WorldWideScience

Sample records for beneficiated coal samples

  1. Progress in developments of dry coal beneficiation

    Institute of Scientific and Technical Information of China (English)

    Yuemin Zhao; Xuliang Yang; Zhenfu Luo; Chenlong Duan; Shulei Song

    2014-01-01

    China’s energy supply heavily relies on coal and China’s coal resource and water resource has a reverse distribution. The problem of water shortages restricts the applications of wet coal beneficiation technologies in drought regions. The present situation highlights the significance and urgency of developing dry beneficiation technologies of coal. Besides, other countries that produce large amounts of coal also encounter serious problem of lack of water for coal beneficiation, such as American, Australia, Canada, South Africa, Turkey and India. Thus, dry coal beneficiation becomes the research hot-points in the field of coal cleaning worldwide in recent years. This paper systematically reviewed the promising research efforts on dry coal beneficiation reported in literature in last 5 years and discussed the progress in developments of dry coal beneficiation worldwide. Finally, we also elaborated the prospects and the challenges of the development of dry coal beneficiation.

  2. The Magnetic Beneficiation of Coal

    OpenAIRE

    Male, S.E.

    1985-01-01

    The magnetic demineralization of coal can produce a fuel containing lower leveIs of sulphur and ash forming minerals. The ability of the magnetic separation technique to process material over a wide range of particle sizes (I-1000 µm) and to operate on either liquid or gaseous feed enables a number of possible coal processing applications. These range from dry desulphurization of power station pulverized fuel to the cleaning of solvent refined coals. This article reviews work on the developme...

  3. The slurry-column coal beneficiation process

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.F.; Noah, K.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States). Biotechnology Dept.

    1997-11-01

    The slurry-column coal beneficiation process is described. It is a second-generation process developed at the Idaho National Engineering Laboratory for the beneficiation of fine (60 mesh x 10 {mu}m) coal by a combination of the physical separation of mineral matter and the biooxidation of pyrite. The bioreactor is slurry-type airlift, specifically designed to allow the large liberated inclusions of pyrite and other insoluble minerals to settle out. They are transferred to a similar reactor, called the rougher/propagator, that gives a second stage of physical separation, as well as the longer residence time for the biodegradation of the large pyritic inclusions and the associated bacterial growth. The bioreactors operate in sequencing-batch mode, and also serve as settlers for coal/water separation when the air turned off. This separation allows counter-current flow of coal and water, which minimizes the volumes of water consumed and wastewater generated. The complete flow sheet incorporates two-stage washing to remove sulfate and bacteria from the product coal, and recycle of bacteria into the process to inoculate the feed coal. A description of the process illustrates some general principles applicable to the optimum design of any coal bioprocess. 17 refs., 5 figs., 2 tabs.

  4. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  5. Survey and evaluation of current and potential coal beneficiation processes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.N.; Peterson, G. R.

    1979-03-01

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

  6. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  7. Modern processes for Indian power plant coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, F.; Schwerdtfeger, J.

    1997-12-31

    Presently in India 160 Mio tonnes per year of non-coking coal are mined for power generation, which have not been at all beneficiated until today. In order to beneficiate the whole amount of raw coal, an investment of approximately 45 billion Rupees is required. Due to the fact that the beneficiation costs are increasing drastically, when beneficiating finer material, it is recommended to wash in a first step the grainsize 400-30 mm only. This amounts to 110 Mio tonnes per year. The required beneficiation plants will need an investment of approximately 8 billion INR. The washed grain size {gt}40 mm, which is approximately 65% of the entire raw coal, dewaters without any mechanical assistance to 4% moisture. It can be crushed down and mixed with the unwashed fine coal without increasing the moisture content compared to the r.o.m. coal. For this duty - to wash the raw coal 400-30 mm - in close cooperation with Indian mining engineers the ROMJIG has been developed and tested during the operation. 3 figs.

  8. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  9. Coal Beneficiation Technology for Coking & Non-Coking Coal Meant For Steel and Thermal Power Plants

    OpenAIRE

    Manoj Kumar Sharma; Gohil Priyank; Nikita Sharma

    2015-01-01

    There are 21 coking coal washeries in production both in private and public sectors. Production of clean coal in these washeries during 1989-90 was 12 million tonne and it is expected to go up to 37 million, tonne during 2015-16. Planning Commission has taken the decision that non-coking coal meant for Thermal Power Plants situated far away from feeding coalfield, should be beneficiated. Coal Washing is a process of separation mainly based on difference in Specific Gravity of Coal and associa...

  10. Comparison of coal separation characteristics based on different separating approaches in dry coal beneficiation flowsheet

    Institute of Scientific and Technical Information of China (English)

    HE Jing-feng; ZHAO Yue-min; HE Ya-qun; LUO Zhen-fu; DUAN Chen-long

    2015-01-01

    The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively.

  11. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 9, April--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-08-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the second quarter of 1991, the following technical progress was made: completed drop tube furnace devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of samples to determine devolatilization kinetics; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; completed writing a summary topical report including all results to date on he nine fuels tested; and presented three technical papers on the project results at the 16th International Conference on Coal & Slurry Technologies.

  12. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 8, January--March 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-07-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Calculated the kinetic characteristics of chars from the combustion of spherical oil agglomeration beneficiated products; continued drop tube devolatilization tests of the spherical oil agglomeration beneficiated products; continued analyses of the data and samples from the CE pilot-scale tests of nine fuels; and started writing a summary topical report to include all results on the nine fuels tested.

  13. Dry beneficiation of fine coal using a fluidized dense medium bed / Andre Nardus Terblanche

    OpenAIRE

    Terblanche, Andre Nardus

    2013-01-01

    Beneficiation of fine coal (+500 μm –2000 μm) is a worldwide problem in the mining industry, especially dry beneficiation of fine coal. Coal beneficiation can be divided primarily into two methods, namely wet- and dry beneficiation. Wet beneficiation methods are utilized more in today‘s industry because of the sharp separation efficiency that can be achieved. These processes include wet jigging, dense medium cyclones, spiral beneficiation etc. Due to the lack of a sufficient water supply in s...

  14. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 10, July--September 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1991-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. During the third quarter of 1991, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; completed analyses of the samples from the pilot-scale ash deposition tests of unweathered Upper Freeport fuels; completed editing of the first three quarterly reports and sent them to the publishing office; presented the project results at the Annual Contractors` Conference.

  15. Enhancement of surface properties for coal beneficiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  16. COAL DRY BENEFICIATION TECHNOLOGY IN CHINA: THE STATE-OF-THE-ART

    Institute of Scientific and Technical Information of China (English)

    Qingru Chen; Lubin Wei

    2003-01-01

    In China, coal is the major source of energy and its leading role in energy consumption would not change in the next 50 years. Coal preparation is the essential component of Clean Coal Technology. In China more than two-thirds of available coal reserves are in arid areas, which results in the unfeasibility with conventional wet processing for coal preparation. The uniqueness of dry coal beneficiation technology with air-dense medium fluidized bed is discussed in this paper and a detailed survey of the current status of theoretical study, commercial application and development of the new technology is given in this paper.

  17. Cross flow flotation column for coal and minerals beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Ralph W.; Patton, Robert A.

    1997-12-01

    An apparatus and process are disclosed for the separation of coal from pyritic impurities using a modified froth flotation system. The froth flotation column incorporates a helical track about the inner wall of the column in a region intermediate between the top and base of the column. A standard impeller located about the central axis of the column is used to generate a centrifugal force thereby increasing the separation efficiency of coal from the pyritic particles and hydrophilic tailings.

  18. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 7, October 1990--December 1990

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, M.J.; Chow, O.K.; Nsakala, N.Y.

    1991-02-01

    During the fourth quarter of 1990, the following technical progress was made: (1) Calculated the kinetic characteristics of chars from the combustion of microbubble flotation beneficiated products; (2) continued drop tube combustion tests of the spherical oil agglomeration beneficiated products; (3) analyzed the data from three (MIT) pilot-scale combustion tests of the Upper Freeport feed coal; and (4) continued analyses of the data from the CE pilot-scale tests of nine fuels.

  19. Initial study of dry ultrafine coal beneficiation utilizing triboelectric charging with subsequent electrostatic separation

    Energy Technology Data Exchange (ETDEWEB)

    Link, T.A.; Killmeyer, R.P.; Elstrodt, R.H.; Haden, N.H.

    1990-10-01

    A novel, dry process using electrostatics to beneficiate ultrafine coal is being developed by the Coal Preparation Division at the Pittsburgh Energy Technology Center. The historical concept of triboelectricity and its eventual use as a means of charging coal for electrostatic separation will be discussed. Test data from a first-generation and a second-generation Tribo-Electrostatic separator are presented showing the effects of feed particle size, separator voltage, solids concentration in air, and particle velocity on separation performance. 10 refs., 10 figs., 9 tabs.

  20. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru Chen; Lubin Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  1. Beneficiation of Guachinte (Cauca) and Golondrinas (Valle Del Cauca) coals using a Cyclone test rig with two separation stages

    International Nuclear Information System (INIS)

    Two Colombian coals from South-West, Guachinte (Cauca) and Golondrinas (Valle del Cauca)), were beneficiated using a dense medium cyclone with two separation stages in series. It was obtained a concentrated fraction in organic matter (beneficiated fraction) for each separation stage. Yield of beneficiated fractions obtained in the first separation stage were in the range 28 to 58%. Using the second separation stage, the maximum yield obtained for Guachinte coal was 71%. Ash content of beneficiated coal fractions was between 6.84 and 24.68%, which was lower than feed fractions 23.39 y 43.29%. A reduction in sulphur content was also found in beneficiated fractions of Guachinte coal in comparison to feed fractions, however, a contrary behavior was obtained for Golondrinas coal.

  2. Chemical analysis of Argonne premium coal samples. Bulletin

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, C.A.

    1997-11-01

    Contents: The Chemical Analysis of Argonne Premium Coal Samples: An Introduction; Rehydration of Desiccated Argonne Premium Coal Samples; Determination of 62 Elements in 8 Argonne Premium Coal Ash Samples by Automated Semiquantitative Direct-Current Arc Atomic Emission Spectrography; Determination of 18 Elements in 5 Whole Argonne Premium Coal Samples by Quantitative Direct-Current Arc Atomic Emission Spectrography; Determination of Major and Trace Elements in Eight Argonne Premium Coal Samples (Ash and Whole Coal) by X-Ray Fluorescence Spectrometry; Determination of 29 Elements in 8 Argonne Premium Coal Samples by Instrumental Neutron Activation Analysis; Determination of Selected Elements in Coal Ash from Eight Argonne Premium Coal Samples by Atomic Absorption Spectrometry and Atomic Emission Spectrometry; Determination of 25 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Atomic Emission Spectrometry; Determination of 33 Elements in Coal Ash from 8 Argonne Premium Coal Samples by Inductively Coupled Argon Plasma-Mass Spectrometry; Determination of Mercury and Selenium in Eight Argonne Premium Coal Samples by Cold-Vapor and Hydride-Generation Atomic Absorption Spectrometry; Determinaton of Carbon, Hydrogen, and Nitrogen in Eight Argonne Premium Coal Samples by Using a Gas Chromatographic Analyzer with a Thermal Conductivity Detector; and Compilation of Multitechnique Determinations of 51 Elements in 8 Argonne Premium Coal Samples.

  3. Beneficiation of pulverized coal combustion fly ash in fluidised bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Cammarota, A.; Chirone, R.; Solimene, R.; Urciuolo, M. [Istituto di Ricerche sulla Combustione - C.N.R., P.le V. Tecchio 80, 80125 Napoli (Italy)

    2008-07-15

    The paper addresses the thermal treatment of pulverized coal combustion fly ash belonging to the group C of Geldart powder classification in unconventional configurations of fluidised bed reactors. A sound-assisted fluidised bed combustor operated at 850 and 750 C, and a fluidised bed combustor characterized by a conical geometry, operated at 850 C, are the two lab-scale reactors tested. Combustion experiments have been carried out at different air excesses, ranging between 10% and 170%, and in the case of the conical fluidization column with different bed inventory. Both tested configurations have been proved to be efficient to reduce the carbon content initially present in the fly ash of 11%{sub w}, to a very low level, generally smaller than 1%{sub w}. Both the fly ash residence time in the reactor and the air excess strongly influenced the reactor performance. Residence times of 3-4 min and 10-60 min have been estimated for experiments carried out with the sound-assisted fluidised bed combustor and with the conical fluidised bed combustor, respectively. Regarding the possibility of a concurrent reduction of unburned carbon in the ash and of a particle size separation of the beneficiated material, on the basis of the obtained experimental data, the sound-assisted fluidised bed combustor is not able to separate the broad particle size distribution of the fly ash in different outlet solid streams. The use of a conical fluidised bed combustor is promising to realize an efficient separation of the inlet broad particle size distribution of the fly ash fed to the reactor into narrower outlet solid streams extracted from different locations: combustor exit, top and bottom of the bed. In this framework a hydrodynamic characterization of binary mixtures in a conical fluidised bed column carried out at ambient and high temperature (850 C) has demonstrated that the operating conditions of the conical fluidised bed combustor can be chosen on the basis of a compromise

  4. Mineralogical and Beneficiation Studies of a Low Grade Iron Ore Sample

    Science.gov (United States)

    Dwari, R. K.; Rao, D. S.; Reddy, P. S. R.

    2014-10-01

    Investigations were carried out, to establish its amenability for physical beneficiation on a low grade siliceous iron ore sample by magnetic separation. Mineralogical studies, with the help of microscope as well as XRD, SEM-EDS revealed that the sample consists of magnetite, hematite and goethite as major opaque oxide minerals where as quartz and kaolinite form the gangue minerals in the sample. Processes involving combination of classification, dry magnetic separation and wet magnetic separation were carried out to upgrade the low grade siliceous iron ore sample to make it suitable as a marketable product. The sample was first ground and each closed size sieve fractions were subjected to dry magnetic separation and it was observed that limited upgradation is possible. The ground sample was subjected to different finer sizes and separated by wet low intensity magnetic separator. Dry beneficiation studies by Permaroll separator indicated that it is possible to get a product with 60.2 % Fe at 22 % weight recovery. It is possible to get an over all concentrate with 54 % Fe at 32.4 % weight recovery by combination of size reduction followed by LIMS and WHIMS.

  5. A combined physical/microbial process for the beneficiation of coal

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.F.; Stevens, C.J.; Noah, K.S.; McIlwain, M.E.

    1993-09-01

    A large-laboratory scale physical/microbial process was demonstrated for the removal of pyritic sulfur from coal. The process took place in an aerated-trough slurry reactor with a total slurry volume of 150 L. The reactor was divided into six sections, each of which acted as a physical separator and a bioreactor. The process objective was to physically remove the larger pyritic inclusions and to biodegrade the small inclusions (micropyrite). The process was continuously operated for 120 days, treating approximately 1 ton of Illinois {number_sign}6 coal. Ninety percent pyrite removal was achieved at a 20% slurry concentration and a reactor residence time of 5 days. Additional research should be performed to find the optimum values for reactor residence time, slurry concentration, and process hydraulic residence time (or recycle ratio). Finding these optimum values will enable a process to be developed that will maximize the amount of coal that can be processed per unit reactor volume per unit time with the desired level of pyritic sulfur removal.

  6. Monitoring light hydrocarbons in Brazilian coal mines and in confined coal samples

    International Nuclear Information System (INIS)

    Monitoring light hydrocarbons (LHCs) in coal mines, particularly methane, is important not only because of their implications for global climate change but also for economic and safety reasons. Furthermore, the identification and quantification of LHCs in coal mine air samples and desorbed from confined coal may contribute to a better understanding of coal seam characteristics. The paucity of information about the levels of methane in Brazilian underground coal mines can be attributed to their difficult access and a lack of adequate procedures for correct gas sampling. The aim of this study is to optimize and apply standard gas chromatography procedures to determine LHC levels in the air of coal mines and in confined coal from five mines under operation, three underground (A, B, C) and two surface (D, E) mines, in southern Brazil. The results indicate methane (C1) levels varying from 3 ppm to 27% in the atmosphere of the underground mines. Mine A presented high levels of all LHCs analyzed (C1 to C5), while only C1 and C2 were detected in mine B, and hydrocarbons ranging from C1 to C4 were found in mine C. On the other hand, surface mines presented narrow concentration range for C1 (3 ppm to 470 ppm) and C2-C3, with higher levels observed for puncture explosive points. Among LHCs, methane is desorbed in higher concentrations from confined coals and the presence of C2 was detected in all samples while C3-C5 were only observed in coals from underground mines. These data are consistent with those obtained from the air gas samples collected in the mines under study. Geological events such as faulting and intrusions can accelerate the release of gas or the trapping of large amounts of previously released methane. The LHC emissions from coal mines were found to be highly variable, indicating the need for a comprehensive survey of Brazilian coal mine emissions. (author)

  7. In-situ study of beneficial utilization of coal fly ash in reactive mine tailings.

    Science.gov (United States)

    Lee, Joon Kyu; Shang, Julie Q; Wang, Hongliu; Zhao, Cheng

    2014-03-15

    Oxidation of reactive mine tailings and subsequent generation of acid mine drainage (AMD) have been long recognized as the largest environmental concern for the mining industry. Laboratory studies on utilization of coal fly ash in management of reactive mine tailings have shown reducing water and oxygen infiltration into tailings matrix, thus preventing oxidation of sulphide minerals and acid generation. However, few data from field studies to evaluate the performance of co-placement of mine tailings and fly ash (CMF hereafter) are reported in the open literature. This paper documents the construction and instrumentation of three CMF systems on the Musselwhite mine located in Ontario, Canada and presents results of 3-year real time monitoring. The field data indicates that the CMFs reduced the ingress of water due to cementation generated by hydration of fly ash. It was also found that the electrical conductivity of leachate from CMFs decreased in the early stage of co-placement, compared to the control. With further study, the principle and approach demonstrated in this paper can be adopted as a sustainable technology in the mine tailings management. PMID:24525077

  8. MAINTENANCE OF THE COAL SAMPLE BAND AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan Davis; David C. Glick

    1997-04-30

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. The program of organic geochemical analyses for the contract was completed during the quarter, and its results (pyrolysis-GC/MS, and NMR spectroscopy by CPMAS and DDMAS) on 21 samples as well as standardized liquefaction results on 28 samples are summarized in this report. Samples and data continue to be distributed from the DOE Coal Sample Bank and Database to other DOE contractors.

  9. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1998-08-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. Nineteen samples, 90 data printouts, and individual data items from 416 samples were distributed during the quarter. Trends and relationships observed in liquefaction and organic geochemical analyses performed under the contract are summarized in this report. Liquefaction results using tetralin were similar to those using 1-methylnaphthalene under the same run conditions. Properties of individual coals, such as maceral composition and corresponding organic chemical components, were important in explaining liquefaction behavior. NMR and py/gc/ms results illustrated trends based on coal rank, and revealed outliers which might be of special interest, for example low-phenolic coals which limit retrogressive reactions and permit greater liquefaction conversion.

  10. Maintenance of the Coal sample Bank and Database.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.; Glick, D.C.

    1997-10-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. 133 samples, 291 data printouts, and individual data items from 4002 samples were distributed during the quarter.

  11. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1998-04-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. Requests during this quarter were heavily skewed toward database activity; 139 data printouts and individual data items from 2549 additional samples were distributed.

  12. QGS2020 type piano-wire probability screen - an important matching equipment in the coal dry beneficiation technique with air-dense medium fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.; Chen, Q.; Fan, M.; Hong, J. [China University of Mining and Technology, Xuzhou (China)

    1996-12-31

    The efficient screening of raw coal at mesh sizes of 6 mm is a prerequisite to coal dry beneficiation with air-dense medium fluidized bed. Integrating the probability screen with the piano-wire screen, the authors developed the QGS2020 type piano-wire Probability Screen (PWPS), a new screen which has a large capacity, high efficiency, and no blinding. The results of the industrial tests show that this screen is able to meet the technical requirements of the coal dry beneficiation. This paper describes the operation principles, the structure features and the mechanical model of the QGS2020 type PWPS, and also includes data from industrial tests. 1 ref., 2 figs., 2 tabs.

  13. Precision of personal sampling of respirable dust in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Breslin, J.A.; Page, S.J.; Jankowski, R.A.

    1983-02-01

    The Bureau of Mines measured respirable dust in coal mines by means of multiple dust samplers worn by persons moving about the mines. The measurements were made primarily to evaluate the effectiveness of certain dust-control techniques; however, for this report, the data have been analyzed to determine the precision of the personal dust-sampling measurements.

  14. Stress sensitivity of coal samples in terms of anisotropy

    Institute of Scientific and Technical Information of China (English)

    Jun-Jian WANG; Da-Zhen TANG; Hao XU; Jie YI; Yan-Jing YI

    2013-01-01

    The permeability and porosity of coal seams are anisotropic,and the variation of confining stress may induce deformation in coal samples.In order to study these characteristics,experiments and model analyses were conducted to understand the behaviors of anisotropic stress sensitivity of lean coal samples.The results showed as the closure of cleats and the generation of micro-cracks,the strong stress sensitivity of coal samples and the discrete changes in porosity were caused by confining pressure changes.In the compression period,the anisotropy trend first increased,and then decreased.In the direction perpendicular to the bedding plane,the permeability decrease rate and the irreversible damage rate were the highest.In the direction parallel to the cleats,permeability recovery rate was higher and the irreversible damage rate was lower along butt cleats.Compared to the cube root of permeability to porosity,a 1/6 power relationship was proved to be closer to the experiment results,the new relationship had the highest fit level in the face cleat direction,and the lowest fit level in the vertical direction.

  15. Users Handbook for the Argonne Premium Coal Sample Program

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S.

    1993-10-01

    This Users Handbook for the Argonne Premium Coal Samples provides the recipients of those samples with information that will enhance the value of the samples, to permit greater opportunities to compare their work with that of others, and aid in correlations that can improve the value to all users. It is hoped that this document will foster a spirit of cooperation and collaboration such that the field of basic coal chemistry may be a more efficient and rewarding endeavor for all who participate. The different sections are intended to stand alone. For this reason some of the information may be found in several places. The handbook is also intended to be a dynamic document, constantly subject to change through additions and improvements. Please feel free to write to the editor with your comments and suggestions.

  16. Frictional sliding tests on combined coal-rock samples

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yaodong Jiang; Shaojian Zhan; Chen Wang

    2014-01-01

    A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE) instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal-rock samples, sliding types under different conditions, displacement evolution law, and AE character-istics during sliding process were investigated. Several sliding types were monitored in the tests, including unstable continuous sliding, unstable discontinuous sliding, and stable sliding. The sliding types have close relation with the axial loads and loading rates. Larger axial load and smaller loading rate mean that unstable sliding is less likely to occur. The peak shear stress was positively correlated with the axial load when sliding occurred, whereas the displacement induced by unstable sliding was uncorre-lated with the axial load. A large number of AE events occurred before sliding, and the AE rate decreased after stable sliding. The results show that the tests can well simulate the process of structural instability in a coal bump, and are helpful in the understanding of fault activation and the physical processes during squeezing process of roof and floor.

  17. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    Science.gov (United States)

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit

  18. Coal Rank and Stratigraphy of Pennsylvanian Coal and Coaly Shale Samples, Young County, North-Central Texas

    Science.gov (United States)

    Guevara, Edgar H.; Breton, Caroline; Hackley, Paul C.

    2007-01-01

    Vitrinite reflectance measurements were made to determine the rank of selected subsurface coal and coaly shale samples from Young County, north-central Texas, for the National Coal Resources Database System State Cooperative Program conducted by the Bureau of Economic Geology at The University of Texas at Austin. This research is the continuation of a pilot study that began in adjacent Archer County, and forms part of a larger investigation of the coalbed methane resource potential of Pennsylvanian coals in north-central Texas. A total of 57 samples of coal and coaly shale fragments were hand-picked from drill cuttings from depths of about 2,000 ft in five wells, and Ro determinations were made on an initial 10-sample subset. Electric-log correlation of the sampled wells indicates that the collected samples represent coal and coaly shale layers in the Strawn (Pennsylvanian), Canyon (Pennsylvanian), and Cisco (Pennsylvanian-Permian) Groups. Coal rank in the initial sample subset ranges from lignite (Ro=0.39), in a sample from the Cisco Group at a depth of 310 to 320 ft, to high volatile bituminous A coal (Ro=0.91) in a sample from the lower part of the Canyon Group at a depth of 2,030 to 2,040 ft.

  19. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This project generates and provides coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract has been completed and a six-month no-cost extension is under way; this will continue the limited distribution of samples and data to DOE, its contractors and grantees. All activities specified under the five-year contract have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the five years, 524 samples in 1501 containers, 2075 data printouts, and individual data items from 30327 samples were distributed. In the subject quarter, 23 samples, 16 data printouts, and individual data items from 2507 samples were distributed. All DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (- 20 mesh U.S.), and minus 0.25 mm (- 60 mesh U.S.).

  20. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1999-03-01

    This project generated and provided coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract and a six-month no-cost extension have been completed. The Final Technical Progress Report is being prepared. All activities specified under the five-year contract and its six-month no-cost extension have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the contract, 804 samples in 1586 containers, 2109 data printouts, and individual data items from 34208 samples were distributed. In the subject quarter, 25 samples, 18 data printouts, and individual data items from 1374 samples were distributed. All DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (-20 mesh U.S.), and minus 0.25 mm (-60 mesh U.S.).

  1. Performance characteristics of pilot plant dense media hydrocyclone for beneficiation of coal and 3-D CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, P.D.; Kumar, V.; Sripriya, R.; Chakraborty, S.; Meikap, B.C. [University of Kwazulu Natal, Durban (South Africa). School of Chemical Engineering

    2010-08-15

    Dense-medium separators have proven to be the most efficient processes for removing the undesirable material from run-of-mine coal. The application of high-pressure feed injection into dense-medium cyclones to provide an elevated centrifugal force has recently been found to allow efficient separation performances for the treatment of fine coal (i.e., < 1000 {mu} m). However, high-pressure injection requires specialized pumps and results in relatively high maintenance requirements. The current study involves experimental investigation of separation performance characteristics of the dense media hydrocyclone (DMC). A pilot plant DMC has been designed and fabricated for performance characterization. Experiments have been conducted on 300 mm dense medium cyclone treating coal in the size range of -6 to +2 mm using magnetite as the medium under operating conditions. The operating variable was the specific gravity of the medium, feed inlet pressure and feed inlet flow rate. The ash contents of the feed coal reporting to the overflow and underflow have been analyzed qualitatively. The result indicates that the use of magnetite as dense medium in DMC resulted in the yield of clean coal, which is 5% more when the air core is suppressed as compared to the same conditions when the air core remains. A 3-D geometry is created in Gambit to support the experimental findings by using CFD simulation. It is interesting to observe that experimental findings agree well with the simulation results.

  2. Zinc estimates in ore and slag samples and analysis of ash in coal samples

    International Nuclear Information System (INIS)

    Zinc estimates in ore and slag samples were made using the radioisotope X-ray fluorescence method. A 10 mCi 238Pu was employed as the primary source of radiation and a thin crystal NaI(Ti) spectrometer was used to accomplish the detection of the 8.64 keV Zinc K-characteristic X-ray line. The results are reported. Ash content of coal concerning about 100 samples from Ravindra Khani VI and VII mines in Andhra Pradesh were measured using X-ray backscattering method with compensation for varying concentrations of iron in different coal samples through iron-X-ray fluorescent intensity measurements. The ash percent is found to range from 10 to 40. (author)

  3. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; Alan Davis; David C. Glick; Patrick G. Hatcher; Gareth D. Mitchell; Daniel Carson; Lei Hou

    1999-11-01

    This project generated and distributed coal samples and accompanying analytical data for use in research by DOE contractors and others. All activities specified under the five-year contract (as revised) and a six-month no-cost extension have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to research and commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for preserving samples in long-term storage. In addition to the 33 DECS samples, 23 PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the 5.5 years, 570 samples in 1,586 containers, 2,109 data printouts, and individual data items from 34,208 samples were distributed. All DECS samples are now available for distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (-20 mesh U.S.), and minus 0.25 mm (-60 mesh U.S.).

  4. Analyses of coal product samples taken by the Division of Energy Technology, CSIR, during 1987

    Energy Technology Data Exchange (ETDEWEB)

    Boshoff, H.P.; Barnard, J.M.

    1988-01-01

    General chemical and physical properties of South African coal products, including the ash analysis, are reported on a series of samples taken during 1987. 370 product samples from 103 collieries were sampled and analyzed. Petrographic analyses were also carried out on a series of bituminous coal product samples from 88 collieries, and the results are given here.

  5. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This project generates and provides coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract has been completed and a six-month no-cost extension is under way; this will continue the limited distribution of samples and data to DOE, its contractors and grantees. All activities specified under the five-year contract have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the five years, 524 samples in 1501 containers, 2075 data printouts, and individual data items from 30327 samples were distributed. In the subject quarter, 45 samples, 101 data printouts, and individual data items from 1237 samples were distributed. Splits of the last two samples from the previous contract received processing to minus 0.25 mm; all DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (- 20 mesh U.S.), and minus 0.25 mm (minus 60 mesh U

  6. Sampling design e valutazione costi-benefici: un esempio applicato al pellet count

    Directory of Open Access Journals (Sweden)

    Elisabetta Raganella Pelliccioni

    2003-10-01

    >=77. In particolare, la diminuzione del CV è particolarmente consistente fino ad unità di campionamento di lunghezza pari a 250 m: un incremento ulteriore della lunghezza non determina consistenti diminuzioni del coefficiente di variazione. I coefficienti di variazione così ottenuti forniscono preziose indicazioni sulle relazioni fra sampling design, variabilità delle stime finali e costi di realizzazione? in termini di tempo e personale.

  7. Structural effects of sample ageing in hydrocracked coal liquefaction extracts

    Energy Technology Data Exchange (ETDEWEB)

    Begon, V.; Suelves, I.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2000-10-01

    A sample of Point of Ayr coal extract has been hydrocracked in a microbomb reactor with NiMo on alumina catalyst in tetralin as solvent and hydrogen donor and under hydrogen pressure. The product was separated from solvent and catalyst and then split into equal parts and stored either under nitrogen atmosphere in a freezer or in air at room temperature. Samples of the products were examined at 2 h frequencies for a day, then daily for a week, then at less frequent intervals for a year. Methods used for examination were size exclusion chromatography (SEC) and UV fluorescence spectroscopy (UV-F), both using 1-methyl-2-pyrrolidinone as solvent. Aging was assessed in terms of shifts to shorter elution times in SEC and parallel changes in UV-F spectra. Both stored products showed significant structural evidence of aging over the first week of storage. After that time, changes observed were within the range of variability of the chromatography method based on polystyrene standards. The aging was attributed to the presence of low-reactivity free radicals species, which underwent recombination reactions during storage. These changes are likely to affect the viscosity and combustion characteristics of the hydrocracked product. 30 refs., 6 figs., 1 tab.

  8. Gas evolution kinetics of two coal samples during rapid pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Zeng, C.; Guo, X.; Mao, Y.; Zhang, Y.; Zhang, X.; Li, W. [Coal Polygeneration Tech Laboratory, GE Global Research - Shanghai, Shanghai, 201203 (China); Long, Y. [Material Characterization Laboratory, GE Global Research - Shanghai, Shanghai, 201203 (China); Zhu, H. [Functional Materials Laboratory, GE Global Research - Shanghai, Shanghai, 201203 (China); Eiteneer, B. [Fuel Conversion Laboratory, GE Global Research - Irvine, California 92618 (United States); Zamansky, V. [Energy and Propulsion Technologies, GE Global Research - Irvine, California 92618 (United States)

    2010-08-15

    Quantitative gas evolution kinetics of coal primary pyrolysis at high heating rates is critical for developing predictive coal pyrolysis models. This study aims to investigate the gaseous species evolution kinetics of a low rank coal and a subbituminous coal during pyrolysis at a heating rate of 1000 C s{sup -} {sup 1} and pressures up to 50 bar using a wire mesh reactor. The main gaseous species, including H{sub 2}, CO, CO{sub 2}, and light hydrocarbons CH{sub 4}, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 6}, C{sub 3}H{sub 8}, were quantified using high sensitivity gas chromatography. It was found that the yields of gaseous species increased with increasing pyrolysis temperature up to 1100 C. The low rank coal generated more CO and CO{sub 2} than the subbituminous coal under similar pyrolysis conditions. Pyrolysis of the low rank coal at 50 bar produced more gas than at atmospheric pressure, especially CO{sub 2}, indicating that the tar precursor had undergone thermal cracking during pyrolysis at the elevated pressure. (author)

  9. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    International Nuclear Information System (INIS)

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  10. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J. M. K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1??wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.

  11. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, Harvey E.; Tewalt, Susan J. [U.S. Geological Survey, 956 National Center, Reston, VA 20192 (United States); Hower, James C. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States); Stucker, J.D. [University of Kentucky Center for Applied Energy Research, 2540 Research Park Drive, Lexington, KY 40511 (United States)]|[University of Kentucky Department of Earth and Environmental Sciences, Lexington, KY 40506 (United States); O' Keefe, J.M.K. [Morehead State University, Department of Physical Science, Morehead, KY 40351 (United States)

    2009-01-31

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally < 10 and < 1 wt.%, respectively). Active tectonic and igneous activity has resulted in significant rank increase in some coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential. (author)

  12. Radium concentration measurements in coal fly ash and cement samples using LR-115 plastic track detectors

    International Nuclear Information System (INIS)

    The increase interest in measuring radium (226Ra) concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. Samples of coal and fly ash from different thermal power stations in northern India were collected and analysed for radium concentration. Cement samples were collected from National Council for Cement and Building Materials (NCB), Ballabgarh (Haryana). The radium concentration is estimated through track etch technique using LR-115 CN detectors. (author)

  13. Direct determination and quantification of sulfur forms in coals from the Argonne premium sample bank

    International Nuclear Information System (INIS)

    Sulfur K Edge X-ray Absorption Near Edge Structure Spectroscopy (XANES) and X-ray Photoelectron Spectroscopy (XPS) have been developed for the direct determination and quantification of the forms of organically bound sulfur in nonvolatile petroleum and coal samples. XANES and XPS spectra were taken of a number of model compounds, mixtures of model compounds, heavy petroleum and coal samples. A third derivative analysis of the XANES spectra and deconvolution of the XPS spectra allowed approximate quantification of the sulfidic and thiophenic components of the model mixtures and heavy hydrocarbon resources. Recently obtained data for characterizing organically bound sulfur forms in coals from the Argonne Premium Coal Sample Bank will be discussed

  14. Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela

    Science.gov (United States)

    Hackley, Paul C.; Kolak, Jonathan J.

    2008-01-01

    This report presents vitrinite reflectance and detailed organic composition data for nine high volatile bituminous coal samples. These samples were selected to provide a single, internally consistent set of reflectance and composition analyses to facilitate the study of linkages among coal composition, bitumen generation during thermal maturation, and geochemical characteristics of generated hydrocarbons. Understanding these linkages is important for addressing several issues, including: the role of coal as a source rock within a petroleum system, the potential for conversion of coal resources to liquid hydrocarbon fuels, and the interactions between coal and carbon dioxide during enhanced coalbed methane recovery and(or) carbon dioxide sequestration in coal beds.

  15. Determination of trace elements in samples from 110 coal mines in China by INAA

    International Nuclear Information System (INIS)

    In the present work, 29 elements (As,Ba,Br,Ce,Co,Cr,Cs,Eu,Fe,Hf,K,Na,La,Lu,Nd,Ni,Rb,Sb,Sc,Se,Sm,Sr,Ta,Tb,Th,U,W,Yb and Zn) in samples of 110 coal mines in China were determined by instrumental neutron activation analysis. Quality control of these analysis was assured by analysis of the U.S. NBS SRM-1632a(coal) and SRM-1633a(fly ash). (author)

  16. Application of PGNAA for bulk coal samples in a 4pi geometry

    Energy Technology Data Exchange (ETDEWEB)

    Borsaru, M.; Jecny, Z. [CSIRO, Kenmore, Qld. (Australia). Exploration and Mining

    2001-07-01

    The paper describes a 4 pi geometry bulk coal analyser using the Prompt gamma neutron activation analysis (PGNAA) technique that was tested in the laboratory. The volume of the bulk samples was 270 litres. A 1.5 {mu}g Cf-252 neutron source and a 75 mm x 35 mm diameter EGO detector were used for the measurements. The ash, Fe, Si and Al content of coal were determined with good accuracy.

  17. Application of PGNAA for bulk coal samples in a 4{pi} geometry

    Energy Technology Data Exchange (ETDEWEB)

    Borsaru, M.; Jecny, Z

    2001-03-01

    A 4{pi} geometry bulk coal analyser using the Prompt gamma neutron activation analysis (PGNAA) technique was tested in the laboratory. The volume of the bulk samples was 270 litres. A 1.5 {mu}g {sup 252}Cf neutron source and a 75 mm x 35 mm dia BGO detector were used for the measurements. The ash, Fe, Si and Al content of coal were determined with good accuracy.

  18. Application of PGNAA for bulk coal samples in a 4pi geometry.

    Science.gov (United States)

    Borsaru, M; Jecny, Z

    2001-03-01

    A 4pi geometry bulk coal analyser using the Prompt gamma neutron activation analysis (PGNAA) technique was tested in the laboratory. The volume of the bulk samples was 270 litres. A 1.5 microg 252Cf neutron source and a 75 mm x 35 mm dia BGO detector were used for the measurements. The ash, Fe, Si and Al content of coal were determined with good accuracy. PMID:11214889

  19. Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region

    International Nuclear Information System (INIS)

    This work presents a study of natural radioactivity levels in coal and its combustion residues (fly ash and slag) used in the houses in Black Sea Region, Turkey. Coal, fly ash and slag samples were provided from different locations of the region and analyzed by gamma spectroscopy using a high-purity germanium detector (HPGe). Also, chemical analyses of these samples were carried out using energy dispersive X-ray fluorescence spectrometer. The mean 226Ra activity concentrations in coal, slag and fly ash were measured as 83, 99 and 38 Bq kg-1, respectively. The mean 232Th activity concentrations in coal, slag and fly ash were measured as 108, 113 and 50 Bq kg-1, respectively. The mean 40K activity concentrations in coal, slag and fly ash were found to be 366, 381 and 204 Bq kg-1, respectively. The potential radiological hazards associated to these materials were evaluated by calculating the radium equivalent activity (Raeq), the air absorbed gamma dose rate (D), the annual effective dose rate (AED), the external hazard index (Hex) and internal hazard index (Hin) and compared with the internationally accepted or reference values. The mean Raeq values of the coal, fly ash and slag samples were lower than the recommended maximum values 370 Bq kg-1 by the Organization for Economic Cooperation and Development (OECD). The overall mean outdoor terrestrial gamma air absorbed dose rate in coal, fly ash and slag samples are 119, 129 and 62 nGy h-1 and the corresponding outdoor annual effective doses are 0.60, 0.32 and 0.64 mSv y-1, which is higher than the worldwide average (0.07 mSv y-1), respectively. Moreover, the enrichment factors relative to the input coal are calculated for the radionuclide contents observed. Calculated enrichment factor values for 226Ra and 232Th were found 1.14 and 1.01, respectively. (orig.)

  20. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    Science.gov (United States)

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  1. Sampling and sample handling procedures for priority pollutants in surface coal mining wastewaters. [Detailed list to be analyzed for

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, R. S.; Johnson, D. O.; Henricks, J. D.

    1979-03-01

    The report describes the procedures used by Argonne National Laboratory to sample surface coal mine effluents in order to obtain field and laboratory data on 110 organic compounds or classes of compounds and 14 metals and minerals that are known as priority pollutants, plus 5-day biochemical oxygen demand (BOD/sub 5/), total organic carbon (TOC), chemical oxygen demand (COD), total dissolved solids (TDS), and total suspended solids (TSS). Included are directions for preparation of sampling containers and equipment, methods of sampling and sample preservation, and field and laboratory protocols, including chain-of-custody procedures. Actual analytical procedures are not described, but their sources are referenced.

  2. 75 FR 17511 - Coal Mine Dust Sampling Devices

    Science.gov (United States)

    2010-04-06

    ... humidity from 10 to 100 percent relative humidity; and while exposed to water mists generated for dust... devices sample the mine atmosphere by drawing mine air through a filter cassette that collects respirable... volume of mine air that passed through the CPDM during the sampled period. The result is reported on...

  3. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  4. Radon induced radiological impact of coal, fly ash and cement samples

    International Nuclear Information System (INIS)

    Coal and its by-product fly ash are technologically important materials being used for power generation and in the manufacture of bricks, sheets, cement, land-filling, etc., respectively. Increased interest in measuring radon concentration in coal, fly ash and cement is due to its health hazards and environmental pollution. As the presence of radon in the environment (indoor and outdoor), soil, ground water, oil and gas deposits contributes the largest fraction of the natural radiation dose to populations, tracking its concentration is thus of paramount importance for radiological protection. Samples of coal and fly ash were collected from different thermal power stations in northern India and cement samples from National Council for Cement and Building Materials, Ballabgarh (Haryana), India and were analysed for radon concentration. For the measurement, alpha sensitive LR-115 type II plastic track detectors were used. Based upon the available data, the annual effective dose and the lifetime fatality risk factors have been calculated. The radon concentration from coal samples varied from 433 ± 28 Bqm-3 to 2086 ± 28 Bqm-3. The radon concentration from fly ash samples varied from 748 ± 28 Bqm-3 to 1417 ± 111 Bqm-3 and from 158 Bqm-3 to 1810 Bqm-3 in cement samples, with an average of 624 ± 169 Bqm-3. (author)

  5. TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

    2002-05-30

    This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

  6. Coal

    International Nuclear Information System (INIS)

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  7. Simple and accessible analytical methods for the determination of mercury in soil and coal samples.

    Science.gov (United States)

    Park, Chul Hee; Eom, Yujin; Lee, Lauren Jong-Eun; Lee, Tai Gyu

    2013-09-01

    Simple and accessible analytical methods compared to conventional methods such as US EPA Method 7471B and ASTM-D6414 for the determination of mercury (Hg) in soil and coal samples are proposed. The new methods are consisted of fewer steps without the Hg oxidizing step consequently eliminating a step necessary to reduce excess oxidant. In the proposed methods, a Hg extraction is an inexpensive and accessible step utilizing a disposable test tube and a heating block instead of an expensive autoclave vessel and a specially-designed microwave. Also, a common laboratory vacuum filtration was used for the extracts instead of centrifugation. As for the optimal conditions, first, best acids for extracting Hg from soil and coal samples was investigated using certified reference materials (CRMs). Among common laboratory acids (HCl, HNO3, H2SO4, and aqua regia), aqua regia was most effective for the soil CRM whereas HNO3 was for the coal CRM. Next, the optimal heating temperature and time for Hg extraction were evaluated. The most effective Hg extraction was obtained at 120°C for 30min for soil CRM and at 70°C for 90min for coal CRM. Further tests using selected CRMs showed that all the measured values were within the allowable certification range. Finally, actual soil and coal samples were analyzed using the new methods and the US EPA Method 7473. The relative standard deviation values of 1.71-6.55% for soil and 0.97-12.11% for coal samples were obtained proving that the proposed methods were not only simple and accessible but also accurate. PMID:23683353

  8. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  9. Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, Harvey E.; Tewalt, Susan J.

    2007-01-01

    and ash (generally Indonesia although, at present, there are concerns about the strong need for a major revision in mining laws and foreign investment policies (Wahju, 2004; United States Embassy Jakarta, 2004). The World Coal Quality Inventory (WoCQI) program of the U.S. Geological Survey (Tewalt and others, 2005) is a cooperative project with about 50 countries (out of 70 coal-producing countries world-wide). The WoCQI initiative has collected and published extensive coal quality data from the world's largest coal producers and consumers. The important aspects of the WoCQI program are; (1) samples from active mines are collected, (2) the data have a high degree of internal consistency with a broad array of coal quality parameters, and (3) the data are linked to GIS and available through the world-wide-web. The coal quality parameters include proximate and ultimate analysis, sulfur forms, major-, minor-, and trace-element concentrations and various technological tests. This report contains geochemical data from a selected group of Indonesian coal samples from a range of coal types, localities, and ages collected for the WoCQI program.

  10. A simple decomposition method using phosphate flux for the determination of Nb and Ta in carbonatite samples and its beneficiation products by ICP-OES

    International Nuclear Information System (INIS)

    A simple method for the decomposition of Carbonatite samples and its beneficiation products for the determination of Nb and Ta by ICP-OES is described. Samples containing higher concentrations of analyte are decomposed by fusion with phosphate flux (1:1 mixture of sodium di- hydrogen phosphate and di-sodium hydrogen phosphate) in a platinum crucible. The melt is dissolved in distilled water for the analysis by ICP-OES. For low concentrations of the analyte, method was suitably modified to reduced salt content. This method is suitable for all concentrations of Nb and Ta

  11. Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Damla, Nevzat [Batman Univ. (Turkey). Dept. of Physics; Cevik, Ugur [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Physics; Kara, Ayhan [Osmaniye Korkut Ata Univ. (Turkey). Dept. of Physics

    2012-11-15

    This work presents a study of natural radioactivity levels in coal and its combustion residues (fly ash and slag) used in the houses in Black Sea Region, Turkey. Coal, fly ash and slag samples were provided from different locations of the region and analyzed by gamma spectroscopy using a high-purity germanium detector (HPGe). Also, chemical analyses of these samples were carried out using energy dispersive X-ray fluorescence spectrometer. The mean {sup 226}Ra activity concentrations in coal, slag and fly ash were measured as 83, 99 and 38 Bq kg{sup -1}, respectively. The mean {sup 232}Th activity concentrations in coal, slag and fly ash were measured as 108, 113 and 50 Bq kg{sup -1}, respectively. The mean {sup 40}K activity concentrations in coal, slag and fly ash were found to be 366, 381 and 204 Bq kg{sup -1}, respectively. The potential radiological hazards associated to these materials were evaluated by calculating the radium equivalent activity (Ra{sub eq}), the air absorbed gamma dose rate (D), the annual effective dose rate (AED), the external hazard index (H{sub ex}) and internal hazard index (H{sub in}) and compared with the internationally accepted or reference values. The mean Ra{sub eq} values of the coal, fly ash and slag samples were lower than the recommended maximum values 370 Bq kg{sup -1} by the Organization for Economic Cooperation and Development (OECD). The overall mean outdoor terrestrial gamma air absorbed dose rate in coal, fly ash and slag samples are 119, 129 and 62 nGy h{sup -1} and the corresponding outdoor annual effective doses are 0.60, 0.32 and 0.64 mSv y{sup -1}, which is higher than the worldwide average (0.07 mSv y{sup -1}), respectively. Moreover, the enrichment factors relative to the input coal are calculated for the radionuclide contents observed. Calculated enrichment factor values for {sup 226}Ra and {sup 232}Th were found 1.14 and 1.01, respectively. (orig.)

  12. A large depth of field LIBS measuring system for elemental analysis of moving samples of raw coal

    Science.gov (United States)

    Redoglio, D.; Golinelli, E.; Musazzi, S.; Perini, U.; Barberis, F.

    2016-02-01

    We present preliminary results of laboratory tests carried out on moving samples of coal by means of an innovative LIBS system with a large depth of field. The measuring system has been conceived to operate on line in a coal fired power plant. To duplicate at laboratory level the real situation, the coal samples are sequentially positioned under the measuring head by means of a translation/rotation unit that allows reproducing the behavior of the raw coal transported by a conveyor belt. Experimental results show that both carbon and hydrogen concentration as well as the content of some inorganic components (Al, Ca, Fe, Si) can be evaluated with good accuracy.

  13. Beneficial rhizobacteria

    DEFF Research Database (Denmark)

    Michelsen, Charlotte Frydenlund

    , a number of beneficial fungal-inhibiting bacteria were isolated from a Rhizoctonia solani suppressive potato soil in Inneruulalik, South Greenland. Especially one bacterium, Pseudomonas fluorescens In5, showed high antifungal activity against ascomycetes, basidiomycetes, and oomycetes, and it was...... able to protect tomato seedlings against R. solani infection. Various molecular and biochemical methods, such as PCR and sequence analysis, genome mining, gene knock-out, heterologous recombination, TLC and HPLC analyses were used in order to assess the antifungal mechanisms of P. fluorescens In5. In...... addition, the fairly new technology, Matrix Assisted Laser Desorption/Ionization-Time Of Flight Imaging Mass Spectrometry (MALDI-TOF IMS) combined with genome mining were conducted to detect, identify and characterize antifungal compounds produced by P. fluorescens In5. Novel bioactive compounds from P...

  14. Effect of heating rate on thermal properties and kinetics of raw and cleaned coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Ozbas, K.E.; Hicyilmaz, C.; Kok, M.V. [Middle East Technical University, Ankara (Turkey)

    2003-01-01

    In this article, thermogravimetry (TG/DTG) was used to determine the effect of heating rate on the thermal properties and kinetics of raw and cleaned coal samples from Soma, Tuncbilek, and Afsin Elbistan regions. TG/DTG experiments were carried out at 4 different heating rates (5, 10, 15, and 20{sup o}{sup o}C/min). Generally, for all of the samples higher peak and burnout temperatures were measured with an increasing heating rate. Kinetic parameters of the samples were determined using an Arrhenius-type kinetic model, and it was observed that activation energies of all the samples were affected inversely when the heating rate was increased.

  15. Sampling and preparation of air pollutants at the Coal Paiton Power Plant area Probolinggo

    International Nuclear Information System (INIS)

    Sampling has been conducted on April 8 th to 18 th, 2012 at the plant area of Paiton Coal Power Plant using e-sampler for particulated matter PM-2,5 and PM-10, high volume air sampler for total suspended particulate (TSP) at the three sampling locations as the representative pollution. Filter before and after sampling was weighed and extremely guarded contamination. Air filters stored in desiccator filter for 24 hours. Determination of concentration of ambient air pollutants conducted by gravimetric method derived from a reduction in weight the samples on the filter PM-2,5; PM-10 and TSP to the weight of the empty filter. (author)

  16. Aerosol sampling of an experimental stirred-bed Lurgi coal gasifier

    International Nuclear Information System (INIS)

    An aerosol sampling system has been designed, constructed and used to sample process streams of a low Btu coal gasifier. The system withdrew a sample of the gas from the process stream of the gasifier, cooled and diluted the gas immediately with nitrogen and transported the resulting aerosol to a sampling chamber. A number of aerosol sampling instruments were employed to sample the aerosol. Excess sample was pulled through a chamber, subjected to cleanup and exhausted from the system. The overall system configuration was designed to provide samples of respirable-sized particles (approximately equal to 10 μm). Non-size-selective samples for determination of bulk aerosol properties were collected using filters. Cascade impactors were used to obtain size-selected samples for determination of aerosol properties as a function of aerodynamic size. The Lovelace Aerosol Particle Separator was used to obtain size-differentiated samples for electron microscopy as well as to obtain aerodynamically sized particles for determination of effective particle densities. Sampling point-to-plane electrostatic precipitators were used to deposit aerosol material directly onto scanning electron microscope stubs and transmission electron grids. Finally, Tenax-GC was used to obtain vapor-phase samples of hydrocarbons in the aerosol. In a collaborative program with the Morgantown Energy Research Center, two locations in the process stream of a low Btu coal gasification unit have been sampled with this system. The aerosol produced from clean gas was found to be smaller in diameter than that produced from the raw gas. Examination of individual particles by scanning and transmission microscopy revealed differences in particle morphology between the two aerosols

  17. A simple decomposition method using phosphate flux for the determination of niobium and tantalum in carbonatite samples and its beneficiation products by ICP-OES

    International Nuclear Information System (INIS)

    A simple method for the decomposition of carbonatite samples and its beneficiation products for the determination of Nb and Ta by ICP-OES is described. Samples containing higher concentrations of analyte are decomposed by fusion with phosphate flux (1:1 mixture of sodium di-hydrogen phosphate and di-sodium hydrogen phosphate) in a platinum crucible. The melt is dissolved in distilled water for the analysis by ICP-OES. For low concentrations of the analyte method was suitably modified to reduced salt content and the same method is suitable for higher concentrations also. The RSD of the method is 3% and the results of this method matched well with other digestion techniques. (author)

  18. Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

    1982-06-01

    To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

  19. Molecular beam mass spectrometric sampling of minor species from coal dust-air flames

    International Nuclear Information System (INIS)

    It has been demonstrated that unaugmented, unconfined, premixed coal dust-air flames can be stabilized on small conical or flat, Meeker type burners. Since these flames are laminar, they can be used to study the kinetics of various processes in coal combustion and related areas such as understanding mechanisms of fireside corrosion and of flame and explosive inhibition. Some of the current work with these flames is directed toward identification and measurement of minor alkali metal and other species responsible for fireside corrosion. In order to make these measurements, molecular beam mass spectrometric sampling techniques have been adpated for use with these heterogeneous flames. In this paper, the equipment and techniques used are reviewed and some preliminary results presented

  20. Analysis and Sources of Polycyclic Aromatic Hydrocarbons in Soil and Plant Samples of a Coal Mining Area in Nigeria.

    Science.gov (United States)

    Ugwu, K E; Ukoha, P O

    2016-03-01

    This study analysed coal, plant and soil samples collected from the vicinity of Okobo coal mine in Nigeria for Polycyclic aromatic hydrocarbons (PAHs) and evaluated the sources of the PAH contamination in the environmental samples. The environmental samples were extracted by sonication using a ternary solvent system and analysed for 16 PAHs by gas chromatography-mass spectrometry (GC-MS). The results of the analysis of the samples identified some of the target PAHs. The ranges of total concentrations (in mg/kg) of PAHs in the coal, plant and soil samples were, 0.00-0.04, 0.00-0.16 and 0.00-0.01 respectively. The evaluation of the results of the PAH analysis of the environmental samples using diagnostic ratios revealed that the PAHs in the soil samples were mainly of petrogenic origin, while those in plant samples indicated mixture of petrogenic and pyrolytic origins. PMID:26758607

  1. Relationships between Organic Material and Thermal Maturity Derived from Coal and C-Shale Samples

    Directory of Open Access Journals (Sweden)

    Louis L. Tsai

    2008-01-01

    Full Text Available The purpose of this study is to characterize the relationship between organic material and thermal maturity during the process of evaluation of hydrocarbon potential. Samples studied include Miocene high volatile bituminous coal and coaly shale collected from outcrops and exploration wells in Hsinchu-Miaoli area, NW Taiwan, density centrifuge separated macerals, bituminous coal and anthracite from China, in addition toWoodford and Green River oil shale from the United States. Maceral composition analysis, elemental analysis, vitrinite reflectance measurement and Rock-Eval pyrolysis were performed for evaluation. The results of study show that: 1 coal samples from the Shiti Formation (middle Miocene exhibit more vitrinite and less mineral matter contents than samples from the Nanchuang Formation (upper Miocene; H is increased in exinite-enriched maceral mixtures with density < 1.25 g cm-3, after density centrifuge separation. 2 A positive linear correlation between Tmax and Ro illustrates both Rock-Eval pyrolysis and vitrinite reflectance can be used as indicators of thermal maturity. 3 From the plot of H/C ratio vs. vitrinite reflectance, even though the depositional environments were different in Taiwan and China, their organic micelles exhibit a similar trend in the process of thermal maturation. As a whole, the curve has a turning point at Ro = 0.5 and H/C = 0.1 (atomic ratio 1.2 in this study. 4 Arather good correlation between S2 and TOC of samples studied indicates the contribution of S2 from TOC. 5 The highest HI occurred in certain maturities (Tmax and Ro of samples studied, and not in the stages of less maturity or over-maturity. 6 Two different linear trends were observed in the cross plot of S1 vs. S2. Field outcropped shale or C-shale exhibits a steeper slope compared to that of coal samples which can be attributed to the compositional difference in their organic material. 7 Arather strong positive correlation for H vs. S2

  2. Discussion on Coal Slime Sampling Method%浅谈煤泥的采制样方法

    Institute of Scientific and Technical Information of China (English)

    纪长顺

    2014-01-01

    随着煤炭交易市场的不断发展,劣质煤质量检测工作的重要性日益显现出来,尤其是煤泥越来越受到煤炭生产企业和用户的重视。如何通过正确的采制样工作来合理评价煤泥的质量,得到了供需双方与煤炭检验单位更多的关注。文章从煤泥的概念和加强煤泥采制样的意义入手,结合本人长期以来的煤泥采制样工作经历,以对淮南地区贸易煤泥采制样工作的实践为例,分析并提出了煤泥采制样工作的一般操作方法。%With the continuous development of coal trading market ,the importance of coal slime quality detection is becoming more and more apparent for the coal production enterprises and the users .The supplying and pur-chasing parties and coal inspection units pay more attention to reasonable evaluation of the slime quality by the correct sampling .Taking the coal slime sampling in Huainan area as examples ,the author presents the general operating methods of coal slime sampling from the concept of the coal slime and the significance of coal slime sampling ,combining with the author's work experience of coal slime sampling .

  3. Mass absorption efficiency of elemental carbon for source samples from residential biomass and coal combustions

    Science.gov (United States)

    Shen, Guofeng; Chen, Yuanchen; Wei, Siye; Fu, Xiaofang; Zhu, Ying; Tao, Shu

    2013-11-01

    Optical properties of particulate matter are of growing concern due to their complex effects on atmospheric visibility and local/regional climate change. In this study, mass absorption efficiency (MAE) of elemental carbon (EC) was measured for source emission samples obtained from the residential combustions of solid fuels using a thermal-optical carbon analyzer. For source samples from residential wood, crop straw, biomass pellet and coal combustions, MAE of EC measured at 650 nm, were 3.1 (2.4-3.7 as 95% Confidence Interval), 6.6 (5.5-7.6), 9.5 (6.7-12), and 7.9 (4.8-11) m2 g-1, respectively. MAE of EC for source sample from the wood combustion was significantly lower than those for the other fuels, and MAE of EC for coal briquette appeared to be different from that of raw chunk. MAE values of the investigated source emission samples were found to correlate with OC/EC ratio, and a significantly positive correlation was found between MAE and particle-bound polycyclic aromatic hydrocarbons (pPAHs), though pPAHs contributed a relatively small fraction of OC.

  4. Introduction of new personal dust sampling methodology and legislation into the UK coal mining industry

    Energy Technology Data Exchange (ETDEWEB)

    Mark, D.; Gilmour, G.; Hunneyball, S.; Jobling, S.; Scarisbrick, D.; West, N. [Health and Safety Laboratory, Buxton (United Kingdom)

    2005-07-01

    At the 2003 SIMRI conference in Johannesburg, South Africa, the authors reported on the inadequacies of the CIP10 personal dust sampler when used in the conditions found in UK coalmines. Considerable progress has been made since then. An alternative personal dust sampler has been modified after laboratory investigations and has been comprehensively tested in a programme of sampling in underground coal mines. The tests highlighted a number of user and operational problems that were solved and provided a database of personal exposure values which were used to select future exposure limit values for respirable coal dust and respirable crystalline silica. In parallel, proposals for regulations and an associated approved code of practice were developed by the Health and Safety Executive through a working group comprising representatives from the Mines Inspectorate, mining companies, trade unions, the laboratory providing the sampling and analysis service and the occupational health service providers. This paper describes the processes carried out to facilitate the introduction of personal sampling of airborne dust in UK coalmines and outlines the new legislative structures. 7 refs., 3 figs., 2 tabs.

  5. Modelling Gas Diffusion from Breaking Coal Samples with the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Dan-Ling Lin

    2015-01-01

    Full Text Available Particle scale diffusion is implemented in the discrete element code, Esys-Particle. We focus on the question of how to calibrate the particle scale diffusion coefficient. For the regular 2D packing, theoretical relation between micro- and macrodiffusion coefficients is derived. This relation is then verified in several numerical tests where the macroscopic diffusion coefficient is determined numerically based on the half-time of a desorption scheme. To further test the coupled model, we simulate the diffusion and desorption in the circular sample. The numerical results match the analytical solution very well. An example of gas diffusion and desorption during sample crushing and fragmenting is given at the last. The current approach is the first step towards a realistic and comprehensive modelling of coal and gas outbursts.

  6. Chemical variability of groundwater samples collected from a coal seam gas exploration well, Maramarua, New Zealand.

    Science.gov (United States)

    Taulis, Mauricio; Milke, Mark

    2013-03-01

    A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO(2)) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO(2) degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the wellhead and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180 °C is consistently implemented. PMID:23199455

  7. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Moessbauer spectroscopic study

    International Nuclear Information System (INIS)

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32-1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26-0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20-60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Moessbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Moessbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less difference among samples stored

  8. Technical and economic aspects of brown coal gasification and liquefaction

    International Nuclear Information System (INIS)

    A number of gasification and liquefaction processes for Rhenish brown coal are investigated along with the technical and economic aspects of coal beneficiation. The status of coal beneficiation and the major R + D activities are reviewed. (orig.)

  9. CFBC evaluation of fuels processed from Illinois coals. Technical report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Rajan, S. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Mechanical Engineering and Energy Processes

    1992-10-01

    The combustion and emissions properties of (a) flotation slurry fuel beneficiated from coal fines at various stages of the cleaning process and (b) coal-sorbent pellets made from the flotation concentrate of the same beneficiation process using corn starch as binder is being investigated in a 4-inch internal diameter circulating fluidized bed combustor (CFBC). Combustion data such as SO{sub 2}, NO{sub x} emissions, combustion efficiency and ash mineral matter analyses from these fuels are compared with similar parameters from a reference coal burnt in the same fluidized bed combustor. In the last quarter, the CFBC was brought on line and tests were performed on standard coal No. 3 from the Illinois Basin Coal Sample Program (IBCSP). During this quarter, it was decided, that a more meaningful comparison could be obtained if, instead of using the IBCSP No. 3 coal as a standard, the run-of-mine Illinois No. 5 coal from the Kerr-McGee Galatia plant could be used as the reference coal for purposes of comparing the combustion and emissions performance, since the slurry and pellet fuels mentioned in (a) and (b) above were processed from fines recovered form this same Illinois No. 5 seam coal. Accordingly, run-of-the mine Illinois No. 5 coal from the Galatia plant were obtained, riffled and sieved to {minus}14+18 size for the combustion tests. Preliminary combustion tests have been made in the CFBC with this new coal. In preparation for the slurry tests, the moisture content of the beneficiated slurry samples was determined. Proximate and ultimate analyses of all the coal samples were performed. Using a Leeds and Northrup Model 7995-10 Microtrek particle size analyzer, the size distributions of the coal in the three slurry samples were determined. The mineral matter content of the coal in the three slurry samples and the Illinois No. 5 seam coal were investigated using energy dispersive x-ray analysis.

  10. SAMPLING, ANALYSIS, AND PROPERTIES OF PRIMARY PM-2.5: APPLICATION TO COAL-FIRED UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Eric Lipsky; Charles Stainer; Natalie Anderson; Satoshi Takahama; Sarah Rees

    2003-02-01

    A dilution sampler was used to examine the effects of dilution ratio and residence time on the particulate emissions from a pilot-scale pulverized coal combustor. Measurements include the particle size distribution from 0.003 to 2.5 {micro}m, PM{sub 2.5} mass emission rate and PM2.5 composition (OC/EC, major ions, and elemental). Hot filter samples were also collected simultaneously in order to compare the dilution sampler measurement with standard stack sampling methodologies such as EPA Method 5. Measurements were made both before and after the bag-house, the particle control device used on the coal combustor. Measurements were made with three different coal types and a coal-biomass blend. The residence time and dilution ratio do not influence the PM{sub 2.5} mass emission rate, but have a significant effect on the size distribution and total number emissions. Measurements made before the bag-house showed increasing the residence time dramatically decreases the total particle number concentration, and shifts the particle mass to larger sizes. The effects of residence time can be explained quantitatively by the coagulation of the emitted particles. Measurements made after the bag-house were not affected by coagulation due to the lower concentration of particles. Nucleation of sulfuric acid vapor within the dilution was an important source of ultrafine particles. This nucleation is strongly a function of dilution ratio because of the competition between condensation and nucleation. At low dilution ratios condensation dominates and little nucleation is observed; increasing the dilution ratio promotes nucleation because of the corresponding decrease in available surface area per unit volume for condensation. No nucleation was observed after the bag house where conditions greatly favor nucleation over condensation; we suspect that the bag house removed the SO{sub 3} in the flue gas. Exhaust SO{sub 3} levels were not measured during these experiments. Dilution caused

  11. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  12. Evaluation of two radiochemical procedures for the determination of uranium and thorium isotopes in coal samples

    International Nuclear Information System (INIS)

    Two procedures are presented for the sequential determination of uranium and thorium isotopes in coals. They are based on acid leaching on a hot plate, and on acid digestion in closed vessels using microwave irradiation. Both were applied to the analysis of International Atomic Energy Agency (IAEA) and National Institute of Standards and Technology (NIST) reference materials, and to the study of coals with different ranks. The greatest recoveries were obtained with the acid digestion method. This method was more effective than the leaching method for the extraction of the uranium isotopes in coals. The effectiveness of the thorium isotopes extraction was similar in the two methods. (author)

  13. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  14. Determination of PAHs in combustion-related samples and in SRM 1597, complex mixture of PAHs from coal tar

    Energy Technology Data Exchange (ETDEWEB)

    Poster, D.L.; De Alda, M.J.L.; Wise, S.A.; Chuang, J.C.; Mumford, J.L. [National Institute of Standards and Technology, Gaithersburg, MD (USA). Division of Analytical Chemistry

    2000-07-01

    Three types of combustion sample extracts (smokeless coal, smoky coal, and wood), were analyzed for a range of polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic sulfur heterocycles (PASH). Standard Reference Material (SRM) 1597 (a complex mixture of PAHs from coal tar), was also analyzed as a control sample and for the determination of a larger number of PAHs relative to those determined previously Target analytes included many alkyl-substituted PAHs such as dimethylphenanthrenes, methylfluoranthenes, and methylpyrenes. The analytical methods included sample clean-up and the selection of specific stationary phases to accomplish unique separations of PAHs. Clean-up involved the use of normal-phase liquid chromatographic isolation of PAHs based on the number of aromatic carbons and a total PAH fraction. PAHs in the resulting fractions were separated by gas chromatography using two stationary phases with different selectivities and analyzed using mass spectrometry. These methods are discussed and results are presented with an emphasis on the relative concentrations and distribution of PAHs in the combustion samples.

  15. Decommissioning samples from the Ft. Lewis, WA, solvent refined coal pilot plant: chemical analysis and biological testing

    Energy Technology Data Exchange (ETDEWEB)

    Weimer, W.C.; Wright, C.W.

    1985-10-01

    This report presents the results from chemical analyses and limited biological assays of three sets of samples from the Ft. Lewis, WA solvent refined coal (SRC) pilot plant. The samples were collected during the process of decommissioning this facility. Chemical composition was determined for chemical class fractions of the samples by using high-resolution gas chromatography (GC), high-resolution GC/mass spectrometry (MS) and high-resolution MS. Biological activity was measuring using both the histidine reversion microbial mutagenicity assay with Salmonella typhimurium, TA98 and an initiation/promotion mouse-skin tumorigenicity assay. 19 refs., 7 figs., 27 tabs.

  16. Comparison of Soxhlet and Shake Extraction of Polycyclic Aromatic Hydrocarbons from Coal Tar Polluted Soils Sampled in the Field

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Holst, Helle; Christensen, Thomas Højlund

    1994-01-01

    This study compares three extraction methods for PAHs in coal tar polluted soil: 3-times repeated shaking of the soil with dichloromethane-methanol (1:1), Soxhlet extraction with dichloromethane, and Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol. The...... extraction efficiencies were determined for ten selected PAHs in triplicate samples of six soils sampled at former gasworks sites. The samples covered a wide range of PAH concentrations, from 0.6 to 397 mg/kg soil. Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol, in...

  17. Water pollution profile of coal washeries

    International Nuclear Information System (INIS)

    Environmental problems in coal mining industry is increased with the demand of good quality of coal through coal washing/beneficiation activities. The coal washeries in general have been identified as one of the serious sources of water pollution particularly of Damodar river. Coal washeries though are designed on close water circuit, most of these however, fail to operate on close water circuit thus resulting in enormous quantity of effluents containing coal fines as well. This apart from posing serious water pollution problem also results into economic losses. The present study attempts to provide an insight into water pollution profile from coal washeries in Jharia coalfield. Various process parameters/unit operations in coal washing are also described. Effluents from various selected coal washeries of Jharia coalfield are sampled and analysed over a period of six months during 1993. Suspended solids, oil and grease and COD in the washery effluents are identified as the three major water quality parameters causing lots of concern for Damodar river pollution. Reasons for unavoidable discharge of effluents containing coal fines are also described. (author). 14 refs., 4 tabs., 2 figs

  18. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    Energy Technology Data Exchange (ETDEWEB)

    Barrez, F.; Mania, J. [Polytech' Lille, Dept. Genie Civil, UMR CNRS 8107 (LML), 59 - Villeneuve d' Ascq (France); Mansy, J.L. [Lille-1 Univ., Lab. de Sedimentologie et de Geodynamique, UMR CNRS 8110 (PBDS), 59 - Villeneuve d' Ascq (France); Piwakowski, B. [Ecole Centrale de Lille, Groupe Electronique Acoustique IEMN-DOAE, UMR CNRS 8520, 59 - Villeneuve d' Ascq (France)

    2005-07-01

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  19. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    International Nuclear Information System (INIS)

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  20. Application of coal petrography to the evaluation of magnetically separated dry crushed coals

    Energy Technology Data Exchange (ETDEWEB)

    Harris, L.A.; Hise, E.C.

    1981-01-01

    In the present study the open gradient magnetic separation method has been used to beneficiate the -30 + 100 mesh fraction of two high volatile bituminous coals. The evaluation of the effectiveness of the magnetic separation for cleaning these coals is the subject of this paper. Coal petrography in combination with scanning electron microscopy and x-ray diffractometry were used to characterize the magnetically separated coal fractions. These analyses revealed that the majority of the pyrite and non-pyrite minerals were concentrated in the positive magnetic susceptibility fractions. The bulk of the starting samples (approx. 80 weight percent) were located in the negative magnetic susceptibility fractions and showed significant reductions in pyrite and non-pyritic minerals. The magnetic separation appears to effectively split the samples into relatively clean coal and refuse.

  1. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    International Nuclear Information System (INIS)

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration

  2. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  3. A Procedure for the supercritical fluid extraction of coal samples, with subsequent analysis of extracted hydrocarbons

    Science.gov (United States)

    Kolak, Jonathan J.

    2006-01-01

    Introduction: This report provides a detailed, step-by-step procedure for conducting extractions with supercritical carbon dioxide (CO2) using the ISCO SFX220 supercritical fluid extraction system. Protocols for the subsequent separation and analysis of extracted hydrocarbons are also included in this report. These procedures were developed under the auspices of the project 'Assessment of Geologic Reservoirs for Carbon Dioxide Sequestration' (see http://pubs.usgs.gov/fs/fs026-03/fs026-03.pdf) to investigate possible environmental ramifications associated with CO2 storage (sequestration) in geologic reservoirs, such as deep (~1 km below land surface) coal beds. Supercritical CO2 has been used previously to extract contaminants from geologic matrices. Pressure-temperature conditions within deep coal beds may render CO2 supercritical. In this context, the ability of supercritical CO2 to extract contaminants from geologic materials may serve to mobilize noxious compounds from coal, possibly complicating storage efforts. There currently exists little information on the physicochemical interactions between supercritical CO2 and coal in this setting. The procedures described herein were developed to improve the understanding of these interactions and provide insight into the fate of CO2 and contaminants during simulated CO2 injections.

  4. Beneficial uses of radiation

    International Nuclear Information System (INIS)

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind

  5. Clean coal technology

    International Nuclear Information System (INIS)

    Coal is the major source of energy in India at present as well as in foreseeable future. With gradual deterioration in coal quality as well as increased awareness on environmental aspects, clean coal technologies have to be adopted by major coal consuming sectors. The probable routes of restricting environmental degradation in power generation include beneficiation of power coal for maintaining consistency in coal supply and reducing pollutant emission, adoption of fluidized bed combustion on a larger scale, adoption of technologies for controlling SOx and NOx emission during and after combustion, adoption of larger capacity and improved and non-recovery type coke ovens

  6. Measurement techniques for carbon dioxide sorption capacity on various coal samples: critical review

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Underground carbon sequestration is proposed as a geologic disposal technique for the long-term storage of CO2 emissions to mitigate climate change and air pollution. Coal bed seams have large CO2 adsorption capacity, long time CO2 trapping and extra enhanced coal-bed methane recovery (CBM). However, CO2 sorption capacity is one of significant steps required to be determined accurately in any feasibility evaluation of carbon sequestration. Hence, in lab scale, there are three methods for CO2 adsorption capacity measurements namely manometric/volumetric, gravimetric and new capsule techniques for gas sorption on variety of sorbents. The manometric and volumetric methods require accurate determination of cell and void volumes and suitable equation of state (EoS). The gravimetric method requires a very accurate sensitive balance and less buoyancy effect and it is the best technique for small amounts (milligrams) of sorbents and the adsorption equilibrium can be mentored. Among all gas adsorption measurement techniques, the newly developed method “capsule method” exhibits the highest CO2 adsorption capacity on Polish coal by 4.08 mmol/g because capsule method that directly measures CO2 uptake of solid coal matrix cylinders, without the application of the equation of state (EoS) for CO2 or volumetric corrections. The main advantage of capsule method is that it is independent of any Equation of State (EoS), and it has no volumetric effects or impurities distort the shape of the gas adsorption isotherm. The disadvantage of capsule method is time-consuming and it is not easy to implement.

  7. Multi-element analysis of sediments, coal samples and gemstones by INAA

    International Nuclear Information System (INIS)

    Instrumental Neutron Activation Analysis (INAA) is one of the best analytical methods for the determination of most of the Rare Earth Elements (REEs) and other trace elements. INAA is more effective for trace elemental analysis in the presence of other elements in varying matrices. Multi elemental analysis of the sediments of Gosthani River Estuary, Balacheruvu Backwaters, Kothagudem coal deposits and Chrysoberyl, chrysoberyl cat's eye and Alexandrite gemstones were carries out by INAA. (author)

  8. Dynamics of beneficial epidemics

    CERN Document Server

    Berdahl, Andrew; De Bacco, Caterina; Dumas, Marion; Ferdinand, Vanessa; Grochow, Joshua A; Hébert-Dufresne, Laurent; Kallus, Yoav; Kempes, Christopher P; Kolchinsky, Artemy; Larremore, Daniel B; Libby, Eric; Power, Eleanor A; Stern, Caitlin A; Tracey, Brendan

    2016-01-01

    Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of beneficial biological and social epidemics differ from those of detrimental epidemics? We investigate this question using three theoretical approaches as well as an empirical analysis of concept propagation. First, in evolutionary models, we show that a beneficial horizontally-transmissible element, such as viral DNA, spreads super-exponentially through a population, substantially more quickly than a beneficial mutation. Second, in an epidemiological social network approach, we show that infections that cause increased connectivity lead to faster-than-exponential fixation in the population. Third, in a sociological model with strategic rewiring, we find that preferences for increased global infection accelerate spread and produce super-exponential fixation rates,...

  9. Regular drinking may strengthen the beneficial influence of social support on depression: Findings from a representative Israeli sample during a period of war and terrorism

    Science.gov (United States)

    Kane, Jeremy C.; Rapaport, Carmit; Zalta, Alyson K.; Canetti, Daphna; Hobfoll, Stevan E.; Hall, Brian J.

    2016-01-01

    Background Social support is consistently associated with reduced risk of depression. Few studies have investigated how this relationship may be modified by alcohol use, the effects of which may be particularly relevant in traumatized populations in which rates of alcohol use are known to be high. Methods In 2008 a representative sample of 1622 Jewish and Palestinian citizens in Israel were interviewed by phone at two time points during a period of ongoing terrorism and war threat. Two multivariable mixed effects regression models were estimated to measure the longitudinal association of social support from family and friends on depression symptoms. Three-way interaction terms between social support, alcohol use and time were entered into the models to test for effect modification. Results Findings indicated that increased family social support was associated with less depression symptomatology (p=<.01); this relationship was modified by alcohol use and time (p=<.01). Social support from friends was also associated with fewer depression symptoms (p=<.01) and this relationship was modified by alcohol use and time as well (p=<.01). Stratified analyses in both models revealed that the effect of social support was stronger for those who drank alcohol regularly than those who did not drink or drank rarely. Conclusions These findings suggest that social support is a more important protective factor for depression among regular drinkers than among those who do not drink or drink rarely in the context of political violence. Additional research is warranted to determine whether these findings are stable in other populations and settings. PMID:24838033

  10. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    Science.gov (United States)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  11. Measurement of uranium and thorium in coal fly ash and bottom ash samples from a thermal power plant by using a high resolution semiconductor detector

    International Nuclear Information System (INIS)

    A low background γ-ray detection system has been constructed for measuring the natural radioactivity in coal samples. It is based on a high-purity Ge detector mounted within a massive lead shield which reduces the normal background level by a factor of about 20. This makes it possible to measure the low intensity γ-rays from the natural radioactivity present in the samples. Using this equipment uranium and thorium concentrations in coal fly ash and bottom ash samples from a coal fired power plant located at Bathinda, India have been measured. The uranium activity found in the samples is within the range of concentrations observed in other countries while the thorium activity is found to be somewhat higher. (Author)

  12. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Science.gov (United States)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R.; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B.

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%).

  13. Thiophenic Sulfur Compounds Released During Coal Pyrolysis.

    Science.gov (United States)

    Xing, Mengwen; Kong, Jiao; Dong, Jie; Jiao, Haili; Li, Fan

    2013-06-01

    Thiophenic sulfur compounds are released during coal gasification, carbonization, and combustion. Previous studies indicate that thiophenic sulfur compounds degrade very slowly in the environment, and are more carcinogenic than polycyclic aromatic hydrocarbons and nitrogenous compounds. Therefore, it is very important to study the principle of thiophenic sulfur compounds during coal conversion, in order to control their emission and promote clean coal utilization. To realize this goal and understand the formation mechanism of thiophenic sulfur compounds, this study focused on the release behavior of thiophenic sulfur compounds during coal pyrolysis, which is an important phase for all coal thermal conversion processes. The pyrolyzer (CDS-5250) and gas chromatography-mass spectrometry (Focus GC-DSQII) were used to analyze thiophenic sulfur compounds in situ. Several coals with different coal ranks and sulfur contents were chosen as experimental samples, and thiophenic sulfur compounds of the gas produced during pyrolysis under different temperatures and heating rates were investigated. Levels of benzothiophene and dibenzothiophene were obtained during pyrolysis at temperatures ranging from 200°C to 1300°C, and heating rates ranging from 6°C/ms to 14°C/ms and 6°C/s to 14°C/s. Moreover, the relationship between the total amount of benzothiophene and dibenzothiophene released during coal pyrolysis and the organic sulfur content in coal was also discussed. This study is beneficial for understanding the formation and control of thiophenic sulfur compounds, since it provides a series of significant results that show the impact that operation conditions and organic sulfur content in coal have on the amount and species of thiophenic sulfur compounds produced during coal pyrolysis. PMID:23781126

  14. Clean coal technologies and future prospects for coal

    International Nuclear Information System (INIS)

    The purpose of this paper is to analyze the future potential of coal in the US economy during the next 25 years in light of clean coal technologies. According to official US Department of Energy (DOE) designations, these technologies pertain only to the beneficiation, transformation, combustion, and postcombustion clean-up stages of the coal cycle; no coal mining or coal transport technologies are included. In general, clean coal technologies offer the prospect of mitigating environmental side-effects of coal utilization, primarily through improved operating efficiencies and lowered costs of air emission controls. If they prove successful, coal users will be able to meet more stringent environmental regulations at little or no additional cost. In assessing the influence of clean coal technologies on coal demand, we focus on the economics of three crucial areas: their development, their deployment, and coal utilization implications of their operation

  15. Determination of sulfur in coal using direct solid sampling and high-resolution continuum source molecular absorption spectrometry of the CS molecule in a graphite furnace.

    Science.gov (United States)

    Mior, Renata; Morés, Silvane; Welz, Bernhard; Carasek, Eduardo; de Andrade, Jailson B

    2013-03-15

    An analytical method has been developed for the determination of sulfur in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry (HR-CS GF MAS). The molecular absorbance of the carbon monosulfide molecule (CS), which is formed in the vaporization stage, has been measured using the rotational line at 258.033 nm. Several chemical modifiers were tested and Ru, applied as permanent modifier was chosen, because it exhibited the best performance. The optimum pyrolysis and vaporization temperatures were found to be 500 °C and 2200 °C, respectively. Aqueous standard solutions prepared from l-cysteine were used for calibration, as the linear regression obtained for this standard was not significantly different from that for a certified coal reference material (CRM) according to a Student t-test. The results obtained for sulfur in three coal CRM and six additional samples also showed no significant difference for the two calibration techniques according to the same statistical test. The sulfur concentration in the coal samples was found between 3.5 mg g(-1) and 33.7 mg g(-1) with a typical repeatability around 10%. The limit of detection for the direct analysis of solid coal samples was better than 0.1 μg S. PMID:23598139

  16. High-concentration coal-water slurry from Indian coals using newly developed additives

    Energy Technology Data Exchange (ETDEWEB)

    Tiwari, Kaushal K.; Basu, Sibendra K.; Bit, Kumaresh C.; Banerjee, Somnath; Mishra, Kamlesh K. [Central Fuel Research Institute, P.O. FRI-828108, Dhanbad (India)

    2004-01-15

    Coal-water slurry (CWS) holds promise to offer a long-term alternative to fuel oil, and also it is being conceived as an attractive fuel for power generation industry in India. The essential requirements of the CWS technology, viz., the additive package, concentration of additives, particle size distribution (PSD) of coal, solids loading, methodology for CWS formulation and its rheological properties, have been discussed and reported here. The effect of the two newly developed anionic additives in the formulation of CWS has been studied. The basic parameters were established taking beneficiated Ledo coal samples with 9.7% ash content. Ball milling of the coal samples in a wet grinding process could produce particle size distributions most suited for highly loaded CWS. Coal loadings to the extent of 70% in the CWS have been achieved using a concentration of 0.8 wt.% (on coal charge) of the naphthalene-based additive referred to as 'P'. Using 0.9 wt.% of the naphthalene-toluene-based additive denoted as 'R', a coal loading of 69% has been achieved. The viscosities of the slurries were found to be below 1000 mPa s. The shelf lives of slurries were found to be 22 and 20 days with the use of additives P and R, respectively, in the CWS formulation. The two additives functioned well in CWS formulation with Sirka coal having relatively higher ash content (14.4%). Using the specified concentration of the additives P and R, the solid loadings of 67% and 65%, respectively, could be obtained under the established parameters. The lower values of solids loading from Sirka coal than that from Ledo coal in CWS formulation may be attributed to the higher percentages of oxygen-containing functional groups (O{sub OH} and O{sub COOH}), ash content and higher O/C ratio of Sirka coal.

  17. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  18. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  19. Beneficial rhizosphere pseudomonads

    OpenAIRE

    Lugtenberg, B; Kamilova, F.

    2008-01-01

    Among the many bacteria present on and around the root, Pseudomonas bacteria are (among) the best root colonizers and therefore very suitable to apply for beneficial purposes. In this chapter, we discuss the possibilities to use such bacteria for the following purposes: fertilization of the plant, stimulation of plant growth and yield, reduction of plant stress, and reduction of plant diseases. This research was supported by numerous grants, especially from the Dutch Organization for scientif...

  20. Interlaboratory comparison of the determination of 226Ra and 228Ra in samples simulating coal mine water

    International Nuclear Information System (INIS)

    The aim of the experiment organized by the National Atomic Energy Agency of Poland, was to carry out an interlaboratory comparison on the determination of long-lived radium isotopes in waste waters from Polish coal mines. It was expected that the experiment would allow to evaluate the proficiency of the national participants, and to eliminate possible errors in their work. 9 participating laboratories have determined the concentrations of 226Ra and 228Ra (or only 226Ra) in 6 synthetic samples containing from 0 to 300 Bq/dm3 of each isotope. The results have been evaluated according to recent recommendations of IUPAC, ISO and AOAC. It is concluded that a significant majority of the results meet the proficiency criterium at the selected target accuracy. In some cases small systematic errors appear. Only a few laboratories meet a rigorous proficiency criterium. Analytical methods used for radium determination have also been evaluated. (author)

  1. Beneficiation of beach magnetite sand

    Directory of Open Access Journals (Sweden)

    Münevver TEL

    2016-06-01

    Full Text Available In this study, beneficiation of beach magnetite sand was investigated by applying high intensity dry magnetic separator. The effect of feed particle size, feed rate, roll rotation speed, induced magnetic field intensity, and separator knife angle on Fe grade and recovery of the magnetite concentrate were investigated. As a result of dry magnetic separation at about 750 Gauss magnetic field conducted with -0.212+0.106 mm size fraction under optimum conditions, a magnetite concentrate assaying 54.41% Fe was obtained with 63.46% recovery where the beach sand sample contained %48.41 Fe.

  2. Optimization of a Multi Gravity Separator to produce clean coal from Turkish lignite fine coal tailings

    Energy Technology Data Exchange (ETDEWEB)

    Selcuk Ozgen; Ozkan Malkoc; Ceyda Dogancik; Eyup Sabah; Filiz Oruc Sapci [Afyon Kocatepe University, Afyonkarahisar (Turkey). Department of Mining Engineering

    2011-04-15

    In this study, the beneficiation of two lignite tailings by Multi Gravity Separator (MGS) was investigated. The tailings samples from the Tuncbilek/Kutahya and Soma/Manisa regions have ash contents of 66.21% and 52.65%, respectively. Significant operational parameters of MGS such as solid ratio, drum speed, tilt angle, shaking amplitude, wash water rate, and feed rate were varied. Empirical equations for recovery and ash content were derived by a least squares method using Minitab 15. The equations, which are second-order response functions, were expressed as functions of the six operating parameters of MGS. The results showed that it is possible to produce a coal concentrate containing 22.83% ash with a recovery of 49.32% from Tuncbilek coal tailings, and a coal concentrate containing 22.89% ash with a recovery of 60.01% from Soma coal tailings. 27 refs., 6 figs., 5 tabs.

  3. Leaching Behavior of Selected Trace and Toxic Metals in Coal Fly Ash Samples Collected from Two Thermal Power Plants, India.

    Science.gov (United States)

    Sandeep, P; Sahu, S K; Kothai, P; Pandit, G G

    2016-09-01

    Studies on leaching behavior of metals associated with coal fly ash (FA) are of great concern because of possible contamination of the aquatic environment. In the present study, leaching behavior of metals (As, Se, Cr, Pb, V, Zn, etc.) in two different FA samples (FA1 and FA2) was investigated at various pH (2-12), temperatures of leachate solution and using TCLP. At pH 2, the highest leaching was observed for Fe (21.6 and 32.8 µg/g), whereas at pH 12, Arsenic was found to have the highest leaching (1.5 and 2.4 µg/g) in FA1 and FA2. Leachate solution temperature showed a positive effect on the metal's leachability. In TCLP, most of the metal's leachability was observed to be higher than that of batch leaching tests. The present study suggests that, leaching of As and Se from FA samples can moderately affect ground/surface water quality at the study locations. PMID:27372455

  4. Aliphatic and aromatic hydrocarbons in Candiota coal samples: novel series of bicyclic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, A.C.M.L.; Loureiro, M.R.B.; Cardoso, J.N. [Universidade Federal do Rio de Janeiro, Rio de Janeiro (Brazil). Inst. de Quimica

    1999-07-01

    Gas chromatography - mass spectrometry was used to analyse aliphatic and aromatic fractions obtained from nine samples taken from two different seams of five boreholes in the Candiota coalfield (Lower Permian). The occurrence of certain tetracyclic diterpenoids among the aliphatic hydrocarbons, and the tricyclic diterpenoids simonellite and retene in the aromatic hydrocarbon concentrates, suggest an important input from conifers to the sedimentary biomass. This may explain the origin of a novel series of saturated and aromatic bicyclic compounds detected in the extracts which may be structurally related to the same precursor, possibly a conifer resin-derived tricyclic diterpenoid.

  5. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Éderson R.; Castilho, Ivan N.B. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Gois, Jefferson S. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Borges, Daniel L.G. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g{sup −1} Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well. - Highlights: • Bromine has been determined in coal using direct solid sample analysis. • Calibration has been carried out against aqueous standard solutions. • The coal samples and the molecule-forming reagent have been separated in order to avoid interferences. • The results make possible to draw conclusions about the mechanisms of molecule formation.

  6. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    International Nuclear Information System (INIS)

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g−1 Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well. - Highlights: • Bromine has been determined in coal using direct solid sample analysis. • Calibration has been carried out against aqueous standard solutions. • The coal samples and the molecule-forming reagent have been separated in order to avoid interferences. • The results make possible to draw conclusions about the mechanisms of molecule formation

  7. Correlation between coal characteristics and methane adsorption on China's coals

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YUAN Jian; SONG Ji-yong; LENG Shu-wei

    2007-01-01

    It is highly important to investigate relationship between coal characteristics and methane adsorption on coal in the fields of coalbed methane recovery. Based on data examination of coal quality indexes collected from the literatures, regression equations for Langmuir adsorption constants, VL or VL/PL, and coal quality indexes for selected coal samples were developed with multiple linear regression of SPSS software according to the degree of coal metamorphosis. The regression equations built were tested with data collected from some literatures, and the influences of coal quality indexes on CH4 adsorption on coals were studied with investigation of regression equations, and the reasons of low accuracy to Langmuir constants calculated with regression equation for a few coal samples were investigated. The results show that the regression equations can be employed to predict Langmuir constants for methane adsorption isotherms on coals obtained using volumetric gas adsorption experiments, which are conducted at 30 ℃ on a wet or dried coal samples with less than 30% ash content in coal. The influence of same coal quality index with various coal rank or influence of various coal quality indexes for same coal rank on CH4 adsorption is not consistent. The regression equations have different accuracy to different coal rank, in which the VL equations supply better prediction accuracy for anthracite and higher prediction error for lower metamorphosis coal, and the PL prediction error with VL and VL/PL equations is lower to bituminous coal and higher to anthracite.

  8. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny. PMID:26933816

  9. Fractionation of coal extracts prior to hydrocracking: an attempt to link sample structure to conversion levels and catalyst fouling

    Energy Technology Data Exchange (ETDEWEB)

    Suelves, I.; Lazaro, M.-J.; Begon, V.; Morgan, T.J.; Herod, A.A.; Kandiyoti, R. [University of London, Imperial College, London (United Kingdom). Dept. of Chemical Engineering and Chemical Technology

    2001-10-01

    Catalyst fouling during hydrocracking and conversions of larger molecular mass components has been investigated in terms of the structural features of a bituminous coal extract. The sample has been separated into two pairs of fractions: pentane-soluble (PS) and insoluble (PI); toluene-soluble (TS) and -insoluble (TI). Differences between hydrocracked products and levels of carbon-deposition on a commercial presulfided NiMo/{gamma}-Al{sub 2}O{sub 3} catalyst have been examined. Size exclusion chromatograms (SEC) showed MM-distributions of the samples decreasing in the order: TI {gt} PI {gt} TS {gt} PS. This trend closely paralleled those given by TGA-derived boiling point distributions and the ordering of UV-fluorescence (UV-F) derived spectral shifts. In SEC, two different columns were used. The largest molecular mass material did not pass through the column with the smaller molecular size range and was lost for analytical purposes. Within the range where probe mass spectrometry is capable of observation, the hydrocracked products of all the fractions studied contains similar ranges of molecular species, in contrast with data from TGA, SEC, and UV-F. The differences between hydrocracked products from different fractions were confined to masses beyond the range of detection by probe mass spectrometry. A reliable correspondence was found between catalyst fouling levels and the concentration of {gt} 450{degree}C bp material in the feed. The results are consistent with a model of the larger extract molecules, where large ({gt} 300 u) polycyclic aromatic (PCA) ring systems are embedded within a matrix held together by several different structural types of bridges. During hydrocracking, bridging structures between PCA ring systems breakdown although. Larger PCA groups liberated by the hydrocracking process are more likely to deposit on catalyst surfaces. 42 refs., 9 figs., 2 tabs.

  10. ICP-AES determination of rare earth elements in coal fly ash samples of thermal power stations: assessment of possible recovery and environmental impact of rare earth elements

    International Nuclear Information System (INIS)

    Accurate determination of rare earth elements (REEs) in ashes of thermal power plants is important in the current scenario due to its economic value, and the pollution caused if they are released in to the environment. Their toxicity to living organisms now gaining importance in international community, and some investigation shows it causes retardation in plant growth. In coal based thermal stations huge quantity of coal used annually as a fuel and lakhs of tones of waste is generated in the form of ashes. Therefore studies were carried out on three aspects - fairly rapid and accurate ICP-AES determination REEs in coal fly ash samples using addition technique, a preliminary acid leaching studies on coal received from three different fired thermal power stations using hydrochloric acid at pH 1 and 2, and quantify the REEs leached, and economic recovery of REEs using di-(2-ethylhexyl) phosphoric acid solvent extraction process or precipitation hydroxides using dilute ammonia solution. The standard addition method of REEs determination using rate and reproducible values, besides the analysis is fast compared to the ion exchange separation of REEs followed by the ICP-AES determination. (author)

  11. Fluorine in Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.S.; Zheng, B.S.; Tang, X.Y.; Li, S.H.; Wang, B.B.; Wang, M.S. [Chinese Academy of Science, Guiyang (China). Inst. of Geochemistry

    2004-05-01

    Three hundred and five coal samples were taken from the main coal mines of twenty-six provinces, autonomous regions, and municipalities of China. The method of pyrohydrolysis was applied to measure the fluorine content in the samples, which exhibit logarithmic normal frequency distributions. The range of fluorine content in dry coal varies from 26 to 1230 mg/kg with a geometric mean of 136 mg/kg. The fluorine content decreases gradually from sub-bituminous through bituminous coal to anthracite. However, such varying tendency of fluorine content is not due to the presence of organic fluorine in coal. The geological age also apparently has no effect on the fluorine content. Even though the fluorine content of most coals in China is not high, much more attention should be given to the fluoride pollution caused by improper (unvented) coal-burning and the widespread household use of high-fluoride coal-clay.

  12. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  13. Fluorine in Canadian coals

    Energy Technology Data Exchange (ETDEWEB)

    Godbeer, W.G.; Swaine, D.J.; Goodarzi, F. (CSIRO, North Ryde, NSW (Australia). Division of Coal and Energy Technology)

    1994-08-01

    Fluorine was determined in 57 samples of coals from western Canada and the Yukon (47 bituminous, 4 subbituminous, 6 lignite) by a pyrohydrolysis method. The range of values is 31-930 ppmw F in dry coal, the lowest values being mainly for the low-rank coals. For bituminous coals most values are in the range 31-580 (mean 174) ppmw F. 23 refs., 4 tabs.

  14. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  15. Environmental Impacts Of Zirab Coal Washing Plant, Mazandaran, Iran

    Science.gov (United States)

    Moore, F.; Esmaeili, A.

    2009-04-01

    Extraction and beneficiation operations associated with coal mining increase the rate of chemical reaction of waste material to air and water media. Zirab coal washing plant is located on the bank of the Cherat stream in Mazandaran province, Iran. coal Mined from central Alborz coalfield mines is not suitable for use in Iranian Steel Corporation. Hence, coal ash content is reduced by physical and chemical processes in this plant. These processes leave a large quantity of liquid and solid wastes that accumulate in waste dump and tailing dam. sediment and water samples taken from Sheshrudbar and Cherat streams and also from Talar river show high concentration of Cd, Mo and As in water samples of coal washing plant and the associated drainage. Eh-pH diagrams revealed the chemical species of elements in water. The enrichment factor and geoaccumulation index show that Cd, Hg, Mo and V are enriched in bottom sediments of the coal washing plant and decrease with increasing distance from the plant. Sequential extraction analysis Results of three sediment samples of Cherat stream show that silicate bound is the major phase in samples taken before and after the plant, but adjacent to the plant, organic bound is dominant. The high concentration of Cd and Mo in the water soluble phase, is noticeable and may result in high mobility and bioavailability of these elements. Mann-Whitney and Wilcoxon tests on six samples, before and after the coal washing plant support the obtained results. Keywords: Zirab; coal washing plant; Sequential extraction analysis; Mann-whitney; Wilcoxon; Enrichment factor; Geoaccumulation index.

  16. A new gravity & flotation separator with double-tailing discharge and its beneficiation performance

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-li; FAN Min-qiang

    2012-01-01

    Introduced a new gravity and flotation separator with double-tailing discharge for fine coal,and integrated classification and cyclone scavenging with flotation in an original way.The beneficiation performance of it was good.The results show that the gravity and flotation separator with double-tailing discharge can produce high-quality clean coal of 10.46% ash from fine coal of 35.56% ash.It can discharge the fine and coarse railings separately.

  17. Rapid laser fluorometric method for the determination of uranium in soil, ultrabasic rock, plant ash, coal fly ash and red mud samples

    International Nuclear Information System (INIS)

    A simple and rapid laser fluorometric determination of trace and ultra trace level of uranium in a wide variety of low uranium content materials like soil, basic and ultra basic rocks, plant ash, coal fly ash and red mud samples is described. Interference studies of some common major, minor and trace elements likely to be present in different geological materials on uranium fluorescence are studied using different fluorescence enhancing reagents like sodium pyrophosphate, orthophosphoric acid, penta sodium tri-polyphosphate and sodium hexametaphosphate. The accurate determination of very low uranium content samples which are rich in iron, manganese and calcium, is possible only after the selective separation of uranium. Conditions suitable for the quantitative single step extraction of 25 ng to 20 μg uranium with tri-n-octylphosphine oxide and single step quantitative stripping with dilute neutral sodium pyrophosphate, which also acts as fluorescence enhancing reagent is studied. The aqueous strip is used for the direct laser fluorometric measurement without any further pretreatment. The procedure is applied for the determination of uranium in soil, basalt, plant ash, coal fly ash and red mud samples. The accuracy of the proposed method is checked by analyzing certain standard reference materials as well as synthetic sample with known quantity of uranium. The accuracy and reproducibility of the method are fairly good with RSD ranging from 3 to 5% depend upon the concentration of uranium. (author)

  18. Petrographers fingerprint coals

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.E. [Pearson and Associates Ltd. (USA)

    2001-05-01

    A new system of coal fingerprinting called Digipet generates reflectance profiles by using an automated digital imaging system in which tens of millions of individual reflectance measurements are obtained. Images are conditioned to generate a detailed smooth histogram which convey information on the coal sample's provenance and history. Expert interpretation can reveal further information. The article gives details of the instrument and shows sample reflectance profiles. It discusses some applications in sampling coal charged to coke ovens of the Indiana Harbor Coke Co, and at a Midwest generating plant where it detected the presence of rogue high volatile coal. 3 figs.

  19. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    OpenAIRE

    Jovanović Filip P.; Berić Ivana M.; Jovanović Petar M.; Jovanović Aca D.

    2016-01-01

    This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reductio...

  20. Radionuclides in US coals

    Energy Technology Data Exchange (ETDEWEB)

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  1. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    International Nuclear Information System (INIS)

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for 35Cl+ to more than 6 x 105 cps for 238U+ for 1 μg of trace element per gram of coal sample. Detection limits vary from 450 ng g-1 for chlorine and 18 ng g-1 for sulfur to 9.5 pg g-1 for mercury and 0.3 pg g-1 for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  2. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  3. Coal geopolitics

    International Nuclear Information System (INIS)

    This book divided into seven chapters, describes coal economic cycle. Chapter one: coals definition; the principle characteristics and properties (origin, calorific power, international classification...) Chapter two: the international coal cycle: coal mining, exploration, coal reserves estimation, coal handling coal industry and environmental impacts. Chapter three: the world coal reserves. Chapter four: the consumptions, productions and trade. Chapter five: the international coal market (exporting mining companies; importing companies; distributors and spot market operators) chapter six: the international coal trade chapter seven: the coal price formation. 234 refs.; 94 figs. and tabs

  4. Investigation of pyrite as a contributor to slagging in eastern bituminous coals. Quarterly progress report 9, October 1-December 31, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Bryers, R.W.

    1984-06-01

    The objective of this program is to examine slags formed as a result of firing coals with varying concentration levels, size distribution, and orientation of pyrite with regard to mineral matter in the coal in a laboratory furnace. The program tasks are: (1) selection of eight candidate coals; (2) chemical characterization of the coal samples and identification of the pyrite size, distribution, and orientation with respect to other mineral matter and concentration levels; (3) testing of the candidate coals in a laboratory furnace; (4) chemical and physical characterization of the slag and fly ash samples created by the impurities in the coal sample; (5) influence of coal beneficiation on furnace slagging; and (6) analysis of data and identification of parameters influencing the contribution of pyrite to slagging problems. Washing of the Upper Freeport coal from Indiana County, Pennsylvania, was completed by the last quarter of 1983. The washed product was characterized for mineral content, and a combustion test was performed. Kentucky No. 9 from Henderson County, Kentucky, selected as the sixth coal to be investigated, was characterized using size and gravity fractionation techniques and was combusted in the laboratory furnace to evaluate its slagging and fouling potential. The remaining two coals to be characterized and combusted were identified as Illinois No. 5 and Lower Kittanning from Clarion County, Pennsylvania. 80 figures, 27 tables.

  5. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  6. Optimal use of coal for power generation in India

    International Nuclear Information System (INIS)

    There is growing consensus among energy planners that electricity requirements in India would increase rapidly in the next couple of decades, and that coal would continue to dominate the generating capacity mix. Comparatively high levels of ash in Indian coal causes concern both in terms of the high costs of coal movement and the associated environmental impacts. As per the notification of September 1997, all power plants located in sensitive areas, metropolitan cities and in areas distant from the coalfields, must use coal with <34% ash. However, little progress has been made towards coal beneficiation and some consumers have already started to import non-coking coal for blending in order to comply with environmental requirements. The importance of planning for optimal utilization and transportation of thermal coal cannot be underestimated, especially at a juncture where the Indian coal industry is already facing competition from rising imports of non-coking coal. This paper assesses the optimality of the current patterns of coal movement and examines the economics of beneficiating thermal coals. A linear programming model has been developed based on the framework of the general transportation problem. The authors conclude that the washery is not economically attractive given the current costs, beneficiation technique and quality of Indian non-coking coal. Model simulations have been attempted to assess the possibility of coal beneficiation based on techno-economic considerations rather than political or other considerations. The paper also stresses the possibility of overall gains to the economy by modifying the current patterns of coal movement

  7. Coal analysis by nuclear technique

    International Nuclear Information System (INIS)

    Low energy gamma ray transmission measurements on coal samples from 17 different coal mines in India gave ash contents varying from 13.5 per cent to 42.5 per cent. This variation is due to varying contents of mineral oxides and silicates present in coal. The measured value of ash contents in coal samples of different origin shows good agreement when compared, with the values obtained by chemical method. (author). 10 refs., 2 tabs., 3 figs

  8. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  9. Simple Mechanical Beneficiation Method of Coarse Fly Ash with High LOI for Making HVFA Mortar

    Directory of Open Access Journals (Sweden)

    Antoni ,

    2015-01-01

    Full Text Available This study focusses on the effect of milling of fly ash obtained from four different sources on the properties of high volume fly ash (HVFA mortar. Two fly ash samples with low loss-on-ignition (LOI were taken from a coal-fired power plant, while the other two with high LOIs were obtained from a textile factory and from a paper mill, respectively. Milling was performed using a rod mill at a certain period of time. The workability of HVFA mortar with constant water to cementitious ratio was controlled by adjusting the superplasticizer content. The results show that the specific gravity of fly ash increases after milling. Utilizing milled fly ash ends up with significant strength increase of HVFA mortar, especially those utilizing high LOI fly ash. This shows that milling is an excellent fly ash beneficiation technique, especially on the one with high LOI value.

  10. Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products

    Science.gov (United States)

    Das, S. K.

    2015-04-01

    Mineralogical characterization and liberation of valuable minerals are primary concerns in mineral processing industries. The present investigation focuses on quantitative mineralogy, elemental deportment, and locking-liberation characteristics of the beneficiation of tailings from a chrome ore beneficiation plant in the Sukinda region, Odisha; methods used for the study of the beneficiated tailings are QEMSCAN®, X-ray diffraction (XRD), and mineral chemistry by a scanning electron microscope equipped with an energy-dispersive spectrometer (SEM-EDS). The tailing sample was fine grained (69.48wt% below 45 μm size), containing 20.25wt% Cr2O3 and 39.19wt% Fe2O3, with a Cr:Fe mass ratio of 0.51. Mineralogical investigations using QEMSCAN studies revealed that chromite, goethite, and gibbsite are the dominant mineral phases with minor amounts of hematite, kaolinite, and quartz. The sample contained 34.22wt% chromite, and chromite liberation is more than 80% for grains smaller than 250 μm in size. Based on these results, it was predicted that liberated chromite and high-grade middling chromite particles could be separated from the gangue by various concentration techniques. The tailing sample was beneficiated by hydrocyclone, tabling, wet high-intensity magnetic separation (WHIMS), and flotation in order to recover the chromite. A chromite concentrate with 45.29wt% Cr2O3 and a Cr:Fe mass ratio of 1.85 can be produced from these low-grade chromite ore beneficiation plant rejects.

  11. Magnetic susceptibility mapping of fly ash in soil samples near a coal-burning power plant in Pointe Coupee Parish, Louisiana.

    Science.gov (United States)

    Elhelou, O.; Richter, C.

    2015-12-01

    Atmospheric deposition of pollutants is a major health and environmental concern. In a 2010 study, the CATF attributed over 13,000 deaths each year to fly ash and other fine particles emitted by U.S. coal-burning power plants. The magnetic properties of fly ash allows for mapping an area suspect of PM pollution faster and more efficiently than by conducting chemical analysis as the former alternative. The objective of this study is to detect the presence of magnetic particles related to the migration of fly ash from a nearby coal power plant over parts of Pointe Coupee Parish, LA. This is based on the idea that the fly ash that is released into the atmosphere during the coal burning process contains heavy metals and magnetic particles in the form of ferrospheres, which can be used to trace back to the source. Maps of the top and sub soil were generated to differentiate the magnetic susceptibility values of the heavy metals potentially attributed to the migration and settling of fly ash onto the surface from any pre-existing or naturally occurring heavy metals in the sub soil. A 60 km2 area in Pointe Coupee Parish was investigated in approximately 0.5 km2 subsets. The area in Pointe Coupee Parish, LA was selected because land use is predominantly rural with the Big Cajun II power plant as the main contributor for air borne contaminants. Samples of fly ash obtained directly from the source below one of the power plant's precipitators were also analyzed to verify the field and laboratory analysis. Contour maps representing the spatial distribution of fly ash over Pointe Coupee, LA, along with histograms of magnetic susceptibility values, and chemical analysis all indicate a correlation between the proximity to the power plant and the predominant wind direction. Acquisition curves of the isothermal remnant magnetization demonstrate the presence of predominantly low coercivity minerals (magnetite) with a small amount of a high-coercivity phase. The microstructure of the

  12. Beneficial Uses of Depleted Uranium

    International Nuclear Information System (INIS)

    Naturally occurring uranium contains 0.71 wt% 235U. In order for the uranium to be useful in most fission reactors, it must be enriched the concentration of the fissile isotope 235U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a 235U concentration of less than 0.71 wt%. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF6) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory. This paper discusses the inventory of DU and its rate of increase; DU disposition options; beneficial use options; a preliminary cost analysis; and major technical, institutional, and regulatory issues to be resolved

  13. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  14. Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash

    Directory of Open Access Journals (Sweden)

    James C. Hower

    2015-06-01

    Full Text Available Certain Central Appalachian coals, most notably the Fire Clay coal with a REY-enriched volcanic ash fall tonstein, are known to be enriched in rare earth elements. The Fire Clay tonstein has a greater contribution to the total coal + parting REY than would be inferred from its thickness, accounting for about 20%–35% of the REY in the coal + parting sequence. Underground mining, in particular, might include roof and floor rock and the within-seam partings in the mined product. Beneficiation, necessary to meet utility specifications, will remove some of the REY from the delivered product. In at least one previously published example, even though the tonstein was not present in the Fire Clay coal, the coal was enriched in REY. In this case, as well as mines that ship run-of-mine products to the utility, the shipped REY content should be virtually the same as for the mined coal. At the power plant, however, the delivered coal will be pulverized, generally accompanied by the elimination of some of the harder rock, before it is fired into the boiler. Overall, there are a wide range of variables between the geologic sample at the mine and the power plant, any or all of which could impact the concentration of REY or other critical materials in the coal combustion products.

  15. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  16. Arsenic concentrations in Chinese coals

    International Nuclear Information System (INIS)

    The arsenic concentrations in 297 coal samples were collected from the main coal-mines of 26 provinces in China were determined by molybdenum blue coloration method. These samples were collected from coals that vary widely in coal rank and coal-forming periods from the five main coal-bearing regions in China. Arsenic content in Chinese coals range between 0.24 to 71 mg/kg. The mean of the concentration of Arsenic is 6.4 ± 0.5 mg/kg and the geometric mean is 4.0 ± 8.5 mg/kg. The level of arsenic in China is higher in northeastern and southern provinces, but lower in northwestern provinces. The relationship between arsenic content and coal-forming period, coal rank is studied. It was observed that the arsenic contents decreases with coal rank in the order: Tertiary > Early Jurassic > Late Triassic > Late Jurassic > Middle Jurassic > Late Permian > Early Carboniferous > Middle Carboniferous > Late Carboniferous > Early Permian; It was also noted that the arsenic contents decrease in the order: Subbituminous > Anthracite > Bituminous. However, compared with the geological characteristics of coal forming region, coal rank and coal-forming period have little effect on the concentration of arsenic in Chinese coal. The average arsenic concentration of Chinese coal is lower than that of the whole world. The health problems in China derived from in coal (arsenism) are due largely to poor local life-style practices in cooking and home heating with coal rather than to high arsenic contents in the coal

  17. Electrostatic Beneficiation of Lunar Simulant

    Science.gov (United States)

    Trigwell, Steve; Captain, James; Captain, Janine; Arens, Ellen; Quinn, Jacqueline; Calle, Carlos

    2006-01-01

    Electrostatic beneficiation of lunar regolith is a method allowing refinement of specific minerals in the material for processing on the moon. The use of tribocharging the regolith prior to separation was investigated on the lunar simulant MLS-I by passing the dust through static mixers constructed from different materials; aluminum, copper, stainless steel, and polytetrafluoroethylene (PTFE). The amount of charge acquired by the simulant was dependent upon the difference in the work function of the dust and the charging material. XPS and SEM were used to characterize the simulant after it was sieved into five size fractions (> 100 pm, 75-100 pm, 50- 75 pm, 50-25 pm, and 100 pm) size fractions were beneficiated through a charge separator using the aluminum (charged the simulant negatively) and PTFE (charged positively) mixers. The mass fractions of the separated simulant revealed that for the larger particle size, significant unipolar charging was observed for both mixers, whereas for the smaller particle sizes, more bipolar charging was observed, probably due to the finer simulant adhering to the inside of the mixers shielding the dust from the charging material. Subsequent XPS analysis of the beneficiated fractions showed the larger particle size fraction having some species differentiation, but very little difference for the smaller.size. Although MLS-1 was made to have similar chemistry to actual lunar dust, its mineralogy is quite different. On-going experiments are using NASA JSC-1 lunar simulant. A vacuum chamber has been constructed, and future experiments are planned in a simulated lunar environment.

  18. The Development of Power Technologies for Low-Grade Coal

    Science.gov (United States)

    Basu, K.

    Beneficiation of Indian coal and operation of power plants with imported coal will improve the efficiency of power generation to some extent but they will not satisfy overall future requirements of pollution control and conservation of energy. Therefore, there is a need to adopt new clean coal technologies.

  19. Formation and use of coal combustion residues from three types of power plants burning Illinois coals

    Science.gov (United States)

    Demir, I.; Hughes, R.E.; DeMaris, P.J.

    2001-01-01

    Coal, ash, and limestone samples from a fluidized bed combustion (FBC) plant, a pulverized coal combustion (PC) plant, and a cyclone (CYC) plant in Illinois were analyzed to determine the combustion behavior of mineral matter, and to propose beneficial uses for the power plant ashes. Pyrite and marcasite in coal were converted during combustion to glass, hematite and magnetite. Calcite was converted to lime and anhydrite. The clay minerals were altered to mullite and glass. Quartz was partially altered to glass. Trace elements in coal were partially mobilized during combustion and, as a result, emitted into the atmosphere or adsorbed on fly ash or on hardware on the cool side of the power plants. Overall, the mobilities of 15 trace elements investigated were lower at the FBC plant than at the other plants. Only F and Mn at the FBC plant, F, Hg, and Se at the PC plant and Be, F, Hg, and Se at the CYC plant had over 50% of their concentrations mobilized. Se and Ge could be commercially recovered from some of the combustion ashes. The FBC ashes could be used as acid neutralizing agents in agriculture and waste treatment, and to produce sulfate fertilizers, gypsum wall boards, concrete, and cement. The PC and CYC fly ashes can potentially be used in the production of cement, concrete, ceramics, and zeolites. The PC and CYC bottom ashes could be used in stabilized road bases, as frits in roof shingles, and perhaps in manufacturing amber glass. ?? 2001 Elsevier Science Ltd. All rights reserved.

  20. Reaction Mechanism of Siderite Lump in Coal-Based Direct Reduction

    Science.gov (United States)

    Zhu, Deqing; Luo, Yanhong; Pan, Jian; Zhou, Xianlin

    2016-02-01

    Siderite is one of the significant iron ore resources in China and yet is difficult to upgrade by traditional beneficiation processes. A process of coal-based direct reduction-magnetic separation was successfully developed for the beneficiation of siderite. However, few studies have thoroughly investigated the mechanism of the direct reduction of siderite. In order to reveal the reaction mechanism of coal-based direct reduction of siderite lump, thermodynamics of direct reduction was investigated with coal as the reductant. The thermodynamics results indicate that coal-based direct reduction process of siderite lump at 1,050°C follows the steps as FeCO3→ Fe3O4→ FeO → Fe, which is verified by chemical titration analysis, X-ray diffraction and scanning electron microscope. The microstructure of siderite sample varies with different reduction stages and some 45% porosity induced by thermal decomposition of siderite is conductive to subsequent reduction. The conversion of FeO to Fe is the main reduction rate-controlling step. The reduced product with the metallic iron size over 30 μm can be effectively beneficiated by wet magnetic separation after grinding. The obvious layered structure of reduced product is due to different heat transfer resistance, CO and CO2 concentration.

  1. Development of an accurate, sensitive, and robust isotope dilution laser ablation ICP-MS method for simultaneous multi-element analysis (chlorine, sulfur, and heavy metals) in coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Boulyga, Sergei F. [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria); Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Heilmann, Jens; Heumann, Klaus G. [Johannes Gutenberg-University, Institute of Inorganic Chemistry and Analytical Chemistry, Mainz (Germany); Prohaska, Thomas [University of Natural Resources and Applied Life Sciences, Department of Chemistry, Division of Analytical Chemistry-VIRIS Laboratory, Vienna (Austria)

    2007-10-15

    A method for the direct multi-element determination of Cl, S, Hg, Pb, Cd, U, Br, Cr, Cu, Fe, and Zn in powdered coal samples has been developed by applying inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) with laser-assisted introduction into the plasma. A sector-field ICP-MS with a mass resolution of 4,000 and a high-ablation rate laser ablation system provided significantly better sensitivity, detection limits, and accuracy compared to a conventional laser ablation system coupled with a quadrupole ICP-MS. The sensitivity ranges from about 590 cps for {sup 35}Cl{sup +} to more than 6 x 10{sup 5} cps for {sup 238}U{sup +} for 1 {mu}g of trace element per gram of coal sample. Detection limits vary from 450 ng g{sup -1} for chlorine and 18 ng g{sup -1} for sulfur to 9.5 pg g{sup -1} for mercury and 0.3 pg g{sup -1} for uranium. Analyses of minor and trace elements in four certified reference materials (BCR-180 Gas Coal, BCR-331 Steam Coal, SRM 1632c Trace Elements in Coal, SRM 1635 Trace Elements in Coal) yielded good agreement of usually not more than 5% deviation from the certified values and precisions of less than 10% relative standard deviation for most elements. Higher relative standard deviations were found for particular elements such as Hg and Cd caused by inhomogeneities due to associations of these elements within micro-inclusions in coal which was demonstrated for Hg in SRM 1635, SRM 1632c, and another standard reference material (SRM 2682b, Sulfur and Mercury in Coal). The developed LA-ICP-IDMS method with its simple sample pretreatment opens the possibility for accurate, fast, and highly sensitive determinations of environmentally critical contaminants in coal as well as of trace impurities in similar sample materials like graphite powder and activated charcoal on a routine basis. (orig.)

  2. Conditioning of carbonaceous material prior to physical beneficiation

    Science.gov (United States)

    Warzinski, Robert P.; Ruether, John A.

    1987-01-01

    A carbonaceous material such as coal is conditioned by contact with a supercritical fluid prior to physical beneficiation. The solid feed material is contacted with an organic supercritical fluid such as cyclohexane or methanol at temperatures slightly above the critical temperature and pressures of 1 to 4 times the critical pressure. A minor solute fraction is extracted into critical phase and separated from the solid residuum. The residuum is then processed by physical separation such as by froth flotation or specific gravity separation to recover a substantial fraction thereof with reduced ash content. The solute in supercritical phase can be released by pressure reduction and recombined with the low-ash, carbonaceous material.

  3. Analytical investigation of lignite and its ash samples taken from the Afsin-Elbistan coal basin in Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Kucukonder, Adnan; Paksoy, Emine; Biber, Seyma [Kahramanmaras Suetcue Imam Univ. (Turkey). Dept. of Physics; Durdu, Burhanettin Goeker [Kilis 7 Aralik Univ., Kilis (Turkey). Opticianry Program; Baskaya, H.; Dogru, Mahmut [Bitlis Eren Univ. (Turkey). Dept. of Physics

    2014-04-15

    Lignite, taken from basin in Afsin-Elbistan region, and ash samples were analyzed according to the qualitative, quantitative and radioactivity properties. An elemental analysis was made by using the Energy Dispersive X-Ray Fluorescence (EDXRF) technique. 59.5 keV photons emitted from a {sup 241}Am source and 5.9 keV photons emitted from a {sup 55}Fe radioactive source were used for excitation. The characteristic K X-rays of the elements were counted with a Si(Li) detector. For the same samples gross alpha, gross beta and radionuclide activities were also measured. (orig.)

  4. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  5. The partition behavior and the chemical speciation of selected trace elements in a typical coal sample during pyrolysis / Tivo Bafana Hlatshwayo

    OpenAIRE

    Hlatshwayo, Tivo Bafana

    2008-01-01

    Sasol is by far the world's leading company in upgrading of low-grade coal into high value chemicals and fuels. Such plants also utilise fine particles or pulverised coal in the combustion process to generate steam and electricity for their processes. Certain trace elements released from coal during utilisation may be of environmental concern. From the literature findings it appears that the elements of interest are mercury, arsenic and selenium due to their potential health hazard and as...

  6. Is vitamin C supplementation beneficial?

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Poulsen, Henrik Enghusen

    2010-01-01

    In contrast to the promised ‘antioxidant miracle' of the 1980s, several randomised controlled trials have shown no effect of antioxidant supplements on hard endpoints such as morbidity and mortality. The former over-optimistic attitude has clearly called for a more realistic assessment of the...... benefit:harm ratio of antioxidant supplements. We have examined the literature on vitamin C intervention with the intention of drawing a conclusion on its possible beneficial or deleterious effect on health and the result is discouraging. One of several important issues is that vitamin C uptake is tightly...... controlled, resulting in a wide-ranging bioavailability depending on the current vitamin C status. Lack of proper selection criteria dominates the currently available literature. Thus, while supplementation with vitamin C is likely to be without effect for the majority of the Western population due to...

  7. Digital-image Based Numerical Simulation on Failure Process of High-sulfur Coal

    Directory of Open Access Journals (Sweden)

    Ye Junjian

    2013-01-01

    Full Text Available Crushing of high-sulfur coal was important for physical desulfurization, but there were little research on crushing mechanism. This paper combined digital image processing technology and rock failure process analysis system RFPA2D to simulate the failure process of high-sulfur coal in Pu'an of Guizhou under uniaxial compression, and discussed the influence of horizontal restraint, existence and different geometric distribution of pyrite particle on mechanical performance and failure process of high-sulfur coal. The numerical results indicated that without horizontal restraint the compressive strength of high-sulfur coal was lower and monomial dissociation of pyrite particle was more sufficient than that with horizontal restraint. The compressive strength of coal containing pyrite particle was larger than that of pure coal and there was stress concentration in upper and lower pyrite particle during failure process. When pyrite particle distributed in the middle position of a coal sample, the compressive strength was higher than that of the other three positions, but monomial dissociation of pyrite particle was more sufficient than that of the other three positions, and this was beneficial to the following desulfurization operation. The study had certain reference value for crushing mechanism, crushing process design, selection of breaking equipment and energy saving and consumption reduction.

  8. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  9. Coal preparation on the Waterberg: a look into the future. [South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Gouws, P.L.

    1976-02-01

    The beneficiation plant to be built at Iscor's planned Grootegeluk coal mine in the Waterberg coal field will be one of the world's largest coal beneficiation plants for the production of blend coking and steam raising coal. Mr Gouws, plant superintendant at the proposed mine, here gives a description of the plant which is to be built at Grootegeluk.

  10. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Bochan, A.J.; Clements, J.L. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  11. Export market potential for Alaskan and Western US coals

    International Nuclear Information System (INIS)

    Major utilization trends may create opportunity for dramatic expansion of Alaska's coal exports from a huge ultra-low sulfur coal resource base. Markets are expected to open up in the Pacific Basin for sub-bituminous and bituminous steam coals from Alaska to include not only run-of-mine coals but also product streams from beneficiation technologies. Market considerations aside, deficiencies in physical infrastructure and an unresolved resource ownership issue are the principal impediments at this time to property development

  12. Design of Quantitative Packaging Control System Based on PLC for Sample Coal%基于PLC的样品煤定量包装控制系统设计

    Institute of Scientific and Technical Information of China (English)

    孙晓; 周浩

    2011-01-01

    An automatic control system of sampling package for sample coal was designed based on controller(PLC) according to the realities of sample coal powdery materials.The system can realize automatic control of random sampling,auto-weighting,auto-packaging,and auto-sealing off functions.It has the characteristics of less waste,convenient control,zero point self-tuning and dynamics weighing measurement.It can be used in sampling weighing package of sample coal.Various performance indicators were proved to stable and reliable by field test.%针对样品煤粉末状的特点,提出了一种基于PLC控制器的样品煤自动采样包装控制系统。实现了随机采样、自动称重、自动包装以及自动封口等工作过程的自动控制,具有浪费少、控制方便、自动零位整定和动态称量计量等功能,可用于各种粉末状、颗粒状等样品煤采样称重包装。系统在现场试验中的各项性能指标稳定、可靠。

  13. Coal-92

    International Nuclear Information System (INIS)

    Swedish consumption of coal and coke during 1991 and trends in technology, environment and market aspects of coal use are reported. Steam coal use in the heating sector was unchanged from 1991, 1.2 Mtons. Reduced consumption in smaller district heating units (due to conversion to biofuels and gas) was compensated by increased use for power generation in cogeneration plants. Coal consumption in industry fell 0.10 Mton to 0.84 Mton due to lower production in one industry branch. Import of steam coal was 1.1 Mton (down 0.5 Mton from 1990) since new rules for strategic reserves allowed a reduction of stocks. During the last five years stocks have been reduced by 2 Mtons. Import of metallurgical coal was 1.6 Mton, unchanged from 1990. The report also gives statistics for the coal using plants in Sweden, on coal R and D, and on emission laws for coal firing. (9 tabs., 2 figs.)

  14. Distribution of Heavy Hydrocarbon in Coal Seams and Its Use in Predicting Outburst of Coal

    Institute of Scientific and Technical Information of China (English)

    蒋承林; 李增华; 韩颖

    2003-01-01

    In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples and analyzed qualitatively and quantitatively on chromatogram-mass spectrograph. The qualitative analysis show that there is no special gases in coal seams. And the quantitative analysis indicates that the heavy hydrocarbon content in coal samples from outburst coal seams is apparently higher than that from non-outburst district ones, which reflects the damage of geological tectonic movement to coal body in history. Therefore, the heavy hydrocarbon content of coal sample can be used as an index to predict coal outburst.

  15. Detailed petrophysical and geophysical characterization of core samples from the potential caprock-reservoir system in the Sulcis Coal Basin (South-Western Sardinia - Italy).

    Science.gov (United States)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto

    2015-04-01

    The evaluation of the CO2 geologic storage site requires a robust experimental database especially with respect to spatial petrophysical heterogeneities. The integrated analysis of minero-petrographical, physical and geophysical parameters (e.g. longitudinal and transversal propagation velocity, VpVs ratio, dynamic elastic moduli, etc.) of the rocks that make up a caprock-reservoir system can substantially reduce the geologic uncertainity in the storage site characterization and in the geological and numerical modelling for the evaluation of the CO2 storage capacity. In this study the Middle Eocene - Lower Oligocene Cixerri Formation made up of siliciclastic rocks and the Upper Thanetian - Lower Ypresian Miliolitico Carbonate Complex in the Sulcis coal basin (South-Western Sardinia - Italy) have been identified respectively as potential caprock and reservoir for the CO2 storage. The petrographical, physical and geophysical parameters of the above mentioned geological Formations (Cixerri and Milolitico) were investigated to improve the geological model aimed at verifying the geological CO2 storage capacity within the carbonate reservoir rocks, in order to guarantee an efficient use of the reservoir, and to improve the numerical simulation of CO2 behaviour in the short, medium and long term after its injection in single or multiple wells. . The petrographical characteristics of the caprock-reservoir rocks were determined by optical and SEM analyses of core samples representing the different facies of the Cixerri Formation and of the Miliolitico Carbonate Complex, provided by Carbosulcis S.p.A.. Porosity analysis was completed by mercury porosimeter determinations which also provided quantitative information on the permeability of the study rocks and on the tortuosity of their pore system. Further physical properties, such as dry and saturated density and porosity, and water absorption were determined on the cylindrical core samples of intact rocks (ISRM, 1979) from

  16. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  17. The Geochemical Characteristics of Coals from the Junggar Basin in Northwest China and the Relation of the Configuration of Pristane with Maturity in Highly Mature and Over-Mature Samples

    Directory of Open Access Journals (Sweden)

    Wu Yingqin

    2016-05-01

    Full Text Available Coal samples analyzed from Junggar Basin are characterized by high Total Organic Carbon (TOC contents (63.7-82.2% in all samples, except the highly over-mature samples Ha-01 and Ha-02, and high S2 (60.5-83.0 mg HC/g rock and Hydrogen Index (HI values (77-118 mg HC/g TOC, indicating the coal rocks have excellent source rock potential. The Tmax values (418-531°C, C29 sterane 20S/(20S+20R ratios (0.20-0.54 and C31 homohopane 22S/(22S+22R ratios (0.26-0.61 indicate an immature to highly over-mature stage of organic matter, which is supported by the organic geochemical maturation parameters. In addition, n-alkane carbon numbers range from C11 to C33 with maxima at n-C19 or n-C23, exhibiting unimodal distribution patterns except Ai-13 and Ha-01, and low Pr/Ph ratios (0.29-0.80 in Ai-01, Ai-13, Ha-01 and Ha-02, indicating a suboxic reductive environment. In Wu-8, Wei-09 and Shinan-20, the Pr/Ph ratios are clearly greater than 1.0 (2.43-3.23, indicating oxic depositional conditions. Furthermore, pristane isomers were identified in extracts from these coal samples. Using coals of different maturity, which correspond to vitrinite reflectances (%Ro of 0.36-2.99%, the Pristane Isomerization Ratio (PIR (PIR = [6(R10(R+6(S10(S]/6(R10(S ranges from 0.42 to 0.97 for the coal extracts. The value of the PIR, which is a molecular maturity parameter, is evaluated by analyzing a series of samples using known values of the molecular maturity parameter based on the sterane and hopane isomerization indices, and the Methyl Phenanthrene Index (MPI. Changes to the PIR in highly mature Ai-13 (Ro > 1.5% and over-mature Ha-01 and Ha-02 (Ro > 2.0% are clear; thus, a linear correlation is evident between the PIR and Ro. The results suggest that the PIR is an appropriate indicator of maturity for the highly mature and over-mature coal samples in the Junggar Basin.

  18. Coal desulfurization

    Science.gov (United States)

    Corcoran, William H. (Inventor); Vasilakos, Nicholas P. (Inventor); Lawson, Daniel D. (Inventor)

    1982-01-01

    A method for enhancing solubilizing mass transport of reactive agents into and out of carbonaceous materials, such as coal. Solubility parameters of mass transfer and solvent media are matched to individual peaks in the solubility parameter spectrum of coals to enhance swelling and/or dissolution. Methanol containing reactive agent carriers are found particularly effective for removing organic sulfur from coals by chlorinolysis.

  19. New progress in the processing and efficient utilization of coal

    Institute of Scientific and Technical Information of China (English)

    Zhao Yuemin; Liu Jiongtian; Wei Xianyong; Luo Zhenfu; Chen Qingru; Song Shulei

    2011-01-01

    Coal accounts for about 70% of the primary energy sources in China.The environmental pollution and resources waste involved with coal processing and utilization are serious.It is therefore urgent to develop highly-efficient coal resources utilization theory and methods with low-carbon discharge.Based on our long-term basic research and technology development,the progress in beneficiation,cleaning,and transformation of coal,which includes dense phase fluidized bed dry beneficiation,deep screening of wet fine coal,micro-bubble flotation column separation,molecular coal chemistry,and transformation and separation of coal and its derivatives into value-added chemicals under mild conditions,is discussed.

  20. Crossing point temperature of coal

    Institute of Scientific and Technical Information of China (English)

    Qi Xuyao; Deming Wang; James A. Milke; Xiaoxing Zhong

    2011-01-01

    A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature (CPT) of different ranks of coal. The tests were carried out using a self-designed experimental system for coal self-heating. 50 g (±0.01 g) of coal particles ranging from 0.18 mm to 0.38 mm in size were put into a pure copper reaction vessel attached to the center of a temperature programmed enclosure. The temperature program increased the temperature at a rate of 0.8 ℃/min. Dry air was permitted to flow into the coal reaction vessel at different rates. The surrounding temperature and the coal temperature were monitored by a temperature logger. The results indicate that CPT is affected by coal rank, moisture, sulfur,and the experimental conditions. Higher ranked coals show higher CPT values. A high moisture content causes a delay phenomenon during the self-heating of the coal. Drying at 40 ℃ decreases the effects of moisture. The reactivity of sulfur components in the coal is low under dry and low-temperature conditions.These components form a film that covers the coal surface and slightly inhibits the self-heating of the coal.The flow rate of dry air, and the heating rate of the surroundings, also affect the self-heating of the coal. The most appropriate experimental conditions for coal samples of a given weight and particle size were determined through contrastive analysis. Based on this analysis we propose that CPTs be determined under the same, or nearly the same conditions, for evaluation of the spontaneous combustion of coal.

  1. Elemental and surface characterization of indigenous coal

    International Nuclear Information System (INIS)

    The elemental and surface characterization of local coal samples have been done in this research project. These samples from different mines of Punjab and Sindh were used in pulverized form with particle size ranges from 5 to 70 microns. Moisture content of these coal samples was determined by simply weight loss method. The maximum 9.3% moisture was found in coal sample of Al-Fateh Coal Company Khanot Hyderabad and minimum moisture 2.3% was found in coal sample of Dost sons dalwal from Chakwal. Coal samples for elemental analysis were prepared in one milligram along with BBOT standard and vanadium pentaoxide for complete combustion. These samples were weighed on highly sensitive balance with precision in the range of micrograms. Elemental characterization of coal samples was performed by CHNS-O analyzer to determine the percentage amount of carbon, hydrogen and sulfur present in the coal. The coal samples taken from mines of Mianwali and from Hyderabad were found as high ranked coal in bituminous range as carbon content found greater than 50% in these coals. The maximum carbon content 61% measured for old B-Mines MCL from Mianwali and minimum carbon content of 34% was found in coal sample of Dost Sons Dalwal from Chakwal. The minimum sulfur to carbon ratio (to check the quality of coal) was found from Haroon Mines B-Quality khajoola of Chakwal and Habibullah Mines.42 seam-1, khanot of Hyderabad and maximum sulfur to carbon ratio was found from punjmin (gambrial), DCP Dandot of Chakwal. From the results of elemental analysis, further calculations for the evaluation of total air required to burn the coal was carried out and the amount of total flue gases produced during combustion has also been estimated. Particle.size of best five coal samples based on carbon content was determined by using laser particle size analyzer. All the coal samples contained fine particles in the range of 5-70 μm. The mode of distribution of all coal samples was found in the range of 5- 20

  2. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  3. Beneficiation of ilmenite from lumar analog

    Science.gov (United States)

    Ramadorai, G.; Dean, R.

    1992-01-01

    The results reported were obtained on a meteoric eucrite sample called Millbillillie Sample no. 173. Optical microscopy studies of the sample showed it to consist of ilmenite, troilite, and transparent gangue. The transparent gangue consisted of feldspar (anorthite), pyroxenes, olivines, and opaques. Troilite was present in minor quantities. Screen assay analyses of the 30, 100, 200, and 400 US mesh screen fractions showed that minor concentration of titanium occurred in the 200 x 400 and -400 mesh screen fractions. Scanning electron microscopy (SEM) studies of the bulk sample showed the presence of a variety of ilmenite grains, ranging from 50 microns down to less than 1 micron without any evidence of liberation. Electron Diffraction Scans (EDS) confirmed the ratio of Fe to Ti in the ilmenite grains. Dry magnetic separation in a Frantz Isodynamic Separator was found to be effective only at sizes finer than 150 microns (100 US mesh) and more so at 200 mesh (74 microns). In each case, dedusting of the sample to remove -400 mesh (-0.037 microns) fines was required. Liberation size was determined to be 200 mesh and finer. The highest grade concentrate assaying 3.45 percent Ti was produced by magnetic separation of the -200 + 400 mesh screen fraction assaying 0.44 Ti (from a -30 mesh sample) at a current setting of 0.35 AMP. This concentrate contained 21.2 percent of the Ti values in the screen fraction with 2.72 weight percent of feed to test. The results can be projected to a sample stage ground to -200 mesh. Magnetic separation of the 200 + 400 mesh (-0.074 + 0.037 microns) should produce a concentrate accounting for 1.41 weight percent of the feed. This concentrate will analyze 3.45 percent Ti and contain 10.3 percent of the Ti values in the feed. By changing the Frantz Magnetic Separator settings, a lower grade concentrate analyzing 0.98 percent Ti can be produced at an increased recovery of 25.4 percent. The concentrate weight will be 11.7 percent of the feed. It

  4. Concentrations of lithium in Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Yuzhuang Sun; Yanheng Li; Cunliang Zhao; Mingyue Lin; Jinxi Wang; Shenjun Qin [Hebei University of Engineering, Handan (China). Key Laboratory of Resource Exploration Research of Hebei Province

    2010-04-15

    Lithium is an important energy metal. Its concentrations in coals have been studied by many geologists. Its average content is only 14 mg/kg in the coals of the world. Lithium has never been reported as a coal associated deposit before. In order to study the concentrations in Chinese coals, 159 coal and gangue samples were taken from six coal mines and were determined by ICP-MS and the minerals in the samples were identified by X-ray powder diffraction. The results indicate that the Li contents in the coal samples from the Antaibao Coal Mine have reached the industry grade of coal associated deposits. In Tongxing Coal Mine, Li contents in the coal floor rock samples have reached the industry grade of independent lithium deposits. Main minerals are polylithionite, triphylite, zinnwaldite, lithionite and cookeite, which were transported into the peats. Therefore, lithium enriched is most likely in the synsedimentary stage in both coal mines. Furthermore, a revised average Li content in Chinese coals was given.

  5. Flash pyrolysis of coal, coal maceral, and coal-derived pyrite with on-line characterization of volatile sulfur compounds

    Science.gov (United States)

    Chou, I.-Ming; Lake, M.A.; Griffin, R.A.

    1988-01-01

    A Pyroprobe flash pyrolysis-gas chromatograph equipped with a flame photometric detector was used to study volatile sulfur compounds produced during the thermal decomposition of Illinois coal, coal macerals and coal-derived pyrite. Maximum evolution of volatile organic sulfur compounds from all coal samples occurred at a temperature of approximately 700??C. At this temperature, the evolution of thiophene, its alkyl isomers, and short-chain dialkyl sulfide compounds relative to the evolution of benzothiophene and dibenzothiophene compounds was greater from coal high in organic sulfur than from coal low in organic sulfur. The variation in the evolution of sulfur compounds observed for three separate coal macerals (exinite, vitrinite, and inertinite) was similar to that observed for whole coal samples. However, the variation trend for the macerals was much more pronounced. Decomposition of coal-derived pyrite with the evolution of elemental sulfur was detected at a temperature greater than 700??C. The results of this study indicated that the gas chromotographic profile of the volatile sulfur compounds produced during flash pyrolysis of coals and coal macerals varied as a function of the amount of organic sulfur that occurred in the samples. Characterization of these volatile sulfur compounds provides a better understanding of the behavior of sulfur in coal during the thermolysis process, which could be incorporated in the design for coal cleaning using flash pyrolysis techniques. ?? 1988.

  6. Physical coal cleaning of Midwestern coals by open-gradient magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R.D.; Livengood, C.D.

    1990-01-01

    Open-Gradient Magnetic Separation (OGMS) using superconducting quadrupole magnets offers a novel beneficiation technology for removing pyritic sulfur from pulverized dry coal. It is estimated to have a power demand 75% lower than techniques using conventional electromagnets, while achieving higher separation forces. Additionally, the system operates in a continuous mode and uses no chemicals. Because OGMS is specifically applicable to finely ground coal (120-325 mesh), its development could encourage the commercialization of other unconventional coal technologies, such as coal-water slurries, fluidized-bed combustion, and synfuels. 3 figs., 1 tab.

  7. Gaseous emissions from coal stockpiles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-01-15

    Stockpiled coal undergoes atmospheric oxidation and desorption processes during open air storage. These processes release gases to the environment which may effect health and safety by their toxicity and flammability. In extreme cases, this could lead to a fire. This report discusses gaseous emissions from coal stockpiles. It covers gas emission mechanisms, and gas sampling and testing methods, before examining in more detail the principal gases that have been emitted. It concludes that there is limited research in this area and more data are needed to evaluate the risks of gaseous emissions. Some methods used to prevent coal self-heating and spontaneous combustion can be applied to reduce emissions from coal stockpiles.

  8. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  9. Coal - 96

    International Nuclear Information System (INIS)

    The report deals mainly with coal consumption, but also gives some information about technology, environmental aspects and markets. Data have been collected by questionnaires or via telephone. The use of steam coal for heating was 0.8 Mtons (down 20% from 1994). Cogeneration plants were the main users. Taxes and environmental reasons cause a reduction of the coal use that will probably continue the next years. Use of steam coal in industry has been constant at a level of 0.7 Mtons. The import of metallurgical coal rests constant at a level of 1.6 Mtons. 1.2 Mtons of coke was produced, and 0.3 Mtons imported. The PFBC-plant at Vaertan, Stockholm used 0.13 Mtons of coal, while some coal fired power plants have been converted to peat and wood fuels. The average price of steam coal imported to Sweden in 1995 was 333 SEK/ton, 6% higher than in 1994. The contract prices for delivery 1996 are about the same as at the end of 1995. All cogeneration plants have some sort of SO2 removal system, mostly wet-dry. The largest plant, at Vaesteraas, has recently invested in a SCR system for NOx removal. Most other plants are using low NOx burners or SNCR systems, based on ammonia or urea, which reduce the emissions 50 - 70%. Some statistic about the world coal market is also given in the report

  10. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20110359 Feng Lijuan(Graduate School,Southwest Petroleum University,Chengdu 610500,China);Guo Dali Experimental Study on the Stress Sensitivity of Coal and Its Impact on the Filtration of the Fracturing Fluid(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(2),2010,p.14-17,4 illus.,5 tables,9 refs.)Key words:coal seam,stressIn the paper,the relationship between the stress and permeability in the coal r

  11. Coal technology

    International Nuclear Information System (INIS)

    The coal- and gas-fueled cogeneration plants develop rapidly and according to all the scenarios will continue to grow with ever improving power generation effect in counterpressure mode. As there is no 'cooling water waste', a greater percentage of houses should be heated electrically. The coal combustion technologies mentioned here will probably converge around 53-55% coefficient of performance. Emission requirements can be fulfilled by use of modern coal technologies. Coal will stay as a competitive fuel for cogeneration as other more advanced technologies are often yet at the demonstration stage. (EG)

  12. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.-H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Venkatadri, R.; Bi, H.; Campbell, P.; Ciocco, M.; Hittle, L.; Kim, S.; Perez, L.

    1990-01-01

    The progress achieved in leading to effective surface control for selective agglomeration processes was summarized. Several analytical techniques developed in Task 3 were utilized during this quarter to characterize coal samples obtained from agglomeration tests. Surface and near surface (1 {mu}m depth) functional groups were analyzed using Diffuse Reflectance Infrared Fourier Transform spectroscopy. Surface composition analyses were conducted using Laser Microprobe Mass Analyzer. The results of these analysis are being used to relate the agglomeration results with surface modifications to the properties of coal samples. The development of a method a for direct determination of pyrite using X-ray diffraction was continued. The sample preparation technique was improved in order to increase the reproducibility of the analysis. The contact angle of n-heptane droplets on coal pellets immersed in water were measured. The results of these measurements suggest that high shear mixing is necessary for wetting coal surfaces with n-heptane. Agglomeration tests using n-heptane as agglomerant were carried out this quarter. For Pittsburgh {number sign}8 coal, better performance was obtained using n-heptane than using n-pentane. For Upper Freeport coal, however, lower pyritic sulfur rejection was obtained with n-heptane. A n-heptane to coal ratio between 1.25 and 1.5 was found to produce the best performance results for Illinois {number sign}6 coal. A study of the effect of agglomeration time on the agglomeration process performance for Illinois {number sign}6 coal using n-pentane and n-heptane as agglomerants indicates that no significant gains in performance are possible using agglomeration times longer than 60 seconds. The addition of tall oil as a binding agent after the high shear agglomeration step resulted in a large increase in overall coal yield and energy recovery for Illinois {number sign}6 coal. 27 figs., 13 tabs.

  13. Beneficiation of industrial minerals by air classification

    OpenAIRE

    Mitchell, Clive John; Inglethorpe, Simon; Morgan, David

    1992-01-01

    Workshop handout accompanying poster which summarises the use of air classification for the beneficiation (mineral processing) of industrial minerals. Illustrated with examples of processing trials on graphite, feldspar and diatomite.

  14. DETECTION OF CROSS-PROJECT BENEFICIAL CLONES

    OpenAIRE

    Ms.Kavitha Esther Rajakumari; Dr.T.Jebarajan

    2014-01-01

    Duplicate codes are also known as code clones. They are considered as one of the main factors that deteriorate the quality of software. They are usually discarded by using automatic clone detection tools. In this paper the clones are detected using a data mining approach. The clones are well analyzed and the beneficial code clones are retained. These clones are maintained separately and are used in software maintenance. The beneficial clones will definitely help in reducing the overall time s...

  15. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky

    Science.gov (United States)

    Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.

    2016-01-01

    This paper represents the first attempt to show, by means other than just petrographic ones, that one type of macrinite, herein designated copromacrinite, may result from macrofauna feces. For that purpose a combination of coal petrography, X-ray photoelectron spectroscopy, and elemental-analysis continuous-flow isotope ratio mass spectrometry methods were used to determine nitrogen functionalities and δ13C andδ15N compositions in 1) vitrinite-rich, 2) fusinite + semifusinite-rich, and 3) macrinite-rich (with a possible coprolitic origin) samples of the high volatile A bituminous Peach Orchard coal (Bolsovian; Middle Pennsylvanian) from Magoffin County, Kentucky. There were no significant differences between pyridinic-N and quaternary-N abundance in the three samples, however, pyrrolic-N was higher (~ 54%) in the macrinite-rich sample than in the other two samples (~ 38%). The data suggest that pyridinic-N and quaternary-N are independent of maceral group composition and that pyrrolic-N is dependent on maceral composition (fusinite + semifusinite versus macrinite). δ13C values obtained for bulk and demineralized coal of the vitrinite- and fusinite + semifusinite-rich samples are similar with δ13C values of − 24.80 ± 0.01‰ VPDB and − 24.61 ± 0.09‰ VPDB for bulk samples and − 24.81 ± 0.07‰ VPDB and − 24.52 ± 0.04‰ VPDB for demineralized samples. These values are within the expected range for vitrinite-rich samples and the slightly higher δ13C value of the fusinite + semifusinite-rich sample is expected as δ13C values for inertinite are higher than for vitrinite. However, there was a significant shift to a lower δ13C value (− 26.80 ± 0.01‰ VPDB for the bulk sample value) for the macrinite-rich sample. Because the samples are basically isorank, and δ13C (and δ15N) shifts do not occur during maturation until anthracite rank, the difference may be related to the presence or composition of the macrinite

  16. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    1985-05-01

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties: volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.

  17. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    CDM Federal Programs Corporation (CDM Federal) was contracted by Martin Marietta Energy Systems, Inc. to prepare a Phase H Sampling Plan to describe field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures. To address deficiencies noted by the regulators, the following activities will be conducted: Background surface soil and surface water/sediment samples will be collected based on statistical considerations for comparison to site data. Existing and new data to be collected will be used to support a human health risk assessment that includes the future homesteader scenario. Biological surveys, samples, and measurements will be collected/conducted to augment existing data and support an ecological risk assessment. Another round of groundwater sampling will be conducted, including on-site wells and the wells on Chestnut Ridge downgradient of the Security Pits. Borings will be completed in the FCAP to collect samples from below the surface depth to describe the chemical characteristics and volume of the ash. The volume of ash associated with sluice channel on Chestnut Ridge will be determined. Soil samples will be corrected below the coal ash in the FCAP and adjacent to sluice channel to evaluate soil contamination and migration of contaminants

  18. Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2.

    Science.gov (United States)

    Saikia, Binoy K; Dalmora, Adilson C; Choudhury, Rahul; Das, Tonkeswar; Taffarel, Silvio R; Silva, Luis F O

    2016-09-01

    The present investigation reports a preliminary attempt of using ultrasonic energy (40kHz) to clean some low rank high sulfur Brazilian power-coal samples in presence of H2O2 solution. All types of sulfur components (i.e. pyritic, sulfate and organic) could be removed from the coal samples by this process. The raw and ultrasonicated coal samples were characterized by chemical analysis, Fourier Transformation Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), focused ion beam (FIB), high-resolution transmission electron microscope (HR-TEM) with selected area electron diffraction (SAED) and/or microbeam diffraction (MBD), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectrometer (EDS), and Thermogravimetry (TG-DTG) techniques to evaluate the clean-coal quality. The FT-IR spectroscopic analysis demonstrated the formation of oxidized sulfur species (SO and -SO2) and their subsequent removals after ultrasonication. The XRD profiles supported the presence of mineral matters in the coals. The TG-DTG profiles of the beneficiated coals revealed their improved quality for using in thermal plants with better combustion efficiency. PMID:27150755

  19. Thermal properties of insulating material prepared from coal fly ash and asphalt

    International Nuclear Information System (INIS)

    Coal power plants are producing ash in enormous quantity as fly ash and bottom ash, whenever coal is combusted. Lakhra Coal Power Plant produces waste of solid fossil fuel and lime stone. Due to the silica, alumina and iron oxide it is good to be used in cement preparation and land filling. In this study a new application is identified, which is more useful and beneficial. This paper presents the results carried out investigating the insulating material prepared from the coal fly ash and asphalt by using the simple unit operations of sizing the materials. At melting temperature of the asphalt sieved fly ash is mixed with it to produce complex heavy sludge. Two samples of different ratios from the rapidly solidifying insulating material were prepared in the molding press at 200 psi pressure. Arm-field heat conduction apparatus HT-l was applied to test its thermal properties. Thermal properties of the material were observed to be heat resistant with mean thermal conductivity at 10 watt 0.8949 w/m-K for Sample No.1 and 0.91886 w/m-K for Sample No.2; whereas the mean thermal resistances calculated were 30.4 I 65m/sup 2/-K/w and 29.6234m/sup 2/-K/w, respectively. The results obtained during this study are satisfactory and we hope that the insulation material prepared would be used in Pakistan in building constructions for heat resistance and insulation purposes. (author)

  20. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79

  1. Characterization and Beneficiation Studies of a Low Grade Bauxite Ore

    Science.gov (United States)

    Rao, D. S.; Das, B.

    2014-10-01

    A low grade bauxite sample of central India was thoroughly characterized with the help of stereomicroscope, reflected light microscope and electron microscope using QEMSCAN. A few hand picked samples were collected from different places of the mine and were subjected to geochemical characterization studies. The geochemical studies indicated that most of the samples contain high silica and low alumina, except a few which are high grade. Mineralogically the samples consist of bauxite (gibbsite and boehmite), ferruginous mineral phases (goethite and hematite), clay and silicate (quartz), and titanium bearing minerals like rutile and ilmenite. Majority of the gibbsite, boehmite and gibbsitic oolites contain clay, quartz and iron and titanium mineral phases within the sample as inclusions. The sample on an average contains 39.1 % Al2O3 and 12.3 % SiO2, and 20.08 % of Fe2O3. Beneficiation techniques like size classification, sorting, scrubbing, hydrocyclone and magnetic separation were employed to reduce the silica content suitable for Bayer process. The studies indicated that, 50 % by weight with 41 % Al2O3 containing less than 5 % SiO2 could be achieved. The finer sized sample after physical beneficiation still contains high silica due to complex mineralogical associations.

  2. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  3. Gamma isotopic analysis of the coals and ashes from coal fired power plants of Turkey

    International Nuclear Information System (INIS)

    Gamma-isotopic analysis of the ashes produced by the combustion of lignite in power stations of Turkey together with the parent coal samples was performed with the aim to estimate its potential adverse impacts on human health. Gamma-isotopic analysis indicated that all samples contained 226Ra (coal samples: 89-148 Bq kg-1; ash samples: 15-26 Bq kg-1), 238U (coal samples: 2-4 μg g-1; ash samples: 9-33 μg g-1), 232Th (coal samples: 1-9 μg g-1; ash samples: 8-12μg g-1), and 40K (coal samples: 26-67 Bq kg-1; ash samples: not detected). 134Cs and 137Cs have not been found in the samples. (author)

  4. 基于PGNAA技术的煤炭成分在线检测中样品重量的影响及修正%Influence of Sample Weight in Coal Composition Online Analysis by PGNAA

    Institute of Scientific and Technical Information of China (English)

    贾文宝; 黑大千; 徐爱国; 陈晓文; 李安民

    2011-01-01

    The influence of the sample weight (or thickness) was investigated on the coal online measuring system (MJA) based on prompt gamma neutron activation analysis (PGNAA) technology. A series of the coal samples with different weights were tested and the experimental spectra were analyzed. An amended method was proposed to correct for the influence of the sample weight. Experimental results indicate that this method is feasible, and the measurement results can satisfy the request.%利用瞬发γ中子活化分析(PGNAA)技术的煤炭成分在线检测系统(MJA),对不同的煤炭样品进行实验测试,通过对不同重量煤样的实验谱进行分析研究,提出了容重补偿模型,利用修正函数校正了样品重量变化对测量结果的影响.经实验验证,模型切实可行,能满足生产现场要求.

  5. Reactivity of brazilian coal, charcoal, imported coal and blends aiming to their injection into blast furnaces

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves Maria da Silva Machado

    2010-09-01

    Full Text Available For about 10 years the steel industry in Brazil has used pulverized coal injection (PCI technology in the blast furnaces based on imported coals. In order to decrease the dependence on imported coals, Brazilian coal, which has limited use due to high ash content, was suggested to be mixed with imported coal and charcoal. The aim was to examine the reactivity of the samples. The charcoal use in the steel industry contributes to the CO2 emission reduction, since it represents a renewable source of energy. The reactivity of the coals, charcoal and mixtures was evaluated through simultaneous thermal analyses. Results of this study are presented and discussed.

  6. Fluorine in Asturian coals

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Tarazona, M.R.; Suarez-Fernandez, G.P.; Cardin, J.M. (Instituto Nacional del Carbon, Oviedo (Spain))

    1994-07-01

    Concentrations of fluorine in Asturian bituminous coals and anthracites have been determined. Fluorine analysis has been carried out by comparing oxygen bomb combustion and pyrohydrolysis methods. Pyrohydrolysis revealed higher values in samples whose ash contents were greater than 25 wt%, which in turn was related to fluorine contents higher than 100 ppm. Good correlation between fluorine and ash content suggests that fluorine is present in these coals in mineral species, and is not probably associated with organic matter. The association of fluorine with phosphorus is also discussed. An excess of fluorine concentration versus phosphorus, corresponding to fluorapatite, has been found. 17 refs., 3 figs., 2 tabs.

  7. Phase 2 Sampling Plan for Chestnut Ridge Operable Unit 2 (Filled Coal Ash Pond/Upper McCoy Branch) at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    CDM Federal Programs Corporation (CDM Federal) was contracted by Energy Systems to prepare a Phase II Sampling Plan to describe the field investigation work necessary to address regulatory agency review comments on the Remedial Investigation of the Filled Coal Ash Pond (FCAP)/Upper McCoy Branch, Chestnut Ridge Operable Unit 2 at the Y-12 Plant, conducted by CH2M Hill in 1990. The scope and approach of the field investigation described in this plan specifically focus on deficiencies noted by the regulators in discussions at the comment resolution meeting of May 8, 1992, in Oak Ridge, Tennessee. This Phase II Sampling Plan includes a field sampling plan, a field and laboratory quality assurance project plan, a health and safety plan, a waste management plan, and appendixes providing an update to the applicable or relevant and appropriate requirements for this site and field and laboratory testing methods and procedures

  8. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  9. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111830 Cai Hou’an(State Key Laboratory of Coal Resources and Safety Mining,China University of Mining and Technology,Beijing 100083,China);Xu Debin The Discovery of Thrust Nappe Structure in Zhangwu-Heishan Area,Liaoning Province and Its Significance for Coal-Searching(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(5),2010,p.1-6,5 illus.,31 refs.)Key words:coalfield prediction,nappe structure,Liaoning Province Zhangwu-Heishan area in west Liaoning Province is an important perspective area for alternative resources in the periphery of Fuxin Basin.Based on r

  10. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>20122522 Guo Dongxin ( School of Energy Resource,China University of Geosciences,Bei-jing 100083,China );Tang Shuheng Sequence Strata and the Coal Accumulation of Wunite Coafield,Inner Mongolia ( Coal Geology & Exploration,ISSN1001-1986,CN61-1155 / P,39 ( 6 ), 2011,p.1-5,5illus.,16refs. ) Key words:sequence stratigraphy,coal accumulation regularity,Inner Mongolia Based on the study of the stratigraphy sequence of the Bayanhua Formation of Lower Cretaceous in Wunite coafield ,

  11. EDXRF analysis of coal, shale and sandstone from boreholes of Jharia and Ranchi coal field

    International Nuclear Information System (INIS)

    The major and trace element concentrations of relevant elements e.g. Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Pb, Rb and Sr in the coal, shale and sandstone samples collected in boreholes from two coalfields, i.e, Jharia and near Ranchi were estimated by energy dispersive X-ray analysis (EDXRF). The elemental profile in the coal samples reflected the elemental compositions determined in the shale and sandstone. Sulphur level in the coal samples, an important parameter for quality of coal was measured to be 0.93% w/w from Jharia field which was nearly two folds higher than the coal samples from Ranchi (0.5% w/w) area. Some of the trace elements in Ranchi coal were found to be significantly higher than the Jharia coal, which can be attributed to its higher grade and also difference in Provenance. (author)

  12. Coal and coke - Analysis and testing - Coal and coke - Chlorine - High-temperature combustion method

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-09-29

    This Standard sets out a method for the liberation of the chlorine from coal and coke by high-temperature combustion, and its subsequent determination by titrimetry. The presence of residual halogen-bearing organic float-and-sink liquids in coal samples will affect the determination of chlorine. This Standard is applicable to coal and coke containing less than 0.3% chlorine.

  13. Advanced development of fine coal desulfurization and recovery technology. Quarterly technical progress report, October 1, 1976--December 31, 1976. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.W.; Wheelock, T.D.

    1977-02-01

    The improvement and technical development of promising methods for desulfurizing and recovering fine coal underway includes froth flotation, selective oil agglomeration, pelletization, and a chemical desulfurization process which involves leaching fine coal with a hot dilute solution of sodium carbonate containing dissolved oxygen under pressure. A preliminary assessment of the state of the art and review of the technical literature has been made. Equipment and apparatus have been assembled for small-scale laboratory experiments in froth flotation, oil agglomeration and chemical desulfurization. Preliminary froth flotation tests have been carried out on an Iowa coal to establish baseline data. Quite unexpectedly these tests indicated that aluminum nitrate may be an activator for coal because it served to increase the recovery of coal. Several potential flotation depressants for pyrite have been screened by measurement at the zeta potential and floatability of pyrite or coal in aqueous suspensions containing the potential depressants. The following reagents show some promise as pyrite depressants: ferric chloride, sodium cyanide, ammonium thiocyanate, and the disodium salt of ethylenediaminetetraacetic acid. Preliminary plans have been prepared for a continuous flow bench-scale system to demonstrate the process. This system will include equipment for grinding and pretreating the coal as well as equipment for demonstrating froth flotation, selective oil agglomeration and pelletization. An investigation of coal microstructure as it relates to coal beneficiation methods has also been initiated. The distribution of various forms of pyrite by size and crystal structure has been determined for two cannel samples of coal through application of scanning electron microscope techniques.

  14. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20132555 Bao Yuan(School of Resources and Geosciences,China University of Mining and Technology,Xuzhou 221008,China);Wei Chongtao Simulation of Geological Evolution History of the Upper Permian Coal Seam No.8in Shuigonghe Syncline,Zhina Coalfield,Guizhou Province(Coal Geology&Exploration,ISSN1001-1986,CN61-1155/P,40(6),2012,p.13-16,23,1illus.,1table,17refs.)

  15. Indo-European seminar on clean coal technology and power plant upgrading. Technical papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    A total of 25 papers were presented at the seminar in nine sessions with the following headings: future of coal based power generation and an overview of technologies; coal beneficiation/homogenisation; environment technologies/ash disposal/utilisation I, II and III; renovation/life extension I + II; and advanced coal fired plants I + II. All papers have been abstracted separately for the IEA Coal Research CD-ROM.

  16. Characterization of Malaysian coals for carbon dioxide sequestration

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  17. The Roles of Beneficiation in Lunar Work

    Science.gov (United States)

    Rickman, Doug L.

    2010-01-01

    Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.

  18. Modulation of host immunity by beneficial microbes

    NARCIS (Netherlands)

    Zamioudis, C; Pieterse, C.M.J.

    2012-01-01

    In nature, plants abundantly form beneficial associations with soilborne microbes that are important for plant survival and, as such, affect plant biodiversity and ecosystem functioning. Classical examples of symbiotic microbes are mycorrhizal fungi that aid in the uptake of water and minerals, and

  19. [Prebiotics: concept, properties and beneficial effects].

    Science.gov (United States)

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-01-01

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits. PMID:25659062

  20. [Coal fineness effect on primary particulate matter features during pulverized coal combustion].

    Science.gov (United States)

    Lü, Jian-yi; Li, Ding-kai

    2007-09-01

    Three kinds of coal differed from fineness were burned in a laboratory-scale drop tube furnace for combustion test, and an 8-stage Andersen particle impactor was employed for sampling the primary particulate matter (PM), in order to study coal fineness effect on primary PM features during pulverized coal combustion. It has been shown that the finer the coal was, the finer the PM produced. PM, emission amount augmented with coal fineness decreased, and the amount of PM10 increased from 13 mg/g to 21 mg/g respectively generated by coarse coal and fine coal. The amount of PM2.5 increased from 2 mg/g to 8 mg/g at the same condition. Constituents and content in bulk ash varied little after three different fineness coal combustion, while the appearance of grading PM differed visibly. The value of R(EE) increased while the coal fineness deceased. The volatility of trace elements which were investigated was Pb > Cr > Zn > Cu > Ni in turn. The concentration of poisonous trace elements was higher which generated from fine coal combustion. The volatilization capacity was influenced little by coal fineness, but the volatilization extent was influenced differently by coal fineness. Fine coal combustion affects worse environment than coarse coal does. PMID:17990536

  1. Characterization of Some Nigerian Coals for Power Generation

    OpenAIRE

    Chukwu, M.; Folayan, C. O.; Pam, G. Y.; D.O. Obada

    2016-01-01

    Five coal samples from Odagbo (Kogi State), Owukpa (Benue State), Ezimo (Enugu State), Amansiodo (Enugu State), and Inyi (Enugu State) of Nigerian coal deposits were subjected to proximate analysis, ultimate analysis, calorific value determination, and petrographic and thermogravimetric analysis to determine their suitability for power generation. Based on results of tests carried out, Amansiodo coal is a bituminous, low sulphur, and medium ash coal, while Owukpa coal is a subbituminous A, lo...

  2. Coal -98

    International Nuclear Information System (INIS)

    The following report deals with the use of coal and coke during 1997. Some information about technic, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from SCB have also been used. The use of steam coal for heating purposes during 1997 was 730 000 tons and about 500 000 tons lower than in 1996. The extremely high figures of 1996 were due to twice the production of electricity because of lack of hydro power. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. Some foreign analysts, however, estimate a doubled use of coal for energy use after 2020 because of the plans to phase out the nuclear power. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. 1997 these figures are 2 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1997 was 1.6 mill tons like the year before. 1.2 mill tons coke were produced. The coke consumption in the industry was 1.5 Mill tons. 0.3 mill tons of coke were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has plans to build a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has taken a fluid bed boiler for different fuels in operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm

  3. Coal 99

    International Nuclear Information System (INIS)

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested

  4. Utilisation of chemically treated coal

    International Nuclear Information System (INIS)

    The numerous application of coal with high content of humic substances are known. They are used in many branches of industry. The complex study of the composition of coal from upper Nitra mines has directed research to its application in the field of ecology and agriculture. The effective sorption layers of this coal and their humic acids can trap a broad spectrum of toxic harmful substances present in industrial wastes, particularly heavy metals. A major source of humic acids is coal - the most abundant and predominant product of plant residue coalification. All ranks of coal contain humic acids but lignite from Novaky deposit represents the most easily available and concentrated from of humic acids. The possibilities of utilisation of humic acids to remove heavy metals from waste waters was studied. The residual concentrations of the investigated metals in the aqueous phase were determined by AAs. From the results follows that the samples of coals humic acids can be used for the heavy metal removal from metal solutions and the real acid mine water. Oxidised coal with high content of humic acids and nitrogen is used in agriculture as fertilizer. Humic acids are active component in coal and can help to utilize almost quantitatively nitrogen in soil. The humic substances block and stabilize toxic metal residues already present in soil. (author)

  5. Sulfur meter speeds coal blending

    International Nuclear Information System (INIS)

    The sulfur content has become the most important criterion that industry looks at when purchasing coal. The exact amount of sulfur in coal being processed by a preparation plant must be known and, if possible, controlled by blending coal streams of various sulfur contents. Present techniques, however, of measuring the sulfur in coal involve laborious and time-consuming sampling and chemical analysis (12 to 24 hr), and the results usually are not available until the following day. By then, the coal barges or trains are already on the way to their destinations. A new nuclear sulfur meter is expected to overcome these difficulties and help lead to true automation in coal preparation plants. Initially developed by the Bureau of Mines' Morgantown Energy Research Center (MERC) at Morgantown, W. Va., and completed after reorganization of the center by the US Energy Research and Development Administration (ERDA), the meter can scan coal to produce a reading within 2 min to an accuracy of 0.04 percent sulfur. The meter is expected to soon result in an element-ash-moisture-Btu meter that would rapidly detect the sulfur, sodium, potassium, and overall mineral content of the coal, as well as its ash and Btu content

  6. Influence of Coal Particle Size on Coal Adsorption and Desorption Characteristics

    Science.gov (United States)

    Zhang, Lei; Aziz, Naj; Ren, Ting; Nemcik, Jan; Tu, Shihao

    2014-10-01

    Accurate testing coal isotherm can play a significant role in the areas of coal seam gas drainage, outburst control, CO2 geo-sequestration, coalbed methane (CBM) and enhanced coalbed methane recovery (ECBM) etc. The effect of particle size on the CO2 and CH4 sorption capacity of bituminous coal from Illawarra, Australia was investigated at 35°C and at pressure up to 4 MPa. A unique indirect gravimetric apparatus was used to measure the gas adsorption and desorption isotherms of coal of different particle sizes ranging from around 150 urn to 16 mm. Langmuir model was used to analysis the experimental results of all gases. Coal particle size was found to have an apparent effect on the coal ash content and helium density results. Coal with larger particle size had higher ash content and higher helium density. The sorption isotherm was found to be highly sensitive with helium density of coal which was determined in the procedure of testing the void volume of sample cell. Hence, coal particle size had a significant influence on the coal sorption characteristics including sorption capacity and desorption hysteresis for CO2 and CH4, especially calculated with dry basis of coal. In this study, the 150-212 um (150 um) coal samples achieved higher sorption capacity and followed by 2.36-3.35 mm (2.4 mm), 8-9.5 mm (8 mm) and 16-19 mm (16 mm) particle size samples. However, the differences between different coal particles were getting smaller when the sorption isotherms are calculated with dry ash free basis. Test with 150 um coal samples were also found to have relatively smaller desorption hysteresis compared with the other larger particle size samples. The different results including adsorption/desorption isotherm, Langmuir parameters and coal hysteresis were all analysed with the CO2 and CH4 gases.

  7. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis;

    2015-01-01

    beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning......Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... on the impact category. The largest potential of the technology is observed for high-ash lignites, with initial ash content above 30%, for which the environmental benefits from firing cleaner coal can outweigh the environmental burden of cleaning for some impact categories. Overall, we recommend to policy...

  8. Correlation of coal liquefaction reactivity with coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Durfee, S.L.; Voorhees, K.J.

    1983-01-01

    A narrow suite of bituminous coals chosen from the DOE/Penn State sample bank has been hydrogenated in a batch stirred autoclave. Rates of conversion to THF-solubles have been measured, and the data modeled using a pseudo-second order rate expression. Extent of conversion and rate of conversion of the coals in the suite have been correlated to coal compositional parameters and structural features. Recent data on reactivity correlations with information from pyrolysis/mass spectrometry and C-NMR are presented. (2 tables, 5 figs., 17 refs.)

  9. Correlation of coal liquefaction reactivity with coal properties

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Durfee, S.L.; Voorhees, K.J.

    1983-01-01

    A narrow suite of bituminous coals chosen from the DOE/Penn State sample bank has been hydrogenated in a batch stirred autoclave. Rates of conversion to THF solubles have been measured, and the data modeled using a pseudo-second order rate expression. Extent of conversion and rate of conversion of the coals in the suite have been correlated to coal compositional parameters and structural features. Recent data on reactivity correlations with information from pyrolysis/mass spectrometry and C-NMR are presented.

  10. Characterization of Coal Reservoirs in Two Major Coal Fields in Northern China: Implications for Coalbed Methane Development

    OpenAIRE

    Junjia Fan; Yiwen Ju; Quanlin Hou; Yudong Wu; Xiaoshi Li

    2012-01-01

    Based on the macroscopic and microscopic observation of coal structure, the vitrinite reflectance analysis, and the mercury injection testing of coal samples collected from Huaibei coalfield and Qinshui basin, the characterization of coal reservoir and its restriction on the development of coalbed methane are studied. The results indicate that coal reservoir in study area can be classified as five types according to the coal metamorphism and deformation degrees, and they are respectively high...

  11. Development of an advanced high efficiency coal combustor for boiler retrofit

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  12. Development of an advanced high efficiency coal combustor for boiler retrofit. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    LaFlesh, R.C.; Rini, M.J.; McGowan, J.G.; Beer, J.M.; Toqan, M.A.

    1990-04-01

    The objective of the program was to develop an advanced coal combustion system for firing beneficiated coal fuels (BCFs) capable of being retrofitted to industrial boilers originally designed for firing natural gas. The High Efficiency Advanced Coal Combustor system is capable of firing microfine coal-water fuel (MCWF), MCWF with alkali sorbent (for SO{sub 2} reduction), and dry microfine coal. Design priorities for the system were that it be simple to operate and offer significant reductions in NO{sub x}, SO{sub x}, and particulate emissions as compared with current coal-fired combustor technology. (VC)

  13. Coal 95

    International Nuclear Information System (INIS)

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO2 and NOx as given by county administrations or concession boards. The cogeneration plants all have some SO2 removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NOx cleaning system. Most other plants use low NOx burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs

  14. Open-gradient magnetic separation for physical coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R.D.; Livengood, C.D.

    1990-01-01

    Open-Gradient Magnetic Separation (OGMS) using superconducting quadrupole magnets offers a novel beneficiation technology for removing pyritic sulfur from pulverized dry coal. It is estimated to have a power demand 75% lower than techniques using conventional electromagnets, while achieving higher separation forces. Additionally, the system operates in a continuous mode and uses no chemicals. Because OGMS is specifically applicable to finely ground coal (120--325 mesh), its development could encourage the commercialization of other unconventional coal technologies, such as coal-water slurries, fluidized-bed combustion, and synfuels. 3 figs., 1 tab.

  15. Study of the correlation between the coal calorific value and coal ash content using X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    In this paper we have studied the possibility of determining the chemical elements in coal samples using X-ray fluorescence analysis and have found a relationship between the coal calorific value and its ash content with the coal moisture accounting. The amount of coal ash can be determined by the content of the basic chemical elements, such as Si, Sr, Fe, and Ca. It was concluded that the calorific value of coal can be estimated from the ash content in coal without the calorimetric measurements. These correlation coefficients were calculated for several coal mines in Mongolia. The results are in good agreement with the results of chemical analysis

  16. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    Science.gov (United States)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  17. Mercury distribution in coals influenced by magmatic intrusions, and surface waters from the Huaibei Coal Mining District, Anhui, China

    International Nuclear Information System (INIS)

    Highlights: • Hg concentrations in coal and surface water samples were determined. • Hg is enriched in the Huaibei coals. • Magmatic activities imparted influences on Hg content and distribution. • Hg contents in surface waters are relative low at the present status. - Abstract: The Hg concentrations in 108 samples, comprising 81 coal samples, 1 igneous rock, 2 parting rock samples and 24 water samples from the Huaibei Coal Mining District, China, were determined by cold-vapor atomic fluorescence spectrometry. The abundance and distribution of Hg in different coal mines and coal seams were studied. The weighted average Hg concentration for all coal samples in the Huaibei Coalfield is 0.42 mg/kg, which is about twice that of average Chinese coals. From southwestern to northeastern coalfield, Hg concentration shows a decreasing trend, which is presumably related to magmatic activity and fault structures. The relatively high Hg levels are observed in coal seams Nos. 6, 7 and 10 in the southwestern coal mines. Correlation analysis indicates that Hg in the southwestern and southernmost coals with high Hg concentrations is associated with pyrite. The Hg concentrations in surface waters in the Huaibei Coal Mining District range from 10 to 60 ng/L, and display a decreasing trend with distance from a coal waste pile but are lower than the regulated levels for Hg in drinking water

  18. Analysis of the dialectical relation between top coal caving and coal-gas outburst

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-zheng; XIA Yong-jun; TANG Bing; ZHANG Yong-jiang

    2009-01-01

    According to the different engineering mechanical states of top coal caving and normal stoping of gaseous loose thick coal seams, the dialectical relation between this caving method and dynamic disasters was analyzed by simulating the change of stress states in the process of top coal initial caving with different mining and caving ratios based on the ANSYS10.0. The variation of elastic energy and methane expansion energy during first top coal caving was analyzed by first weighting and periodic weighting and combining with coal stress and deformation distribution of top coal normal stoping as well as positive and negative examples in top coal caving of outburst coal seam. The research shows that the outburst risk increases along with the increase of the caving ratio in the initial mining stage. In the period of normal stoping, when the mining and caving ratio is smaller than 1:3 and hard and massive overlying strata do not exist (periodic weighting is not obvious), it is beneficial to control ground stress leading type outburst. Thus, it is unreasonable to prohibit top coal caving in dangerous and outburst prone areas.

  19. Beneficial uses of radioisotopic waste program

    International Nuclear Information System (INIS)

    Activities include efforts to: (1) develop a cost-effective radioisotope separation technology based on column separation techniques associated with the Sandia Solidification Process and (2) develop a broader technology for beneficial applications of the separated isotopes, including engineered radioactive sources and applications facilities and/or devices, and studies related to cost-effectiveness, safety, and security of these sources, facilities, and devices. (LK)

  20. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  1. Estimation of Coal Bed Methane Potential of Coal Seams of Margherita Coal Field, Assam, India

    Directory of Open Access Journals (Sweden)

    Prasenjit Talukdar

    2015-06-01

    Full Text Available The rapid industrialization and growing energy needs have put a great stress on the conventional energy resources. This is even more concerning for a country like India which is a net importer of oil. To meet the ever increasing need for energy, it is essential that the search for unconventional energy is intensified. This paper deals with the estimation of coal bed methane potential of the Margherita Coal Field of Assam, India. For this purpose, eight coal samples were collected from Tirap O.C.P., Ledo UG Incline and Tikak O.C.P collieries of the Margherita coal field. Proximate analysis, megascopic study and finally qualitative analysis of these eight samples was undertaken. After analysis, the inferred reserves of CBM at Margherita Coalfield, was found to be in the range of 42.5-49.04 Billion Cubic Meter.

  2. Mapping and prediction of Coal Workers' Pneumoconiosis with bioavailable iron content in the bituminous coals

    Science.gov (United States)

    Huang, X.; Li, W.; Attfield, M.D.; Nadas, A.; Frenkel, K.; Finkelman, R.B.

    2005-01-01

    Based on the first National Study of Coal Workers' Pneumoconiosis (CWP) and the U.S. Geological Survey database of coal quality, we show that the prevalence of CWP in seven coal mine regions correlates with levels of bioavailable iron (BAI) in the coals from that particular region (correlation coefficient r = 0.94, p < 0.0015). CWP prevalence is also correlated with contents of pyritic sulfur (r = 0.91, p < 0.0048) or total iron (r = 0.85, p < 0.016) but not with coal rank (r = 0.59, p < 0.16) or silica (r = 0.28, p < 0.54). BAI was calculated using our model, taking into account chemical interactions of pyrite, sulfuric acid, calcite, and total iron. That is, iron present in coals can become bioavailable by pyrite oxidation, which produces ferrous sulfate and sulfuric acid. Calcite is the major component in coals that neutralizes the available acid and inhibits iron's bioavailabiity. Therefore, levels of BAI in the coals are determined by the available amounts of acid after neutralization of calcite and the amount of total iron in the coals. Using the linear fit of CWP prevalence and the calculated BAI in the seven coal mine regions, we have derived and mapped the pneumoconiotic potencies of 7,000 coal samples. Our studies indicate that levels of BAI in the coals may be used to predict coal's toxicity, even before large-scalen mining.

  3. Effect of the coal particle size on pyrolysis and char reactivity for two types of coal and demineralized coal

    Energy Technology Data Exchange (ETDEWEB)

    Wenkui Zhu; Wenli Song; Weigang Lin [Chinese Academy of Sciences, Beijing (China). State Key Laboratory of Multi-phase Complex System

    2008-07-15

    A better understanding of the influence of particle size on pyrolysis and char reactivity is of crucial importance in optimizing the integrated process combining coal topping (coal fast pyrolysis) with char gasification. Different size fractions of two types of coal and demineralized coal were pyrolyzed in a spouted bed. The resulting chars were characterized by X-ray diffraction, and char reactivity was determined in a thermogravimetric analyzer (TGA). Within the range of particle sizes investigated, an increase in particle size results in an increase of char yield, which may be caused by the secondary reactions of volatile matters inside the coal particles. No significant difference in crystallinity was observed for the chars from different size fractions of the parent coals, while more crystallinity was observed for the chars from demineralized coals, which suggests that minerals in the coal play a role in the reduction of char crystallinity during pyrolysis. Char reactivity for raw coals decreased with the increasing of the particle size. For the demineralized coal samples, the change in char reactivity with the increasing of the particle size was reduced. Both the secondary reactions of volatiles and mineral distribution are believed to cause the influence of coal particle size on char reactivity. 19 refs., 7 figs., 3 tabs.

  4. Characterization of coal water slurry prepared for PRB coal

    Institute of Scientific and Technical Information of China (English)

    Fei Yi; Akshay Gopan; Richard L. Axelbaum

    2014-01-01

    Powder River Basin (PRB) coal, which accounts for over 40% of the coal consumed for power generation in the United States, was investigated for preparation of coal water slurry ( CWS). The static stability and rheology of the CWS were characterized as a function of loading. The coal loading was varied from 30% to 50% and both ionic ( sodium polystyrene sulphonate (PSS)) and nonionic (Triton X-100) surfactants were employed as additives. The addition of PSS to PRB slurries was found to yield poor static stability. On the other hand, Triton X-100 was found to be an effective surfactant, reducing the sedimentation by more than 50% compared to the one without surfactant in 45% CWS. Adding Triton X-100 reduces the viscosity of the CWS for coal loadings of 30% and 40% . Although the viscosities for coal loading of 42. 5% and 45% are higher when Triton X-100 is added, the static stability is significantly better than for samples without surfactant. The highest coal loading for PRB slurry with acceptable viscosity for pumping is 42. 5% .

  5. Characterization of Some Nigerian Coals for Power Generation

    Directory of Open Access Journals (Sweden)

    M. Chukwu

    2016-01-01

    Full Text Available Five coal samples from Odagbo (Kogi State, Owukpa (Benue State, Ezimo (Enugu State, Amansiodo (Enugu State, and Inyi (Enugu State of Nigerian coal deposits were subjected to proximate analysis, ultimate analysis, calorific value determination, and petrographic and thermogravimetric analysis to determine their suitability for power generation. Based on results of tests carried out, Amansiodo coal is a bituminous, low sulphur, and medium ash coal, while Owukpa coal is a subbituminous A, low sulphur, low ash coal rich in huminites, Odagbo coal is a subbituminous B, medium sulphur, low ash coal rich in huminites, Ezimo coal is a subbituminous C, low sulphur, high ash coal, and Inyi coal is a subbituminous C, low sulphur, high ash coal. Between Odagbo and Owukpa subbituminous coals, Owukpa has a lower ignition temperature (283.63°C due to its higher volatile matter content (39.1%. However, Ezimo subbituminous coal, which has a lower volatile matter (31.1%, unexpectedly has the same ignition temperature as Owukpa (283.63°C due to its higher liptinite content (7.2% when compared with that of Owukpa (2.9%. The ease of combustion of the coal samples in decreasing order is Odagbo < Owukpa < Inyi < Ezimo < Amansiodo.

  6. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.Z.; Fan, J.S.; Qin, P.; Niu, H.Y. [Hebei University of Engineering, Handan (China)

    2009-02-15

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.

  7. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China.

    Science.gov (United States)

    Sun, Y Z; Fan, J S; Qin, P; Niu, H Y

    2009-02-01

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump. PMID:18288575

  8. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  9. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, M.N.

    1994-12-31

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  10. Activity and Structure of Calcined Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coal gangue was activated by means of calcination in seven temperature ranges. Systematic research was made about activation mechanism and structural evolution. Glycerin-ethanol method, SEM, MIP and XRD were used to determine the variation of structure and activation of coal gangue during the calcination.The experimental results show that because of heat treatment in the range of calcination temperature, mineral composition and microstructure of coal gangue are changed. In addition, its activity is improved evidently. The amount of lime absorbed by the sample calcined at 700 C is 2-4 times that by uncalcined coal gangue in the course of hydration. When NaOH is added to coal gangue-lime system, hydration reaction of the system is sped up and the microstructure of hydrating samples of coal gangue is improved.

  11. Activity and structure of calcined coal gangue

    Energy Technology Data Exchange (ETDEWEB)

    Gong Chenchen; Li Dongxu; Wang Xiaojun; Li Zongjin [Nanjing University of Technology, Nanjing (China). College of Materials Science and Engineering

    2007-12-15

    Coal gangue was activated by means of calcination in seven temperature ranges. Systematic research was made about activation mechanism and structural evolution. The glycerin-ethanol method, SEM, MIP and XRD were used to determine the variation of structure and activation of coal gangue during calcination. The experimental results show that because of heat treatment in the range of calcination temperatures, mineral composition and microstructure of coal gangue are changed. In addition, its activity is improved. The amount of lime absorbed by the sample calcined at 700{sup o}C is 2-4 times that by uncalcined coal gangue in the course of hydration. When NaOH is added to coal gangue-lime system, the hydration reaction rate of the system is increased and the microstructure of hydrating samples of coal gangue is improved.

  12. Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil

    International Nuclear Information System (INIS)

    A PAH contaminated river floodplain soil was separated according to grain size and density. Coal and coal-derived particles from coal mining, coal industry and coal transportation activities were identified by organic petrographic analysis in our samples. Distinct concentrations of PAHs were found in different grain size and density fractions, however, similar distribution patterns of PAHs indicated similar sources. In addition, although light fractions had the mass fraction by weight of less than 5%, they contributed almost 75% of the total PAHs in the soil. PAH concentrations of all sub fractions showed positive correlation with their TOC contents. Altogether, coal and coal-derived particles that were abundant in light fractions could be the dominant geosorbents for PAHs in our samples. - Coal and coal-derived particles have been identified as dominant geosorbents for PAHs in a river floodplain soil

  13. Nuclear borehole logging techniques for coal quality

    International Nuclear Information System (INIS)

    The progress achieved by nuclear logging in the coal industry has been significant. The 'in-situ' information about coal seams provided by borehole logging can significantly reduce exploration and development costs. Nuclear borehole logging is used routinely in the exploration for coal and is getting more acceptance in the mining stage for quality control. Nuclear borehole logging is used to delineate the coal strata and to determine their thickness, depth, ash content, calorific value and Fe and Si content of ash. Two techniques have been developed in the last 7 years for coal logging in boreholes: (i) The spectrometric gamma-gamma for the determination of ash content in coal; and (ii) the prompt neutron-gamma method for the determination of ash, calorific value, Si and Fe in coal. In this paper both gamma-gamma and neutron-gamma techniques were developed for delineating the coal seams and predicting the ash content in coal. The neutron-gamma technique is superior because it can also determine the Si and Fe content of coal and it can sample a larger volume of coal. The neutron-gamma technique is less affected by the rugosity and condition of the borehole. (author). 6 refs, 5 figs, 2 tabs

  14. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  15. Database on nuclide content of coal and gangue in Chinese coal mines

    International Nuclear Information System (INIS)

    The designing ides, structure, interface and basic function of a database are introduced of nuclide content of coal or gangue in Chinese coal mine. The design of the database adopts Sybase database system, and the database has the functions of making inquiries of keyword, classification and statistics, printing, data input which are achieved by using Power builder Language program. At the present, in this database, the data are collected on the radioactivity of natural radionuclide of 2043 coal, gangue and the other relative samples from various coal miners of all over the country. The database will provide the basic data for the environmental impact assessment of Chinese coal energy. (authors)

  16. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E. Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  17. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  18. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Winschel, R.A.; Brandes, S.D.; Robbins, G.A.; Burke, F.P.

    1991-11-01

    Consol R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-field: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  19. Primary beneficiation of tantalite using magnetic separation and acid leaching

    Institute of Scientific and Technical Information of China (English)

    M Nete; F Koko; T Theron; W Purcell; JT Nel

    2014-01-01

    Primary beneficiation was successfully performed prior to dissolution of manganotantalite (sample A) and ferrotantalite (sample C) samples obtained from two different mines in the Naquissupa area, Mozambique. Magnetic separation removed the majority of iron and tita-nium, whereas H2SO4 leaching removed a large portion of thorium and uranium in these samples. Analytical results indicated that 64.14wt%and 72.04wt%of the total Fe and Ti, respectively, and~2wt%each of Nb2O5 and Ta2O5 were removed from sample C (ferrotantalite) using the magnetic separation method, whereas only 9.64wt%and 8.66wt%of total Fe2O3 and TiO2, respectively, and~2wt%each of Nb2O5 and Ta2O5 were removed from sample A (manganotantalite). A temperature of 50°C and a leaching time of 3 h in the presence of concentrated H2SO4 were observed to be the most appropriate leaching conditions for removal of radioactive elements from the tantalite ores. The results obtained for sample A under these conditions indicated that 64.14wt%U3O8 and 60.77wt%ThO2 were leached into the acidic solution, along with 4.45wt%and 0.99wt%of Nb2O5 and Ta2O5, respectively.

  20. Investigation of open-gradient magnetic separation for Illinois coal

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R.D.; Livengood, C.D.; Genens, L.E.; Swietlik, C.E.; Foote, K.

    1987-01-01

    Open-gradient magnetic separation (OGMS) using superconducting quadrupole magnets is a novel coal-beneficiation technology offering high pyritic-sulfur removal from pulverized dry coal. The system operates in a continuous mode, uses no chemicals, and has an estimated power demand 75% lower than techniques using conventional electromagnets, while achieving magnetic separation forces up to 267% higher. Specifically applicable to finely ground coal (120 to 325 mesh), OGMS could encourage the commercialization of other developing coal technologies, such as coal-water slurries, fludized-bed combustion, and coal synfuels. Both the experimental program conducted by Argonne National Laboratory and the results of modeling in support of the experimental program are described. 11 refs., 9 figs.

  1. Fernald scrap metal recycling and beneficial reuse

    Energy Technology Data Exchange (ETDEWEB)

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the {open_quotes}beneficial reuse{close_quotes} concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned.

  2. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.;

    2012-01-01

    In 1908, members of the “Danmark Expedition” discovered a coal deposit in a very remote area in western Germania Land, close to the margin of the inland ice in northeast Greenland. The deposit was, however, neither sampled nor described, and was revisited in 2009 for the first time since its...... discovery. The outcrops found in 2009 amount to approximately 8 m of sediment including a coal seam of 2 m thickness. More outcrops and additional coal deposits most certainly are to be found, pending further fieldwork. The deposits are Middle Jurassic, Callovian, in age and were deposited in a floodplain...... environment related to meandering river channels. Spores and pollen in the lower fluvial deposits reflect abundant vegetation of ferns along the river banks. In contrast, a sparse spore and pollen flora in the coals show a mixed vegetation of ferns and gymnosperms. Based on proximate and petrographic analyses...

  3. Coal industry annual 1997

    International Nuclear Information System (INIS)

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs

  4. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  5. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  6. Coal industry annual 1996

    International Nuclear Information System (INIS)

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs

  7. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  8. Coal Industry Annual 1995

    International Nuclear Information System (INIS)

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995

  9. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  10. Tribocharging Lunar Soil for Electrostatic Beneficiation

    Science.gov (United States)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  11. Coal and Energy.

    Science.gov (United States)

    Bryant, Reba; And Others

    This teaching unit explores coal as an energy resource. Goals, student objectives, background information, and activity options are presented for each major section. The sections are: (1) an introduction to coal (which describes how and where coal was formed and explains the types of coal); (2) the mining of coal (including the methods and ways of…

  12. Coal wizards of Oz

    Energy Technology Data Exchange (ETDEWEB)

    Hornsby, D.T.; Partridge, A.C. [Australian Coal Preparation Society, Indooroopilly, Qld. (Australia)

    1998-03-01

    The first of two parts of a paper discusses how the Australian coal industry has grown to become the world`s largest coal exporter. Bar charts show coal product, exports, and consumption of metallurgical and steaming coal for the years 1987 to 1996. The importance of coal preparation is discussed. 8 figs., 2 photos.

  13. Geochemistry of beryllium in Bulgarian coals

    Energy Technology Data Exchange (ETDEWEB)

    Eskenazy, Greta M. [Geology Department, University of Sofia ' St. Kl. Ohridski' , Tzar Osvoboditel 15, Sofia 1504 (Bulgaria)

    2006-04-03

    The beryllium content of about 3000 samples (coal, coaly shales, partings, coal lithotypes, and isolated coalified woods) from 16 Bulgarian coal deposits was determined by atomic emission spectrography. Mean Be concentrations in coal show great variability: from 0.9 to 35 ppm for the deposits studied. There was no clear-cut relationship between Be content and rank. The following mean and confidence interval Be values were measured: lignites, 2.6+/-0.8 ppm; sub-bituminous coals, 8.2+/-3.3 ppm; bituminous coals, 3.0+/-1.2 ppm; and anthracites, 19+/-9.0 ppm. The Be contents in coal and coaly shales for all deposits correlated positively suggesting a common source of the element. Many samples of the coal lithotypes vitrain and xylain proved to be richer in Be than the hosting whole coal samples as compared on ash basis. Up to tenfold increase in Be levels was routinely recorded in fusain. The ash of all isolated coalified woods was found to contain 1.1 to 50 times higher Be content relative to its global median value for coal inclusions. Indirect evidence shows that Be occurs in both organic and inorganic forms. Beryllium is predominantly organically bound in deposits with enhanced Be content, whereas the inorganic form prevails in deposits whose Be concentration approximates Clarke values. The enrichment in Be exceeding the coal Clarke value 2.4 to 14.5 times in some of the Bulgarian deposits is attributed to subsynchronous at the time of coal deposition hydrothermal and volcanic activity. (author)

  14. Sampling strategies and materials for investigating large reactive particle complaints from Valley Village homeowners near a coal-fired power plant

    International Nuclear Information System (INIS)

    This paper will present Phase 3's sampling strategies, techniques, methods and substrates for assisting the District to resolve the complaints involving yellowish-brown staining and spotting of homes, cars, etc. These spots could not be easily washed off and some were permanent. The sampling strategies for the three phases were based on Phase 1 -- the identification of the reactive particles conducted in October, 1989 by APCD and IITRI, Phase 2 -- a study of the size distribution and concentration as a function of distance and direction of reactive particle deposition conducted by Radian and LG and E, and Phase 3 -- the determination of the frequency of soiling events over a full year's duration conducted in 1995 by APCD and IITRI. The sampling methods included two primary substrates -- ACE sheets and painted steel, and four secondary substrates -- mailbox, aluminum siding, painted wood panels and roof tiles. The secondary substrates were the main objects from the Valley Village complaints. The sampling technique included five Valley Village (VV) soiling/staining assessment sites and one southwest of the power plant as background/upwind site. The five VV sites northeast of the power plant covered 50 degrees span sector and 3/4 miles distance from the stacks. Hourly meteorological data for wind speeds and wind directions were collected. Based on this sampling technique, there were fifteen staining episodes detected. Nine of them were in summer, 1995

  15. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20140318Chen Xinwei(Reserves Evaluation Center of Xinjiang,Urumqi 830000,China);Li Shaohu Analysis on Sequence Stratigraphy Based on Jurassic Outcrop in Kuqa-Bai Coalfield(Xinjiang Geology,ISSN1000-8845,CN65-1092/P,32(1),2013,p.77-82,2illus.,12refs.,with English abstract)Key words:sequence stratigraphy,coal accumulation regularity,Xinjiang

  16. Coal-93

    International Nuclear Information System (INIS)

    The following report deals with the use of coal and coke during 1992. Some information about technics, environmental questions and markets are also given. The use of steamcoal for heating purposes has been reduced by about 10 percent during 1992 to the level of 1.1 million ton. This is the case for both heat generating boilers and co-generation boilers. On the other hand, the electricity production in the cogeneration plants have increased, mainly for tax reasons. The minor plants have increased their use of forest fuels, LPG and NG. During 1987 coal was used in 18 hotwater plants and 11 cogeneration plants. For 1992 these figures are 5 and 9. Taxes and environmental reasons explain this trend. The industry has reduced its use of steamcoal by 140 000 tons to about 700 000 tons. The reason is a cut down of production in particularly the cement industry and the mineral wool industry. The steamcoal import was 1.2 million tons during 1992, the same as the year before. The import has been lower than the consumption during the last years. The companies have reduced their stocks because of changed laws about emergency stocks. The average price of steamcoal imported in Sweden in 1992 was 272 SEK/ton or 25 SEK/ton lower than in 1991. The coal market during 1992 was affected by smaller consumption in Europe, shut downs of European mines and decreasing prices. Among other things independent mines in Russia and Poland have dumped low quality coals. A structuring of both process and quality has now begun. Western companies have for instance started joint ventures with Russian companies and supplied washing- and classifying equipments. All Swedish plants meet their emission limits of dust, SO2 and NOx given by county administrations or concession boards. 13 tabs

  17. MEASUREMENT OF MERCURY IN CHINESE UTILITY COAL

    Science.gov (United States)

    The paper gives results of analyzing representative samples of 20 Chinese utility coals for mercury content, and proximate, ultimate, and heating values. The data for these bituminous coals, obtained from China with the cooperation of the Chinese University of Mining Technology,...

  18. An overview of coal preparation initiatives with application to coal conversion in South Africa

    International Nuclear Information System (INIS)

    Coal has for many years been the most important energy resource in South Africa and has contributed to more than 70 % of South Africa's energy needs in 1998. The large in-situ coal deposits (in excess of 120 x 109 t) and relatively large recoverable reserves (about 33.5 x 109 t) will ensure that coal will for many a year still be South Africa's single biggest energy resource. Biomass burning consumes approximately 11 Mt/a of which 8 Mt/a is natural wood. This equals natural wood production. The use of firewood is considered to be unsustainable. Of the 225 Mt/a of coal extracted in South Africa in 1998, 67.0 Mt/a was exported. Of this, 62.9 Mt/a were exported as steam coal, 2.1 Mt/a as metallurgical coal, and the rest as anthracite. Current exports are conducted via the Richards Bay terminal (63.6 Mt/a), Durban (2.0 Mt/a) and a small amount via Maputo. The Richards Bay terminal is to be expanded to 72 Mt/a by 1999. It is also very important to note that most of the coal resources possess calorific values of below 25 MJ/kg, which limits its utilization to power generation (Eskom) and processes such as fixed bed dry bottom gasification (Sasol). A break-down of production and usage of coal by the various controlling groups in South Africa shows that Sasol (54.2 Mt/a) and Escom (91.0 Mt/a) are major consumers of coal. It has been proposed earlier by Horsfall (1993) that for power generation and coal conversion, the in-situ quality is generally regarded as satisfactory for use. All that is required in the way of processing is crushing to an appropriate top size and, for conversion, screening of the unwashed coal. Most other consumers require some degree of beneficiation, which generally entails the removal of stone/shale and low quality coal. More recently, the introduction of destoning plants at Duvha Colliery (Larcodems) and New Vaal Colliery (Drewboy washers) has significantly reduced the abrasiveness content of these local thermal coals, together with an increase in

  19. Microstructural blending of coal to enhance flowability

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Chakra, H.; Tuezuen, U. [Surrey Univ., Guildford (United Kingdom). Dept. of Chemical and Process Engineering

    2000-09-11

    Coal-fired power stations for electricity generation are well known to suffer from chronic problems in coal handling and flow affecting the operation of pulverisation mills and combustors. The economic impact of coal handling facilities can be significant, resulting in total shutdown of the power generating plant in some extreme cases. In coal-fired power generation, optimal operation of the combustors requires the ash content of pulverised coal not exceed 20%. Excessive ash content would result in lower calorific value. Therefore, the overall profitability of the market coal tends to be strongly effected by the ash content of the raw coal. However, the flowability of coal tends to be strongly affected by the moisture content of the constituent particles, as well as the presence of high fines fraction. The experimental work described in this paper aims to illustrate how flowability can be enhanced by optimising particle size distribution and particle surface moisture in blends of raw and washed coals. The results of the flowability tests obtained with ''microstructurally'' blended samples indicate that to ensure flowability in process vessels, it is necessary to blend according to important microstructural criteria as well as minimising ash content. Microstructural blending is not included in current industrial practice, which only blends washed and raw coals to produce high calorific value and low ash content. The work presented here establishes methodology for microstructural blending to enhance bulk flowability. (orig.)

  20. Electrostatic Separator for Beneficiation of Lunar Soil

    Science.gov (United States)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  1. Coal industry annual 1993

    International Nuclear Information System (INIS)

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993

  2. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  3. Coal -94

    International Nuclear Information System (INIS)

    This report deals with use of coal and coke during 1993; information about techniques, environmental questions and markets are also given. Use of steamcoal for heating purposes has been reduced about 3 % during 1993 to 1,0 mill tons. This is the case especially for the heat generating boilers. Production in co-generation plants has been constant and has increased for electricity production. Minor plants have increased their use of forest fuels, LPG and NG. Use of steamcoal will probably go down in the immediate years both in heat generating and co-generating plants. Coal-based electricity has been imported from Denmark during 1993 corresponding to about 400 000 tons of coal, when several of our nuclear plants were stopped. Use of steamcoal in the industry has been constant at 700 000 tons. This level is supposed to be constant or to vary with business cycles. The import of metallurgical coal in 1993 was 1,6 mill tons like the year before. 1,2 mill tons coke were produced. Coke consumption in industry was 1,4 mill tons. 0,2 mill tons of coke were imported. Average price of steamcoal imported to Sweden in 1993 was 308 SEK/ton or 13 % higher than in 1992; this can be explained by the dollar price level increasing 34% in 1993. For the world, the average import price was 50,0 USD/ton, a decrease of 6 %. The coal market during 1993 was affected by less consumption in Europe, shut downs of European mines and decreasing prices. High freight price raises in Russia has affected the Russian export and the market in northern Europe. The prices have been stabilized recently. All Swedish plants meet emission limits of dust, SO2 and NOx. Co-generation plants all have some sort of SO2-removal system; the wet-dry method is mostly used. A positive effect of the recently introduced NOx-duties is a 40% reduction

  4. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  5. Produced Water Management and Beneficial Use

    International Nuclear Information System (INIS)

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm

  6. Tri-State Synfuels Project Commercial Scale Coal Test: Volume 6A. Export sample program/wastewater treatability study summary report. [Proposed Henderson, Kentucky coal to gasoline plant; waste water from Lugri Mark IV test at Sasol

    Energy Technology Data Exchange (ETDEWEB)

    1982-11-01

    The following can be concluded from the research conducted on the treatment of Lurgi process wastewaters from the sample sent to Sasol: Biooxidation of pretreated gas liquors and synthesized Mobil MTG process wastewater components as feasible and a high degree of treatment efficiency could be attained when the process was controlled by optimizing the growth of thiocyanate bacteria. Sludge settleability was satisfactory. Partial removal of complexed cyanide was consistently maintained during steady-state operation of the bioreactor, probably by sorption on the biofloc. Seed sludges from a coke oven activated sludge process can be successfully used to develop biocultures for the treatment of Lurgi process wastewaters. GAC treatment was effective for the removal of residual organic carbon and chemical oxygen demand from bioreactor treated effluents. Untreated gas liquor was extremely toxic to fathead minnows at effluent concentrations of only five percent (19 parts water to one part gas liquor). However, bioreactor effluent showed a greatly reduced toxicity, with significant mortalities between 40 and 60 percent (approximately one part water to one part effluent). Treatment with granular activated carbon (GAC) reduced toxicity to negligible levels, even with relatively high unionized ammonia levels present in the effluent. No toxic effects were observed with GAC effluents when the pH was adjusted to reduce unionized ammonia levels. Bioassay test results demonstrated that the treated effluents after activated carbon adsorption would be relatively nontoxic to fathead minnows. Biological wastewater treatment facilities installed to meet BPT for Lurgi wastewater should provide sufficient removal of most toxic organic pollutants which would be designated as BAT.

  7. Coal blending and coal homogenisation facilities

    Energy Technology Data Exchange (ETDEWEB)

    Toerslev Jensen, P. [I/S ELSAM, Fredericia (Denmark)

    1997-12-31

    Blending is becoming increasingly important as a way of improving the quality of coal fired in power plants. This paper gives a basic description of the purposes of coal blending. Although indices for estimating (properties, slagging and fouling propensity, reactivity, etc.) of coal and coal blends exist, these are not considered reliable for coals of widely different origin, and experience will be emphasised as a better tool. The pros and cons of different blending methods are discussed together with the environmental impact of coal blending facilities. Finally, the blending facilities of ELSAM, a power pool serving the western part of Denmark, are described. 7 refs., 5 figs., 4 tabs.

  8. Microbial ecology of coal mine refuse

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. E.; Miller, R. M.

    1977-01-01

    Baseline microbial and ecological studies of samples obtained from two abandoned coal mine refuse sites in the State of Illinois indicate that the unfavorable nature of refuse materials can be a very limiting factor for survival and growth of organisms. Despite the ''foothold'' obtained by some microorganisms, especially acidophilic fungi and some acidotolerant algae, the refuse materials should be amended or ameliorated to raise the pH, provide needed nutrients, especially nitrogen, and provide biodegradable organic matter, both for physical and biological purposes. Finally, the role of microbial populations, responses, and interactions in acid mine wastes must be put into larger perspective. Acid mine drainage amounts to over 4 million tons per year of acidity from active and abandoned mines. Microorganisms appear to be significantly responsible for this problem, but they also can play a beneficial and significant role in the amelioration or alleviation of this detrimental effect as abandoned mines are reclaimed and returned to useful productivity.

  9. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (delta/sup 13/C PDB) and toxic/trace element concentration levels are determined for Tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coal liquefaction from peat to Tertiary lignites and sub bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-Range/Degari coal field' in Baluchistan are attributed to the depositional environments. More sampling of stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  10. Developing coal projects in India: challenges and prospects

    Energy Technology Data Exchange (ETDEWEB)

    Varma, S.K. [Central Coalfields Ltd., Ranchi (India)

    2001-07-01

    Against the backdrop of a liberalizing and growing economy, the Indian coal industry is gearing up for big changes over the next decades. The country needs increased energy supply in the future. Considering the limited reserve potentiality of petroleum and natural gas, eco-conservation restrictions of large hydro-electric projects and geo-political perception of nuclear power, coal shall continue to occupy center-stage of Indian energy scenario. India will need enough coal to fuel its expanding power generation plants as well as other industries. Although the country has vast coal resources, question marks hang over the preparedness of the industry to meet the fast-expanding consumption levels. There are concerns over the ability of opening up of new coal projects in the virgin fields, setting up coal beneficiation plants, existing transport system to deliver coal from the source to destination of use, and also reservations about the quality of indigenous coking coal for its uses in steel industry. If these challenges are to be met, the industry, together with the government, shall have to rise to the occasion and reinvest them. The challenges are not insurmountable. While liberalization has brought challenges, it has also created prospects for investment in India's coal sector. These issues are now being addressed. The state-owned Coal India Limited (currently contributing over 87% of the total country's hard coal production) has prepared ambitious plans to increase its production. The government has opened up the power and coal sectors (so far only for captive end use to power, steel and cement sectors) to private investment. Further reforms to allow for captive consumption and also selling are under active consideration. Author concludes that India Coal Industry is matured enough to face the challenges and adopt new environment. Despite several uncertainties the Indian coal industry shall witness sea changes in the coming year. 7 tabs.

  11. Differential scanning calorimetry of coal

    Science.gov (United States)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  12. [Content and distribution of fluorine in Chinese coals].

    Science.gov (United States)

    Wu, Dai-she; Zheng, Bao-shan; Tang, Xiu-yi; Wang, Yan; Liu, Xiao-jing; Hu, Jun; Finkelman, R B

    2005-01-01

    Nationwide sampling program is designed according to the resources distribution and coal-forming periods as well as coal rank and yield of coal in China, and 305 coal samples were collected from 26 provinces, municipalities and autonomous regions. Fluorine in coal is determined by pyrohydrolysis / fluoride-ion selective electrode method. Fluorine in coals is mainly of an inorganic nature. Coal rank has no effect on fluorine content. The influence of a factor, such as geological age, on fluorine contents might be concealed by other factors, more research should be done to discern it. The distribution of fluorine in each province, municipality and autonomous region's coals is studied, and the fluorine source in coal-burning endemic fluorosis areas should be estimated over again. The contents of fluorine in Chinese coals show logarithm normal distribution, and 90% of values ranged from 47mg/kg to 347mg/kg, the average fluorine content in Chinese coals was designated as the geometric mean, 136mg/kg. Fluorine in Chinese coals is within the world coal's range. PMID:15859399

  13. Mössbauer study of the inorganic sulfur removal from coals

    Science.gov (United States)

    Reyes Caballero, F.; Martínez Ovalle, S. A.

    2014-01-01

    Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.

  14. Correlating laboratory and pilot scale reflux classification of fine coal / Izak Gerhardus Theron Smith

    OpenAIRE

    Smith, Izak Gerhardus Theron

    2015-01-01

    The search for efficient and economical ways to beneficiate fine coal remains an active research area. Recent developments have shown that the reflux classifier can successfully be used on Australian coals, and based on that, a number of pilot plant investigations have been done in South Africa. While pilot scale units are usually used to test the applicability of a new technology on specific coals, a need exists to gather more fundamental data at a laboratory scale in order to save manpower,...

  15. Underground Coal Gasification: Rates of Post Processing Gas Transport

    OpenAIRE

    Soukup, K.; Hejtmánek, V. (Vladimír); Stanczyk, K.; Šolcová, O.

    2014-01-01

    Two ex-situ and one in-situ semi-pilot plant UCG experiments in the experimental mine Barbara were performed with hard coal and lignite samples. To evaluate the influence of the UCG process on the textural properties of surrounding strata and coals, samples from various locations of the coal seam and the stratum samples before and after the UCG process were collected. Mercury porosimetry, helium pycnometry, and physical adsorption of nitrogen were used for the determination of textural proper...

  16. Experimental and numerical investigation of flameless pulverised coal combustion

    OpenAIRE

    Stadler, Hannes Alexander

    2010-01-01

    Aim of this work was to investigate the applicability of flameless combustion technology principles to pulverised coal combustion. Lab-scale experiments showed, that it is highly beneficial in terms of NOx reduction to use N2 as coal carrier instead of air. The finding has been supported by OH* chemiluminescence imaging which revealed a suppression of ignition in the coal jet when N2 is used. With the investigated settings, NOx emissions are always above the legislative limit of 200 mg/m3 (st...

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  18. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    Science.gov (United States)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  19. Experimental study on influence of coal structural anisotropy to gas permeation

    Institute of Scientific and Technical Information of China (English)

    QIAO Yan-zhen

    2011-01-01

    Based on "true triaxial coal rock permeability of coal sample test system",the permeability under different gaspressure to coal specimen in bedding plane and the vertical bedding directions are tested.The results show that coal structuralanisotropy has a greater impact on gas permeability properties,differences in experimental coal permeability are roughly oneorder of magnitude.In view of the differences of the gas flow characteristics in the coal bedding plane and vertical bedding,established series and parallel choked flow model of coal sample gas seepage,and made a theoretical analysis to the influencesof the bedding structure to gas permeability properties.

  20. Beneficial health properties of iridoids terpenes.

    Directory of Open Access Journals (Sweden)

    López Carreras, N.

    2012-12-01

    Full Text Available Food components can have biological activity and healthy properties. Some of them, produced by plants, are named phytochemicals. The diversity of phytochemicals is amazing and this term refers in fact to a wide variety of compounds. Some of them, biosynthesized from isoprene, are named terpenes, and an important group of biciclic monoterpenes, derived fromgeraniol, are named iridoids.Iridoids can have open structures (secoiridoids or closed structures (really iridoids and they appear usua lly as heteroside compounds, in particular as glycosides. They have beneficial effects on liver and bi -liary function. Moreover, they have also demonstrated anti-inflammatory, antibacterial, anti-carcinogenic and antiviral activity, and they can be used as antidote in mushroom intoxications, in particular, those caused byAmanita type. Iridoids are present in particular in plants such as olive, harpagophytum, the valerian plant, the gentian plant and the ash tree. All these plants have been reported to be used as traditional medicine inmany cultures. Nowadays, their leaves, tubercles, roots, seeds, and extracts are also considered important for pharmacology, and some of their active compounds have been identified. This review refers to the origin and biosynthetic pathways of iridoids. It describes the characteristics and properties of the plants mentioned above, and it also mentions the principal iridoids isolated from them.

  1. Nanoscale particles in technological processes of beneficiation

    Directory of Open Access Journals (Sweden)

    Sergey I. Popel

    2014-04-01

    Full Text Available Background: Cavitation is a rather common and important effect in the processes of destruction of nano- and microscale particles in natural and technological processes. A possible cavitation disintegration of polymineral nano- and microparticles, which are placed into a liquid, as a result of the interaction of the particles with collapsed cavitation bubbles is considered. The emphasis is put on the cavitation processes on the interface between liquid and fine solid particles, which is suitable for the description of the real situations.Results: The results are illustrated for the minerals that are most abundant in gold ore. The bubbles are generated by shock loading of the liquid heated to the boiling temperature. Possibilities of cavitation separation of nano- and microscale monomineral fractions from polymineral nano- and microparticles and of the use of cavitation for beneficiation are demonstrated.Conclusion: The cavitation disintegration mechanism is important because the availability of high-grade deposits in the process of mining and production of noble metals is decreasing. This demands for an enhancement of the efficiency in developing low-grade deposits and in reprocessing ore dumps and tailings, which contain a certain amount of noble metals in the form of finely disseminated fractions. The cavitation processes occuring on the interface between liquid and fine solid particles are occasionally more effective than the bulk cavitation processes that were considered earlier.

  2. FACEBOOK AND WHATSAPP: BENEFICIAL OR HARMFUL?

    Directory of Open Access Journals (Sweden)

    Sankalp Raj

    2015-04-01

    Full Text Available New innovations and advances in science and technology in the present day have made considerable and significant changes in the lifestyle of people all around the globe. Communication from one part of the world to another is possible at the hit of a button . Social networking is being rampantly used everywhere and by everybody, be it youngsters or the older generation. Facebook and Whatsapp are the most commonly used means of communication in social networking at present. Smart phones functioning as minicomp uters with fast internet connectivity in the pockets of today’s technosavy generation have made them create and spend most of their time interacting with people in a virtual world. There is an urgent need to understand the dynamics of social media and its effects on the lifestyle of people. Studies documenting the same have been very few. This study was conducted to understand the benefits and harms towards health and academics of MBBS students. This cross - sectional study on 147 MBBS students revealed inter esting findings and opinions of the students. Effects of Facebook and What Sapp on productivity and sleep disturbances due to it were the significant findings of the study. Facebook and Whatsapp can be considered both beneficial and harmful and it solely d epends on how it is being put to use

  3. Beneficial and adverse effects of chemopreventive agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Mu; Park, Kwang-Kyun

    2003-03-01

    The beneficial and adverse effects of some chemopreventive agents, such as Vitamins A, C, E, beta-carotene, indole-3-carbinol, capsaicin, garlic, and aloe are reviewed. Two large randomized trials with a lung cancer endpoint, the Alpha-Tocopherol, Beta-Carotene (ATBC) Prevention Study and the Beta-Carotene and Retinol Efficacy Trial (CARET), suggested that antioxidants might be harmful in smokers. However, the results of the Linxian study and of the ATBC or the CARET studies were significantly different in this respect, and therefore, the relationship between antioxidant and carcinogenesis remains open to debate. Indole-3-carbinol has cancer promoting activities in the colon, thyroid, pancreas, and liver, whereas capsaicin alters the metabolism of chemical carcinogens and may promote carcinogenesis at high doses. Organosulfur compounds and selenium from garlic have no or a little enhancing effect on cancer promotion stage. Information upon chemopreventive mechanisms that inhibit carcinogenesis is imperfect, although the causes and natures of certain human cancers are known. Therefore, definitive preventive guidelines should be carefully offered for various types of tumors, which properly consider ethnic variations, and the efficacies and the safety of chemopreventive agents.

  4. Clinical supervision, is it mutually beneficial

    International Nuclear Information System (INIS)

    Full text: Clinical education in Nuclear Medicine is essential for student learning as it enables them to develop knowledge and competence and put theory into practice. While the benefit to the student is clear, the clinical education experience should be mutually beneficial. The role of the clinical supervisor involves teaching, role modelling, management and assessment. It could be assumed that the Supervisor would find the teaching role leading to increased knowledge; role modelling leading to increased reflection which improves practice; management skills being enhanced and assessment improving critical evaluation skills. The aim of this study was to assess the perceived benefits of taking on the role of a clinical supervisor. Clinical Supervisors participating in the Nuclear Medicine program were surveyed. Questions were grouped into three main categories - professional, interpersonal and communication. A Likert scale was used to assess perceived level of benefit and open-ended questions were included to obtain additional understanding of Supervisors' perceptions. Results from the survey indicate that 64% of supervisors felt an increase in work satisfaction by taking students, 68% agreed their level of performance was improved and 61% agreed that it deepened their understanding of Nuclear Medicine. It is concluded that respondents perceived a positive benefit to areas within the role of Clinical Supervisor. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  5. Beneficial and adverse effects of chemopreventive agents

    International Nuclear Information System (INIS)

    The beneficial and adverse effects of some chemopreventive agents, such as Vitamins A, C, E, beta-carotene, indole-3-carbinol, capsaicin, garlic, and aloe are reviewed. Two large randomized trials with a lung cancer endpoint, the Alpha-Tocopherol, Beta-Carotene (ATBC) Prevention Study and the Beta-Carotene and Retinol Efficacy Trial (CARET), suggested that antioxidants might be harmful in smokers. However, the results of the Linxian study and of the ATBC or the CARET studies were significantly different in this respect, and therefore, the relationship between antioxidant and carcinogenesis remains open to debate. Indole-3-carbinol has cancer promoting activities in the colon, thyroid, pancreas, and liver, whereas capsaicin alters the metabolism of chemical carcinogens and may promote carcinogenesis at high doses. Organosulfur compounds and selenium from garlic have no or a little enhancing effect on cancer promotion stage. Information upon chemopreventive mechanisms that inhibit carcinogenesis is imperfect, although the causes and natures of certain human cancers are known. Therefore, definitive preventive guidelines should be carefully offered for various types of tumors, which properly consider ethnic variations, and the efficacies and the safety of chemopreventive agents

  6. Comparative assessment of health and safety impacts of coal use

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    Increasing the use of coal to replace oil and gas consumption is considered beneficial for economic and political reasons. The evaluation of this report, however, is that the shift to coal can involve significant health, safety, and environmental impacts compared to those from oil and natural gas systems, which are considerably less adverse than those of any coal energy system in use today. An evaluation and comparison of the potential impacts from the various alternative coal technologies would be useful to both governmental and industrial policy planners and would provide them with information relevant to a decision on assistance, incentives, and prioritization among the energy technologies. It is, therefore, the main objective of this report to review the key health, safety, and environmental impacts of some promising coal energy technologies and to compare them.

  7. Permeability variation characteristics of coal after injecting carbon dioxide into a coal seam

    Institute of Scientific and Technical Information of China (English)

    Ni Xiaoming; Li Quanzhong; Wang Yanbin; Gao Shasha

    2015-01-01

    A theoretical basis for the optimization of carbon dioxide injection parameters and the development of the drainage system can be provided by identifying the permeability change characteristic of coal and rock after injection of carbon dioxide into the coal seam. Sihe, Yuwu, and Changcun mines were used as research sites. Scanning electron microscopy and permeability instruments were used to measure coal properties such as permeability and surface structure of the coal samples at different pH values of carbon dioxide solution and over different timescales. The results show that the reaction between minerals in coal and carbonate solution exhibit positive and negative aspects of permeability-the dissolution reaction between carbonate minerals in coal and acid solution improves the conductivity of coal whilst, on the other hand, the clay minerals in the coal (mainly including montmorillonite, illite and kaolinite) exhibit expansion as a result of ion exchange with the H+in acid solution, which has a negative effect on the per-meability of the coal. The permeability of coal samples increased at first and then decreased with immer-sion time, and when the soaking time is 2–3 months the permeability of the coal reached a maximum. In general, for coals with permeabilities less than 0.2 mD or greater than 2 mD, the effect on the permeabil-ity is low;when the permeability of the coal is in the range 0.2–2 mD, the effect on the permeability is highest. Research into permeability change characteristics can provide a theoretical basis for carbon diox-ide injection under different reservoir permeability conditions and subsequent drainage.

  8. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  9. Emission factors of gaseous carbonaceous species from residential combustion of coal and crop residue briquettes

    Institute of Scientific and Technical Information of China (English)

    Qin WANG; Chunmei GENG; Sihua LU; Wentai CHEN; Min SHAO

    2013-01-01

    Experiments were performed to measure the emission factors (EFs) of gaseous carbonaceous species, such as CO2, CO, CH4, and non-methane volatile organic compounds (NMVOCs), from the combustion of five types of coal of varying organic maturity and two types of biomass briquettes under residential burning conditions. Samples were collected in stainless steel canisters and 2,4- dinitrophenylhydrazine (DNPH) cartridges and were analyzed by GC FID/MS and HPLC, respectively. The EFs from crop residue briquette burning were generally higher than those from coals, with the exception of CO2. The dominant NMVOC species identified in coal smoke were carbonyls (41.7%), followed by C2 unsaturated hydrocarbons (29.1%) and aromatics (12.1%), while C2 unsaturated hydrocarbons were the dominant species (68.9%) emitted from the combustion of crop residue briquettes, followed by aromatics (14.4%). A comparison of burning normal crop residues in stoves and the open field indicated that briquettes emitted a larger proportion of ethene and acetylene. Both combustion efficiency and coal organic maturity had a significant impact on NMVOC EFs from burning coal: NMVOC emissions increased with increasing coal organic maturity but decreased as the combustion efficiency improved. Emissions from the combustion of crop residue briquettes from stoves occurred mainly during the smoldering process, with low combustion efficiency. Therefore, an improved stove design to allow higher combustion efficiency would be beneficial for reducing emissions of carbonaceous air pollutants.

  10. Kinetics of fly ash beneficiation by carbon burnout. [Quarterly report], October 1, 1995--January 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Dodoo, J.N.; Okoh, J.M.; Yilmaz, E.

    1996-09-01

    The objective is to investigate the kinetics of beneficiation of fly ash by carbon burnout. The three year project that was proposed is a joint venture between Delmarva Power, a power generating company on the eastern shore of Maryland, and the University of Maryland Eastern Shore. The studies have focused on the beneficiation of fly ash by carbon burnout. The increasing use of coal fly ash as pozzolanic material in Portland cement concrete means that there is the highest economic potential in marketability of large volumes of fly ash. For the concrete industry to consider large scale use the fly ash must be of the highest quality. This means that the residual carbon content of the fly ash must have an acceptable loss on ignition (LOI) value, usually between 7--2% residual carbon. The economic gains to be had from low-carbon ash is a fact that is generally accepted by the electricity generating companies. However, since the cost of producing low-carbon in large quantities, based on present technology, far outweighs any financial gains, no electrical power company using coal as its fuel at present considers the effort worthwhile. The concrete industry would use fly ash in cement concrete mix if it can be assured of its LOI value. At present no utility company would give such assurance. Hence with several million tons of fly ash produced by a single power plant per year all that can be done is to dump the fly ash in landfills. The kinetics of fly ash beneficiation have been investigated in the zone II kinetic regime, using a Cahn TG 121 microbalance in the temperature 550--750{degrees}C. The P{sub 02} and total surface area dependence of the reaction kinetics were determined using a vacuum accessory attached to the microbalance and a surface area analyzer (ASAP 2010), respectively.

  11. Coal processing and utilization

    Science.gov (United States)

    Schilling, H.-D.

    1980-04-01

    It is noted that the rising price of oil as well as supply concerns have lead to an increase in the use of coal. It is shown that in order for coal to take a greater role in energy supply, work must commence now in the areas of coal extraction and processing. Attention is given to new technologies such as coke production, electricity and heat generation, coal gasification, and coal liquifaction. Also covered are a separator for nitrogen oxides and active coal regeneration. Finally, the upgrading of coal is examined.

  12. Washability analysis of high sulfur coal gangue from a Coal mine in Guizhou

    Institute of Scientific and Technical Information of China (English)

    TANG Yun; DAI Wen-zhi; ZHANG Qin; NIE Guang-hua; CHENG Jiang-guo; TUO Bi-yang; MAO Song; NIU Fang-yin

    2007-01-01

    Fulfill the screen test and float-and-sink analysis for high sulfur coal gangue from a Guizhou coal mine,analyzed the washability of its tail coal.Seen from the results:most of sulfur in sample is pyrite,the Sulfur content of different particle classification shall be reduced with the decreasing of size and specific gravity,most of sulfur distributed in the coal particles with large-size and high specific gravity.Part of sulfur may be eliminated through special gravity separation,however,most of inorganic sulfur should be removed with the combination of floatation process.

  13. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Directory of Open Access Journals (Sweden)

    Jingyu Jiang

    Full Text Available To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index. Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar

  14. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  15. Inorganic Constituents in Coal

    OpenAIRE

    Rađenović A.

    2006-01-01

    Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates),minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fract...

  16. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  17. Effect of coal slurry on the corrosion of coal-mine equipment

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi; Xie Jingxuan; Zhao Wei; Bai Shasha; Zhong Shiteng; Chu Zhenfeng

    2011-01-01

    The corrosion of coal mine equipment immersed in coal slurry is addressed.The corrosion of low carbon steel samples immersed in coal slurries of different concentrations (80,130,and 180g/L) prepared from coals of different rank (long-flame coal,meager lean coal,and anthracite) and different granularity (0.25-0.5 mm,0.074-0.25 mm,and less than 0.074 mm particle size) was studied by the electrochemical method of polarization curve measurement,controlled potential sweeping,and continuous scanning.The results show that the corrosion rate in an anthracite slurry,where the coal has high coalification,is far greater than corrosion in a long-flame or a meager lean coal slurry.Furthermore the corrosion current,polarization current,and corrosion rate of low carbon steel become larger,and the polarizability becomes smaller,as the coal particle size decreases.The same trend is seen as the concentration of the coal slurry increases.

  18. Coal combustion by wet oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  19. From in-situ coal to fly ash: A study of coal mines and power plants from Indiana

    Science.gov (United States)

    Mastalerz, Maria; Hower, J.C.; Drobniak, A.; Mardon, S.M.; Lis, G.

    2004-01-01

    This paper presents data on the properties of coal and fly ash from two coal mines and two power plants that burn single-source coal from two mines in Indiana. One mine is in the low-sulfur (5%) Springfield Coal Member of the Petersburg Formation (Pennsylvanian). Both seams have comparable ash contents (???11%). Coals sampled at the mines (both raw and washed fractions) were analyzed for proximate/ultimate/sulfur forms/heating value, major oxides, trace elements and petrographic composition. The properties of fly ash from these coals reflect the properties of the feed coal, as well as local combustion and post-combustion conditions. Sulfur and spinel content, and As, Pb and Zn concentrations of the fly ash are the parameters that most closely reflect the properties of the source coal. ?? 2004 Elsevier B.V. All rights reserved.

  20. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  1. Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Halsey, G.S.; Sebba, F.

    1981-01-01

    The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtained with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.

  2. Beneficial Reuse of San Ardo Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron

  3. FINE COAL AND THREE PRODUCT DRY BENEFICIATION WITH VIBRATION AND DOUBLE-DENSITY FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Thedrybeneficiationtechnologywithairdensemediumfluidizedbedcaneficientlybenefici-atethecoarsecoalofsize50~6mm.However,thistec...

  4. Motion analysis of waste rock in gas-solids fluidized bed in coal dry beneficiation

    Institute of Scientific and Technical Information of China (English)

    郭迎福; 陈安华; 张永忠; 邓志鹏; 毛树楷

    2002-01-01

    Through the analysis of forces acting on the waste rock in the gas-solid fluidized bed, the waste rock velocity equations and displacement equations in the gas-solids fluidized bed were achieved and the influential factors of the waste rock motion in the fluidized bed were studied in this paper. The conclusions show that the primary factors influencing the waste rock motion are the waste rock grain size and the scraper velocity according to the computer simulation. This has provided the theoretical foundation both for improving the separating effect and ascertaining the length of the separating cell.

  5. Oxidation of pyrite in coal to magnetite

    Science.gov (United States)

    Thorpe, A.N.; Senftle, F.E.; Alexander, C.C.; Dulong, F.T.

    1984-01-01

    When bituminous coal is heated in an inert atmosphere (He) containing small amounts of oxygen at 393-455 ??C, pyrite (FeS2) in coal is partially converted to magnetite (Fe304). The maximum amount of Fe304 formed during the time of heating corresponds to 5-20% of the total pyrite present, depending on the coal sample. The magnetite forms as an outer crust on the pyrite grains. The fact that the magnetic properties of the pyrite grains are substantially increased by the magnetite crust suggests that pyrite can be separated from coal by use of a low magnetic field. In a laboratory test, 75% removal is obtained by means of a 500 Oe magnet on three samples, and 60% on a fourth sample. ?? 1984.

  6. The effect of coal rank on the wettability behavior of wet coal system with injection of carbon dioxide and flue gas

    OpenAIRE

    Shojaikaveh, N.; Rudolph, E.S.J.; Wolf, K.H.A.A.; Ashrafizadeh, S.N.

    2012-01-01

    The injection of carbon dioxide (CO2) or flue gas into coal layers enhances the coal bed methane production (ECBM) and is also an option for CO2-storage. The success of this combined process depends strongly on the wetting behavior of the coal, which is a function of coal rank, ash content, pressure, temperature and composition of the gas. Two coal samples have been used for this study representing different ranks: hvBb and semi-anthracite rank. The wettability behaviour of the wet coal sampl...

  7. An assessment of cleaning amenability of salt range coal through physical cleaning methods

    International Nuclear Information System (INIS)

    Representative coal samples from the eastern salt range (Modern Engineering and Kishor coal mines, Pakistan) and the central salt range (Punjmin coal mine, Pakistan) were collected and examined for their chemical composition. The chemical characteristics indicate that the salt range coal belongs to sub-bituminous category. Washability analysis on selected coal samples (6.70 , 0.212 mm) using zinc chloride solution with a specific gravity from 1.3 to 1.7 were executed. The results classify the central salt range coal as easily washable while, the Eastern salt range coal as moderately difficult to wash. Jigging, shaking table and spiral techniques were applied to check the cleaning amenability of the salt range coal through these techniques. Among these techniques, shaking table revealed the most promising results for all the three coals. Punjmin coal showed the maximum rejection of ash of 55% and that of total sulphur of 74% with a recovery of 46%. (author)

  8. Combining Renewable Energy With Coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-09-01

    There are various possibilities for incorporating biomass into coal-fuelled processes and a number of these are already being deployed commercially. Others are the focus of ongoing research and development. Biomass materials can vary widely, although the present report concentrates mainly on the use of woody biomass in the form of forest residues. Potentially, large amounts are available in some parts of the world. However, not all forested regions are very productive, and the degree of commercial exploitation varies considerably between individual countries. The level of wastage associated with timber production and associated downstream processing is frequently high and considerable quantities of potentially useful materials are often discarded. Overall, forest residues are a largely underexploited resource. Combining the use of biomass with coal can be beneficial, particularly from an environmental standpoint, although any such process may have its limitations or drawbacks. Each coal type and biomass feedstock has different characteristics although by combining the two, it may be possible to capitalise on the advantages of each, and minimise their individual disadvantages. An effective way is via cogasification, and useful operating experience has been achieved in a number of large-scale coal-fuelled gasification and IGCC plants. Cogasification can be the starting point for producing a range of products that include synthetic natural gas, chemicals, fertilisers and liquid transport fuels. It also has the potential to form the basis of systems that combine coal and biomass use with other renewable energy technologies to create clean, efficient energy-production systems. Thus, various hybrid energy concepts, some based on coal/biomass cogasification, have been proposed or are in the process of being developed or trialled. Some propose to add yet another element of renewable energy to the system, generally by incorporating electricity generated by intermittent

  9. The Side Effects of Insecticide Efficient Biocidals to Beneficial Insects

    OpenAIRE

    Şimşek, Muharrem; ÖZKAN, Cem

    2015-01-01

    Unawares usage of biocidals effects not only natural resources, environment and human health but also can damage beneficial insects which suppresses pests. Herein, the side effects of insecticide efficient biocidals to important beneficial insects was handled and measures on sustainable biocidal usages was discussed. The side effects of Deltamethrin, Azadirachtin, Spinosad and Bacillus thuringinensis biocidals to certain important beneficial insects were evaluated with literature data. Negati...

  10. Additional Samples: Where They Should Be Located

    International Nuclear Information System (INIS)

    Information for mine planning requires to be close spaced, if compared to the grid used for exploration and resource assessment. The additional samples collected during quasimining usually are located in the same pattern of the original diamond drillholes net but closer spaced. This procedure is not the best in mathematical sense for selecting a location. The impact of an additional information to reduce the uncertainty about the parameter been modeled is not the same everywhere within the deposit. Some locations are more sensitive in reducing the local and global uncertainty than others. This study introduces a methodology to select additional sample locations based on stochastic simulation. The procedure takes into account data variability and their spatial location. Multiple equally probable models representing a geological attribute are generated via geostatistical simulation. These models share basically the same histogram and the same variogram obtained from the original data set. At each block belonging to the model a value is obtained from the n simulations and their combination allows one to access local variability. Variability is measured using an uncertainty index proposed. This index was used to map zones of high variability. A value extracted from a given simulation is added to the original data set from a zone identified as erratic in the previous maps. The process of adding samples and simulation is repeated and the benefit of the additional sample is evaluated. The benefit in terms of uncertainty reduction is measure locally and globally. The procedure showed to be robust and theoretically sound, mapping zones where the additional information is most beneficial. A case study in a coal mine using coal seam thickness illustrates the method

  11. Mechanisms for selective agglomeration of coals

    Energy Technology Data Exchange (ETDEWEB)

    Wheelock, T.D.; Drzymala, J.; Allen, R.W.; Hu, Y.-C.; Tyson, D.; Xiaoping, Qiu; Lessa, A.

    1989-05-01

    Work continued on the basic mechanisms which underlie various processes for beneficiating aqueous suspensions of coal by selective agglomeration with oil. A new method was demonstrated for characterizing the agglomerability of coal suspensions. This method utilizes a photometric dispersion analyzer to monitor changes in the turbidity of a particle suspension as increasing amounts of oil are added to the suspension in a batch agglomeration test. Agglomeration of the particles leads to a marked decrease in the turbidity of the suspension. Another experimental technique was also demonstrated for characterizing oil agglomeration. This technique involves measuring the rate of growth of agglomerates in a continuous flow system operating under stead-state conditions. The data are analyzed by means of a population balance. The results of a preliminary set of experiments in which Indiana V seam coal was agglomerated with tetralin seemed to fit a particular growth model very well. Equipment was also constructed for studying the kinetics of agglomeration in a batch process. While earlier work showed that quebracho (a commercially available dispersant) is a strong agglomeration depressant for pyrite, recent experiments with mixtures of Upper Freeport coal and mineral pyrite showed that quebracho does not appear to be sufficiently selective. Further consideration was given to the separation of mixtures of coal and pyrite agglomeration with heptane. 2 refs., 17 figs., 1 tab.

  12. The effect of biomass on pollutant emission and burnout in co-combustion with coal

    Energy Technology Data Exchange (ETDEWEB)

    Kruczek, H.; Raczka, P.; Tatarek, A. [Wroclaw Technical University, Wroclaw (Poland)

    2006-08-15

    This paper presents experimental and numerical results on the co-combustion of different types of biomass with hard and brown coal. The main aim of this work was to assess the impact of the cocombustion of biomass in brown and hard coal-fired systems on the combustion process itself and on the level of pollutant formation and its dependence on combustion temperature stoichiometry. The experimental results obtained have shown that in general biomass addition leads to decreased NO and SO{sub 2} emissions, except with the hard coal Bogdanka. In addition, the biomass has a beneficial effect on the burnout of the coal/biomass mixture. To help to account for this effect, the behaviour of coal and biomass, the coal/biomass mixture and of fuel-N was studied by thermal analysis, in nitrogen and in air. The results obtained have shown that gas phase interactions are dominant in the combustion of biomass/coal mixtures.

  13. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards

    OpenAIRE

    Oliveira, Marcos L.S.; Waanders, Frans B.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of adva...

  14. Coal information 1996

    International Nuclear Information System (INIS)

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  15. Solar coal gasification

    Science.gov (United States)

    Gregg, D. W.; Aiman, W. R.; Otsuki, H. H.; Thorsness, C. B.

    1980-01-01

    A preliminary evaluation of the technical and economic feasibility of solar coal gasification has been performed. The analysis indicates that the medium-Btu product gas from a solar coal-gasification plant would not only be less expensive than that from a Lurgi coal-gasification plant but also would need considerably less coal to produce the same amount of gas. A number of possible designs for solar coal-gasification reactors are presented. These designs allow solar energy to be chemically stored while at the same time coal is converted to a clean-burning medium-Btu gas.

  16. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2012-07-01

    While the black coal markets are expanding worldwide in 2011, the consumption of black coal in Germany stagnated in spite of positive economic impacts. A strong long-term decline may be expected by the structural change in the energy sector and the energy policy turnaround in Germany. Also, the accelerated phasing out nuclear power in 2011 brought any increases for the black coal. Now the discharge of domestic black coal until 2018 has become definitive. The imported coal now covers almost 80 % of the German black coal market.

  17. Coal desulfurization process

    Science.gov (United States)

    Hsu, G. C.; Gavalas, G. R.; Ganguli, P. S.; Kalfayan, S. H.

    1978-01-01

    A method for chlorinolysis of coal is an organic solvent at a moderate temperautre and atmospheric pressure has been proven to be effective in removing sulfur, particularly the organic sulfur, from coal. Chlorine gas is bubbled through a slurry of moist coal in chlorinated solvent. The chlorinated coal is separated, hydrolyzed and the dechlorinated. Preliminary results of treating a high sulfutr (4.77%S) bituminous coal show that up to 70% organic sulfur, 90% hyritic sulfur and 76% total sulfur can be removed. The treated coal is dechlorinated by heating at 500 C. The presence of moisture helps to remove organic sulfur.

  18. Coal extraction - environmental prediction

    Energy Technology Data Exchange (ETDEWEB)

    C. Blaine Cecil; Susan J. Tewalt

    2002-08-01

    To predict and help minimize the impact of coal extraction in the Appalachian region, the U.S. Geological Survey (USGS) is addressing selected mine-drainage issues through the following four interrelated studies: spatial variability of deleterious materials in coal and coal-bearing strata; kinetics of pyrite oxidation; improved spatial geologic models of the potential for drainage from abandoned coal mines; and methodologies for the remediation of waters discharged from coal mines. As these goals are achieved, the recovery of coal resources will be enhanced. 2 figs.

  19. The division of coal species in seams by the digital logs in Juye coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Z. [Shandong Coal Geologic Engineering Surveying Institute, Jinan (China)

    1997-12-31

    The division of coal species is based generally on the sampling and analysis. For coal seams with complex texture and higher degree of metamorphism, the qualitative division of coal species is more complex. Using the geophysical characters of coal seams reflected by logging data, combined with the data obtained from the geological description of cores, coal-petrologic identification and coal quality analysis and so on, the better effects are obtained in the comprehensive qualitative classification of coal species. 2 refs., 5 figs., 2 tabs.

  20. Iodine in Chinese coals and its geochemistry during coalification

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.S.; Deng, H.W.; Zheng, B.S.; Wang, W.Y.; Tang, X.Y.; Xiao, H.Y. [Nanchang University, Nanchang (China)

    2008-08-15

    To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg{sup -1} to 39.5 mg kg{sup -1} and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg{sup -1} Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal 1 is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95-99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased front lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.

  1. Iodine in Chinese coals and its geochemistry during coalification

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China); Zheng Baoshan [State Key Lab of Environmental Geochemistry, Institute of Geochemistry, CAS, Guiyang 550002 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Tang Xiuyi [Anhui University of Science and Technology, Huainan 232001 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, 999 Xuefu Avenue, Honggutan New Zone, Nanchang, Jiangxi Province 330031 (China)

    2008-08-15

    To determine the I distribution in Chinese coals, a nationwide survey was undertaken based on the distribution, periods of formation, rank and production yields of various coal deposits. A total of 305 coal samples were collected and their I contents were determined by catalytic spectrophotometry with pyrohydrolysis. The geochemistry of I during coalification (including both peat diagenesis and coal metamorphism) was assessed. It was found that the I contents of Chinese coals range from 0.04 mg kg{sup -1} to 39.5 mg kg{sup -1} and exhibit a lognormal distribution, with a geometric mean of 1.27 mg kg{sup -1}. Statistical correlation analysis and the observation that I contents increase with coal rank indicate that coal I is chalcophile in nature, and not generally organically bound. When peat developed into lignite through diagenesis, 95-99.9% of the original I was lost. The composition and structure of clay minerals present in the coal were controlled by the original depositional environment. The higher the I content of coals, the more likely the original sediments were affected by a marine environment. Iodine contents increased from lignite through sub-bituminous and bituminous coals to anthracite. This indicates that coal absorbed excess I from hydrothermal fluids during metamorphism (including geothermal metamorphism and telemagmatic metamorphism). The telemagmatic metamorphism was caused by magmatic activities that depended on the specific geological structure of the region. In China, most high-rank coals were formed by telemagmatic metamorphism.

  2. GIS representation of coal-bearing areas in Antarctica

    Science.gov (United States)

    Merrill, Matthew D.

    2016-01-01

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  3. The impermeability characteristic of caking coals upon heating

    Science.gov (United States)

    Wang, Zhaoxiong; Shou, James K.

    1981-02-01

    The present study has set forth a hypothesis of impermeability characteristics of caking coals. The impermeability of coal in plastic state to gas is an extremely important property of caking coals. The formation of impermeable plastic mass is a necessary condition for the caking and coking process. The impermeability creates a cage effect for physiochemical surface process which is caused by and promotes complicated chemical interractions between pyrolysis products. The determination of impermeability in plastic state of coal along with other related parameters should be beneficial for making an overall evaluation of caking behavior. Based on the penetrative plastometer, a modified experimental instrument was designed and constructed. The unique advantage of measuring impermeability of coal in its plastic state by this instrument is providing a means to synthesize the impermeability with other data such as volumetric shrinkage and coke quality. The parameters for identifying impermeability of various coals have been recognized as the maximum value of resistance, the initial temperature of intense rising resistance and the temperature of maximum resistance. The impermeability of coals in plastic state depends on their original properties. Nevertheless, experimental results had shown that the impermeability could be improved by way of regulating processing conditions. This in turn may be helpful to broaden the marketability of otherwise inferior caking coals.

  4. Vibrated fluidized bed air classification of moist raw coal

    Institute of Scientific and Technical Information of China (English)

    杨国华; 赵跃民; 陈清如

    2002-01-01

    Vibrated fluidized bed air classification is completely different from traditional screening in principle. It extracts fine coal from moist raw coal by entrainment of an ascending airflow in a vibrated fluidized bed. Pilot tests showed that air classification efficiencies varied from 74.85% to 93.84% at cut-size 6, 4, 3, 2, 1, and 0.5 mm when free moisture of coal is in the range of 1.7% to 9.5%, and ash contents of fine coal products were 2%~3% lower than those of the same size fractions in feed, and 4%~10% lower than those of feeds for most cases because of the density differences between coal and waste, which is beneficial to producing lower ash fine coal from raw coal as fuel of blast furnaces or pulverized coal firing boilers. A commercial unit of 100 t/h has been in smooth operation, and several 300~400 t/h units are in plan or construction.

  5. Analysis of mineral phases in coal utilizing factor analysis

    International Nuclear Information System (INIS)

    The mineral phase inclusions of coal are discussed. The contribution of these to a coal sample are determined utilizing several techniques. Neutron activation analysis in conjunction with coal washability studies have produced some information on the general trends of elemental variation in the mineral phases. These results have been enhanced by the use of various statistical techniques. The target transformation factor analysis is specifically discussed and shown to be able to produce elemental profiles of the mineral phases in coal. A data set consisting of physically fractionated coal samples was generated. These samples were analyzed by neutron activation analysis and then their elemental concentrations examined using TTFA. Information concerning the mineral phases in coal can thus be acquired from factor analysis even with limited data. Additional data may permit the resolution of additional mineral phases as well as refinement of theose already identified

  6. Supply Chain Cooperation between Coal Enterprise and Electric Power Enterprise in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the two-stage Stackelberg game method, value creation of supply chain cooperation between coal enterprise and power utilities is studied by formulating profit functions of coal and power enterprises and calculating the maximum profit. According to the analysis, it is found that the profit from supply chain cooperation between coal and power enterprises is more than that of non-cooperation. The cooperation is validated to be beneficial for both units; however, the profit is mainly taken by the power enterprise. Thus, it is necessary to set up the incentive mechanism to distribute cooperation value between coal and power enterprises to promote their continual cooperation.

  7. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  8. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    International Nuclear Information System (INIS)

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  9. Comparative kinetic analysis of raw and cleaned coals

    Energy Technology Data Exchange (ETDEWEB)

    Ozbas, K.E.; Kok, M.V.; Hicyilmaz, C.

    2002-07-01

    Thermogravimetry (TG/DTG) was used to determine the kinetic analysis of different coals and effect of cleaning process on kinetic parameters of raw and cleaned coal samples from Soma, Tuncbilek and Afsin Elbistan regions. Kinetic parameters of the samples were determined using Arrhenius and Coats and Redfern kinetic models and the results are discussed.

  10. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  11. Effect of in-situ solvent soaking and heating pre-treatment on coal conversion and oil yield during liquefaction of demineralized low-rank Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    M.A.M. Ishak; M.F. Abdullah; K. Ismail; M.O.A. Kadir; A.R. Mohamed [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-07-01

    The effect of in-situ solvent soaking and heating (SSH) pre-treatment on demineralized low-rank Malaysian coal towards coal conversion and oil yield during direct liquefaction was investigated. Demineralization of coal was carried out by leaching with strong protic acids such as HCl, HF and HNO{sub 3} whereby more than 95 % of mineral content in the coal was reduced. Apparently, the mineral matter that was removed by the HCl treatment (i.e. cationics) exhibits more catalytic effect during the liquefaction process. The reduction in the mineral content increased the coal porosity that enabled the solvent to penetrate into the coal macropores during the SSH pre-treatment process. The results of liquefaction on the pre-treated SSH demineralized coal at 420{sup o}C and at 4 MPa, however show comparable amount of coal conversion with slightly lower amount of oil yield being obtained with comparison to the raw and SSH-raw coals. Thus, besides the in-situ solvent soaking and heating pre-treatment, the presence of mineral matters in coal prove to be beneficial during coal liquefaction process.

  12. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  13. Beneficiation-hydroretort processing of US oil shales, engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  14. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  15. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis is a lung disease that results ...

  16. Coal Production 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-29

    Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

  17. One of parameters reflecting coal reservoir permeability - block coal rate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H. [China Coal Research Institute, Xian (China)

    2001-12-01

    The permeability of coal reservoir depends to a large extent on the coal body texture. The coal body texture determines the block coal rate derived from sieve experiment. Hence the block coal rate can reflect the permeability of the coal reservoir as a whole. In the mining areas of the central part of Liaoning, the block coal rate is found to have a direct relationship with coal permeability. This has provided an example that block coal rate can be used as one of the parameters for evaluating coal reservoir. 6 refs., 3 tabs.

  18. Petrographic and geochemical character of Cretaceous coals from the Alberta Basin

    Energy Technology Data Exchange (ETDEWEB)

    Gentzis, T.; Goodarzi, F.; Mahood, B. [CDX Canada Inc., Calgary, AB (Canada)

    2001-07-01

    This case study compares the petrographic and geochemical characteristics of whole coals with their associated vitrinites. The samples were obtained by hand picking. The coals examined are from three suites of Mannville Group coals from the Lower Cretaceous. Previous studies on these coals showed that some of them are highly enriched with hydrogen and that their vitrinite reflectance may be suppressed by up to 0.4%. The samples were analyzed by flash pyrolysis chromatography and petrographic analysis. The results suggest that the bitumen detected in the more mature coals was formed in situ. Coal rank and maceral composition are important parameters in the determination of coalbed methane potential. 24 figs., 5 tabs.

  19. Inorganic Constituents in Coal

    Directory of Open Access Journals (Sweden)

    Rađenović A.

    2006-02-01

    Full Text Available Coal contains not only organic matter but also small amounts of inorganic constituents. More thanone hundred different minerals and virtually every element in the periodic table have been foundin coal. Commonly found group minerals in coal are: major (quartz, pyrite, clays and carbonates,minor, and trace minerals. Coal includes a lot of elements of low mass fraction of the orderof w=0.01 or 0.001 %. They are trace elements connected with organic matter or minerals comprisedin coal. The fractions of trace elements usually decrease when the rank of coal increases.Fractions of the inorganic elements are different, depending on the coal bed and basin. A varietyof analytical methods and techniques can be used to determine the mass fractions, mode ofoccurrence, and distribution of organic constituents in coal. There are many different instrumentalmethods for analysis of coal and coal products but atomic absorption spectroscopy – AAS is theone most commonly used. Fraction and mode of occurrence are one of the main factors that haveinfluence on transformation and separation of inorganic constituents during coal conversion.Coal, as an important world energy source and component for non-fuels usage, will be continuouslyand widely used in the future due to its relatively abundant reserves. However, there is aconflict between the requirements for increased use of coal on the one hand and less pollution onthe other. It’s known that the environmental impacts, due to either coal mining or coal usage, canbe: air, water and land pollution. Although, minor components, inorganic constituents can exert asignificant influence on the economic value, utilization, and environmental impact of the coal.

  20. Coal in South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Dykes, A.R.

    1982-01-01

    This paper comprises a report on the coal industry in the Republic of South Africa. Stresses the importance of coal in the South African economy (meets 75% of the country's energy requirements and is in second place in the South African exports table). Covers deposits, production and prices, exports policy; winning methods, productivity and the various grades of coal. Also includes data on investments and refers to synthetic fuels from coal (Sasol I, II, III processes).

  1. Monitoring of radon daughters in coal-mine atmospheres

    International Nuclear Information System (INIS)

    In some coal mines in the Upper Silesian Coal Basin a significant concentration of radon daughters is observed. Monitoring of radon daughters in coal-mine atmospheres involves special problems related to high coal-dust concentration and methane hazards. To solve these problems an 'Integrating Radon Daughters Monitor' (IRDM) for coal-mine atmospheres has been developed. The instrument consists of a typical dust sampler, BARBARA IIIa, used in Polish coal mines, and a supplementary unit with thermoluminescent detectors. Laboratory tests in the calibration chamber showed that the IRDM response to the cumulative activity of radon daughters is independent of the dust concentration within the range 5 to 80 mg/m3 (respirable fraction). A detection limit of about 0.002 WL can be achieved with a sampling time of 8 h. Some preliminary results obtained in Polish coal mines are included. (author)

  2. Provenance of coals recovered from the wreck of HMAV Bounty

    Energy Technology Data Exchange (ETDEWEB)

    Erskine, N.; Smith, A.H.V.; Crosdale, P.J. [Australian National Maritime Museum, Sydney, NSW (Australia)

    2008-03-15

    Coal samples from HMAV Bounty were analysed using standard techniques to shed light on their provenance. Petrographic analysis indicated they were Carboniferous, with high vitrinite and liptinite content and a mean random reflectance of vitrinite of 0.99%. Palynological analysis indicated the samples were derived from the Middle Coal Measures, Westphalian B. Combining coal rank (vitrinite reflectance), age, knowledge of seam distributions and coalfield history indicates the most like source to be the Durham Coalfield, possibly the Hutton or Low Main Seams. These coals were mined along the valley of the Wear in the latter part of the 18th century.

  3. The petrology of some Indians coals

    Science.gov (United States)

    Daulay, Bukin; Cook, Alan C.

    Samples from coal seams from all of the major Indonesian coalfields, were examined using reflected white light and reflected flourescence mode microscopy techniques. The coals are rich in vitrinite and have variable, commonly high, contents of liptinite. Inertinite is rare to sparse, with the exception of a few (typically Neogene) coals. Overall, no major differences in coal type exist bewteen Paleogene and Neogene coals. Most of the coals are low in rank ( vitrinite reflectanceoverlineRvmax, 0.30% to 0.57% ). The Neogene coals are typically much lower in rank than the Paleogene coals, and this tendency is most clearly seen within the Kalimantan occurences ( PaleogeneoverlineRvmax 0.53% to 0.67%; Neogene 0.30% to 0.57% ). In Sumatera at Bukit Asam, contact alteration from intrusions causes a marked rise in overlineRv max from the range 0.30% to 0.53% overlineRv max to semi-anthracite (2.6%). Near the intrusions, very high lateral and vertical rank gradients are present. At Ombilin in central west Sumatera, regional rank is relatively high ( overlineRvmax 0.55% to 0.77% ), and similar effects from contact alteration ( overlineRvmax up to 4.6% ) can again be detected. The coals are suitable for power generation. Grindability characteristics should be generally favourable, but the rank of the coals is typically sufficiently low for spontaneous combusion to be a significant problem. The rank of the coals is generally too low for use as a single component charge in conventional coke ovens. Significant reverses exist of coals that could be added as a minor component to imported strongly coals to decrease the foreign exchange cost of coke. The rank and type indicate that yield characteristics should be good for most liquefaction and gasification processes. The coals, and to a lesser extent associated dispersed organic matter, form important source rocks for some of the major natural oil accumulations in Indonesians sedimentary basins.

  4. 样品的激光诱导击穿光谱及谱线的自吸收现象%Laser Induced Breakdown Spectra of Coal Sample and Self-Absorption of the Spectral Line

    Institute of Scientific and Technical Information of China (English)

    张贵银; 季慧; 靳一东

    2014-01-01

    以脉冲Nd∶AG激光器的二倍频输出为激发源,获得了一种家庭用煤的激光诱导击穿光谱(laser induced breakdown spectrum ,LIBS)。通过对谱线的归属,发现该煤种除包含文献报道的C ,Si ,Mg ,Fe , Al ,Ca ,Ti ,Na ,K元素外,还包含Cd ,Co ,Hf ,Ir ,Li ,Mn ,Ni ,Rb ,Sr ,V ,W ,Zn ,Zr等微量元素,谱图中没有出现对应H和O元素的谱线,把该现象归因于H和O原子的跃迁概率较小,而灵敏谱线对应跃迁的上能级能量较大。同时发现随激光脉冲能量的增加,等离子体发射谱线的强度增大,增加到一定程度,K原子766.493和769.921 nm谱线会出现自吸收现象,自吸收的程度随激光能量的增加而增强,出现明显的双峰结构,把自吸收现象归因于原子大的跃迁概率及激光强度增加引起等离子体中粒子数密度的增大。%The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd・YAG laser as radiation source .With the assignment of the spectral lines ,it was found that besides the elements C ,Si ,Mg ,Fe ,Al ,Ca , Ti ,Na and K ,which are reported to be contained in coal ,the presented sample also contains trace elements ,such as Cd ,Co , Hf ,Ir ,Li ,Mn ,Ni ,Rb ,Sr ,V ,W ,Zn ,Zr etc ,but the spectral lines corresponding to O and H elements did not appear in the spectra .This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher .The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent .Increasing laser energy fur-ther will make self-absorption more obvious .The presence of self-absorption can be attributed to two factors .One is the higher transition rate of K atoms ,and the other is that the increase

  5. Coal`s role in Mexican power

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui, G. [Commision Federal de Electricidad (Mexico)

    1995-09-01

    Coal currently only fulfils a small proportion of Mexico`s power requirements, but it plans to increase capacity quite substantially in the next few years. The construction of the Petacalco power station and related port infrastructure will mean good opportunities for coal exporters in the vicinity. 4 figs., 1 tab.

  6. Turning Coal Into Oil

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    China's coal liquefaction industry is developing rapidly, but still needs improvement In its effort to become more self-sufficient in energy, China is turning to other countries, notably South Africa, to establish joint ventures in turning coal into oil. To China's Shenhua Group Corp. Ltd., one of the world's largest coal-producing companies, the government's 11th Five-Year

  7. Hard coal; Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Loo, Kai van de; Sitte, Andreas-Peter [Gesamtverband Steinkohle e.V., Herne (Germany)

    2013-04-01

    The year 2012 benefited from a growth of the consumption of hard coal at the national level as well as at the international level. Worldwide, the hard coal still is the number one energy source for power generation. This leads to an increasing demand for power plant coal. In this year, the conversion of hard coal into electricity also increases in this year. In contrast to this, the demand for coking coal as well as for coke of the steel industry is still declining depending on the market conditions. The enhanced utilization of coal for the domestic power generation is due to the reduction of the nuclear power from a relatively bad year for wind power as well as reduced import prices and low CO{sub 2} prices. Both justify a significant price advantage for coal in comparison to the utilisation of natural gas in power plants. This was mainly due to the price erosion of the inexpensive US coal which partly was replaced by the expansion of shale gas on the domestic market. As a result of this, the inexpensive US coal looked for an outlet for sales in Europe. The domestic hard coal has continued the process of adaptation and phase-out as scheduled. Two further hard coal mines were decommissioned in the year 2012. RAG Aktiengesellschaft (Herne, Federal Republic of Germany) running the hard coal mining in this country begins with the preparations for the activities after the time of mining.

  8. Beneficial Reuse of San Ardo Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  9. CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V [NETL

    2012-10-23

    The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as �3� cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

  10. Australian Coal Company Risk Factors: Coal and Oil Prices

    OpenAIRE

    M. Zahid Hasan; Ratti, Ronald A.

    2014-01-01

    Examination of panel data on listed coal companies on the Australian exchange over January 1999 to February 2010 suggests that market return, interest rate premium, foreign exchange rate risk, and coal price returns are statistically significant in determining the excess return on coal companies’ stock. Coal price return and oil price return increases have statistically significant positive effects on coal company stock returns. A one per cent rise in coal price raises coal company returns ...

  11. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  12. A novel carbon trap sampling system for coal-fired flue gas mercury measurement%碳管法燃煤烟气汞浓度取样装置研制

    Institute of Scientific and Technical Information of China (English)

    汤红健; 段钰锋; 朱纯; 周强; 佘敏; 蔡亮

    2015-01-01

    自主研制了包括内置吸附剂和两段式碳吸附管在内的整套新型碳管法烟气汞浓度取样装置,以期实现燃煤烟气中颗粒汞和气相总汞浓度的精确测量.在6 kW 燃煤循环流化床装置上同时采用碳管法与安大略标准法(OHM)进行烟气中汞浓度取样.结果表明,碳管法所得汞平衡率均处于95.47%~104.72%之间.不同工况下碳吸附管第2段穿透率始终低于2%,且与相同工况下 OHM 测试结果的相对偏差在15.96%~17.56%之间,均小于20%.结果表明,所研制的碳吸附管干法烟气汞浓度取样装置符合美国 EPA 质量保证和质量控制(QA/QC)标准,可应用于实际燃煤烟气汞浓度的取样测试.%A novel carbon trap sampling system for gas-phase mercury measurement in flue gas is developed,including the high efficient sorbents made of modified biomass cokes and high precision sorbent traps for measuring particle-bound and total vapor-phase mercury in flue gas.A dedusting device is installed to collect fine fly ash for reducing the measurement errors.The thorough comparison test of mercury concentration in flue gas is conducted between the novel sampling system and the Ontario hydro method (OHM)in a 6 kW circulating fluidized bed combustor.Mercury mass balance rates of the OHM range from 95.47% to 104.72%. The mercury breakthrough rates for the second section of the sorbent trap are all below 2%.The relative deviations in the two test cases are in the range of 15.96% to 17.56% under different conditions.The verified data suggest that this novel carbon trap sampling system can meet the standards of quality assurance and quality control required by EPA Method 30B and can be applied to the coal-fired flue gas mercury sampling system.

  13. Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh

    Science.gov (United States)

    Akhtar, A.; Kosanke, R. M.

    2000-07-01

    Thirty-two core samples of Permian Gondwana coal from three coal beds of borehole GDH-38, Barapukuria Coal Basin, Dinajpur, the north-northwestern part of Bangladesh, have been collected for palynological analysis. All samples except one yielded palynomorphs and some samples contain well-preserved and abundant palynomorphs of the gymnospermal and cryptogamic groups that are considered to be useful for future correlation studies. The lower coal bed (331.6-372.5 m) can easily be differentiated from the upper two coal beds by the presence of Alisporites, Cordaitina, Corisaccites, Hamiapollenites, Leuckisporites, Nuskoisporites, Tumoripollenites, Vestgisporites and Vittatina. It is difficult to palynologically differentiate the middle (198.1-208 m) and upper (162.3-172.9 m) coal beds as they contain a very limited number of specimens by which they can be identified. The middle bed is distinguished by the presence of Microbaculispora and Weylandites and the upper bed by the presence of a single taxon Acanthotriletes. Some of the vesiculate or saccate taxa extracted from these coal beds are typical of those occurring in Permian strata of Gondwana in India, South Africa, South America, Russia, Australia and Antarctica. They are thought to be derived from Glossopteris flora, which is characterised by an abundance of Pteridospermic plants of the gymnosperm group.

  14. Isotopic and chemical characterization of coal in Pakistan

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (delta /sup 13/C % PDB) and toxic/trace element concentration levels are determined for tertiary coal samples collected from seven coal fields in Pakistan. No systematic isotope effects are found in the process of coalification from peat to tertiary lignites and sub-bituminous coal. Similarly, no age effects are observed during the Tertiary regime. The observed variations in the carbon isotopic composition of coal obtained from 'Sharigh coal field' and the 'Sor-range/Degarl coalfield'. In Balochistan are attributes to the depositional environments. More sampling/stable carbon isotope analysis are required to validate these observations. Significant concentrations of toxic elements such as S, Cr, Cd and Pb in Makarwal coal may pose environmental and engineering/operational problems for thermal power plants. (author)

  15. Coal Data: A reference

    International Nuclear Information System (INIS)

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  16. Fundamental bioprocessing research for coal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.; Scott, T.C.

    1995-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific and technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by using milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such as conversion of coal to liquids or gases; biocatalytic beneficiation of coal-derived liquids and conversion to useful chemical feedstocks; biocatalytic removal of SO{sub x} and NO{sub x} from coal combustion off-gas; environmental control technology for the removal or destruction of hazardous materials in process effluents and/or solid residues; and the removal and utilization of CO{sub 2} from combustion off-gas. Effective bioprocesses for such applications will require detailed knowledge of the biological process mechanisms and advanced bioreactor technology than can be optimized for high productivity, as well as supporting upstream and downstream processes that will allow an effective integrated bioprocess. Of particular interest is the development of predictive models that can be used for process design and scaleup. In this program, a generic approach is taken so that there will be utility over a broad range of applications. In conjunction with the generic approach, model experimental systems that address real-world problems are used to verify the results.

  17. Microbubble flotation of fine coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R. H.

    1984-03-01

    Fine coal flotation has been a longstanding problem in industry. Coal particles below approximately 38 microns in diameter are difficult to float, and the process consumes large amounts of reagents. Hydrodynamic analyses have shown, however, that the use of air bubbles smaller than those that are generated in conventional flotation machines (0.2 to 3 mm diameter) can improve the flotation rate and, hence, the coal recovery. Theoretically, a tenfold reduction in average bubble size should result in a thousandfold increase in the flotation rate constant at a given gas flow rate. Therefore, work has been done to use microbubbles less than 100 microns in diameter for the flotation of fine coal particles. Seven different U.S. coal samples have been tested in the present work. The feed size varies from -100 mesh to -500 mesh. Flotation kinetics tests have been conducted on some of these coal samples as a function of bubble size at a constant gas flow rate. The results show a drastic improvement in flotation rate with the use of microbubbles, which may account for the improved recoveries obtained with the microbubble flotation technique. In addition, test results obtained with ultrafine coal samples (-20 microns) indicate that the microbubble flotation process is more selective than conventional flotation. This improved selectivity has been explained tentatively by the increased bubble loading and the reduced turbulence around the microbubbles. Various techniques have been employed to further enhance the selectivity of the process by minimizing the ash entrapment problem. To better understand the mechanisms of microbubble flotation, basic information regarding surface tension, contact angle, viscosity, streaming currents of microbubbles, electrophoretic mobilities of coal and mineral matter, and stability of microbubble suspensions has been obtained. 50 references, 42 figures, 9 tables.

  18. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  19. Production of beneficiated derivatives from Greek lignite for electrical and non-electrical uses

    International Nuclear Information System (INIS)

    Greek Lignite deposits exploitation started back in 1958 targeting to the further industrialization of Greece. The first plans barely incorporated electrical energy production since the priorities at that time had to do with the direct use of the heat or carbon enclosed in lignite. Today the non electric uses of lignite correspond to a rather negligible 0,5 % of the total coal production. The arrival of natural gas in the near future is considered to be a major drawback towards further non electrical lignite uses and the competition will get tougher. Greek Lignite, poor in quality (that is rich in moisture and inorganic matter) has to be dried before it can be considered for any non-electric use. Briquetting, semi-coking and gasification were the options used during the last 40 years. In Greece today, the most promising use for such a low heat value lignite is its preparation (dried lignite powder or beneficiated coal slurry) so as to be used as a compatible and trouble free supportive fuel during the combustion of raw lignite in the power production sector. Little has been done up to now in the area of enrichment and removal of the inorganic matter. Research on non-electric uses has to be carried on so as to be ready for application when appropriate economic circumstances occur. (Author)

  20. Indonesian coal export potential

    International Nuclear Information System (INIS)

    Indonesia's coal mining sector is expanding rapidly. Much of the increase in coal production since the mid-1980s has been exported. Indonesian coal mining companies have large expansion programs and continuing strong export growth is projected for the remainder of the 1990s. The low mining costs of indonesian coal, together with proximity to Asian markets, mean that Indonesia is well placed to compete strongly with other thermal coal exporters and win market share in the large and expanding thermal coal market in Asia. However, there is significant uncertainty about the likely future level of Indonesia's exportable surplus of coal. The government's planned expansion in coal fired power generation could constrain export growth, while the ability of producers to meet projected output levels is uncertain. The purpose in this article is to review coal supply and demand developments in Indonesia and, taking account of the key determining factors, to estimate the level of coal exports from Indonesia to the year 2000. This time frame has been chosen because all currently committed mine developments are expected to be on stream by 2000 and because it is difficult to project domestic demand for coal beyond that year. 29 refs., 8 tabs., 7 figs

  1. Coal and public perceptions

    International Nuclear Information System (INIS)

    The Department of Energy's (DOE) clean coal outreach efforts are described. The reason why clean coal technology outreach must be an integral part of coal's future is discussed. It is important that we understand the significance of these advances in coal utilization not just in terms of of hardware but in terms of public perception. Four basic premises in the use of coal are presented. These are: (1) that coal is fundamentally important to this nation's future; (2) that, despite premise number 1, coal's future is by no means assured and that for the last 10 years, coal has been losing ground; (3) that coal's future hinges on the public understanding of the benefits of the public's acceptance of advanced clean coal technology; and (4) hat public acceptance of clean coal technology is not going to be achieved through a nationwide advertising program run by the Federal government or even by the private sector. It is going to be gained at the grassroots level one community at a time, one plant at a time, and one referendum at a time. The Federal government has neither the resources, the staff, nor the mandate to lead the charge in those debates. What is important is that the private sector step up to the plate as individual companies and an individual citizens working one-one-one at the community level, one customer, one civic club, and one town meeting at a time

  2. DEVELOPMENT OF X-RAY FLUORESCENCE TECHNIQUE FOR THE URANIUM DETERMINATION IN MONGOLIAN COAL, COAL ASH, AND PHOSPHATE ORE

    OpenAIRE

    Cherkashina, Tat`iana Yur`evna; Bolortuya, Damdinsuren; Revenko, Anatolii Grigor`evich; Zuzaan, Purev

    2014-01-01

    The results of the determination of uranium in Mongolian brown coal, coal ash, phosphate rock, and technological samples by X-ray fluorescence (XRF) spectrometry are presented. Technological samples were produced from phosphates by chemical treatment. Powder geological samples and Certified Reference Materials (CRMs) were pressed as tablets. For chosen conditions of the sample preparation procedure analytical figures of merit were carefully studied, as exemplified by the rock and uranium ore ...

  3. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  4. Analysis of cherat coal by pyrolysis gas chromatography

    International Nuclear Information System (INIS)

    Flash pyrolysis of four representative coal samples from Cherat coal mines was studied in flowing nitrogen using quartz tubular reactor coupled to gas chromatograph with flame ionization detector. This techniques allows the on line monitoring of volatile organics released from coal during pyrolysis. The major products detected are CH/sub 4/, C/sub 2/H/sub 4/ + C/sub 2/H/sub 6/, C/sub 3/H sub 6/ + C/sub 3/H/sub 8, C/sub 4/H/sub 10 and C/sub 5/H/sub 12/. Ratios of total hydrocarbons obtained are at 700 degree C from A-5, A-4, B1 and B-6 coal samples are 3.25:2.49:3.53:1 respectively, and are characteristic of each coal. The effect of temperature on the total amount of hydrocarbons was studied over temperature range 500-800 degree C,. For all the coal samples the total amount of hydrocarbons increased with an increase in temperature and passed through a maximum. For B-6 coal samples the temperature of the maximum is 650 degree C, while for A-5, A-4 and B-1 coals, it has raised to 750 degree C. To measure the effect of inherent mineral matters on the production of hydrocarbons, pyrolysis experiments were performed at 700 degree C using raw and de-mineralized coal. Removal of inherent mineral matter showed variable effect on the total amount of observed hydrocarbon products. For coal samples A-5, A-4 and B-1 the removal of inherent mineral decrease the products yield by 15 %, 23.5% and 21.5% respectively, while for B-6 samples the acid treatment of raw coal has no effect on the products yield. (author)

  5. Correlation between gas permeability and pore structure of coal matrix

    Science.gov (United States)

    Zhang, J.; Yang, J.; Gao, F.; Li, Y.; Niu, H.; Gao, H.

    2012-04-01

    The sequestration of CO2 in unminable coal seams represents a promising option for CO2 geologic storage, because the injected CO2 may enhance coalbed methane recovery (CO2-ECBM), which could partly offset the costs of the storage process. The CO2-ECBM technology is based on the relative affinity of CO2 and CH4 to coals under given pressure and temperature conditions. The excess sorption capacity of coals for CO2 is generally higher than the sorption capacity for methane. The coal seams are characterized by a dual porosity structure including cleat and matrix pores. The cleats in the coal seams are considered as highways for gas and water flow, while the matrix is the storage location of gas by adsorption. The slow transport process of gas in coal matrix may constrain the efficiency of the displacement of CH4 by CO2 due to the compacted pore structure of the coal matrix. Therefore, a detailed understanding of the correlation between permeability of gas and pore structure in coal matrix is crucial for the CO2-ECBM processes. Yangquan coals originating from the Qingshui basin, which contains gas-rich coals in China, were selected for the tests in this study. Yangquan coals are classified as anthracite. In order to avoid the influence of coal cleats on fluid flow, small coal plugs (~6 mm in diameter, ~13 mm in length) were selected and fixed in the sample compartment by special glue. A test system for simultaneously measuring adsorption-porosity-permeability on the coal matrix blocks in its free state is constructed. The permeability of gas and porosity in coal plugs to He under different gas pressure and temperature conditions were simultaneously investigated. The permeability and excess sorption capacity of the coal plugs to He, N2, CH4 and CO2 were compared at a constant gas pressure and temperature. It is expected that gas break through a cleat-plug is much faster than that through a coal matrix-plug. Different sample plugs with the different pore structure results

  6. Petrography, palynology and depositional environment of Gelibolu coals, NW Turkey

    Science.gov (United States)

    Demirtaş, Ferdi; Bozcu, Mustafa; Koşun, Erdal

    2014-05-01

    Upper Oligocene and Miocene coal samples collected from two outcrops in the Gelibolu Peninsula, NW Turkey were analyzed petrographically and palynologically to determine the depositional environment of the coals. Microscopic studies reveal that the studied coal samples from both locations are characterized by high amount of huminite group macerals, ranging from 46 to 78% (mineral-included basis). The prevailing maceral from this group is gelinite (31-65%), it can be easily seen on all studied samples, indicative of high gelification degree of organic matter. Relatively low amount of liptinite (does not exceed 9%) and inertinite (does not exceed 8%) are also observed in the coals. The mineral matter content is variable but generally high, varying from 5 to 37%, as in other Turkish coals and consists mostly of clay minerals, quartz, calcite and pyrite. The mean reflectance values range from 0.502 to 0.564% suggesting that rank of coal is subbituminous (ASTM). The chemical properties of coal including calorific value, volatile matter and fixed carbon content are also in accordance with rank of coal. Facies indices based on maceral ratios (Tissue Preservation Index vs. Gelification Index and ABC ternary diagrams) were used to interpret to depositional environment of coals. Low tissue preservation index (TPI) and high gelification index (GI) values are observed. These indices indicate that the coals deposited in limnic environment. High pH and strongly reducing conditions inferred from the presence of framboidal pyrite and also evidenced by low TPI values. The palynological assembly of the coals dominated by angiosperm pollen and spore, however, gymnosperms were rarely seen. Herbaceous/sedge plants are common in Miocene coal samples.

  7. Beneficial effect of Curcumin in Letrozole induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    P. Sushma Reddy

    2016-04-01

    Conclusion: Curcumin showed beneficial effects in Letrozole induced PCOS in female Wistar rats. Its effect was comparable to that of Clomiphene citrate, most widely used treatment for ovulation induction in PCOS condition.

  8. Lunar Oxygen and Silicon Beneficiation Using Only Solar Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Element beneficiation from a moving, ionized plasma can be accomplished through the principles of mass spectroscopy. Two US patents were recently awarded to the PI...

  9. Specific Energy of Hard Coal Under Load

    Directory of Open Access Journals (Sweden)

    Bogusz Anna

    2015-03-01

    Full Text Available The article presents results of experimental tests of energy parameters of hard coals under loading, collected from research sites located within five main geologic structures of Upper Silesian Coal Basin (GZW - Main Trough, Main Anticline, Bytom Trough, Rybnik Trough and Chwałowice Trough. Coals from12 mines were analysed, starting with seams of group 200, through groups 400, 500, 600 and, finally, seams of group 700. Coal of each of the groups of seams underwent uniaxial compression stress of the energy parameters, in a servo-controlled testing machine MTS-810NEW, for the full range of strain of the tested coal samples. Based on the tests the dependence of different types of specific energy of longitudinal strain of coals on the value of uniaxial compression strength was determined. The dependence of the value of dissipated energy and kinetic energy of coals on the uniaxial compression strength was described with a linear function, both for coals which due to their age belong to various bed sand for various lithotypes of coal. An increase in the value of dissipated energy and in kinetic energy was observed, which was correlated with an increase in uniaxial compression strength of coal. The share of dissipated energy is dominant in the total energy of strain. Share of recoverable energy in the total energy of strain is small, independent of the compression strength of coals and is at most a few per cent high. In coals of low strength and dominant share of dissipated energy, share of recoverable energy is the biggest among the tested coals. It was shown that following an increase in compression strength the share of recoverable energy decreases, while the share of dissipated energy in the total energy increases. Further studies of specific energy of longitudinal strain of rocks in the full-range strain will be the next step inperfecting methodology of research into natural rock burst susceptibility of Carboniferous rock mass and changes in the

  10. Characterization and Beneficiation of an Egyptian Nepheline Syenite Ore

    OpenAIRE

    Abouzeid, Abdel-Zaher M.; Negm, Abdel-Tawab A.

    2014-01-01

    Nepheline syenite ore is an essential constituent in ceramics and glass raw material meals, as a flux and as a source of alumina. The natural nepheline syenite rocks contain some undesired minerals, which are usually eliminated or reduced to the allowable limits by beneficiation. The present paper is concerned with characterization and beneficiation of an Egyptian nepheline syenite rock, at Abu Khruq locality, Eastern Desert, Egypt. The ore is exceptionally hard, with high crushing strength o...

  11. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    , some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

  12. Effects of coal drying on the pyrolysis and in-situ gasification characteristics of lignite coals

    International Nuclear Information System (INIS)

    Highlights: • Effect of coal drying on lignite pyrolysis was studied by TG-MS and a novel reactor. • Coal type, final temperature and heating method had key effects during pyrolysis. • We developed a new method to study morphological changes during char gasification. • It initially showed shrinking particle mode, and then changed to shrinking core mode. • Insignificant steam deactivation of char was verified by the active sites mechanism. - Abstract: Pyrolysis behaviors of two lignite coals with different drying conditions were determined by a thermogravimetric analyzer coupled with mass spectrometer (TG-MS) and a high-frequency furnace. An in-situ heating stage microscope was adopted to observe the morphological changes during char-CO2 gasification process. It is concluded that the effects of moisture contents in coals on the gaseous release process during coal pyrolysis mainly depend on coal type, final pyrolysis temperature and heating method. The in-situ heating stage experiments indicate that the shrinking particle mode is suitable to illustrate the gasification reaction mechanism in the initial and midterm reaction stages of all the lignite char samples. Although drying conditions have significant effects on coal pyrolysis process under rapid heating, these dewatering conditions result in little noticeable reactivity loss of the char during the subsequent char-CO2 gasification reaction. The measuring results of catalytic active sites can well explain the similar reactivity of lignite coals with different drying conditions

  13. Effect of cleaning process on the combustion characteristics of two different rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Kok, M.V.; Hicyilmaz, C.; Ozbas, K.E. [Middle East Technical University, Ankara (Turkey). Dept. of Mining Engineering

    2001-12-01

    In this research, thermogravimetry (TG/DTG) was used to determine the combustion characteristics of two different rank coals (Tuncbilek and Afsin Elbistan) before and after cleaning process. Applying sink-float process cleaned raw coal samples, and optimum-separating densities for each sample was determined using the criteria of 'degree of washability'. The results indicated that coal cleaning was very effective on Tuncbilek sample due to its high rank. TG/DTG analysis of raw and cleaned samples indicated different reaction regions occurring at different temperature intervals. Easy combustibility and long-lasting combustion were the distinctive effects of coal cleaning on raw coals. Kinetic analysis of the samples showed that clean coals require lower activation energies to initiate the combustion process than raw coals. 14 refs., 6 figs., 10 tabs.

  14. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 οC and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  15. Evaluation of coal bed methane potential of coal seams of Sawang Colliery, Jharkhand, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Vinod A Mendhe; A Varade

    2008-04-01

    The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50-83.15%, whereas the inertinite content varies from 14.93-36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17m3/t (Std. daf), at maximum pressure of 5.92MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75MPa and 22.94 to 26.88m3/t (Std. daf), respectively.

  16. The World Coal Quality Inventory : A status report

    Energy Technology Data Exchange (ETDEWEB)

    Tewalt, Susan J.; Finkelman, Robert B. [U.S. Geological Survey, Mail Stop 956, Reston, VA 20192 (United States); Willett, Jason C. [U.S. Geological Survey, Mail Stop 983, Reston, VA 20192 (United States)

    2005-07-20

    National and international policy makers and industry require accurate information on coal, including coal quality data, to make informed decisions regarding international import needs and export opportunities, foreign policy, technology transfer policies, foreign investment prospects, environmental and health assessments, and byproduct use and disposal issues. Unfortunately, the information needed is generally proprietary and does not exist in the public domain. The U.S. Geological Survey (USGS), in conjunction with partners in about 60 countries, is developing a digital compilation of worldwide coal quality. The World Coal Quality Inventory (WoCQI) will contain coal quality information for samples obtained from major coal beds in countries having significant coal production, as well as from many countries producing smaller volumes of coal, with an emphasis on coals currently being burned. The information that will be incorporated includes, but is not limited to, proximate and ultimate analyses; sulfur-form data; major, minor, and trace element analysis; and semi-quantitative analyses of minerals, modes of occurrence, and petrography. The coal quality information will eventually be linked to a Geographic Information System (GIS) that shows the coal basins and sample locations along with geologic, land use, transportation, industrial, and cultural information. The WoCQI will be accessible on the USGS web page and new data added periodically. This multi-national collaboration is developing global coal quality data that contain a broad array of technologic, economic, and environmental parameters, which should help to ensure the efficient and environmentally compatible use of global coal resources in the 21st century.

  17. Clean coal technologies

    International Nuclear Information System (INIS)

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  18. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  19. Collaborative studies for mercury characterization in coal and coal combustion products, Republic of South Africa

    Science.gov (United States)

    Kolker, Allan; Senior, Constance L.; van Alphen, Chris

    2014-01-01

    Mercury (Hg) analyses were obtained in USGS laboratories for 42 new samples of feed coal provided by Eskom, representing all 13 coal-fired power stations operated by Eskom in South Africa. This sampling includes results for three older power stations—Camden, Grootvlei, and Komati—returned to service starting in the late 2000s. Mercury concentrations determined in the present study are similar to or slightly lower than those previously reported, and input Hg for the three stations returned to service is comparable to that for the other 10 power stations. Results for the Matimba power station burning Waterberg coals show that coal washing currently in use is effective in reducing Hg levels to the range of the other Eskom power stations. This finding is promising for the future Medupi power station that will also use Waterberg coals and require a similar coal-washing approach. Determination of halogen contents of the 42 feed coals by a contract laboratory confirms that chlorine contents are generally low, and as such, the extent of Hg self-capture by particulate control devices (PCDs) is rather limited.

  20. Coal sector profile

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-05

    Coal is our largest domestic energy resource with recoverable reserves estimated at 268 billion short tons or 5.896 quads Btu equivalent. This is approximately 95 percent of US fossil energy resources. It is relatively inexpensive to mine, and on a per Btu basis it is generally much less costly to produce than other energy sources. Its chief drawbacks are the environmental, health and safety concerns that must be addressed in its production and consumption. Historically, coal has played a major role in US energy markets. Coal fueled the railroads, heated the homes, powered the factories. and provided the raw materials for steel-making. In 1920, coal supplied over three times the amount of energy of oil, gas, and hydro combined. From 1920 until the mid 1970s, coal production remained fairly constant at 400 to 600 million short tons a year. Rapid increases in overall energy demands, which began during and after World War II were mostly met by oil and gas. By the mid 1940s, coal represented only half of total energy consumption in the US. In fact, post-war coal production, which had risen in support of the war effort and the postwar Marshall plan, decreased approximately 25 percent between 1945 and 1960. Coal demand in the post-war era up until the 1970s was characterized by increasing coal use by the electric utilities but decreasing coal use in many other markets (e.g., rail transportation). The oil price shocks of the 1970s, combined with natural gas shortages and problems with nuclear power, returned coal to a position of prominence. The greatly expanded use of coal was seen as a key building block in US energy strategies of the 1970s. Coal production increased from 613 million short tons per year in 1970 to 950 million short tons in 1988, up over 50 percent.

  1. South Blackwater Coal`s maintenance program

    Energy Technology Data Exchange (ETDEWEB)

    Nash, J. [South Blackwater Coal Limited, Blackwater, Qld. (Australia)

    1998-09-01

    The South Blackwater operation consists of two opencut mining areas and two underground mines (Laleham and Kenmure) near Blackwater in central Queensland, all of which supply coal to a central coal preparation plant. South Blackwater Coal Ltd. recently developed a maintenance improvement programme, described in this article. The programme involved implementation systems of key performance indicators (KPIs), benchmaking, condition monitoring, work planning and control, failure analysis and maintenance audit. Some improvements became almost immediately apparent, others were quite gradual. Major results included: improved availability (and reliability) of all opencast fleets, improvements in rear dump availability; reduced maintenance man-hours for opencast fleets; and increased availability of the coal handling and preparation plant. The paper is an edited version of that presented at the `Maintenance in mining conference` 16-19 March 1998, held in Bali, Indonesia. 4 figs., 2 photos.

  2. Role of pyrite in formation of hydroxyl radicals in coal: possible implications for human health

    Energy Technology Data Exchange (ETDEWEB)

    Corey A. Cohn; Richard Laffers; Sanford R. Simon; Thomas O' Riordan; Martin Schoonen [Stony Brook University, Stony Brook, NY (USA). Department of Geosciences and Center for Environmental Molecular Science

    2006-07-01

    The harmful effects from inhalation of coal dust are well-documented. The prevalence of lung disease varies by mining region and may, in part, be related to regional differences in the bioavailable iron content of the coal. Pyrite, a common inorganic component in coal, has been shown to spontaneously form reactive oxygen species (ROS) (i.e., hydrogen peroxide and hydroxyl radicals) and degrade nucleic acids. This raises the question regarding the potential for similar reactivity from coal that contains pyrite. Experiments were performed to specifically evaluate the role of pyrite in coal dust reactivity. Coal samples containing various amounts of FeS{sub 2} were compared for differences in their generation of ROS and degradation of RNA. Coals that contain iron also show the presence of FeS{sub 2}, generate ROS and degrade RNA. Coal samples that do not contain pyrite do not produce ROS nor degrade RNA. The concentration of generated ROS and degradation rate of RNA both increase with greater FeS{sub 2} content in the coals. The prevalence of coal workers' pneumoconiosis can be correlated to the amount of FeS{sub 2} in the coals. Considering the harmful effects of generation of ROS by inhaled particles, the results presented here show a possible mechanism whereby coal samples may contribute to CWP. This suggests that the toxicity of coal may be explained, in part, by the presence of FeS{sub 2}. 54 refs., 7 figs., 1 tab.

  3. Role of pyrite in formation of hydroxyl radicals in coal: possible implications for human health

    Directory of Open Access Journals (Sweden)

    Simon Sanford R

    2006-12-01

    Full Text Available Abstract Background The harmful effects from inhalation of coal dust are well-documented. The prevalence of lung disease varies by mining region and may, in part, be related to regional differences in the bioavailable iron content of the coal. Pyrite (FeS2, a common inorganic component in coal, has been shown to spontaneously form reactive oxygen species (ROS (i.e., hydrogen peroxide and hydroxyl radicals and degrade nucleic acids. This raises the question regarding the potential for similar reactivity from coal that contains pyrite. Experiments were performed to specifically evaluate the role of pyrite in coal dust reactivity. Coal samples containing various amounts of FeS2 were compared for differences in their generation of ROS and degradation of RNA. Results Coals that contain iron also show the presence of FeS2, generate ROS and degrade RNA. Coal samples that do not contain pyrite do not produce ROS nor degrade RNA. The concentration of generated ROS and degradation rate of RNA both increase with greater FeS2 content in the coals. Conclusion The prevalence of coal workers' pneumoconiosis can be correlated to the amount of FeS2 in the coals. Considering the harmful effects of generation of ROS by inhaled particles, the results presented here show a possible mechanism whereby coal samples may contribute to CWP. This suggests that the toxicity of coal may be explained, in part, by the presence of FeS2.

  4. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  5. Coal in a hole?

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    1998-05-01

    The editor of World Mining Equipment discusses the tangled position of the European coal industry, affected by concerns over acid rain and carbon dioxide emissions, and by subsidies. He outlines the debate in the UK about gas versus coal and about coal subsidies in Germany (which could affect mines in other European countries). The requirement to reduce CO{sub 2} emissions and to minimise the problem of acid rain will have a direct bearing on coal mining firms and equipment manufacturers so it is possible that the only future for the industry lies with clean coal technologies. Even here, there is no easy answer as it is not clear how developing nations will be able to pay for these more expensive clean coal systems. 2 photos.

  6. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  7. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  8. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  9. Supercritical solvent coal extraction

    Science.gov (United States)

    Compton, L. E. (Inventor)

    1984-01-01

    Yields of soluble organic extract are increased up to about 50% by the supercritical extraction of particulate coal at a temperature below the polymerization temperature for coal extract fragments (450 C.) and a pressure from 500 psig to 5,000 psig by the conjoint use of a solvent mixture containing a low volatility, high critical temperature coal dissolution catalyst such as phenanthrene and a high volatility, low critical temperature solvent such as toluene.

  10. Coal and our environment

    International Nuclear Information System (INIS)

    This booklet describes how coal is important for economic development and how it can be used without environmental damage. Aspects covered include: improved air quality; Clean Air Act; controlling emissions from coal; flue gas desulfurization; acid rain; the greenhouse effect and climatic change; the cost of clean air; surface coal mining and land reclamation; underground mining and subsidence; and mining and water pollution including acid mine drainage

  11. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  12. Clean coal technologies

    International Nuclear Information System (INIS)

    The recent developments and implementations in clean coal technologies foe power generation and industry are reviewed in the present work. The requirements of the Clean Air Act in the United States, and the Directives of the European communities, on the limitations of emissions of pollutants from coal uses are firstly briefly reviewed, and later technological means that are available to coal producers and utilizers to comply with them. Coal cleaning, before combustion may be achieved by physical, chemical and biotechnological methods, these technologies are then examined as well as coal refining. The developments in clean coal combustion are extremely rapid, particularly in regard to poor coals, they are reviewed and in particular fluidized bed combustion, in its varieties, as well as coal gasification and combined cycle and the utilization of the gas in fuel cells. A further chapter is devoted to the control of emissions of gases from coal combustion, to reduce SO2 and NOx emitted in the atmosphere. The economic implications of the technologies are evaluated according to the most recent information available from published literature and from industry publications, and the results compared. The implications of meand to reduced the emission of CO2 to the atmosphere are also evaluated. (authors)

  13. Optimal coal import strategy

    International Nuclear Information System (INIS)

    Recently, the main power company in Taiwan has shifted the primary energy resource from oil to coal and tried to diversify the coal supply from various sources. The company wants to have the imported coal meet the environmental standards and operation requirements as well as to have high heating value. In order to achieve these objectives, establishment of a coal blending system for Taiwan is necessary. A mathematical model using mixed integer programming technique is used to model the import strategy and the blending system. 6 refs., 1 tab

  14. Coal export facilitation

    International Nuclear Information System (INIS)

    There is a wide range of trade barriers, particularly tariffs, in current and potential coal market. Commonwealth departments in Australia play a crucial role in supporting government industry policies. This article summarises some of more recent activities of the Department of Primary Industries and Energy (DPIE) in facilitating the export of Australian Coals. Coal export facilitation activities are designed to assist the Australian coal industry by directing Commonwealth Government resources towards issues which would be inappropriate or difficult for the industry to address itself

  15. The behaviour of chemically altered coals in ZnCl{sub 2}-catalysed reaction with hydrogen and methanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, P.N.; Bimer, J.; Salbut, P.D.; Gruber, R.; Djega-Mariadassou, G.; Brodzki, D.; Korniyets, E.; Kuznetsova, L.; Krzton, A. [Institute of Chemistry and Chemico-Metallurgical Processes, Krasnoyarsk (Russian Federation)

    1996-08-01

    A series of chemically altered coals was investigated in the reaction with methanol and hydrogen in the presence of ZnCl{sub 2} as a catalyst. Significant beneficial effects were observed when high-rank coals were altered by reductive and radioactively methylating pretreatments. The behaviour of altered low-rank brown and subbituminous coals was affected by both the mode of chemical pretreatment and the reaction conditions. The benefit can be explained by partial depolymerization of the coal matter through the disruption of cross-links and the passivation of hydroxyl groups by methylation. 33 refs., 7 figs., 3 tabs.

  16. A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Wei Jianping; Wang Kai; Li Peng; Wang Ke

    2014-01-01

    This study developed the equipment for thermo-fluid-solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded meth-ane-containing coal has been studied under the conditions of different confining pressures and pore pres-sures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.

  17. Distribution of sulfur and pyrite in coal seams from Kutai Basin (East Kalimantan, Indonesia): Implications for paleoenvironmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Sri [Department of Mining Engineering, Moslem University of Indonesia, Jln. Urip Sumoharjo, Makassar (Indonesia); Oschmann, Wolfgang [Institute of Geosciece, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany); Bechtel, Achim; Sachsenhofer, Reinhard F. [Department of Applied Geoscience and Geophysics, University of Leoben, Peter-Tunner-Str.5, A-8700 Leoben (Austria); Anggayana, Komang [Department of Mining Engineering, Bandung Institute of Technology, Jln. Ganesa 10, I-40132 Bandung (Indonesia); Puettmann, Wilhelm [Institute of Atmospheric and Environmental Sciences, Dapartment of Analytical Enviromental Chemistry, J.W. Goethe-University, Altenhoeferallee 1, D-60438 Frankfurt a.M. (Germany)

    2010-03-01

    Thirteen Miocene coal samples from three active open pit and underground coal mines in the Kutai Basin (East Kalimantan, Indonesia) were collected. According to our microscopical and geochemical investigations, coal samples from Sebulu and Centra Busang coal mines yield high sulfur and pyrite contents as compared to the Embalut coal mine. The latter being characterized by very low sulfur (< 1%) and pyrite contents. The ash, mineral, total sulfur, iron (Fe) and pyrite contents of most of the coal samples from the Sebulu and Centra Busang coal mines are high and positively related in these samples. Low contents of ash, mineral, total sulfur, iron (Fe) and pyrite have been found only in sample TNT-32 from Centra Busang coal mine. Pyrite was the only sulfur form that we could recognize under reflected light microscope (oil immersion). Pyrite occurred in the coal as framboidal, euhedral, massive, anhedral and epigenetic pyrite in cleats/fractures. High concentration of pyrite argues for the availability of iron (Fe) in the coal samples. Most coal samples from the Embalut coal mine show lower sulfur (< 1 wt.%) and pyrite contents as found within Centra Busang and Sebulu coals. One exception is the coal sample KTD-38 from Embalut mine with total sulfur content of 1.41 wt.%. The rich ash, mineral, sulfur and pyrite contents of coals in the Kutai Basin (especially Centra Busang and Sebulu coals) can be related to the volcanic activity (Nyaan volcanic) during Tertiary whereby aeolian material was transported to the mire during or after the peatification process. Moreover, the adjacent early Tertiary deep marine sediment, mafic igneous rocks and melange in the center of Kalimantan Island might have provided mineral to the coal by uplift and erosion. The inorganic matter in the mire might also originate from the ground and surface water from the highland of central Kalimantan. (author)

  18. Beneficial reuse of US DOE Radioactive scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Motl, G.P.

    1995-01-19

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ``beneficially reuse`` this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept.

  19. Beneficial reuse of US DOE Radioactive scrap metal

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has more than 2.5 million tons of radioactive scrap metal (RSM) that is either in inventory or expected to be generated over the next 25 years as major facilities within the weapons complex are decommissioned. Since much of this metal cannot be decontaminated easily, past practice has been to either retain this material in inventory or ship it to DOE disposal sites for burial. In an attempt to conserve natural resources and to avoid burial of this material at DOE disposal sites, options are now being explored to ''beneficially reuse'' this material. Under the beneficial reuse concept, RSM that cannot be decontaminated and free released is used in applications where the inherent contamination is not a detriment to its end use. This paper describes initiatives currently in progress in the United States that support the DOE beneficial reuse concept

  20. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  1. CO2 Sequestration Potential of Texas Low-Rank Coals

    Energy Technology Data Exchange (ETDEWEB)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2003-07-01

    The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

  2. Characteristics of Malaysian coals with their pyrolysis and gasification behaviour

    International Nuclear Information System (INIS)

    This study was conducted since comprehensive study on the gasification behaviour of Malaysian coals is still lacking. Coals were characterised using heating value determination, proximate analysis, ultimate analysis and ash analysis. Pyrolysis process was investigated using thermogravimetric analyser. While, atmospheric bubbling fluidized bed gasifier was used to investigate the gasification behaviour. Three Malaysian coals, Merit Pila, Mukah Balingian, Silantek; and Australian coal, Hunter Valley coals were used in this study. Thermal degradation of four coal samples were performed, which involved weight loss profile and derivative thermogravimetric (DTG) curves. The kinetic parameters, such as maximum reactivity value, Rmax, Activation Energy, Ea and Arrhenius constant, ln Ro for each coal were determined using Arrhenius Equation. Merit Pila coal shows the highest maximum reactivity among other Malaysian coals. Ea is the highest for Merit Pila coal (166.81kJmol-1) followed with Mukah Balingian (101.15 kJmol-1), Hunter Valley (96.45 kJmol-1) and Silantek (75.23 kJmol-1) coals. This finding indicates direct correlation of lower rank coal with higher Ea. Merit Pila coal was studied in detail using atmospheric bubbling fluidized bed gasifier. Different variables such as equivalence ratio (ER) and gasifying agents were used. The highest H2 proportion (38.3 mol.%) in the producer gas was reached at 715 degree Celsius and ER=0.277 where the maximization of LHVpg (5.56 MJ/Nm3) was also detected. ER and addition of steam had shown significant contributions to the producer gas compositions and LHVpg. (author)

  3. Coal plasticity at high heating rates and temperatures. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Gerjarusak, S.; Peters, W.A.; Howard, J.B.

    1995-05-01

    Plastic coals are important feedstocks in coke manufacture, coal liquefaction, gasification, and combustion. During these processes, the thermoplastic behavior of these coals is also important since it may contribute to desirable or undesirable characteristics. For example, during liquefaction, the plastic behavior is desired since it leads to liquid-liquid reactions which are faster than solid-liquid reactions. During gasification, the elastic behavior is undesired since it leads to caking and agglomeration of coal particles which result in bed bogging in fixed or fluidized bed gasifiers. The plastic behavior of different coals was studied using a fast-response plastometer. A modified plastometer was used to measure the torque required to turn at constant angular speed a cone-shaped disk embedded in a thin layer of coal. The coal particles were packed between two metal plates which are heated electrically. Heating rates, final temperatures, pressures, and durations of experiment ranged from 200--800 K/s, 700--1300 K, vacuum-50 atm helium, and 0--40 s, respectively. The apparent viscosity of the molten coal was calculated from the measured torque using the governing equation of the cone-and-plate viscometer. Using a concentrated suspension model, the molten coal`s apparent viscosity was related to the quantity of the liquid metaplast present during pyrolysis. Seven coals from Argonne National Laboratory Premium Coal Sample Bank were studied. Five bituminous coals, from high-volatile to low-volatile bituminous, were found to have very good plastic behavior. Coal type strongly affects the magnitude and duration of plasticity. Hvb coals were most plastic. Mvb and lvb coals, though the maximum plasticity and plastic period were less. Low rank coals such as subbituminous and lignite did not exhibit any plasticity in the present studies. Coal plasticity is moderately well correlated with simple indices of coal type such as the elemental C,O, and H contents.

  4. Application of inelastic neutron scattering and prompt neutron activation analysis in coal quality assessment

    International Nuclear Information System (INIS)

    The basic principles are assessed of the determination of ash content in coal based on the measurement of values proportional to the effective proton number. Discussed is the principle of coal quality assessment using the method of inelastic neutron scattering and prompt neutron activation analysis. This is done with respect both to theoretical relations between measured values and coal quality attributes and to practical laboratory measurements of coal sample quality by the said methods. (author)

  5. Toxic Substances From Coal Combustion - Phase I Coal Selection and Chaacterization

    Energy Technology Data Exchange (ETDEWEB)

    A. Kolker; A. Sarofim; C.A. Palmer; C.L. Senior; F.E. Huggins; G.P. Huffman; I. Olmez; N. Shah; R. Finkelman; S. Crowley; T. Zeng

    1998-07-16

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. Over the past decade, a large database identifying the partitioning and emitted concentrations of several toxic metals on the list of HAPs has been developed. Laboratory data have also been generated to help define the general behavior of several elements in combustion systems. These data have been used to develop empirical and probabalistic models to predict emissions of trace metals from coal-fired power plants. While useful for providing average emissions of toxic species, these empirically based models fail when extrapolated beyond their supporting database. This represents a critical gap; over the coming decades, new fuels and combustion systems will play an increasing role in our nation's power generation system. For example, new fuels, such as coal blends or beneficiated fuels, new operating conditions, such as low-NO burners or staged combustion, or new power x systems, for example, those being developed under the DoE sponsored Combustion 2000 programs and integrated gasification combined cycle (IGCC) systems, are all expected to play a role in power generation in the next century. The need for new predictive tools is not limited to new combustion systems, however. Existing combustion systems may have to employ controls for HAPs, should regulations be imposed. Testing of new control methods, at pilot and full scale, is expensive. A sound under-standing of the chemical transformations of both organic and inorganic HAPs will promote the development of new control methods in a cost-effective manner. To ensure that coal-fired power generation proceeds in an environmentally benign fashion, methods for the prediction

  6. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  7. Coal-fueled diesel engines for locomotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, B.D.; Najewicz, D.J.; Cook, C.S.

    1993-11-01

    GE Transportation Systems (GE/TS) completed a two and one half year study into the economic viability of a coal fueled locomotive. The coal fueled diesel engine was deemed to be one of the most attractive options. Building on the BN-NS study, a proposal was submitted to DOE to continue researching economic and technical feasibility of a coal fueled diesel engine for locomotives. The contract DE-AC21-85MC22181 was awarded to GE Corporate Research and Development (GE/CRD) for a three year program that began in March 1985. This program included an economic assessment and a technical feasibility study. The economic assessment study examined seven areas and their economic impact on the use of coal fueled diesels. These areas included impact on railroad infrastructure, expected maintenance cost, environmental considerations, impact of higher capital costs, railroad training and crew costs, beneficiated coal costs for viable economics, and future cost of money. The results of the study indicated the merits for development of a coal-water slurry (CWS) fueled diesel engine. The technical feasibility study examined the combustion of CWS through lab and bench scale experiments. The major accomplishments from this study have been the development of CWS injection hardware, the successful testing of CWS fuel in a full size, single cylinder, medium speed diesel engine, evaluation of full scale engine wear rates with metal and ceramic components, and the characterization of gaseous and particulate emissions.

  8. Environmental Impact Assessment of Coal Mining: Indian Scenario

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-09-01

    Full Text Available Coal mining is a development activity, which is bound to damage the natural ecosystem by all its activities direct and ancillary, starting from land acquisition to coal beneficiation and use of the products. This is so because environmental degradation has affected especially the common property resources such as land and water on which depend the subsistence and well-being of the local community. The study area being the foremost coal producing region of the country also ranked high in the record of environmentally degraded region. Huge areas in the Raniganj and Jharia coalfield in India have become ruined due to abandoned and active mine surface and underground mines. In open cast mines, waste resources are usually stacked as huge dumps in the surroundings. These, coupled with coal dumps, cause noteworthy visual impact. Large vicinity of forest, farming land, and pasture land has been transformed into colliery colonies or into uncultivated land due to rapid expansion of the coal mines. As a result, land use pattern has been changed considerably over last three decades. This study is pursued to assess the impact of coal mining activities on local community and environment.

  9. 14C tracing in water from deep coal mines of Rybnik coal region and Legnica-Glogow copper fields

    International Nuclear Information System (INIS)

    The results are shown of measuring 14C in coal mine and copper mine ground water, and CO2 sample preparation from carbonates dissolved in the water is described. In 1964 to 1967, 14 samples were measured from boreholes in the Legnica-Glogow copper basin. The results of 14C content measurements are shown as are the general characteristics of geological structure of the Rybnik coal field northern region. In 69 samples taken in 15 places of the Rybnik coal field, the activity of 14C samples taken in a depth of 400 m in an area of major tectonic disturbances was low, amounting to only 1.8+-0.3%; sample activity in the coal exploitation region showed considerable variability. The results show that flooding of the exploited bed and its contact with shallow waters may yield information needed for exploitation control. (J.P.)

  10. Palynomorphs of Permian Gondwana coal from borehole GDH-38, Barapukuria Coal Basin, Bangladesh

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, A.; Kosanke, R.M. [Geological Survey of Bangladesh, Dhaka (Bangladesh)

    2000-07-01

    Thirty-two core samples of Permian Gondwana coal from three coal beds of borehole GDH-38, Barapukuria Coal Basin, Dinajpur, Bangladesh, were collected for palynological analysis. The lower coal bed (331.5-372.5 m) can easily be differentiated from the upper two coal beds by the presence of Alisporites, Cordaitina, Corisaccites, Hamiapollenites, Leuckisporites, Nuskoisporites, Tumoripollenites, Vestgisporites and Vittatina. It is difficult to palynologically differentiate the middle (198.1-208 m) and upper (162.3-172.9 m) coal beds as they contain a very limited number of specimens by which they can be identified. The middle bed is distinguished by the presence of Microbaculispora and Weylandites and the upper bed by the presence of a single taxon Acanthotriletes. Some of the vesiculate or saccate taxa extracted from these coal beds are typical of those occurring in Permian strata of Gondwana in India, South Africa, South America, Russia, Australia and Antarctica. They are thought to be derived from Glossopteris flora, which is characterised by an abundance of Pteridospermic plants of the gymnosperm group.

  11. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

    Science.gov (United States)

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations. PMID:26774687

  12. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  13. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    Science.gov (United States)

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  14. Physical Cleaning of Lakhra Coal by Dense Medium Separation Method

    Directory of Open Access Journals (Sweden)

    Sikandar Ali Channa

    2015-07-01

    Full Text Available This research is an attempt to upgrade Lakhra Lignite Coal using ?Dense Medium Separation? technique, to make it techno-environmentally acceptable product for different industries. The air-dried samples of ROM (Run of Mine coal were crushed, screened, ground and subjected to initial analysis and specific gravity based sink-float tests. The initial analysis of air-dried samples shows the average values of moisture 19%, volatile matter 22.33%, ash 27.41%, fixed carbon 31.26% and sulphur 4.98%. The investigational results of sink-float analysis indicate that physical cleaning at particle size range from -5.6 to +0.3 mm and 75% clean coal recovery can potentially reduce the ash yield and sulphur content of Lakhra coal up to 41 and 42.4% respectively. This washed coal is techno-environmentally acceptable yield and simultaneously qualifies the quality parameters set by various industries of Pakistan

  15. Hydrogen production from coal

    Science.gov (United States)

    1975-01-01

    The gasification reactions necessary for the production of hydrogen from montana subbituminous coal are presented. The coal composition is given. The gasifier types mentioned include: suspension (entrained) combustion; fluidized bed; and moving bed. Each gasification process is described. The steam-iron process, raw and product gas compositions, gasifier feed quantities, and process efficiency evaluations are also included.

  16. Clean coal technology

    International Nuclear Information System (INIS)

    This paper shows data of current and projected SO2 emissions, ambient pollution in major Asian cities; Benefits of natural gas Use in Power Generation; Efficiency of thermal power plants in India and China. It discusses Coal Benefitiation meaning use of high efficiency coal technologies i.e. reducing particulate emissions

  17. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  18. The coal deal

    Energy Technology Data Exchange (ETDEWEB)

    Woof, M.

    2001-12-01

    This paper reports on the Katowice 2001 coal mining show in Poland. A wide array of mining equipment manufacturers supported the vent including companies from Poland, the Czech Republic, Germany, Finland, Sweden, the USA and the UK. There was a particular focus on underground coal although other sectors, such as copper mining, were also represented.

  19. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  20. Coal Formation and Geochemistry

    Science.gov (United States)

    Orem, W. H.; Finkelman, R. B.

    2003-12-01

    Coal is one of the most complex and challenging natural materials to analyze and to understand. Unlike most rocks, which consist predominantly of crystalline mineral grains, coal is largely an assemblage of amorphous, degraded plant remains metamorphosed to various degrees and intermixed with a generous sprinkling of minute syngenetic, diagenetic, epigenetic, and detrital mineral grains, and containing within its structure various amounts of water, oils, and gases. Each coal is unique, having been derived from different plant sources over geologic time, having experienty -45ced different thermal histories, and having been exposed to varying geologic processes. This diversity presents a challenge to constructing a coherent picture of coal geochemistry and the processes that influence the chemical composition of coal.Despite the challenge coal presents to geochemists, a thorough understanding of the chemistry and geology of this complex natural substance is essential because of its importance to our society. Coal is, and will remain for sometime, a crucial source of energy for the US and for many other countries (Figure 1). In the USA, more than half of the electricity is generated by coal-fired power plants, and almost 90% of the coal mined in the USA is sold for electricity generation (Pierce et al., 1996). It is also an important source of coke for steel production, chemicals, pharmaceuticals, and even perfumes ( Schobert, 1987). It may also, in some cases, be an economic source of various mineral commodities. The utilization of coal through mining, transport, storage, combustion, and the disposal of the combustion by-products, also presents a challenge to geochemists because of the wide range of environmental and human health problems arising from these activities. The sound and effective use of coal as a natural resource requires a better understanding of the geochemistry of coal, i.e., the chemical and mineralogical characteristics of the coal that control its

  1. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  2. Coal resources of Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, R.B.

    1982-01-01

    In the late 1800s, whaling ships carried Alaskan coal, and it was used to thaw ground for placer gold mining. Unfortunate and costly political maneuvers in the early 1900s delayed coal removal, but the Alaska Railroad and then World War II provided incentives for opening mines. Today, 33 million acres (about 9% of the state) is classified as prospectively valuable for coal, much of it under federal title. Although the state's geology is poorly known, potential for discovery of new fields exists. The US Geological Survey estimates are outdated, although still officially used. The total Alaska onshore coal resource is estimated to be 216 to 4216 billion tons of which 141 billion tons are identified resources; an additional 1430 billion tons are believed to lie beneath Cook Inlet. Transportation over mountain ranges and wetlands is the biggest hurdle for removal. Known coal sources and types are described and mapped. 1 figure.

  3. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  4. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  5. Coal self-heating and explosibility

    Energy Technology Data Exchange (ETDEWEB)

    Gouws, M.J.; Knoetze, T.P. [University of the Witwatersrand, Johannesburg (South Africa). Dept. of Mining Engineering

    1995-01-01

    The spontaneous combustion of coal and the explosion of coal dust are two phenomena that were identified by the South African mining industry as requiring investigation. Research contracts were awarded to the G.P. Badenhorst Research Facility of the CSIR and the Department of Mining Engineering of the University of Witwatersrand by the now defunct National Energy Council. Both projects entailed tests on numerous coal samples in specially designed apparatus. Since the completion of the project, attempts have been made to predict experimental results without incurring the cost of performing experiments. This paper describes predictive indices, based on routine laboratory tests, that were developed by the different research teams for their particular projects. A comparison of the results obtained by applying the spontaneous combustion liability index and the explosibility index to common coal samples indicates that, in general, propensity to spontaneous combustion and explosibility exhibit an inverse relationship. A brief overview is given of some major South African coal-mine disasters. 9 refs., 6 figs., 2 tabs.

  6. Strategies to control pollution from coal based thermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, B.; Paliwal, S.K. [Central Pollution Control Board, Delhi (India)

    1997-12-31

    In India, coal based thermal power plants contribute a prime source of energy supply. It has become necessary to adopt an integrated strategy with emphasis on waste minimisation in addition to control at source. Use of clean process technologies such as Fluidised Bed Combustion (FBC, PFBC and AFBC) boilers which not only provide higher combustion efficiency but also emit less amount of pollutants. In order to improve performance of existing power stations and to reduce emission of fly ash, the power plants should use beneficiated coal. Besides the savings in transportation cost and reduction in ash generation, the Plant Load Factor (PLF) of power stations will also be increased considerably after using beneficiated coal. To promote use of flyash for various useful purposes, it is necessary to a adopt dry flyash collection system. Fiscal incentives on equipment and machineries, exemption on excise and custom duties and free availability of land and electricity to the entrepreneur are among the measures required for reducing the problems caused by flyash. The paper provides an overview of the pollution problems in coal based power plants and possible options for waste minimisation and pollution control. 4 tabs.

  7. Beneficial Effects of Tactile Stimulation on Early Development.

    Science.gov (United States)

    Caulfield, Rick

    2000-01-01

    Reviews selected research on the beneficial effects of tactile stimulation on infants. Examines the results of studies with animals, preterm infants, cocaine- and HIV-exposed preterm infants, and normal full-term infants. Briefly discusses caregiving implications and offers suggestions on how caregivers can incorporate tactile stimulation in…

  8. THE BENEFICIAL EFFECTS OF SPORT ON ANXIETY AND DEPRESSION

    Directory of Open Access Journals (Sweden)

    Francesco Perrotta

    2010-08-01

    Full Text Available It is well established that exercise increases energy levels and mood state. At least 20 published studies, indicate a link between physical activity and signs of prosperity. There is much medical evidence showing the beneficial effects of exercise on cardiovascular disease, obesity and diabetes. Currently there is growing interest to see ifphysical activity can also improve symptoms of mental illness

  9. A review on the beneficial aspects of food processing.

    NARCIS (Netherlands)

    Boekel, van M.A.J.S.; Fogliano, V.; Pellegrini, N.; Stanton, C.; Scholz, G.; Lalljie, S.P.D.; Somoza, V.; Knorr, D.; Rao Jasti, P.; Eisenbrand, G.

    2010-01-01

    The manuscript reviews beneficial aspects of food processing with main focus on cooking/heat treatment, including other food-processing techniques (e.g. fermentation). Benefits of thermal processing include inactivation of food-borne pathogens, natural toxins or other detrimental constituents, prolo

  10. 241-SY-101 mulitport riser acceptance for beneficial use

    International Nuclear Information System (INIS)

    This document formally demonstrates that the Acceptance for Beneficial USE (ABU) process for the SY tank farm Multiport Riser assembly has been properly completed in accordance with the ABU checklist. For each item required on the ABU checklist, a bibliography of the documentation prepared and released to satisfy the requirement is provided

  11. Research Priorities for Robust and Beneficial Artificial Intelligence

    OpenAIRE

    Russell, Stuart; University of California, Berkeley; Dewey, Daniel; Oxford University; Tegmark, Max; Massachusetts Institute of Technology

    2016-01-01

    Success in the quest for artificial intelligence has the potential to bring unprecedented benefits to humanity, and it is therefore worthwhile to investigate how to maximize these benefits while avoiding potential pitfalls. This article gives numerous examples (which should by no means be construed as an exhaustive list) of such worthwhile research aimed at ensuring that AI remains robust and beneficial.

  12. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods. PMID:23109262

  13. Children's Illnesses: Their Beneficial Effects on Behavioral Development.

    Science.gov (United States)

    Parmelee, Arthur H. Jr.

    1986-01-01

    Discusses potential beneficial effects of children's illnesses on their behavioral development. It is argued, on the basis of clinical experience and related research, that minor illnesses give children many opportunities to increase knowledge of self, other, prosocial behavior, and empathy and to realistically understand the sick role. (Author/RH)

  14. Attitudes toward Women Coal Miners in an Appalachian Coal Community.

    Science.gov (United States)

    Trent, Roger B.; Stout-Wiegand, Nancy

    1987-01-01

    In a coal mining community, a survey revealed that the level of negative sentiment toward women coal miners was substantial and varied by gender role. Male coal miners were negative toward female co-workers, but they supported women's right to coal mine jobs, while female homemakers did not. (Author/CH)

  15. Microbial methane formation from hard coal and timber in an abandoned coal mine

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, M.; Beckmann, S.; Engelen, B.; Thielemann, T.; Cramer, B.; Schippers, A.; Cypionka, H. [Federal Institute for Geoscience and Natural Resources BGR, Hannover (Germany)

    2008-07-01

    About 7% of the global annual methane emissions originate from coal mining. Also, mine gas has come into focus of the power industry and is being used increasingly for heat and power production. In many coal deposits worldwide, stable carbon and hydrogen isotopic signatures of methane indicate a mixed thermogenic and biogenic origin. In this study, we have measured in an abandoned coal mine methane fluxes and isotopic signatures of methane and carbon dioxide, and collected samples for microbiological and phylogenetic investigations. Mine timber and hard coal showed an in-situ production of methane with isotopic signatures similar to those of the methane in the mine atmosphere. Enrichment cultures amended with mine timber or hard coal as sole carbon sources formed methane over a period of nine months. Predominantly, acetoclastic methanogenesis was stimulated in enrichments containing acetate or hydrogen/carbon dioxide. Molecular techniques revealed that the archaeal community in enrichment cultures and unamended samples was dominated by members of the Methanosarcinales. The combined geochemical and microbiological investigations identify microbial methanogenesis as a recent source of methane in abandoned coal mines.

  16. Extracting the core indicators of pulverized coal for blast furnace injection based on principal component analysis

    Science.gov (United States)

    Guo, Hong-wei; Su, Bu-xin; Zhang, Jian-liang; Zhu, Meng-yi; Chang, Jian

    2013-03-01

    An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated.

  17. Detailed coal exploration in Sungaililin area, South Sumatra, Indonesia (Summary)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    For the purpose of evaluating coal resource in the Sungaililin area located about 100km northwest of Palembang city, South Sumatra, Indonesia, survey was conducted on geology, test boring, chemical analysis, infrastructure, etc. The range of geological survey was about 10km{sup 2}. Test boring was carried out for 51 holes (total length: 3,676.50m). Using 102 coal samples, analysis of coal seams was conducted, and measurement was made of the combustion calorie, sulfur content, water content, gravity, ash, ash melting temperature, etc. Survey was also made on roads for coal transportation, places for barge loading, transshipping ports, etc. The results of the survey/study were as follows. Coal seams suitable for drilling are B seam and C seam, which are continuing and 5-9m thick. As to the quality of coal, they are lower bituminous coal or lignite and are high in water content, low in ash and low in sulfur content. The minable coal reserves are more than 76,000,000 tons, and coal of 3,000 tons/year is minable by the conventional method. They are suitable for the supply to thermal power plants in Indonesia and to neighboring countries. (NEDO)

  18. Comparison of coal digestion methods for atomic absorption determination of cadmium in coal

    Energy Technology Data Exchange (ETDEWEB)

    Nakashima, Ryozo; Kamata, Eijiro; Goto, Kazuo; Shibata, Shozo (Government Industrial Research Inst., Nagoya (Japan))

    1983-08-01

    To determine cadmium in coals, the decomposition method of coal matrix by using nitric-perchloric acid digestion in the sealed PTFE vessel modified in the authors laboratory was compared, in referring the recovery of cadmium, with nitric-hydrofluoric acid digestion followed by perchloric-periodic acid digestion, low temperature ashing method, and ASTM ashing method. The analytical values of NBS 1632a coal using these decomposition methods were all agreed with that of NBS certified. The cadmium quantity over than 1.0 ppm found to be determine by the calibration method with a representative synthesized coal solution containing the same quantities of acids as used in the procedure, without matching the major elements in coal digests. One half a gram of coal samples were treated in the sealed PTFE vessel with 7 ml of 1:1 perchloric-nitric acid mixture, heating at 150/sup 0/C for 7 h followed by hydrofluoric acid digestion, addition of boric acid, aquatic dilution and filtration. The solutions were then nebulized for the atomic absorption measurement. In the cadmium quantity less than 1.0 ppm, both the acid digests and the ashed samples were treated with hydrofluoric acid to expel silicic materials and then with dithizone-CCL/sub 4/ reagent to extract cadmium in the presence of ammonium citrate at pH 9.5--10. The organic layer was back-extracted with 2:100 hydrochloric acid. Eight coals mined in Australia, Canada, China, and Japan were analyzed. The correlation coefficient of concentrations of cadmium upon those of zinc was calculated to be 0.75, which showed cadmium occurred closely with zinc in coal.

  19. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  20. Impregnating Coal With Calcium Carbonate

    Science.gov (United States)

    Sharma, Pramod K.; Voecks, Gerald E.; Gavalas, George R.

    1991-01-01

    Relatively inexpensive process proposed for impregnating coal with calcium carbonate to increase rates of gasification and combustion of coal and to reduce emission of sulfur by trapping sulfur in calcium sulfide. Process involves aqueous-phase reactions between carbon dioxide (contained within pore network of coal) and calcium acetate. Coal impregnated with CO2 by exposing it to CO2 at high pressure.

  1. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  2. Prediction of the position of coal particles in an air dense medium fluidized bed system

    Institute of Scientific and Technical Information of China (English)

    Prusti Pallishree; Sahu Ashok K.; Biswal Surendra K

    2015-01-01

    An air dense medium fluidized bed separator (ADMFBS) is used for dry beneficiation of coal using ultra-fine magnetite particles as a pseudo-fluid medium. In this process, the coal particle gains additional weight due to coating on its surface and deposition at dead zone area by fine magnetite particles. Hence, the effective density of coal particle increases and the position of coal particle changes accord-ingly. In this work, an attempt was made to predict the position of coal particle in non-bubbling condition dense medium fluidized bed system. Coal particles of different shape such as cubical, rectangular prism, spherical and triangular prism with different projected area and density were used. The results show that the position of coal particle in air dense medium fluidized bed follows descending order with respect to the increase of density, projected area of coal particle and different shapes (i.e., triangular prism, cubical, rectangular prism and spherical). Empirical mathematical correlations were developed to predict the position of coal particle.

  3. A review of state-of-the-art processing operations in coal preparation

    Institute of Scientific and Technical Information of China (English)

    Noble Aaron; Luttrell Gerald H.

    2015-01-01

    Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac-ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the U.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.

  4. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  5. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  6. Coal Mines Security System

    Directory of Open Access Journals (Sweden)

    Ankita Guhe

    2012-05-01

    Full Text Available Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, automatic detection, communication and microcontroller technologies, to realize the operational parameters of the mining area. The data acquisition terminal take the PIC 16F877A chip integrated circuit as a core for sensing the data, which carries on the communication through the RS232 interface with the main control machine, which has realized the intelligent monitoring. Data management system uses EEPROM chip as a Black box to store data permanently and also use CCTV camera for recording internal situation. The system implements the real-time monitoring and displaying for data undermine, query, deletion and maintenance of history data, graphic statistic, report printing, expert diagnosis and decision-making support. The Research, development and Promote Application will provide the safeguard regarding the mine pit control in accuracy, real-time capacity and has high reliability.

  7. Strategies for Washing Australian Coals

    Energy Technology Data Exchange (ETDEWEB)

    Mackinnon, W.L.A.; Swanson, A.R. [Downer EDI Engineering Projects Pty. Ltd. QCC, East Maitland, NSW (Australia)

    2010-07-01

    This article represents a distillation of QCC's experience over the last 20 years in developing coal-washing circuits to optimize coal recoveries for a wide range of Australian coals. The article will look at typical washabilities and product types to capture the general washing requirements. The major processing equipment will be reviewed as to their typical usage in the Australian context. From this background the processing circuits and strategies commonly used will be discussed for the relevant coal types, including hard coking coal, semi-hard coking coal, PCI, export thermal, and domestic thermal coal from the major producing regions in NSW and Queensland.

  8. Analysis of coal degasification curve

    Energy Technology Data Exchange (ETDEWEB)

    Postrzednik, S.

    1983-03-01

    Discussed is use of mathematical models in analysis of thermal decomposition of coal (coal degasification). A mathematical model of coal mass changes (reduction) caused by emission of gaseous and liquid gasification products is described. Simplifying assumptions used by the model are given (e.g. linear temperature increase). The curve which characterizes thermal coal decomposition is characterized by three parameters. Formulae which describe these parameters are given. Using the model, kinetics of coal degasification characteristic of the specific coal type is determined. Combined use of mathematical modeling and derivatography in analyses of thermal coal decomposition during degasification is evaluated. 4 references.

  9. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  10. Experimental investigation of the temperature effects on CO2 permeability of fractured coal rock

    Science.gov (United States)

    Ju, Yang; Wang, Huijie; Pathegama Gamage, Ranjith; Sun, Huafei

    2012-11-01

    Accurate prediction of gas permeability is of great significance for coalbed methane production and CO2 sequestration. The permeability of coal rock plays a key role in determining coalbed methane productivity in the application of simultaneous excavation of coal and gas in deep coal mines. The main objective of this study is to investigate the temperature effects on the permeability of fractured coal rock in deep coal seams. The CO2 permeability of the fractured coal samples obtained from Ping Ding Shan coalfield, China, was measured using high pressure undrained triaxial apparatus. To probe the temperature effects, four levels of temperatures (25-75^o) were tested with the injection pressures ranging from 7 to 11MPa and a confining pressure of 15MPa. It is shown that the CO2 permeability of the fractured coal rock rises apparently with an increasing temperature. The physical mechanism that governs the CO2 permeability of coal rock is discussed in this study.

  11. Methods of determining methane emission in coal mines of Great Britain and India

    Energy Technology Data Exchange (ETDEWEB)

    Sobala, J.

    1980-10-01

    Methane prediction methods used in Great Britain are discussed in the light of methane prediction methods used in Poland and other countries. The following methods are discussed: Stuffken method (Holland), Schulz method, Fluegge method, Winter method (FRG), Gunther method (France), Lidin method (USSR), Barbara Experimental Coal Mine method (Poland) and MRDE method (UK). Factors taken into account in the 8 methods are evaluated: gas content in adjacent rock and coal layers, thickness of adjacent coal seams, distance to adjacent coal seams, length of a working, intensity of gas drainage, angle of inclination of mined coal seam, thickness of mined seam, method of roof control of the mined seam, depth, advance rate, and gas emission from hauled coal. It is noted that methods of classifying coal seams in India taking into account methane hazard are similar to the system used in Poland up to 1970 (three classes of methane hazard). Methods of coal sampling used in India are described. (6 refs.)

  12. AN INVESTIGATION OF THE HYDROPHOBIC AGGLOMERATION CHARACTERISTICS OF EASY DEGRADATION COAL FINES IN WATER

    Institute of Scientific and Technical Information of China (English)

    王力; 陈鹏

    1997-01-01

    The separation of ultrafine coal from three Chinese coal samples of easy degradation coal fines in water has been investigated by the application of a hydrophobic agglomeration process. In addition to yielding clean coal with high recovery, this process requires significantly less oil concentration for agglomeration (less than 0.4% in oil-water weight ratio) and produces stabler agglomerates than general oil agglomeration process, the cost of the oil would no longer be an important consideration for its commercial application. Neutral diesel oil was used to make oleophilic coal particles agglomerated with good rejection of clay minerals under little oil consumption and certain agitation speed at 2000 r/min. An important advantage of this process compared with other cleaning fine coal methods is that it can extremely reduce or eliminate the effects of coal degradation and some clay minerals on coal preparation.

  13. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  14. A mineralogical investigation of refractory gold ores and their beneficiation, with special reference to arsenical ores

    International Nuclear Information System (INIS)

    A mineralogical investigation of the main causes of refractoriness of some metallurgically complex gold ores in South Africa is reported. It is shown that this refractoriness is related to the presence of submicroscopic gold, carbonaceous material, pyrrhotite, and base-metal sulphides. Gold ores can be classified according to their content of these components. Electron-microprobe analysis shows that gold occurs in arsenopyrite and pyrite, the gold contents of which can be up to 2700 g/t. The gold and arsenic contents of these minerals are closely correlated. Futhermore, within zoned arsenopyrite grains, the concentration of gold closely follows that of arsenic. Moessbauer spectroscopy carried out on samples of concentrate from the Baberton area indicates that the submicroscopic gold within the sulphides is a non-metallic form. The mineralogical examination of beneficiation products is important, since it sheds light on some fundamental aspects of the behaviour of the ore and gangue components during milling and flotation. Such basic information will lead ultimately to a better understanding of the problems in the beneficiation of these ores. Investigations have shown that the overmilling of the auriferous arsenopyrite and the disseminated nature of the sulphide mineralization are the main problems during beneficiation. 13 refs., 12 figs., 2 tabs

  15. Historical overview and future directions of the microbial role in the acidic coal mine drainage system

    International Nuclear Information System (INIS)

    Bacteria have been implicated and analyzed at every step in the production of acidic coal mine drainage (AMD). This review paper provides detailed information about microbial studies in mines, laboratory settings, waste piles, ground water, receiving streams, and downstream rivers and lakes. Research on AMD treatment, beneficial uses, and seasonal variability is also reviewed. 102 refs

  16. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  17. The Evaluation of Metals and Other Substances Released into Coal Mine Accrual Waters on the Wasatch Plateau Coal Field, Utah

    OpenAIRE

    Seierstad, Alberta J.; Adams, V. Dean; Lamarra, Vincent A.; Hoefs, Nancy J.; Hinchee, Robert E.

    1983-01-01

    Six sites on the Wasatch Plateau were chosen representing subsurface coal mines which were discharging or collecting accrual water on this coal field. Water samples were collected monthly at these sites for a period of 1 year (May 1981 to April 1982). Samples were taken before and after each mine's treatment system. Water sampels were analyzed for major anions and cations, trace metals, physical properaties, nutri...

  18. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  19. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study. PMID:11321909

  20. An assessment of chemical properties and hardgrove grindability index of punjab coal

    International Nuclear Information System (INIS)

    This paper deals with the delamination of chemical properties and hardgrove grindability index (HGI) of coal samples collected from three different coal fields of Punjab; Eastern Salt Range, Central Salt Range and Makerwal coal fields. The chemical properties of Punjab coal reveal that most of the Punjab coal belongs to sub-bituminous category except coal of Tunnel C section of Makerwal Collieries and Iqbal Mineral coal mine of Dalwal, which are high volatile bituminous and lignite, respectively. The results of the research show that the HGI values of Punjab coal vary from 57 to 92. The eastern salt range coals are found to be the softest coals among that of three coal fields. It was further observed that the HGI values of the Punjab coal decrease with increasing moisture content, fixed carbon and sulphur contents, while it has a positive relation with volatile matter, ash content and gross calorific value. It was concluded that moisture content at its lower range has negligible effect on HGI of the Punjab coal. (author)

  1. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  2. Future prices of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ippolito, M.

    It is not the price of such energy in itself which is important, but relative prices between different sources: in the circumstances, coal prices. No more important are the instantaneous prices such as they appear on the to-day market, but the price ratio, in a long-dated view. So, in this article, future costs of coal development are tried to be evaluated and conditions of the stability are defined. The strategies of the concerned people and the geopolitic factors are not forgotten. In those conditions, new markets for coal and concerned stakes are reviewed.

  3. Coal potential of Antartica

    Energy Technology Data Exchange (ETDEWEB)

    Rose, G.; McElroy, C.T.

    1987-01-01

    This report attempts to bring together available information on the coal deposits of Antarctica and discuss factors that would be involved if these deposits were to be explored and mined. Most of the reported principal coal deposits in Antarctica lie generally within the Transantarctic Mountains: the majority are of Permian age and are present in the Victoria Group of the Beacon Supergroup. Several other deposits have been recorded in East Antarctica and in the Antarctic Peninsula, including minor occurrences of Mesozoic and Tertiary coal and carbonaceous shale.

  4. Farewell, king coal!

    Science.gov (United States)

    Seaton, Anthony

    2016-04-01

    Coal mining provided the power for the industrial development of the West, at great cost to the health of the workforce and, from industrial pollution, of the population. Medical appreciation of the diseases of miners was slow to develop and has been marked by controversy relating to the roles of coal and quartz and the causation of emphysema. Research by the MRC and the British coal industry resolved these issues as the industry itself declined. However, from the research has come an understanding of the influence of inhalation of different inhaled pollutants on human health that has been applied to predicting and preventing possible hazards of developing nanotechnologies. PMID:26856364

  5. Beneficial effects of green tea: A literature review

    Directory of Open Access Journals (Sweden)

    Kuttan Ramadasan

    2010-04-01

    Full Text Available Abstract The health benefits of green tea for a wide variety of ailments, including different types of cancer, heart disease, and liver disease, were reported. Many of these beneficial effects of green tea are related to its catechin, particularly (--epigallocatechin-3-gallate, content. There is evidence from in vitro and animal studies on the underlying mechanisms of green tea catechins and their biological actions. There are also human studies on using green tea catechins to treat metabolic syndrome, such as obesity, type II diabetes, and cardiovascular risk factors. Long-term consumption of tea catechins could be beneficial against high-fat diet-induced obesity and type II diabetes and could reduce the risk of coronary disease. Further research that conforms to international standards should be performed to monitor the pharmacological and clinical effects of green tea and to elucidate its mechanisms of action.

  6. Environmental radiation from a coal-fired power plant using domestically produced coals

    International Nuclear Information System (INIS)

    Environmental samples of ditch soil, ditch water, sea water, and sands were taken from a 280-MWe coal-fired power plant with a daily coal consumption of 2800 tons. Fly and bottom ashes were also taken from the same power plant. A 30 cm3 Ge(Li) detector coupled with a well-shielded and computer-aided multichannel analyzer was used to determine the radionuclides in environmental samples and ashes. Coal samples of North Taiwan with an ash to coal ratio of 1 : 4 were also investigated. Four major radionuclides of 232Th, 238 U, 235U, and 40K were reported assuming the secular equilibrium exists in thrium and uranium series. The annual release of 232Th, 238U, and 235U into atmosphere is 240, 210, and 30 mCi, respectively. Both fly and bottom ashes have highest activity per gram. On the other hand, the 235U content in Taiwan coals, ditch water at the plant site, and sands along the s eashore off the plant site is below the detection limit. (author)

  7. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  8. Experimental study on supercritical CO2 adsorption on coals from Upper Silesian coal Basin

    Science.gov (United States)

    Weishauptová, Zuzana; Přibyl, Oldřich; Sýkorová, Ivana

    2014-05-01

    Although coal seams, besides saline aquifers and depleted oil and gas reservoirs, have the lowest capacity for deposition of carbon dioxide yet this relatively new technology is considered advantageous from an economical standpoint, especially in the case of location of a repository in the vicinity of a power plant producing carbon dioxide. Another appreciable positive aspect is injection of carbon dioxide into unmineable methane-bearing seams, which simultaneously increases production of coal methane as a valuable energetic resource. Suitability of coal seams as carbon dioxide repositories is given by exceptional properties of coal, which during the coalification process retained in its interior spatial arrangement a substantial part of the porous structure of the original plant material with predominance of cavities of an effective size carbon dioxide under the conditions corresponding to the situation in situ. Among the basic parameters for selection of a suitable repository based on simulation of the deposition process there is determination of its sorption capacity. The capacity can be determined in a laboratory by measuring the amount of carbon dioxide captured in a coal sample at a pressure and temperature corresponding to supercritical conditions in situ using high pressure sorption techniques. Similarly, the amount of methane bound in coal is based on high pressure measurement of it sorbed amount The present study has been aimed at investigation of the effect of the coal properties on the carbon dioxide and methane sorption capacities. High pressure sorption experiments with carbon dioxide and methane were carried out at the temperature 45 oC and the pressure up to 15 MPa with three samples of methane-bearing, medium rank coals in a moisture equilibrated state using a manometric method. The samples were taken from selected positions of drill cores from exploration boreholes in the Bohemian part of the Upper Silesian Basin, and were characterized by a

  9. Health effects of predatory beneficial mites and wasps in greenhouses

    DEFF Research Database (Denmark)

    Bælum, Jesper; Enkegaard, Annie; Doekes, Gert;

    A three-year study of 579 greenhouse workers in 31 firms investigated the effect of four different beneficial arthropods. It was shown that the thrips mite Amblyseeius cucumeris and the spider mite predator Phytoseiulus persimilis may cause allergy measured by blood tests as well as eye and nose...... symptoms. No effect was seen by the predator wasp Aphidius colemani nor the predator mite Hypoaspis miles and no effect on lung diseases were seen....

  10. Beneficial Effects of Temperate Forage Legumes that Contain Condensed Tannins

    OpenAIRE

    Jennifer W. MacAdam; Villalba, Juan J.

    2015-01-01

    The two temperate forage legumes containing condensed tannins (CT) that promote ruminant production are birdsfoot trefoil (Lotus corniculatus L.; BFT) and sainfoin (Onobrychis viciifolia Scop.; SF). Both are well-adapted to the cool-temperate climate and alkaline soils of the Mountain West USA. Condensed tannins comprise a diverse family of bioactive chemicals with multiple beneficial functions for ruminants, including suppression of internal parasites and enteric methane. Birdsfoot tref...

  11. Beneficial Reuse of Dredged Materials in Upland Environments

    OpenAIRE

    Haus, Nicholas Wes

    2011-01-01

    Sediments excavated from dredging operations are known as dredged materials. Beneficial reuse of dredged materials in confined utilization facilities (CUFs) is a new approach that has the potential to productively utilize large quantities of dredged materials. However, several factors can inhibit the use of dredged materials in CUFs. In this study, high levels of salts and polycyclic aromatic hydrocarbons (PAHs) were investigated. In the first part of this study, 176,000 m3 of saline dred...

  12. Glutamine Supplementation in Sick Children: Is It Beneficial?

    OpenAIRE

    Elise Mok; Régis Hankard

    2011-01-01

    The purpose of this review is to provide a critical appraisal of the literature on Glutamine (Gln) supplementation in various conditions or illnesses that affect children, from neonates to adolescents. First, a general overview of the proposed mechanisms for the beneficial effects of Gln is provided, and subsequently clinical studies are discussed. Despite safety, studies are conflicting, partly due to different effects of enteral and parenteral Gln supplementation. Further insufficient evide...

  13. Beneficial effects of green tea: A literature review

    OpenAIRE

    Kuttan Ramadasan; Thambi Priya T; Chacko Sabu M; Nishigaki Ikuo

    2010-01-01

    Abstract The health benefits of green tea for a wide variety of ailments, including different types of cancer, heart disease, and liver disease, were reported. Many of these beneficial effects of green tea are related to its catechin, particularly (-)-epigallocatechin-3-gallate, content. There is evidence from in vitro and animal studies on the underlying mechanisms of green tea catechins and their biological actions. There are also human studies on using green tea catechins to treat metaboli...

  14. Signaling in Arabidopsis roots in response to beneficial rhizobacteria

    OpenAIRE

    Zamioudis, C.

    2012-01-01

    Root colonization by selected strains of beneficial soil-resident bacteria is known to improve plant growth, influence root system architecture and trigger a systemic immune response that is effective against a broad range of pathogens, known as induced systemic resistance (ISR). In this thesis we explore signaling mechanisms that are activated in the roots in response to ISR-inducing bacteria. We demonstrate that the plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS417 secret...

  15. Multi-beneficial remedial measures of hydro power rivers

    International Nuclear Information System (INIS)

    The scope of the study was to develop model plans for ecologically beneficial remedial measures of hydro power producing rivers. As a background of the plans were environmental factors contributing to power production, recreational use, fishery and ecology of rivers as well as their relations to each other studied. The focus of the study was to collect information about ecology of flowing waters and habitat requirements of different organisms. Model plans were worked out for ecologically beneficial shore protection structure, submerged weir and habitat restoration on hydro littoral zone. To assess economical impacts of the change of the remedial manners, calculatory costs of these theoretical measures were compared to the realized costs of present measures. This way it was possible to increase the accuracy of planning and reliability of assessments. It also made possible to estimate the total potential of ecologically beneficial remedial measures at the Oulujoki rivercourse. Multi-beneficial remedial measure of rivers is new as well as a concept as a course of action. Theoretical basis of the concept is still rather weak because previous studies dealing with river ecology and remedial measures have been strictly defined to certain viewpoints. The other aspect that weakens the suitability of these studies for Finnish large hydro power rivers is that they have been conducted in smaller streams and under different climate conditions. Information about mutual importance of different environmental factors was only a few in number and those studies available could be in contradiction with each other, that even further emphasis the need of basic ecological studies on great northern rivers. However, the most of the studies are based on field studies, which make them very valuable. (orig.) 123 refs

  16. EFFECT OF LIVING MULCH ON PEST/BENEFICIAL INTERACTION

    OpenAIRE

    Burgio, Giovanni; Kristensen, Hanne L.; Campanelli, Gabriele; Bavec, Franc; Bavec, Martina; von Fragstein und Niemsdorff, Peter; Depalo, Laura; Lanzoni, Alberto; Canali, Stefano

    2014-01-01

    The aim of this study was to evaluate the effect of cover crops on pest/beneficial dynamics and to test the potential of living mulch on enhancing biological control against insect pests. The research, carried out in the frame of the InterVeg (Core Organic II) project, involved four European countries: Germany, Slovenia, Denmark and Italy. Three crops were tested: cauliflower, leek and artichoke. The preliminary results obtained in Italy on cauliflower, indicated that the living mulch did not...

  17. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    Subhasish Dey; Uddaraju V Raju

    2002-10-01

    An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a flume with various sizes of gravel and coal samples. The critical bed shear stresses for the experimental runs determined using side-wall correction show considerable disagreement with the standard curves. The characteristic parameters affecting the incipient motion of particles in rough-turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  18. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  19. Effect of microwave pretreatment on liquefaction of low-rank Mukah Balingian Malaysian coal

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Azlan Mohd Ishak; Khudzir Ismail; Mohd Fauzi Abdullah; Nur Nasulhah Kasim [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory

    2007-07-01

    The effect of microwave pretreatment on low-rank Malaysian coal towards coal conversion and oil+gas yield during direct liquefaction was investigated. The pretreatment on coal was carried out prior to liquefaction using a conventional variable power microwave oven at 150, 300 and 600 W for a period of 1 to 15 min. Liquefaction processes were carried out in a 1-liter high-pressure high-temperature batch-wise reactor with tetralin as a hydrogen-donor solvent, at temperature of 420{sup o}C and at 4 MPa nitrogen pressure. The DTG results of the pyrolysed microwave-treated samples via thermogravimetric analysis (TGA) showed the increased in coal reactivity in comparison to the untreated sample. The coal conversion and oil+gas yield obtained from the liquefaction of the pretreated coal under various pretreatment conditions showed an increase of up to 3 - 7 and 9 - 22 %, respectively. The significant increased of oil+gas yield at less severe liquefaction temperature on the microwave-irradiated samples might be due to the cracks and fissures formed as shown by Scanning Electron Microscope (SEM), and the weaken coal structure (C-C bonds) that probably occurred during the microwave pretreatment to facilitate the diffusion of solvent into the coal structure. Thus, this new and effective pretreatment on coal could be a promising approach in enhancing coal conversion and oil+gas yield that utilises a less severe temperature for coal liquefaction. 22 refs., 4 figs., 5 tabs.

  20. Shale-oil-recovery systems incorporating ore beneficiation. Final report.

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, M.A.; Klumpar, I.V.; Peterson, C.R.; Ring, T.A.

    1982-10-01

    This study analyzed the recovery of oil from oil shale by use of proposed systems which incorporate beneficiation of the shale ore (that is concentration of the kerogen before the oil-recovery step). The objective was to identify systems which could be more attractive than conventional surface retorting of ore. No experimental work was carried out. The systems analyzed consisted of beneficiation methods which could increase kerogen concentrations by at least four-fold. Potentially attractive low-enrichment methods such as density separation were not examined. The technical alternatives considered were bounded by the secondary crusher as input and raw shale oil as output. A sequence of ball milling, froth flotation, and retorting concentrate is not attractive for Western shales compared to conventional ore retorting; transporting the concentrate to another location for retorting reduces air emissions in the ore region but cost reduction is questionable. The high capital and energy cost s results largely from the ball milling step which is very inefficient. Major improvements in comminution seem achievable through research and such improvements, plus confirmation of other assumptions, could make high-enrichment beneficiation competitive with conventional processing. 27 figures, 23 tables.