increasing the C/NO3- ratio in one of two initially identical reactors, the production of high ...

  11. Hyporheic Zone Denitrification: Flow Path Controls and Scaling Consequences for N budgets for the Whole Stream

    Science.gov (United States)

    Harvey, J. W.; Bohlke, J. K.; Voytek, M. A.; Scott, D.; Tobias, C. R.

    2013-12-01

    Denitrification is thought to be enhanced by hyporheic transport but there is little direct evidence from the field that relates controlling processes to whole-stream consequences for N budgets. To demonstrate at a field site we injected 15 NO3-, Br (conservative tracer) and SF6 (gas exchange tracer) and compared measures of whole-stream denitrification with in situ hyporheic denitrification measurements in both shallow and deeper flow paths of contrasting geomorphic units such as channel thalwegs and side cavities. Hyporheic denitrification accounted for between a few percent and 200% of whole-stream denitrification. The reaction rate constant was positively related to hyporheic exchange rate (which increases substrate delivery), concentrations of substrates DOC and nitrate, microbial denitrifier abundance as indicated by nirS, and measures related to granular surface area and presence of anoxic microzones in otherwise suboxic porewater. Reaction efficiency in individual hyporheic flow paths was quantified as the dimensionless product of reaction rate constant and hyporheic residence time, λhzτhz (also defined as a Damköhler number, Daden-hz). At the stream reach scale the reaction significance was quantified by a dimensionless index Rs that combines the product of Da hz and the proportion of stream discharge passing through the hyporheic zone. Reaction progress was optimal in the subset of hyporheic flow paths where Da den-hz ~ 1, which avoids inefficient transport through very long flow paths after substrates have been used up but also avoids inefficient pathways that require repeated entries and exits through very short hyporheic flow paths to complete the reaction. We conclude that the zone of significant denitrification in the streambed can be substantially less than the full depth of the hyporheic zone, which is one reason previous researchers were not able to explain whole-stream denitrification rates based on total hyporheic-zone metrics such as

  12. Denitrification in agriculturally impacted streams: seasonal changes in structure and function of the bacterial community.

    Directory of Open Access Journals (Sweden)

    Erin Manis

    Full Text Available Denitrifiers remove fixed nitrogen from aquatic environments and hydrologic conditions are one potential driver of denitrification rate and denitrifier community composition. In this study, two agriculturally impacted streams in the Sugar Creek watershed in Indiana, USA with different hydrologic regimes were examined; one stream is seasonally ephemeral because of its source (tile drainage, whereas the other stream has permanent flow. Additionally, a simulated flooding experiment was performed on the riparian benches of the ephemeral stream during a dry period. Denitrification activity was assayed using the chloramphenicol amended acetylene block method and bacterial communities were examined based on quantitative PCR and terminal restriction length polymorphisms of the nitrous oxide reductase (nosZ and 16S rRNA genes. In the stream channel, hydrology had a substantial impact on denitrification rates, likely by significantly lowering water potential in sediments. Clear patterns in denitrification rates were observed among pre-drying, dry, and post-drying dates; however, a less clear scenario was apparent when analyzing bacterial community structure suggesting that denitrifier community structure and denitrification rate were not strongly coupled. This implies that the nature of the response to short-term hydrologic changes was physiological rather than increases in abundance of denitrifiers or changes in composition of the denitrifier community. Flooding of riparian bench soils had a short-term, transient effect on denitrification rate. Our results imply that brief flooding of riparian zones is unlikely to contribute substantially to removal of nitrate (NO3- and that seasonal drying of stream channels has a negative impact on NO3- removal, particularly because of the time lag required for denitrification to rebound. This time lag is presumably attributable to the time required for the denitrifiers to respond physiologically rather than a change

  13. Denitrification Losses and N2O Emissions from Nitrogen Fertilizer Applied to a Vegetable Field

    Institute of Scientific and Technical Information of China (English)

    CAO Bing; He Fa-Yun; Xu Qiu-Ming; Yin Bin; CAI Gui-Xin

    2006-01-01

    A field experiment was conducted on Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Olsson) in a Nanjing suburb in 2003. The experiment included 4 treatments in a randomized complete block design with 3 replicates: zero chemical fertilizer N (CK); urea at rates of 300 kg N ha-1 (U300) and 600 kg N ha-1 (U600), both as basal and two topdressings; and polymer-coated urea at a rate of 180 kg N ha-1 (PCU180) as a basal application. The acetylene inhibition technique was used to measure denitrification (N2 + N2O) from intact soil cores and N2O emissions in the absence of acetylene. Results showed that compared to CK total denitrification losses were significantly greater (P ≤ 0.05) in the PCU180, U300, and U600 treatments, while N2O emissions in the U300 and U600 treatments were significantly higher (P ≤ 0.05) than CK. In the U300 and U600 treatments peaks of denitrification and N2O emission were usually observed after N application. In the polymer-coated urea treatment (PCU180) during the period 20 to 40 days after transplanting, higher denitrification rates and N2O fluxes occurred. Compared with urea, polymer-coated urea did not show any effect on reducing denitrification losses and N2O emissions in terms of percentage of applied N. As temperature gradually decreased from transplanting to harvest, denitrification rates and N2O emissions tended to decrease. A significant (P ≤ 0.01) positive correlation occurred between denitrification (r = 0.872) or N2O emission (r = 0.781) flux densities and soil temperature in the CK treatment with a stable nitrate content during the whole growing season.

  14. Studies on denitrification performance of tricking filters

    International Nuclear Information System (INIS)

    Trickling filters are one of the oldest methods of biological waste water purification, widely used ever since they were first developed. These filters are mostly used for aerobic purification of water as highly polluted or lightly polluted reactors. While these systems are very useful for the elemination of organic pollution and the nitrification of the waste waters, denitrification of the whole plant poses considerable problems. The question is in how far trickling filters can be used as denitrification reactors. The conditions of successful denitrification in trickling filters is investigated, denitrification performance is established. Studies were conducted in laboratory, semi-industrial and industrial scale. (BBR)

  15. Enhanced denitrification of Pseudomonas stutzeri by a bioelectrochemical system assisted with solid-phase humin.

    Science.gov (United States)

    Xiao, Zhixing; Awata, Takanori; Zhang, Dongdong; Zhang, Chunfang; Li, Zhiling; Katayama, Arata

    2016-07-01

    The denitrification reactions performed by Pseudomonas stutzeri JCM20778 were enhanced electrochemically with the use of solid-phase humin, although P. stutzeri itself was incapable of receiving electrons directly from the graphite electrode. Electrochemically reduced humin enhanced the microbial, but not abiotic, denitrification reactions. Electric current and cyclic voltammetry analyses suggested that the solid-phase humin functioned as an electron donor for the denitrification reactions of P. stutzeri. Nitrogen balance study and the estimation of the first-order rate constants of the consecutive denitrification reactions suggested that the solid-phase humin enhanced all reducing reactions from nitrate to nitrogen gas. Considering the wide distribution of humin in the environment, the findings that solid-phase humin can assist in electron transfer, from the electrode to a denitrifying bacterium that has little ability to directly utilize external electrons, has important implications for the widespread application of bioelectrochemical systems assisted by solid-phase humin for enhancing microbial denitrification. PMID:26905325

  16. Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea

    OpenAIRE

    Dähnke, K.; B. Thamdrup

    2013-01-01

    The global marine nitrogen cycle is constrained by nitrogen fixation as a source of reactive nitrogen, and denitrification or anammox on the sink side. These processes with their respective isotope effects set the marine nitrate 15N-isotope value (δ15N) to a relatively constant average of 5‰. This value can be used to better assess the magnitude of these sources and sink terms, but the underlying assumption is that sedimentary...

  17. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera pantotropha

    OpenAIRE

    Robertson, L.A.; van Niel, E.W.; Torremans, R.A.; Kuenen, J. G.

    1988-01-01

    Thiosphaera pantotropha is capable of simultaneous heterotrophic nitrification and aerobic denitrification. Consequently, its nitrification potential could not be judged from nitrite accumulation, but was estimated from complete nitrogen balances. The maximum rate of nitrification obtained during these experiments was 93.9 nmol min−1 mg of protein−1. The nitrification rate could be reduced by the provision of nitrate, nitrite, or thiosulfate to the culture medium. Both nitrification and denit...

  18. Denitrification: An important pathway for nitrous oxide production in tropical mangrove sediments (Goa, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; LokaBharathi, P.A.; Bonin, P.C.; Michotey, V.D.

    (Corredor et al., 1999). Estuaries and coastal regions account for approximately 60% of the total oceanic N 2 O flux (Bange et al., 1996). The N 2 O molecule is a precursor to compounds involved in the destruction of the stratospheric ozone layer...). Nitrate respiration is kinetically and thermodynamically favorable (Aivasidis et al., 2005) in oxygen depleted environments and is preferred over other electron acceptors (Canfield et al., 2005). Denitrification activity also enhances NO 2 - uptake...

  19. Impact of carbon-dosing on micro-pollutants removal in MBBR post-denitrification systems

    OpenAIRE

    Escola Casas, Monica; Torresi, Elena; Plósz, Benedek G.; Bester, Kai; Christensen, M.

    2015-01-01

    Dosing of methanol or ethanol is a common practice in post-denitrification steps during wastewater treatment by MBBR technology. The carbon-dosage impact on micro- pollutants removal, in terms of type (methanol or ethanol) and concentration was investigated. First, with continuous operation and indigenous micro-pollutants concentrations, different methanol and ethanol dosages were used to manipulate the carbon-to-nitrate ratio in two MBBRs. Atenolol, citalopram and trimethoprim were efficient...

  20. Denitrification in a BTEX Contaminated Aquifer Containing Reduced Sulfur

    Science.gov (United States)

    Eckert, P.; Appelo, C.; Wisotzky, F.; Obermann, P.

    2001-05-01

    At a former gasworks plant in Duesseldorf (Germany) a massive soil and groundwater contamination with BTEX (up to 100 mg/l) and to a minor extent with PAH (up to 10 mg/l) were detected. Mainly due to sulfate and iron-(III) reduction, a natural biodegradation has occurred and restricted the length of the contaminant plume in the direction of groundwater flow to only 600 m. The active remediation strategy at this site includes nitrate-enhanced in-situ bioremediation of the remaining contaminants in the plume. Nitrate was infiltrated in the contaminated aquifer during a field test to study the efficacy of enhanced natural attenuation. Degradation of hydrocarbons under denitrifying has been proved by numerous laboratory and field studies. However, at this site the competing reaction of nitrate with hydrocarbons and reduced sulfur components has to be considered. The oxidation of pyrite by nitrate in pristine aquifers is well known. The Duesseldorf aquifer contains FeS, pyrite and Fe-calcite precipitated during over 50 years of natural attenuation. The hydrogeochemical transport model PHREEQC-2 is used to simulate the distribution of chemical species and reaction rates along the flow path between the infiltration well and two multilevel wells . The complicated suite of reactions caused by the reduction of nitrate is evaluated by the comparison of modeled and measured data. At the Duesseldorf site the concomitant presence of nitrate, Fe(II) and BTEX/PAHs showed that the reactions did not evolve to thermodynamic equilibrium and were controlled by kinetics. The very good fit of observed and model calculations illustrates that the inorganic chemical reactions during the field test are generally well understood. The kinetic reactions could be modelled with rate equations from the literature based on oxygen, and which were extended with nitrate. Denitrification rates with BTEX compounds and with FeS were found to be comparable, but the oxidation of Fe(II) and FeS occurred

  1. Potential For Denitrification near Reclaimed Water Application Sites in Orange County, Florida, 2009

    Science.gov (United States)

    Byrne, Michael J., Sr.; Smith, Richard L.; Repert, Deborah A.

    2012-01-01

    The potential for denitrification was tested in water samples from four Upper Floridan aquifer wells near a reclaimed water application site, in west Orange County Florida, and two adjacent springs. Results of the study indicate that denitrifying bacteria are present in the groundwater and spring water samples, and that these bacteria can readily denitrify the waters when suitable geochemical conditions exist. The acetylene block technique was used to assess nitrous oxide in the samples that was produced by denitrification. The laboratory incubation experiment consisted of four different treatments to each of the six samples: (1) ambient water (no added nitrate or glucose), (2) ambient water amended with 1.4 milligrams per liter (mg/L) nitrate as nitrogen (N), (3) ambient water amended with 5.0 mg/L nitrate as N, and (4) ambient water amended with 5.0 mg/L nitrate as N and 10 mg/L glucose as C6H12O6. A companion set of incubations using treatment 2 tracked changes in nitrate and nitrite concentration with time. The rate of denitrification in treatment 2 ranged from 0.059 to 0.124 milligram per liter per day nitrogen [(mg/L)/d N] and in treatment 3 ranged from 0.071 to 0.226 (mg/L)/d N. At all of the sampling sites, treatment 4 yielded denitrification rates at least an order of magnitude greater than those measured for the other treatments; rates ranged from 2.3 to 4.4 (mg/L)/d N. The electron donor supply, dissolved organic carbon, in the groundwater and springwater is sufficient to remove at least 1.1-1.4 mg/L nitrate as N in 20 to 30 days, as indicated by nitrous oxide production rates under ambient conditions (treatment 1). The even higher nitrate removal observed with addition of supplemental carbon in treatment 4 suggests that carbon is a limiting nutrient in this reaction. Denitrifying activity might explain the low ambient nitrate concentrations in the Upper Floridan aquifer in this area.

  2. Sediment Nitrification, Denitrification, and Nitrous Oxide Production in a Deep Arctic Lake †

    OpenAIRE

    Klingensmith, K. M.; Alexander, V.

    1983-01-01

    We used a combination of 15N tracer methods and a C2H2 blockage technique to determine the role of sediment nitrification and denitrification in a deep oligotrophic arctic lake. Inorganic nitrogen concentrations ranged between 40 and 600 nmol · cm−3, increasing with depth below the sediment-water interface. Nitrate concentrations were at least 10 times lower, and nitrate was only detectable within the top 0 to 6 cm of sediment. Eh and pH profiles showed an oxidized surface zone underlain by m...

  3. 13N, 15N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification

    International Nuclear Information System (INIS)

    13N- and 15N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap [13N]- or [15N, 15N]hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mm. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during denitrification, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in denitrification. In addition, the assimilation of inorganic nitrogen was studied in P. dentrificans using 13N as tracer. At low concentrations (-8 M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N2. Similarly, with 15 mm [13N]nitrate, 5% of the label went into metabolites and 95% to N2. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction

  4. Nitrate removal by electro-bioremediation technology in Korean soil

    International Nuclear Information System (INIS)

    The nitrate concentration of surface has become a serious concern in agricultural industry through out the world. In the present study, nitrate was removed in the soil by employing electro-bioremediation, a hybrid technology of bioremediation and electrokinetics. The abundance of Bacillus spp. as nitrate reducing bacteria were isolated and identified from the soil sample collected from a greenhouse at Jinju City of Gyengsangnamdo, South Korea. The nitrate reducing bacterial species were identified by 16 s RNA sequencing technique. The efficiency of bacterial isolates on nitrate removal in broth was tested. The experiment was conducted in an electrokinetic (EK) cell by applying 20 V across the electrodes. The nitrate reducing bacteria (Bacillus spp.) were inoculated in the soil for nitrate removal process by the addition of necessary nutrient. The influence of nitrate reducers on electrokinetic process was also studied. The concentration of nitrate at anodic area of soil was higher when compared to cathode in electrokinetic system, while adding bacteria in EK (EK + bio) system, the nitrate concentration was almost nil in all the area of soil. The bacteria supplies electron from organic degradation (humic substances) and enhances NO3- reduction (denitrification). Experimental results showed that the electro-bio kinetic process viz. electroosmosis and physiological activity of bacteria reduced nitrate in soil environment effectively. Involvement of Bacillus spp. on nitrification was controlled by electrokinetics at cathode area by reduction of ammonium ions to nitrogen gas. The excellence of the combined electro-bio kinetics technology on nitrate removal is discussed.

  5. Denitrification using immersed membrane bioreactors

    OpenAIRE

    McAdam, Ewan J.

    2008-01-01

    Nitrate is practically ubiquitous in waters abstracted for municipal potable water production in Europe due to decades of intensive agricultural practice. Ion exchange is principally selected to target abstracted waters with elevated nitrate concentrations. However, the cost associated with disposal of the waste stream has re-ignited interest in destructive rather concentrative technologies. This thesis explores the potential of membrane bioreactor (MBR) technology for the remo...

  6. Denitrification capacity of bioreactors filled with refuse at different landfill ages

    International Nuclear Information System (INIS)

    The denitrification capacity of refuse at different landfill ages in bioreactor landfill system was studied. Three reactors filled with 1-year-old refuse (R1), 6-year-old refuse (R6) and 11-year-old refuse (R11), respectively, were operated in the experiment. Nitrate solution (1000 mg NO3--N L-1) was added into each reactor. The results showed that the reactors were all able to consume nitrate. However, 1-year-old refuse in R1 had both a higher nitrate reduction rate and concentration of N2. In addition, vertical differences in nitrate removal along the depth of R1 were observed. The bottom-layer refuse and the middle-layer refuse both showed higher efficiency in nitrate depletion than the top layer. Furthermore, N2O accumulation was found in R11 with the concentration up to 19.3% of the released gas. These results suggested that 1-year-old refuse, which was partly degraded, was more suitable to use as denitrification medium.

  7. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles

    Science.gov (United States)

    Su, Yinglong; Zheng, Xiong; Chen, Yinguang; Li, Mu; Liu, Kun

    2015-10-01

    The increasing production and utilization of copper oxide nanoparticles (CuO NPs) result in the releases into the environment. However, the influence of CuO NPs on bacterial denitrification, one of the most important pathways to transform nitrate to dinitrogen in environment, has seldom been studied. Here we reported that CuO NPs caused a significant alteration of key protein expressions of a model denitrifier, Paracoccus denitrificans, leading to severe inhibition to denitrification. Total nitrogen removal efficiency was decreased from 98.3% to 62.1% with the increase of CuO NPs from 0.05 to 0.25 mg/L. Cellular morphology and integrity studies indicated that nanoparticles entered the cells. The proteomic bioinformatics analysis showed that CuO NPs caused regulation of proteins involved in nitrogen metabolism, electron transfer and substance transport. The down-regulation of GtsB protein (responsible for glucose transport) decreased the production of NADH (electron donor for denitrification). Also, the expressions of key electron-transfer proteins (including NADH dehydrogenase and cytochrome) were suppressed by CuO NPs, which adversely affected electrons transfer for denitrification. Further investigation revealed that CuO NPs significantly inhibited the expressions and catalytic activities of nitrate reductase and nitrite reductase. These results provided a fundamental understanding of the negative influences of CuO NPs on bacterial denitrification.

  8. Mass Spectrometric Studies of the Effect of pH on the Accumulation of Intermediates in Denitrification by Paracoccus denitrificans

    OpenAIRE

    Thomsen, Jens K.; Geest, Torben; Cox, Raymond P.

    1994-01-01

    We have used a quadrupole mass spectrometer with a gas-permeable membrane inlet for continuous measurements of the production of N2O and N2 from nitrate or nitrite by cell suspensions of Paracoccus denitrificans. The use of nitrate and nitrite labeled with 15N was shown to simplify the interpretation of the results when these gases were measured. This approach was used to study the effect of pH on the production of denitrification intermediates from nitrate and nitrite under anoxic conditions...

  9. Numerical modeling of coupled nitrification-denitrification in sediment perfusion cores from the hyporheic zone of the Shingobee River, MN

    Science.gov (United States)

    Sheibley, R.W.; Jackman, A.P.; Duff, J.H.; Triska, F.J.

    2003-01-01

    Nitrification and denitrification kinetics in sediment perfusion cores were numerically modeled and compared to experiments on cores from the Shingobee River MN, USA. The experimental design incorporated mixing groundwater discharge with stream water penetration into the cores, which provided a well-defined, one-dimensional simulation of in situ hydrologic conditions. Ammonium (NH+4) and nitrate (NO-3) concentration gradients suggested the upper region of the cores supported coupled nitrification-denitrification, where groundwater-derived NH+4 was first oxidized to NO-3 then subsequently reduced via denitrification to N2. Nitrification and denitrification were modeled using a Crank-Nicolson finite difference approximation to a one-dimensional advection-dispersion equation. Both processes were modeled using first-order reaction kinetics because substrate concentrations (NH+4 and NO-3) were much smaller than published Michaelis constants. Rate coefficients for nitrification and denitrification ranged from 0.2 to 15.8 h-1 and 0.02 to 8.0 h-1, respectively. The rate constants followed an Arrhenius relationship between 7.5 and 22 ??C. Activation energies for nitrification and denitrification were 162 and 97.3 kJ/mol, respectively. Seasonal NH+4 concentration patterns in the Shingobee River were accurately simulated from the relationship between perfusion core temperature and NH+4 flux to the overlying water. The simulations suggest that NH+4 in groundwater discharge is controlled by sediment nitrification that, consistent with its activation energy, is strongly temperature dependent. ?? 2003 Elsevier Ltd. All rights reserved.

  10. The use of organic wastes at different degrees of maturity as carbon sources for denitrification of landfill leachate.

    Science.gov (United States)

    Plüg, B D; Cibati, A; Trois, C

    2015-12-01

    In this study different garden refuses were investigated to ascertain their efficiency to act as carbon sources in a denitrification system. Six different garden refuse materials were studied: commercial and domestic garden refuse raw (CGR RAW, DGR RAW), immaturely composted domestic and commercial garden refuse (DGR 10 and CGR 10 respectively), commercial garden refuse composted by Dome Aeration Technology and by "turned windrow" technology (DAT and TW). Different concentrations of synthetic nitrate solution were used to assess the efficiency of each substrate. The results demonstrate that all substrates were able to sustain the denitrification process. However, due to its higher C/N ratio the CGR RAW was the better performing of the materials, reaching 100% removal after 8 and 12h for the 100 and 500 mg L(-1) respectively and after 11 days for 2000 mg L(-1). Kinetic studies revealed that the zero-order reaction better describes the process indicating a denitrification rate independent from the nitrate concentrations investigated when 100 and 500 mg L(-1) of nitrate were used. The study demonstrated the suitability of organic municipal solid wastes to sustain denitrification, opening a new scenario towards a low cost and in situ solution for treatment of landfill leachate by using wastes, otherwise disposed of in landfill. PMID:26431678

  11. Nitrification—Denitrification Loss of Added Nitrogen in Flooded RIce Rhizosphere

    Institute of Scientific and Technical Information of China (English)

    LIXIN-HUI; ZHUZHAO-LIANG; 等

    1994-01-01

    Nitrification-denitrification losses of 15N-labelled nitrate and ammonium applied to the rhizos phere and nonrhizosphere of flooded rice were evaluated in 2 greenhouse rhizobox experiments.The loss of added N via denitrification was estimated directly by measuring the total fluxes of (N2O+N2)12N,It was found that 67% and 51%-56% of 15N-nitrate added to rice rhizosphere were lost as (N2O+N2)-15N in the 2 experiments,respectively,which were comparable to that added to norhizosphere soil(70%and 47%,respectively),implying that the denitrifying activity in rice rhizosphere was as high as that in nonrhizosphere soil.However,only trace amounts (0-0\\3% of added N)were recovered as (N2O+N2)-15N when 15N-ammonium was applied to either rhizosphere or nonrhizosphere,which seems to indicate that the nitrifying activity in the either rhizosphere of nonrhizosphere soils was quite low.The apparent denitrification calculated from 15N balance studies was 10%-47% higher than the total flux of (N2O+N2)-15N.Reasons for the large differences can not be explained satisfactorily.Though the denitrifying activity in rhizosphere was high and comparable to that in nonrhizosphere soil.presumably due to the low nitrifying activity and /or the strong competition of N uptake against denitrification.the nitrification-denitrification taking place in rhizosphere could not be an important mechanism of loss of ammonium N in flooded rice-soil system.

  12. Effects of polybrominated diphenyl ethers and plant species on nitrification, denitrification and anammox in mangrove soils.

    Science.gov (United States)

    Chen, Juan; Zhou, Hai Chao; Pan, Ying; Shyla, Farzana Shazia; Tam, Nora Fung-Yee

    2016-05-15

    Little is known about polybrominated diphenyl ethers (PBDEs) and planting affect biogeochemical processes, and their impact on microbial nitrogen (N) transformation in soil. A 12-month microcosm experiment was conducted to understand the effects of a mixture of PBDEs at two contamination levels, 2 and 20 mg kg(-1)dry weight representing low and high soil contamination, respectively, using two mangrove plant species, namely Kandelia obovata (Ko) and Bruguiera gymnorrhiza (Bg), on nitrification, denitrification and anammox in mangrove soils. No significant changes in these N transformation processes were found at month 3 and at a low level of PBDEs in both plant species, suggesting that short-term exposure to 2 mg kg(-1) contamination did not affect microbial N transformation. At month 12, a high level of PBDE contamination significantly decreased the nitrification potential activity and the copy numbers of archaeal amoA and bacterial amoA gene in Ko soil, but such inhibitory effect was not significant in Bg soil. On the contrary, the denitrification-related parameters, including the activities of nitrate reductase and nitrite reductase, potential denitrification activity and copy numbers of nirK, nirS and nosZ gene, were stimulated by a high level of PBDE contamination in both Ko and Bg soils, and the stimulation was higher in the more anaerobic Bg soil. Different from denitrification, a high level of PBDE contamination decreased the copy numbers of anammox bacterial 16S rRNA gene in Bg soil but not in Ko soil; this was possibly related to the lower nitrate concentration in Bg soil that might inhibit the growth of anammox bacteria. These results indicated that the effects of PBDEs on microbial N transformation were plant species-specific, with the nitrifying microorganisms in Ko soil more susceptible to PBDE contamination, while denitrification and anammox in Bg soil were more sensitive. PMID:26901803

  13. Removal of nitrate using Paracoccus sp. YF1 immobilized on bamboo carbon

    International Nuclear Information System (INIS)

    Highlights: ► Paracoccus sp. immobilized on bamboo carbon used for the denitrification. ►The rate of denitrification increased using the immobilized cells. ► 99.8% denitrification was maintained after 10-cycle reuse. ► Demonstrating an excellent reusability and a potential technique. - Abstract: Paracoccus sp. strain YF1 immobilized on bamboo carbon was developed for the denitrification. The results show that denitrification was significantly improved using immobilized cells compared to that of free cells, where denitrification time decreased from 24 h (free cells) to 15 h (immobilized cells). The efficiency of denitrification increased from 4.57 mg/(L h) (free cells) to 6.82 mg/(L h) (immobilized cells). Kinetics studies suggest that denitrification by immobilized YF1 cells fitted well to the zero-order model. Scanning electron microscopy (SEM) demonstrated that firstly, the bacteria became stable on the inside and exterior of the bamboo carbon particles and secondly, they formed biofilm after adhesion. Various factors and their influences on biological denitrification were investigated, namely temperature, pH, initial nitrate concentrations and carbon sources. The immobilized cells exhibited more nitrate removal at various conditions compared to free cells since bamboo carbon as a carrier protects cells against changes in environmental conditions. Denitrification using the YF1 immobilized in bamboo carbon was also maintained 99.8% after the tenth cycle reuse, thus demonstrating excellent reusability. Finally, wastewater was treated using the immobilized cells and the outcome was that nitrogen was completely removed by bamboo-immobilized YF1.

  14. Relative importance of plant uptake and plant associated denitrification for removal of nitrogen from mine drainage in sub-arctic wetlands.

    Science.gov (United States)

    Hallin, Sara; Hellman, Maria; Choudhury, Maidul I; Ecke, Frauke

    2015-11-15

    Reactive nitrogen (N) species released from undetonated ammonium-nitrate based explosives used in mining or other blasting operations are an emerging environmental problem. Wetlands are frequently used to treat N-contaminated water in temperate climate, but knowledge on plant-microbial interactions and treatment potential in sub-arctic wetlands is limited. Here, we compare the relative importance of plant uptake and denitrification among five plant species commonly occurring in sub-arctic wetlands for removal of N in nitrate-rich mine drainage in northern Sweden. Nitrogen uptake and plant associated potential denitrification activity and genetic potential for denitrification based on quantitative PCR of the denitrification genes nirS, nirK, nosZI and nosZII were determined in plants growing both in situ and cultivated in a growth chamber. The growth chamber and in situ studies generated similar results, suggesting high relevance and applicability of results from growth chamber experiments. We identified denitrification as the dominating pathway for N-removal and abundances of denitrification genes were strong indicators of plant associated denitrification activity. The magnitude and direction of the effect differed among the plant species, with the aquatic moss Drepanocladus fluitans showing exceptionally high ratios between denitrification and uptake rates, compared to the other species. However, to acquire realistic estimates of N-removal potential of specific wetlands and their associated plant species, the total plant biomass needs to be considered. The species-specific plant N-uptake and abundance of denitrification genes on the root or plant surfaces were affected by the presence of other plant species, which show that both multi- and inter-trophic interactions are occurring. Future studies on N-removal potential of wetland plant species should consider how to best exploit these interactions in sub-arctic wetlands. PMID:26360231

  15. Sources of Nitrate Contamination in Groundwater Under Developing Asian Megacities

    Science.gov (United States)

    Umezawa, Y.; Hosono, T.; Onodera, S.; Siringan, F.; Buapeng, S.; Delinom, R. M.; Yoshimizu, C.; Tayasu, I.; Nagata, T.; Taniguchi, M.

    2008-12-01

    The status of nitrate, nitrite and ammonium contamination in the water systems, and the mechanisms controlling their sources, pathways, and distributions were investigated for the Southeast Asian cities of Metro Manila, Bangkok, and Jakarta. GIS-based monitoring and dual isotope approach (nitrate d15N and d18O) suggested that human waste via severe sewer leakage was the major source of nutrient contaminants in Metro Manila and Jakarta urban areas. Furthermore, the characteristics of the nutrient contamination differed depending on the agricultural land use pattern in the suburban areas. The exponential increase in nitrate d15N along with the nitrate reduction and clear d18O/d15N slopes of nitrate (~0.5) indicated the occurrence of denitrification. An anoxic subsurface system associated with the natural geological setting (e.g., the old tidal plain at Bangkok) and artificial pavement coverage served to buffer nitrate contamination via active denitrification and reduced nitrification. Our results showed that nitrate and ammonium contamination of the aquifers in Metro Manila, Bangkok, and Jakarta was not excessive, suggesting low risk of drinking groundwater to human health, at present. However, the increased nitrogen load and increased per capita gross domestic product (GDP) in these developing cities may increase this contamination in the very near future. Continuous monitoring and management of the groundwater system is needed to minimize groundwater pollution in these areas.

  16. Thermal denitrification of evaporators concentrates in reactor with fluidized bed

    International Nuclear Information System (INIS)

    As part of the treatments of liquid wastes coming from the Marcoule reprocessing plant, the study of a thermal denitrification process for evaporator concentrates has been chosen by the CEA/CEN Cadarache: the fluidized-bed calcination. This work presents the study of a calcination pilot-plant for wastes with a very high sodium nitrate content. After a reactional analysis carried out in a thermobalance on samples which are representative of the fluidized-bed compounds, the perfecting of many of the plant parameters - such as the solution injection system - was carried out on a scale-model at first. Then, it was verified on the pilot-plant, and some experiments have been carried out. A mathematical model for the particle growth inside the fluidized-bed is proposed. (author). 179 refs., 65 figs., 23 tabs

  17. Denitrification in Agricultural Soils: Integrated control and Modelling at various scales (DASIM)

    Science.gov (United States)

    Müller, Christoph; Well, Reinhard; Böttcher, Jürgen; Butterbach-Bahl, Klaus; Dannenmann, Michael; Deppe, Marianna; Dittert, Klaus; Dörsch, Peter; Horn, Marcus; Ippisch, Olaf; Mikutta, Robert; Senbayram, Mehmet; Vogel, Hans-Jörg; Wrage-Mönnig, Nicole; Müller, Carsten

    2016-04-01

    The new research unit DASIM brings together the expertise of 11 working groups to study the process of denitrification at unprecedented spatial and temporal resolution. Based on state-of-the art analytical techniques our aim is to develop improved denitrification models ranging from the microscale to the field/plot scale. Denitrification, the process of nitrate reduction allowing microbes to sustain respiration under anaerobic conditions, is the key process returning reactive nitrogen as N2to the atmosphere. Actively denitrifying communities in soil show distinct regulatory phenotypes (DRP) with characteristic controls on the single reaction steps and end-products. It is unresolved whether DRPs are anchored in the taxonomic composition of denitrifier communities and how environmental conditions shape them. Despite being intensively studied for more than 100 years, denitrification rates and emissions of its gaseous products can still not be satisfactorily predicted. While the impact of single environmental parameters is well understood, the complexity of the process itself with its intricate cellular regulation in response to highly variable factors in the soil matrix prevents robust prediction of gaseous emissions. Key parameters in soil are pO2, organic matter content and quality, pH and the microbial community structure, which in turn are affected by the soil structure, chemistry and soil-plant interactions. In the DASIM research unit, we aim at the quantitative prediction of denitrification rates as a function of microscale soil structure, organic matter quality, DRPs and atmospheric boundary conditions via a combination of state-of-the-art experimental and analytical tools (X-ray μCT, 15N tracing, NanoSIMS, microsensors, advanced flux detection, NMR spectroscopy, and molecular methods including next generation sequencing of functional gene transcripts). We actively seek collaboration with researchers working in the field of denitrification.

  18. An additional simple denitrification bioreactor using packed gel envelopes applicable to industrial wastewater treatment.

    Science.gov (United States)

    Morita, Masahiko; Uemoto, Hiroaki; Watanabe, Atsushi

    2007-08-15

    A simple denitrification bioreactor for nitrate-containing wastewater without organic compounds was developed. This bioreactor consisted of packed gel envelopes in a single tank. Each envelope comprised two plates of gels containing Paracoccus denitrificans cells with an internal space between the plates. As an electron donor for denitrification, ethanol was injected into the internal space and not directly into the wastewater. P. denitrificans cells in the gel reduced nitrate to nitrogen gas by using the injected ethanol. Nitrate-containing desulfurization wastewater derived from a coal-fired thermal power plant was continuously treated with 20 packed gel envelopes (size, 1,000 x 900 x 12 mm; surface area, 1.44 m(2)) in a reactor tank (volume 1.5 m(3)). When the total nitrogen concentration in the inflow was around 150 mg-N x L(-1), the envelopes removed approximately 60-80% of the total nitrogen, and the maximum nitrogen removal rate was 5.0 g-N x day(-1) per square meter of the gel surface. This value corresponded to the volumetric nitrogen removal performance of 0.109 kg-N x m(-3) x day(-1). In each envelope, a high utilization efficiency of the electron donor was attained, although more than the double amount of the electron donor was empirically injected in the present activated sludge system to achieve denitrification when compared with the theoretical value. The bioreactor using the envelopes would be extremely effective as an additional denitrification system because these envelopes can be easily installed in the vacant spaces of preinstalled water treatment systems, without requiring additional facilities for removing surplus ethanol and sludge. PMID:17252606

  19. Reaction chain modeling of denitrification reactions during a push-pull test

    Science.gov (United States)

    Boisson, A.; de Anna, P.; Bour, O.; Le Borgne, T.; Labasque, T.; Aquilina, L.

    2013-05-01

    Field quantitative estimation of reaction kinetics is required to enhance our understanding of biogeochemical reactions in aquifers. We extended the analytical solution developed by Haggerty et al. (1998) to model an entire 1st order reaction chain and estimate the kinetic parameters for each reaction step of the denitrification process. We then assessed the ability of this reaction chain to model biogeochemical reactions by comparing it with experimental results from a push-pull test in a fractured crystalline aquifer (Ploemeur, French Brittany). Nitrates were used as the reactive tracer, since denitrification involves the sequential reduction of nitrates to nitrogen gas through a chain reaction (NO3- → NO2- → NO → N2O → N2) under anaerobic conditions. The kinetics of nitrate consumption and by-product formation (NO2-, N2O) during autotrophic denitrification were quantified by using a reactive tracer (NO3-) and a non-reactive tracer (Br-). The formation of reaction by-products (NO2-, N2O, N2) has not been previously considered using a reaction chain approach. Comparison of Br- and NO3- breakthrough curves showed that 10% of the injected NO3- molar mass was transformed during the 12 h experiment (2% into NO2-, 1% into N2O and the rest into N2 and NO). Similar results, but with slower kinetics, were obtained from laboratory experiments in reactors. The good agreement between the model and the field data shows that the complete denitrification process can be efficiently modeled as a sequence of first order reactions. The 1st order kinetics coefficients obtained through modeling were as follows: k1 = 0.023 h- 1, k2 = 0.59 h- 1, k3 = 16 h- 1, and k4 = 5.5 h- 1. A next step will be to assess the variability of field reactivity using the methodology developed for modeling push-pull tracer tests.

  20. Denitrification in marine shales in northeastern Colorado

    Science.gov (United States)

    McMahon, P.B.; Böhlke, J.K.; Bruce, B.W.

    1999-01-01

    Parts of the South Platte River alluvial aquifer in northeastern Colorado are underlain by the Pierre Shale, a marine deposit of Late Cretaceous age that is denitrification in the forms of organic carbon and sulfide minerals. Nested piezometers were sampled, pore water was squeezed from cores of shale, and an injection test was conducted to determine if denitrification in the shale was a sink for alluvial NO3/- and to measure denitrification rates in the shale. Measured values of NO3/-, N2, NH4/+, ??15[NO3/-], ??15N[N2], and ??15N[NH4/+] in the alluvial and shale pore water indicated that denitrification in the shale was a sink for alluvial NO3/-. Chemical gradients, reaction rate constants, and hydraulic head data indicated that denitrification in the shale was limited by the slow rate of NO3/- transport (possibly by diffusion) into the shale. The apparent in situ first-order rate constant for denitrification in the shale based on diffusion calculations was of the order of 0.04-0.4 yr-1, whereas the potential rate constant in the shale based on injection tests was of the order of 60 yr-1. Chemical data and mass balance calculations indicate that organic carbon was the primary electron donor for denitrification in the shale during the injection test, and ferrous iron was a minor electron donor in the process. Flux calculations for the conditions encountered at the site indicate that denitrification in the shale could remove only a small fraction of the annual agricultural NO3/- input to the alluvial aquifer. However, the relatively large potential first-order rate constant for denitrification in the shale indicated that the percentage of NO3/- uptake by the shale could be considerably larger in areas where NO3/- is transported more rapidly into the shale by advection.

  1. Drinking Water Denitrification using Autotrophic Denitrifying Bacteria in a Fluidized Bed Bioreactor 

    Directory of Open Access Journals (Sweden)

    Abdolmotaleb Seid-mohammadi

    2013-02-01

    Full Text Available Background and Objectives: Contamination of drinking water sources with nitrate may cause adverse effects on human health. Due to operational and maintenance problems of physicochemical nitrate removal processes, using biological denitrification processes have been performed. The aim of this study is to evaluate nitrate removal efficiency from drinking water using autotrophic denitrifying bacteria immobilized on sulfur impregnated activated carbon in a fluidized bed bioreactor. Materials and Methods: After impregnating activated carbon by sulfur as a microorganism carriers and enrichment and inoculation of denitrifying bacteria, a laboratory-scale fluidized bed bioreactor was operated. Nitrate removal efficiency, nitrite, turbidity, hardness and TOC in the effluent were examined during the whole experiment under various conditions including constant influent nitrate concentration as 90 mg NO3--N/l corresponding to different HRT ranging from 5.53 to 1.5 hr. Results: We found that  the denitrification rates was depended on the hydraulic retention time and the nitrate removal efficiency was up to 98%  and nitrite concentration was lower than 1mg/l at optimum HRT=2.4 hr respectively. Moreover, there was no difference in hardness between influent and effluent due to supplying sodium bicarbonate as carbon source for denitrifying bacteria.  However pH, TOC, hardness, and turbidity of the effluent met the W.H.O guidelines for drinking water.  Conclusion: This study demonstrated that an innovative carrier as sulfur impregnated activated carbon could be used as both the biofilm carrier and energy source for treating nitrate contaminated drinking water in the lab-scale fluidized bed bioreactor.

  2. Reactive Transport of Nitrate in Northern California Groundwater basins: An Integrated Characterization and Modeling Approach

    Science.gov (United States)

    Esser, B. K.; Moran, J. E.; Hudson, G. B.; Carle, S. F.; McNab, W.; Tompson, A. F.; Moore, K.; Beller, H.; Kane, S.; Eaton, G.

    2003-12-01

    More than 1/3 of active public drinking water supply wells in California produce water with nitrate-N levels indicative of anthropogenic inputs (> 4 mg/L). Understanding how the distribution of nitrate in California groundwater basins will evolve is vital to water supply and infrastructure planning. To address this need, we are studying the basin-scale reactive transport of nitrate in the Livermore and Llagas basins of Northern California. Both basins have increasingly urban populations heavily reliant on groundwater. A distinct nitrate "plume" exists in the Livermore Basin (Alameda County) whereas pervasive nitrate contamination exists in shallow groundwaters of the Llagas Basin (Santa Clara County). The sources and timing of nitrate contamination in these basins are not definitively known; septic systems, irrigated agriculture and livestock operations exist or have existed in both areas. The role of denitrification in controlling nitrate distribution is also unknown; dissolved oxygen levels are sufficiently low in portions of each basin as to indicate the potential for denitrification. We have collected water from 60 wells, and are determining both groundwater age (by the 3H/3He method) and the extent of denitrification (by the excess N2 method). Excess nitrogen is being determined by both membrane-inlet and noble gas mass spectrometry, using Ar and Ne content to account for atmospheric N2. We are also analyzing for stable istotopes of nitrate and water, nitrate co-contaminants, and general water quality parameters. Preliminary analysis of archival water district data from both basins suggests positive correlations of nitrate with Ca+2, Mg+2 and bicarbonate and negative correlation with pH. In the Llagas Basin, a negative correlation also exists between nitrate and temperature. Flow path-oriented reactive transport modeling is being explored as a tool to aid in the identification of both the sources of nitrate and evidence for denitrification in both basins

  3. Denitrification by Pseudomonas stutzeri coupled with CO2 reduction by Sporomusa ovata with hydrogen as an electron donor assisted by solid-phase humin.

    Science.gov (United States)

    Xiao, Zhixing; Awata, Takanori; Zhang, Dongdong; Katayama, Arata

    2016-09-01

    A co-culture system comprising an acetogenic bacterium, Sporomusa ovata DSMZ2662, and a denitrifying bacterium, Pseudomonas stutzeri JCM20778, enabled denitrification using H2 as the sole external electron donor and CO2 as the sole external carbon source. Acetate produced by S. ovata supported the heterotrophic denitrification of P. stutzeri. A nitrogen balance study showed the reduction of nitrate to nitrogen gas without the accumulation of nitrite and nitrous oxide in the co-culture system. S. ovata did not show nitrate reduction to ammonium in the co-culture system. Significant proportions of the consumed H2 were utilized for denitrification: 79.9 ± 4.6% in the co-culture system containing solid-phase humin and 62.9±11.1% in the humin-free co-culture system. The higher utilization efficiency of hydrogen in the humin-containing system was attributed to the higher denitrification activity of P. stutzeri under the acetate deficient conditions. The nitrogen removal rate of the humin-containing co-culture system reached 0.19 kg NO3(-)-N·m(-3)·d(-1). Stable denitrification activity for 61 days of successive sub-culturing suggested the robustness of this co-culture system. This study provides a novel strategy for the in situ enhancement of microbial denitrification. PMID:26975755

  4. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  5. Denitrification by extremely halophilic bacteria

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1985-01-01

    Extremely halophilic bacteria were isolated from widely separated sites by anaerobic enrichment in the presence of nitrate. The anaerobic growth of several of these isolates was accompanied by the production of nitrite, nitrous oxide, and dinitrogen. These results are a direct confirmation of the existence of extremely halophilic denitrifying bacteria, and suggest that such bacteria may be common inhabitants of hypersaline environments.

  6. Oxygen isotope fractionation during N2O production by soil denitrification

    Science.gov (United States)

    Lewicka-Szczebak, Dominika; Dyckmans, Jens; Kaiser, Jan; Marca, Alina; Augustin, Jürgen; Well, Reinhard

    2016-02-01

    The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR), nitrite reductase (NIR) and nitric oxide reductase (NOR). Each step removes one oxygen atom as water (H2O), which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by soil denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. In our soil incubation experiments Δ17O isotope tracing was applied for the first time to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found that N2O formation in static anoxic incubation experiments was typically associated with oxygen isotope exchange close to 100 % and a stable difference between the 18O / 16O ratio of soil water and the N2O product of δ18O(N2O / H2O) = (17.5 ± 1.2) ‰. However, flow-through experiments gave lower oxygen isotope exchange down to 56 % and a higher δ18O(N2O / H2O) of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O) showed a significant correlation (R2 = 0.70, p fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The results suggest that during denitrification, isotope exchange occurs prior to

  7. Anoxic Activated Sludge Monitoring with Combined Nitrate and Titrimetric Measurements

    DEFF Research Database (Denmark)

    Petersen, B.; Gernaey, Krist; Vanrolleghem, P.A.

    2002-01-01

    An experimental procedure for anoxic activated sludge monitoring with combined nitrate and titrimetric measurements is proposed and evaluated successfully with two known carbon sources, (-)acetate and dextrose. For nitrate measurements an ion-selective nitrate electrode is applied to allow for...... frequent measurements, and thereby the possibility for detailed determination of the denitrification biokinetics. An internal nitrate electrode calibration is implemented in the experiments to avoid the often-encountered electrode drift problem. It was observed that the best experimental design was with...... the carbon source in excess, since excess nitrate provoked nitrite build-up thereby complicating the data interpretation. A conceptual model could quantitatively describe the experimental observations and thus link the experimentally measured proton production with the consumption of electron acceptor...

  8. Solid phase electron donors control denitrification in groundwater at agricultural sites

    Science.gov (United States)

    Green, C. T.; Liao, L.; Bekins, B. A.; Bohlke, J. K.

    2011-12-01

    Increased concentrations of nitrate in groundwater caused by agricultural use of chemical and organic fertilizers are a concern because of possible risks to environmental and human health. At many sites, these problems are mitigated by natural attenuation of nitrate as a result of microbially mediated denitrification of nitrate to nitrogen gas. Recent studies have clarified the factors affecting the rates and extents of denitrification in groundwater in agricultural areas. Intensive studies were conducted by the US Geological Survey to study agricultural chemicals in California, Nebraska, Washington, and Maryland using laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) and vertical profiles (0 to 50 m in depth). Groundwater analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and atmospheric age-tracers. Sediments were analyzed for concentrations of potential electron donors for denitrification, including reduced iron and sulfur, and organic carbon. Geochemical data and mass balance calculations indicated that solid-phase electron donors were an important factor controlling denitrification at these sites. To examine the generality of this result, a mathematical model of vertical flux of water, oxygen, and nitrate was developed and applied at these study sites along with 2 new study sites in Iowa and Mississippi and 8 additional sites from previous studies in Nebraska, Texas, Minnesota, Wisconsin, North Carolina, Maryland (2 sites), and New York. Model results confirmed the importance of solid phase electron donors. The normalized reaction rates on an electron flux basis tended to increase with depth from the shallow oxygen reduction zone to the underlying nitrate reduction zone. The pattern of higher rates at depth is consistent with a reaction rate controlled by solid phase donors that are depleted under oxidizing conditions near the surface and in

  9. Biological denitrification using poly(butylene succinate) as carbon source and biofilm carrier for recirculating aquaculture system effluent treatment.

    Science.gov (United States)

    Zhu, Song-Ming; Deng, Ya-Le; Ruan, Yun-Jie; Guo, Xi-Shan; Shi, Ming-Ming; Shen, Jia-Zheng

    2015-09-01

    Nitrate removal is essential for the sustainable operation of recirculating aquaculture system (RAS). This study evaluated the heterotrophic denitrification using poly(butylene succinate) as carbon source and biofilm carrier for RAS wastewater treatment. The effect of varied operational conditions (influent type, salinity and nitrate loading) on reactor performance and microbial community was investigated. The high denitrification rates of 0.53 ± 0.19 kg NO3(-)-N m(-3) d(-1) (salinity, 0‰) and 0.66 ± 0.12 kg NO3(-)-Nm(-3) d(-1) (salinity, 25‰) were achieved, and nitrite concentration was maintained below 1mg/L. In addition, the existence of salinity exhibited more stable nitrate removal efficiency, but caused adverse effects such as excessive effluent dissolved organic carbon (DOC) and dissimilation nitrate reduce to ammonia (DNRA) activity. The degradation of PBS was further confirmed by SEM and FTIR analysis. Illumina sequencing revealed the abundance and species changes of functional denitrification and degradation microflora which might be the primary cause of varied reactor performance. PMID:26093254

  10. The effect of millennial-scale changes in Arabian Sea denitrification on atmospheric CO2

    International Nuclear Information System (INIS)

    Most global biogeochemical processes are known to respond to climate change, some of which have the capacity to produce feedbacks through the regulation of atmospheric greenhouse gases. Marine denitrification - the reduction of nitrate to gaseous nitrogen - is an important process in this regard, affecting greenhouse gas concentrations directly through the incidental production of nitrous oxide, and indirectly through modification of the marine nitrogen inventory and hence the biological pump for C02. Although denitrification has been shown to vary with glacial-interglacial cycles, its response to more rapid climate change has not yet been well characterized. Here we present nitrogen isotope ratio, nitrogen content and chlorin abundance data from sediment cores with high accumulation rates on the Oman continental margin that reveal substantial millennial-scale variability in Arabian Sea denitrification and productivity during the last glacial period. The detailed correspondence of these changes with Dansgaard-Oeschger events recorded in Greenland ice cores indicates rapid, century-scale reorganization of the Arabian Sea ecosystem in response to climate excursions, mediated through the intensity of summer monsoonal upwelling. Considering the several-thousand-year residence time of fixed nitrogen in the ocean, the response of global marine productivity to changes in denitrification would have occurred at lower frequency and appears to be related to climatic and atmospheric C02 oscillations observed in Antarctic ice cores between 20 and A kyr ago. (author)

  11. European-scale modelling of groundwater denitrification and associated N2O production

    International Nuclear Information System (INIS)

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N2O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N2O production is expected. Predicted N leaching (16% of the N inputs) and N2O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. - Highlights: ► Groundwater denitrification and N2O production was modelled at the European scale. ► In large parts of Europe no groundwater denitrification is expected. ► N leaching and N2O emission in Europe are much less than the IPCC default values. - European groundwater denitrification is spatially variable, and associated nitrous oxide production is much less than based on the IPCC default estimate.

  12. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment.

    Science.gov (United States)

    Krayzelova, Lucie; Lynn, Thomas J; Banihani, Qais; Bartacek, Jan; Jenicek, Pavel; Ergas, Sarina J

    2014-09-15

    Nitrogen discharges from decentralized wastewater treatment (DWT) systems contribute to surface and groundwater contamination. However, the high variability in loading rates, long idle periods and lack of regular maintenance presents a challenge for biological nitrogen removal in DWT. A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process was developed that combines nitrate (NO3(-)) adsorption to scrap tire chips with sulfur-oxidizing denitrification. This allows the tire chips to adsorb NO3(-) when the influent loading exceeds the denitrification capacity of the biofilm and release it when NO3(-) loading rates are low (e.g. at night). Three waste products, scrap tire chips, elemental sulfur pellets and crushed oyster shells, were used as a medium in adsorption, leaching, microcosm and up-flow packed bed bioreactor studies of NO3(-) removal from synthetic nitrified DWT wastewater. Adsorption isotherms showed that scrap tire chips have an adsorption capacity of 0.66 g NO3(-)-N kg(-1) of scrap tires. Leaching and microcosm studies showed that scrap tires leach bioavailable organic carbon that can support mixotrophic metabolism, resulting in lower effluent SO4(2-) concentrations than sulfur oxidizing denitrification alone. In column studies, the T-SHAD process achieved high NO3(-)-N removal efficiencies under steady state (90%), variable flow (89%) and variable concentration (94%) conditions. PMID:24922353

  13. Nitrous oxide production by nitrification and denitrification in the Eastern Tropical South Pacific oxygen minimum zone

    Science.gov (United States)

    Ji, Qixing; Babbin, Andrew R.; Jayakumar, Amal; Oleynik, Sergey; Ward, Bess B.

    2015-12-01

    The Eastern Tropical South Pacific oxygen minimum zone (ETSP-OMZ) is a site of intense nitrous oxide (N2O) flux to the atmosphere. This flux results from production of N2O by nitrification and denitrification, but the contribution of the two processes is unknown. The rates of these pathways and their distributions were measured directly using 15N tracers. The highest N2O production rates occurred at the depth of peak N2O concentrations at the oxic-anoxic interface above the oxygen deficient zone (ODZ) because slightly oxygenated waters allowed (1) N2O production from both nitrification and denitrification and (2) higher nitrous oxide production yields from nitrification. Within the ODZ proper (i.e., anoxia), the only source of N2O was denitrification (i.e., nitrite and nitrate reduction), the rates of which were reflected in the abundance of nirS genes (encoding nitrite reductase). Overall, denitrification was the dominant pathway contributing the N2O production in the ETSP-OMZ.

  14. Southern ocean controls on the extent of denitrification in the southeast Pacific (ODP Site 1234)

    Science.gov (United States)

    Robinson, R. S.; Mix, A.; Martinez, P.

    2005-12-01

    A mechanistic understanding of the observed temporal changes in oceanic denitrification, the bacterial reduction of nitrate under suboxic conditions, has been sought due to the potential importance of N inventory changes and the production of N2O on the climate system. High-resolution oxygen isotope and bulk sediment δ15N records from ODP Site 1234 on the Chile Margin are presented as a record of denitrification changes within the Peru-Chile Upwelling system over the last 65ky. The character of the Site 1234 δ15N record is quite similar to that of its northern hemisphere counterparts with the exception of timing. Denitrification changes in the southeast Pacific show coherent variation with Antarctic climate, as indicated by the Byrd ice core δ18O record, rather than with northern hemisphere climate change. The high latitude polar oceans play a fundamental role in setting the physical and biological controls on subsurface oxygen supply and demand. The southern hemisphere character of the Chile margin record suggests that episodes of reduced denitrification in the SE Pacific likely represent times when more oxygen was supplied as the result of changes in the chemical composition of Subantarctic Mode Water (SAMW), which forms in the Subantarctic zone of the Southern Ocean and ventilates the low latitude thermocline. An increase in oxygen can be achieved through (1) lower temperatures/ higher ventilation rates and/or (2) reduced oxygen demand in the low latitude subsurface due to reduction in the preformed nutrient content of SAMW.

  15. The role of C:N:P stoichiometry in affecting denitrification in sediments from agricultural surface and tile-water wetlands.

    Science.gov (United States)

    Grebliunas, Brian D; Perry, William L

    2016-01-01

    Nutrient stoichiometry within a wetland is affected by the surrounding land use, and may play a significant role in the removal of nitrate (NO3-N). Tile-drained, agricultural watersheds experience high seasonal inputs of NO3-N, but low phosphorus (PO4-P) and dissolved organic carbon (DOC) loads relative to surface water dominated systems. This difference may present stoichiometric conditions that limit denitrification within receiving waterways. We investigated how C:N:P ratios affected denitrification rates of sediments from tile-drained mitigation wetlands incubated for: 0, 5, 10, and 20 days. We then tested whether denitrification rates of sediments from surface-water and tile-drained wetlands responded differently to C:N ratios of 2:1 versus 4:1. Ratios of C:N:P (P maintenance of anaerobic conditions, the availability of labile DOC is playing an important limiting role in sediment denitrification within mitigation wetlands. PMID:27064357

  16. Temperature effect on aerobic denitrification and nitrification

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-guang; ZHANG Xiao-jian; WANG Zhan-sheng

    2003-01-01

    Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affected by low temperature(below 10oC). However, nitrification rate remained high when the temperature dropped from 15oC to5oC. It seemed the autotrophic biofilm in BAF could alleviate the adverse effect of low temperature.

  17. The mechanism of oxygen isotopic fractionation during fungal denitrification - A pure culture study

    Science.gov (United States)

    Wrage-Moennig, Nicole; Rohe, Lena; Anderson, Traute-Heidi; Braker, Gesche; Flessa, Heinz; Giesemann, Annette; Lewicka-Szczebak, Dominika; Well, Reinhard

    2014-05-01

    Nitrous oxide (N2O) from soil denitrification originates from bacteria and - to an unknown extent - also from fungi. During fungal denitrification, oxygen (O) exchange takes place between H2O and intermediates of the denitrification process as in bacterial exchange[1,2]. However, information about enzymes involved in fungal O exchanges and the associated fractionation effects is lacking. The objectives of this study were to estimate the O fractionation and O exchange during the fungal denitrifying steps using a conceptual model[2] adapted from concepts for bacterial denitrification[3], implementing controls of O exchange proposed by Aerssens, et al.[4] and using fractionation models by Snider et al.[5] Six different pure fungal cultures (five Hypocreales, one Sordariales) known to be capable of denitrification were incubated under anaerobic conditions, either with nitrite or nitrate. Gas samples were analyzed for N2O concentration and its isotopic signatures (SP, average δ15N, δ18O). To investigate O exchange, both treatments were also established with 18O-labelled water as a tracer in the medium. The Hypocreales strains showed O exchange mainly at NO2- reductase (Nir) with NO2- as electron acceptor and no additional O exchange at NO3- reductase (Nar) with NO3- as electron acceptor. The only Hypocreales species having higher O exchange with NO3- than with NO2- also showed O exchange at Nar. The Sordariales species tested seems capable of O exchange at NO reductase (Nor) additionally to O exchange at Nir with NO2-. The data will help to better interpret stable isotope values of N2O from soils. .[1] D. M. Kool, N. Wrage, O. Oenema, J. Dolfing, J. W. Van Groenigen. Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO?3- and N2O: a review. Rapid Commun. Mass Spec. 2007, 21, 3569. [2] L. Rohe, T.-H. Anderson, B. Braker, H. Flessa, A. Giesemann, N. Wrage-Mönnig, R. Well. Fungal Oxygen Exchange between

  18. Nitrate-transformations during simulated drought on a restored floodplain

    Science.gov (United States)

    Hoagland, B.; Russo, T. A.; Schmidt, C. M.; Tran, D.

    2015-12-01

    Water resources in the California Central Valley face challenges due to recurring drought, aging levee systems, and nitrate contamination. As decisions are made to restore floodplain connectivity, soil microbial metabolic pathways such as denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) transform nitrate under saturated soil conditions and may each affect downstream water quality. However, few studies have quantified the contribution of all three pathways to nitrate retention in freshwater systems, and specifically in restored floodplains. Additionally, no former studies quantify the rates of these microbial nitrate transformations during floods after prolonged periods of drought. To test how flood duration impacts nitrogen cycling we added 15N-enriched tracer to soil mesocosms to measure denitrification, anammox, and DNRA transformation rates. In July 2015, we extracted seven soil mesocosms from the floodplain and riverbed of the Lower Cosumnes River in the San Joaquin Basin of California. Cosumnes River water enriched with 15N-NO3- tracer was pumped into each mesocosm at a constant rate simulating flood durations of 20 h, 30 h, and 96 h. Samples were collected from the surface water, soil pore water, drain water, and sediment for measurements of NO3-, NO2-, NH4+, gas isotopes, and DNA extraction. This study aims to demonstrate the relevance of anammox and DNRA to total nitrate retention and characterize the hydrologic conditions most favorable to each pathway.

  19. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin;

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular...... techniques in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral...

  20. Biodiversity in Benthic Ecology

    DEFF Research Database (Denmark)

    Friberg, Nikolai; Carl, J. D.

    Foreword: This proceeding is based on a set of papers presented at the second Nordic Benthological Meeting held in Silkeborg, November 13-14, 1997. The main theme of the meeting was biodiversity in benthic ecology and the majority of contributions touch on this subject. In addition, the proceeding...

  1. [Simultaneous Biotransformation of Ammonium and Nitrate via Zero-Valent Iron on Anaerobic Conditions].

    Science.gov (United States)

    Zhou, Jian; Huang, Yong; Yuan, Yi; Liu, Xin; Li, Xiang; Shen, Jie; Yang, Peng-bing

    2015-12-01

    Zero-valent iron (ZVI) was used to improve the biological autotrophic denitrification process between nitrate and ammonia by anaerobic ammonia oxidation ( ANAMMOX) bacteria. With the addition of ZVI, the biological autotrophic denitrification process could be reacted in the influent condition of pH was 7-8, at 35°C ±0.5°C, the concentration of ammonia was 50-100 mg · L⁻¹ and the concentration of nitrate was 50-100 mg · L⁻¹. The highest conversion rate could be reached to 17.2 mg · (L·h) ⁻¹. With the change of reaction time and the molar ratio of nitrate and ammonia in influent, the final molar conversion ratio of nitrate and ammonia in effluent fluctuated between 1.2-3. 5. The result showed that this autotrophic denitrification process was not belonged to elementary reaction. The mechanism of this autotrophic denitrification process could be summarized that with the reduction of ZVI, the nitrate could be reduced to nitrite. Hereafter, the ANAMMOX process reacted between the nitrite and ammonia. PMID:27011992

  2. Periplasmic nitrate reductases: structural and spectroscopic studies

    OpenAIRE

    Javier Gonzalez, Pablo

    2006-01-01

    Dissertação apresentada para obtenção do grau de Doutor em Bioquímica, especialidade Bioquímica-Física, pela Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa Nitrate reduction occurs in the cell in order to incorporate nitrogen into biomolecules(assimilatory ammonification), as the final electron acceptor when bacteria are grown in anaerobic conditions (denitrification/dissimilatory ammonification) and to eliminate energy excess generated by the cell metabolism (dissimi...

  3. Predicting the denitrification capacity of sandy aquifers from shorter-term incubation experiments and sediment properties

    Directory of Open Access Journals (Sweden)

    W. Eschenbach

    2013-02-01

    Full Text Available Knowledge about the spatial variability of denitrification rates and the lifetime of denitrification in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, regression models were derived to estimate the measured cumulative denitrification of aquifer sediments after one year of incubation from initial denitrification rates and several sediment parameters, namely total sulphur, total organic carbon, extractable sulphate, extractable dissolved organic carbon, hot water soluble organic carbon and potassium permanganate labile organic carbon.

    For this purpose, we incubated aquifer material from two sandy Pleistocene aquifers in Northern Germany under anaerobic conditions in the laboratory using the 15N tracer technique. The measured amount of denitrification ranged from 0.19 to 56.2 mg N kg−1 yr−1. The laboratory incubations exhibited high differences between non-sulphidic and sulphidic aquifer material in both aquifers with respect to all investigated sediment parameters. Denitrification rates and the estimated lifetime of denitrification were higher in the sulphidic samples. For these samples, the cumulative denitrification measured during one year of incubation (Dcum(365 exhibited distinct linear regressions with the stock of reduced compounds in the investigated aquifer samples. Dcum(365 was predictable from sediment variables within a range of uncertainty of 0.5 to 2 (calculated Dcum(365/measured Dcum(365 for aquifer material with a Dcum(365 > 20 mg N kg−1 yr−1. Predictions were poor for samples with lower Dcum(365, such as samples from the NO3 bearing groundwater zone, which includes the non-sulphidic samples, from the upper part of both aquifers where denitrification is not sufficient to

  4. A standardised method for measuring in situ denitrification in shallow aquifers: numerical validation and measurements in riparian wetlands

    Directory of Open Access Journals (Sweden)

    J. M. Sánchez-Pérez

    2003-01-01

    Full Text Available A tracer test to examine in situ denitrification in shallow groundwater by a piezometer with a packer system used bromide as a tracer of dilution and acetylene (10% to block the denitrification process at the nitrous oxide stage. During the test, dissolved oxygen, nitrate (NO3‾, bromide (Br‾, nitrous oxide (N2O and dissolved organic carbon (DOC were measured. To calibrate the experimental method, comparison with numerical simulations of the groundwater transfer were carried out, taking into account the environmental characteristics. The method was tested by measurements undertaken in different environmental conditions (geology, land use and hydrology in two riparian wetlands. Denitrification rates measured by this method ranged from 5.7 10-6 g N-NO3‾L-1 h-1 to 1.97 10-3 g N-NO3‾L-1 h-1 The method is applicable in shallow aquifers with a permeability from 10-2 to 10-4m s-1. Keywords: denitrification, shallowaquifer, groundwater modelling, wetlands, nitrate-nitrogen, packer system

  5. Nitrate retention and removal in Mediterranean streams bordered by contrasting land uses: a 15N tracer study

    Directory of Open Access Journals (Sweden)

    E. Martí

    2009-02-01

    Full Text Available We used 15N-labelled nitrate (NO3− additions to investigate pathways of nitrogen (N cycling at the whole-reach scale in three stream reaches with adjacent forested, urban and agricultural land areas. Our aim was to explore among-stream differences in: (i the magnitude and relative importance of NO3− retention (i.e. assimilatory uptake and removal (i.e. denitrification, (ii the relative contribution of the different primary uptake compartments to NO3− retention, and (iii the regeneration, transformation and export pathways of the retained N. Streams varied strongly in NO3− concentration, which was highest in the agricultural stream and lowest in the forested stream. The agricultural stream also showed the lowest dissolved oxygen (DO concentration and discharge. Standing stocks of primary uptake compartments were similar among streams and dominated by detritus compartments (i.e. fine and coarse benthic organic matter. Metabolism was net heterotrophic in all streams, although the degree of heterotrophy was highest in the agricultural stream. The NO3− uptake length was shortest in the agricultural stream, intermediate in the urban stream, and longest in the forested stream. Conversely, the NO3− mass-transfer velocity and the areal NO3− uptake rate were highest in the urban stream. Denitrification was not detectable in the forested stream, but accounted for 9% and 68% of total NO3− uptake in the urban and the agricultural stream, respectively. The relative contribution of detritus compartments to NO3− assimilatory uptake was greatest in the forested and lowest in the agricultural stream. In all streams, the retained N was rapidly regenerated back to the water column. Due to a strong coupling between regeneration and nitrification, most retained N was exported from the experimental reaches in the form of NO3−. This study provides evidence of fast in-stream N cycling, although the relative importance of N retention and removal

  6. From the Gut of an Insect to the Global Climate: Denitrification and Nitrous Oxide Production inside Lake Chironomidae

    DEFF Research Database (Denmark)

    Stief, Peter; Nielsen, Lars Peter; Revsbech, Niels Peter;

    2006-01-01

    environmentally relevant ecosystem function by reducing nitrate to dinitrogen gas. Thereby, they remove inorganic nitrogen that originates from organic matter mineralisation and anthropogenic pollution. Nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, is emitted from lakes only as a......FROM THE GUT OF AN INSECT TO THE GLOBAL CLIMATE: DENITRIFICATION AND NITROUS OXIDE PRODUCTION INSIDE LAKE CHIRONOMIDAE P. Stief, L.P. Nielsen, N.P. Revsbech, A. Schramm Department of Biological Sciences, Microbiology, University of Aarhus, Denmark Denitrifying bacteria in lake sediments drive an...... minor fraction of the nitrate reduced. However, when lake sediments are densely colonised by macrofauna, the rates of nitrous oxide emission increase significantly. We hypothesise that the guts of bacterivorous macrofauna represent short-term habitats in which high denitrification activity and...

  7. The effects of temperature and resource availability on denitrification and relative N2O production in boreal lake sediments.

    Science.gov (United States)

    Myrstener, Maria; Jonsson, Anders; Bergström, Ann-Kristin

    2016-09-01

    Anthropogenic environmental stressors (like atmospheric deposition, land use change, and climate warming) are predicted to increase inorganic nitrogen and organic carbon loading to northern boreal lakes, with potential consequences for denitrification in lakes. However, our ability to predict effects of these changes is currently limited as northern boreal lakes have been largely neglected in denitrification studies. The aim of this study was therefore to assess how maximum potential denitrification and N2O production rates, and the relationship between the two (relative N2O production), is controlled by availability of nitrate (NO3(-)), carbon (C), phosphorus (P), and temperature. Experiments were performed using the acetylene inhibition technique on sediments from a small, nutrient poor boreal lake in northern Sweden in 2014. Maximum potential denitrification and N2O production rates at 4°C were reached already at NO3(-) additions of 106-120μg NO3(-)-N/L, and remained unchanged with higher NO3 amendments. Higher incubation temperatures increased maximum potential denitrification and N2O production rates, and Q10 was somewhat higher for N2O production (1.77) than for denitrification (1.69). The relative N2O production ranged between 13% and 64%, and was not related to NO3(-) concentration, but the ratio increased when incubations were amended with C and P (from a median of 16% to 27%). Combined, our results suggests that unproductive northern boreal lakes currently have low potential for denitrification but are susceptible to small changes in NO3 loading especially if these are accompanied by enhanced C and P availability, likely promoting higher N2O production relative to N2. PMID:27593275

  8. Nitrate bioreduction in redox-variable low permeability sediments

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Sen; Liu, Yuanyuan; Liu, Chongxuan; Shi, Liang; Shang, Jianying; Shan, Huimei; Zachara, John M.; Fredrickson, Jim K.; Kennedy, David W.; Resch, Charles T.; Thompson, Christopher J.; Fansler, Sarah J.

    2015-09-09

    Denitrification is a microbial process that reduces nitrate and nitrite to nitrous oxide (N2O) or dinitrogen (N2) with a strong implication to global nitrogen cycling and climate change. This paper reports the effect of sediment redox conditions on the rate and end product of denitrification. The sediments were collected from a redox transition zone consisting of oxic and reduced layers at US Department of Energy’s Hanford Site where N2O was locally accumulated in groundwater. The results revealed that denitrification rate and end product varied significantly with initial sediment redox state. The denitrification rate was relatively faster, limited by organic carbon content and bioavailability in the oxic sediment. In contrast, the rate was much slower in the reduced sediment, limited by biomass and microbial function. A significant amount of N2O was accumulated in the reduced sediment; while in the oxic sediment, N2O was further reduced to N2. RT-PCR analysis revealed that nosZ, the gene that codes for N2O reductase, was below detection in the reduced sediment. The results implied that redox transition zones can be important sinks or sources of N2O depending on local biogeochemical and microbial conditions, and are important systems for understanding and modeling denitrification in subsurface environments.

  9. Denitrification mechanism in combustion of biocoal briquettes.

    Science.gov (United States)

    Kim, Heejoon; Li, Tianji

    2005-02-15

    Pulp black liquor (PBL), an industrial waste from paper production, has been previously shown to be an effective binder and denitrification agent for coal briquettes. This study investigated the denitrification mechanism of PBL in both the volatile combustion and char combustion stages of coal briquettes. X-ray diffraction and ion chromatography were used to analyze the residual ashes of combustion. The exhaust gas was analyzed by a flue gas analysis system and a Q-mass spectrometry system. The denitrification mechanism of PBL in the volatile combustion stage was found to result from the emission of NH3. The denitrification of PBL in the char combustion stage was associated with the NaOH contained in PBL. The direct reaction of NaOH with NO gas was examined, and some interesting phenomena were observed. Pure carbon or pure NaOH showed only limited reaction with NO. However, the mixture of NaOH and carbon (NaOH + C) significantly enhanced the reaction. This mixture increased the NO removal up to 100%. Subsequently, denitrification lasted for a long time period, with about 25% of NO removal. The pyrolysis characteristic of NaNO3, a compound resulting from denitrification, was also affected by the presence of carbon. In the presence of carbon, the NOx emission resulting from the pyrolysis of NaNO3 was reduced by a factor of 6. Since the denitrification phenomena appeared only in the absence of oxygen, a model of oxygen distribution in a burning coal briquette was employed to explain the reactions occurring in real combustion of coal briquettes. PMID:15773493

  10. Plant trait diversity buffers variability in denitrification potential over changes in season and soil conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie M McGill

    Full Text Available BACKGROUND: Denitrification is an important ecosystem service that removes nitrogen (N from N-polluted watersheds, buffering soil, stream, and river water quality from excess N by returning N to the atmosphere before it reaches lakes or oceans and leads to eutrophication. The denitrification enzyme activity (DEA assay is widely used for measuring denitrification potential. Because DEA is a function of enzyme levels in soils, most ecologists studying denitrification have assumed that DEA is less sensitive to ambient levels of nitrate (NO(3(- and soil carbon and thus, less variable over time than field measurements. In addition, plant diversity has been shown to have strong effects on microbial communities and belowground processes and could potentially alter the functional capacity of denitrifiers. Here, we examined three questions: (1 Does DEA vary through the growing season? (2 If so, can we predict DEA variability with environmental variables? (3 Does plant functional diversity affect DEA variability? METHODOLOGY/PRINCIPAL FINDINGS: The study site is a restored wetland in North Carolina, US with native wetland herbs planted in monocultures or mixes of four or eight species. We found that denitrification potentials for soils collected in July 2006 were significantly greater than for soils collected in May and late August 2006 (p<0.0001. Similarly, microbial biomass standardized DEA rates were significantly greater in July than May and August (p<0.0001. Of the soil variables measured--soil moisture, organic matter, total inorganic nitrogen, and microbial biomass--none consistently explained the pattern observed in DEA through time. There was no significant relationship between DEA and plant species richness or functional diversity. However, the seasonal variance in microbial biomass standardized DEA rates was significantly inversely related to plant species functional diversity (p<0.01. CONCLUSIONS/SIGNIFICANCE: These findings suggest that

  11. Nitrate pollution of ground waters from shallow basaltic aquifers, Deccan Trap Hydrologic Province, India

    Science.gov (United States)

    Pawar, N. J.; Shaikh, I. J.

    1995-04-01

    Analyses of groundwater samples collected from several locations in a small watershed of the Deccan Trap Hydrologic Province, indicated anomalously higher values of nitrate than the background. However, the NO3 concentrations in water from dug wells under pastureland where the subsurface material consisted of stony waste were minimum. The maximum values were reported for water from dug wells where the principal land use was agricultural. Lowering of NO3 values under shallow water-table conditions suggests denitrification. Higher concentrations of nitrate determined for samples collected from the wells with a deeper water-table indicate that denitrification process is inactive. The high values of nitrate coinciding with agricultural land use indicate fertilizers as the main source of nitrate pollution of ground-water. Decrease in Cl/NO3 ratio for agricultural land use confirms this inference.

  12. In situ denitrification and DNRA rates in soils and underlying groundwater of an integrated constructed wetland

    Science.gov (United States)

    Mofizur Rahman Jahangir, Mohammad; Fenton, Owen; McAleer, Eoin; Carroll, Paul; Harrington, Rory; Johnston, Paul; Müller, Christoph; Richards, Karl

    2015-04-01

    Nitrogen (N) removal efficiency in constructed wetlands (CW) is low and again it does not in itself explain whether the removed N species are reactive or benign. Evaluation of environmental benefits of CW necessitates knowing N removal mechanisms and the fate of the removed N in such system. In situ denitrification and DNRA (dissimilatory nitrate reduction to ammonium) rates were measured in an earthen lined 5-cell integrated CW using 15N-enriched nitrate (NO3--N) push-pull method. Measurements were conducted in 2 groundwater depths (shallow- soils in CW bed; and deep- 4 m below CW soils) in 2 contrasting cells (high vs. low nutrient loads) of the CW. Denitrification (N¬2O-N + N2-N) and DNRA were the major NO3--N removal processes accounting together for 54-79% of the total biochemical removal of the applied NO3--N. Of which 14-17 and 40-68% were removed by denitrification and DNRA, respectively. Both the processes significantly differed with CW cells indicating that N transformations depend on the rate of nutrient loads in different cells. They were significantly higher in shallow than deep groundwater. Environmental conditions were favourable for both the processes (i.e. low dissolved oxygen and low redox potential, high dissolved organic carbon, high total carbon and high dissolved organic N) but DNRA rate was favoured over denitrification by high ambient NH4+ concentrations, reduced sulphide and low pH (5.9 - 7.0). Low pH might have limited denitrification to some extent to an incomplete state, being evident by a high N2O-N/(N2O-N+N2-N) ratio (0.35 ± 0.17, SE). Relatively higher N2O-N/(N2O-N+N2-N) ratio and higher DNRA rate over denitrification suggest that the end products of N transformations are reactive. This N2O can be consumed to N2 and/or emit to atmosphere directly and indirectly. The DNRA rate and accumulation of NH4+ indicated that CW is a net source of NH4+ in groundwater. Ammonium produced by DNRA can be fixed in soils and, when exchange sites are

  13. Nitrate contamination of groundwater as a factor of atmospheric pollution

    International Nuclear Information System (INIS)

    High nitrate concentrations of ground water in agricultural regions not only enhance denitrification in gravel pit lakes but also increase the proportion of nitrous oxide (N2O) in the gaseous products released to the atmosphere. Thereby they contribute to the greenhouse effect and destruction of the stratospheric ozone layer. However, due to the present small area of the lakes, their effect may be considered as important at the global scale

  14. The significance of denitrification of applied nitrogen in fallow and cropped rice soils under different flooding regimes. Pt. 1

    International Nuclear Information System (INIS)

    The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the 15N balance, after either first accounting for NH3 volatilization or by analyzing the 15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of 15N from the soil-plant systems depended on the soil, being about 20% - 25% for the silt loams and only 10% - 12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied 15N. Loss of 15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of 15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods. (orig.)

  15. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes

    OpenAIRE

    Shapovalova, A. A.; Khijniak, T. V.; Tourova, T. P.; Muyzer, G.; Sorokin, Y

    2008-01-01

    In this paper we describe denitrification at extremely high salt and pH in sediments from hypersaline alkaline soda lakes and soda soils. Experiments with sediment slurries demonstrated the presence of acetate-utilizing denitrifying populations active at in situ conditions. Anaerobic enrichment cultures at pH 10 and 4 M total Na+ with acetate as electron donor and nitrate, nitrite and N2O as electron acceptors resulted in the dominance of Gammaproteobacteria belonging to the genus Halomonas. ...

  16. Biochemical Mechanism of the Eutrophication and Its Prevention--the Deep Treatment of Waste Water and Its Denitrification and Dephosphorization

    Institute of Scientific and Technical Information of China (English)

    Li Hongshan; Li Songqiang

    2003-01-01

    Biochemical mechanism of forming the red tide is discussed in this paper. The existence of a large number of nitrates and phosphates in the eutrophic water is the prerequisite of explosive increase of algae and the forming of red tide. Reduction of eutrophication is an important approach to preventing the red tide. The method of deep treatment of the waste water and its denitrification and dephosphorization are introduced, and a new opinion on the red tide formation and fundamental prevention is put forward.

  17. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  18. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    Science.gov (United States)

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils. PMID:25784903

  19. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  20. Benthic diatoms in lakes

    OpenAIRE

    Gottschalk, Steffi

    2014-01-01

    In order to protect or improve surface waters ecosystem response to pressures needs to be quantified. Diatoms are frequently used for assessing ecological status in streams and for reconstructing water quality of lakes. However, ecological status assessment of European lakes based on extant diatom assemblages is rare. The overall aim of this thesis is to facilitate the application of benthic diatoms in water quality assessment of boreal lakes, using methods developed for stream assessmen...

  1. Community profiling and gene expression of fungal assimilatory nitrate reductases in agricultural soil

    OpenAIRE

    Gorfer, Markus; Blumhoff, Marzena; Klaubauf, Sylvia; Urban, Alexander; Inselsbacher, Erich; Bandian, Dragana; Mitter, Birgit; Sessitsch, Angela; Wanek, Wolfgang; Strauss, Joseph

    2011-01-01

    Although fungi contribute significantly to the microbial biomass in terrestrial ecosystems, little is known about their contribution to biogeochemical nitrogen cycles. Agricultural soils usually contain comparably high amounts of inorganic nitrogen, mainly in the form of nitrate. Many studies focused on bacterial and archaeal turnover of nitrate by nitrification, denitrification and assimilation, whereas the fungal role remained largely neglected. To enable research on the fungal contribution...

  2. /sup 13/N, /sup 15/N isotope and kinetic evidence against hyponitrite as an intermediate in denitrification

    Energy Technology Data Exchange (ETDEWEB)

    Hollocher, T.C. (Brandeis Univ., Waltham, MA); Garber, E.; Cooper, A.J.L.; Reiman, R.E.

    1980-06-10

    /sup 13/N- and /sup 15/N-labeling experiments were carried out with Paracoccus denitrificans, grown anaerobically on nitrate, to determine whether hyponitrite might be an obligatory intermediate in denitrification and a precursor of nitrous oxide. From experiments designed to trap (/sup 13/N)- or (/sup 15/N, /sup 15/N)hyponitrite by dilution into authentic hyponitrite it was calculated that the intracellular concentration of a presumptive hyponitrite pool must be less than 0.4 mm. In order for a pool of this size to turn over rapidly enough to handle the flux of nitrogen during denitrification, the spontaneous rate of hyponitrite dehydration must be enhanced by a factor of several thousand through enzyme catalysis. Cell extracts failed to catalyze this reaction under a variety of conditions. It is concluded that hyponitrite cannot be an intermediate in denitrification. In addition, the assimilation of inorganic nitrogen was studied in P. dentrificans using /sup 13/N as tracer. At low concentrations (<10/sup -8/ M) of labeled nitrate and nitrite 5 to 10% of the label was assimilated into non-volatile metabolites and 90 to 95% was reduced to N/sub 2/. Similarly, with 15 mm (/sup 13/N)nitrate, 5% of the label went into metabolites and 95% to N/sub 2/. High pressure liquid chromatography analysis of the labeled metabolites indicated that the major pathway for assimilation of inorganic nitrogen in P. denitrificans under these conditions is through ammonia incorporation via the aspartase reaction.

  3. Predicting long-term denitrification capacity of sandy aquifers from incubation experiments and sediment properties

    Directory of Open Access Journals (Sweden)

    W. Eschenbach

    2012-07-01

    Full Text Available Knowledge about the spatial variability of denitrification rates and the lifetime of denitrification in nitrate-contaminated aquifers is crucial to predict the development of groundwater quality. Therefore, regression models were derived to estimate the measured denitrification capacity of incubated aquifer sediments from initial denitrification rates and several sediment parameters, namely total sulphur, total organic carbon, extractable sulfate, extractable dissolved organic carbon, hot water soluble organic carbon and potassium permanganate labile organic carbon.

    For this purpose, we incubated aquifer material from two sandy Pleistocene aquifers in Northern Germany under anaerobic conditions in the laboratory using the 15N tracer technique. The measured long-term denitrification capacities ranged from 0.18 to 56.2 mg N kg−1 yr−1. The laboratory incubations exhibited high differences between non-sulphidic and sulphidic aquifer material in both aquifers with respect to all investigated sediment parameters. Denitrification rates and the estimated lifetime of denitrification were higher in the sulphidic samples. Denitrification capacity measured during one year of incubation (Dcap was predictable from sediment variables within a range of uncertainty of 0.5 to 2 (calculated Dcap/measured Dcap for aquifer material with a Dcap > 20 mg N kg−1 yr−1. Predictions were poor for samples with lower Dcap like samples from the NO3-bearing groundwater zone, which includes the non-sulphidic samples, from the upper part of both aquifers where Dcap is not sufficient to protect groundwater from anthropogenic NO3 input. Calculation of Dcap from initial denitrification rates was only successful for samples from the NO

  4. Interaction of Cr(VI) reduction and denitrification by strain Pseudomonas aeruginosa PCN-2 under aerobic conditions.

    Science.gov (United States)

    He, Da; Zheng, Maosheng; Ma, Tao; Li, Can; Ni, Jinren

    2015-06-01

    Inhibition of efficient denitrification in presence of toxic heavy metals is one of the current problems encountered in municipal wastewater treatment plants. This paper presents how to remove hexavalent chromium (Cr(VI)) and nitrate simultaneously by the novel strain Pseudomonas aeruginosa PCN-2 under aerobic conditions. The capability of strain PCN-2 for Cr(VI) and nitrate reduction was confirmed by PCR analysis of gene ChrR, napA, nirS, cnorB, nosZ, while Cr(VI) reduction was proved via an initial single-electron transfer through Cr(V) detection using electron paramagnetic resonance. Experimental results demonstrated that Cr(VI) and nitrate reduction by strain PCN-2 was much faster at pH 8-9 and higher initial cell concentration. However, increasing Cr(VI) concentration would inhibit aerobic denitrification process and result in an significant delay of nitrate reduction or N2O accumulation, which was attributed to competition between three electron acceptors, i.e., Cr(VI), O2 and nitrate in the electron transport chain. PMID:25795449

  5. Evaluation of nitrate dynamics in riparian zones using environmental isotopes

    International Nuclear Information System (INIS)

    Nitrate contamination, often associated with agricultural activities, is a major problem in some shallow aquifers in Canada and is an increasing threat to groundwater supplies and surface water quality. The studies to be presented at this conference are part of a major project aiming to examine the function of riparian zones in watersheds dominated by agricultural areas. Specifically, this project focuses on the role of vegetation strips and wetlands as buffer zones to attenuate groundwater nitrate generated by agricultural activities, that ultimately impact surface water. Our research approach involves combining the hydrology, geochemistry, ecology and stratigraphic analyses of the riparian zone in a multi-disciplinary way. 15N and 18O in nitrate are being used to provide information on the sources and to allow us to separate denitrification from nitrate attenuation by dilution

  6. In-Stream Microbial Denitrification Potential at Wastewater Treatment Plant Discharge Sites

    Science.gov (United States)

    Hill, N. B.; Rahm, B. G.; Shaw, S. B.; Riha, S. J.

    2014-12-01

    Reactive nitrogen loading from municipal sewage discharge provides point sources of nitrate (NO3-) to rivers and streams. Through microbially-mediated denitrification, NO3- can be converted to dinitrogen (N2) and nitrous oxide (N2O) gases, which are released to the atmosphere. Preliminary observations made throughout summer 2011 near a wastewater treatment plant (WWTP) outfall in the Finger Lakes region of New York indicated that NO3- concentrations downstream of the discharge pipe were lower relative to upstream concentrations. This suggested that nitrate processing was occurring more rapidly and completely than predicted by current models and that point "sources" can in some cases be point "sinks". Molecular assays and stable isotope analyses were combined with laboratory microcosm experiments and water chemistry analyses to better understand the mechanism of nitrate transformation. Nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes were detected in water and sediment samples using qPCR. Denitrifcation genes were present attached to stream sediment, in pipe biofilm, and in WWTP discharge water. A comparison of δ18-O and δ15-N signatures also supported the hypothesis that stream NO3- had been processed biotically. Results from microcosm experiments indicated that the NO3- transformations occur at the sediment-water interface rather than in the water column. In some instances, quantities of denitrification genes were at higher concentrations attached to sediment downstream of the discharge pipe than upstream of the pipe suggesting that the wastewater discharge may be enriching the downstream sediment and could promote in-stream denitrification.

  7. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the 15N isotopic technique

    International Nuclear Information System (INIS)

    Using livestock wastewater for rice production in paddy fields can remove nitrogen and supplement the use of chemical fertilizers. However, paddy fields have complicated water dynamics owing to varying characteristics and would influence nitrogen removal through nitrification followed by denitrification. Quantification of nitrification and denitrification is of great importance in assessing the influence of water dynamics on nitrogen removal in paddy fields. In this study, nitrification and nitrate reduction rates with different water dynamics after liquid cattle waste application were evaluated, and the in situ denitrification rate was determined directly using the 15N isotopic technique in a laboratory experiment. A significant linear regression correlation between nitrification and the nitrate reduction rate was observed and showed different regression coefficients under different water dynamics. The regression coefficient in the continuously flooded paddy soil was higher than in the drained–reflooded paddy soil, suggesting that nitrate would be consumed faster in the flooded paddy soil. However, nitrification was limited and the maximum rate was only 13.3 μg N g−1 day−1 in the flooded paddy soil with rice plants, which limited the supply of nitrate. In contrast, the drained–reflooded paddy soil had an enhanced nitrification rate up to 56.8 μg N g−1 day−1, which was four times higher than the flooded paddy soil and further stimulated nitrate reduction rates. Correspondingly, the in situ denitrification rates determined directly in the drained–reflooded paddy soil ranged from 5 to 1035 mg N m−2 day−1, which was higher than the continuously flooded paddy soil (from 5 to 318 mg N m−2 day−1) during the vegetation period. The nitrogen removal through denitrification accounted for 38.9% and 9.9% of applied nitrogen in the drained–reflooded paddy soil and continuously flooded paddy soil, respectively. - Highlights: ► Nitrification and

  8. Denitrification in a Shallow Aquifer Underlying a Dairy Farm in the Central Valley of California

    Science.gov (United States)

    Esser, B. K.; Beller, H. R.; Carle, S. F.; Hudson, G. B.; Kane, S. R.; McNab, W. W.; Moran, J. E.; Tompson, A. F.

    2004-12-01

    Nitrate loading to shallow aquifers from dairy farm operations presents a serious threat to critical groundwater resources in California. Less well known is the extent to which saturated zone denitrification may mitigate the problem by converting nitrate to the benign end-product nitrogen, before nitrate is transported to deeper aquifers used for drinking water. We are carrying out a multi-disciplinary study of saturated zone denitrification, in a dense network of monitoring points at a 1500-cow dairy in Kings County, California. Detailed vertical profiles of anion and cation concentrations, along with dissolved excess nitrogen were obtained at five-foot intervals using temporary direct-push wells. Results show nitrate concentrations in excess of 100 mg/L over the top few meters of the water column, abruptly falling to less than 5 mg/L below a depth of approximately 10m. Over the same interval, dissolved excess nitrogen concentrations sharply increase, indicating that denitrification is responsible for a significant fraction of the nitrate decrease. This pattern is in effect across the entire dairy site. A key aspect of the project is a concurrent focus on understanding the hydrogeology of the site. Regionally, overdraft over the past several decades has resulted in the development of separate shallow (10 m) and deeper (≥ 40 m) aquifer systems. Recharge to the shallow aquifer is derived from low TDS, isotopically depleted Kings River water from a nearby unlined irrigation canal. Local agricultural pumping from the shallow aquifer and infiltration from irrigation water are significant factors in the shallow system. The deeper aquifer is characterized by intensive regional pumping, rapidly decreasing water levels, and the apparent disposition of the shallow aquifer as a perched system for a 1-km2 or more area surrounding the farm. The air gap separating the aquifers is low in oxygen and undergoes pressure changes as water levels fluctuate below. Age dating and

  9. Experimental evidence for aerobic bio-denitrification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nitrate pollution of groundwater is paid more and more attention for its hazardous to environments and human health. A strain of DN11 was isolated from soil and used in the laboratory columns filled with various media for nitrate removal. The experimental results showed that DN11could reduce nitrate at different rates in different media under the aerobic condition. The mechanism for nitrate removal with DN11 is explained meanwhile.

  10. Biological filter capable of simultaneous nitrification and denitrification for Aquatic Habitat in International Space Station

    Science.gov (United States)

    Uemoto, H.; Shoji, T.; Uchida, S.

    2014-04-01

    The biological filter capable of simultaneous nitrification and denitrification was constructed for aquatic animal experiments in the International Space Station (ISS). The biological filter will be used to remove harmful ammonia excreted from aquatic animals in a closed water circulation system (Aquatic Habitat). The biological filter is a cylindrical tank packed with porous glass beads for nitrification and dual plastic bags for denitrification. The porous beads are supporting media for Nitrosomonas europaea and Nitrobacter winogradskyi. The N. europaea cells and N. winogradskyi cells on the porous beads, oxidize the excreted ammonia to nitrate via nitrite. On the other hand, the dual bag is composed of an outer non-woven fabric bag and an inner non-porous polyethylene film bag. The outer bag is supporting media for Paracoccus pantotrophus. The inner bag, in which 99.5% ethanol is packed, releases the ethanol slowly, since ethanol can permeate through the non-porous polyethylene film. The P. pantotrophus cells on the outer bag reduce the produced nitrate to nitrogen gas by using the released ethanol as an electron donor for denitrification. The biological filter constructed in this study consequently removed the ammonia without accumulating nitrate. Most of the excess ethanol was consumed and did not affect the nitrification activity of the N. europaea cells and N. winogradskyi cells severely. In accordance with the aquatic animal experiments in the ISS, small freshwater fish had been bred in the closed water circulation system equipped with the biological filter for 90 days. Ammonia concentration daily excreted from fish is assumed to be 1.7 mg-N/L in the recirculation water. Under such conditions, the harmful ammonia and nitrite concentrations were kept below 0.1 mg-N/L in the recirculation water. Nitrate and total organic carbon concentrations in the recirculation water were kept below 5 mg-N/L and 3 mg-C/L, respectively. All breeding fish were alive and ate

  11. Denitrification in an anoxic rotating biological contactor under two carbon/nitrogen ratios

    OpenAIRE

    Cortez, Susana; Teixeira, P; Oliveira, Rosário; Mota, M.

    2008-01-01

    The aim of the present work was to compare the performance of an anoxic bench-scale rotating biological contactor (RBC), in terms of the denitrification process, applied to treat synthetic wastewater under two carbon/nitrogen (C/N) molar ratios (1.5 and 3). The average removal efficiency in terms of nitrogen-nitrate was of about 90.4% at a C/N=1.5 lowering to 73.7% at a C/N=3. Considering carbon-acetate removal an overall efficiency of 82.0% and 63.6% was attained at a C/N rati...

  12. The mechanism of oxygen isotope fractionation during N2O production by denitrification

    Directory of Open Access Journals (Sweden)

    D. Lewicka-Szczebak

    2015-10-01

    Full Text Available The isotopic composition of soil-derived N2O can help differentiate between N2O production pathways and estimate the fraction of N2O reduced to N2. Until now, δ18O of N2O has been rarely used in the interpretation of N2O isotopic signatures because of the rather complex oxygen isotope fractionations during N2O production by denitrification. The latter process involves nitrate reduction mediated through the following three enzymes: nitrate reductase (NAR, nitrite reductase (NIR and nitric oxide reductase (NOR. Each step removes one oxygen atom as water (H2O, which gives rise to a branching isotope effect. Moreover, denitrification intermediates may partially or fully exchange oxygen isotopes with ambient water, which is associated with an exchange isotope effect. The main objective of this study was to decipher the mechanism of oxygen isotope fractionation during N2O production by denitrification and, in particular, to investigate the relationship between the extent of oxygen isotope exchange with soil water and the δ18O values of the produced N2O. We performed several soil incubation experiments. For the first time, Δ17O isotope tracing was applied to simultaneously determine the extent of oxygen isotope exchange and any associated oxygen isotope effect. We found bacterial denitrification to be typically associated with almost complete oxygen isotope exchange and a stable difference in δ18O between soil water and the produced N2O of δ18O(N2O / H2O = (17.5 ± 1.2 ‰. However, some experimental setups yielded oxygen isotope exchange as low as 56 % and a higher δ18O(N2O / H2O of up to 37 ‰. The extent of isotope exchange and δ18O(N2O / H2O showed a very significant correlation (R2 = 0.70, p 2O from another production process, most probably fungal denitrification. An oxygen isotope fractionation model was used to test various scenarios with different magnitudes of branching isotope effects at different steps in the reduction process. The

  13. Microbial degradation of high nitrogen contents (primarily nitrate) in industrial waste water

    International Nuclear Information System (INIS)

    This study deals with the denitrification of industrial waste water of high nitrate content, including waste water from the recovery process for nuclear material. At first the autotrophic process employing Thiob. denitrificans was investigated: kinetics, stoichiometry, application of a packed bed reactor; effect of nitrate concentration, retention time, loading and height of the reactor on denitrification. The system proved to be useful for waste water with nitrate up to 4.5 g/L; the highest rate of denitrification achieved was 1.5 g/L.h when the retention time was 2.5 h and the nitrate concentration (in-flow) 4.3 g/L (i.e. reactor loadung 41 kg NO3-/m3.d). Equally good results were obtained by the heterotrophic process: ethanol allowed a reactor loading of 60 kg NO3-/m3.d; however, in this case bacterial growth tended to clog the column. - Enrichments made with ethanol yielded Ps. aeruginosa as main component of the population; in contrast, those with methanol resulted in a mixture of Hyphomicrobium spec. and Paracoccus denitrificans; this bacterial culture was used to determine the stoichiometry of denitrification in continuous culture; it was also employed to denitrify a diluted solution of nitric acid (0.1 ml HNO3/L) which could be achieved in continuous culture using a retention time of 25 h. (orig.)

  14. [Nitrate removal from recirculating aquaculture system using polyhydroxybutyrate-co-hydroxyvalerate as carbon source ].

    Science.gov (United States)

    Zhang, Lanhe; Liu, Lili; Qiu, Tianlei; Gao, Min; Han, Meilin; Yuan, Ding; Wang, Xuming

    2014-09-01

    [ OBJECTIVE] Polyhydroxybutyrate-co-hydroxyvalerate (PHBV) was used as solid carbon source and biofilm carrier to remove nitrate from recirculating aquaculture system (RAS). Dynamics of microbial community structure in biofilm coating on carbon source packed into denitrification reactor were investigated. [METHODS] Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial community in biofilm from denitrifiation reactor. Bacteria degrading PHBV were isolated from the reactor using pure culture method. [RESULTS] Nitrate decreased remarkably in the RAS connected with dentrification reactor. In contrast, Nitrate increased continuously in the conventional RAS without dentrification reactor. According to the phylogenetic analysis, the microbes in the biofilm samples from denitrification reactor were divided into Proteobacteria ( p-proteobacteria, γ-proteobacteria and δ- proteobacteria) , Firmicutes and Bacteroidetes. The major advantageous populations were Acidovorax and Bacillus in the 40-day reactor. The advantageous populations in the 150-day reactor were in order of Clostridium, Desulfitobacterium, Dechloromonas, Pseudoxanthomonas and Flavobacterium. Pure cultures of bacteria degrading PHBV isolated from denitrification reactor were classified into Acidovorax, Methylibium, Pseudoxanthomonas and Dechloromonas. [CONCLUSION] Nitrate could be removed effectively from RAS using PHBV as carbon source. Advantageous bacteria and their dynamic changes were ascertained in biofilm from denitrification reactor packed with PHBV. PMID:25522594

  15. Increased rates of dissimilatory nitrate reduction to ammonium (DNRA) under oxic conditions in a periodically hypoxic estuary

    Science.gov (United States)

    Roberts, Keryn L.; Kessler, Adam J.; Grace, Michael R.; Cook, Perran L. M.

    2014-05-01

    The Yarra River Estuary is a salt wedge estuary prone to hypoxia in the bottom waters during low flow periods. Rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were quantified using 15N in relation to oxygen, nitrate and available reductants. Denitrification was the dominant nitrate reduction pathway under all oxygen conditions, however, DNRA increased from denitrifying bacteria had a higher affinity than nitrate ammonifying bacteria with Km values of 49 and 86 μmol L-1 for denitrification and DNRA, respectively, however, this could not explain the change in the rates of DNRA relative to denitrification observed. Further slurry incubations to investigate the relationship between DNRA and Fe2+ oxidation were inconclusive and complicated by very high backgrounds of sorbed (HCl extractable) Fe2+. Addition of Fe2+ to the slurry did not stimulate denitrification compared to a control (no Fe2+ addition), however, there was a significant decrease in the Fe2+ concentration over the period where DNRA occurred in the Fe2+ addition treatment, and no significant decrease in the control treatment. The ratio of DNRA to Fe2+ consumption was 15 ± 6 and 7 ± 3 for the Fe2+ and control treatments, respectively. We suggest reduced rates of DNRA under anoxic conditions can be explained by the binding of Fe2+ with free sulfides and the formation of FeS removing available Fe2+ for DNRA.

  16. Paliperidonium nitrate

    Directory of Open Access Journals (Sweden)

    Jingshui Ge

    2012-10-01

    Full Text Available In the title molecular salt (systematic name: 3-{2-[4-(6-fluoro-1,2-benzoxazol-3-ylpiperidin-1-yl]ethyl}-9-hydroxy-2-methyl-1,6,7,8,9,9a-hexahydropyrido[1,2-a]pyrimidin-4-one nitrate, C23H29FN4O3+·NO3−, the piperidine ring displays a chair conformation and its N atom is protonated; the N—H bond is in an axial orientation. The ring bearing the hydroxy group exhibits a half-chair conformation. The hydroxy group as well as the adjacent methylene group are disordered over two sets of sites in a 0.823 (5:0.177 (5 ratio. In the crystal, O—H...N, O—H...O, N—H...O and N—H...N hydrogen bonds connect the components into a three-dimensional network.

  17. Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp.

    Science.gov (United States)

    Liu, Yan; Li, Shibin; Chen, Zuliang; Megharaj, Mallavarapu; Naidu, Ravi

    2014-08-01

    Nitrate contamination in drinking water is a major threat to public health. This study investigated the efficiency of denitrification of aqueous solutions in the co-presence of synthesized nanoscale zero-valent iron (nZVI; diameter: 20-80 nm) and a previously isolated Paracoccus sp. strain YF1. Various influencing factors were studied, such as oxygen, pH, temperature, and anaerobic corrosion products (Fe(2+), Fe(3+) and Fe3O4). With slight toxicity to the strain, nZVI promoted denitrification efficiency by providing additional electron sources under aerobic conditions. For example, 50 mg L(-1) nZVI increased the nitrate removal efficiency from 66.9% to 85.2%. However, a high concentration of nZVI could lead to increased production of Fe(2+), a toxic ion which could compromise the removal efficiency. Kinetic studies suggest that denitrification by both free cells, and nZVI-amended cells fitted well to the zero-order model. Temperature and pH are the major factors affecting nitrate removal and cell growth, with or without the presence of nZVI. In this study, nitrate removal and cell growth increased in the pH range of 6.5-8.0, and temperature range of 25-35 °C. These conditions favor the growth of the strain, which dominated denitrification in all scenarios involved. As for anaerobic corrosion products, compared with Fe(2+) and Fe(3+), Fe3O4 promoted denitrification by serving as an electron donor. Finally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) confirmed attachments of nZVI on the surface of the cell, and the formation of iron oxides. This study indicated that, as an electron donor source with minimal cellular toxicity, nZVI could be used to promote denitrification efficiency under biotic conditions. PMID:24630453

  18. Deep Nitrate Deficit Observed in the Highly Oxygenated East/Japan Sea and Its Possible Cause

    Directory of Open Access Journals (Sweden)

    Il-Nam Kim

    2012-01-01

    Full Text Available We present evidence of denitrification on the continental slopes of the Ulleung Basin (UB and the Eastern Japan Basin (EJB near the Tatar Strait (TtS in the East/Japan Sea (EJS, despite its high water column dissolved oxygen concentrations. Some nutrient concentration data deviate significantly from the fitted regression line of nitrate (N vs. phosphate (P in deep waters, indicating a loss of nitrate in the region. The EJS has a lower N/P ratio (ca. 12.4 below 300 dbar than a traditional Redfield ratio (16. The N/P ratio and oxygen concentration are substantially lower at several locations whose depths are close to the sediment-water interface, near TtS (500 - 1100 dbar and in UB (1100 - 2200 dbar. The decreased nitrate concentration is smaller than the expected nitrate level (a low N/P ratio of < 12.4, and a secondary nitrite peak near the bottom of these two regions: taken collectively, both indicate the presence of denitrification in the bottom layer. It is speculated that active re-mineralization and denitrification may occur simultaneously along the rich organic matter bottom layer on the slope environment. Denitrification rates are estimated at ~3 - 33 μmol N m-2 d-1. Current estimates do not support the previous idea of basin-wide denitrification in EJS, although the N/P ratio is low like in other hypoxic/anoxic seas. A better understanding of the denitrification process is necessary for predicting future changes of nitrogen cycle in the well-oxygenated EJS considering the decadal-scale physical and biogeochemical changes that have occurred.

  19. Denitrification - Possibilities and cost aspects

    International Nuclear Information System (INIS)

    investment and operation costs, compared to the original process solutions, so the possibility for successful application of nitrogen removal in colder climate has considerably been increased. Although satisfactory results have been achieved in full scale operation, some care is imperative. Compared to the situation in the sixties, when phosphorus removal was introduced in Scandinavia, it must stressed that nitrification-denitrification is a far more complex process, which need further studies for optimal application

  20. Effects of sludge disposal on groundwater nitrate concentrations

    Science.gov (United States)

    Spalding, R. F.; Exner, M. E.; Martin, G. E.; Snow, D. D.

    1993-02-01

    More than 100 groundwater samples were collectd and analyzed for nitrate-nitrogen, δ 15N of the nitrate, dissolved organic carbon (DOC), and chloride. Multilevel samplers and nested monitoring wells were located beneath and down-gradient from an irrigated cornfield on which human waste sludge was injected. The sampling delineated a 1.3km× 0.3km plume of nitrate contamination. Both the nitrate-nitrogen concentrations and the δ 15N values within the plume's centroid were homogeneous. The levels were 34 ± 3mg1 -1 and + 13.4 ± 1.2%, respectively. A retarding zone of clayey silt split the plume and separated the oxic water from the deeper anoxic water. Nitrate levels were lower in the anoxic water and declined rapidly with depth. The significant association ( r = - 0.91) between increasing δ 15N values and decreasing nitrate concentrations indicated that the nitrate was denitrified. High chloride concentrations in the anoxic zone beneath the retarding layer are thought to originate from the sludge storage lagoon and/or the sludge compost piles. Tritium and atrazine levels confirm that this is recent recharge water. Denitrification has utilized most of the original nitrate and DOC in the plume.

  1. One method is not enough to determine denitrification in a Histic Gleysol following different grassland renovation techniques in Northwest Germany

    Science.gov (United States)

    Well, Reinhard; Buchen, Caroline; Eschenbach, Wolfram; Lewicka-Szczebak, Dominika; Helfrich, Mirjam; Gensior, Andreas; Flessa, Heinz

    2014-05-01

    Grassland renovation by reseeding is a common practices to improve productivity, but knowledge on enhanced nitrate leaching and N2O emission due to disturbance during associated soil tillage is scarce. Denitrification in hydromorphic soils under agricultural management is potentially extremely high due to the coincidence of high nitrate concentrations, labile organic carbon and oxygen depletion during extended periods of water saturation close to the soil surface (Well et al. 2003; Well et al. 2005). We investigated the impact of grassland renewal or conversion to arable land on greenhouse gas fluxes and N losses in field plot experiments. One of the two sites is a hydromorphic soil (Histic Gleysol) rich in organic C, with groundwater level always within the rooting zone and close to the surface during winter. Assessment of the N budget to estimate enhanced N mineralization following grassland renewal as well as associated N leaching is complicated by potentially complete NO3- consumption via denitrification. Robust estimation on denitrification losses at this site is crucial to assess the impact of grassland renewal on its N dynamics and budget. One aim of this study is to determine denitrification in the surface and subsoil in order to close the N budget. We apply five approaches to investigate spatial and temporal dynamics of denitrification and will report first results. (1) N balance approach: The N budget is obtained by weekly measurement of N2O fluxes and mineral N in the top soil, mineral N twice a year at 0 to 90 cm depth, N uptake, N fertilization and modeling N leaching based on mineral N and hydrological model data. Unaccounted N is attributed to possible denitrification. (2) Isotopologue approach: δ18O, average δ15N and 15N site preference of N2O as well as δ15N and δ18O of NO3- are measured at times to estimate N2O reduction to N2 in the topsoil during periods of unsaturated conditions using the N2O isotope fractionation approach (Lewicka

  2. Generality of Nitrate Removal in Streambed Sediment on the Southern Delmarva Peninsula

    Science.gov (United States)

    McFadden, G.; Flewelling, S. A.; Herman, J. S.; Mills, A. L.

    2013-12-01

    Nitrogen fertilizers have accumulated in the unconfined Columbia aquifer on the Eastern Shore of Virginia (ESVA) and increased nitrate concentrations, which could potentially affect water quality in down-gradient surface-water bodies. The streambeds and riparian zones of the small, low-gradient ESVA streams appear to be attenuating the nitrate load of discharging groundwater via denitrification, thereby reducing groundwater nitrate concentrations by an order of magnitude or more in some cases. We measured concentrations of nitrate, chloride, and dissolved oxygen in sediment pore water as well as vertical head gradients and hydraulic conductivity in the streambed of four streams on the ESVA (Coal Kiln, Machipongo, Phillips Creek, and Parker Creek). Unlike measurements made in some other streams on the ESVA, the data did not show a consistent decrease in nitrate concentrations as groundwater discharged upward through the streambed. For Coal Kiln, Machipongo, and Phillips Creek, dissolved oxygen concentrations were consistently low (generally redox reactions gradually shifting the electron acceptor from oxygen to nitrate as pore-water moved upward through the sediments. Whereas previous measurements at another stream (Cobb Mill Creek) on the ESVA indicated that denitrification occurred primarily in the upper 30-60 cm of the streambed sediment, the data from Coal Kiln, Machipongo, and Phillips Creek suggest that denitrification may also be important elsewhere in the catchment, perhaps deeper in the sediment profile. In Parker Creek, the streambed appeared to be reducing nitrate concentrations as groundwater discharged to the stream, however, the magnitude of nitrate removal during vertical flow through the bed was insufficient to account for the low nitrate concentrations in the stream. Perhaps a key factor contributing to the larger groundwater nitrate concentrations entering Parker Creek's streambed was due to the discrepancy in pore-water velocities. The average

  3. The impact of relict organic materials on the denitrification capacity in the unsaturated-saturated zone continuum of three volcanic profiles.

    Science.gov (United States)

    Clague, J C; Stenger, R; Clough, T J

    2013-01-01

    The denitrification capacity of wetlands, riparian zones, and aquifers in glacial outwash areas is well documented, but little or no information exists for volcanic profiles, particularly those containing relict organic matter contained in or on top of paleosols (old soils buried by volcanic deposits) below the groundwater table. Relict carbon contained in these layers could provide the necessary electrons to fuel heterotrophic denitrification. To the best of our knowledge, this is the first study investigating the denitrification capacity in both the unsaturated and saturated zone of volcanic profiles. Samples from three profile types with differing organic matter distribution were amended with N-enriched nitrate (NO-) and incubated in the laboratory under anaerobic conditions. Dinitrogen (N) dominated the N gas fluxes; averaged across all samples, it accounted for 96% of the total N (nitrous oxide [NO] and N) gas fluxes. Dinitrogen fluxes were generally highest in the A horizon samples (4.1-6.2 nmol N g h), but substantial fluxes were also observed in some paleosol layers (up to 0.72 nmol N g h). A significant correlation ( dissolved organic carbon and the total N gas flux produced in samples from below the A horizon, suggesting that heterotrophic denitrification was the dominant NO attenuation process in this study. Extrapolation of lab-derived denitrification capacities to field conditions suggests that the denitrification capacity of profiles containing relict soil organic matter in the saturated zone exceeds the estimated N leaching from the root zone. PMID:23673749

  4. Ambient and potential denitrification rates in marsh soils of Northeast Creek and Bass Harbor Marsh watersheds, Mount Desert Island, Maine

    Science.gov (United States)

    Huntington, Thomas G.; Culbertson, Charles W.; Duff, John H.

    2012-01-01

    Nutrient enrichment from atmospheric deposition, agricultural activities, wildlife, and domestic sources is a concern at Acadia National Park on Mount Desert Island, Maine, because of the potential problems of degradation of water quality and eutrophication in estuaries. Degradation of water quality has been observed at Bass Harbor Marsh estuary in the park but only minimally in Northeast Creek estuary. Previous studies at Acadia National Park have estimated nutrient inputs to estuaries from atmospheric deposition and surface-water runoff, and have identified shallow groundwater as an additional potential source of nutrients. Previous studies at Acadia National Park have assumed that a certain fraction of the nitrogen input was removed through microbial denitrification, but rates of denitrification (natural or maximum potential) in marsh soils have not been determined. The U.S. Geological Survey, in cooperation with Acadia National Park, measured in-place denitrification rates in marsh soils in Northeast Creek and in Bass Harbor Marsh watersheds during summer 2008 and summer 2009. Denitrification was measured under ambient conditions as well as after additions of inorganic nitrogen and glucose. In-place denitrification rates under ambient conditions were similar to those reported for other coastal wetlands, although they were generally lower than those reported for salt marshes having high ambient concentrations of nitrate (NO3). Denitrification rates generally increased by at least an order of magnitude following NO3 additions, with or without glucose (as the carbohydrate) additions, compared with the ambient treatments that received no nutrient additions. The treatment that added both glucose and NO3 resulted in a variety of denitrification responses when compared with the addition of NO3 alone. In most cases, the addition of glucose to a given rate of NO3 addition resulted in higher rates of denitrification. These variable responses indicate that the amount of

  5. Denitrification activity of a remarkably diverse fen denitrifier community in finnish lapland is N-oxide limited.

    Science.gov (United States)

    Palmer, Katharina; Horn, Marcus A

    2015-01-01

    Peatlands cover more than 30% of the Finnish land area and impact N2O fluxes. Denitrifiers release N2O as an intermediate or end product. In situ N2O emissions of a near pH neutral pristine fen soil in Finnish Lapland were marginal during gas chamber measurements. However, nitrate and ammonium fertilization significantly stimulated in situ N2O emissions. Stimulation with nitrate was stronger than with ammonium. N2O was produced and subsequently consumed in gas chambers. In unsupplemented anoxic microcosms, fen soil produced N2O only when acetylene was added to block nitrous oxide reductase, suggesting complete denitrification. Nitrate and nitrite stimulated denitrification in fen soil, and maximal reaction velocities (vmax) of nitrate or nitrite dependent denitrification where 18 and 52 nmol N2O h-1 gDW-1, respectively. N2O was below 30% of total produced N gases in fen soil when concentrations of nitrate and nitrite were N2O consumption was up to 36 nmol N2O h-1 gDW-1. Denitrifier diversity was assessed by analyses of narG, nirK/nirS, and nosZ (encoding nitrate-, nitrite-, and nitrous oxide reductases, respectively) by barcoded amplicon pyrosequencing. Analyses of ~14,000 quality filtered sequences indicated up to 25 species-level operational taxonomic units (OTUs), and up to 359 OTUs at 97% sequence similarity, suggesting diverse denitrifiers. Phylogenetic analyses revealed clusters distantly related to publicly available sequences, suggesting hitherto unknown denitrifiers. Representatives of species-level OTUs were affiliated with sequences of unknown soil bacteria and Actinobacterial, Alpha-, Beta-, Gamma-, and Delta-Proteobacterial sequences. Comparison of the 4 gene markers at 97% similarity indicated a higher diversity of narG than for the other gene markers based on Shannon indices and observed number of OTUs. The collective data indicate (i) a high denitrification and N2O consumption potential, and (ii) a highly diverse, nitrate limited denitrifier

  6. Denitrification activity of a remarkably diverse fen denitrifier community in finnish lapland is N-oxide limited.

    Directory of Open Access Journals (Sweden)

    Katharina Palmer

    Full Text Available Peatlands cover more than 30% of the Finnish land area and impact N2O fluxes. Denitrifiers release N2O as an intermediate or end product. In situ N2O emissions of a near pH neutral pristine fen soil in Finnish Lapland were marginal during gas chamber measurements. However, nitrate and ammonium fertilization significantly stimulated in situ N2O emissions. Stimulation with nitrate was stronger than with ammonium. N2O was produced and subsequently consumed in gas chambers. In unsupplemented anoxic microcosms, fen soil produced N2O only when acetylene was added to block nitrous oxide reductase, suggesting complete denitrification. Nitrate and nitrite stimulated denitrification in fen soil, and maximal reaction velocities (vmax of nitrate or nitrite dependent denitrification where 18 and 52 nmol N2O h-1 gDW-1, respectively. N2O was below 30% of total produced N gases in fen soil when concentrations of nitrate and nitrite were <500 μM. vmax for N2O consumption was up to 36 nmol N2O h-1 gDW-1. Denitrifier diversity was assessed by analyses of narG, nirK/nirS, and nosZ (encoding nitrate-, nitrite-, and nitrous oxide reductases, respectively by barcoded amplicon pyrosequencing. Analyses of ~14,000 quality filtered sequences indicated up to 25 species-level operational taxonomic units (OTUs, and up to 359 OTUs at 97% sequence similarity, suggesting diverse denitrifiers. Phylogenetic analyses revealed clusters distantly related to publicly available sequences, suggesting hitherto unknown denitrifiers. Representatives of species-level OTUs were affiliated with sequences of unknown soil bacteria and Actinobacterial, Alpha-, Beta-, Gamma-, and Delta-Proteobacterial sequences. Comparison of the 4 gene markers at 97% similarity indicated a higher diversity of narG than for the other gene markers based on Shannon indices and observed number of OTUs. The collective data indicate (i a high denitrification and N2O consumption potential, and (ii a highly diverse

  7. Microbial degradation of acenapthene and napthalene under denitrification conditions in soil--water systems: Annual report, October 1987

    Energy Technology Data Exchange (ETDEWEB)

    Mihelcic, J.R.; Luthy, R.G.

    1987-10-01

    This study examined the microbial degradation of acenaphthene and naphthalene under denitrification conditions at soil-to-water ratios of 1:25 and 1:50 with soil containing approximately 10/sup 5/ denitrifying organisms per gram of soil. Under nitrate-excess conditions, both acenaphthene and naphthalene were degraded microbially from initial aqueous-phase concentrations of about one and several mg/l, respectively, to nondetectable levels (<0.01 mg/l) in time periods less than 9 weeks. Acclimation periods of 12 to 36 days were observed prior to the onset of microbial degradation in tests with soil not previously exposed to PAH, while acclimation periods were absent in tests with soil reserved from prior PAH degradation tests. It was judged that the apparent acclimation period resulted from the time for a small population of organisms capable of PAH degradation to attain sufficient densities to exhibit detectable PAH reduction. About 0.9 percent of the naturally occurring soil organic carbon could be mineralized under denitrification conditions, and this accounted for the greater proportion of the nitrate depletion. The mineralization of the labile fraction of the soil organic carbon via microbial denitrification occurred without an observed acclimation period, and was rapid compared to PAH degradation. Under nitrate-limiting conditions the PAH compounds were stable owing to the depletion of nitrate via the more rapid process of soil organic carbon mineralization. The microbial degradation of the PAH compound depends on the interrelationships between: the desorption kinetics and the reversibility of desorption of sorbed compound from the soil, the concentration of PAH-degrading microorganisms, and the competing reaction for nitrate utilization via mineralization of the labile fraction of naturally occurring soil organic carbon. 44 refs., 10 figs.

  8. Long-term operation of double chambered microbial fuel cell for bio-electro denitrification.

    Science.gov (United States)

    Oon, Yoong-Sin; Ong, Soon-An; Ho, Li-Ngee; Wong, Yee-Shian; Oon, Yoong-Ling; Lehl, Harvinder Kaur; Thung, Wei-Eng

    2016-06-01

    The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3). PMID:26894384

  9. In-Situ Denitrification and N2O Emission from Natural and Semi-natural Land Use Types in two UK Catchments

    Science.gov (United States)

    Sgouridis, F.; Ullah, S.

    2014-12-01

    Whilst data and understanding of the controls of denitrification process and the subsequent emission of N2O at microbial and plot scale exist, quantification of in situ annual denitrification rates at catchment scales is scarce due to methodological constraints in measuring in situ denitrification in large temporal and spatial scales. In situ denitrification (DNT) was measured monthly (April 2013 - October 2014) in organic (peat bog, heathland, acid grassland), forest (mixed and deciduous), and grassland (improved and semi-improved) land use types in the Ribble-Wyre and Conwy River catchments in the UK. A static chamber technique according to the 15N-Gas Flux method1 was employed for quantifying the fluxes of 15N-N2 and 15N-N2O gases after labelling the soil with 98 at% K15NO3- at tracer level amounts (10% of the ambient nitrate concentration) and sampling the chamber headspace at 0, 1, 2 and 20 hour intervals. The DNT rates ranged between 0 and 2.3 mg N m-2 h-1 and were significantly influenced by land use type (pforest soils (4 kg N ha-1 y-1) was 3 and 6 times less than that of semi-improved (12 kg N ha-1 y-1) and improved (23 kg N ha-1 y-1) grassland soils, respectively. The N2O emission, due to denitrification, followed a similar trend with lower fluxes from organic and higher from improved grassland soils (range: 0 - 0.04 mg N m-2 h-1), whilst the N2O:N2 ratio ranged between 0.2 and 4%. The relative contribution of denitrification to net N2O flux varied temporally and across the different land use types and ranged from 0.2 to 75%. The 15N-Gas Flux method can be successfully applied in a variety of land use types for relatively high temporal and spatial resolution measurement of in situ denitrification and the simultaneous quantification of N2 and N2O fluxes due to denitrification. Therefore the ratio of N2O:N2 and also the source apportionment for N2O can be estimated more accurately. The results suggested a difference in DNT rates between unmanaged/ low

  10. Nitrification/denitrification - new aspects and treatment methods

    International Nuclear Information System (INIS)

    Different nitrification and denitrification treatment methods are discussed regarding the nitrogen cycle and its importance for wastewater treatment plants. A simultaneous denitrification process and a denitrification/nitrification multistage mode process were compared to a nitrification/denitrification multistage mode process. A nitrification/denitrification multistage process appears to be an efficient and economical alternative, if the EC-regulations of 21 May 1991 require a nitrogen-elimination > 70%. This process is especially well suited for wastewater with a low C/N ratio and for industrial wastewater (e.g. landfill leachate). (orig.)

  11. Denitrification in frozen agricultural soil. A review

    Science.gov (United States)

    Nitrogen (N) in agricultural fertilizers is denitrified by soil bacteria when oxygen is limited, which effectively removes plant-available N from the soil to the atmosphere. Reported denitrification rates range from 0 to 239 kg N ha-1 yr-1 and may reduce the amount of N available for crop growth by...

  12. Effects of aquatic vegetation type on denitrification

    NARCIS (Netherlands)

    Veraart, A.J.; Bruijne, de W.J.J.; Peeters, E.T.H.M.; Klein, de J.J.M.; Scheffer, M.

    2011-01-01

    In a microcosm 15N enrichment experiment we tested the effect of floating vegetation (Lemna sp.) and submerged vegetation (Elodea nuttallii) on denitrification rates, and compared it to systems without macrophytes. Oxygen concentration, and thus photosynthesis, plays an important role in regulating

  13. Contribution of nitrification and denitrification to N2O emissions from urine patches

    DEFF Research Database (Denmark)

    Carter, Mette Sustmann

    2007-01-01

    N(2)O loss ratio of nitrification (i.e. moles of N(2)O-N produced per moles of nitrate produced) and denitrification (i.e. moles of NO produced per moles of N(2)O + N(2) Produced). The effect of artificial urine (52.9 g N m(-2)) and ammonium solution (52.9g N m(-2)) was examined in separate...... experiments at 45% and 35% water-filled pore space (WFPS), respectively, and in each experiment a water control was included. The N(2)O loss derived from nitrification or denitrification was determined in the field immediately after application of (15)N-labelled solutions. During the next 24 h, gross...... nitrification rates were measured in the field, whereas the denitrification rates were measured in soil cores in the laboratory. Compared with the water control, urine application increased the N(2)O emission from 3.9 to 42.3 mu g N(2)O-N m(-2) h(-1), whereas application of ammonium increased the emission from...

  14. Characteristic of nitrous oxide production in partial denitrification process with high nitrite accumulation.

    Science.gov (United States)

    Du, Rui; Peng, Yongzhen; Cao, Shenbin; Wang, Shuying; Niu, Meng

    2016-03-01

    Nitrous oxide (N2O) production during the partial denitrification process with nitrate (NO3(-)-N) to nitrite (NO2(-)-N) transformation ratio of 80% was investigated in this study. Results showed that N2O was seldom observed before complete depletion of NO3(-)-N, but it was closely related to the reduction of NO2(-)-N rather than NO3(-)-N. High COD/NO3(-)-N was in favor of N2O production in partial denitrification with high NO2(-)-N accumulation. It was seriously enhanced at constant acidic pH due to the free nitrous acid (FNA) inhibition. However, the N2O production was much lower at initial pH of 5.5 and 6.5 due to the pH increase during denitrification process. Significantly, the pH turning point could be chosen as a controlled parameter to denote the end of NO3(-)-N reduction, which could not only achieve high NO2(-)-N accumulation but also decrease the N2O production significantly for practical application. PMID:26760756

  15. Improved brine recycling during nitrate removal using ion exchange.

    Science.gov (United States)

    Bae, Byung-Uk; Jung, Yoo-Hoon; Han, Woon-Woo; Shin, Hang-Sik

    2002-07-01

    Ion exchange technology is currently the best for removing nitrate from drinking water. However, problems related to the disposal of spent brine from regeneration of exhausted resins must be overcome so that ion exchange can be applied more widely and economically, especially in small communities. For this purpose, a novel spent brine recycling system using combined biological denitrification and sulfate reduction processes was developed for more efficient reuse of brine. A granular activated carbon (GAC) adsorption column was introduced as an additional step to prevent contamination of resins by bio-polymers and dissolved organics present in the bio-reactor effluent. Two upflow sludge blanket reactors (USBRs) were operated in series for 166 days to provide denitrification and sulfate reduction. The denitrification reactor provided a nitrate removal efficiency of 96% at a nitrate-N loading rate of 5.4 g NO3(-)-N/l d. The sulfate reduction efficiency of the sulfate reduction reactor remained approximately 62% at a sulfate loading rate of 1.8 g SO4(2-)/l d. Five ion exchange columns containing A520E resins were repeatedly operated in up to 25 cycles of service and regeneration using five kinds of brine: one virgin 3% NaCl and four differently recycled spent brines. Throughput decreased remarkably when the biologically recycled brine was not treated with the GAC column, probably due to the presence of bio-polymers and dissolved organic compounds. The sulfate reduction reactor placed after the denitrification step increased the bicarbonate concentration, which could be used as a co-regenerant with chloride. The inclusion of the sulfate reduction reactor into the conventional brine recycling system allowed more efficient reuse of brine, resulting in both reduced salt consumption and brine discharge. PMID:12188132

  16. Inhibition of perchlorate reduction by nitrate in a fixed biofilm reactor

    International Nuclear Information System (INIS)

    Perchlorate and nitrate were reduced simultaneously in fixed biofilm reactors. Reduction of 1000 μg L-1 perchlorate decreased slightly with the addition of 10-16 mg L-1 NO3-N when excess acetate was supplied while denitrification was complete. When influent acetate was reduced by 50% to well below the stoichiometric requirement, perchlorate reduction decreased by 70% while denitrification decreased by only 20%, suggesting that competition for electrons by nitrate was a factor in inhibition. Reduction of nitrate was favored over perchlorate, even though reactor biofilm had been enriched under perchlorate-reducing conditions for 10 months. When excess acetate was restored, perchlorate and nitrate returned to initial levels. The average most probable numbers of perchlorate- and nitrate-reducing bacteria during excess substrate operation were not significantly different and ranged between 2.0 x 105 and 7.9 x 105 cells cm-2 media surface area. The effect of nitrate on chloride generation by suspensions of perchlorate-reducing populations was studied using a chloride ion probe. The rate of reduction of 2 mM perchlorate decreased by 30% in the presence of 2 mM nitrate when excess acetate was added. When acetate was limited, perchlorate reduction decreased by 70% in the presence of equi-molar nitrate

  17. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands.

    Science.gov (United States)

    Lin, Ying-Feng; Jing, Shuh-Ren; Wang, Tze-Wen; Lee, Der-Yuan

    2002-01-01

    Several microcosm wetlands unplanted and planted with five macrophytes (Phragmites australis, Commelina communis, Penniserum purpureum, Ipomoea aquatica, and Pistia stratiotes) were employed to remove nitrate from groundwater at a concentration of 21-47 mg NO3-N/l. In the absence of external carbon, nitrate removal rates ranged from 0.63 to 1.26 g NO3-N/m2/day for planted wetlands. Planted wetlands exhibited significantly greater nitrate removal than unplanted wetlands (P<0.01), indicating that macrophytes are essential to efficient nitrate removal. Additionally, a wetland planted with Penniserum showed consistently higher nitrate removal than those planted with the other four macrophytes, suggesting that macrophytes present species-specific nitrate removal efficiency possibly depending on their ability to produce carbon for denitrification. Although adding external carbon to the influent improved nitrate removal, a significant fraction of the added carbon was lost via microbial oxidation in the wetlands. Planting a wetland with macrophytes with high productivity may be an economic way for removing nitrate from groundwater. According to the harvest result, 4-11% of nitrogen removed by the planted wetland was due to vegetation uptake, and 89-96% was due to denitrification. PMID:12166674

  18. Tracing nitrification and denitrification processes in a periodically flooded shallow sandy aquifer

    International Nuclear Information System (INIS)

    The study defines the transfer mechanisms of nutrients and heavy metals from soil to groundwater operating in periodically water saturated soils. The study site is located in Lomellina (To plain, Northern Italy), which is intensively cultivated with rice. Soils are dominantly constituted by sands, with acidic pH and low organic carbon content. The region generally displays low nitrate contamination in shallow groundwater, despite the intensive land use, while Fe and Mn often exceed drinking water limits. Monitoring performed through a yearly cycle closely followed the water table fluctuations in response to periodical flooding and drying of cultivated fields. pH, conductivity and Eh were measured in the field. Water samples were analysed for major ions, trace elements, nutrients and stable isotopes of dissolved inorganic nitrate (DIN). Results evidence the seasonal migration of nutrients, the redox and associated metal cycling, and allow defining nitrification and denitrification processes. (author)

  19. [Research progress in microbial methane oxidation coupled to denitrification].

    Science.gov (United States)

    Zhu, Jing; Yuan, Meng-Dong; Liu, Jing-Jing; Huang, Xiao-Xiao; Wu, Wei-Xiang

    2013-12-01

    Methane oxidation coupled to denitrification is an essential bond to connect carbon- and nitrogen cycling. To deeply research this process will improve our understanding on the biochemical cycling of global carbon and nitrogen. As an exogenous gaseous carbon source of denitrification, methane can both regulate the balance of atmospheric methane to effectively mitigate the greenhouse effect caused by methane, and reduce the cost of exogenous carbon source input in traditional wastewater denitrification treatment process. As a result, great attention has being paid to the mechanical study of the process. This paper mainly discussed the two types of methane oxidation coupled to denitrification, i. e., aerobic methane oxidation coupled to denitrification (AME-D) and anaerobic methane oxidation coupled to denitrification (ANME-D), with the focus on the microbiological coupling mechanisms and related affecting factors. The existing problems in the engineering application of methane oxidation coupled to denitrification were pointed out, and the application prospects were approached. PMID:24697087

  20. Evaluation of Nitrate Sources and Transformation in the Oglio River Watershed

    International Nuclear Information System (INIS)

    In agricultural watersheds, the management of nitrate contamination in rivers requires the understanding of the existing relationships between soil, groundwater and surface water. The reported data correspond to three sampling campaigns, conducted in different seasons on surface water in a nitrate Vulnerable Zone of lombardy (northern Italy). The Oglio River, its tributaries, one spring, and effluents from wastewater treatment plants were sampled to determinen content, speciation and nitrate isotopes. The nitrate content increased along the Oglio River, mostly due to groundwater inputs. In summer, nitrate tended to decrease at the downstream reach, whilst this trend was not clear in autumn and winter campaigns. In summertime chemical and isotopic data suggest the presence of weak denitrification in the Oglio riverbed. Chemical, isotopic data and flow measurements allow the definition of the N fluxes and identification of sources and processes affecting the nitrate concentration in the river. (author)

  1. Storage and mobilization of natural and septic nitrate in thick unsaturated zones, California

    Science.gov (United States)

    Izbicki, John A.; Flint, Alan L.; O'Leary, David R.; Nishikawa, Tracy; Martin, Peter; Johnson, Russell D.; Clark, Dennis A.

    2015-05-01

    Mobilization of natural and septic nitrate from the unsaturated zone as a result of managed aquifer recharge has degraded water quality from public-supply wells near Yucca Valley in the western Mojave Desert, California. The effect of nitrate storage and potential for denitrification in the unsaturated zone to mitigate increasing nitrate concentrations were investigated. Storage of water extractable nitrate in unsaturated alluvium up to 160 meters (m) thick, ranged from 420 to 6600 kilograms per hectare (kg/ha) as nitrogen (N) beneath undeveloped sites, from 6100 to 9200 kg/ha as N beneath unsewered sites. Nitrate reducing and denitrifying bacteria were less abundant under undeveloped sites and more abundant under unsewered sites; however, δ15N-NO3, and δ18O-NO3 data show only about 5-10% denitrification of septic nitrate in most samples-although as much as 40% denitrification occurred in some parts the unsaturated zone and near the top of the water table. Storage of nitrate in thick unsaturated zones and dilution with low-nitrate groundwater are the primary attenuation mechanisms for nitrate from septic discharges in the study area. Numerical simulations of unsaturated flow, using the computer program TOUGH2, showed septic effluent movement through the unsaturated zone increased as the number and density of the septic tanks increased, and decreased with increased layering, and increased slope of layers, within the unsaturated zone. Managing housing density can delay arrival of septic discharges at the water table, especially in layered unsaturated alluvium, allowing time for development of strategies to address future water-quality issues.

  2. Effect of arbuscular mycorrhizal and bacterial inocula on nitrate concentration in mesocosms simulating a wastewater treatment system relying on phytodepuration.

    Science.gov (United States)

    Lingua, Guido; Copetta, Andrea; Musso, Davide; Aimo, Stefania; Ranzenigo, Angelo; Buico, Alessandra; Gianotti, Valentina; Osella, Domenico; Berta, Graziella

    2015-12-01

    High nitrogen concentration in wastewaters requires treatments to prevent the risks of eutrophication in rivers, lakes and coastal waters. The use of constructed wetlands is one of the possible approaches to lower nitrate concentration in wastewaters. Beyond supporting the growth of the bacteria operating denitrification, plants can directly take up nitrogen. Since plant roots interact with a number of soil microorganisms, in the present work we report the monitoring of nitrate concentration in macrocosms with four different levels of added nitrate (0, 30, 60 and 90 mg l(-1)), using Phragmites australis, inoculated with bacteria or arbuscular mycorrhizal fungi, to assess whether the use of such inocula could improve wastewater denitrification. Higher potassium nitrate concentration increased plant growth and inoculation with arbuscular mycorrhizal fungi or bacteria resulted in larger plants with more developed root systems. In the case of plants inoculated with arbuscular mycorrhizal fungi, a faster decrease of nitrate concentration was observed, while the N%/C% ratio of the plants of the different treatments remained similar. At 90 mg l(-1) of added nitrate, only mycorrhizal plants were able to decrease nitrate concentration to the limits prescribed by the Italian law. These data suggest that mycorrhizal and microbial inoculation can be an additional tool to improve the efficiency of denitrification in the treatment of wastewaters via constructed wetlands. PMID:26423290

  3. Sulfide-driven autotrophic denitrification significantly reduces N2O emissions.

    Science.gov (United States)

    Yang, Weiming; Zhao, Qing; Lu, Hui; Ding, Zhi; Meng, Liao; Chen, Guang-Hao

    2016-03-01

    The Sulfate reduction-Autotrophic denitrification-Nitrification Integrated (SANI) process build on anaerobic carbon conversion through biological sulfate reduction and autotrophic denitrification by using the sulfide byproduct from the previous reaction. This study confirmed extra decreases in N2O emissions from the sulfide-driven autotrophic denitrification by investigating N2O reduction, accumulation, and emission in the presence of different sulfide/nitrate (S/N) mass ratios at pH 7 in a long-term laboratory-scale granular sludge autotrophic denitrification reactor. The N2O reduction rate was linearly proportional to the sulfide concentration, which confirmed that no sulfide inhibition of N2O reductase occurred. At S/N = 5.0 g-S/g-N, this rate resulted by sulfide-driven autotrophic denitrifying granular sludge (average granule size = 701 μm) was 27.7 mg-N/g-VSS/h (i.e., 2 and 4 times greater than those at 2.5 and 0.8 g-S/g-N, respectively). Sulfide actually stimulates rather than inhibits N2O reduction no matter what granule size of sulfide-driven autotrophic denitrifying sludge engaged. The accumulations of N2O, nitrite and free nitrous acid (FNA) with average granule size 701 μm of sulfide-driven autotrophic denitrifying granular sludge engaged at S/N = 5.0 g-S/g-N were 4.7%, 11.4% and 4.2% relative to those at 3.0 g-S/g-N, respectively. The accumulation of FNA can inhibit N2O reduction and increase N2O accumulation during sulfide-driven autotrophic denitrification. In addition, the N2O gas emission level from the reactor significantly increased from 14.1 ± 0.5 ppmv (0.002% of the N load) to 3707.4 ± 36.7 ppmv (0.405% of the N load) as the S/N mass ratio in the influent decreased from 2.1 to 1.4 g-S/g-N over the course of the 120-day continuous monitoring period. Sulfide-driven autotrophic denitrification may significantly reduce greenhouse gas emissions from biological nutrient removal when sulfur conversion processes are applied. PMID

  4. Biological and geochemical processes involved during denitrification in Callovo-Oxfordian clay

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The clay-rich Callovo-Oxfordian (COx) formation has been selected for the disposal of medium and high level, long-lived radioactive waste. After waste cell closure and degradation of package some intermediate-level waste will release nitrate. The latter is likely to diffuse into the surrounding environment (engineered barriers and geological host formation) and interact with a variety compounds present in the barrier components and the rocks. These interactions may result in modification of chemical conditions and impact storage conditions and radionuclide retention. Our work is focused on the understanding of the fate of nitrates released during and after degradation of waste package. We developed a coupled approach considering both geochemical and biological processes of nitrate reduction to simulate reactions occurring at the interface of the engineered barrier and the clay-rich COx formation. Laboratory experiments have been carried out in order to acquire data on kinetics of denitrification coupled with a molecular approach using enzymatic and metabolic activities as a tool for an accurate estimation of biomass. Denitrification has been monitored in a synthetic solution comparable to COx pore water supplemented with acetate and nitrate and amended with a heterotrophic denitrifying strain, Pseudomonas mandelii. Several conditions are applied considering different acetate/nitrate ratios in the presence or absence of COx clay. Before the beginning of experiments, the headspace is flushed with N2 gas to remove oxygen from flasks. Acetylene is used to stop denitrification reaction after the production of N2O gas and thus avoid the formation of N2 gas. Two successive redox reactions are thus expected to occur in experiments. Samples are regularly collected to analyze physical and chemical parameters as well as biological parameters. Biomass is estimated and monitored using both optical microscopy and quantitative

  5. The effects of fulvic acid on microbial denitrification: promotion of NADH generation, electron transfer, and consumption.

    Science.gov (United States)

    Li, Mu; Su, Yinglong; Chen, Yinguang; Wan, Rui; Zheng, Xiong; Liu, Kun

    2016-06-01

    The heterotrophic denitrification requires the participation of electrons which are derived from direct electron donor (usually nicotinamide adenine dinucleotide (NADH)), and the electrons are transferred via electron transport system in denitrifiers and then consumed by denitrifying enzymes. Despite the reported electron transfer ability of humic substances (HS), the influences of fulvic acid (FA), an ubiquitous major component of HS, on promoting NADH generation, electron transfer, and consumption in denitrification process have never been reported. The presence of FA, compared with the control, was found not only significantly improved the total nitrogen (TN) removal efficiency (99.9 % versus 74.8 %) but remarkably reduced the nitrite accumulation (0.2 against 43.8 mg/L) and N2O emission (0.003 against 0.240 mg nitrogen/mg TN removed). The mechanisms study showed that FA increased the metabolism of carbon source via glycolysis and tricarboxylic acid (TCA) cycle pathways to produce more available NADH. FA also facilitated the electron transfer activities from NADH to denitrifying enzymes via complex I and complex III in electron transport system, which improved the reduction of nitrate and accelerated the transformations of nitrite and N2O, and lower nitrite and N2O accumulations were therefore observed. In addition, the consumption of electrons in denitrification was enhanced due to FA stimulating the synthesis and the catalytic activity of key denitrifying enzymes, especially nitrite reductase and N2O reductase. It will provide an important new insight into the potential effect of FA on microbial denitrification metabolism process and even nitrogen cycle in nature niches. PMID:26894403

  6. Effect of organic loading on nitrification and denitrification in a marine sediment microcosm

    Science.gov (United States)

    Caffrey, J.M.; Sloth, N.P.; Kaspar, H.F.; Blackburn, T.H.

    1993-01-01

    The effects of organic additions on nitrification and denitrification were examined in sediment microcosms. The organic material, heat killed yeast, had a C/N ratio of 7.5 and was added to sieved, homogenized sediments. Four treatments were compared: no addition (control, 30 g dry weight (dw) m-2 mixed throughout the 10 cm sediment column (30 M), 100 g dw m-2 mixed throughout sediments (100M), and 100 g dw m-2 mixed into top 1 cm (100S). After the microcosms had been established for 7-11 days, depth of O2 penetration, sediment-water fluxes and nitrification rates were measured. Nitrification rates were measured using three different techniques: N-serve and acetylene inhibition in intact cores, and nitrification potentials in slurries. Increased organic additions decreased O2 penetration from 2.7 to 0.2 mm while increasing both O2 consumption, from 30 to 70 mmol O2 m-2 d-1, and NO3- flux into sediments. Nitrification rates in intact cores were similar for the two methods. Highest rates occurred in the 30 M treatment, while the lowest rate was measured in the 100S treatment. Total denitrification rates (estimated from nitrification and nitrate fluxes) increased with increased organic addition, because of the high concentrations of NO3- (40 ??M) in the overlying water. The ratio of nitrification: denitrification was used as an indication of the importance of nitrification as the NO3- supply for denitrification. This ratio decreased from 1.55 to 0.05 with increased organic addition.

  7. Waste generation reduction: nitrates. FY 1984 status report

    International Nuclear Information System (INIS)

    A study was initiated at Rocky Flats Plant (RFP) to develop and demonstrate technology to eliminate nitrates in low-level waste streams without generating objectionable oxides of nitrogen. Various chemical and thermal methods of denitrification were investigated earlier in this program. Work in FY 1984 was conducted on the Thagard High Temperature Fluid Wall Reactor (HTFWR) and on an aqueous two-step process. Preliminary tests were conducted on a plasma torch system. Testing was completed with actual RFP nitrate wastes on an aqueous process consisting of formic and sulfuric acid reflux, followed by evaporation of the liquid to dryness. Results from this process show promising nitrate destruction, but with production of some NO/sub x/ in the off-gas. Also completed in aqueous testing were laser excitation techniques, indicating that the high activation energy of the nitrate ion can be overcome with a simpler chemical reaction with additional energy applied. Experiments were conducted using an HTFWR to determine its nitrate/nitrite destruction efficiency on simulated RFP and Savannah River Plant waste streams. These streams included nitrate-contaminated soils and feeds containing surrogate fission products. Various additives were tested to enhance nitrate destruction, reduce NO/sub x/ off-gas generation, and produce an acceptable final waste form

  8. Sources of the nitrate in phreatic groundwater in the western Kalahari

    Science.gov (United States)

    Heaton, T. H. E.

    1984-01-01

    Elevated levels of nitrate occur in phreatic groundwater in the western Kalahari, Namibia. Nitrate in water containing 0.4-3.1 meq NO -3l -1, of widespread occurrence, has δ 15N values in the range +4.9 to +8.0‰, suggesting natural derivation from the soil. The sporadic occurrence of very high levels of nitrate (> 4 meq NO -3l -1), which has δ 15N between +9.3 to +18.7‰, reflects pollution derived from animal waste. The importance of considering the possible isotopic effects of denitrification, and the significance of leaching in the nitrogen budget of the Kalahari soil, are also discussed.

  9. Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity.

    Science.gov (United States)

    Chu, Libing; Wang, Jianlong

    2016-07-01

    In the present study, three kinds of biopolymers, PHBV, PHBV/starch and PHBV/bamboo powder (BP) blends were used as carbon source and biofilm carriers for denitrification in packed bed reactors to remove nitrate from groundwater. Results showed that a fast start-up was obtained in bioreactors filled with both PHBV/Starch and PHBV/BP blends without external inocula and it took more than 3 month for PHBV reactor to reach the same loading rate. The PHBV/BP packed reactor exhibited a better nitrate removal efficiency (87.4 ± 7.0%) and less adverse effects in nitrite accumulation and DOC release (below 0.5 mg NO2N L(-1) and 10.5 mg DOC L(-1) in the effluent) during stable operation. Pyrosequencing analysis demonstrated that bacteria belonging to genus Clostridium in phylum Firmicus, which play the primary role in degrading the biopolymers, are the most dominant (33-15% of the sequences). The predominant species in all samples is related to Clostridium crotonatovorans. All the identified 11 genera of denitrifying bacteria affiliated with phylum Proteobacteria and constituted 30-55% in the representative sequences. The PHBV/BP blend is economically attractive carbon source with good denitrification performance. PMID:27145420

  10. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment.

    Science.gov (United States)

    Kong, Zhe; Li, Lu; Feng, Chuanping; Chen, Nan; Dong, Shanshan; Hu, Weiwu

    2015-01-01

    In this study, an integrated two-stage soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification (SIBPD) was designed for domestic wastewater treatment. Benefited from excellent adsorption ability and water-permeability, soil infiltration could avoid clogging, shorten operating time and lower maintenance cost. Respiration and nitrification were mostly engaged in aerobic stage (AES), while nitrate was majorly removed by pyrite-based mixotrophic denitrification mainly occurred in anaerobic stage (ANS). Fed with synthetic and real wastewater for 120days at 1.5h HRT, SIBPD demonstrated good removal performance showing 87.14% for COD, 92.84% for NH4(+)-N and 82.58% for TP along with 80.72% of nitrate removed by ANS. TN removal efficiency was 83.74% when conducting real wastewater. Compared with sulfur-based process, the effluent pH of SIBPD was maintained at 6.99-7.34 and the highest SO4(2-) concentration was only 64.63mgL(-1). This study revealed a promising and feasible application prospect for on-site domestic wastewater treatment. PMID:25827248

  11. Technical Note: Alternative in-stream denitrification equation for the INCA-N model

    Science.gov (United States)

    Etheridge, J. R.; Birgand, F.; Burchell, M. R., II; Lepistö, A.; Rankinen, K.; Granlund, K.

    2014-04-01

    The Integrated Catchment model for Nitrogen (INCA-N) is a semi-distributed, process based model that has been used to model the impacts of land use, climate, and land management changes on hydrology and nitrogen loading. An observed problem with the INCA-N model is reproducing low nitrate-nitrogen concentrations during the summer growing season in some catchments. In this study, the current equation used to simulate the rate of in-stream denitrification was replaced with an alternate equation that uses a mass transfer coefficient and the stream bottom area. The results of simulating in-stream denitrification using the two different methods were compared for a one year simulation period of the Yläneenjoki catchment in Finland. The alternate equation (Nash-Sutcliffe efficiency = 0.61) simulated concentrations during the periods of the growing season with the lowest flow that were closer to the observed concentrations than the current equation (Nash-Sutcliffe efficiency = 0.60), but the results were mixed during other portions of the year. The results of the calibration and validation of the model using the two equations show that the alternate equation will simulate lower nitrate-nitrogen concentrations during the growing season when compared to the current equation, but promote investigation into other errors in the model that may be causing inaccuracies in the modeled concentrations.

  12. Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen.

    Science.gov (United States)

    Wong, Pan Yu; Ginige, Maneesha P; Kaksonen, Anna H; Cord-Ruwisch, Ralf; Sutton, David C; Cheng, Ka Yu

    2015-01-01

    A biofilm process, termed enhanced biological phosphorus removal and recovery (EBPR-r), was recently developed as a post-denitrification approach to facilitate phosphorus (P) recovery from wastewater. Although simultaneous P uptake and denitrification was achieved despite substantial intrusion of dissolved oxygen (DO >6 mg/L), to what extent DO affects the process was unclear. Hence, in this study a series of batch experiments was conducted to assess the activity of the biofilm under various DO concentrations. The biofilm was first allowed to store acetate (as internal storage) under anaerobic conditions, and was then subjected to various conditions for P uptake (DO: 0-8 mg/L; nitrate: 10 mg-N/L; phosphate: 8 mg-P/L). The results suggest that even at a saturating DO concentration (8 mg/L), the biofilm could take up P and denitrify efficiently (0.70 mmol e(-)/g total solids*h). However, such aerobic denitrification activity was reduced when the biofilm structure was physically disturbed, suggesting that this phenomenon was a consequence of the presence of oxygen gradient across the biofilm. We conclude that when a biofilm system is used, EBPR-r can be effectively operated as a post-denitrification process, even when oxygen intrusion occurs. PMID:26398030

  13. Effect of low dissolved oxygen on simultaneous nitrification and denitrification in a membrane bioreactor treating black water.

    Science.gov (United States)

    Hocaoglu, S Murat; Insel, G; Cokgor, E Ubay; Orhon, D

    2011-03-01

    Effect of low dissolved oxygen on simultaneous nitrification and denitrification was evaluated in a membrane bioreactor treating black water. A fully aerobic membrane bioreactor was operated at a sludge age of 60 days under three low dissolved oxygen (DO) levels below 0.5mg/L. It sustained effective simultaneous nitrification/denitrification for the entire observation period. Nitrification was incomplete due to adverse effects of a number of factors such as low DO level, SMPs inhibition, alkalinity limitation, etc. DO impact was more significant on denitrification: Nitrate was fully removed at low DO level but the removal was gradually reduced as DO was increased to 0.5mg/L. Nitrogen removal remained optimal within the DO range of 0.15-0.35 mg/L. Experimental results were calibrated and simulated by model evaluation with the same model coefficients. The model defined improved mass transfer with lower affinity coefficients for oxygen and nitrate as compared to conventional activated sludge. PMID:21239168

  14. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils

    OpenAIRE

    Qu, Zhi; Wang, Jingguo; Almøy, Trygve; Bakken, Lars R.

    2014-01-01

    China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long-term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 ...

  15. Nitrogen removal influence factors in A/O process and decision trees for nitrification/denitrification system

    Institute of Scientific and Technical Information of China (English)

    MA Yong; PENG Yong-zhen; WANG Shu-ying; WANG Xiao-lian

    2004-01-01

    In order to improve nitrogen removal in anoxic/oxic(A/O) process effectively for treating domestic wastewaters, the influence factors, DO(dissolved oxygen), nitrate recirculation, sludge recycle, SRT(solids residence time), influent COD/TN and HRT(hydraulic retention time) were studied. Results indicated that it was possible to increase nitrogen removal by using corresponding control strategies, such as, adjusting the DO set point according to effluent ammonia concentration; manipulating nitrate recirculation flow according to nitrate concentration at the end of anoxic zone. Based on the experiments results, a knowledge-based approach for supervision of the nitrogen removal problems was considered, and decision trees for diagnosing nitrification and denitrification problems were built and successfully applied to A/O process.

  16. Denitrification mechanisms in the polar stratospheres

    Science.gov (United States)

    Toon, Owen B.; Turco, R. P.; Hamill, P.

    1990-01-01

    Microphysical simulations suggest that the time required for nitric acid particles to sediment from the stratosphere is comparable to the time required for falling ice particles to incorporate nitric acid vapor from the vapor phase. Since nitric acid particles form earlier in the winter than ice particles, these simulations favor denitrification being a separate process from dehydration, with denitrification being due to nitric acid particles and dehydration due to ice particles. In the simulations, the column abundance of nitric acid is only depleted if temperatures low enough for nitric acid particles to exist extend to the altitude above which the column is measured. Such low temperatures are infrequent in the Arctic lower stratosphere, which may be the main reason that the Arctic stratospheric column shows little loss of nitric acid during winter, while the colder Antarctic stratospheric column shows a substantial loss of nitric acid.

  17. Nitrate removal from groundwater in columns packed with reed and rice stalks.

    Science.gov (United States)

    Qian, Jiazhong; Wang, Zhiping; Jin, Song; Liu, Yong; Chen, Tianhu; Fallgren, Paul H

    2011-10-01

    Nitrate leaching contaminates groundwater. The objective of this study was to determine if reed and rice stalks could enhance denitrification and reduce nitrate leaching into groundwater. Artificial groundwater spiked with nitrate and field groundwater samples were tested in the columns in sand reactors packed with either reed or rice stalks. The maximum nitrate removal rates were determined to be 1.93 and 1.97 mg nitrate-N l(-1) h(-1), respectively, in the reed and rice stalk-packed columns. The maximum nitrate-nitrogen removal rate in reactors packed with reed stalk was 1.33 mg nitrate-N l(-1) h(-1) when experimented with natural groundwater. Chemical oxygen demand consumption was higher when rice stalk (176.1 mg l(-1)) was used as the substrate, compared to reed stalk (35.2 mg l(-1)) at the same substrate dosage. No nitrite accumulation was detected during the test. The results demonstrate that agricultural byproducts, such as reed and rice stalks, may be used as substrate amendments for enhanced denitrification in natural settings, such as lakeside lagoons, ditches or wetlands. PMID:22329150

  18. National Benthic Infaunal Database (NBID)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NBID is a quantitative database on abundances of individual benthic species by sample and study region, along with other synoptically measured environmental...

  19. Benthic fauna of mangrove environment

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.

    distribution of benthic communities in mangrove environment is governEd. by tidal amplitude, light penetration, nature of substratum and distance from the sea. The littoral zone, neritic zone, Barnacle-oyster zone, Uca zone, Polychaeta zone have been delineated...

  20. NEPR Benthic Habitat Map 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This benthic habitat map was created from a semi-automated habitat mapping process, using a combination of bathymetry, satellite imagery, aerial imagery and...

  1. Nitrate attenuation in the Salburua wetland (Basque Country). Hydrogeological context; Atenuacion de nitratos en el Humedal de Salburua (Pais Vasco). Contexto hidrogeologico

    Energy Technology Data Exchange (ETDEWEB)

    Antiguedad, I.; Martinez-Santos, M.; Martinez, M.; Munoz, B.; Zabaleta, A.; Uriarte, J.; Morales, T.; Iribar, V.; Sanchez, J. M.; Ruiz, E.

    2009-07-01

    The Salburua wetland is located within a vulnerable zone (quaternary aquifer) related to the farming origin nitrate pollution. The restoration of the wetland, which was drained some decades ago, has evidenced the attenuation of nitrates in groundwater entering from farmlands, which exceed 50 mg/l NO{sub 3}. The recently installation of piezo metric network has allowed to characterize the groundwater flow pattern and determine the hydrogeological context of nitrate loss processes. Despite the dilution is happening the most important process seems to be the denitrification, either heterotrophic or auto trophic, probably depending on marly substratum position. The potential of denitrification has been measured in the soils and the values are really highs. This paper focuses on the right conditions for denitrification in the wetland. (Author) 23 refs.

  2. A multi-tracer approach to assess fingerprints of nitrate in an aquifer under agriculturally used land

    Science.gov (United States)

    Pasten-Zapata, Ernesto; Ledesma-Ruiz, Rogelio; Ramirez, Aldo; Harter, Thomas; Mahlknecht, Jürgen

    2014-05-01

    To effectively manage groundwater quality it is essential to understand sources of contamination and underground processes. The objective of the study was to identify sources and fate of nitrate pollution occurring in an aquifer underneath a sub-humid to humid region in NE Mexico which provides 10% of national citrus production. Nitrate isotopes and halide ratios were applied to understand nitrate sources and transformations in relation to land use/land cover. It was found that the study area is subject to diverse nitrate sources including organic waste and wastewater, synthetic fertilizers and soil processes. Animal manure and sewage from septic tanks were the causes of groundwater nitrate pollution within orchards and vegetable agriculture. Dairy activities within a radius of 1,000m from a sampling point increased nitrate pollution. Leachates from septic tanks incited nitrate pollution in residential areas. Soil nitrogen and animal waste were the sources of nitrate in groundwater under shrubland and grassland. Partial denitrification processes were evidenced. The denitrification process helped to attenuate nitrate concentration in the agricultural lands and grassland particularly during summer months.

  3. Groundwater denitrification in two agricultural river catchments: influence of hydro-geological setting and aquifer geochemistry

    Science.gov (United States)

    McAleer, Eoin; Mellander, Per-Erik; Coxon, Catherine; Richards, Karl G.; Jahangir, Mohammad M. R.

    2015-04-01

    Identifying subsurface environments with a natural capacity for denitrification is important for improving agricultural management. At the catchment scale, a complex hierarchy of landscape, hydro-geological and physico-chemical characteristics combine to affect the distribution of groundwater nitrate (NO3-). This study was conducted along four instrumented hillslopes in two ca. 10km2 agricultural river catchments in Ireland, one dominated by arable and one by grassland agriculture. Both catchments are characterised by well drained soils, but have differing aquifer characteristics. The arable catchment is underlain by weathered Ordovician slate bedrock which is extensively fractured with depth. The grassland catchment is characterised by Devonian sandstone bedrock, exhibiting both lateral (from upslope to near stream) and vertical variations in permeability along each hillslope. The capacity for groundwater denitrification was assessed by examining the concentration and distribution patterns of N species (total nitrogen, nitrate, nitrite, ammonium), dissolved organic carbon (DOC), dissolved oxygen (DO) and redox potential (Eh) in monthly samples from shallow and deep groundwater piezometers (n=37). Additionally, the gaseous products of denitrification: nitrous oxide (N2O) and excess dinitrogen (excess N2) were measured seasonally using gas chromatography and membrane inlet mass spectroscopy, respectively. The slate catchment was characterised by uniformity, both laterally and vertically, in aquifer geochemistry and gaseous denitrification products. The four year spatial mean groundwater NO3--N concentration was 6.89 mg/l and exhibited low spatial and temporal variability (temporal SD: 1.19 mg/l, spatial SD: 1.185 mg/l). Elevated DO concentrations (mean: 9.75 mg/l) and positive Eh (mean: +176.5mV) at all sample horizons indicated a setting with little denitrification potential. This non-reducing environment was reflected in a low accumulation of denitrification

  4. Co-Occurring Anammox, Denitrification, and Codenitrification in Agricultural Soils

    OpenAIRE

    Long, Andrew; Heitman, Joshua; Tobias, Craig; Philips, Rebecca; Song, Bongkeun

    2013-01-01

    Anammox and denitrification mediated by bacteria are known to be the major microbial processes converting fixed N to N2 gas in various ecosystems. Codenitrification and denitrification by fungi are additional pathways producing N2 in soils. However, fungal codenitrification and denitrification have not been well investigated in agricultural soils. To evaluate bacterial and fungal processes contributing to N2 production, molecular and 15N isotope analyses were conducted with soil samples colle...

  5. Chemometric evaluation of nitrate contamination in the groundwater of a hard rock area in Dharapuram, south India

    Science.gov (United States)

    Sajil Kumar, P. J.; Jegathambal, P.; James, E. J.

    2014-12-01

    This paper presents the results of investigations on groundwater nitrate contamination in the Dharapuram area of Tamil Nadu in south India as a primary step to initiate denitrification. Groundwater samples were collected from 26 selected locations during the pre-monsoon season in July 2010 and analysed for nitrate and other water quality parameters. Two important water types were identified, viz. Ca-Na-HCO3 and mixed Ca-Mg-Cl. It is found that the majority of samples possess high nitrate concentration; 57 % of samples exceeded the permissible limit of Indian (45 mg/L) and WHO (50 mg/L) drinking water standard. Spatial distribution map of NO3 suggested that major contamination was observed in the SW and NW parts of the study area. This result was in agreement with the corresponding land-use pattern in this study area. Denitrification process at greater depths was evident from the negative correlation between NO3 and well depth. The sources and controlling factors of high nitrate were investigated using cross plots of NO3 with other selected hydrochemical parameters. Positive correlation for NO3 was observed with EC, K, Cl and SO4. This analysis was capable of differentiating the various sources of nitrate in groundwater. The major sources of nitrate contamination are identified as areas of high fertilizer application, sewages and animal waste dumping yards. Regulation of these pollutant sources with appropriate and cost-effective denitrification process can restore the water quality in this area.

  6. Nitrate in groundwater and the unsaturated zone, Shijiazhuang City, China

    International Nuclear Information System (INIS)

    In 2001, nitrate concentrations in water from wells in Shijiazhuang City, China ranged from 15 to about 160 mg/L as nitrate, with a median concentration of 50 mg/L. Agricultural return waters from lands irrigated with sewage or groundwater are believed to be the source of increasing nitrate, chloride, sulphate, and dissolved solids concentrations. Recharge rates estimated from chemical and tritium data are about 130 mm/y for non-irrigated agricultural land and exceed 200 mm/y for irrigated land. Nitrate concentrations in pore water in the unsaturated zone were as high as 930 mg/L. As much as 350 kg/ha of nitrogen is stored in the upper 18 m of the unsaturated zone beneath a groundwater irrigated site. As much as 780 kg/ha of nitrogen could be stored in thicker unsaturated zones within the study area and nitrogen storage beneath sewage irrigated sites is even probably greater. About 60% of the nitrate stored in the unsaturated zone is in the form of nitrate and 36% is in the form of ammonia. Denitrification in near-saturated fine-grained layers reduces the concentration of nitrate in with depth and at 18 m below land surface 60% of the nitrogen is in the form of ammonia. The δ15N composition of water from sampled wells ranged from 2.2 to 11.7 per mille, with median value of 6.1 per mille. Water from wells in the urban area had the highest average δ15N compositions with progressively lower values in the village and farmland areas. δ15N values in surficial soils averaged 1.0 per mille in natural sites, 9.5 per mille in sewage and manure amended sites, and 7.3 per mille in the chemically fertilized sites. Most δ15N values in water from wells are in the range of compositions expected from sewage and manure sources of nitrogen-with some denitrification, although extensive denitrification of nitrogen from chemical fertilizers also could produce observed δ15N values. (author)

  7. Coupling of nitrification and denitrification in two estuarine sediments

    International Nuclear Information System (INIS)

    Nitrification and denitrification in estuarine sediments were measured by 15N isotopic tracer techniques at two stations in the Patuxent River estuary for April and August. A close coupling of the two processes was demonstrated directly from the evolution of labeled N2 following 15NH4+ amendments during spring experiments. In contrast, this coupled nitrification-denitrification was decreased by two orders of magnitude in the summer, even though the capacity for denitrification remained similar to spring levels. This pattern of sharply seasonal nitrification was corroborated with measurements of bacterial relative abundance. Ambient rates of nitrification-denitrification were inferred from 15N experiments in these sediments

  8. Denitrification in the shallow ground water of a tile-drained, agricultural watershed

    Science.gov (United States)

    Mehnert, E.; Hwang, H.-H.; Johnson, T.M.; Sanford, R.A.; Beaumont, W.C.; Holm, T.R.

    2007-01-01

    Nonpoint-source pollution of surface water by N is considered a major cause of hypoxia. Because Corn Belt watersheds have been identified as major sources of N in the Mississippi River basin, the fate and transport of N from midwestern agricultural watersheds have received considerable interest. The fate and transport of N in the shallow ground water of these watersheds still needs additional research. Our purpose was to estimate denitrification in the shallow ground water of a tile-drained, Corn Belt watershed with fine-grained soils. Over a 3-yr period, N was monitored in the surface and ground water of an agricultural watershed in central Illinois. A significant amount of N was transported past the tile drains and into shallow ground water. The ground water nitrate was isotopically heavier than tile drain nitrate, which can be explained by denitrification in the subsurface. Denitrifying bacteria were found at depths to 10 m throughout the watershed. Laboratory and push-pull tests showed that a significant fraction of nitrate could be denitrified rapidly. We estimated that the N denitrified in shallow ground water was equivalent to 0.3 to 6.4% of the applied N or 9 to 27% of N exported via surface water. These estimates varied by water year and peaked in a year of normal precipitation after 2 yr of below average precipitation. Three years of monitoring data indicate that shallow ground water in watersheds with fine-grained soils may be a significant N sink compared with N exported via surface water. ?? ASA, CSSA, SSSA.

  9. Enhanced Alcaligenes faecalis Denitrification Rate with Electrodes as the Electron Donor.

    Science.gov (United States)

    Wang, Xin; Yu, Ping; Zeng, Cuiping; Ding, Hongrui; Li, Yan; Wang, Changqiu; Lu, Anhuai

    2015-08-15

    The utilization by Alcaligenes faecalis of electrodes as the electron donor for denitrification was investigated in this study. The denitrification rate of A. faecalis with a poised potential was greatly enhanced compared with that of the controls without poised potentials. For nitrate reduction, although A. faecalis could not reduce nitrate, at three poised potentials of +0.06, -0.06, and -0.15 V (versus normal hydrogen electrode [NHE]), the nitrate was partially reduced with -0.15- and -0.06-V potentials at rates of 17.3 and 28.5 mg/liter/day, respectively. The percentages of reduction for -0.15 and -0.06 V were 52.4 and 30.4%, respectively. Meanwhile, for nitrite reduction, the poised potentials greatly enhanced the nitrite reduction. The nitrite reduction rates for three poised potentials (-0.06, -0.15, and -0.30 V) were 1.98, 4.37, and 3.91 mg/liter/h, respectively. When the potentials were cut off, the nitrite reduction rate was maintained for 1.5 h (from 2.3 to 2.25 mg/liter/h) and then greatly decreased, and the reduction rate (0.38 mg/liter/h) was about 1/6 compared with the rate (2.3 mg/liter/h) when potential was on. Then the potentials resumed, but the reduction rate did not resume and was only 2 times higher than the rate when the potential was off. PMID:26048940

  10. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  11. Tidal pumping facilitates dissimilatory nitrate reduction in intertidal marshes

    Science.gov (United States)

    Zheng, Yanling; Hou, Lijun; Liu, Min; Liu, Zhanfei; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Yu, Chendi; Wang, Rong; Jiang, Xiaofen

    2016-02-01

    Intertidal marshes are alternately exposed and submerged due to periodic ebb and flood tides. The tidal cycle is important in controlling the biogeochemical processes of these ecosystems. Intertidal sediments are important hotspots of dissimilatory nitrate reduction and interacting nitrogen cycling microorganisms, but the effect of tides on dissimilatory nitrate reduction, including denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium, remains unexplored in these habitats. Here, we use isotope-tracing and molecular approaches simultaneously to show that both nitrate-reduction activities and associated functional bacterial abundances are enhanced at the sediment-tidal water interface and at the tide-induced groundwater fluctuating layer. This pattern suggests that tidal pumping may sustain dissimilatory nitrate reduction in intertidal zones. The tidal effect is supported further by nutrient profiles, fluctuations in nitrogen components over flood-ebb tidal cycles, and tidal simulation experiments. This study demonstrates the importance of tides in regulating the dynamics of dissimilatory nitrate-reducing pathways and thus provides new insights into the biogeochemical cycles of nitrogen and other elements in intertidal marshes.

  12. Involvement in Denitrification is Beneficial to the Biofilm Lifestyle of Comamonas testosteroni: A Mechanistic Study and Its Environmental Implications.

    Science.gov (United States)

    Wu, Yichao; Shukal, Sudha; Mukherjee, Manisha; Cao, Bin

    2015-10-01

    Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P viability and a higher level of c-di-GMP to reduce cell detachment. PMID:26327221

  13. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    Science.gov (United States)

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  14. Nitrate accumulation in spinach

    NARCIS (Netherlands)

    Steingröver, Eveliene Geertruda

    1986-01-01

    Leafy vegetables, like spinach, may contain high concentrations of nitrate. In the Netherlands, about 75% of mean daily intake of nitrate orginates from the consumption of vegatables. Hazards to human health are associated with the reduction of nitrate to nitrite. Acute nitrite poisoning causes meth

  15. Biological nitrate removal from wastewater of a metal-finishing industry

    International Nuclear Information System (INIS)

    An upflow packed bed reactor at laboratory scale has been operated for a continuous period of 5 months to investigate the technical feasibility of biological nitrate removal applied to the effluent of the coagulation-sedimentation wastewater of a metal-finishing industry. The reactor was fed with industrial wastewater in a five-fold dilution to reproduce the global spill in the factory (20/80, industrial wastewater/domestic wastewater) with a concentration of nitrate between 141 and 210 g NO3-N/m3. Methanol was added as a carbon source for denitrification. Inlet flow rate was progressively increased from 9 to 40 L/day (nitrogen input load from 45 to 250 g NO3-N/(m3 h)). The highest observed denitrification rate was 135 g NO3-N/(m3 h) at a nitrate load of 250 g NO3-N/(m3 h), and removal efficiencies higher than 90% were obtained for loads up to 100 g NO3-N/(m3 h). A mass relation between COD consumed and NO3-N removed around 3.31 was observed. Better results were achieved in a previous stage using tap water with nitrate added as a sole pollutant as a synthetic feed (critical load of 130 g NO3-N/(m3 h) and denitrification rate of 200 g NO3-N/(m3 h) at a nitrate load of 250 g NO3-N/(m3 h)). This fact could indicate that the chemical composition of the industrial source hinders to some extent the performance of the biological process. Whatever case, results demonstrated the viability of the denitrification process for the global industrial wastewater. A simple model based on Monod kinetics for substrate consumption, and constant biomass concentration was applied to model the industrial wastewater treatment, and a reasonably good fitting was obtained

  16. Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water.

    Science.gov (United States)

    Su, Jun Feng; Ma, Min; Wei, Li; Ma, Fang; Lu, Jin Suo; Shao, Si Cheng

    2016-06-15

    Acinetobacter sp. J25 exhibited good denitrification and high algicidal activity against toxic Microcystis aeruginosa. Response surface methodology (RSM) experiments showed that the maximum algicidal ratio occurred under the following conditions: temperature, 30.46°C; M. aeruginosa density, 960,000cellsmL(-1); and inoculum, 23.75% (v/v). Of these, inoculum produced the maximum effect. In the eutrophic landscape water experiment, 10% bacterial culture was infected with M. aeruginosa cells in the landscape water. After 24days, the removal ratios of nitrate and chlorophyll-a were high, 100% and 87.86%, respectively. The denitrification rate was approximately 0.118mgNO3(-)-N·L(-1)·h(-1). Moreover, the high-throughput sequencing result showed that Acinetobacter sp. J25 was obviously beneficial for chlorophyll-a and nitrate removal performance in the eutrophic landscape water treatment. Therefore, strain J25 is promising for the simultaneous removal of chlorophyll-a and nitrate in the eutrophic landscape water treatment. PMID:27126181

  17. Benthic mineralization and nutrient exchange over the inner continental shelf of western India

    Directory of Open Access Journals (Sweden)

    A. K. Pratihary

    2013-06-01

    Full Text Available The western Indian continental shelf is one of most productive coastal systems of the world ocean. This system undergoes extreme change in oxygen regime being normoxic from November to May and suboxic/anoxic from June to October owing to the biogeochemical response to cyclical monsoonal influence. In order to understand its impact on benthic mineralization, nutrient exchange and in turn on the shelf ecosystem, we carried out first ever intact core incubation experiments by covering two contrasting seasons i.e. Spring intermonsoon and fall intermonsoon (late southwest monsoon. The results show that the shelf sediments act as a perennial net source of DIN, PO43– and SiO44– to the overlying water column. DIN efflux increased from 1.4 to 3.21 mmol m–2 d–1 from April to October of which NH4+ comprises 59–100%. During oxic regime about 75% of diffusing NH4+ appears to be nitrified (2.55 mmol m–2 d–1 of which about 77% remains coupled to benthic denitrification. Consequently 58% of NH4+ flux gets lost in active coupled nitrification-denitrification process causing substantial N loss (1.98 mmol m–2 d–1 in the sediment. The continental shelf sediment switches over from being a NO3– source during oxic regime to a NO3– sink during low oxygen regime. During suboxia benthic denitrification being fed by NO3– from overlying water causes N loss at a rate of 1.04 mmol m–2 d–1. N loss continues even in sulfidic condition during October possibly through chemolithoautotrophic denitrification at a potential rate of 3.21 mmol m–2 d–1. PO43– flux increased more than 4 fold during October as compared to April due to reductive dissolution of Fe and Mn oxides. The SiO44– flux increases during anoxia due to higher availability of siliceous ooze as a result of diatom blooms during the monsoon season. Porewater was found to be enriched with NH4+, PO43– and SiO44– while depleted in NO3– and NO2– in these organic rich sediments

  18. Interdependence of two NarK domains in a fused nitrate/nitrite transporter.

    Science.gov (United States)

    Goddard, Alan D; Moir, James W B; Richardson, David J; Ferguson, Stuart J

    2008-11-01

    Nitrate uptake is essential for various bacterial processes and combines with nitrite export to form the usual initial steps of denitrification, a process that reduces nitrate to dinitrogen gas. Although many bacterial species contain NarK-like transporters that are proposed to function as either nitrate/proton symporters or nitrate/nitrite antiporters based on sequence homology, these transporters remain, in general, poorly characterized. Several bacteria appear to contain a transporter that is a fusion of two NarK-like proteins, although the significance of this arrangement remains elusive. We demonstrate that NarK from Paracoccus denitrificans is expressed as a fusion of two NarK-like transporters. NarK1 and NarK2 are separately capable of supporting anaerobic denitrifying growth but with growth defects that are partially mitigated by coexpression of the two domains. NarK1 appears to be a nitrate/proton symporter with high affinity for nitrate and NarK2 a nitrate/nitrite antiporter with lower affinity for nitrate. Each transporter requires two conserved arginine residues for activity. A transporter consisting of inactivated NarK1 fused to active NarK2 has a dramatically increased affinity for nitrate compared with NarK2 alone, implying a functional interaction between the two domains. A potential model for nitrate and nitrite transport in P. denitrificans is proposed. PMID:18823285

  19. Evaluating Ecosystem Services for Reducing Groundwater Nitrate Contamination: Nitrate Attenuation in the Unsaturated and Saturated Zones

    Science.gov (United States)

    Wang, J.

    2013-12-01

    Nitrates are the most common type of groundwater contamination in agricultural regions. Environmental policies targeting nitrates have focused on input control (e.g., restricted fertilizer application), intermediate loads control (e.g., reduce nitrate leached from crop fields), and final loads control (e.g., reduce catchment nitrate loads). Nitrate loads can be affected by hydrological processes in both unsaturated and saturated zones. Although many of these processes have been extensively investigated in literature, they are commonly modeled as exogenous to farm management. A couple of recent studies by scientists from the Lawrence Livermore National Laboratory show that in some situations nitrate attenuation processes in the unsaturated/saturated zone, particularly denitrification, can be intensified by certain management practices to mitigate nitrate loads. Therefore, these nitrate attenuation processes can be regarded as a set of ecosystem services that farmers can take advantage of to reduce their cost of complying with environmental policies. In this paper, a representative California dairy farm is used as a case study to show how such ecosystem attenuation services can be framed within the farm owner's decision-making framework as an option for reducing groundwater nitrate contamination. I develop an integrated dynamic model, where the farmer maximizes discounted net farm profit over multiple periods subject to environmental regulations. The model consists of three submodels: animal-waste-crop, hydrologic, and economic model. In addition to common choice variables such as irrigation, fertilization, and waste disposal options, the farmer can also endogenously choose from three water sources: surface water, deep groundwater (old groundwater in the deep aquifer that is not affected by farm effluent in the short term), and shallow groundwater (drainage water that can be recycled via capture wells at the downstream end of the farm). The capture wells not only

  20. Nitrate Removal from Drinking Water with Sodium Citrate as Sole Carbon Source

    Institute of Scientific and Technical Information of China (English)

    YAN Bo; ZHAO Lin; TAN Xin

    2005-01-01

    This paper investigates the effect of using sodium citrate(NaC6H5O6*2H2O)as sole carbon source for nitrate removal from drinking water.With sodium citrate as sole carbon source, batch experiments have been conducted to study the law of denitrification influenced by pH, C/N and temperature. Results show that a denitrification rate reaching 1.32 g NO-3-N /(g Biomass*d) was obtained when pH was at 7.5,C/N at 1.7(atom ratio), and temperature from 20 ℃ to 30 ℃. The results also show that denitrification rate with sodium citrate as carbon source approaches to that with methanol as carbon source.

  1. Effect of C/N Ratio,Temperature,pH on Autotrophic Denitrification Rate with Hydrogen Gas,Iron (II) and Sodium Sulfide as Electron Donors

    Institute of Scientific and Technical Information of China (English)

    Junfeng Su; Sicheng Shao; Tinglin Huang; Fang Ma; Gang Wen; Shengchen Zheng; Kai Zhang

    2016-01-01

    Nitrate is considered to be one of the most widely present pollutants leading to eutrophication of environment. The purpose of this work was to isolate and identify new anaerobic denitrifying bacteria from reservoir sediments and utilize different electron donors for isolates to improve nitrate removal efficiency. Using traditional enrichment approach, one purified anaerobic bacterium ( Y12 ) capable of NO-3⁃N removal from sediments was obtained. The species identity of Y12 was determined via 16S rRNA gene sequence analysis to be Acinetobacter. In this work, the fastest denitrification rates were observed with ferrous iron as electron donor. And, slightly slower rates were observed with hydrogen and sodium sulfide as electron donors. However, when used hydrogen gas, ferrous iron and sodium sulfide as electron donors, C/N ratios had little effect on autotrophic denitrification rate at the initial C/N ratio from 1.5 to 9.0. Meanwhile, when made use of hydrogen gas, ferrous iron and sodium sulfide as electron donors, a maximum nitrate removal ratio of 100.00%, 91.43%and 87.99% at the temperature of 30℃, respectively. Moreover, maximum denitrification activity was observed at pH 6.0-7.0.

  2. Nitrate pollution of groundwater

    International Nuclear Information System (INIS)

    Concern about the possible health risks associated with the consumption of nitrate has led many countries, including South Africa, to propose that 10mg of nitrogen (as nitrate or nitrite) per liter should be the maximum allowable limit for domestic water supplies. Groundwater in certain parts of South Africa and Namibia contains nitrate in concentrations which exceed this limit. The CSIR's Natural Isotope Division has been studying the nitrogen isotope composition of the nitrate as an aid to investigation into the sources of this nitrate contamination

  3. Simulating nitrate response functions in watersheds: Case studies in the United States and New Zealand

    Science.gov (United States)

    Gusyev, Maksym; Abrams, Daniel; Morgenstern, Uwe; Stewart, Michael

    2016-04-01

    Non-point sources of nitrate contamination are a common concern in different parts of the world and are difficult to characterize. Due to the solubility of nitrate, it easily enters groundwater and may take years or decades to completely flush to a stream. During this time, it may undergo denitrification, in particular if dissolved oxygen levels are low, requiring a representation of spatially distributed nitrate input as well as detailed hydrogeology. In this presentation, nitrate response functions are generated with four different methodologies that are listed in the order of decreasing degrees of freedom: groundwater flow and chemical transport (MODFLOW/MT3D), groundwater flow with solute particle tracing (MODFLOW/MODPATH), cross-sectional groundwater flow model (MODFLOW), and lumped parameter models (LPMs). We tested these approaches in selected watersheds in the Eastern and Midwestern United States as well as New Zealand and found similar nitrate results in all cases despite different model complexities. It is noted that only the fully three dimensional MODFLOW models with MT3D or MODPATH could account for detailed patterns of land use and nitrate applications; the cross-sectional models and lumped parameter models could only do so approximately. Denitrification at depth could also be explicitly accounted for in all four approaches, although this was not a major factor in any of the watersheds investigated.

  4. Sediment Denitrification in Two Contrasting Tropical Shallow Lagoons

    DEFF Research Database (Denmark)

    Enrich-Prast, Alex; Santoro, Ana Lucia; Countinho, Rodrigo S.;

    2016-01-01

    Sediment denitrification was monthly evaluated in two tropical coastal lagoons with different trophic states using the N-15 isotope pairing technique. Denitrification rates were very low in both environments, always < 5.0 mu mol N-2 m(-2) h(-1) and were not significantly different between them. O...... both studied lagoons....

  5. A simple model for simultaneous methanogenic-denitrification systems

    DEFF Research Database (Denmark)

    Garibay-Orijel, C.; Ahring, Birgitte Kiær; Rinderknecht-Seijas, N.;

    2006-01-01

    We describe a useful and simple model for studies of simultaneous methanogenic-denitrification (M-D) systems. One equation predicts an inverse relationship between the percentage of electron donor channeled into dissimilatory denitrification and the loading ratio X given by grams degradable COD per...

  6. Effects of atrazine, metolachlor, carbaryl and chlorothalonil on benthic microbes and their nutrient dynamics.

    Directory of Open Access Journals (Sweden)

    Daniel Elias

    Full Text Available Atrazine, metolachlor, carbaryl, and chlorothalonil are detected in streams throughout the U.S. at concentrations that may have adverse effects on benthic microbes. Sediment samples were exposed to these pesticides to quantify responses of ammonium, nitrate, and phosphate uptake by the benthic microbial community. Control uptake rates of sediments had net remineralization of nitrate (-1.58 NO3 µg gdm⁻¹ h⁻¹, and net assimilation of phosphate (1.34 PO4 µg gdm⁻¹ h⁻¹ and ammonium (0.03 NH4 µg gdm⁻¹ h⁻¹. Metolachlor decreased ammonium and phosphate uptake. Chlorothalonil decreased nitrate remineralization and phosphate uptake. Nitrate, ammonium, and phosphate uptake rates are more pronounced in the presence of these pesticides due to microbial adaptations to toxicants. Our interpretation of pesticide availability based on their water/solid affinities supports no effects for atrazine and carbaryl, decreasing nitrate remineralization, and phosphate assimilation in response to chlorothalonil. Further, decreased ammonium and phosphate uptake in response to metolachlor is likely due to affinity. Because atrazine target autotrophs, and carbaryl synaptic activity, effects on benthic microbes were not hypothesized, consistent with results. Metolachlor and chlorothalonil (non-specific modes of action had significant effects on sediment microbial nutrient dynamics. Thus, pesticides with a higher affinity to sediments and/or broad modes of action are likely to affect sediment microbes' nutrient dynamics than pesticides dissolved in water or specific modes of action. Predicted nutrient uptake rates were calculated at mean and peak concentrations of metolachlor and chlorothalonil in freshwaters using polynomial equations generated in this experiment. We concluded that in natural ecosystems, peak chlorothalonil and metolachlor concentrations could affect phosphate and ammonium by decreasing net assimilation, and nitrate uptake rates by

  7. Measurement of the denitrification in soil monoliths from grassland and arable soil by means of 15N techniques

    International Nuclear Information System (INIS)

    Losses of fertilizer nitrogen by denitrification were determined in soil monoliths from two sites (loess chernozem and clay ranker). The monoliths were isolated by driving plastic pipes into the plots, and fertilized with 15N-labelled ammonium nitrate. Emission spectrometric techniques were applied to measure the N2 and N2O quantities released in the isolated atmospheric layer above the monolith. The considerable losses, especially on grassland soils (up to a maximum of 30 kg N/ha), indicate the influence of rainfalls and mean temperature at the 5 dates of sampling (end of March to mid-October). (author)

  8. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process: characterization, pathway, and microbial community analysis.

    Science.gov (United States)

    Wang, Xiaowei; Zhang, Yu; Zhang, Tingting; Zhou, Jiti

    2016-03-01

    Microaerobic bioreactor treatment for enriched sulfide and nitrate has been demonstrated as an effective strategy to improve the efficiencies of elemental sulfur (S(0)) generation, sulfide oxidation, and nitrate reduction. However, there is little detailed information for the effect and mechanism of dissolved oxygen (DO) on the variations of microbial community in sulfur generation, sulfide oxidation, and nitrate reduction systems. Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) was employed to evaluate the variations of microbial community structures in a sulfide oxidation and nitrate reduction reactor under different DO conditions (DO 0-0.7 mg · L(-1)). Experimental results revealed that the activity of sulfide-oxidizing bacteria (SOB) and nitrate-reducing bacteria (NRB) could be greatly stimulated in 0.1-0.3 mg-DO · L(-1). However, when the DO concentration was further elevated to more than 0.5 mg · L(-1), the abundance of NRB was markedly decreased, while the heterotrophic microorganisms, especially carbon degradation species, were enriched. The reaction pathways for sulfide and nitrate removal under microaerobic conditions were also deduced by combining batch experiments with functional species analysis. It was likely that the oxidation of sulfide to sulfur could be performed by both aerobic heterotrophic SOB and sulfur-based autotrophic denitrification bacteria with oxygen and nitrate as terminal electron acceptor, respectively. The nitrate could be reduced to nitrite by both autotrophic and heterotrophic denitrification, and then the generated nitrite could be completely converted to nitrogen gas via heterotrophic denitrification. This study provides new insights into the impacts of microaerobic conditions on the microbial community functional structures of sulfide-oxidizing, nitrate-reducing, and sulfur-producing bioreactors, which revealing the potential linkage between functional microbial communities and

  9. A PRELIMINARY EXPERIMENT ON DENITRIFICATION OF WASTE LANDFILL LEACHATE

    Science.gov (United States)

    Wada, Nariaki; Nakamichi, Tamihiro; Yagi, Masahiro; Matsumoto, Toshihide; Kugimiya, Akikazu; Michioku, Kohji

    A laboratory experiment on denitrification was carried out in order to reduce nitrogen load from municipal landfill leachate. Nitrogen was efficiently removed by feeding sludge of the leachate pond into the tanks, which could activate denitrification bacteria. Although inorganic reducing agent such as iron powder was not able to make the whole water mass anoxic, denitrification took place by supplying organic matters such as methanol, hydrogen feeding agent, etc.. It is considered that small amount of anoxic water film produced on surfaces of container and carriers might contribute to denitrification, although the bulk water is kept aerobic. It is found that organic matters contained in the leachate is so insufficient that nitrification liquid circulation does not work well for denitrification.

  10. Correlation of anaerobic ammonium oxidation and denitrification

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The feasibility of the nitrous organic wastewater treated was studied in seven anaerobic sequencing batch reactors(ASBRs)(0 #-6 #) which had been run under stable anaerobic ammonium oxidation (Anammox). By means of monitoring and data analysis of COD, NH4+-N, NO2--N, NO3--N and pH, and of microbial test, the results revealed that the optimal Anammox performance was achieved from 2# reactor in which COD/NH4+-N was 1.65, Anammox bacteria and denitrification bacteria could coexist, and Anammox reaction and denitrification reaction could occur simultaneously in the reactors. The ratio of NH4+-N consumed: NO2--N consumed: NO3--N produced was 1:1.38:0.19 in 0# reactor which was not added glucose in the wastewater. When different ratio of COD and NH4+-N was fed for the reactors, the ratio of NO2--N consumed: NH4+-N consumed was in the range of 1.51-2.29 and the ratio of NO3-N produced: NH4+-N consumed in the range of 0-0.05.

  11. Denitrification in USB reactor with granulated biomass.

    Science.gov (United States)

    Pagácová, P; Galbová, K; Drtil, M; Jonatová, I

    2010-01-01

    Denitrification of low concentrations of NO(3)-N (20 mg L(-1)), with methanol as an organic carbon source (COD:NO(3)-N=6) in laboratory upflow sludge bed reactor (USB), was tested as a possibility for wastewater post-treatment. By gradual increase of volumetric loading (Bv) and hydraulic loading (gamma), anoxic biomass spontaneously granulated out even from flocculate activated sludge and from anaerobic granulated sludge as well. Anaerobic granulated biomass derived from high-rate anaerobic IC reactor was a far better inoculum for anoxic granulation and for denitrification in the USB reactor. The maximum level of Bv and gamma was remarkably higher with the use of anaerobic granulated inoculum, (19-22 kg COD m(-3)d(-1); 3.2-3.7 kg NO(3)-Nm(-3)d(-1); 2.8-3.2m(3)m(-2)h(-1); SVI=15 mL g(-1)) in comparison to inoculum from flocculate activated sludge (4.2-8.1 kg CO Dm(-3)d(-1); 0.7-1.4 kg NO(3)-Nm(-3)d(-1); 0.7-1.15m(3)m(-2)h(-1); SVI=40-95 mL g(-1)). PMID:19716692

  12. Soil-Column Test on Aniline Degradation in Riverbank Filtration under Denitrification Conditions

    Institute of Scientific and Technical Information of China (English)

    Wu Yaoguo; Wang Hui; Zhang Wencun; Sun Weijian

    2005-01-01

    Drinking water is at risk from aniline pollution and thus aniline degradation and its mechanism have received much attention. In this paper, a soil column, including sediments and aquifer media, was collected from the Weihe riverbed and its bank, and used to research the characteristics of aniline degradation in the riverbank filtration process under denitrification conditions. The results indicate that all aniline could be degraded by the habituated indigenous microbes, and even mostly mineralized under denitrification conditions, but with a long lag phase. Some aniline degradation must involve deamination, while the majority undergoes covalent binding with humic substances to form complexes, and the complexes are easily degraded and even mineralized. During the degradation no intermediates were harmful to denitrifiers. Therefore, under denitrifaction conditions, aniline is degraded in RBF, and up to now aniline has not been monitored in the groundwater along the polluted river. During the 153 d testing process, the nitrate-nitrogen concentration was about 23.0 mg/L, and aniline concentrations were 40, 80 or 400 mg/L at 0-74 d, 75-105 d and 106-153 d respectively in infiltrating water. Indigenous microbes pass a lag period of 37 d, and grow on aniline as the source of carbon in the RBF under denitrification conditions. Aniline concentration in leachate was lower than the detected limits, so its removal rate was 100 %. Total organic carbon (TOC) removal rates were 97.99 %, 91.39 % and 75.30 % for 40, 80 and 400 mg/L aniline concentrations respectively, based on TOC monitored in infiltrating water and leachate.

  13. Effects of salt pond restoration on benthic flux: Sediment as a source of nutrients to the water column

    Science.gov (United States)

    Topping, Brent R.; Kuwabara, James S.; Carter, James L.; Garrettt, Krista K.; Mruz, Eric; Piotter, Sarah; Takekawa, John Y.

    2016-01-01

    Understanding nutrient flux between the benthos and the overlying water (benthic flux) is critical to restoration of water quality and biological resources because it can represent a major source of nutrients to the water column. Extensive water management commenced in the San Francisco Bay, Beginning around 1850, San Francisco Bay wetlands were converted to salt ponds and mined extensively for more than a century. Long-term (decadal) salt pond restoration efforts began in 2003. A patented device for sampling porewater at varying depths, to calculate the gradient, was employed between 2010 and 2012. Within the former ponds, the benthic flux of soluble reactive phosphorus and that of dissolved ammonia were consistently positive (i.e., moving out of the sediment into the water column). The lack of measurable nitrate or nitrite concentration gradients across the sediment-water interface suggested negligible fluxes for dissolved nitrate and nitrite. The dominance of ammonia in the porewater indicated anoxic sediment conditions, even at only 1 cm depth, which is consistent with the observed, elevated sediment oxygen demand. Nearby openestuary sediments showed much lower benthic flux values for nutrients than the salt ponds under resortation. Allochthonous solute transport provides a nutrient advective flux for comparison to benthic flux. For ammonia, averaged for all sites and dates, benthic flux was about 80,000 kg/year, well above the advective flux range of −50 to 1500 kg/year, with much of the variability depending on the tidal cycle. By contrast, the average benthic flux of soluble reactive phosphorus was about 12,000 kg/year, of significant magnitude, but less than the advective flux range of 21,500 to 30,000 kg/year. These benthic flux estimates, based on solute diffusion across the sediment-water interface, reveal a significant nutrient source to the water column of the pond which stimulates algal blooms (often autotrophic). This benthic source may be

  14. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirers

    Science.gov (United States)

    Anderson, I. C.; Levine, J. S.

    1986-01-01

    An account is given of the atmospheric chemical and photochemical effects of biogenic nitric and nitrous oxide emissions. The magnitude of the biogenic emission of NO is noted to remain uncertain. Possible soil sources of NO and N2O encompass nitrification by autotropic and heterotropic nitrifiers, denitrification by nitrifiers and denitrifiers, nitrate respiration by fermenters, and chemodenitrification. Oxygen availability is the primary determinant of these organisms' relative rates of activity. The characteristics of this major influence are presently investigated in light of the effect of oxygen partial pressure on NO and N2O production by a wide variety of common soil-nitrifying, denitrifying, and nitrate-respiring bacteria under laboratory conditions. The results obtained indicate that aerobic soils are primary sources only when there is sufficient moisture to furnish anaerobic microsites for denitrification.

  15. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: focus on the microbiology.

    Science.gov (United States)

    Trois, Cristina; Coulon, Frédéric; de Combret, Cécile Polge; Martins, Jean M F; Oxarango, Laurent

    2010-09-15

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l(-1). Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency. PMID:20554377

  16. Temporal changes and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal salt marsh of the Lagoon of Venice, Italy

    Science.gov (United States)

    Eriksson, P. G.; Svensson, J. M.; Carrer, G. M.

    2003-12-01

    The aim of the present study was to investigate seasonal and spatial patterns of soil oxygen consumption, nitrification, denitrification and fluxes of dissolved inorganic nitrogen (DIN) in a tidal salt marsh of the Lagoon of Venice, Italy. In the salt marsh, intact soil cores including overlying water were collected monthly at high tide from April to October in salt marsh creeks and in areas covered by the dominant vegetation, Limonium serotinum. In May, cores were also collected in areas with vegetation dominated by Juncus maritimus and Halimione portulacoides. In laboratory incubations at in situ temperature in the dark, flux rates of oxygen and DIN were monitored in the overlying water of the intact cores. 15N-nitrate was added to the overlying water and nitrification and denitrification were measured using isotope-dilution and -pairing techniques. The results show that highest soil oxygen consumption coincided with the highest water temperature in June and July. The highest denitrification rates were recorded in spring and autumn coinciding with the highest nitrate concentrations. Soil oxygen consumption and nitrification rates differed between sampling sites, but denitrification rates were similar among the different vegetation types. The highest rates were recorded in areas covered with L. serotinum. Burrowing soil macrofauna enhanced oxygen consumption, nitrification and denitrification in April and May. The data presented in this study indicate high temporal as well as spatial variations in the flux of oxygen and DIN, and nitrogen transformations in the tidal salt marshes of the Venice lagoon during the growth season. The results identify the salt marshes of the Venice lagoon as being metabolically very active ecosystems with a high capacity to process nitrogen.

  17. [Identification of a high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterial strain TN-14 and its nitrogen removal capabilities].

    Science.gov (United States)

    Xin, Xin; Yao, Li; Lu, Lei; Leng, Lu; Zhou, Ying-Qin; Guo, Jun-Yuan

    2014-10-01

    A new strain of high ammonia nitrogen tolerant and heterotrophic nitrification-aerobic denitrification bacterium TN-14 was isolated from the environment. Its physiological and biochemical characteristics and molecular identification, performences of heterotrophic nitrification-aerobic, the abilities of resistance to ammonia nitrogen as well as the decontamination abilities were studied, respectively. It was preliminary identified as Acinetobacter sp. according to its physiological and biochemical characteristics and molecular identification results. In heterotrophic nitrification system, the ammonia nitrogen and total nitrogen removal rate of the bacterial strain TN-14 could reach 97.13% and 93.53% within 24 h. In nitrates denitrification system, the nitrate concentration could decline from 94.24 mg · L(-1) to 39.32 mg · L(-1) within 24 h, where the removal rate was 58.28% and the denitrification rate was 2.28 mg · (L · h)(-1); In nitrite denitrification systems, the initial concentration of nitrite could be declined from 97.78 mg · L(-1) to 21.30 mg x L(-1), with a nitrite nitrogen removal rate of 78.22%, and a denitrification rate of 2.55 mg · (L· h)(-1). Meanwhile, strain TN-14 had the capability of flocculant production, and the flocculating rate could reach 94.74% when its fermentation liquid was used to treat 0.4% kaolin suspension. Strain TN-14 could grow at an ammonia nitrogen concentration as high as 1200 mg · L(-1). In the aspect of actual piggery wastewater treatment by strain TN-14, the removal rate of COD, ammonia nitrogen, TN and TP cloud reached 85.30%, 65.72%, 64.86% and 79.41%, respectively. Strain TN-14 has a good application prospect in biological treatment of real high- ammonia wastewater. PMID:25693403

  18. Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

    Science.gov (United States)

    Shin, Jung-Hun; Kim, Byung-Chun; Choi, Okkyoung; Kim, Hyunook; Sang, Byoung-In

    2015-10-28

    Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs. PMID:26095385

  19. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    Energy Technology Data Exchange (ETDEWEB)

    Trois, Cristina, E-mail: troisc@ukzn.ac.za [Centre for Research in Environmental, Coastal and Hydrological Engineering, School of Civil Engineering, Surveying and Construction, University of KwaZulu-Natal, Howard College Campus, Durban 4041 (South Africa); Coulon, Frederic; Polge de Combret, Cecile [Centre for Resource Management and Efficiency, School of Applied Sciences, Cranfield University, MK43 0AL (United Kingdom); Martins, Jean M.F.; Oxarango, Laurent [Laboratoire d' etude de Transferts en Hydrologie et Environnement, UMR 5564 (CNRS/INPG/IRD/UJF), Universite de Grenoble, BP 53, 38041 Grenoble Cedex 9 (France)

    2010-09-15

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l{sup -1}. Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.

  20. Effect of pine bark and compost on the biological denitrification process of non-hazardous landfill leachate: Focus on the microbiology

    International Nuclear Information System (INIS)

    In an attempt to optimize the cost-efficiency of landfill leachate treatment by biological denitrification process, our study focused on finding low-cost alternatives to traditional expensive chemicals such as composted garden refuse and pine bark, which are both available in large amount in South African landfill sites. The overall objective was to assess the behaviour of the bacterial community in relation to each substrate while treating high strength landfill leachates. Denitrification processes in fixed bed reactors were simulated at laboratory scale using anaerobic batch tests with immature compost and pine bark. High strength leachate was simulated using a solution of water and nitrate at a concentration of 500 mg l-1. Results suggest that pine bark released large amounts of phenolic compounds and hydroxylated benzene rings, which both can delay the acclimatization time and inhibit the biological denitrification (only 30% efficiency). Furthermore, presence of potential pathogens like Enterobacter and Pantoea agglomerans prevents the applicability of the pine bark in full-scale operations. On the other hand, lightly composted garden refuse (CGR) offered an adequate substrate for the formation of a biofilm necessary to complete the denitrification process (total nitrate removal observed within 7 days). CGR further contributed to a rapid establishment of an active consortium of denitrifiers including Acinetobacter, Rhizobium, Thermomonas, Rheinheimera, Phaeospirillum and Flavobacterium. Clearly the original composition, nature, carbon to nitrogen ratio (C/N) and degree of maturity and stability of the substrates play a key role in the denitrification process, impacting directly on the development of the bacterial population and, therefore, on the long-term removal efficiency.

  1. Benthic mineralization and nutrient exchange over the inner continental shelf of western India

    Science.gov (United States)

    Pratihary, A. K.; Naqvi, S. W. A.; Narvenkar, G.; Kurian, S.; Naik, H.; Naik, R.; Manjunatha, B. R.

    2014-05-01

    The western Indian continental shelf is one of the most productive coastal systems of the world ocean. This system experiences extreme changes in its oxygen regime, being normoxic from November to May and suboxic (denitrifying)/anoxic from June to October, owing to the biogeochemical response to cyclical monsoonal influence. In order to understand the impact of the seasonally varying oxygen regime on benthic mineralization, nutrient exchange and, in turn, on the shelf ecosystem, we carried out the first ever intact-core incubations during two contrasting seasons - spring intermonsoon and fall intermonsoon (late southwest monsoon) at a 28 m-deep fixed site on the inner shelf off Goa, dominated by fine-grained cohesive sediments. The results showed that incomplete sediment oxygen consumption (SOC) occurred during April as opposed to the complete SOC and subsequent sulfide flux observed in the fall intermonsoon incubations. The sediments acted as a perennial net source of DIN (dissolved inorganic nitrogen i.e. NO3- + NO2- + NH4+), PO43- and SiO44- to the overlying water column. The efflux of DIN increased from 1.4 to 3.74 mmol m-2 d-1 from April to October, of which NH4+ flux comprised 59-100%. During the oxic regime, ∼75% of diffusing NH4+ appeared to be nitrified (2.55 mmol m-2 d-1), of which ∼77% remained coupled to benthic denitrification. Consequently, 58% of NH4+ flux was lost in active coupled nitrification-denitrification, resulting in substantial N loss (1.98 mmol m-2 d-1) in the sediments. The continental shelf sediments switched over from being a NO3- source during the oxic regime to a NO3- sink during the anoxic regime. During suboxia, benthic denitrification that is fed by NO3- from the overlying water caused N loss at the rate of 1.04 mmol m-2 d-1. Nitrogen loss continued even under sulfidic conditions during October, possibly through the chemolithoautotrophic denitrification, at a potential rate of 3.21 mmol m-2 d-1. Phosphate flux increased more

  2. Use of cotton gin trash to enhance denitrification in restored forested wetlands

    Science.gov (United States)

    Ullah, S.; Faulkner, S.P.

    2006-01-01

    Lower Mississippi Valley (LMV) has lost about 80% bottomland hardwood forests, mainly to agriculture. This landscape scale alteration of the LMV resulted in the loss of nitrate (NO3) removal capacity of the valley, contributing to nitrogen (N)-enhanced eutrophication and potentially hypoxia in the northern Gulf of Mexico. Restoration of hardwood forests in the LMV is a highly recommended practice to reduce NO3 load of the Mississippi River. However, restored bottomland forests take decades to develop characteristic ecological functions including denitrifier activity. One way to enhance denitrifier activity in restored wetland forests is to amend the soils with an available carbon (C) source. This research investigated the effects of cotton gin trash (CGT) amendment on denitrification rate and N2O:N2 emission ratio from a restored bottomland forest soils and compared it to those from an adjacent unamended natural forest soils. CGT amendment increased denitrification rates in the restored forest soils to the level of the natural forest soils. N2O:N2 emission ratios from the restored and natural forest soils were highly variable and were not significantly different from each other. These findings suggest that restoration of bottomland hardwood forests in the LMV will require organic carbon amendment to achieve enhanced denitrifier activity for NO3 removal while the restored forest is developing into a mature state over time. ?? 2006 Elsevier B.V. All rights reserved.

  3. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers.

    Science.gov (United States)

    Decleyre, Helen; Heylen, Kim; Van Colen, Carl; Willems, Anne

    2015-01-01

    The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate). In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA) to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary). We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m), with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites) or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter, and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms. PMID:26528270

  4. Dissimilatory nitrogen reduction in intertidal sediments of a temperate estuary: small scale heterogeneity and novel nitrate-to-ammonium reducers.

    Directory of Open Access Journals (Sweden)

    Helen eDecleyre

    2015-10-01

    Full Text Available The estuarine nitrogen cycle can be substantially altered due to anthropogenic activities resulting in increased amounts of inorganic nitrogen (mainly nitrate. In the past, denitrification was considered to be the main ecosystem process removing reactive nitrogen from the estuarine ecosystem. However, recent reports on the contribution of dissimilatory nitrate reduction to ammonium (DNRA to nitrogen removal in these systems indicated a similar or higher importance, although the ratio between both processes remains ambiguous. Compared to denitrification, DNRA has been underexplored for the last decades and the key organisms carrying out the process in marine environments are largely unknown. Hence, as a first step to better understand the interplay between denitrification, DNRA and reduction of nitrate to nitrite in estuarine sediments, nitrogen reduction potentials were determined in sediments of the Paulina polder mudflat (Westerschelde estuary. We observed high variability in dominant nitrogen removing processes over a short distance (1.6 m, with nitrous oxide, ammonium and nitrite production rates differing significantly between all sampling sites. Denitrification occurred at all sites, DNRA was either the dominant process (two out of five sites or absent, while nitrate reduction to nitrite was observed in most sites but never dominant. In addition, novel nitrate-to-ammonium reducers assigned to Thalassospira, Celeribacter and Halomonas, for which DNRA was thus far unreported, were isolated, with DNRA phenotype reconfirmed through nrfA gene amplification. This study demonstrates high small scale heterogeneity among dissimilatory nitrate reduction processes in estuarine sediments and provides novel marine DNRA organisms that represent valuable alternatives to the current model organisms.

  5. Tracing nitrification and denitrification processes in a periodically flooded shallow sandy aquifer

    International Nuclear Information System (INIS)

    The study defines the transfer mechanisms of nutrients and heavy metals from soil to groundwater operating in periodically water saturated soils. The study site is located in Lomellina (Po plain, Northern Italy), which is intensively cultivated with rice. Soils are dominantly constituted by sands, with acidic pH and low organic carbon content. The region generally displays low nitrate contamination in shallow groundwater, despite the intensive land use, while Fe and Mn often exceed drinking water limits. Monitoring performed through a yearly cycle closely followed the water table fluctuations in response to periodical flooding and drying of cultivated fields. pH, conductivity and Eh were measured in the field. Water samples were analysed for major ions, trace elements, nutrients and stable isotopes of DIN. Results evidence the seasonal migration of nutrients, the redox and associated metal cycling, and allow defining nitrification and denitrification processes. (author)

  6. European-scale modelling of groundwater denitrification and associated N2O production

    KAUST Repository

    Keuskamp, J.A.

    2012-06-01

    This paper presents a spatially explicit model for simulating the fate of nitrogen (N) in soil and groundwater and nitrous oxide (N 2O) production in groundwater with a 1 km resolution at the European scale. The results show large heterogeneity of nitrate outflow from groundwater to surface water and production of N 2O. This heterogeneity is the result of variability in agricultural and hydrological systems. Large parts of Europe have no groundwater aquifers and short travel times from soil to surface water. In these regions no groundwater denitrification and N 2O production is expected. Predicted N leaching (16% of the N inputs) and N 2O emissions (0.014% of N leaching) are much less than the IPCC default leaching rate and combined emission factor for groundwater and riparian zones, respectively. © 2012 Elsevier Ltd. All rights reserved.

  7. Impact of carbon dosing on micro-pollutants removal in MBBR post-denitrification systems

    DEFF Research Database (Denmark)

    Escola, Monica; Torresi, Elena; Gy Plósz, Benedek;

    Dosing of carbon as methanol or ethanol is a common practice in post-denitrification steps during wastewater treatment by MBBR technology. The impact of the carbon dosage on micro-pollutants removal, in terms of type (methanol or ethanol) and concentration was investigated. First, with continuous...... 53% and 30 to 100 % respectively. However, type or concentration of carbon did not lead to different micro-pollutant removal rates. Second, an anoxic-batch test with the same wastewater but containing spiked micro-pollutants (2 ng/mL) was conducted. The batch test showed that acetyl...... operation and indigenous micro-pollutants concentrations, different dosages of methanol and ethanol were used to manipulate the carbon-to-nitrate ratio in the two systems. This test revealed that atenolol, citalopram and trimethoprim were efficiently removed, with removal percentages from 56 to 98%, 17 to...

  8. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1.

    Science.gov (United States)

    Kits, K Dimitri; Klotz, Martin G; Stein, Lisa Y

    2015-09-01

    Obligate methanotrophs belonging to the Phyla Proteobacteria and Verrucomicrobia require oxygen for respiration and methane oxidation; nevertheless, aerobic methanotrophs are abundant and active in low oxygen environments. While genomes of some aerobic methanotrophs encode putative nitrogen oxide reductases, it is not understood whether these metabolic modules are used for NOx detoxification, denitrification or other purposes. Here we demonstrate using microsensor measurements that a gammaproteobacterial methanotroph Methylomonas denitrificans sp. nov. strain FJG1(T) couples methane oxidation to nitrate reduction under oxygen limitation, releasing nitrous oxide as a terminal product. Illumina RNA-Seq data revealed differential expression of genes encoding a denitrification pathway previously unknown to methanotrophs as well as the pxmABC operon in M. denitrificans sp. nov. strain FJG1(T) in response to hypoxia. Physiological and transcriptome data indicate that genetic inventory encoding the denitrification pathway is upregulated only upon availability of nitrate under oxygen limitation. In addition, quantitation of ATP levels demonstrates that the denitrification pathway employs inventory such as nitrate reductase NarGH serving M. denitrificans sp. nov. strain FJG1(T) to conserve energy during oxygen limitation. This study unravelled an unexpected metabolic flexibility of aerobic methanotrophs, thereby assigning these bacteria a new role at the metabolic intersection of the carbon and nitrogen cycles. PMID:25580993

  9. Denitrification of reprocessing concentrates of middle activity

    International Nuclear Information System (INIS)

    In order to reduce the releases from the Marcoule reprocessing plant, the treatment of liquid waste of low and medium level activity by chemical precipitation has been replaced by evaporation. Due to the high nitrate content of liquid waste, encapsulation in bitumen of the concentrate leads to considerable volumes of waste to be stored in geological formation. For safety reasons and so as to reduce the volume of waste, the elimination of the nitrates is essential: there exist various means: electrodialysis, biological denitration, chemical denitration and incineration. In view of the very high sodium nitrate content of the concentrate, electrodialysis and biological denitration were discarded. Preliminary experiments carried out at Cadarache led us to choose calcination in a fluidized bed rather than chemical denitration using a mixture of formic and phosphoric acids. Tests on a low temperature mock-up have determined the choice of an injection system that operates with liquid under pressure with the nozzle situated inside the fluidized layer. So as to avoid the vaporization of the liquid within, the injection piping also requires a cooling system using air, with a double casing. Under these conditions, liquid can be injected into the reactor without encountering any special difficulty: no plugging of the nozzle, a regular flow and liquid, stable temperature and pressure levels from top to bottom of the reactor. Differential thermogravimetric and heat analyses have led to the following conclusions: - at temperatures below 500 deg C, the nitric acid, then the aluminium nitrate decompose and produce alumina. -between approximately 570 deg C and 630 deg C, the sodium nitrate in turn decomposes and reacts with the alumina to produce a sodium aluminate. -finally, these tests enabled a reaction kinetics low of sodium nitrate decomposition in the temperature range of 500 deg C to 1000 deg C to be established. (author)

  10. Estimate of denitrifying microbiota in tertiary sewage treatment and kinetics of the denitrification process using different sources of carbon

    Directory of Open Access Journals (Sweden)

    Marchetto Margarida

    2003-01-01

    Full Text Available A study of the kinetics of denitrification was carried out in the laboratory based on the quantification of N2O, the final product of the activity of denitrifying microorganisms, when the enzymatic reduction of N2O to N2 was blocked by acetylene. Concentrated mixed liquor (sludge from a reactor with intermittent aeration used for sewage treatment was used as the inoculum, while methanol, acetic acid, glucose, effluent sewage from an anaerobic fluidized bed reactor and synthetic substrate simulating domestic sewage were used as carbon sources. The mean concentration of nitrate was 20 mg/L. Maxima of N2O production and NO3- consumption occurred between 0.5h and 2.0h of incubation using all the carbon sources, which characterized the denitrification process. Acetic acid and methanol were responsible for the highest rates of N2O production. The estimated number of denitrifying microorganisms in the reactor with intermittent aeration, using the MPN technique, varied from 10(9 to 10(10 MPN/g VSS, indicating a high potential for the occurrence of denitrification.

  11. Coupling between anammox and autotrophic denitrification for simultaneous removal of ammonium and sulfide by enriched marine sediments.

    Science.gov (United States)

    Rios-Del Toro, E Emilia; Cervantes, Francisco J

    2016-06-01

    In the present study, the capacity of enrichments derived from marine sediments collected from different sites of the Mexican littoral to perform anaerobic ammonium oxidation (anammox) coupled to sulfide-dependent denitrification for simultaneous removal of ammonium and sulfide linked to nitrite reduction was evaluated. Sulfide-dependent denitrification out-competed anammox during the simultaneous oxidation of sulfide and ammonium. Significant accumulation of elemental sulfur (ca. 14-30 % of added sulfide) occurred during the coupling between the two respiratory processes, while ammonium was partly oxidized (31-47 %) due to nitrite limitation imposed in sediment incubations. Nevertheless, mass balances revealed up to 38 % more oxidation of the electron donors available (ammonium and sulfide) than that expected from stoichiometry. Recycling of nitrite, from nitrate produced through anammox, is proposed to contribute to extra oxidation of sulfide, while additional ammonium oxidation is suggested by sulfate-reducing anammox (SR-anammox). The complex interaction between nitrogenous and sulfurous compounds occurring through the concomitant presence of autotrophic denitrification, conventional anammox and SR-anammox may significantly drive the nitrogen and sulfur fluxes in marine environments. PMID:26994921

  12. Removal of organic matter and nitrogen from distillery wastewater by a combination of methane fermentation and denitrification/nitrification processes

    Institute of Scientific and Technical Information of China (English)

    LI Jun; ZHANG Zhen-jia; LI Zhi-rong; HUANG Guang-yu; Naoki Abe

    2006-01-01

    The distillery wastewater of Guangdong Jiujiang Distillery, which is characteristic of containing high organic matters and rich total nitrogen, was treated by a combination of methane fermentation and denitrification/nitrification processes. 80% of COD in the raw wastewater was However, almost all the organic nitrogen in the raw wastewater was converted into ammonia by ammonification there. Ammonia and volatile fatty acids (VFA) remaining in the anaerobically treated wastewater were simultaneously removed utilizing VFA as an electron donor by denitrification occurring in the other EGSB reactor and nitrification using PEG-immobilized nitrifying bacteria with recirculation process. An aerobic biological contact oxidization reactor was designed between denitrification/nitrification reactor for further COD removal. With the above treatment system,18000-28000 mg/L of COD in raw wastewater was reduced to less than 100 mg/L. Also, ammonia in the effluent of the system was not detected and the system had a high removal rate for 900-1200 mg/L of TN in the raw wastewater, only leaving 400 mg/L of nitrate nitrogen.

  13. N2O isotopomers and N2:N2O ratio as indicators of denitrification in ecosystems

    International Nuclear Information System (INIS)

    The world is experiencing climate change and variability due to increased greenhouse gas (GHG) emissions. The main GHG’s of concern are nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4). Agriculture contributes approximately 14% of the world’s GHG emissions. Nitrous oxide is one of the key GHG and ozone (O3) depleting gas, constituting 7% of the anthropogenic greenhouse effect. On a molecular basis, N2O has a 310- and 16-fold greater global warming potential than each of CO2 and CH4, respectively, over a 100-year period. Nitrous oxide can be produced through both chemical and biochemical pathways. They occur during denitrification (the stepwise conversion of nitrate (NO3-) to nitrogen gas (N2) and during nitrification by ammonia-oxidizing archea (bacteria) during the oxidation of hydroxylamine (NH2OH) to nitrite (NO2-) which is then reduced to N2O and N2 by nitrifier denitrification or heterotrophic denitrification

  14. Field determination of nitrate using nitrate reductase

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, E.R.; Corrigan, J.S.; Campbell, W.H. [Nitrate Elimination Co., Inc., Lake Linden, MI (United States)

    1997-12-31

    Nitrate is routinely measured in a variety of substrates - water, tissues, soils, and foods - both in the field and in laboratory settings. The most commonly used nitrate test methods involve the reduction of nitrate to nitrite via a copper-cadmium reagent, followed by reaction of the nitrite with the Griess dye reagents. The resulting color is translated into a nitrate concentration by comparison with a calibrated color chart or comparator, or by reading the absorbance in a spectrophotometer. This basic method is reliable and sufficiently sensitive for many applications. However, the cadmium reagent is quite toxic. The trend today is for continued increase in concern for worker health and safety; in addition, there are increasing costs and logistical problems associated with regulatory constraints on transport and disposal of hazardous materials. Some suppliers have substituted a zinc-based reagent powder for the cadmium in an effort to reduce toxicity. We describe here an enzyme-based nitrate detection method as an improvement on the basic Griess method that demonstrates equal or superior sensitivity, superior selectivity, and is more environmentally benign. Comparisons between the enzyme-based method and some standard field test kits being used today are made.

  15. Selective denitrification of flue gas by O3 and ethanol mixtures in a duct: Investigation of processes and mechanisms.

    Science.gov (United States)

    Ding, Jie; Cai, Heruijing; Zhong, Qin; Lin, Jiandong; Xiao, Junjun; Zhang, Shule; Fan, Maohong

    2016-07-01

    A novel selective denitrification process, referred as O3-ethanol oxidation method, was developed by injecting O3 and ethanol mixtures into the simulated flue gas duct. The organic radicals, generated through the ethanol oxidation by O3, can oxidize NO into NO2, and finally into important industrial raw, namely, nitrate organics or aqueous nitrate acids. The residual ethanol in the tail can be recycled. The CO3(2-), HCO3(-) and SO2 in the flue gas hardly exhibit any effect on the NOX removal. Compared to the conventional O3 oxidation method, the present method shows higher selective oxidation of NO, higher NOX removal and less O3 consumption as well as proves lower initial investment and operating costs with more compact equipment. PMID:26989982

  16. Air-lift internal loop biofilm reactor for realized simultaneous nitrification and denitrification.

    Science.gov (United States)

    Zhang, Cuiyi; Wang, Lu; Yan, Ning; Zhang, Yongming; Liu, Rui

    2013-05-01

    Simultaneous nitrification and denitrification (SND) was realized by means of a novel air-lift internal loop biofilm reactor, in which aeration was set in middle of the reactor. During operation, the aeration was adjusted to get appropriate dissolve oxygen (DO) in bulk solution and let aerobic and anoxic zone coexist in one reactor. When aeration was at 0.6 and 0.2 L/min, corresponding to DO of 5.8 and 2.5 mg/L in bulk solution, ammonia nitrogen removal percentage reached about 80 and 90 %, but total nitrogen removal percentage was lower than 25 %. While the aeration was reduced to 0.1 L/min, aerobic and anoxic zones existed simultaneously in one reactor to get 75 % of ammonia nitrogen and 50 % of total nitrogen removal percentage. Biofilms were, respectively, taken from aerobic and anoxic zone to verify their function of nitrification and denitrification in two flasks, in which ammonia nitrogen was transferred into nitrate completely by aerobic biofilm, and nitrate was removed more than 80 % by anoxic biofilm. Microelectrode was used to measure the DO distribution inside biofilms in anoxic zone corresponding to different aerations. When aeration was at 0.6 and 0.2 L/min, DO inside biofilm was more than 1.5 mg/L, but the DO inside biofilm decreased to anoxic status with depth of biofilm increasing corresponding to aeration of 0.1 L/min. The experimental results indicated that SND could be realized because of simultaneous existence of aerobic and anoxic biofilms in one reactor. PMID:23001679

  17. Effect of nitrate, acetate, and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil.

    Science.gov (United States)

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E; Hristova, Krassimira R; Scow, Kate M

    2011-05-01

    The effect of nitrate, acetate, and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared with unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting that the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration that was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting that either perchlorate or nitrate stimulates the growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  18. Linking hydrogeochemistry to nitrate abundance in groundwater in agricultural settings in Ireland

    Science.gov (United States)

    Jahangir, M. M. R.; Johnston, P.; Khalil, M. I.; Richards, K. G.

    2012-07-01

    SummaryNitrate (NO3--N) contamination of groundwater and associated surface waters is an increasingly important global issue with multiple impacts on terrestrial, aquatic and atmospheric environments. Investigation of the distribution of hydrogeochemical variables and their connection with the occurrence of NO3--N provides better insights into the prediction of the environmental risk associated with nitrogen use within agricultural systems. The research objective was to evaluate the effect of hydrogeological setting on agriculturally derived groundwater NO3--N occurrence. Piezometers (n = 36) were installed at three depths across four contrasting agricultural research sites. Groundwater was sampled monthly for chemistry and dissolved gases, between February 2009 and January 2011. Mean groundwater NO3--N ranged 0.7-14.6 mg L-1, with site and groundwater depth being statistically significant (p < 0.001). Unsaturated zone thickness and saturated hydraulic conductivity (Ksat) were significantly correlated with dissolved oxygen (DO) and redox potential (Eh) across sites. Groundwater NO3--N occurrence was significantly negatively related to DOC and methane and positively related with Eh and Ksat. Reduction of NO3--N started at Eh potentials <150 mV while significant nitrate reduction occurred <100 mV. Indications of heterotrophic and autotrophic denitrification were observed through elevated dissolved organic carbon (DOC) and oxidation of metal bound sulphur, as indicated by sulphate (SO42-). Land application of waste water created denitrification hot spots due to high DOC losses. Hydrogeological settings significantly influenced groundwater nitrate occurrence and suggested denitrification as the main control.

  19. Biological reduction of nitrates in wastewaters from nuclear processing using a fluidized-bed bioreactor

    International Nuclear Information System (INIS)

    There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO3- and as large as 2000 m3/day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 g N(NO3-) per day per liter of empty bioreactor volume. 4 figures, 7 tables

  20. Autotrophic, hydrogen-oxidizing, denitrifying bacteria in groundwater, potential agents for bioremediation of nitrate contamination

    Science.gov (United States)

    Smith, R.L.; Ceazan, M.L.; Brooks, M.H.

    1994-01-01

    Addition of hydrogen or formate significantly enhanced the rate of consumption of nitrate in slurried core samples obtained from an active zone of denitrification in a nitrate-contaminated sand and gravel aquifer (Cape Cod, Mass.). Hydrogen uptake by the core material was immediate and rapid, with an apparent K(m) of 0.45 to 0.60 ??M and a V(max) of 18.7 nmol cm-3 h-1 at 30??C. Nine strains of hydrogen-oxidizing denitrifying bacteria were subsequently isolated from the aquifer. Eight of the strains grew autotrophically on hydrogen with either oxygen or nitrate as the electron acceptor. One strain grew mixotrophically. All of the isolates were capable of heterotrophic growth, but none were similar to Paracoccus denitrificans, a well-characterized hydrogen-oxidizing denitrifier. The kinetics for hydrogen uptake during denitrification were determined for each isolate with substrate depletion progress curves; the K(m)s ranged from 0.30 to 3.32 ??M, with V(max)s of 1.85 to 13.29 fmol cell-1 h-1. Because these organisms appear to be common constituents of the in situ population of the aquifer, produce innocuous end products, and could be manipulated to sequentially consume oxygen and then nitrate when both were present, these results suggest that these organisms may have significant potential for in situ bioremediation of nitrate contamination in groundwater.

  1. Nitrogen release from differently aged Raphanus sativus L. nitrate catch crops during mineralization at autumn temperatures

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Elsgaard, Lars; Olesen, Jørgen Eivind;

    2016-01-01

    In temperate climates with surplus precipitation and low temperatures during autumn and winter, nitrate catch crops have become crucial in reducing nitrate leaching losses. Preferably, the N retained by the catch crop should remain in the soil and become available to the next main crop. Fodder...... radish (Raphanus sativus, L.) has emerged as a promising nitrate catch crop in cereal cropping, although the course of remineralization of residue N following termination of this frost-sensitive crucifer remains obscured. We incubated radish residues of different age (different planting and harvest dates...... pool at both temperatures. The N mineralization and nitrification potential at these low soil temperatures suggest that a considerable fraction of the N captured by nitrate catch crops may be remineralized, nitrified and thus available for plant uptake but also for loss by leaching and denitrification....

  2. Effect of nitrate concentration on filamentous bulking under low level of dissolved oxygen in an airlift inner circular anoxic-aerobic incorporate reactor.

    Science.gov (United States)

    Su, Yiming; Zhang, Yalei; Zhou, Xuefei; Jiang, Ming

    2013-09-01

    This laboratory research investigated a possible cause of filamentous bulking under low level of dissolved oxygen conditions (dissolved oxygen value in aerobic zone maintained between 0.6-0.8 mg O2/L) in an airlift inner-circular anoxic-aerobic reactor. During the operating period, it was observed that low nitrate concentrations affected sludge volume index significantly. Unlike the existing hypothesis, the batch tests indicated that filamentous bacteria (mainly Thiothrix sp.) could store nitrate temporarily under carbon restricted conditions. When nitrate concentration was below 4 mg/L, low levels of carbon substrates and dissolved oxygen in the aerobic zone stimulated the nitrate-storing capacity of filaments. When filamentous bacteria riched in nitrate reached the anoxic zone, where they were exposed to high levels of carbon but limited nitrate, they underwent denitrification. However, when nonfilamentous bacteria were exposed to similar conditions, denitrification was restrained due to their intrinsic nitrate limitation. Hence, in order to avoid filamentous bulking, the nitrate concentration in the return sludge (from aerobic zone to the anoxic zone) should be above 4 mg/L, or alternatively, the nitrate load in the anoxic zone should be kept at levels above 2.7 mg NO(3-)-N/g SS. PMID:24520715

  3. The kinetic and isotopic competence of nitric oxide as an intermediate in denitrification.

    Science.gov (United States)

    Goretski, J; Hollocher, T C

    1990-01-15

    Rates of NO uptake by five denitrifying bacteria were estimated by NO-electrode and gas chromatography methods under conditions of rather low cell densities and [NOaq]. The rates so measured, VmaxNO, represent lower limits for the true value of that parameter, but nevertheless exceed Vmax for nitrite uptake, VmaxNi, by a factor of two typically. Previous estimates under suboptimal conditions had placed VmaxNO at 0.3-0.5 of VmaxNi (St. John, R. T., and Hollocher, T. C. (1977) J. Biol. Chem. 252, 212-218; Garber, E. A. E., and Hollocher, T.C. (1981) J. Biol. Chem. 256, 5459-5465). The steady-state [NOaq] during denitrification of nitrite by nitrate-grown cells was less than or equal to 1 microM. The above observations, taken with a recent direct estimate for the KmNO for NO uptake of 0.4 microM (Zafiriou, O. C., Hanley, Q. S., and Snyder, G. (1989) J. Biol. Chem. 264, 5694-5699), would allow NO to be a free intermediate between nitrite and N2O with steady-state concentrations of less than or equal to 0.4 microM. As the result of special conditions during cell growth or differential inhibition by azide, it was possible to establish systems that accumulated NO during denitrification of nitrite. In all such cases, VmaxNO less than VmaxNi, and the time required to reach the maximum [NOaq] corresponded closely to the time needed to exhaust the nitrite. A semiquantitative isotope experiment with Paracoccus denitrificans demonstrated the trapping of 15NO from 15NO2- in a pool of NOaq. A quantitative isotope method using low densities of the same bacterium showed that 15N from 15NO2- and 14N from NOg combine randomly to form N2O during the simultaneous denitrification of 15NO2- and NO. The result requires that the pathways from nitrite and NO share a common mononitrogen intermediate. Results to the contrary obtained at high cell densities (first two references cited above) are now believed to have been due to technical artifacts. The present results are consistent with the

  4. Agricultural nitrate pollution

    DEFF Research Database (Denmark)

    Anker, Helle Tegner

    2015-01-01

    Despite the passing of almost 25 years since the adoption of the EU Nitrates Directive, agricultural nitrate pollution remains a major concern in most EU Member States. This is also the case in Denmark, although a fairly strict regulatory regime has resulted in almost a 50 per cent reduction...

  5. Feasibility of enhancing the DEnitrifying AMmonium OXidation (DEAMOX) process for nitrogen removal by seeding partial denitrification sludge.

    Science.gov (United States)

    Cao, Shenbin; Peng, Yongzhen; Du, Rui; Wang, Shuying

    2016-04-01

    The recently proposed DEnitrifying AMmonium OXidation (DEAMOX) process combined anaerobic ammonia oxidation (ANAMMOX) with denitrification to convert nitrate to nitrite, which was a promising way for treating wastewater containing nitrate and ammonia. This study investigated the feasibility of establishing DEAMOX process by seeding partial denitrification sludge (NO3(-) → NO2(-)) using sodium acetate as an electron donor in a sequencing batch reactor. Results showed that the DEAMOX process was established successfully and operated stably in 114-days operation. The average effluent total nitrogen concentration was below 5 mg L(-1) and TN removal efficiency reached up to 97% at COD/NO3(-) ratio of 3.0 under initial NH4(+) concentration of 25 mg L(-1) and NO3(-) of 30 mg L(-1). It suggested that the presence of NO2(-) in the system supplied for ANAMMOX and the relatively long sludge retention time (SRT) for denitrifiers were attributed to commendable coexistence of ANAMMOX and denitrifying bacteria. PMID:26829308

  6. Sulfur-based mixotrophic denitrification corresponding to different electron donors and microbial profiling in anoxic fluidized-bed membrane bioreactors.

    Science.gov (United States)

    Zhang, Lili; Zhang, Chao; Hu, Chengzhi; Liu, Huijuan; Bai, Yaohui; Qu, Jiuhui

    2015-11-15

    Sulfur-based mixotrophic denitrifying anoxic fluidized bed membrane bioreactors (AnFB-MBR) were developed for the treatment of nitrate-contaminated groundwater with minimized sulfate production. The nitrate removal rates obtained in the methanol- and ethanol-fed mixotrophic denitrifying AnFB-MBRs reached 1.44-3.84 g NO3 -N/L reactor d at a hydraulic retention time of 0.5 h, which were significantly superior to those reported in packed bed reactors. Compared to methanol, ethanol was found to be a more effective external carbon source for sulfur-based mixotrophic denitrification due to lower sulfate and total organic carbon concentrations in the effluent. Using pyrosequencing, the phylotypes of primary microbial groups in the reactor, including sulfur-oxidizing autotrophic denitrifiers, methanol- or ethanol-supported heterotrophic denitrifiers, were investigated in response to changes in electron donors. Principal component and heatmap analyses indicated that selection of electron donating substrates largely determined the microbial community structure. The abundance of Thiobacillus decreased from 45.1% in the sulfur-oxidizing autotrophic denitrifying reactor to 12.0% and 14.2% in sulfur-based methanol- and ethanol-fed mixotrophic denitrifying bioreactors, respectively. Heterotrophic Methyloversatilis and Thauera bacteria became more dominant in the mixotrophic denitrifying bioreactors, which were possibly responsible for the observed methanol- and ethanol-associated denitrification. PMID:26364226

  7. Response of a three dimensional bioelectrochemical denitrification system to the long-term presence of graphene oxide.

    Science.gov (United States)

    Chen, Dan; Wang, Xufeng; Yang, Kai; Wang, Hongyu

    2016-08-01

    In this study, a three dimensional bioelectrochemical denitrification system (3D-BEDS) was operated under long-term graphene oxide (GO) condition to treat high nitrate polluted water. When GO concentration increased from 0 to 100mgL(-1), nitrate removal efficiency slightly decreased from 99.52% to 94.81%. However, when GO concentration was further increased to 150mgL(-1), the denitrification efficiency dramatically decreased to 74.95%. Increasing GO concentration in this BEDS resulted in decreased community richness, and the abundances of the dominant bacterial communities presented obvious shift. The abundances of denitrifying genes napA, nirS, and nirK showed no obvious changes with GO concentration lower than 50mgL(-1). However, the abundances of the three genes decreased when GO concentration was further increased to higher than 100mgL(-1). The increased lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production demonstrated that long-term presence of GO caused chronic impacts onto microorganisms in this BEDS. PMID:27115747

  8. Relative Magnitude and Controls of in Situ N2 and N2O Fluxes due to Denitrification in Natural and Seminatural Terrestrial Ecosystems Using (15)N Tracers.

    Science.gov (United States)

    Sgouridis, Fotis; Ullah, Sami

    2015-12-15

    Denitrification is the most uncertain component of the nitrogen (N) cycle, hampering our ability to assess its contribution to reactive N (Nr) removal. This uncertainty emanates from the difficulty in measuring in situ soil N2 production and from the high spatiotemporal variability of the process itself. In situ denitrification was measured monthly between April 2013 and October 2014 in natural (organic and forest) and seminatural ecosystems (semi-improved and improved grasslands) in two UK catchments. Using the (15)N-gas flux method with low additions of (15)NO3(-) tracer, a minimum detectable flux rate of 4 μg N m(-2) h(-1) and 0.2 ng N m(-2) h(-1) for N2 and N2O, respectively, was achieved. Denitrification rates were lower in organic and forest (8 and 10 kg N ha(-1) y(-1), respectively) than in semi-improved and improved grassland soils (13 and 25 kg N ha(-1) y(-1), respectively). The ratio of N2O/N2 + N2O was low and ranged from soil respiration, nitrate, C:N ratio, bulk density, moisture, and pH across the sites. Overall, the contribution of denitrification to Nr removal in natural ecosystems was ~50% of the annual atmospheric Nr deposition, making these ecosystems vulnerable to chronic N saturation. PMID:26509488

  9. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.

    Directory of Open Access Journals (Sweden)

    Emily G I Payne

    Full Text Available The long-term efficacy of stormwater treatment systems requires continuous pollutant removal without substantial re-release. Hence, the division of incoming pollutants between temporary and permanent removal pathways is fundamental. This is pertinent to nitrogen, a critical water body pollutant, which on a broad level may be assimilated by plants or microbes and temporarily stored, or transformed by bacteria to gaseous forms and permanently lost via denitrification. Biofiltration systems have demonstrated effective removal of nitrogen from urban stormwater runoff, but to date studies have been limited to a 'black-box' approach. The lack of understanding on internal nitrogen processes constrains future design and threatens the reliability of long-term system performance. While nitrogen processes have been thoroughly studied in other environments, including wastewater treatment wetlands, biofiltration systems differ fundamentally in design and the composition and hydrology of stormwater inflows, with intermittent inundation and prolonged dry periods. Two mesocosm experiments were conducted to investigate biofilter nitrogen processes using the stable isotope tracer 15NO3(- (nitrate over the course of one inflow event. The immediate partitioning of 15NO3(- between biotic assimilation and denitrification were investigated for a range of different inflow concentrations and plant species. Assimilation was the primary fate for NO3(- under typical stormwater concentrations (∼1-2 mg N/L, contributing an average 89-99% of 15NO3(- processing in biofilter columns containing the most effective plant species, while only 0-3% was denitrified and 0-8% remained in the pore water. Denitrification played a greater role for columns containing less effective species, processing up to 8% of 15NO3(-, and increased further with nitrate loading. This study uniquely applied isotope tracing to biofiltration systems and revealed the dominance of assimilation in stormwater

  10. Copepod carcasses as microbial hot spots for pelagic denitrification

    DEFF Research Database (Denmark)

    Glud, Ronnie N.; Grossart, Hans-Peter; Larsen, Morten; Tang, Kam W.; Arendt, Kristine Engel; Rysgaard, Søren; Thamdrup, Bo; Nielsen, Torkel Gissel

    2015-01-01

    investigated carcass samples and thereby documented the potential for microbial denitrification in carcasses. The nirS gene was occasionally expressed in live copepods, but not as consistently as in carcasses. Incubations of sinking carcasses in 15NO2 3 amended seawater demonstrated denitrification, of which...... on average 34%617% (n528) was sustained by nitrification. However, the activity was highly variable and was strongly dependent on the ambient O2 levels. While denitrification was present even at air-saturation (302 lmol L21), the average carcass specific activity increased several orders of magnitude...... to 1 nmol d21 at 20% air-saturation (55 lmol O2 L21) at an ambient temperature of 78C. Sinking carcasses of C. inmarchicus therefore represent hotspots of pelagic denitrification, but the quantitative importance as a sink for bioavailable nitrogen is strongly dependent on the ambient O2 level. The...

  11. Nitrification and denitrification gene abundances in swine wastewater anaerobic lagoons

    Science.gov (United States)

    Although anaerobic lagoons are used globally for livestock waste treatment, their detailed microbial cycling of nitrogen is only beginning to become understood. Within this cycling, nitrification can be performed by organisms which produce the enzyme ammonia monooxygenase (AMO). For denitrification,...

  12. Carbon nanotubes affect the toxicity of CuO nanoparticles to denitrification in marine sediments by altering cellular internalization of nanoparticle

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Huang, Haining; Li, Xu

    2016-06-01

    Denitrification is an important pathway for nitrate transformation in marine sediments, and this process has been observed to be negatively affected by engineered nanomaterials. However, previous studies only focused on the potential effect of a certain type of nanomaterial on microbial denitrification. Here we show that the toxicity of CuO nanoparticles (NPs) to denitrification in marine sediments is highly affected by the presence of carbon nanotubes (CNTs). It was found that the removal efficiency of total NOX‑-N (NO3‑-N and NO2‑-N) in the presence of CuO NPs was only 62.3%, but it increased to 81.1% when CNTs appeared in this circumstance. Our data revealed that CuO NPs were more easily attached to CNTs rather than cell surface because of the lower energy barrier (3.5 versus 36.2 kT). Further studies confirmed that the presence of CNTs caused the formation of large, incompact, non-uniform dispersed, and more negatively charged CuO-CNTs heteroaggregates, and thus reduced the nanoparticle internalization by cells, leading to less toxicity to metabolism of carbon source, generation of reduction equivalent, and activities of nitrate reductase and nitrite reductase. These results indicate that assessing nanomaterial-induced risks in real circumstances needs to consider the “mixed” effects of nanomaterials.

  13. Multivariate benthic ecosystem functioning in the Arctic – benthic fluxes explained by environmental parameters in the southeastern Beaufort Sea

    Directory of Open Access Journals (Sweden)

    H. Link

    2013-09-01

    Full Text Available The effects of climate change on Arctic marine ecosystems and their biogeochemical cycles are difficult to predict given the complex physical, biological and chemical interactions among the ecosystem components. We studied benthic biogeochemical fluxes in the Arctic and the influence of short-term (seasonal to annual, long-term (annual to decadal and other environmental variability on their spatial distribution to provide a baseline for estimates of the impact of future changes. In summer 2009, we measured fluxes of dissolved oxygen, nitrate, nitrite, ammonia, soluble reactive phosphate and silicic acid at the sediment–water interface at eight sites in the southeastern Beaufort Sea at water depths from 45 to 580 m. The spatial pattern of the measured benthic boundary fluxes was heterogeneous. Multivariate analysis of flux data showed that no single or reduced combination of fluxes could explain the majority of spatial variation, indicating that oxygen flux is not representative of other nutrient sink–source dynamics. We tested the influence of eight environmental parameters on single benthic fluxes. Short-term environmental parameters (sinking flux of particulate organic carbon above the bottom, sediment surface Chl a were most important for explaining oxygen, ammonium and nitrate fluxes. Long-term parameters (porosity, surface manganese and iron concentration, bottom water oxygen concentrations together with δ13Corg signature explained most of the spatial variation in phosphate, nitrate and nitrite fluxes. Variation in pigments at the sediment surface was most important to explain variation in fluxes of silicic acid. In a model including all fluxes synchronously, the overall spatial distribution could be best explained (57% by the combination of sediment Chl a, phaeopigments, δ13Corg, surficial manganese and bottom water oxygen concentration. We conclude that it is necessary to consider long-term environmental variability along with

  14. Denitrification and Nitrate Consumption in an Herbaceous Riparian Area and Perennial Ryegrass Seed Field

    Science.gov (United States)

    Riparian ecosystems have the capacity to lower NO3- concentrations in groundwater entering from non-point agricultural sources. The microbial processes responsible for decreases in riparian groundwater NO3- concentrations in the Willamette Valley of Oregon are not well understood. Our objective was...

  15. Nitrate levels modulate denitrification activity in tropical mangrove sediments (Goa, India)

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, S.O.; LokaBharathi, P.A.

    2 cm intervals from surface to 10 cm by carefully sectioning the core. Each section (7.5 cm diameter and 2 cm thick) was transferred to 100 ml of sterile saline and homogenized using a glass rod. The slurry was centrifuged at 5000 rpm for 10 mins... and transferred aseptically to sterile 20 ml headspace vials. Three ml of sterilized ambient seawater from the sampling site was added to the sediment. This seawater used for slurry preparation was spiked with a KNO 3 solution to give final concentrations of 0...

  16. Performance and microbial communities of Mn(II)-based autotrophic denitrification in a Moving Bed Biofilm Reactor (MBBR).

    Science.gov (United States)

    Su, Jun Feng; Luo, Xian Xin; Wei, Li; Ma, Fang; Zheng, Sheng Chen; Shao, Si Cheng

    2016-07-01

    In this study, Mn(II) as electron donor was tested for the effects on denitrification in the MBBR under the conditions of initial nitrate concentration (10mgL(-1), 30mgL(-1), 50mgL(-1)), pH (5, 6, 7) and hydraulic retention time (HRT) (4h, 8h, 12h) which conducted by response surface methodology (RSM), the results demonstrated that the highest nitrate removal efficiency was occurred under the conditions of initial nitrate concentration of 47.64mgL(-1), HRT of 11.96h and pH 5.21. Analysis of SEM and flow cytometry suggested that microorganisms were immobilized on the Yu Long plastic carrier media successfully before the reactor began to operate. Furthermore, high-throughput sequencing was employed to characterize and compare the community compositions and structures of MBBR under the optimum conditions, the results showed that Pseudomonas sp. SZF15 was the dominant contributor for effective removal of nitrate in the MBBR. PMID:27061262

  17. Building a Probabilistic Denitrification Model for an Oregon Salt Marsh

    Science.gov (United States)

    Moon, J. B.; Stecher, H. A.; DeWitt, T.; Nahlik, A.; Regutti, R.; Michael, L.; Fennessy, M. S.; Brown, L.; Mckane, R.; Naithani, K. J.

    2015-12-01

    Despite abundant work starting in the 1950s on the drivers of denitrification (DeN), mechanistic complexity and methodological challenges of direct DeN measurements have resulted in a lack of reliable rate estimates across landscapes, and a lack of operationally valid, robust models. Measuring and modeling DeN are particularly challenging in tidal systems, which play a vital role in buffering adjacent coastal waters from nitrogen inputs. These systems are hydrologically and biogeochemically complex, varying on fine temporal and spatial scales. We assessed the spatial and temporal variability of soil nitrate (NO3-) levels and O2 availability, two primary drivers of DeN, in surface soils of Winant salt marsh located in Yaquina estuary, OR during the summers of 2013 and 2014. We found low temporal variability in soil NO3- concentrations across years, tide series, and tide cycles, but high spatial variability linked to elevation gradients (i.e., habitat types); spatial variability within the high marsh habitat (0 - 68 μg N g-1 dry soil) was correlated with distance to major tide creek channels and connectivity to upslope N-fixing red alder. Soil O2 measurements collected at 5 cm below ground across three locations on two spring tide series showed that O2 drawdown rates were also spatially variable. Depending on the marsh location, O2 draw down ranged from sub-optimal for DeN (> 80 % O2 saturation) across an entire tide series (i.e., across days) to optimum (i.e., ~ 0 % O2 saturation) within one overtopping tide event (i.e., within hours). We are using these results, along with empirical relationships created between DeN and soil NO3- concentrations for Winant to improve on a pre-existing tidal DeN model. We will develop the first version of a fully probabilistic hierarchical Bayesian tidal DeN model to quantify parameter and prediction uncertainties, which are as important as determining mean predictions in order to distinguish measurable differences across the marsh.

  18. Interference of Nitrite with Pyrite under Acidic Conditions: Implications for Studies of Chemolithotrophic Denitrification.

    Science.gov (United States)

    Yan, Ruiwen; Kappler, Andreas; Peiffer, Stefan

    2015-10-01

    Chemolithotrophic denitrification coupled to pyrite oxidation is regarded a key process in the removal of nitrate in aquifers. A common product is nitrite, which is a strong oxidant under acidic conditions. Nitrite may thus interfere with Fe(II) during acidic extraction, a procedure typically used to quantify microbial pyrite oxidation, in overestimating Fe(III) production. We studied the reaction between pyrite (5-125 mM) and nitrite (40-2000 μM) at pH 0, 5.5, and 6.8 in the absence and presence of oxygen. Significant oxidation of pyrite was measured at pH 0 with a yield of 100 μM Fe(III) after 5 mM pyrite was incubated with 2000 μM nitrite for 24 h. Dissolved oxygen increased the rate at pH 0. No oxidation of pyrite was observed at pH 5.5 and 6.8. Our data imply a cyclic model for pyrite oxidation by Fe(III) on the basis of the oxidation of residual Fe(II) by NO and NO2. Interference by nitrite could be avoided if nitrite was removed from the pyrite suspensions through a washing procedure prior to acidic extraction. We conclude that such interferences should be considered in studies on microbially mediated pyrite oxidation with nitrate. PMID:26335043

  19. Mobilisation or dilution? Nitrate response of karst springs to high rainfall events

    Directory of Open Access Journals (Sweden)

    M. Huebsch

    2014-04-01

    Full Text Available Nitrate (NO3- contamination of groundwater associated with agronomic activity is of major concern in many countries. Where agriculture, thin free draining soils and karst aquifers coincide, groundwater is highly vulnerable to nitrate contamination. As residence times and denitrification potential in such systems are typically low, nitrate can discharge to surface waters unabated. However, such systems also react quickest to agricultural management changes that aim to improve water quality. In response to storm events, nitrate concentrations can alter significantly, i.e., rapidly decreasing or increasing concentrations. The current study examines the response of a specific karst spring situated on a grassland farm in south Ireland to rainfall events utilising high-resolution nitrate and discharge data together with on-farm borehole groundwater fluctuation data. Specifically, the objectives of the study are to formulate a scientific hypothesis of possible scenarios relating to nitrate responses during storm events, and to verify this hypothesis using additional case studies from the literature. This elucidates the controlling key factors that lead to mobilisation and/or dilution of nitrate concentrations during storm events. These were land use, hydrological condition and karstification, which in combination can lead to differential responses of mobilised and/or diluted nitrate concentrations. Furthermore, the results indicate that nitrate response in karst is strongly dependent on nutrient source, whether mobilisation and/or dilution occur and the pathway taken. This will have consequences for the delivery of nitrate to a surface water receptor. The current study improves our understanding of nitrate responses in karst systems and therefore can guide environmental modellers, policy makers and drinking water managers with respect to the regulations of the European Union (EU Water Framework Directive (WFD. In future, more research should focus on

  20. Direct Determination of Deep Ocean Nitrate During the Last Glacial Maximum

    Science.gov (United States)

    Spivack, A. J.; Røy, H.; Brunner, B.; Graham, D.; Gribsholt, B.; Murray, R. W.; Schrum, H. N.; D'Hondt, S. L.

    2009-12-01

    Atmospheric carbon dioxide has systematically varied with the waxing and waning of Earth’s climate for at least the last 800,000 years, with peak glacial and interglacial values of approximately 180 ppm and 280 ppm, respectively. A variety of hypotheses have been presented to explain these CO2 variations. One important class of hypotheses asserts that changes in the deep ocean nitrate content or high latitude nitrate utilization are the proximal cause of the variations. These hypotheses can be tested by determination of last glacial maximum Pacific deep water total and pre-formed nitrate concentrations. . There have previously been no direct measurements, of paleo-nitrate concentrations as there have been for atmos