WorldWideScience

Sample records for beneficiated coal samples

  1. Graphic values for some organic constitutents of beneficiated coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenberger, L.B. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01

    Graphic techniques exist which can accurately predict values for calorific value, organic sulfur, and possibly other constituents of the organic portion of beneficiated coal sample fractions. These techniques also permit a determination of coal rank to be made without the use of the approximations required in the standard procedure. Fractions of IBC-101 with varying ash contents were produced by froth flotation. The various fractions were analyzed by the coal analysis laboratory and the particular data type was plotted in each case vs. the individual ash content of each fraction, using Lotus 123 and Freelace software packages. Such plots for calorific value and organic sulfur have, so far, been made. These curves and the information they contain are discussed in this report. A comparison of the graphic mineral matter value with the usual one calculated from the Parr approximation has been made. Eventually, the data may lead to an effective way to estimate inorganic carbon, hydrogen, nitrogen, and other organic constitents of coal. All data will be made available to researchers.

  2. Beneficiated coals' char morphology

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2012-09-01

    Full Text Available This work evaluated the char morphology of beneficiated and original coal (without beneficiation from four Colombian coalmines: Cerrejón (La Guajira, La Jagua (Cesar, Guachinte (Valle del Cauca and Nechí (Antioquia. Column flotation was used to obtain beneficiated coal, whereas a drop tube reactor at 1,000°C, 104 °C/s heating rate and 100 ms residence time was used to obtain char. The chars were analysed by image analysis which determined their shape, size, porosity and wall thickness. It was found that char morphology depended on coal rank and maceral composition. Morphological characteristics like high porosity, thinner walls and network-like morphology which are beneficial in improving combustion were present in vitrinite- and liptinite-rich lowest-ranking coals. Beneficiated coals showed that their chars had better performance regarding their morphological characteristics than their original coal chars.

  3. Graphic values for some organic constitutents of beneficiated coal samples. [Quarterly] report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kohlenberger, L.B. [Illinois State Geological Survey, Champaign, IL (United States)

    1992-08-01

    Graphic techniques exist which can accurately predict values for calorific value, organic sulfur, and possibly other constituents of the organic portion of beneficiated coal sample fractions. These techniques also permit a determination of coal rank to be made without the use of the approximations required in the standard procedure. Fractions of IBC-101 with varying ash contents were produced by froth flotation. The various fractions were analyzed by the coal analysis laboratory and the particular data type was plotted in each case vs. the individual ash content of each fraction, using Lotus 123 and Freelace software packages. Such plots for calorific value and organic sulfur have, so far, been made. These curves and the information they contain are discussed in this report. A comparison of the graphic mineral matter value with the usual one calculated from the Parr approximation has been made. Eventually, the data may lead to an effective way to estimate inorganic carbon, hydrogen, nitrogen, and other organic constitents of coal. All data will be made available to researchers.

  4. Progress in developments of dry coal beneficiation

    Institute of Scientific and Technical Information of China (English)

    Yuemin Zhao; Xuliang Yang; Zhenfu Luo; Chenlong Duan; Shulei Song

    2014-01-01

    China’s energy supply heavily relies on coal and China’s coal resource and water resource has a reverse distribution. The problem of water shortages restricts the applications of wet coal beneficiation technologies in drought regions. The present situation highlights the significance and urgency of developing dry beneficiation technologies of coal. Besides, other countries that produce large amounts of coal also encounter serious problem of lack of water for coal beneficiation, such as American, Australia, Canada, South Africa, Turkey and India. Thus, dry coal beneficiation becomes the research hot-points in the field of coal cleaning worldwide in recent years. This paper systematically reviewed the promising research efforts on dry coal beneficiation reported in literature in last 5 years and discussed the progress in developments of dry coal beneficiation worldwide. Finally, we also elaborated the prospects and the challenges of the development of dry coal beneficiation.

  5. Coal Beneficiation by Gas Agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas D. Wheelock; Meiyu Shen

    2000-03-15

    Coal beneficiation is achieved by suspending coal fines in a colloidal suspension of microscopic gas bubbles in water under atmospheric conditions to form small agglomerates of the fines adhered by the gas bubbles. The agglomerates are separated, recovered and resuspended in water. Thereafter, the pressure on the suspension is increased above atmospheric to deagglomerate, since the gas bubbles are then re-dissolved in the water. During the deagglomeration step, the mineral matter is dispersed, and when the pressure is released, the coal portion of the deagglomerated gas-saturated water mixture reagglomerates, with the small bubbles now coming out of the solution. The reagglomerate can then be separated to provide purified coal fines without the mineral matter.

  6. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  7. Survey and evaluation of current and potential coal beneficiation processes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S. P.N.; Peterson, G. R.

    1979-03-01

    Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

  8. Combustion characterization of beneficiated coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  9. Coal Beneficiation Technology for Coking & Non-Coking Coal Meant For Steel and Thermal Power Plants

    OpenAIRE

    Manoj Kumar Sharma; Gohil Priyank; Nikita Sharma

    2015-01-01

    There are 21 coking coal washeries in production both in private and public sectors. Production of clean coal in these washeries during 1989-90 was 12 million tonne and it is expected to go up to 37 million, tonne during 2015-16. Planning Commission has taken the decision that non-coking coal meant for Thermal Power Plants situated far away from feeding coalfield, should be beneficiated. Coal Washing is a process of separation mainly based on difference in Specific Gravity of Coal and associa...

  10. Comparison of coal separation characteristics based on different separating approaches in dry coal beneficiation flowsheet

    Institute of Scientific and Technical Information of China (English)

    HE Jing-feng; ZHAO Yue-min; HE Ya-qun; LUO Zhen-fu; DUAN Chen-long

    2015-01-01

    The separation characteristic of raw coal from Luoyang mining area, China, was investigated by applying a dry coal beneficiation flowsheet with the dense medium gas-solid fluidized bed as main separating equipment. The experimental and simulation results indicate that the dense medium gas-solid fluidized bed can provide uniform distribution and stable fluctuation of bed densities at various heights. Two types of different separating approaches were compared using the dry coal beneficiation flowsheet. Compared with obtaining cleaning coal in the first stage of the flowsheet, a higher yield of the cleaning coal and better separation efficiency can be achieved when discharging gangue in the first stage. Finally, the results indicate that 64.86% pure cleaning coal with an ash content of 11.77% and 13.53% middlings were obtained, and 21.61% gangue was removed in two successive separation stages with the probable errors of 0.05 and 0.07 g/cm3, respectively.

  11. Beneficiation of an Indian non-coking coal by column flotation

    Institute of Scientific and Technical Information of China (English)

    N.Vasumathi; T.V.Vijaya Kumar; S.Ratchambigai; S.Subba Rao; S.Prabhakar; G.Bhaskar Raju

    2016-01-01

    Beneficiation of non-coking coal is gaining ground in India.It not only reduces the volume of inert content to be transported to the power plant and also lowers the wear in the boiler houses.For special applications such as the fuel for integrated gasification combined cycle plant (IGCC),the ash content in the coal should preferably be below 15 %.Indian coals are characterized by high inter-grown ash content mainly due to ‘drift origin’ of Gondwana formation in Permian age.This warrants fine grinding of non-coking coal in order to liberate the ash forming minerals from coal macerals.A noncoking coal sample of vitrinite type from India was ground to 44 tm (d80) and subjected to column flotation to improve its quality.The non-coking coal analyzing 34.6 % ash,26.2 % volatile matter,1.3 % moisture and 37.9 % fixed carbon could be upgraded to a concentrate/froth of 14.83 % ash at 72.18 % yield by optimizing collector and frother dosages and flotation column operating parameters,namely,froth depth,superficial feed velocity and superficial air velocity.The concentrate produced by this process is suitable as fuel for IGCC in coal-to-electricity route.

  12. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 15, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-03-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1992, the following technical progress was made: Continued analyses of drop tube furnace samples to determine devolatilization kinetics; re-analyzed the samples from the pilot-scale ash deposition tests of the first nine feed coals and BCFs using a modified CCSEM technique; updated the topical summary report; and prepared for upcoming tests of new BCFs being produced.

  13. Enhancement of surface properties for coal beneficiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  14. Beneficiation of a low grade limestone sample

    Institute of Scientific and Technical Information of China (English)

    Rao Danda Srinivas; Vijayakumar Tadiparthi Venkata; Subba Rao Sripada; Bhaskar Raju Guntamadugu; Prabhakar Swarna

    2011-01-01

    Pilot scale column flotation studies were conducted on a low grade siliceous limestone ore.Silica content was reduced to less than 1% in the concentrate so that it became satisfactory for use in the paper or rubber industries.The limestone sample was crystalline and constituted primarily of calcite that contained quartz,feldspar,pyroxene,and biotite as gangue minerals.Quartz is the major silicate gangue whereas feldspar,pyroxene,and biotite exist in minor to trace quantities.Traces of pyrite were also observed within the sample.A reverse flotation process was adopted where the silicate gangue minerals were floated using two different commercial cationic collectors:Chem-750 F or Floatamine-D.The studies clearly suggest it is possible to produce a limestone concentrate assaying around 96-97% CaCO3 containing less than 1 % SiO2.The effect of feed flow rate,percent solids,froth depth,and wash water on the grade and recovery of the CaCO3 concentrate is discussed.

  15. Beneficiation of Titanium Oxides From Ilmenite by Self-Reduction of Coal Bearing Pellets

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The study on the beneficiation of titanium oxides from Panzhihua ilmenites by reduction of coal bearing pellets was carried out. The iron oxides in pellets were efficiently reduced to metal iron, and titanium oxide slag beneficiated was separated from metal iron. The effect of temperature, flux and coal blending ratio on the reduction and separation was investigated, and rational parameters were determined. A new process for the beneficiation of titanium oxides by rotary hearth furnace (RHF) was proposed.

  16. COAL DRY BENEFICIATION TECHNOLOGY IN CHINA: THE STATE-OF-THE-ART

    Institute of Scientific and Technical Information of China (English)

    Qingru Chen; Lubin Wei

    2003-01-01

    In China, coal is the major source of energy and its leading role in energy consumption would not change in the next 50 years. Coal preparation is the essential component of Clean Coal Technology. In China more than two-thirds of available coal reserves are in arid areas, which results in the unfeasibility with conventional wet processing for coal preparation. The uniqueness of dry coal beneficiation technology with air-dense medium fluidized bed is discussed in this paper and a detailed survey of the current status of theoretical study, commercial application and development of the new technology is given in this paper.

  17. Mulled coal: A beneficiated coal form for use as a fuel or fuel intermediate. Phase 3, Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    Energy International Corporation (El) was awarded a contract to evaluate a new concept for utilization of the fine coal wetcake produced by many of the physical beneficiation processes now under development. EI proposed development of a stabilized wetcake with properties that would facilitate storage, handling, transport, and subsequent conversion of the material into Coal-Water Fuel (CWF) at the point of use. The effort was performed in three phases. Phase I established the technical feasibility of stabilizing the fine coal ``wetcake`` in a form that can be readily handled and converted into a desired fuel form at the combustion site. The preferred form of stabilized ``wetcake`` was a granular free flowing material with the moisture encapsulated with the fine coal particles. The product was termed Mulled Coal. Phase I results indicated that the Mulled Coal was not only suitable as a CWF intermediate, but also had potential as a solid fuel. Phase II demonstrated the utilization of the Mulled Coal process to store and move fine coal products as a stable ``wetcake.`` Tasks in this phase tested components of the various systems required for storage, handling and combustion of the fine coals. Phase III expanded the technology by: 1. Evaluating Mulled Coal from representative coals from all producing regions in the US. 2. Development of bench-scale tests. 3. Design, construction, and operation of a 1 ton/hr continuous processing unit. 4. Evaluation of the effects of beneficiation. and 5. Developing an estimate of capital and operating costs for commercial units.

  18. High gradient magnetic beneficiation of dry pulverized coal via upwardly directed recirculating fluidization

    Science.gov (United States)

    Eissenberg, David M.; Liu, Yin-An

    1980-01-01

    This invention relates to an improved device and method for the high gradient magnetic beneficiation of dry pulverized coal, for the purpose of removing sulfur and ash from the coal whereby the product is a dry environmentally acceptable, low-sulfur fuel. The process involves upwardly directed recirculating air fluidization of selectively sized powdered coal in a separator having sections of increasing diameters in the direction of air flow, with magnetic field and flow rates chosen for optimum separations depending upon particulate size.

  19. Electrostatic beneficiation of coal. Quarterly technical progress report, April 1, 1996--June 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, M.K.; Lindquist, D.; Tennal, K.B.

    1996-07-01

    Progress reports are presented for the following: modification to the electrostatic separator; review of DOE specifications for minimum beneficiation and calculations of grinding requirements based on washability; two-pass beneficiation; analysis of different sieve fractions; measurement of charge to mass ratio as a function of height of deposition; and charging of coal against different materials.

  20. Low Density Dry Coal Beneficiation Using an Air Dense Medium Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    LUO Zhen-fu; ZHU Jian-feng; FAN Mao-ming; ZHAO Yue-min; TAO Xiu-xiang

    2007-01-01

    For the production of low ash content clean coal, separation at low density is required for some raw coals. Based on analyzing the fluidizing characteristics of magnetic pearls with a specific size distribution and formation mechanism of a microbubble fluidized bed, optimal technological and operating parameters suitable for low density coal separation were determined. The experimental results show that an air dense medium fluidized bed with low density can be formed using magnetic pearls as medium solids, which can efficiently beneficiate coal of 6-50 mm size with a probable error Ep value of 0.05 at a separating density of 1.44 g/cm3.

  1. Combustion characterization of beneficiated coal-based fuels. Quarterly report No. 17, April--June 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chow, O.K.; Nsakala, N.Y.

    1993-08-01

    Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a five-year project on ``Combustion Characterization of Beneficiated Coal-Based Fuels.`` The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are run at pilot-scale cleaning facilities to produce 20-ton batches of fuels for shipment to CE`s laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CWF) or a dry microfine pulverized coa1 (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. During the third quarter of 1993, the following technical progress was made: Completed modeling calculations of coal mineral matter transformations, deposition behavior, and heat transfer impacts of six test fuels; and ran pilot-scale tests of Upper Freeport feed coal, microagglomerate product, and mulled product.

  2. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru Chen; Lubin Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  3. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru; Chen; Lubin; Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  4. Effect of coal beneficiation process on rheology/atomization of coal water slurries. Final report, October 1, 1992--July 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ohene, F.

    1997-05-01

    To examine the factors that govern fine spray production during atomization of coal water slurries, an experimental study of the effect of coal beneficiation and their rheological properties on atomization of clean slurries was proposed. The objective of this study was to understand the effect of low shear, high shear rheology, and viscoelastic behavior on the atomization of beneficiated slurries.

  5. Beneficiation of Candiota`s coal. I - characterization of circuits; Beneficiamento do carvao de Candiota. I - caracterizacao de circuitos

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Julio Cesar de; Sampaio, Carlos Hoffmann [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Programa de Pos-graduacao em Engenharia Metalurgica e dos Materiais

    1991-12-31

    This work presents a study of different preparation plants for the coal from Candiota aiming at concentrates with about 35% ash content. Flowsheets of the coarse as well as the fine coal beneficiation plants are presented and discussed. The partition curves of the equipment used in the paper were characterized by the Erasmus mathematical model. With the results of the coarse and fine circuits operational parameters as granulometry, yield, etc.. were determined. (author). 10 refs., 4 tabs

  6. Cytotoxicity and genotoxicity induced by coal and coal fly ash particles samples in V79 cells.

    Science.gov (United States)

    León-Mejía, Grethel; Silva, Luis F O; Civeira, Matheus S; Oliveira, Marcos L S; Machado, Miriana; Villela, Izabel Vianna; Hartmann, Andreas; Premoli, Suziane; Corrêa, Dione Silva; Da Silva, Juliana; Henriques, João Antônio Pêgas

    2016-12-01

    Exposure to coal and coal ashes can cause harmful effects in in vitro and in vivo systems, mainly by the induction of oxidative damage. The aim of this work was to assess cytotoxic and genotoxic effects using the V79 cell line treated with coal and coal fly ash particles derived from a coal power plant located in Santa Catarina, Brazil. Two coal samples (COAL11 and COAL16) and two coal fly ash samples (CFA11 and CFA16) were included in this study. COAL16 was co-firing with a mixture of fuel oil and diesel oil. The comet assay data showed that exposure of V79 cells to coal and coal fly ash particles induced primary DNA lesions. Application of lesion-specific endonucleases (FPG and ENDO III) demonstrated increased DNA effects indicating the presence of high amounts of oxidative DNA lesions. The cytokinesis-block micronucleus cytome assay analysis showed that exposure of V79 cells to high concentrations of coal and coal fly ash particles induced cytotoxic effects (apoptosis and necrosis) and chromosomal instability (nucleoplasmic bridges, nuclear buds, and micronucleus (MN) formation). These results may be associated with compounds contained in the surface of the particles as hazardous elements, ultrafine/nanoparticles, and polycyclic aromatic hydrocarbons (PAHs) which were detected in the samples. Graphical abstract ᅟ.

  7. The Forming-Mechanism and Role of Creativity Thinking in Dry Coal Beneficiation ofCoal with Air-Dense Medium Fl uidized Bed

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, the authors point out that the Creativity is an inevitable request in solving engineering andtechnological problems and that the coal beneficiation technology with air-dense medium fluidized bed is a result ofreversal-thinking, and its forming-mechanism is the use of other things for reference and the transplantation.

  8. Fundamental research on surface science of coal in support of physical beneficiation of coal; Annual technical program report, September 1, 1988--August 30, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Good, R.J.; Keller, D.V. Jr.

    1989-01-01

    The objectives of this work are to obtain the basic surface chemical data, and to develop the relevant surface chemical theory, that will provide a foundation for the oil agglomeration and froth flotation processes of coal beneficiation. Contact angles of liquids in gas, on coal, and components of surface energy of coal due to acidic and basic behavior in hydrogen bonding; Adsorption of alcohols on coal; Early results in the liquid bridge theory of coal aggregate stability and pyrite rejection; and Oil-water-solid (OWC) contact angles have been measured on particles of ground coal, using a microscope in an oxygen-free glove box. See Figure 2. The coal had been wet-ground, and stored in sealed containers, under water, until needed for measurement. It was dried, and a small amount was placed in the depression of a hollowed-out microscope slide. A small amount of decane was added, to wet out the coal, and then a droplet of water. Angles were measured either with rotatable crosshairs connected to an external degree scale, or by photographing (or using and advance optical imaging system) and measuring at leisure. 8 refs., 11 figs.

  9. An assessment of the environmental emissions from a utility boiler firing beneficiated coal-oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Whaley, H,; Lee, L.K.; Doiron, C.C.

    1980-01-01

    A cooperative demonstration project to evaluate the feasibility of burning coal-oil mixtures (COM) in a small utility boiler is described. The project, undertaken by the New Brunswick Electric Power Commission and the Department of Energy, Mines and Resources Canada has, as a mator objective, an assessment of the environmental impact of COM technology and whether this can be reduced through coal cleaning by spherical agglomeration. It is shown that fly ash emissions can be reduced by as much as 50% and sulphur emissions by 10% using the coal cleaning process. Laboratory tests indicate that this performance can be significantly improved. The paper describes the emissions test program and summarises the emissions of fly ash and sulphur from two years of operation both with and without the agglomeration process.

  10. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1998-08-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. Nineteen samples, 90 data printouts, and individual data items from 416 samples were distributed during the quarter. Trends and relationships observed in liquefaction and organic geochemical analyses performed under the contract are summarized in this report. Liquefaction results using tetralin were similar to those using 1-methylnaphthalene under the same run conditions. Properties of individual coals, such as maceral composition and corresponding organic chemical components, were important in explaining liquefaction behavior. NMR and py/gc/ms results illustrated trends based on coal rank, and revealed outliers which might be of special interest, for example low-phenolic coals which limit retrogressive reactions and permit greater liquefaction conversion.

  11. Monitoring light hydrocarbons in Brazilian coal mines and in confined coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rosangela [Pos-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (Brazil); Pires, Marcal [Pos-Graduation Program in Materials Engineering and Technology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (Brazil); Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (Brazil); Azevedo, Carla M.N. [Faculty of Chemistry, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre (Brazil); Fagundes, Leandro [P and D Consultoria (Brazil); Garavaglia, Luciane; Gomes, Cleber J.B. [SATC, Associacao Beneficente da Industria Carbonifera de Santa Catarina, CTCL, Technological Center of Clean Coal (Brazil)

    2010-12-01

    Monitoring light hydrocarbons (LHCs) in coal mines, particularly methane, is important not only because of their implications for global climate change but also for economic and safety reasons. Furthermore, the identification and quantification of LHCs in coal mine air samples and desorbed from confined coal may contribute to a better understanding of coal seam characteristics. The paucity of information about the levels of methane in Brazilian underground coal mines can be attributed to their difficult access and a lack of adequate procedures for correct gas sampling. The aim of this study is to optimize and apply standard gas chromatography procedures to determine LHC levels in the air of coal mines and in confined coal from five mines under operation, three underground (A, B, C) and two surface (D, E) mines, in southern Brazil. The results indicate methane (C{sub 1}) levels varying from 3 ppm to 27% in the atmosphere of the underground mines. Mine A presented high levels of all LHCs analyzed (C{sub 1} to C{sub 5}), while only C{sub 1} and C{sub 2} were detected in mine B, and hydrocarbons ranging from C{sub 1} to C{sub 4} were found in mine C. On the other hand, surface mines presented narrow concentration range for C{sub 1} (3 ppm to 470 ppm) and C{sub 2}-C{sub 3}, with higher levels observed for puncture explosive points. Among LHCs, methane is desorbed in higher concentrations from confined coals and the presence of C{sub 2} was detected in all samples while C{sub 3}-C{sub 5} were only observed in coals from underground mines. These data are consistent with those obtained from the air gas samples collected in the mines under study. Geological events such as faulting and intrusions can accelerate the release of gas or the trapping of large amounts of previously released methane. The LHC emissions from coal mines were found to be highly variable, indicating the need for a comprehensive survey of Brazilian coal mine emissions. (author)

  12. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1998-04-01

    This project provides coal samples and accompanying analytical data for research by DOE contractors and others. All 56 samples have been purged with argon before storage, and the 33 samples in the DECS series are heat-sealed in foil laminate bags and stored under refrigeration. Eleven DECS samples have been collected under the current contract. Basic characterization, standardized liquefaction analyses and organic geochemical analyses have been completed. Distribution of samples and data is continuing, with processing of samples being performed as needed. Requests during this quarter were heavily skewed toward database activity; 139 data printouts and individual data items from 2549 additional samples were distributed.

  13. Stress sensitivity of coal samples in terms of anisotropy

    Institute of Scientific and Technical Information of China (English)

    Jun-Jian WANG; Da-Zhen TANG; Hao XU; Jie YI; Yan-Jing YI

    2013-01-01

    The permeability and porosity of coal seams are anisotropic,and the variation of confining stress may induce deformation in coal samples.In order to study these characteristics,experiments and model analyses were conducted to understand the behaviors of anisotropic stress sensitivity of lean coal samples.The results showed as the closure of cleats and the generation of micro-cracks,the strong stress sensitivity of coal samples and the discrete changes in porosity were caused by confining pressure changes.In the compression period,the anisotropy trend first increased,and then decreased.In the direction perpendicular to the bedding plane,the permeability decrease rate and the irreversible damage rate were the highest.In the direction parallel to the cleats,permeability recovery rate was higher and the irreversible damage rate was lower along butt cleats.Compared to the cube root of permeability to porosity,a 1/6 power relationship was proved to be closer to the experiment results,the new relationship had the highest fit level in the face cleat direction,and the lowest fit level in the vertical direction.

  14. Study of microwave response of coal and sandstone samples

    Science.gov (United States)

    Singh, R.; Singh, Ramesh P.; Singh, K. P.

    1980-07-01

    Detailed measurements of relative dielectric constant and loss tangent of coal and sandstone samples have been carried out in the X-band of microwave frequency range (8-10 GHz). The effect of moisture, saline and petrol content on the dielectric and loss tangent has been studied. The reflection and transmission coefficient of these samples have been computed. The application of such measurements to geophysical prospecting has been discussed.

  15. Users Handbook for the Argonne Premium Coal Sample Program

    Energy Technology Data Exchange (ETDEWEB)

    Vorres, K.S.

    1993-10-01

    This Users Handbook for the Argonne Premium Coal Samples provides the recipients of those samples with information that will enhance the value of the samples, to permit greater opportunities to compare their work with that of others, and aid in correlations that can improve the value to all users. It is hoped that this document will foster a spirit of cooperation and collaboration such that the field of basic coal chemistry may be a more efficient and rewarding endeavor for all who participate. The different sections are intended to stand alone. For this reason some of the information may be found in several places. The handbook is also intended to be a dynamic document, constantly subject to change through additions and improvements. Please feel free to write to the editor with your comments and suggestions.

  16. Frictional sliding tests on combined coal-rock samples

    Institute of Scientific and Technical Information of China (English)

    Tao Wang; Yaodong Jiang; Shaojian Zhan; Chen Wang

    2014-01-01

    A test system was developed to understand the sliding mechanism of coal-rock structure. The test system was composed by a double-shear testing model and an acousto-optic monitoring system in association with a digital camera and an acoustic emission (AE) instrument. The tests can simulate the movement of activated faults and the sliding in coal-rock structure. In this regard, instable sliding conditions of coal-rock samples, sliding types under different conditions, displacement evolution law, and AE character-istics during sliding process were investigated. Several sliding types were monitored in the tests, including unstable continuous sliding, unstable discontinuous sliding, and stable sliding. The sliding types have close relation with the axial loads and loading rates. Larger axial load and smaller loading rate mean that unstable sliding is less likely to occur. The peak shear stress was positively correlated with the axial load when sliding occurred, whereas the displacement induced by unstable sliding was uncorre-lated with the axial load. A large number of AE events occurred before sliding, and the AE rate decreased after stable sliding. The results show that the tests can well simulate the process of structural instability in a coal bump, and are helpful in the understanding of fault activation and the physical processes during squeezing process of roof and floor.

  17. Using ground and intact coal Samples to evaluate hydrocarbon fate during supercritical CO2 injection into coal beds: effects of particle size and coal moisture

    Science.gov (United States)

    Kolak, Jon; Hackley, Paul C.; Ruppert, Leslie F.; Warwick, Peter D.; Burruss, Robert

    2015-01-01

    To investigate the potential for mobilizing organic compounds from coal beds during geologic carbon dioxide (CO2) storage (sequestration), a series of solvent extractions using dichloromethane (DCM) and using supercritical CO2 (40 °C and 10 MPa) were conducted on a set of coal samples collected from Louisiana and Ohio. The coal samples studied range in rank from lignite A to high volatile A bituminous, and were characterized using proximate, ultimate, organic petrography, and sorption isotherm analyses. Sorption isotherm analyses of gaseous CO2 and methane show a general increase in gas storage capacity with coal rank, consistent with findings from previous studies. In the solvent extractions, both dry, ground coal samples and moist, intact core plug samples were used to evaluate effects of variations in particle size and moisture content. Samples were spiked with perdeuterated surrogate compounds prior to extraction, and extracts were analyzed via gas chromatography–mass spectrometry. The DCM extracts generally contained the highest concentrations of organic compounds, indicating the existence of additional hydrocarbons within the coal matrix that were not mobilized during supercritical CO2 extractions. Concentrations of aliphatic and aromatic compounds measured in supercritical CO2 extracts of core plug samples generally are lower than concentrations in corresponding extracts of dry, ground coal samples, due to differences in particle size and moisture content. Changes in the amount of extracted compounds and in surrogate recovery measured during consecutive supercritical CO2extractions of core plug samples appear to reflect the transition from a water-wet to a CO2-wet system. Changes in coal core plug mass during supercritical CO2 extraction range from 3.4% to 14%, indicating that a substantial portion of coal moisture is retained in the low-rank coal samples. Moisture retention within core plug samples, especially in low-rank coals, appears to inhibit

  18. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-01-01

    This project generates and provides coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract has been completed and a six-month no-cost extension is under way; this will continue the limited distribution of samples and data to DOE, its contractors and grantees. All activities specified under the five-year contract have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the five years, 524 samples in 1501 containers, 2075 data printouts, and individual data items from 30327 samples were distributed. In the subject quarter, 23 samples, 16 data printouts, and individual data items from 2507 samples were distributed. All DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (- 20 mesh U.S.), and minus 0.25 mm (- 60 mesh U.S.).

  19. Analyses of coal product samples taken by the Division of Energy Technology, CSIR, during 1987

    Energy Technology Data Exchange (ETDEWEB)

    Boshoff, H.P.; Barnard, J.M.

    1988-01-01

    General chemical and physical properties of South African coal products, including the ash analysis, are reported on a series of samples taken during 1987. 370 product samples from 103 collieries were sampled and analyzed. Petrographic analyses were also carried out on a series of bituminous coal product samples from 88 collieries, and the results are given here.

  20. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; David C. Glick

    1999-03-01

    This project generated and provided coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract and a six-month no-cost extension have been completed. The Final Technical Progress Report is being prepared. All activities specified under the five-year contract and its six-month no-cost extension have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the contract, 804 samples in 1586 containers, 2109 data printouts, and individual data items from 34208 samples were distributed. In the subject quarter, 25 samples, 18 data printouts, and individual data items from 1374 samples were distributed. All DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (-20 mesh U.S.), and minus 0.25 mm (-60 mesh U.S.).

  1. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    Alan W. Scaroni; Alan Davis; David C. Glick; Patrick G. Hatcher; Gareth D. Mitchell; Daniel Carson; Lei Hou

    1999-11-01

    This project generated and distributed coal samples and accompanying analytical data for use in research by DOE contractors and others. All activities specified under the five-year contract (as revised) and a six-month no-cost extension have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to research and commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for preserving samples in long-term storage. In addition to the 33 DECS samples, 23 PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the 5.5 years, 570 samples in 1,586 containers, 2,109 data printouts, and individual data items from 34,208 samples were distributed. All DECS samples are now available for distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (-20 mesh U.S.), and minus 0.25 mm (-60 mesh U.S.).

  2. Bioassay for estimating the biogenic methane-generating potential of coal samples

    Science.gov (United States)

    Jones, E.J.P.; Voytek, M.A.; Warwick, P.D.; Corum, M.D.; Cohn, A.; Bunnell, J.E.; Clark, A.C.; Orem, W.H.

    2008-01-01

    Generation of secondary biogenic methane in coal beds is likely controlled by a combination of factors such as the bioavailability of coal carbon, the presence of a microbial community to convert coal carbon to methane, and an environment supporting microbial growth and methanogenesis. A set of treatments and controls was developed to bioassay the bioavailability of coal for conversion to methane under defined laboratory conditions. Treatments included adding a well-characterized consortium of bacteria and methanogens (enriched from modern wetland sediments) and providing conditions to support endemic microbial activity. The contribution of desorbed methane in the bioassays was determined in treatments with bromoethane sulfonic acid, an inhibitor of microbial methanogenesis. The bioassay compared 16 subbituminous coal samples collected from beds in Texas (TX), Wyoming (WY), and Alaska (AK), and two bituminous coal samples from Pennsylvania (PA). New biogenic methane was observed in several samples of subbituminous coal with the microbial consortium added, but endemic activity was less commonly observed. The highest methane generation [80????mol methane/g coal (56??scf/ton or 1.75??cm3/g)] was from a south TX coal sample that was collected from a non-gas-producing well. Subbituminous coals from the Powder River Basin, WY and North Slope Borough, AK contained more sorbed (original) methane than the TX coal sample and generated 0-23????mol/g (up to 16??scf/ton or 0.5??cm3/g) new biogenic methane in the bioassay. Standard indicators of thermal maturity such as burial depth, nitrogen content, and calorific value did not explain differences in biogenic methane among subbituminous coal samples. No original methane was observed in two bituminous samples from PA, nor was any new methane generated in bioassays of these samples. The bioassay offers a new tool for assessing the potential of coal for biogenic methane generation, and provides a platform for studying the

  3. MAINTENANCE OF THE COAL SAMPLE BANK AND DATABASE

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This project generates and provides coal samples and accompanying analytical data for research by DOE contractors and others. The five-year contract has been completed and a six-month no-cost extension is under way; this will continue the limited distribution of samples and data to DOE, its contractors and grantees. All activities specified under the five-year contract have been completed. Eleven DECS samples were collected, processed to a variety of particle sizes, heat-sealed in foil laminate bags under argon, and placed in refrigerated storage. All were analyzed for basic chemical composition, inorganic major and trace element composition including hazardous air pollutant elements, petrographic composition and characteristics, thermoplastic behavior (if applicable), and other properties relevant to commercial utilization. Most were also analyzed by NMR, py/gc/ms, and a standardized liquefaction test; trends and relationships observed were evaluated and summarized. Twenty-two DECS samples collected under the previous contract received further processing, and most of these were subjected to organic geochemical and standardized liquefaction tests as well. Selected DECS samples were monitored annually to evaluate the effectiveness of foil laminate bags for long-term sample storage. Twenty-three PSOC samples collected under previous contracts and purged with argon before storage were also maintained and distributed, for a total of 56 samples covered by the contract. During the five years, 524 samples in 1501 containers, 2075 data printouts, and individual data items from 30327 samples were distributed. In the subject quarter, 45 samples, 101 data printouts, and individual data items from 1237 samples were distributed. Splits of the last two samples from the previous contract received processing to minus 0.25 mm; all DECS samples are now available for immediate distribution at minus 6 mm (-1/4 inch), minus 0.85 mm (- 20 mesh U.S.), and minus 0.25 mm (minus 60 mesh U

  4. Performance characteristics of pilot plant dense media hydrocyclone for beneficiation of coal and 3-D CFD simulation

    Energy Technology Data Exchange (ETDEWEB)

    Suresh, P.D.; Kumar, V.; Sripriya, R.; Chakraborty, S.; Meikap, B.C. [University of Kwazulu Natal, Durban (South Africa). School of Chemical Engineering

    2010-08-15

    Dense-medium separators have proven to be the most efficient processes for removing the undesirable material from run-of-mine coal. The application of high-pressure feed injection into dense-medium cyclones to provide an elevated centrifugal force has recently been found to allow efficient separation performances for the treatment of fine coal (i.e., < 1000 {mu} m). However, high-pressure injection requires specialized pumps and results in relatively high maintenance requirements. The current study involves experimental investigation of separation performance characteristics of the dense media hydrocyclone (DMC). A pilot plant DMC has been designed and fabricated for performance characterization. Experiments have been conducted on 300 mm dense medium cyclone treating coal in the size range of -6 to +2 mm using magnetite as the medium under operating conditions. The operating variable was the specific gravity of the medium, feed inlet pressure and feed inlet flow rate. The ash contents of the feed coal reporting to the overflow and underflow have been analyzed qualitatively. The result indicates that the use of magnetite as dense medium in DMC resulted in the yield of clean coal, which is 5% more when the air core is suppressed as compared to the same conditions when the air core remains. A 3-D geometry is created in Gambit to support the experimental findings by using CFD simulation. It is interesting to observe that experimental findings agree well with the simulation results.

  5. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, H.E.; Tewalt, S.J.; Hower, J.C.; Stucker, J.D.; O'Keefe, J. M. K.

    2009-01-01

    Indonesia has become the world's largest exporter of thermal coal and is a major supplier to the Asian coal market, particularly as the People's Republic of China is now (2007) and perhaps may remain a net importer of coal. Indonesia has had a long history of coal production, mainly in Sumatra and Kalimantan, but only in the last two decades have government and commercial forces resulted in a remarkable coal boom. A recent assessment of Indonesian coal-bed methane (CBM) potential has motivated active CBM exploration. Most of the coal is Paleogene and Neogene, low to moderate rank and has low ash yield and sulfur (generally coal basins. Eight coal samples are described that represent the major export and/or resource potential of Sumatra, Kalimantan, Sulawesi, and Papua. Detailed geochemistry, including proximate and ultimate analysis, sulfur forms, and major, minor, and trace element determinations are presented. Organic petrology and vitrinite reflectance data reflect various precursor flora assemblages and rank variations, including sample composites from active igneous and tectonic areas. A comparison of Hazardous Air Pollutants (HAPs) elements abundance with world and US averages show that the Indonesian coals have low combustion pollution potential.

  6. Experimental study on the type change of liquid flow in broken coal samples

    Institute of Scientific and Technical Information of China (English)

    Lu-zhen WANG; Zhan-qing CHEN; Hai-de SHEN

    2013-01-01

    A test system of the permeability of broken coal samples mainly consists of a CMT5305 electronic universal test machine,crushed rock compaction containing cylinder and a self-designed seepage circuit,which is composed of a gear pump,a reversing valve,a relief valve and other components.By using the steady penetration method,the permeability and non-Darcy flow β factor of broken coal samples under five different porosity levels were measured,the grain diameters of the coal samples were selected as 2.5-5 mm,5-10 mm,10-15 mm,15-20 mm,20-25 mm and 2.5-25 mm,respectively.After measuring the permeability under each porosity,the overfall pressure of the relief valve continuously increased until the coal sample was broken down.In this way,the flow type of liquid inside the broken coal samples changed from seepage to pipe flow.The correlation between breakdown pressure gradient (BPG) and porosity was analyzed,and the BPG was compared with the pressure gradient when seepage instability occurred.The results show that,① the non-Darcy flow β factor was negative before broken coal samples with six kinds of diameters were broken down; ② the BPG of coal samples with a grain size of 2.5-25 mm was lower than that of the others; ③ the BPG of coal samples with a single diameter under the same porosity increased as the grain size increased; ④ the BPG could be fitted by an exponential function with porosity,and the exponent decreased as the grain size increased for coal samples with a single diameter; ⑤ the BPG was slightly less than the seepage instability pressure gradient.The change in liquid flow type from seepage to pipe flow could be regarded as the performance of the seepage instability.

  7. Analytical results from samples collected during coal-bed methane exploration drilling in Caldwell Parish, Louisiana

    Science.gov (United States)

    Warwick, Peter D.; Breland, F. Clayton; Hackley, Paul C.; Dulong, Frank T.; Nichols, Douglas J.; Karlsen, Alexander W.; Bustin, R. Marc; Barker, Charles E.; Willett, Jason C.; Trippi, Michael H.

    2006-01-01

    In 2001, and 2002, the U.S. Geological Survey (USGS) and the Louisiana Geological Survey (LGS), through a Cooperative Research and Development Agreement (CRADA) with Devon SFS Operating, Inc. (Devon), participated in an exploratory drilling and coring program for coal-bed methane in north-central Louisiana. The USGS and LGS collected 25 coal core and cuttings samples from two coal-bed methane test wells that were drilled in west-central Caldwell Parish, Louisiana. The purpose of this report is to provide the results of the analytical program conducted on the USGS/LGS samples. The data generated from this project are summarized in various topical sections that include: 1. molecular and isotopic data from coal gas samples; 2. results of low-temperature ashing and X-ray analysis; 3. palynological data; 4. down-hole temperature data; 5. detailed core descriptions and selected core photographs; 6. coal physical and chemical analytical data; 7. coal gas desorption results; 8. methane and carbon dioxide coal sorption data; 9. coal petrographic results; and 10. geophysical logs.

  8. Seal evaluation and confinement screening criteria for beneficial carbon dioxide storage with enhanced coal bed methane recovery in the Pocahontas Basin, Virginia

    Science.gov (United States)

    Grimm, R.P.; Eriksson, K.A.; Ripepi, N.; Eble, C.; Greb, S.F.

    2012-01-01

    The geological storage of carbon dioxide in Appalachian basin coal seams is one possible sink for sequestration of greenhouse gases, with the added benefit of enhanced-coal bed methane (ECBM) recovery. The Pocahontas Basin (part of the central Appalachian Basin) of southwestern Virginia is a major coal bed methane (CBM) province with production mostly from coal beds in the Lower Pennsylvanian Pocahontas and New River formations. As part of the Southeast Regional Carbon Sequestration Partnership's Phase II research program, a CO 2-injection demonstration well was installed into Lower Pennsylvanian coal bed-methane producing strata in southwest Virginia. Samples of siliciclastic lithologies above coal beds in this Oakwood Field well, and from several other cores in the Nora Field were taken to establish a baseline of the basic confinement properties of overlying strata to test seal competency at local and regional scales.Strata above CBM-producing coal beds in the Pocahontas and New River formations consist of dark-gray shales; silty gray shales; heterolithic siltstones, sandstones, and shales; lithic sandstones, and quartzose sandstones. Standard measurements of porosity, permeability and petrography were used to evaluate potential leakage hazards and any possible secondary storage potential for typical lithologies. Both lithic- and quartz-rich sandstones exhibit only minor porosity, with generally low permeability (coal bed-methane producing interval is the Hensley Shale Member. Analyses of 1500 geophysical logs in southwest Virginia indicate that this unit is moderately thick (>50ft, 15m), laterally continuous (>3000km 2), and a homogenous shale, which coarsens upward into siltstone and sandstone, or is truncated by sandstone. Calculations from two mercury injection capillary porosimetry tests of the shale indicate that a displacement entry pressure of 207psi (1427kPa) would generate an estimated seal capacity of 1365ft (416m) of CO 2 before buoyant leakage

  9. Combustion and leaching behavior of elements in the argonne premium coal samples

    Science.gov (United States)

    Finkelman, R.B.; Palmer, C.A.; Krasnow, M.R.; Aruscavage, P. J.; Sellers, G.A.; Dulong, F.T.

    1990-01-01

    Eight Argonne Premium Coal samples and two other coal samples were used to observe the effects of combustion and leaching on 30 elements. The results were used to infer the modes of occurrence of these elements. Instrumental neutron activation analysis indicates that the effects of combustion and leaching on many elements varied markedly among the samples. As much as 90% of the selenium and bromine is volatilized from the bituminous coal samples, but substantially less is volatilized from the low-rank coals. We interpret the combustion and leaching behavior of these elements to indicate that they are associated with the organic fraction. Sodium, although nonvolatile, is ion-exchangeable in most samples, particularly in the low-rank coal samples where it is likely to be associated with the organic constituents. Potassium is primarily in an ion-exchangeable form in the Wypdak coal but is in HF-soluble phases (probably silicates) in most other samples. Cesium is in an unidentified HNO3-soluble phase in most samples. Virtually all the strontium and barium in the low-rank coal samples is removed by NH4OAc followed by HCl, indicating that these elements probably occur in both organic and inorganic phases. Most tungsten and tantalum are in insoluble phases, perhaps as oxides or in organic association. Hafnium is generally insoluble, but as much as 65% is HF soluble, perhaps due to the presence of very fine grained or metamict zircon. We interpret the leaching behavior of uranium to indicate its occurrence in chelates and its association with silicates and with zircon. Most of the rare-earth elements (REE) and thorium appear to be associated with phosphates. Differences in textural relationships may account for some of the differences in leaching behavior of the REE among samples. Zinc occurs predominantly in sphalerite. Either the remaining elements occur in several different modes of occurrence (scandium, iron), or the leaching data are equivocal (arsenic, antimony

  10. Application Of Relevance Maps Method To Evaluate The Suitability Of Coal Samples For Fluidal Gasification Process

    Directory of Open Access Journals (Sweden)

    Jamroz Dariusz

    2016-01-01

    The methods being used to visualization of multidimensional data through transformation of multidimensional space into two-dimensional space allow to present multidimensional data on computer screen. Among such methods, relevance maps method can be found which was used in this paper to present and analyze set of seven-dimensional data describing coal samples originating from both mines. It was decided to check whether this method of visualization of multidimensional data allows to divide the samples space into subspaces of various usefulness to the process of fluidal gasification or not. The method enables the visualisation of the optimal subspace containing the set requirements concerning the properties of coals intended for this process.

  11. Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, Harvey E.; Tewalt, Susan J.

    2007-01-01

    and ash (generally <1 and < 10 wt.%, respectively). Coal mining for both local use and for export has a very strong future in Indonesia although, at present, there are concerns about the strong need for a major revision in mining laws and foreign investment policies (Wahju, 2004; United States Embassy Jakarta, 2004). The World Coal Quality Inventory (WoCQI) program of the U.S. Geological Survey (Tewalt and others, 2005) is a cooperative project with about 50 countries (out of 70 coal-producing countries world-wide). The WoCQI initiative has collected and published extensive coal quality data from the world's largest coal producers and consumers. The important aspects of the WoCQI program are; (1) samples from active mines are collected, (2) the data have a high degree of internal consistency with a broad array of coal quality parameters, and (3) the data are linked to GIS and available through the world-wide-web. The coal quality parameters include proximate and ultimate analysis, sulfur forms, major-, minor-, and trace-element concentrations and various technological tests. This report contains geochemical data from a selected group of Indonesian coal samples from a range of coal types, localities, and ages collected for the WoCQI program.

  12. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  13. TOXIC SUBSTANCES FROM COAL COMBUSTION--A COMPREHENSIVE ASSESSMENT, PHASE II: ELEMENT MODES OF OCCURRENCE FOR THE OHIO 5/6/7, WYODAK AND NORTH DAKOTA COAL SAMPLES

    Energy Technology Data Exchange (ETDEWEB)

    Allan Kolker; Stanley J. Mroczkowski; Curtis A. Palmer; Kristen O. Dennen; Robert B. Finkelman; John H. Bullock Jr.

    2002-05-30

    This study reports on the second phase (Phase II) of USGS research activities in support of DOE contract DE-AC22-95PC95101 ''Toxic Substances From Coal Combustion--A Comprehensive Assessment'', funded under DOE Interagency Agreement DE-AI22-95PC95145. The purpose of the study was to provide a quantitative and semi-quantitative characterization of the modes of occurrence of trace elements in coal samples investigated under Phase II, including (1) Ohio 5/6/7, an Ohio bituminous coal sample blended from the No.5, No.6, and No.7 beds; (2) North Dakota, a lignite sample from the Falkirk Mine, Underwood, ND, and (3) Wyodak, a sub-bituminous coal sample from the Cordero Mine, Gillette, WY. Samples from these coal beds were selected for their range in rank and commercial applicability. Results of this research provide basic information on the distribution of elements in Phase II coal samples, information needed for development of a commercial predictive model for trace-element behavior during coal combustion.

  14. Geochemistry of Selected Coal Samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia

    Science.gov (United States)

    Belkin, Harvey E.; Tewalt, Susan J.

    2007-01-01

    and ash (generally World Coal Quality Inventory (WoCQI) program of the U.S. Geological Survey (Tewalt and others, 2005) is a cooperative project with about 50 countries (out of 70 coal-producing countries world-wide). The WoCQI initiative has collected and published extensive coal quality data from the world's largest coal producers and consumers. The important aspects of the WoCQI program are; (1) samples from active mines are collected, (2) the data have a high degree of internal consistency with a broad array of coal quality parameters, and (3) the data are linked to GIS and available through the world-wide-web. The coal quality parameters include proximate and ultimate analysis, sulfur forms, major-, minor-, and trace-element concentrations and various technological tests. This report contains geochemical data from a selected group of Indonesian coal samples from a range of coal types, localities, and ages collected for the WoCQI program.

  15. Analysis of naturally-occurring radionuclides in coal combustion fly ash, gypsum, and scrubber residue samples.

    Science.gov (United States)

    Roper, Angela R; Stabin, Michael G; Delapp, Rossane C; Kosson, David S

    2013-03-01

    Coal combustion residues from coal-fired power plants can be advantageous for use in building and construction materials. These by-products contain trace quantities of naturally occurring radionuclides from the uranium and thorium series, as well as other naturally occurring radionuclides such as K. Analysis was performed on samples of coal fly ash, flue gas desulfurization, gypsum and scrubber sludges, fixated scrubber sludges, and waste water filter cakes sampled from multiple coal-fired power plants in the United States. The radioactive content of U and Th decay series nuclides was determined using gamma photopeaks from progeny Pb at 352 keV and Tl at 583 keV, respectively; K specific activities were determined using the 1,461 keV photopeak. The samples were hermetically sealed to allow for secular equilibrium between the radium parents and the radon and subsequent progeny. Samples were analyzed in a common geometry using two high purity germanium photon detectors with low energy detection capabilities. The specific activities (Bq kg) were compared to results from literature studies including different building materials and fly ash specific activities. Fly ash from bituminous and subbituminous coals had U specific activities varying from 30-217 Bq kg (mean + 1 s.d. 119 ± 45 Bq kg) and 72-209 Bq kg (115 ± 40 Bq kg), respectively; Th specific activities from 10-120 Bq kg (73 ± 26 Bq kg) and 53-110 Bq kg (81 ± 18 Bq kg), respectively; and K specific activities from 177 to 928 Bq kg (569 ± 184 Bq kg) and 87-303 Bq kg (171 ± 69 Bq kg), respectively. Gypsum samples had U, Th, and K specific activities approximately one order of magnitude less than measured for fly ash samples.

  16. Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region

    Energy Technology Data Exchange (ETDEWEB)

    Damla, Nevzat [Batman Univ. (Turkey). Dept. of Physics; Cevik, Ugur [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Physics; Kara, Ayhan [Osmaniye Korkut Ata Univ. (Turkey). Dept. of Physics

    2012-11-15

    This work presents a study of natural radioactivity levels in coal and its combustion residues (fly ash and slag) used in the houses in Black Sea Region, Turkey. Coal, fly ash and slag samples were provided from different locations of the region and analyzed by gamma spectroscopy using a high-purity germanium detector (HPGe). Also, chemical analyses of these samples were carried out using energy dispersive X-ray fluorescence spectrometer. The mean {sup 226}Ra activity concentrations in coal, slag and fly ash were measured as 83, 99 and 38 Bq kg{sup -1}, respectively. The mean {sup 232}Th activity concentrations in coal, slag and fly ash were measured as 108, 113 and 50 Bq kg{sup -1}, respectively. The mean {sup 40}K activity concentrations in coal, slag and fly ash were found to be 366, 381 and 204 Bq kg{sup -1}, respectively. The potential radiological hazards associated to these materials were evaluated by calculating the radium equivalent activity (Ra{sub eq}), the air absorbed gamma dose rate (D), the annual effective dose rate (AED), the external hazard index (H{sub ex}) and internal hazard index (H{sub in}) and compared with the internationally accepted or reference values. The mean Ra{sub eq} values of the coal, fly ash and slag samples were lower than the recommended maximum values 370 Bq kg{sup -1} by the Organization for Economic Cooperation and Development (OECD). The overall mean outdoor terrestrial gamma air absorbed dose rate in coal, fly ash and slag samples are 119, 129 and 62 nGy h{sup -1} and the corresponding outdoor annual effective doses are 0.60, 0.32 and 0.64 mSv y{sup -1}, which is higher than the worldwide average (0.07 mSv y{sup -1}), respectively. Moreover, the enrichment factors relative to the input coal are calculated for the radionuclide contents observed. Calculated enrichment factor values for {sup 226}Ra and {sup 232}Th were found 1.14 and 1.01, respectively. (orig.)

  17. Comparison of coarse coal dust sampling techniques in a laboratory-simulated longwall section.

    Science.gov (United States)

    Patts, Justin R; Barone, Teresa L

    2017-05-01

    Airborne coal dust generated during mining can deposit and accumulate on mine surfaces, presenting a dust explosion hazard. When assessing dust hazard mitigation strategies for airborne dust reduction, sampling is done in high-velocity ventilation air, which is used to purge the mining face and gallery tunnel. In this environment, the sampler inlet velocity should be matched to the air stream velocity (isokinetic sampling) to prevent oversampling of coarse dust at low sampler-to-air velocity ratios. Low velocity ratios are often encountered when using low flow rate, personal sampling pumps commonly used in underground mines. In this study, with a goal of employing mine-ready equipment, a personal sampler was adapted for area sampling of coarse coal dust in high-velocity ventilation air. This was done by adapting an isokinetic nozzle to the inlet of an Institute of Occupational Medicine (Edinburgh, Scotland) sampling cassette (IOM). Collected dust masses were compared for the modified IOM isokinetic sampler (IOM-MOD), the IOM without the isokinetic nozzle, and a conventional dust sampling cassette without the cyclone on the inlet. All samplers were operated at a flow rate typical of personal sampling pumps: 2 L/min. To ensure differences between collected masses that could be attributed to sampler design and were not influenced by artifacts from dust concentration gradients, relatively uniform and repeatable dust concentrations were demonstrated in the sampling zone of the National Institute for Occupational Safety and Health experimental mine gallery. Consistent with isokinetic theory, greater differences between isokinetic and non-isokinetic sampled masses were found for larger dust volume-size distributions and higher ventilation air velocities. Since isokinetic sampling is conventionally used to determine total dust concentration, and isokinetic sampling made a difference in collected masses, the results suggest when sampling for coarse coal dust the IOM-MOD may

  18. Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Liao, H.C.; Jiang, S.J. [National Sun Yat Sen University, Kaohsiung (Taiwan). Dept. of Chemistry

    1999-08-09

    Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) was used to the determine Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in the coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method was applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Detection limits estimated from standard addition curves were in the range of 24-58, 6-28 and 108-110 ng g{sup -1} for Cd, Hg and Pb, respectively.

  19. Direct determination of sulfur species in coals from the Argonne premium sample program by solid sampling electrothermal vaporization inductively coupled plasma optical emission spectrometry.

    Science.gov (United States)

    Bauer, Daniela; Vogt, Thomas; Klinger, Mathias; Masset, Patrick Joseph; Otto, Matthias

    2014-10-21

    A new direct solid sampling method for speciation of sulfur in coals by electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES) is presented. On the basis of the controlled thermal decomposition of coal in an argon atmosphere, it is possible to determine the different sulfur species in addition to elemental sulfur in coals. For the assignment of the obtained peaks from the sulfur transient emission signal, several analytical techniques (reflected light microscopy, scanning electron microscopy with energy dispersive X-ray spectroscopy and X-ray diffraction) were used. The developed direct solid sampling method enables a good accuracy (relative standard deviation ≤ 6%), precision and was applied to determine the sulfur forms in the Argonne premium coals, varying in rank. The generated method is time- and cost-effective and well suited for the fast characterization of sulfur species in coal. It can be automated to a large extent and is applicable for process-accompanying analyses.

  20. Study of Acoustic Emission and Mechanical Characteristics of Coal Samples under Different Loading Rates

    Directory of Open Access Journals (Sweden)

    Huamin Li

    2015-01-01

    Full Text Available To study the effect of loading rate on mechanical properties and acoustic emission characteristics of coal samples, collected from Sanjiaohe Colliery, the uniaxial compression tests are carried out under various levels of loading rates, including 0.001 mm/s, 0.002 mm/s, and 0.005 mm/s, respectively, using AE-win E1.86 acoustic emission instrument and RMT-150C rock mechanics test system. The results indicate that the loading rate has a strong impact on peak stress and peak strain of coal samples, but the effect of loading rate on elasticity modulus of coal samples is relatively small. When the loading rate increases from 0.001 mm/s to 0.002 mm/s, the peak stress increases from 22.67 MPa to 24.99 MPa, the incremental percentage is 10.23%, and under the same condition the peak strain increases from 0.006191 to 0.007411 and the incremental percentage is 19.71%. Similarly, when the loading rate increases from 0.002 mm/s to 0.005 mm/s, the peak stress increases from 24.99 MPa to 28.01 MPa, the incremental percentage is 12.08%, the peak strain increases from 0.007411 to 0.008203, and the incremental percentage is 10.69%. The relationship between acoustic emission and loading rate presents a positive correlation, and the negative correlation relation has been determined between acoustic emission cumulative counts and loading rate during the rupture process of coal samples.

  1. Characteristics of American coals in relation to their conversion into clean-energy fuels. Final report. [1150 samples of US coals

    Energy Technology Data Exchange (ETDEWEB)

    Spackman, W.; Davis, A.; Walker, P.L.; Lovell, H.L.; Vastola, F.J.; Given, P.H.; Suhr, N.H.; Jenkins, R.G.

    1982-06-01

    To further characterize the Nation's coals, the Penn State Coal Sample Bank and Data Base were expanded to include a total of 1150 coal samples. The Sample Bank includes full-seam channel samples as well as samples of lithotypes, seam benches, and sub-seam sections. To the extent feasible and appropriate basic compositional data were generated for each sample and validated and computerized. These data include: proximate analysis, ultimate analysis, sulfur forms analysis, calorific value, maceral analysis, vitrinite reflectance analysis, ash fusion analysis, free-swelling index determination, Gray-King coke type determination, Hardgrove grindability determination, Vicker's microhardness determination, major and minor element analysis, trace element analysis, and mineral species analysis. During the contract period more than 5000 samples were prepared and distributed. A theoretical and experimental study of the pyrolysis of coal has been completed. The reactivity of chars, produced from all ranks of American coals, has been studied with regard to reactivity to air, CO/sub 2/, H/sub 2/ and steam. Another area research has concerned the catalytic effect of minerals and various cations on the gasification processes. Combustion of chars, low volatile fuels, coal-oil-water-air emulsions and other subjects of research are reported here. The products of this research can be found in 23 DOE Technical Research Reports and 49 published papers. As another mechanism of technology transfer, the results have been conveyed via more than 70 papers presented at a variety of scientific meetings. References to all of these are contained in this report.

  2. A general solution and approximation for the diffusion of gas in a spherical coal sample

    Institute of Scientific and Technical Information of China (English)

    Wang Yucang; Xue Sheng; Xie Jun

    2014-01-01

    The square root relationship of gas release in the early stage of desorption is widely used to provide a simple and fast estimation of the lost gas in coal mines. However, questions arise as to how the relation-ship was theoretically derived, what are the assumptions and applicable conditions and how large the error will be. In this paper, the analytical solutions of gas concentration and fractional gas loss for the dif-fusion of gas in a spherical coal sample were given with detailed mathematical derivations based on the diffusion equation. The analytical solutions were approximated in case of small values of time and the error analyses associated with the approximation were also undertaken. The results indicate that the square root relationship of gas release is the first term of the approximation, and care must be taken in using the square root relationship as a significant error might be introduced with increase in the lost time and decrease in effective diameter of a spherical coal sample.

  3. Slurry sampling graphite furnace atomic absorption spectrometry: determination of trace metals in mineral coal.

    Science.gov (United States)

    Silva, M M; Goreti, M; Vale, R; Caramão, E B

    1999-12-06

    A procedure for lead, cadmium and copper determination in coal samples based on slurry sampling using an atomic absorption spectrometer equipped with a transversely heated graphite tube atomizer is proposed. The slurries were prepared by weighing the samples directly into autosampler cups (5-30 mg) and adding a 1.5 ml aliquot of a diluent mixture of 5% v/v HNO(3), 0.05% Triton X-100 and 10% ethanol. The slurry was homogenized by manual stirring before measurement. Slurry homogenization using ultrasonic agitation was also investigated for comparison. The effect of particle size and the use of different diluent compositions on the slurry preparation were investigated. The temperature programmes were optimized on the basis of pyrolysis and atomization curves. Absorbance characteristics with and without the addition of a palladium-magnesium modifier were compared. The use of 0.05% m/v Pd and 0.03% m/v Mg was found satisfactory for stabilizing Cd and Pb. The calibration was performed with aqueous standards. In addition, a conventional acid digestion procedure was applied to verify the efficiency of the slurry sampling. Better recoveries of the analytes were obtained when the particle size was reduced to <37 mum. Several certified coal reference materials (BCR Nos. 40, 180, and 181) were analyzed, and good agreement was obtained between the results from the proposed slurry sampling method and the certificate values.

  4. An investigation of radon exhalation rate and estimation of radiation doses in coal and fly ash samples.

    Science.gov (United States)

    Mahur, A K; Kumar, Rajesh; Mishra, Meena; Sengupta, D; Prasad, Rajendra

    2008-03-01

    Coal is a technologically important material used for power generation. Its cinder (fly ash) is used in the manufacturing of bricks, sheets, cement, land filling etc. Coal and its by-products often contain significant amounts of radionuclides, including uranium which is the ultimate source of the radioactive gas radon. Burning of coal and the subsequent atmospheric emission cause the redistribution of toxic radioactive trace elements in the environment. In the present study, radon exhalation rates in coal and fly ash samples from the thermal power plants at Kolaghat (W.B.) and Kasimpur (U.P.) have been measured using sealed Can technique having LR-115 type II detectors. The activity concentrations of 238U, 232Th, and 40K in the samples of Kolaghat power station are also measured. It is observed that the radon exhalation rate from fly ash samples from Kolaghat is higher than from coal samples and activity concentration of radionuclides in fly ash is enhanced after the combustion of coal. Fly ash samples from Kasimpur show no appreciable change in radon exhalation. Radiation doses from the fly ash samples have been estimated from radon exhalation rate and radionuclide concentrations.

  5. Determination of cadmium, mercury and lead in coal fly ash by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry

    Science.gov (United States)

    Liao, Hsien-Chung; Jiang, Shiuh-Jen

    1999-08-01

    Ultrasonic slurry sampling electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry (USS-ETV-ID-ICP-MS) has been applied to the determination of Cd, Hg and Pb in coal fly ash samples. Thioacetamide (TAC) was used as the modifier. Since the sensitivities of the elements studied in coal fly ash slurry and aqueous solution were quite different, isotope dilution method was used for the determination of Cd, Hg and Pb in these coal fly ash samples. The isotope ratios of each element were calculated from the peak areas of each injection peak. This method has been applied to the determination of Cd, Hg and Pb in NIST SRM 1633a coal fly ash reference material and a coal fly ash sample collected from Kaohsiung area. Analysis results of reference sample NIST SRM 1633a coal fly ash agreed satisfactorily with the certified values. The other sample determined by isotope dilution and method of standard additions was agreed satisfactorily. Precision was better than 6% for most of the determinations and accuracy was better than 4% with the USS-ETV-ID-ICP-MS method. Detection limits estimated from standard addition curves were in the range of 24-58, 6-28 and 108-110 ng g-1 for Cd, Hg and Pb, respectively.

  6. Beneficial biofilms

    Directory of Open Access Journals (Sweden)

    Sara R Robertson

    2015-10-01

    Full Text Available Surface-adherent biofilm growth is a common trait of bacteria and other microorganisms in nature. Within biofilms, organisms are present in high density and are enmeshed in an organic matrix containing polysaccharides and other molecules. The close proximity of organisms within biofilms facilitates microbial interactions and signaling, including many metabolic processes in which consortia rather than individual organisms participate. Biofilm growth also enables microorganisms to withstand chemical and biological stresses. Here, we review some current literature and document representative beneficial aspects of biofilms using examples from wastewater treatment, microbial fuel cells, biological repair (biocementation of stonework, and biofilm protection against Candida albicans infections. Finally, we address a chemical ecology strategy whereby desired microbial succession and beneficial biofilm formation can be encouraged via manipulation of culture conditions and bacterial signaling.

  7. Measurements of radionuclides in coal samples from two provinces of Pakistan and computation of external {gamma} ray dose rate in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, K.; Ali, S. [Environmental Radiation Group, Radiation Physics Division, Pinstech, P. O. Nilore, Islamabad (Pakistan); Iqbal, M. [Nuclear Engineering Division, Pinstech, P. O. Nilore, Islamabad (Pakistan); Qureshi, A.A.; Khan, H.A. [Environmental Radiation Group, Radiation Physics Division, Pinstech, P. O. Nilore, Islamabad (Pakistan)

    1998-11-01

    The radionuclides present in coal may not only be a health hazard for the coal miners but also may be a threat to the general population if these radionuclides disperse in the environment. This research has been conducted to quantify the radionuclides present in the coal samples from various coal-mines of two provinces, Punjab and Balochistan of Pakistan. In this regard, a high-purity Ge-detector-based {gamma}-spectrometer was used. The maximum activity concentrations for {sup 226}Ra, {sup 232}Th and {sup 40}K were found to be 31{center_dot}4{+-}3{center_dot}0, 32{center_dot}7{+-}3{center_dot}2 and 21{center_dot}4{+-}5{center_dot}0 Bq kg{sup -1}, respectively. A theoretical model to compute external {gamma}-ray dose rate from a coal-mine surface was developed. The Monte Carlo simulation was employed to compute the required mass attenuation coefficients corresponding to the various {gamma}-ray energies from {sup 226}Ra, {sup 232}Th, their progeny and {sup 40}K present in the coal samples. In addition, the effective thickness of coal slab for self-absorption was also computed using the Monte Carlo Neutron Photon (MCNP) transport code. The computed external {gamma}-ray dose rate has been found to be much below the dose ratelimits for occupational persons as well as for the general population. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Automatic coal sample preparation system%煤炭自动制样系统

    Institute of Scientific and Technical Information of China (English)

    王兴无

    2015-01-01

    To solve the problems occurred during manual coal sample preparation,such as low work efficien-cy,high labor intensity,poor working environment,harmful to human beings and poor representativeness of the sample due to large error,the auto coal sample preparation system was designed.Performance tests like residue sample mass,fuel size,residue sample precision and sample preparation bias verified this system has met the requirements of GB/T 1 9494.3-2004 and GB 474-2008 on precision and bias.Its application not only improves the automation degree of sample preparation,but also reduces human disturbance factors in the sample preparation process.%为了解决电厂燃煤人工制样存在的工作效率低,劳动强度大,工作环境差,有害人体健康,误差大影响样品的代表性等问题,设计了煤炭自动制样系统.通过留样质量、出料粒径、留样精密度及制样偏倚等性能试验,证明该系统精密度和偏倚达到了 GB 474—2008和 GB/T 19494.3—2004规定的要求,其应用提高了样品制备的自动化程度,减少了制样过程人为因素的干扰.

  9. Measurements of radionuclides in coal samples from two provinces of Pakistan and computation of external gamma-ray dose rate in coal mines

    Energy Technology Data Exchange (ETDEWEB)

    Jamil, K.; All, S.; Iqbal, M.; Qureshi, A.A.; Khan, H.A. [Pinstech, Islamabad (Pakistan). Radiation Physics Division

    1998-11-01

    This paper describes research that has been conducted to quantify the radionuclides present in the coal samples from various coal-mines in the Punjab and Balochistan provinces of Pakistan. A high-purity Ge-detector-based gamma-spectrometer was used. The maximum activity concentrations for Ra-226, Th-232 and K-40 were found to be 31.4 {+-} 3.0, 32.7 {+-} 3.2 and 21.4 {+-} 5.0 Bq kg{sup -1}, respectively. A theoretical model to compute external gamma-ray dose rate from a coal-mine surface was developed. The Monte Carlo simulation was employed to compute the required mass attenuation coefficients corresponding to the various gamma-ray energies from Ra-226, Th-232, their progeny and K-40 present in the coal samples. In addition, the effective thickness of coal slab for self-absorption was also computed using the Monte Carlo Neutron Photo (MCNP) transport code. The computed external gamma-ray dose rate has been found to be much below the dose rate limits for occupational persons as well as for the general population.

  10. Mössbauer analysis of coal coke samples from Samacá, Boyacá, Colombia

    Science.gov (United States)

    Pacheco Serrano, W. A.; Quintão Lima, D.; Fabris, J. D.

    2014-01-01

    Three samples of coke produced from coal from a mine in the municipality of Samacá, department of Boyacá, Colombia, were studied essentially with Mössbauer spectroscopy. The samples were treated with NaOH 5 mol L - 1 in order to increase the proportion of iron oxides, by selectively dissolving silicate minerals and any remaining gibbsite, before the physical analysis. Room temperature Mössbauer data revealed that all samples do contain major proportions (>50 % of the relative subspectral area) of hematite along with (super) paramagnetic species as iron-bearing chemical compounds. The superparamagnetic contribution may be due to very fine grains of iron oxides, including nanometric hematite.

  11. Modelling Gas Diffusion from Breaking Coal Samples with the Discrete Element Method

    Directory of Open Access Journals (Sweden)

    Dan-Ling Lin

    2015-01-01

    Full Text Available Particle scale diffusion is implemented in the discrete element code, Esys-Particle. We focus on the question of how to calibrate the particle scale diffusion coefficient. For the regular 2D packing, theoretical relation between micro- and macrodiffusion coefficients is derived. This relation is then verified in several numerical tests where the macroscopic diffusion coefficient is determined numerically based on the half-time of a desorption scheme. To further test the coupled model, we simulate the diffusion and desorption in the circular sample. The numerical results match the analytical solution very well. An example of gas diffusion and desorption during sample crushing and fragmenting is given at the last. The current approach is the first step towards a realistic and comprehensive modelling of coal and gas outbursts.

  12. Chemical variability of groundwater samples collected from a coal seam gas exploration well, Maramarua, New Zealand.

    Science.gov (United States)

    Taulis, Mauricio; Milke, Mark

    2013-03-01

    A pilot study has produced 31 groundwater samples from a coal seam gas (CSG) exploration well located in Maramarua, New Zealand. This paper describes sources of CSG water chemistry variations, and makes sampling and analytical recommendations to minimize these variations. The hydrochemical character of these samples is studied using factor analysis, geochemical modelling, and a sparging experiment. Factor analysis unveils carbon dioxide (CO(2)) degassing as the principal cause of sample variation (about 33%). Geochemical modelling corroborates these results and identifies minor precipitation of carbonate minerals with degassing. The sparging experiment confirms the effect of CO(2) degassing by showing a steady rise in pH while maintaining constant alkalinity. Factor analysis correlates variations in the major ion composition (about 17%) to changes in the pumping regime and to aquifer chemistry variations due to cation exchange reactions with argillaceous minerals. An effective CSG water sampling program can be put into practice by measuring pH at the wellhead and alkalinity at the laboratory; these data can later be used to calculate the carbonate speciation at the time the sample was collected. In addition, TDS variations can be reduced considerably if a correct drying temperature of 180 °C is consistently implemented.

  13. Solid-Sampling Electrothermal Vaporization Inductively Coupled Plasma Optical Emission Spectrometry for Direct Determination of Total Oxygen in Coal.

    Science.gov (United States)

    Vogt, Thomas; Bauer, Daniela; Nennstiel, David; Otto, Matthias

    2015-10-20

    A new analytical method for direct determination of total oxygen contents in eight coal samples of the Argonne Premium Coal (APC) series and in the NIST SRM 1632d is presented. The development of a suitable calibration procedure, optimization of measurement conditions, and the application of a tailored data processing for handling of plasma effects and high blanks enable the quantification of oxygen simultaneously with other trace, minor, or major elements in whole coal samples by means of electrothermal vaporization inductively coupled plasma optical emission spectrometry (ETV-ICP OES). For comparison, the oxygen contents were determined by a direct oxygen analyzer. The obtained oxygen values of the APC and the reference material NIST SRM 1632d were compared to data in the literature. The precision of the ETV-ICP OES was within ±3.5%, and the recovery better than 92%. With this good accuracy, the developed direct solid sampling method ETV-ICP OES is well suited for the fast determination of oxygen in coals, varying in rank from lignite to semianthracite, in a content range of about 100 ppm up to 27% using 1.5 mg sample weight. This direct analysis method represents an accurate, advantageous alternative to currently used methods for estimation of total oxygen contents in coals.

  14. Progressive oxidation of pyrite in five bituminous coal samples: An As XANES and 57Fe Mössbauer spectroscopic study

    Science.gov (United States)

    Kolker, Allan; Huggins, Frank E.

    2007-01-01

    Naturally occurring pyrite commonly contains minor substituted metals and metalloids (As, Se, Hg, Cu, Ni, etc.) that can be released to the environment as a result of its weathering. Arsenic, often the most abundant minor constituent in pyrite, is a sensitive monitor of progressive pyrite oxidation in coal. To test the effect of pyrite composition and environmental parameters on the rate and extent of pyrite oxidation in coal, splits of five bituminous coal samples having differing amounts of pyrite and extents of As substitution in the pyrite, were exposed to a range of simulated weathering conditions over a period of 17 months. Samples investigated include a Springfield coal from Indiana (whole coal pyritic S = 2.13 wt.%; As in pyrite = detection limit (d.l.) to 0.06 wt.%), two Pittsburgh coal samples from West Virginia (pyritic S = 1.32–1.58 wt.%; As in pyrite = d.l. to 0.34 wt.%), and two samples from the Warrior Basin, Alabama (pyritic S = 0.26–0.27 wt.%; As in pyrite = d.l. to 2.72 wt.%). Samples were collected from active mine faces, and expected differences in the concentration of As in pyrite were confirmed by electron microprobe analysis. Experimental weathering conditions in test chambers were maintained as follows: (1) dry Ar atmosphere; (2) dry O2 atmosphere; (3) room atmosphere (relative humidity ∼20–60%); and (4) room atmosphere with samples wetted periodically with double-distilled water. Sample splits were removed after one month, nine months, and 17 months to monitor the extent of As and Fe oxidation using As X-ray absorption near-edge structure (XANES) spectroscopy and 57Fe Mössbauer spectroscopy, respectively. Arsenic XANES spectroscopy shows progressive oxidation of pyritic As to arsenate, with wetted samples showing the most rapid oxidation. 57Fe Mössbauer spectroscopy also shows a much greater proportion of Fe3+ forms (jarosite, Fe3+ sulfate, FeOOH) for samples stored under wet conditions, but much less

  15. Macro- and microscopic mechanical behaviour of flow of coal samples experimentally deformed at high temperatures and pressures

    Institute of Scientific and Technical Information of China (English)

    LIU Junlai; YANG Guang; MA Rui

    2005-01-01

    Coal samples from Qinshui Basin, Shanxi,China are experimentally deformed at temperatures and confining pressures of 200-500 ℃ and 200-500 Mpa,strain rate of 0.5×10-5/s and total strain of 10%. The vitrinite reflectance of the coal samples varies from 3.04 to 1.79. It is shown that the strengths of the deformed samples change obviously with coeval increasing temperatures and pressures (T/P). At the experimental range of T/P, the effects of increasing temperature predominate over that of increasing pressure. Microstructural analysis indicates a brittle to ductile transition under experimental T/P conditions from 200 to 300℃, and 200 to 300Mpa. Brittle deformation microstructures include macroscopic fracture zones and penetrative fracture associations. Elongation, undulose or irregular extinction, deformation lamellae and dynamic recrystallization of grains are the main ductile deformation microstructures.The variation of deformation mechanisms of the experimentally deformed coal samples is related to both the components of coals and T/P conditions. At low T/P, fractures occur in both inertinite and vitrinite of the samples. At higher T/P,crystalline plastic deformations are observed in the inertinite only.

  16. Determination of three phthalate esters in environmental samples by coal cinder extraction and cyclodextrin modified micellar electrokinetic chromatography.

    Science.gov (United States)

    Sun, Hongli; Jiang, Feng; Chen, Lin; Zheng, Jing; Wu, Yiwei; Liu, Meilin

    2014-07-01

    A new micellar electrokinetic chromatography (MEKC) method using beta-cyclodextrin (ß-CD) as the electrophoresis additive has been developed for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP) and di(2-ethylhexyl) phthalate (DEHP) in environmental samples. To improve the sensitivity of cyclodextrin-modified MEKC (CD-MEKC), a flow injection procedure using a microcolumn packed with coal cinder as the solid-phase extractant was also investigated for the preconcentration and separation of DMP, DEP and DEHP in environmental samples. Parameters affecting CD-MEKC separation and coal cinder flow injection solid-phase extraction were systematically researched. In the presence of the running buffer [5 mmol/L of borax, 5% (v/v) methanol and 25 mmol/L of sodium dodecyl sulfate at pH 9.5], the addition of 14 mmol/L ß-CD greatly improved the separation efficiency. The analytes were quantitatively adsorbed by coal cinders and readily desorbed quantitatively with 0.2 mL of 10% (v/v) methanol-10 mmol/L disodium hydrogen phosphate. Under the optimum conditions, the enrichment factor of coal cinder was 60, and the determination limits of DMP, DEP and DEHP were 3.07, 2.07 and 4.06 ng/mL, respectively. The presented procedure was successfully applied to determine DMP, DEP and DEHP in landfill leachate and water samples with satisfactory results.

  17. SAMPLING, ANALYSIS, AND PROPERTIES OF PRIMARY PM-2.5: APPLICATION TO COAL-FIRED UTILITY BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Eric Lipsky; Charles Stainer; Natalie Anderson; Satoshi Takahama; Sarah Rees

    2003-02-01

    A dilution sampler was used to examine the effects of dilution ratio and residence time on the particulate emissions from a pilot-scale pulverized coal combustor. Measurements include the particle size distribution from 0.003 to 2.5 {micro}m, PM{sub 2.5} mass emission rate and PM2.5 composition (OC/EC, major ions, and elemental). Hot filter samples were also collected simultaneously in order to compare the dilution sampler measurement with standard stack sampling methodologies such as EPA Method 5. Measurements were made both before and after the bag-house, the particle control device used on the coal combustor. Measurements were made with three different coal types and a coal-biomass blend. The residence time and dilution ratio do not influence the PM{sub 2.5} mass emission rate, but have a significant effect on the size distribution and total number emissions. Measurements made before the bag-house showed increasing the residence time dramatically decreases the total particle number concentration, and shifts the particle mass to larger sizes. The effects of residence time can be explained quantitatively by the coagulation of the emitted particles. Measurements made after the bag-house were not affected by coagulation due to the lower concentration of particles. Nucleation of sulfuric acid vapor within the dilution was an important source of ultrafine particles. This nucleation is strongly a function of dilution ratio because of the competition between condensation and nucleation. At low dilution ratios condensation dominates and little nucleation is observed; increasing the dilution ratio promotes nucleation because of the corresponding decrease in available surface area per unit volume for condensation. No nucleation was observed after the bag house where conditions greatly favor nucleation over condensation; we suspect that the bag house removed the SO{sub 3} in the flue gas. Exhaust SO{sub 3} levels were not measured during these experiments. Dilution caused

  18. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  19. When is Concentration Beneficial?

    OpenAIRE

    Liron-Espana, Carmen; Lopez, Rigoberto A.

    2001-01-01

    This paper separates market power and efficiency effects of concentration in a sample of 255 U.S. manufacturing industries and computes welfare changes from rises in concentration. The empirical findings reveal that in nearly two-third of the cases, consumers lose as efficiency gains are generally pocketed by the industries. From an aggregate welfare standpoint, concentration is found to be beneficial in nearly 70% of the cases, mostly for low and moderate levels of concentration being partic...

  20. Influence of coal mine tips on the chalk aquifer. Sampling methods for three dimensional sulphate infiltration study

    Energy Technology Data Exchange (ETDEWEB)

    Barrez, F.; Mania, J. [Polytech' Lille, Dept. Genie Civil, UMR CNRS 8107 (LML), 59 - Villeneuve d' Ascq (France); Mansy, J.L. [Lille-1 Univ., Lab. de Sedimentologie et de Geodynamique, UMR CNRS 8110 (PBDS), 59 - Villeneuve d' Ascq (France); Piwakowski, B. [Ecole Centrale de Lille, Groupe Electronique Acoustique IEMN-DOAE, UMR CNRS 8520, 59 - Villeneuve d' Ascq (France)

    2005-07-01

    The coal basin of the Nord-Pas-de-Calais region (France) shows a very strong deterioration of the Chalk aquifer quality. In order to better model the hydro-dynamism and to improve knowledge on the chemical interactions, sampling according to depth of the groundwater is undertaken. The low-flow sampling and the profiles of the in-situ physicochemical parameters allow the observation of various vertical heterogeneities of the aquifer. The areas where the coal mine tips are localised appear very interesting to study. The sulphates released by the pyrite oxidation allow a 'artificial tracing' and give a visualization of the flow as well as information on the implied chemical processes between the oxidizing and reducing zones. (authors)

  1. Comparison of Soxhlet and Shake Extraction of Polycyclic Aromatic Hydrocarbons from Coal Tar Polluted Soils Sampled in the Field

    DEFF Research Database (Denmark)

    Lindhardt, Bo; Holst, Helle; Christensen, Thomas Højlund

    1994-01-01

    This study compares three extraction methods for PAHs in coal tar polluted soil: 3-times repeated shaking of the soil with dichloromethane-methanol (1:1), Soxhlet extraction with dichloromethane, and Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol....... The extraction efficiencies were determined for ten selected PAHs in triplicate samples of six soils sampled at former gasworks sites. The samples covered a wide range of PAH concentrations, from 0.6 to 397 mg/kg soil. Soxhlet extraction with dichloromethane followed by Soxhlet extraction with methanol...

  2. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  3. Blended coals for improved coal water slurries

    Institute of Scientific and Technical Information of China (English)

    GU Tian-ye; WU Guo-guang; LI Qi-hui; SUN Zhi-qiang; ZENG Fang; WANG Guang-you; MENG Xian-liang

    2008-01-01

    Three coal samples of different ranks were used to study the effect of coal blending on the preparation of Coal Water Slurry (CWS). The results show that by taking advantage of two kinds of coal, the coal concentration in slurry made from hard-to-pulp coal can be effectively improved and increased by 3%-5% generally. DLT coal (DaLiuTa coal mine) is very poor in slurryability and the stability and rheology of the resulting slurry are not very good. When the amount of easily slurried coal is more than 30%, all properties of the CWS improve and the CWS meets the requirements for use as fuel. Coalification, porosity, surface oxygenic functional groups, zeta potential and grindability have a great effect on the performance of blended coal CWS. This leads to some differences in performance between the slurry made from a single coal and slurry made from blended coal.

  4. Standard method for proximate analysis of coal and coke

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    ASTM methods are cited that cover the determination of moisture, volatile matter, and ash and the calculation of fixed carbon in coals and cokes sampled and prepared by prescribed methods. The methods cited may be used to establish rank of coals, to show the ratio of combustible to incombustible constituents, to provide the basis for buying and selling, and to evaluate for beneficiation or for other purposes. (BLM)

  5. 选煤流化床内气固流动的数值建模%Modeling of the gas-solid flow in a coal beneficiation fluidized bed

    Institute of Scientific and Technical Information of China (English)

    王庆功; 尹炜迪; 吕俊复; 杨海瑞

    2014-01-01

    为了对选媒流化床内低速浓相气固流动进行数值建模,采用Euler-Euler模型对选煤流化床内的气固流动进行了数值模拟.考虑了一系列子模型对流动结构的影响,通过分析各工况下的流动特征并将模拟结果与实验进行对比,最终确定了一套可应用于选煤流化床内浓相低速鼓泡流动行为的数值模型.结果表明,Syamlal气固曳力模型对选煤流化床流动特征的预测更合理,偏微分颗粒温度模型(PDE)能更准确地描述颗粒脉动行为.在浓相气固选煤流化床中,应该选择Dispersed k-ε模型来考虑气相的湍流行为,并采用部分滑移条件分析颗粒-壁面间的相互作用.%The gas-solid flow in a coal beneficiation fluidized bed (CBFB) model is modeled in this work using an Eulerian-Eulerian model.A series of sub-models are validated by comparisons to experimental data.The results show that the Syamlal drag model predicts reasonable flow patterns in the CBFB.The partial differential equation (PDE) granular temperature model accurately predicts the particle kinetics.The dispersed k-ε turbulence model well describes the gas turbulence and the partial slip wall condition should be used to model the particle-wall interactions in the dense flow.

  6. Interlaboratory comparison of mineral constituents in a sample from the Herrin (No. 6) coal bed from Illinois

    Science.gov (United States)

    Finkelman, Robert B.; Fiene, F.L.; Miller, R.N.; Simon, F.O.

    1984-01-01

    Approximately 20 kg of the Herrin (No. 6) coal was collected from a strip mine in St. Clair County, Ill. A 10-kg portion was ground to -60 mesh, homogenized, and riffled into 128 splits of 70-80 g each. Homogeneity of these splits was confirmed by moisture, ash, and sulfur analyses of six randomly selected splits. Results of these analyses were within the ASTM (American Society for Testing and Materials) guidelines for interlaboratory precision. Splits of the Herrin (No. 6) coal were then transmitted to more than 30 laboratories for analysis. Low-temperature plasma oxidation was used to isolate inorganic matter for quantitative chemical and mineralogical analysis. Despite a wide variation in ashing conditions, only minor variations in ash yields were obtained; these variations were attributed to differences in operating temperature and moisture content. Mineralogical analyses of low-temperature ash (LTA) concentrates prepared by five different laboratories indicated variations within the limits of analytical error. The mean values, in weight percent, for the major minerals are as follows: calcite, 9; quartz, 20; pyrite, 23; kaolinite, 14; and illite+mixed-layer clays, 31. Normative mineralogical calculations and Fourier transform infrared analysis (FTIR) yielded results similar to those obtained from X-ray diffraction (XRD). Choosing appropriate mineral standards was found to be critical for the proper use of analytical techniques such as XRD and FTIR. Good interlaboratory agreement was obtained for most major, minor, and trace elements despite differences in analytical procedures and in the type of sample analyzed (coal, high-temperature ash, or LTA). Discrepancies between analyses for zinc, strontium, manganese, and iron may be attributed to sampling inhomogeneity problems. Mossbauer spectroscopy showed that approximately 44 percent of the pyritic sulfur was lost through weathering in the first year after preparation of the interlaboratory sample. Szomolnokite

  7. Measurement techniques for carbon dioxide sorption capacity on various coal samples: critical review

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Underground carbon sequestration is proposed as a geologic disposal technique for the long-term storage of CO2 emissions to mitigate climate change and air pollution. Coal bed seams have large CO2 adsorption capacity, long time CO2 trapping and extra enhanced coal-bed methane recovery (CBM). However, CO2 sorption capacity is one of significant steps required to be determined accurately in any feasibility evaluation of carbon sequestration. Hence, in lab scale, there are three methods for CO2 adsorption capacity measurements namely manometric/volumetric, gravimetric and new capsule techniques for gas sorption on variety of sorbents. The manometric and volumetric methods require accurate determination of cell and void volumes and suitable equation of state (EoS). The gravimetric method requires a very accurate sensitive balance and less buoyancy effect and it is the best technique for small amounts (milligrams) of sorbents and the adsorption equilibrium can be mentored. Among all gas adsorption measurement techniques, the newly developed method “capsule method” exhibits the highest CO2 adsorption capacity on Polish coal by 4.08 mmol/g because capsule method that directly measures CO2 uptake of solid coal matrix cylinders, without the application of the equation of state (EoS) for CO2 or volumetric corrections. The main advantage of capsule method is that it is independent of any Equation of State (EoS), and it has no volumetric effects or impurities distort the shape of the gas adsorption isotherm. The disadvantage of capsule method is time-consuming and it is not easy to implement.

  8. Evaluation of Diffuse Reflection Infrared Spectrometry for End-of-Shift Measurement of α-quartz in Coal Dust Samples.

    Science.gov (United States)

    Miller, Arthur L; Murphy, Nathaniel C; Bayman, Sean J; Briggs, Zachary P; Kilpatrick, Andrew D; Quinn, Courtney A; Wadas, Mackenzie R; Cauda, Emanuele G; Griffiths, Peter R

    2015-01-01

    The inhalation of toxic substances is a major threat to the health of miners, and dust containing respirable crystalline silica (α-quartz) is of particular concern, due to the recent rise in cases of coal workers' pneumoconiosis and silicosis in some U.S. mining regions. Currently, there is no field-portable instrument that can measure airborne α-quartz and give miners timely feedback on their exposure. The U.S. National Institute for Occupational Safety and Health (NIOSH) is therefore conducting studies to investigate technologies capable of end-of-shift or real-time measurement of airborne quartz. The present study focuses on the potential application of Fourier transform infrared (FT-IR) spectrometry conducted in the diffuse reflection (DR) mode as a technique for measuring α-quartz in respirable mine dust. A DR accessory was used to analyze lab-generated respirable samples of Min-U-Sil 5 (which contains more than 90% α-quartz) and coal dust, at mass loadings in the ranges of 100-600 μg and 600-5300 μg, respectively. The dust samples were deposited onto three different types of filters, borosilicate fiberglass, nylon, and polyvinyl chloride (PVC). The reflectance, R, was calculated by the ratio of a blank filter and a filter with deposited mine dust. Results suggest that for coal and pure quartz dusts deposited on 37 mm PVC filters, measurements of -log R correlate linearly with known amounts of quartz on filters, with R(2) values of approximately 0.99 and 0.94, respectively, for samples loaded up to ∼4000 μg. Additional tests were conducted to measure quartz in coal dusts deposited onto the borosilicate fiberglass and nylon filter media used in the NIOSH-developed Personal Dust Monitor (PDM). The nylon filter was shown to be amenable to DR analysis, but quantification of quartz is more accurate when the filter is "free," as opposed to being mounted in the PDM filter holder. The borosilicate fiberglass filters were shown to produce excessive

  9. Guidelines for sample collecting and analytical methods used in the U.S. Geological Survey for determining chemical composition of coal

    Science.gov (United States)

    Swanson, Vernon Emanuel; Huffman, Claude

    1976-01-01

    This report is intended to meet the many requests for information on current U.S. Geological Survey procedures in handling coal samples. In general, the exact type and number of samples of coal and associated rock to be collected are left to the best judgment of the geologist. Samples should be of unweathered coal or rock and representative of the bed or beds sampled; it is recommended that two channel samples, separated by 10 to 100 yards (10 to 100 metres) and weighing 4 to 5 pounds ( 1.8 to 2.3 kilograms) each, be collected of each 5 feet ( 1.5 metres) of vertical section. Care must be taken to avoid any sample contamination, and to record the exact locality, thickness, and stratigraphic information for each sample. Analytical methods are described for the determination of major, minor, and trace elements in coal. Hg, As, Sb, F, Se, U, and Th are determined in the raw coal, and the following 34 elements are determined after ashing the coal: Si, Al, Ca, Mg, Na, K, Fe (total), Cl, Ti, Mn, P, S (total), Cd, Li, Cu, Zn, Pb, B, Ba, Be, Co, Cr, Ga, La, Mo, Nb, Ni, Sc, Sr, Ti, V, Y, Yb, and Zr. The methods used to determine these elements include atomic absorption spectroscopy, X-ray fluorescence spectroscopy, optical emission spectroscopy, spectrophotometry, selective-ion electrode, and neutron activation analysis. A split of representative coal samples is submitted to the U.S. Bureau of Mines for proximate, ultimate, forms of sulfur, and Btu determinations.

  10. Pressurized fluidized-bed hydroretorting of eastern oil shales. Volume 4, Task 5, Operation of PFH on beneficiated shale, Task 6, Environmental data and mitigation analyses and Task 7, Sample procurement, preparation, and characterization: Final report, September 1987--May 1991

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    The objective of Task 5 (Operation of Pressurized Fluidized-Bed Hydro-Retorting (PFH) on Beneficiated Shale) was to modify the PFH process to facilitate its use for fine-sized, beneficiated Eastern shales. This task was divided into 3 subtasks: Non-Reactive Testing, Reactive Testing, and Data Analysis and Correlations. The potential environment impacts of PFH processing of oil shale must be assessed throughout the development program to ensure that the appropriate technologies are in place to mitigate any adverse effects. The overall objectives of Task 6 (Environmental Data and Mitigation Analyses) were to obtain environmental data relating to PFH and shale beneficiation and to analyze the potential environmental impacts of the integrated PFH process. The task was divided into the following four subtasks. Characterization of Processed Shales (IGT), 6.2. Water Availability and Treatment Studies, 6.3. Heavy Metals Removal and 6.4. PFH Systems Analysis. The objective of Task 7 (Sample Procurement, Preparation, and Characterization) was to procure, prepare, and characterize raw and beneficiated bulk samples of Eastern oil shale for all of the experimental tasks in the program. Accomplishments for these tasks are presented.

  11. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    Science.gov (United States)

    Yu, Zhimin

    In coal preparation plant circuits, fine coal particles are aggregated either by oil agglomeration or by flocculation. In a new hydrophobic agglomeration process, recently developed hydrophobic latices are utilized. While the selectivity of such aggregation processes determines the beneficiation results, the degree of aggregation has a strong effect on fine coal filtration. The aim of this research was to study the fundamentals and analyze the common grounds for these processes, including the potential effect of the coal surface properties. The selective flocculation tests, in which three types of coal, which differed widely in surface wettability, and three additives (hydrophobic latices, a semi-hydrophobic flocculant and a typical hydrophilic polyelectrolyte) were utilized, showed that coal wettability plays a very important role in selective flocculation. The abstraction of a hydrophobic latex on coal and silica revealed that the latex had a much higher affinity towards hydrophobic coal than to hydrophilic mineral matter. As a result, the UBC-1 hydrophobic latex flocculated only hydrophobic coal particles while the polyelectrolyte (PAM) flocculated all the tested coal samples and minerals, showing no selectivity in the fine coal beneficiation. The oil agglomeration was tested using kerosene emulsified with various surfactants (e.g. cationic, anionic and non-ionic). Surfactants enhance not only oil emulsification, hence reducing oil consumption (down to 0.25--0.5%), but also entirely change the electrokinetic properties of the droplets and affect the interaction energy between oil droplets and coal particles. Consequently, the results found in the course of the experimental work strongly indicate that even oxidized coals can be agglomerated if cationic surfactants are used to emulsify the oil. Oil agglomeration of the Ford-4 ultrafine coal showed that even at extremely low oil consumption (0.25 to 0.5%), a clean coal product with an ash content around 5% at over

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. (Auburn Univ., AL (United States)); Gutterman, C. (Foster Wheeler Development Corp., Livingston, NJ (United States)); Chander, S. (Pennsylvania State Univ., University Park, PA (United States))

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  13. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  14. Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Elena A Turner

    Full Text Available Mountaintop removal-valley fill coal mining has been associated with a variety of impacts on ecosystem and human health, in particular reductions in the biodiversity of receiving streams. However, effluents emerging from valley fills contain a complex mixture of chemicals including metals, metalloids, and salts, and it is not clear which of these are the most important drivers of toxicity. We found that streamwater and sediment samples collected from mine-impacted streams of the Upper Mud River in West Virginia inhibited the growth of the nematode Caenorhabditis elegans. Next, we took advantage of genetic and transgenic tools available in this model organism to test the hypotheses that the toxicity could be attributed to metals, selenium, oxidative stress, or osmotic stress. Our results indicate that in general, the toxicity of streamwater to C. elegans was attributable to osmotic stress, while the toxicity of sediments resulted mostly from metals or metalloids.

  15. Beneficial uses of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fox, M.R.

    1991-10-01

    An overall decline in technical literacy within the American public has come at a time when technological advances are accelerating in the United States and around the world. This had led to a large communication gulf between the general public and the technologists. Nowhere is this more evident then with the topic of radiation. Regrettably, too few people know about sources of radiation, the pervasiveness, amounts, and variabilities, and do not have a true understanding of the environment in which we live. Nor do many people know that radiation has been used in beneficial ways for decades around the world. While the general public does not know of the scientific applications to which radiation has been deployed, it nevertheless had benefited tremendously from these efforts. Thanks to the well know properties of radiation, scientific ingenuity has found many uses of radiation in chemical and agricultural research, biomedical research, in the diagnoses and treatment of hundreds of types of diseases, in industrial applications, food irradiation, and many others. This paper provides a sample of the types of uses to which radiation has been used to help advance the betterment of humankind.

  16. Trace elements in coal ash

    Science.gov (United States)

    Deonarine, Amrika; Kolker, Allan; Doughten, Michael W.

    2015-01-01

    Coal ash is a residual waste product primarily produced by coal combustion for electric power generation. Coal ash includes fly ash, bottom ash, and flue-gas desulfurization products (at powerplants equipped with flue-gas desulfurization systems). Fly ash, the most common form of coal ash, is used in a range of products, especially construction materials. A new Environmental Protection Agency ruling upholds designation of coal ash as a non-hazardous waste under Subtitle D of the Resource Conservation and Recovery Act, allowing for the continued beneficial use of coal ash and also designating procedures and requirements for its storage.

  17. Correlation between coal characteristics and methane adsorption on China's coals

    Institute of Scientific and Technical Information of China (English)

    YU Hong-guan; YUAN Jian; SONG Ji-yong; LENG Shu-wei

    2007-01-01

    It is highly important to investigate relationship between coal characteristics and methane adsorption on coal in the fields of coalbed methane recovery. Based on data examination of coal quality indexes collected from the literatures, regression equations for Langmuir adsorption constants, VL or VL/PL, and coal quality indexes for selected coal samples were developed with multiple linear regression of SPSS software according to the degree of coal metamorphosis. The regression equations built were tested with data collected from some literatures, and the influences of coal quality indexes on CH4 adsorption on coals were studied with investigation of regression equations, and the reasons of low accuracy to Langmuir constants calculated with regression equation for a few coal samples were investigated. The results show that the regression equations can be employed to predict Langmuir constants for methane adsorption isotherms on coals obtained using volumetric gas adsorption experiments, which are conducted at 30 ℃ on a wet or dried coal samples with less than 30% ash content in coal. The influence of same coal quality index with various coal rank or influence of various coal quality indexes for same coal rank on CH4 adsorption is not consistent. The regression equations have different accuracy to different coal rank, in which the VL equations supply better prediction accuracy for anthracite and higher prediction error for lower metamorphosis coal, and the PL prediction error with VL and VL/PL equations is lower to bituminous coal and higher to anthracite.

  18. Dynamics of beneficial epidemics

    CERN Document Server

    Berdahl, Andrew; De Bacco, Caterina; Dumas, Marion; Ferdinand, Vanessa; Grochow, Joshua A; Hébert-Dufresne, Laurent; Kallus, Yoav; Kempes, Christopher P; Kolchinsky, Artemy; Larremore, Daniel B; Libby, Eric; Power, Eleanor A; Stern, Caitlin A; Tracey, Brendan

    2016-01-01

    Pathogens can spread epidemically through populations. Beneficial contagions, such as viruses that enhance host survival or technological innovations that improve quality of life, also have the potential to spread epidemically. How do the dynamics of beneficial biological and social epidemics differ from those of detrimental epidemics? We investigate this question using three theoretical approaches as well as an empirical analysis of concept propagation. First, in evolutionary models, we show that a beneficial horizontally-transmissible element, such as viral DNA, spreads super-exponentially through a population, substantially more quickly than a beneficial mutation. Second, in an epidemiological social network approach, we show that infections that cause increased connectivity lead to faster-than-exponential fixation in the population. Third, in a sociological model with strategic rewiring, we find that preferences for increased global infection accelerate spread and produce super-exponential fixation rates,...

  19. Beneficial Insects: Beetles

    OpenAIRE

    Hodgson, Erin W.; Patterson, Ron

    2007-01-01

    There are many beneficial beetles in Utah besides lady beetles or ladybugs. Beetles can significantly reduce common insect and weed problems and in some cases eliminate the need for chemical control. Examples of beneficial beetles include: ground beetles, rove beetles, tiger beetles and tortoise beetles. Many of these beetles are native to Utah, while others have been purposely introduced to help control damage from exotic insect and weed pests.

  20. Characterization of cytochrome P4501A induction in medaka (Oryzias latipes) by samples generated from the extraction and processing of coal.

    Science.gov (United States)

    Cohen, C; Stiller, A; Miller, M R

    1994-10-01

    The objective of this study was to characterize cytochrome P4501A induction in medaka liver as a biomarker for detecting polyaromatic hydrocarbon (PAH)-type compounds in samples of processed coal or petroleum. Ethoxyresorufin-O-deethylase (EROD) activity in individual medaka livers was used to asses induction of P4501A following the addition of various samples to aquaria water. Samples included a known P4501A inducer, beta-naphthoflavone, and various processed coal samples, as well as a petroleum-pitch. The sensitivity of detecting significant EROD induction by adding samples to aquaria water was approximately 0.1 mg/L for most samples; however, a coal-tar pitch significantly increased EROD activity at 0.01 mg/L. Different samples induced EROD activity to different extents. All samples elicited a concentration-dependent increase in EROD activity, with maximum EROD induction 2 days after a single administration of xenobiotics to aquaria water. Western blot studies established that induction of EROD activity by all xenobiotics tested was associated with corresponding increased amounts of immunoreactive P4501A. EROD induction was not influenced by gender, by single or multiple xenobiotic exposures, nor by feeding or fasting animals during the course of xenobiotic exposure. The ability of xenobiotics to induce EROD activity in medaka liver did not always correlate with their genotoxic potential determined by bacterial mutagenesis assays. Induction of P4501A in medaka liver appears to provide a convenient, economical, reliable and sensitive indicator for the presence of PAH-type compounds in coal- or petroleum-derived samples.

  1. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>20111053 Chen Jian(School of Earth and Environment,Anhui University of Science and Technology,Huainan 232001,China);Liu Wenzhong Organic Affinity of Trace Elements in Coal from No.10 Coal-Bed at Western Huagou,Guoyang(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,38(4),2010,p.16-20,24,3 illus.,3 tables,19 refs.)Key words:coal,minor elements,Anhui Province In order to study the organic affinity of trace elements in coal from No.10 coal-bed at western Huagou,Guoyang,10 borehole samples were collected at exploration area of Huaibei mining area.The contents of 12 kinds of trace elements were determined by the inductively coupled plasma mass spectrometry(ICP-MS),the total organic carbon(TOC)of coal was determined by LECO carbon and sulfur analyzer,and the organic affinity of trace elements were deduced from the correlations between contents and TOCs.The results showed that the contents of V,Cr,Co,Ni,Mo,Cd,Sb,Pb and Zn were lower than

  2. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Éderson R.; Castilho, Ivan N.B. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Gois, Jefferson S. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Borges, Daniel L.G. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2014-06-01

    This work reports a simple approach for Br determination in coal using direct solid sample analysis in a graphite tube furnace and high-resolution continuum source molecular absorption spectrometry. The molecular absorbance of the calcium mono-bromide (CaBr) molecule has been measured using the rotational line at 625.315 nm. Different chemical modifiers (zirconium, ruthenium, palladium and a mixture of palladium and magnesium nitrates) have been evaluated in order to increase the sensitivity of the CaBr absorption, and Zr showed the best overall performance. The pyrolysis and vaporization temperatures were 800 °C and 2200 °C, respectively. Accuracy and precision of the method have been evaluated using certified coal reference materials (BCR 181, BCR 182, NIST 1630a, and NIST 1632b) with good agreement (between 98 and 103%) with the informed values for Br. The detection limit was around 4 ng Br, which corresponds to about 1.5 μg g{sup −1} Br in coal, based on a sample mass of 3 mg. In addition, the results were in agreement with those obtained using electrothermal vaporization inductively coupled plasma mass spectrometry, based on a Student t-test at a 95% confidence level. A mechanism for the formation of the CaBr molecule is proposed, which might be considered for other diatomic molecules as well. - Highlights: • Bromine has been determined in coal using direct solid sample analysis. • Calibration has been carried out against aqueous standard solutions. • The coal samples and the molecule-forming reagent have been separated in order to avoid interferences. • The results make possible to draw conclusions about the mechanisms of molecule formation.

  3. Speciation of nitrogen-containing compounds in an unfractionated coal tar sample by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry.

    Science.gov (United States)

    da Silva, Juliana M; Machado, Maria Elisabete; Maciel, Gabriela P S; Dal Molin, Daniela; Caramão, Elina B

    2014-12-19

    Comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOFMS) has shown great skill in analyzing complex mixtures such as fossil fuels, especially for compounds at low concentrations. The analysis of N-polyaromatic compounds (NPAC) in coal and crude oil is a great challenge for analytical chemistry due to its environmental and technological importance, and also its diversity of concentration in the matrix. This study is the first report in the applicability of GC×GC/TOFMS for detection of NPAC in a coal tar sample with no fractionation. Normally these compounds are analyzed after sample treatment, making the process expensive and time consuming. However, the higher separation power of GC×GC/TOFMS, compared to 1D-GC, produces cleaner mass spectra in complex samples, which helps in identification of analytes with no pre-fractionation. In this paper, the main objectives were to demonstrate the applicability of GC×GC/TOFMS in the speciation and separation between basic and neutral NPAC from coal tar sample derived from fast pyrolysis, without prior sample fractionation. The methodology used here consisted of chromatographic injection of the diluted sample using a conventional columns set and data analysis by ChromaTOF/Excel™ software. Some basic compounds (pyridines and quinolines) and neutral ones (carbazoles and indoles) were detected with good chromatographic separation and spectral similarity. Tools like spectral deconvolution, extracted ion chromatogram (EIC) and dispersion graphics allowed greater security on the identification and separation of NPAC in this complex sample of coal tar, with no pre-treatment.

  4. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuefei [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Jiang Zucheng [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); He Man [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China); Hu Bin [Department of Chemistry, Wuhan University, Wuhan, Hubei Province 430072 (China)]. E-mail: binhu@whu.edu.cn

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3}(Eu) to 6.7 pg m{sup -3}(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c = 1 {mu}g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. - A new method for direct determination of trace rare earth elements in coal fly ash and atmospheric particulates by fluorination ETV-ICP-MS with slurry sampling.

  5. Mechanical Behavior and Permeability Evolution of Reconstituted Coal Samples under Various Unloading Confining Pressures—Implications for Wellbore Stability Analysis

    Directory of Open Access Journals (Sweden)

    Qiangui Zhang

    2017-03-01

    Full Text Available Low pressure, low permeability, and low saturation of Chinese coal-bed methane (CBM reservoirs make underbalanced drilling (UBD widely used for mining CBM in China. In this study, mechanical behavior and permeability of coal rock were investigated under different degrees of unloading confining pressure (UCP-reloading axial stress (RAS by a triaxial experimental apparatus. These tests revealed that: (1 peak deviatoric stress of coal rock in UCP-RAS is lower than that in a conventional triaxial compression (CTC test, and the peak deviatoric stress linearly relates the degree of unloading confining pressure. The deformation modulus of coal in UCP-RAS is lower than that in CTC, while the lateral expansion ratio is larger than that in CTC; (2 higher UCP leads to a faster increase of permeability during RAS until the failure of coal; (3 the cohesion and internal friction angle tested by UCP-RAS are lower by 4.57% and 15.18% than those tested by CTC. In addition, a field case (Zhaozhuang well, Qinshui Basin, China of a well collapse problem validates the higher probability of wellbore collapse due to the increase of equivalent collapse fluid density, which is calculated by using coal rock parameters tested by UCP-RAS rather than by CTC.

  6. Low-rank coal research

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G. F.; Laudal, D. L.

    1989-01-01

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  7. The loss of Na and Cl during the pyrolysis of a NaCl-loaded brown coal sample

    Energy Technology Data Exchange (ETDEWEB)

    Mody, D.; Li, C.Z.

    1999-07-01

    A Victorian brown coal was physically loaded with NaCl and pyrolyzed in a quartz fluidized-bed reactor. The fluidized-bed reactor was equipped with a quartz frit in the freeboard zone to enable the total devolatilization of the coal particles. The introduction of NaCl into the coal has caused only minor reductions in the weight loss. A significant amount of chlorine was volatilized during pyrolysis at temperatures as low as 200 C. At temperatures around 400--500 C where the loss of sodium was not very significant, about 70% of chlorine was volatilized from the coal particles. With the volatilization of chlorine at this temperature level, sodium must have been bonded to the char matrix. With increasing temperature, the volatilization of chlorine decreased and then increased again, whereas the volatilization of sodium increased monotonically with increasing temperature. Almost all the Na in coal could be volatilized at temperatures higher than about 800 C. These experimental results clearly indicate that chlorine and Na interacted strongly with coal/char at high temperatures. Na and Cl in the coal did not volatilize as NaCl molecules. Significant amounts of species containing a COO-group such as acetate, formate and oxalate were observed in the pyrolysis products although the exact forms of these species (i.e., as acids, salts or esters) in the pyrolysis product remain unknown. The yields of the species containing a COO-group decreased with increasing temperature, possibly due to the intensified thermal cracking reactions at high temperatures.

  8. A study of toxic emissions from a coal-fired power plant utilizing the SNOX innovative clean coal technology demonstration. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electric utilities. The report is organized in two volumes. Volume 1: Sampling describes the sampling effort conducted as the basis for this study; Results presents the concentration data on HAPs in the several power plant streams, and reports the results of evaluations and calculations conducted with those data; and Special Topics report on issues such as comparison of sampling methods and vapor/solid distributions of HAPs. Volume 2: Appendices include quality assurance/quality control results, uncertainty analysis for emission factors, and data sheets. This study involved measurements of a variety of substances in solid, liquid, and gaseous samples from input, output, and process streams at the Innovative Clean Coal Technology Demonstration (ICCT) of the Wet Sulfuric Acid-Selective Catalytic Reduction (SNOX) process. The SNOX demonstration is being conducted at Ohio Edison`s Niles Boiler No. 2 which uses cyclone burners to burn bituminous coal. A 35 megawatt slipstream of flue gas from the boiler is used to demonstrate SNOX. The substances measured at the SNOX process were the following: 1. Five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; 2. Acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); 3. Ammonia and cyanide; 4. Elemental carbon; 5. Radionuclides; 6. Volatile organic compounds (VOC); 7. Semi-volatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH); and 8. Aldehydes.

  9. Nitrogen in Chinese coals

    Science.gov (United States)

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  10. Metagenomic analysis of medicinal Cannabis samples; pathogenic bacteria, toxigenic fungi, and beneficial microbes grow in culture-based yeast and mold tests [version 1; referees: 2 approved, 1 approved with reservations

    Directory of Open Access Journals (Sweden)

    Kevin McKernan

    2016-10-01

    Full Text Available Background: The presence of bacteria and fungi in medicinal or recreational Cannabis poses a potential threat to consumers if those microbes include pathogenic or toxigenic species. This study evaluated two widely used culture-based platforms for total yeast and mold (TYM testing marketed by 3M Corporation and Biomérieux, in comparison with a quantitative PCR (qPCR approach marketed by Medicinal Genomics Corporation. Methods: A set of 15 medicinal Cannabis samples were analyzed using 3M and Biomérieux culture-based platforms and by qPCR to quantify microbial DNA. All samples were then subjected to next-generation sequencing and metagenomics analysis to enumerate the bacteria and fungi present before and after growth on culture-based media. Results: Several pathogenic or toxigenic bacterial and fungal species were identified in proportions of >5% of classified reads on the samples, including Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, Ralstonia pickettii, Salmonella enterica, Stenotrophomonas maltophilia, Aspergillus ostianus, Aspergillus sydowii, Penicillium citrinum and Penicillium steckii. Samples subjected to culture showed substantial shifts in the number and diversity of species present, including the failure of Aspergillus species to grow well on either platform. Substantial growth of Clostridium botulinum and other bacteria were frequently observed on one or both of the culture-based TYM platforms. The presence of plant growth promoting (beneficial fungal species further influenced the differential growth of species in the microbiome of each sample. Conclusions: These findings have important implications for the Cannabis and food safety testing industries.

  11. Space-time evolution rules of acoustic emission location of unloaded coal sample at different loading rates

    Institute of Scientific and Technical Information of China (English)

    Ai Ting; Zhang Ru; Liu Jianfeng; Ren Li

    2012-01-01

    By using MTS815 rock mechanics test system,a series of acoustic emission (AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE tinging counting rate increases largely and the AE energy curves appear an obvious "step",which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.

  12. Space-time evolution rules of acoustic emission location of unloaded coal sample at different loading rates

    Institute of Scientific and Technical Information of China (English)

    Ai; Ting; Zhang; Ru; Liu; Jianfeng; Ren; Li

    2012-01-01

    By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.

  13. Radionuclides in US coals

    Energy Technology Data Exchange (ETDEWEB)

    Bisselle, C. A.; Brown, R. D.

    1984-03-01

    The current state of knowledge with respect to radionuclide concentrations in US coals is discussed. Emphasis is placed on the levels of uranium in coal (and lignite) which are considered to represent a concern resulting from coal combustion; areas of the US where such levels have been found; and possible origins of high radionuclide levels in coal. The report reviews relevant studies and presents new data derived from a computerized search of radionuclide content in about 4000 coal samples collected throughout the coterminous US. 103 references, 5 figures, 5 tables.

  14. Petrographers fingerprint coals

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, D.E. [Pearson and Associates Ltd. (USA)

    2001-05-01

    A new system of coal fingerprinting called Digipet generates reflectance profiles by using an automated digital imaging system in which tens of millions of individual reflectance measurements are obtained. Images are conditioned to generate a detailed smooth histogram which convey information on the coal sample's provenance and history. Expert interpretation can reveal further information. The article gives details of the instrument and shows sample reflectance profiles. It discusses some applications in sampling coal charged to coke ovens of the Indiana Harbor Coke Co, and at a Midwest generating plant where it detected the presence of rogue high volatile coal. 3 figs.

  15. Status of coal biotechnology in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    M. Afzal Ghauri; M.A. Anwar; N. Akhtar; R. Haider; A. Tawab [National Institute for Biotechnology and Genetic Engineering, Faisalabad (Pakistan)

    2009-07-01

    Pakistan is endued with 185 billion tons colossal reserves of coal, but only 7.89 % of the country total energy requirements are met by coal. Most of the Pakistani coal reserves are sub-bituminous or lignitic in nature and contain 3-12 % sulphur. Existence of sulphur compounds in coal limits its industrial application due to environmental as well as technical problems. However, coal biotechnology can emerge as panacea for upgrading the huge reserves of coal in Pakistan. In general, coal biotechnology refers to biodesulphurization, biosolubilization and biogasification of coal. NIBGE has long term interests in the field of coal bioprocessing for tapping prime resources of indigenous coal. In NIBGE, lab scale experiments for coal biodesulphurization led to 90% efficiency in sulphur removal. Heap leaching was also carried out at the level of 10 and 20 tons coal heaps with 60% sulphur removal efficiency. Furthermore, a prototype of 300 tons coal heap was set up with a local cement industry and 75% microbial desulphurization was achieved. The league of indigenously isolated chemolithotrophic bacteria was involved in coal desulphurization. On the other side, for making the best use of 175 billion tons of low rank coal reserves, coal biosolubilization and subsequent biogasification is being projected. Consequently, beneficiated coal through biotechnology is supposed to contribute in energy mix of Pakistan for providing electricity requirements of the country and saving huge oil import bills.

  16. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.F.; Jiang, Z.C.; He, M.; Hu, B. [Wuhan University, Wuhan (China). Dept. of Chemistry

    2007-07-15

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m{sup -3} (Eu) to 6.7 Pg m{sup -3} (Nd) with the precisions of 4.1% (Yb) to 10% (La) = 1 {mu} g L{sup -1}, n = 9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  17. Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling.

    Science.gov (United States)

    Zhang, Yuefei; Jiang, Zucheng; He, Man; Hu, Bin

    2007-07-01

    A method of fluorination assisted electrothermal vaporization (FETV)-ICP-MS with polytetrafluoroethylene as fluorinating reagent was developed for the direct determination of trace rare earth elements (REEs) in coal fly ash and atmospheric particulates. Under the optimal conditions, the detection limits for REEs were 0.1 pg m(-3)(Eu) to 6.7 pg m(-3)(Nd) with the precisions of 4.1%(Yb) to 10%(La) (c=1 microg L(-1), n=9). The proposed method was applied to determine trace REEs in coal fly ash, airborne particulates and NIES SRM No. 8 Vehicle Exhaust Particulates. It was found that the determined values for Y, La, Pr and Nd obtained by slurry sampling FETV-ICP-MS with external calibration coincided with that obtained by pneumatic nebulization (PN)-ICP-MS and slurry sampling FETV-ICP-MS with standard addition. However, the determined values for Ce and Sm obtained by slurry sampling FETV-ICP-MS with external calibration were lower than that obtained by PN-ICP-MS and slurry sampling FETV-ICP-MS with standard addition.

  18. Determination of As, Cd, Pb and Tl in coal by electrothermal vaporization inductively coupled plasma mass spectrometry using slurry sampling and external calibration against aqueous standards

    Energy Technology Data Exchange (ETDEWEB)

    Borges, D.L.G.; Welz, B.; Curtius, A.J. [University of Federal Santa Catarina, Florianopolis (Brazil)

    2007-06-15

    A method was developed for the determination of As, Cd, Pb and Tl by electrothermal vaporization inductively coupled plasma mass spectrometry (ETV-ICP-MS) with slurry sample introduction using certified reference coal samples. The As-75, Cd-111, Pb-208 and Tl-205 isotopes were monitored, considering the lower probabilities of these isotopes in suffering interferences. The carrier and modifier effect of Ru added in solution was evaluated, demonstrating that sensitivity for all elements is considerably improved by the addition of 15 mg of Ru to each individual measurement. This confirms its ability to act as a physical carrier particularly for the analytes in aqueous solution. After optimization of the operational parameters, the determination of the four elements in six certified reference coal samples was carried out by external calibration against aqueous standards in 5% v= v HNO{sub 3}, resulting in good agreement between the certified or given values and the determined ones. For Tl, due to the absence of certified values, a comparison was established considering previously published data using solid sampling high-resolution continuum source graphite furnace atomic absorption spectrometry. Detection limits ({mu} g g{sup -1}) of 0.1, 0.004, 0.045 and 0.001 were achieved for As, Cd, Pb and Tl, respectively, and the precision was typically better than 10%.

  19. A new method for estimating the density of coal for resource and reserve calculation

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, G.W. [BHP Minerals International Exploration Inc., Kuala Lumpur (Malaysia)

    2000-01-01

    It is generally agreed that it is currently impossible to measure accurately in situ coal moisture by direct sampling because once the sample is taken it is no longer representative of the in situ condition. This paper presents an alternative proposition that what is really relevant is the weight of coal after mining, on the surface, either as crushed run of mine (ROM) product or beneficiated product, not the weight of coal in the ground. This is the form in which the coal is first weighed and the form in which it is sold and utilised. Thus it is only essential to estimate as accurately as possible the volume of coal in the ground from thickness information. It is the relative density (RD) of the broken coal on the surface that is important, not that of the solid coal in situ. It is shown however, that on a dry basis the two are essentially the same. This could be a useful and realistic way to determine suitable relative densities for coal resource and reserve calculations. 2 refs., 3 figs., 1 tab.

  20. Direct current plasma emission spectrometric determination of major, minor and trace elements in microwave oven acid leachates of powdered whole coal samples

    Energy Technology Data Exchange (ETDEWEB)

    Fadda, S. [CNR, Cagliari (Italy)

    2005-07-01

    Major concentrations of Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}, MgO, CaO, Na{sub 2}O and K{sub 2}O, minor levels of TiO{sub 2}, P{sub 2}O{sub 5} and thirty petrologically, geochemically and environmentally significant trace elements have been determined in microwave oven acid leachates of whole powdered coal samples by direct current plasma-atomic emission spectrometry (DCP-AES). A single sample preparation procedure was suitable for all the determinations with no additional dilution step for major elements solution. Dried samples (0.5 g) were treated in low-pressure PFA digestion vessels with HF/HCl/HNO{sub 3}/HClO{sub 4} acids to quantitatively extract the analytes from the bulk material, while leaving the major part of organic matrix as a residue. To evaluate the accuracy of the microwave oven-DCP method a suite of eight certified coal reference materials of differing rank, were analysed with good agreement with the certified and/or available published data. Results are presented for the uncertified major oxides in the AR series reference materials.

  1. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  2. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., University Park, PA (United States)

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  3. Formation and retention of methane in coal

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  4. Beneficial bacteria inhibit cachexia.

    Science.gov (United States)

    Varian, Bernard J; Goureshetti, Sravya; Poutahidis, Theofilos; Lakritz, Jessica R; Levkovich, Tatiana; Kwok, Caitlin; Teliousis, Konstantinos; Ibrahim, Yassin M; Mirabal, Sheyla; Erdman, Susan E

    2016-03-15

    Muscle wasting, known as cachexia, is a debilitating condition associated with chronic inflammation such as during cancer. Beneficial microbes have been shown to optimize systemic inflammatory tone during good health; however, interactions between microbes and host immunity in the context of cachexia are incompletely understood. Here we use mouse models to test roles for bacteria in muscle wasting syndromes. We find that feeding of a human commensal microbe, Lactobacillus reuteri, to mice is sufficient to lower systemic indices of inflammation and inhibit cachexia. Further, the microbial muscle-building phenomenon extends to normal aging as wild type animals exhibited increased growth hormone levels and up-regulation of transcription factor Forkhead Box N1 [FoxN1] associated with thymus gland retention and longevity. Interestingly, mice with a defective FoxN1 gene (athymic nude) fail to inhibit sarcopenia after L. reuteri therapy, indicating a FoxN1-mediated mechanism. In conclusion, symbiotic bacteria may serve to stimulate FoxN1 and thymic functions that regulate inflammation, offering possible alternatives for cachexia prevention and novel insights into roles for microbiota in mammalian ontogeny and phylogeny.

  5. Beneficial Properties of Probiotics

    Science.gov (United States)

    Shi, Lye Huey; Balakrishnan, Kunasundari; Thiagarajah, Kokila; Mohd Ismail, Nor Ismaliza; Yin, Ooi Shao

    2016-01-01

    Probiotics are live microorganisms that can be found in fermented foods and cultured milk, and are widely used for the preparation of infant food. They are well-known as “health friendly bacteria”, which exhibit various health beneficial properties such as prevention of bowel diseases, improving the immune system, for lactose intolerance and intestinal microbial balance, exhibiting antihypercholesterolemic and antihypertensive effects, alleviation of postmenopausal disorders, and reducing traveller’s diarrhoea. Recent studies have also been focused on their uses in treating skin and oral diseases. In addition to that, modulation of the gut-brain by probiotics has been suggested as a novel therapeutic solution for anxiety and depression. Thus, this review discusses on the current probiotics-based products in Malaysia, criteria for selection of probiotics, and evidences obtained from past studies on how probiotics have been used in preventing intestinal disorders via improving the immune system, acting as an antihypercholesterolemic factor, improving oral and dermal health, and performing as anti-anxiety and anti-depressive agents. PMID:27688852

  6. A new gravity & flotation separator with double-tailing discharge and its beneficiation performance

    Institute of Scientific and Technical Information of China (English)

    YANG Hong-li; FAN Min-qiang

    2012-01-01

    Introduced a new gravity and flotation separator with double-tailing discharge for fine coal,and integrated classification and cyclone scavenging with flotation in an original way.The beneficiation performance of it was good.The results show that the gravity and flotation separator with double-tailing discharge can produce high-quality clean coal of 10.46% ash from fine coal of 35.56% ash.It can discharge the fine and coarse railings separately.

  7. Microwave assisted aqua regia extraction of thallium from sediment and coal fly ash samples and interference free determination by continuum source ETAAS after cloud point extraction.

    Science.gov (United States)

    Meeravali, Noorbasha N; Madhavi, K; Kumar, Sunil Jai

    2013-01-30

    A simple cloud point extraction method is described for the separation and pre-concentration of thallium from the microwave assisted aqua regia extracts of sediment and coal fly ash samples. The method is based on the formation of extractable species of thallium and its interaction with hydrophobic solubilizing sites of Triton X-114 micelles in the presence of aqua regia and electrolyte NaCl. These interactions of micelles are used for extraction of thallium from a bulk aqueous phase into a small micelles-rich phase. The potential chloride interferences are eliminated effectively, which enabled interference free determination of thallium from aqua regia extracts using continuum source ETAAS. The parameters affecting the extraction process are optimized. Under the optimized conditions, pre-concentration factor and limit of detection are 40 and 0.2 ng g(-1), respectively. The recoveries are in the range of 95-102%. A characteristic mass, 13 pg was obtained. The accuracy of the method is verified by analyzing certified reference materials such as NIST 1633b coal fly ash, NIST 1944 marine sediment and GBW 07312 stream sediments. The results obtained are in good agreement with the certified values and method is also applied to real samples.

  8. COAL CLEANING VIA LIQUID-FLUIDIZED CLASSIFICAITON (LFBC) WITH SELECTIVE SOLVENT SWELLING

    Energy Technology Data Exchange (ETDEWEB)

    J. M. Calo

    2000-12-01

    The concept of coal beneficiation due to particle segregation in water-fluidized beds, and its improvement via selective solvent-swelling of organic material-rich coal particles, was investigated in this study. Particle size distributions and their behavior were determined using image analysis techniques, and beneficiation effects were explored via measurements of the ash content of segregated particle samples collected from different height locations in a 5 cm diameter liquid-fluidized bed column (LFBC). Both acetone and phenol were found to be effective swelling agents for both Kentucky No.9 and Illinois No.6 coals, considerably increasing mean particle diameters, and shifting particle size distributions to larger sizes. Acetone was a somewhat more effective swelling solvent than phenol. The use of phenol was investigated, however, to demonstrate that low cost, waste solvents can be effective as well. For unswollen coal particles, the trend of increasing particle size from top to bottom in the LFBC was observed in all cases. Since the organic matter in the coal tends to concentrate in the smaller particles, the larger particles are typically denser. Consequently, the LFBC naturally tends to separate coal particles according to mineral matter content, both due to density and size. The data for small (40-100 {micro}m), solvent-swollen particles clearly showed improved beneficiation with respect to segregation in the water-fluidized bed than was achieved with the corresponding unswollen particles. This size range is quite similar to that used in pulverized coal combustion. The original process concept was amply demonstrated in this project. Additional work remains to be done, however, in order to develop this concept into a full-scale process.

  9. The Development of Power Technologies for Low-Grade Coal

    Science.gov (United States)

    Basu, K.

    Beneficiation of Indian coal and operation of power plants with imported coal will improve the efficiency of power generation to some extent but they will not satisfy overall future requirements of pollution control and conservation of energy. Therefore, there is a need to adopt new clean coal technologies.

  10. Preparation and characterization of carbon-enriched coal fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, B.; Izquierdo, M.T.; Mayoral, M.C.; Bona, M.T.; Martinez-Tarazona, R.M. [CSIC, Zaragoza (Spain)

    2008-09-15

    Carbon-enriched fractions have been obtained from two coal fly ash (FA) samples. The FA came from two pulverized-coal fired power stations (Lada and Escucha, Spain) and were collected from baghouse filters. Sieving was used to obtain carbon-enriched fractions, which were further subjected to two beneficiation processes: acid demineralization using HCl and HF, and oil agglomeration using soya oil-water. Yield in weight after sieving, unburned carbon content, and several physicochemical characteristics, of the obtained fractions were used to compare the performance of the beneficiation methods. Low carbon concentration was obtained by sieving. particularly in the case of Escucha FA. However, after acid demineralization or oil agglomeration, fractions containing unburned carbon in a range of 63% to 68% were obtained. These fractions showed differences in mineral phase composition and distribution depending on the FA and oil the beneficiation method used. The textural properties of the obtained fractions varied as a function of their carbon content and the beneficiation method used. However, no significant differences in morphology of the carbonaceous particles were found

  11. A study of toxic emissions from a coal-fired power plant: Niles Station Boiler No. 2. Volume 1, Sampling/results/special topics: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    This study was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for US Department of Energy, Pittsburgh Energy Technology Center (DOE-PETC) during 1993. The motivation for those assessments was the mandate in the 1990 Clean Air Act Amendments that a study be made of emissions of hazardous air pollutants (HAPs) from electrical utilities. The results of this study will be used by the US Environmental Protection Agency to evaluate whether regulation of HAPs emissions from utilities is warranted. This report is organized in two volumes. Volume 1: Sampling/Results/Special Topics describes the sampling effort conducted as the basis for this study, presents the concentration data on toxic chemicals in the several power plant streams, and reports the results of evaluations and calculations conducted with those data. The Special Topics section of Volume 1 reports on issues such as comparison of sampling methods and vapor/particle distributions of toxic chemicals. Volume 2: Appendices include field sampling data sheets, quality assurance results, and uncertainty calculations. The chemicals measured at Niles Boiler No. 2 were the following: five major and 16 trace elements, including mercury, chromium, cadmium, lead, selenium, arsenic, beryllium, and nickel; acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate); ammonia and cyanide; elemental carbon; radionuclides; volatile organic compounds (VOC); semivolatile compounds (SVOC) including polynuclear aromatic hydrocarbons (PAH), and polychlorinated dioxins and furans; and aldehydes.

  12. Risk management of energy efficiency projects in the industry - sample plant for injecting pulverized coal into the blast furnaces

    Directory of Open Access Journals (Sweden)

    Jovanović Filip P.

    2016-01-01

    Full Text Available This paper analyses the applicability of well-known risk management methodologies in energy efficiency projects in the industry. The possibilities of application of the selected risk management methodology are demonstrated within the project of the plants for injecting pulverized coal into blast furnaces nos. 1 and 2, implemented by the company US STEEL SERBIA d.o.o. in Smederevo. The aim of the project was to increase energy efficiency through the reduction of the quantity of coke, whose production requires large amounts of energy, reduction of harmful exhaust emission and increase productivity of blast furnaces through the reduction of production costs. The project was complex and had high costs, so that it was necessary to predict risk events and plan responses to identified risks at an early stage of implementation, in the course of the project design, in order to minimise losses and implement the project in accordance with the defined time and cost limitations. [Projekat Ministarstva nauke Republike Srbije, br. 179081: Researching contemporary tendencies of strategic management using specialized management disciplines in function of competitiveness of Serbian economy

  13. Flotation and flocculation chemistry of coal and oxidized coals

    Energy Technology Data Exchange (ETDEWEB)

    Somasundaran, P.

    1990-01-01

    The objective of this research project is to understand the fundamentals involved in the flotation and flocculation of coal and oxidized coals and elucidate mechanisms by which surface interactions between coal and various reagents enhance coal beneficiation. An understanding of the nature of the heterogeneity of coal surfaces arising from the intrinsic distribution of chemical moieties is fundamental to the elucidation of mechanism of coal surface modification and its role in interfacial processes such as flotation, flocculation and agglomeration. A new approach for determining the distribution in surface properties of coal particles was developed in this study and various techniques capable of providing such information were identified. Distributions in surface energy, contact angle and wettability were obtained using novel techniques such as centrifugal immersion and film flotation. Changes in these distributions upon oxidation and surface modifications were monitored and discussed. An approach to the modelling of coal surface site distributions based on thermodynamic information obtained from gas adsorption and immersion calorimetry is proposed. Polyacrylamide and dodecane was used to alter the coal surface. Methanol adsorption was also studied. 62 figs.

  14. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  15. Simultaneous determination of bromine and chlorine in coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis.

    Science.gov (United States)

    de Gois, Jefferson S; Pereira, Éderson R; Welz, Bernhard; Borges, Daniel L G

    2014-12-10

    A new method for the direct analysis of coal using electrothermal vaporization inductively coupled plasma mass spectrometry and direct solid sample analysis was developed, aiming at the determination of Br and Cl. The procedure does not require any significant sample pretreatment and allows simultaneous determination of both elements to be carried out, requiring small mass aliquots of sample (about 0.5 mg). All operating parameters, including carrier gas flow-rate and RF power, were optimized for maximum sensitivity. The use of modifiers/aerosol carriers (Pd, Pd+Al and Pd+Ca) was evaluated, and the mixture of Pd and Ca was chosen, allowing pyrolysis and vaporization temperatures of 700°C and 1900°C, respectively. Chlorine was accurately determined using calibration against solid standards, whereas Br could also be determined using calibration against aqueous standard solutions. The limits of quantification were 0.03 μg g(-1) for Br and 7 μg g(-1) for Cl, and no spectral interferences were observed.

  16. Digital-image Based Numerical Simulation on Failure Process of High-sulfur Coal

    Directory of Open Access Journals (Sweden)

    Ye Junjian

    2013-01-01

    Full Text Available Crushing of high-sulfur coal was important for physical desulfurization, but there were little research on crushing mechanism. This paper combined digital image processing technology and rock failure process analysis system RFPA2D to simulate the failure process of high-sulfur coal in Pu'an of Guizhou under uniaxial compression, and discussed the influence of horizontal restraint, existence and different geometric distribution of pyrite particle on mechanical performance and failure process of high-sulfur coal. The numerical results indicated that without horizontal restraint the compressive strength of high-sulfur coal was lower and monomial dissociation of pyrite particle was more sufficient than that with horizontal restraint. The compressive strength of coal containing pyrite particle was larger than that of pure coal and there was stress concentration in upper and lower pyrite particle during failure process. When pyrite particle distributed in the middle position of a coal sample, the compressive strength was higher than that of the other three positions, but monomial dissociation of pyrite particle was more sufficient than that of the other three positions, and this was beneficial to the following desulfurization operation. The study had certain reference value for crushing mechanism, crushing process design, selection of breaking equipment and energy saving and consumption reduction.

  17. Slurry sampling of sediments and coals for the determination of Sn by HG-GF AAS with retention in the graphite tube treated with Th or W as permanent modifiers

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Mariana Antunes; Ribeiro, Anderson Schwingel; Curtius, Adilson Jose [Departamento de Quimica da Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil)

    2004-10-01

    A method for the determination of Sn in slurry samples of sediment and coal by hydride generation graphite furnace electrothermal atomic absorption spectrometry (HG-GF AAS) is proposed. The slurries were prepared by mixing the ground sample (particle size {<=}50 {mu}m) with 2.0 mol L{sup -1} HCl for the sediment samples or with 2.0 mol L{sup -1} HCl+1.0% v/v HF in a saturated boric acid medium for the coal samples. The slurry was placed in an ultrasonic bath for 30 min, before and after standing for 24 h, with occasional manual stirring. The graphite tube was treated with 0.5 mg of Th or W as a permanent modifier. Sn determination was carried out by electrothermal atomic absorption spectrometry at the optimized retention temperatures of 450 and 300 C for Th and W treatment, respectively. With this coupling, kinetic interference in the formation of the hydrides is avoided, and excellent detection limits can be obtained by using peak height. For the chemical vapor generation device, an optimized volume of 2 mL of sample slurry and an optimized NaBH{sub 4} concentration of 5% m/v were employed. The vapor produced was transported and retained on the graphite tube surface, which was further heated for Sn atomization. The accuracy of the method was verified by analyzing five certified sediments and three coals. By using the external calibration against aqueous standard solutions, the results obtained were in agreement with the certified values only for the sediment samples. For the coal samples, an addition calibration curve, obtained for one certified coal, was necessary to achieve accurate results. The obtained limits of detection were 0.03 {mu}g g{sup -1} for sediment and 0.09 {mu}g g{sup -1} for coal with Th as permanent modifier. The relative standard deviations were lower than 15%, demonstrating an adequate precision for slurry analysis. Sediment and coal samples from Santa Catarina, Brazil, were also analyzed. (orig.)

  18. Proximate analysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Donahue, C.J.; Rais, E.A. [University of Michigan, Dearborn, MI (USA)

    2009-02-15

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter, fixed carbon, and ash content are determined for each sample and comparisons are made. Proximate analysis is performed on a coal sample from a local electric utility. From the weight percent sulfur found in the coal (determined by a separate procedure the Eschka method) and the ash content, students calculate the quantity of sulfur dioxide emissions and ash produced annually by a large coal-fired electric power plant.

  19. An integrative approach for determination of air pollution and its health effects in a coal fired power plant area by passive sampling

    Science.gov (United States)

    Küçükaçıl Artun, Gülzade; Polat, Narin; Yay, Ozan Devrim; Özden Üzmez, Özlem; Arı, Akif; Tuna Tuygun, Gizem; Elbir, Tolga; Altuğ, Hicran; Dumanoğlu, Yetkin; Döğeroğlu, Tuncay; Dawood, Abdallah; Odabasi, Mustafa; Gaga, Eftade O.

    2017-02-01

    Ambient concentrations of nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3) and volatile organic compounds (VOCs) were measured at several locations in Kütahya, a severely polluted city and also characterized as a thermal power plant city, in Turkey. Two-week extensive passive sampling campaigns were carried out in summer and winter at 108 sampling sites that were classified into three main groups as urban, rural and industrial. Spatial and seasonal distributions of the measured pollutants were evaluated employing Geographical Information System techniques. All pollutant concentrations showed an increasing pattern in winter, except for ozone. The concentrations of VOCs were substantially higher particularly at sampling sites with high traffic and population densities. Power plants were noted as important sources for VOCs since high concentrations were measured especially around the power plants. Highest NO2 levels were observed in the city center while there was a general decrease in the concentration levels far away from the city center. Considerably higher SO2 levels were observed in the settlements where local coal is used for residential heating. Seasonal variations in SO2 concentrations were quite low around the thermal power plants indicating their important effect on atmospheric levels. A basic population exposure assessment was conducted for two largest settlements of the province (Kütahya city center and Tavşanlı) by combining population density maps with pollutant distribution maps of NO2 and SO2. Exposure to NO2 and SO2 were assessed separately according to a classification made for different degrees of exposure. Cancer risks associated with inhalation of benzene were also estimated. Higher risk values were obtained from the sampling sites with higher population densities, especially in winter. Risk values estimated for 95 sampling sites were higher than EPA's acceptable risk value (1 × 10-6).

  20. Distribution of Heavy Hydrocarbon in Coal Seams and Its Use in Predicting Outburst of Coal

    Institute of Scientific and Technical Information of China (English)

    蒋承林; 李增华; 韩颖

    2003-01-01

    In order to verify whether any special gas component exists in outburst samples or not, coal samples from both outburst coal seams and non-outburst coal seams were collected. Some gases were extracted from the samples and analyzed qualitatively and quantitatively on chromatogram-mass spectrograph. The qualitative analysis show that there is no special gases in coal seams. And the quantitative analysis indicates that the heavy hydrocarbon content in coal samples from outburst coal seams is apparently higher than that from non-outburst district ones, which reflects the damage of geological tectonic movement to coal body in history. Therefore, the heavy hydrocarbon content of coal sample can be used as an index to predict coal outburst.

  1. National Coal Quality Inventory (NACQI)

    Energy Technology Data Exchange (ETDEWEB)

    Robert Finkelman

    2005-09-30

    The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

  2. Speciation of inorganic selenium in environmental water samples by inductively coupled plasma optical emission spectrometry after preconcentration by using a mesoporous zirconia coating on coal cinder.

    Science.gov (United States)

    Wei, Xiao-Shu; Wu, Yi-Wei; Han, Li-Juan; Guo, Jing; Sun, Hong-Li

    2014-08-01

    A simple, novel, and selective flow-injection solid-phase extraction with inductively coupled plasma optical emission spectrometry method was developed for the speciation of inorganic selenium in environmental water samples. A mesoporous zirconia film was simply introduced to coat coal cinder by means of the sol-gel technique, and the adsorptive performance of the coated material for Se(IV)/Se(VI) was investigated in different media. Both Se(IV) and Se(VI) can be retained quantitatively by the material in HCl/NaOH (pH 1.0-9.0) media, while only Se(IV) was adsorbed quantitatively in sodium acetate buffer (pH 3.5-6.0). Thus, the assay of Se(VI) is based on subtracting Se(IV) from total selenium by controlling different adsorptive media without employing any redox procedure. Under the optimum conditions, the detection limit of Se(IV) is 9.0 ng/L with an enrichment factor of 100, and the relative standard deviation is 3.6% (n = 9, C = 5.0 ng/mL). The developed method was successfully applied to the speciation of inorganic selenium in environmental water samples with satisfactory results. In order to further verify the accuracy of the developed method, it was applied to analysis of total selenium in GSBZ 50031-94 certified reference environmental water, and the determined values coincided with the certified values very well.

  3. Design of Quantitative Packaging Control System Based on PLC for Sample Coal%基于PLC的样品煤定量包装控制系统设计

    Institute of Scientific and Technical Information of China (English)

    孙晓; 周浩

    2011-01-01

    An automatic control system of sampling package for sample coal was designed based on controller(PLC) according to the realities of sample coal powdery materials.The system can realize automatic control of random sampling,auto-weighting,auto-packaging,and auto-sealing off functions.It has the characteristics of less waste,convenient control,zero point self-tuning and dynamics weighing measurement.It can be used in sampling weighing package of sample coal.Various performance indicators were proved to stable and reliable by field test.%针对样品煤粉末状的特点,提出了一种基于PLC控制器的样品煤自动采样包装控制系统。实现了随机采样、自动称重、自动包装以及自动封口等工作过程的自动控制,具有浪费少、控制方便、自动零位整定和动态称量计量等功能,可用于各种粉末状、颗粒状等样品煤采样称重包装。系统在现场试验中的各项性能指标稳定、可靠。

  4. Geochemistry of vanadium (V) in Chinese coals.

    Science.gov (United States)

    Liu, Yuan; Liu, Guijian; Qu, Qinyuan; Qi, Cuicui; Sun, Ruoyu; Liu, Houqi

    2016-10-11

    Vanadium in coals may have potential environmental and economic impacts. However, comprehensive knowledge of the geochemistry of V in coals is lacking. In this study, abundances, distribution and modes of occurrence of V are reviewed by compiling >2900 reported Chinese coal samples. With coal reserves in individual provinces as the weighting factors, V in Chinese coals is estimated to have an average abundance of 35.81 μg/g. Large variation of V concentration is observed in Chinese coals of different regions, coal-forming periods, and maturation ranks. According to the concentration coefficient of V in coals from individual provinces, three regions are divided across Chinese coal deposits. Vanadium in Chinese coals is probably influenced by sediment source and sedimentary environment, supplemented by late-stage hydrothermal fluids. Specifically, hydrothermal fluids have relatively more significant effect on the enrichment of V in local coal seams. Vanadium in coals is commonly associated with aluminosilicate minerals and organic matter, and the modes of V occurrence in coal depend on coal-forming environment and coal rank. The Chinese V emission inventory during coal combustion is estimated to be 4906 mt in 2014, accounting for 50.55 % of global emission. Vanadium emissions by electric power plants are the largest contributor.

  5. Crossing point temperature of coal

    Institute of Scientific and Technical Information of China (English)

    Qi Xuyao; Deming Wang; James A. Milke; Xiaoxing Zhong

    2011-01-01

    A further understanding of the self-heating of coal was obtained by investigating the crossing point temperature (CPT) of different ranks of coal. The tests were carried out using a self-designed experimental system for coal self-heating. 50 g (±0.01 g) of coal particles ranging from 0.18 mm to 0.38 mm in size were put into a pure copper reaction vessel attached to the center of a temperature programmed enclosure. The temperature program increased the temperature at a rate of 0.8 ℃/min. Dry air was permitted to flow into the coal reaction vessel at different rates. The surrounding temperature and the coal temperature were monitored by a temperature logger. The results indicate that CPT is affected by coal rank, moisture, sulfur,and the experimental conditions. Higher ranked coals show higher CPT values. A high moisture content causes a delay phenomenon during the self-heating of the coal. Drying at 40 ℃ decreases the effects of moisture. The reactivity of sulfur components in the coal is low under dry and low-temperature conditions.These components form a film that covers the coal surface and slightly inhibits the self-heating of the coal.The flow rate of dry air, and the heating rate of the surroundings, also affect the self-heating of the coal. The most appropriate experimental conditions for coal samples of a given weight and particle size were determined through contrastive analysis. Based on this analysis we propose that CPTs be determined under the same, or nearly the same conditions, for evaluation of the spontaneous combustion of coal.

  6. Laboratory-scale evaluation of various sampling and analytical methods for determining mercury emissions from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Agbede, R.O.; Bochan, A.J.; Clements, J.L. [Advanced Technology Systems, Inc., Monroeville, PA (United States)] [and others

    1995-11-01

    Comparative bench-scale mercury sampling method tests were performed at the Advanced Technology Systems, Inc. (ATS) laboratories for EPA Method 101A, EPA Method 29 and the Ontario Hydro Method. Both blank and impinger spiking experiments were performed. The experimental results show that the ambient level of mercury in the ATS laboratory is at or below the detection limit (10 ng Hg) as measured by a cold vapor atomic absorption spectrophotometer (CVAAS) which was used to analyze the mercury samples. From the mercury spike studies, the following observations and findings were made. (a) The recovery of mercury spikes using EPA Method 101A was 104%. (b) The Ontario Hydro Method retains about 90% of mercury spikes in the first absorbing solution but has a total spike retention of 106%. As a result, the test data shows possible migration of spiked mercury from the first impinger solution (KCI) to the permanganate impingers. (c) For the EPA Method 29 solutions, when only the peroxide impingers were spiked, mercury recoveries were 65.6% for the peroxide impingers, 0.1% for the knockout impinger and 32.8% for the permanganate impingers with an average total mercury recovery of 98.4%. At press time, data was still being obtained for both the peroxide and permanganate impinger solution spikes. This and other data will be available at the presentation.

  7. Chemical analyses of coal, coal-associated rocks and coal combustion products collected for the National Coal Quality Inventory

    Science.gov (United States)

    Hatch, Joseph R.; Bullock, John H.; Finkelman, Robert B.

    2006-01-01

    In 1999, the USGS initiated the National Coal Quality Inventory (NaCQI) project to address a need for quality information on coals that will be mined during the next 20-30 years. At the time this project was initiated, the publicly available USGS coal quality data was based on samples primarily collected and analyzed between 1973 and 1985. The primary objective of NaCQI was to create a database containing comprehensive, accurate and accessible chemical information on the quality of mined and prepared United States coals and their combustion byproducts. This objective was to be accomplished through maintaining the existing publicly available coal quality database, expanding the database through the acquisition of new samples from priority areas, and analysis of the samples using updated coal analytical chemistry procedures. Priorities for sampling include those areas where future sources of compliance coal are federally owned. This project was a cooperative effort between the U.S. Geological Survey (USGS), State geological surveys, universities, coal burning utilities, and the coal mining industry. Funding support came from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE).

  8. Biogenic Strain of Silver and Selenium Nanoparticles by Pseudomonas fluorescens and Cladosporium sp. JAPSK3 Isolated from Coal Mine Samples and Their Antimicrobial Activity

    Science.gov (United States)

    Singh, Nidhi; Saha, Prasenjit; Rajkumar, Karthik; Abraham, Jayanthi

    2014-08-01

    Selenium and silver have unique properties and great potential in the field of physics, chemistry and biology. The bacterial strain Pseudomonas fluorescens was isolated by using Kings'B media and Cladosporium sp. was isolated by using potato dextrose agar for soil sample collected from Andhra Pradesh coal field of Singareni. Rapid formation of stable silver and selenium nanoparticles (AgNPs; SeNPs) were observed on exposure of the microbial culture with solution of silver nitrate and sodium selenite. The nanoparticles were characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). Further, the biologically synthesized nanoparticles were found to have efficient antimicrobial activity against pathogenic bacteria, thus implying significance of the present study in production of biomedical products. AgNPs synthesized by P. fluorescens showed more antimicrobial activity than Cladosporium sp. As the AgNPs are much smaller in size, they showed effective antimicrobial activity when compared to that of SeNPs which showed less effective antimicrobial activity in both P. fluorescens and Cladosporium sp. The microbes are capable of reducing both AgNPs and SeNPs. The biological synthesis of nanoparticles is useful when compared with other physical and chemical methods as they are eco-friendly.

  9. Formation and retention of methane in coal. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hucka, V.J.; Bodily, D.M.; Huang, H.

    1992-05-15

    The formation and retention of methane in coalbeds was studied for ten Utah coal samples, one Colorado coal sample and eight coal samples from the Argonne Premium Coal Sample Bank.Methane gas content of the Utah and Colorado coals varied from zero to 9 cm{sup 3}/g. The Utah coals were all high volatile bituminous coals. The Colorado coal was a gassy medium volatile bituminous coal. The Argonne coals cover a range or rank from lignite to low volatile bituminous coal and were used to determine the effect of rank in laboratory studies. The methane content of six selected Utah coal seams and the Colorado coal seam was measured in situ using a special sample collection device and a bubble desorbometer. Coal samples were collected at each measurement site for laboratory analysis. The cleat and joint system was evaluated for the coal and surrounding rocks and geological conditions were noted. Permeability measurements were performed on selected samples and all samples were analyzed for proximate and ultimate analysis, petrographic analysis, {sup 13}C NMR dipolar-dephasing spectroscopy, and density analysis. The observed methane adsorption behavior was correlated with the chemical structure and physical properties of the coals.

  10. Experiment and analysis of coal sample destruction precursor based on load-unload response ratio%基于加卸载响应比的煤样破坏前兆实验分析

    Institute of Scientific and Technical Information of China (English)

    孙珍玉; 高芸

    2013-01-01

    基于加卸载响应比理论,实验研究了煤样在加卸载过程中声发射与电磁辐射的响应比特征,得出如下结论:①在单轴加卸载过程中,声发射与电磁辐射的加卸载响应比能比较好地反映煤样的稳定状态,煤样状态稳定时加卸载响应比较低,反之升高.②加卸载响应比增加到峰值之后,煤样开始遵循自身的演化规律,在发生宏观破坏之前加卸载响应比有明显的“急剧增长-迅速回落”过程,可以通过这一特征来预测煤样的宏观破坏.③由于煤样的不均匀性,加卸载响应比峰值时间与发生宏观破坏时间不一致,在应用加卸载响应比方法进行灾变预测时,应充分考虑煤岩不均匀程度,根据具体情况确定特征时间的尺度.实验结果表明,通过声发射和电磁辐射加卸载响应比预测煤岩动力灾害具有一定的可行性.%The paper researched and analyzed response ratio characteristics of acoustic emission and electromagnetic radiation of coal sample in load-unload by experiment based on load-unload response ratio theory,and got conclusions:① Load-unload response ratio of acoustic emission and electromagnetic radiation can well reflect stable state of coal samples in process of homotaxial load-unload,and load-unload response ratio is lower when coal sample status is stable,otherwise is higher.② The coal samples will begin to follow itself evolution rule after the load-unload response ratio increased to peak,and the loadunload response ratio has process "sharp growth-quickly down" before the coal samples break,which can be used to predict macroscopic damage of the coal sample.③Peak time and macroscopic damage time of the load-unload response ratio is inconsistent because of inhomogeneity of the coal sample,so when method of load-unload response ratio is used to predict disaster,uneven degree of coal and rock should be considered to determine characteristic time.The experiment results show that

  11. Experimental Study on Response Features of Acoustic Emission to Coal Samples During Loading Process%煤样加载过程声发射响应特征试验研究

    Institute of Scientific and Technical Information of China (English)

    贾炳; 倪小明; 苏承东

    2014-01-01

    In order to research the response rule of acoustic emission about coal and rock with different fissures and heterogeneity in the loading process,original permeability and acoustic emission parameters in the loading process about the coal samples with different fissures and heterogeneity in Sihe Coal Mine were tested by the RMT-150B rock mechanics test system and acoustic emission system. The results showed that acoustic emission energy increased quickly to maximum in the late stage of plastic deformation or in the early stage of elastic deformation when the fractures of coal samples were uniform,then the energy decreased slightly and maintained at a level. Acoustic emission energy was high at the beginning of the elastic deformation,then the energy increased to the maximum,finally the energy maintained at a certain value when the fractures of coal samples were non-uniform and developed.The experimental results had a good prediction on the deformation of coal and rock in the process of coal mining.%为了探究不同裂隙发育程度、分布非均匀程度的煤样在加载过程中声发射响应规律,利用RMT-150B岩石力学伺服试验系统和声发射监测系统对寺河矿不同裂隙发育程度、分布非均匀程度的煤样进行原始渗透率和加载过程中声发射参数测试。结果表明:裂隙分布较均匀的煤样加载时,声发射能量在塑性变形阶段前期或弹性变形阶段后期快速增至最大值,后略有减小并维持在一定水平;裂隙分布非均匀性强且裂隙发育的煤样加载时,声发射能量在弹性变形初期就达较高值,后逐渐增加至最大值,随后稳定在一定值。试验结果对采煤过程中煤岩变形规律具有较好的预测作用。

  12. Clean Coal Initiatives in India

    Directory of Open Access Journals (Sweden)

    Sribas Goswami

    2014-08-01

    Full Text Available Availability of, and access to, coal is a crucial element of modern economies and it helps pave the way for human development. Accordingly, the thermal power sector and steel industries have been given a high priority in the national planning processes in India and a concerted focus on enhancing these sectors have resulted in significant gain in generation and availability of electricity and steel in the years since independence. To meet the need of huge demand of power coal is excavated. The process of excavation to the use of coal is potential enough to degrade the environment. Coal Mining is a development activity, which is bound to damage the natural ecosystem by all its activities directly and ancillary, starting from land acquisition to coal beneficiation and use of the products. Huge areas in the Raniganj and Jharia coal field in India have become derelict due to abandoned and active opencast and underground mines. The study is pursued to illustrate the facts which show the urgent need to clean coal mining in India.

  13. Gaseous phase coal surface modification

    Energy Technology Data Exchange (ETDEWEB)

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  14. Relationship Between Coal Powder and Its Combustibility

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Coal's volatile component,ash and fixed carbon content have different functions in different stages of a combustion process, but the traditional coal classification can precisely show its combustion property.In this experiment coal's evaluation indexes (ignition index Di),(burn off index Df) were used to qualitatively show the ignition property and combustion ending property of coal samples.Meanwhile,considering actual heating circumstances in calciner (in cement plants),this thesis established the relationship among the ignition index,burn off index and coal's industrial analysis value, which makes it possible for the user to predict the quality of coal before using it and is very valuable in practice.

  15. Examination of the capability of the laser-induced breakdown spectroscopy (LIBS) technique as the emerging laser-based analytical tool for analyzing trace elements in coal

    Science.gov (United States)

    Idris, N.; Ramli, M.; Mahidin, Hedwig, R.; Lie, Z. S.; Kurniawan, K. H.

    2014-09-01

    Due to its superior advantageous over the conventional analytical tools, laser-induced breakdown spectroscopy (LIBS) technique nowadays is becoming an emerging analytical tools and it is expected to be new future super star of analytical tool. This technique is based on the use of optical emission from the laser-induced plasma for analyzing spectrochemically the constituent and content of the sampled object. The capability of this technique is examined on analysis of trace elements in coal sample. Coal is one difficult sample to analyze due to its complex chemical composition and physical properties. It is inherent that coal contains trace element including heavy metal, thus mining, beneficiation and utilization poses hazard to environment and to human beings. The LIBS apparatus used was composed by a laser system (Nd-YAG: Quanta Ray; LAB SERIES; 1,064 nm; 500 mJ; 8 ns) and optical detector (McPherson model 2061; 1,000 mm focal length; f/8.6 Czerny-Turner) equipped with Andor I*Star intensified CCD 1024×256 pixels. The emitted laser was focused onto coal sample with a focusing lens of +250 mm. The plasma emission was collected by a fiber optics and sent to the the spectrograph. The coal samples were taken from Province of Aceh. As the results, several trace elements including heavy metal (As, Mn, Pb) can surely be observed, implying the eventuality of LIBS technique to analysis the presence of trace element in coal.

  16. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>20141574 Chen Hao(Exploration and Development Research Institute,Daqing Oilfield Company,Daqing 163712,China)High-Resolution Sequences and Coal Accumulating Laws in Nantun Formation of Huhe Lake Sag(Petroleum Geology&Oilfield Development in Daqing,ISSN1000-3754,CN23-1286/TQ,32(4),2013,p.15-19,5 illus.,15 refs.)Key words:coal accumulation regularity,coal

  17. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091159 Gao Yan(No.3 Prospecting Team of Anhui Bureau of Coal Geology,Suzhou 234000,China) Effect of Depositional Environment of Coal-Bearing Stratum on Major Coal Seams in Suntan Coalmine,Anhui Province(Geology of Anhui,ISSN 1005- 6157,CN34-1111/P,18(2),2008,p.114 -117,5 illus.,1 ref.,with English abstract)

  18. Germanium content in Polish hard coals

    Directory of Open Access Journals (Sweden)

    Makowska Dorota

    2016-01-01

    Full Text Available Due to the policy of the European Union, it is necessary to search for new sources of scarce raw materials. One of these materials is germanium, listed as a critical element. This semi-metal is widely used in the electronics industry, for example in the production of semiconductors, fibre optics and solar cells. Coal and fly ash from its combustion and gasification for a long time have been considered as a potential source of many critical elements, particularly germanium. The paper presents the results of germanium content determination in the Polish hard coal. 23 coal samples of various coal ranks were analysed. The samples were collected from 15 mines of the Upper Silesian Coal Basin and from one mine of the Lublin Coal Basin. The determination of germanium content was performed with the use of Atomic Absorption Spectrometry with Electrothermal Atomization (GFAAS. The investigation showed that germanium content in the analysed samples was at least twice lower than the average content of this element in the hard coals analysed so far and was in the range of 0.08 ÷ 1.28 mg/kg. Moreover, the content of Ge in the ashes from the studied coals does not exceed 15 mg/kg, which is lower than the average value of Ge content in the coal ashes. The highest content of this element characterizes coals of the Lublin Coal Basin and young coals type 31 from the Vistula region. The results indicate a low utility of the analysed coal ashes as a source of the recovery of germanium. On the basis of the analyses, the lack of the relationship between the content of the element and the ash content in the tested coals was noted. For coals of the Upper Silesian Coal Basin, the relationship between the content of germanium in the ashes and the depth of the seam was observed.

  19. Is vitamin C supplementation beneficial?

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Poulsen, Henrik Enghusen

    2010-01-01

    of the benefit:harm ratio of antioxidant supplements. We have examined the literature on vitamin C intervention with the intention of drawing a conclusion on its possible beneficial or deleterious effect on health and the result is discouraging. One of several important issues is that vitamin C uptake is tightly...... controlled, resulting in a wide-ranging bioavailability depending on the current vitamin C status. Lack of proper selection criteria dominates the currently available literature. Thus, while supplementation with vitamin C is likely to be without effect for the majority of the Western population due...... to saturation through their normal diet, there could be a large subpopulation with a potential health problem that remains uninvestigated. The present review discusses the relevance of the available literature on vitamin C supplementation and proposes guidelines for future randomised intervention trials....

  20. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>20131668 Chang Huizhen(Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process,CUMT,Ministry of Edu-cation,School of Resource and Earth Science,China University of Mining and Technology,Xuzhou 221008,China);Qin Yong Differences in of Pore Structure of Coals and Their Impact on the Permeability of Coals from the

  1. 近红外光谱灰分预测模型中煤炭样本的优化方法%Optimization Method of Coal Sample in Ash Prediction Model Based on Near Infrared Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    赵凯; 雷萌

    2012-01-01

    According to the unique problem of sample data in ash prediction model based on near infrared spectroscopy, an optimization method was proposed. Principal component analysis method is used for eliminating abnormal samples in coal sample set and extracting feature information of coal spectrum. A double-level clustering method is presented which integrates self-organize map neural network and fuzzy C-means clustering algorithm. The method classifies original sample set into 5 subsets and filtered dispute points. At last, prediction sub-models of coal ash are built for each subset based on GA-BP neural network to analyze testing samples of each subsets separately. The experimental results showed that the optimization method based on principal component analysis and the double-level clustering method can check and remove abnormal and suspicious samples exactly, compress sample data effectively, and improve learning precision and calculating speed of sub-models dramatically. The optimization method was a new effective method for development and application of near infrared spectroscopy in coal quality analysis.%针对近红外光谱灰分预测模型中样本数据特有的问题,首先采用主成分分析方法剔除建模样本集中的异常样本,并提取出煤炭光谱的特征信息;然后提出一种集成自组织映射神经网络和模糊C均值聚类算法的双层聚类方法,将样本集分为5个子集,并滤除其中的争议点;最后搭建基于GA-BP神经网络的煤炭灰分预测子模型,单独分析各子集的测试集样本.实验结果表明,基于主成分分析和双层聚类方法的煤炭样本优化方法不仅能准确排除异常样本和可疑样本,还能有效地压缩样本数据,使得各子模型的学习精度和运算速度得到显著提高.该方法为近红外光谱煤质分析技术的发展应用提供了一种有效可行的新途径.

  2. Reactivity of brazilian coal, charcoal, imported coal and blends aiming to their injection into blast furnaces

    Directory of Open Access Journals (Sweden)

    Janaína Gonçalves Maria da Silva Machado

    2010-09-01

    Full Text Available For about 10 years the steel industry in Brazil has used pulverized coal injection (PCI technology in the blast furnaces based on imported coals. In order to decrease the dependence on imported coals, Brazilian coal, which has limited use due to high ash content, was suggested to be mixed with imported coal and charcoal. The aim was to examine the reactivity of the samples. The charcoal use in the steel industry contributes to the CO2 emission reduction, since it represents a renewable source of energy. The reactivity of the coals, charcoal and mixtures was evaluated through simultaneous thermal analyses. Results of this study are presented and discussed.

  3. Major elements distribution during liquefaction of beneficated coal fractions from hydrocyclone and flotation

    Energy Technology Data Exchange (ETDEWEB)

    Barraza, J. [Universitaria Melendez (Colombia). Dept. de Procesos Quimicos; Cloke, M.; Belghazi, A. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering

    1997-12-31

    Beneficiated coal fractions obtained by hydrocyclone and column flotation separation were liquefied in order to determine their effect on the reduction of the major element content in the coal extract liquid prior to hydroprocessing. Results showed that some major elements, mainly Ca, Mn and Ti, were reduced using these beneficiated coal fractions. In general, all the elements exhibit higher reduction using overflow from the cyclone separation compared to the concentrate from the column flotation. (orig.)

  4. Proximate Analysis of Coal

    Science.gov (United States)

    Donahue, Craig J.; Rais, Elizabeth A.

    2009-01-01

    This lab experiment illustrates the use of thermogravimetric analysis (TGA) to perform proximate analysis on a series of coal samples of different rank. Peat and coke are also examined. A total of four exercises are described. These are dry exercises as students interpret previously recorded scans. The weight percent moisture, volatile matter,…

  5. Effective removal of sulfur components from Brazilian power-coals by ultrasonication (40kHz) in presence of H2O2.

    Science.gov (United States)

    Saikia, Binoy K; Dalmora, Adilson C; Choudhury, Rahul; Das, Tonkeswar; Taffarel, Silvio R; Silva, Luis F O

    2016-09-01

    The present investigation reports a preliminary attempt of using ultrasonic energy (40kHz) to clean some low rank high sulfur Brazilian power-coal samples in presence of H2O2 solution. All types of sulfur components (i.e. pyritic, sulfate and organic) could be removed from the coal samples by this process. The raw and ultrasonicated coal samples were characterized by chemical analysis, Fourier Transformation Infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), focused ion beam (FIB), high-resolution transmission electron microscope (HR-TEM) with selected area electron diffraction (SAED) and/or microbeam diffraction (MBD), scanning transmission electron microscopy (STEM), energy-dispersive X-ray spectrometer (EDS), and Thermogravimetry (TG-DTG) techniques to evaluate the clean-coal quality. The FT-IR spectroscopic analysis demonstrated the formation of oxidized sulfur species (SO and -SO2) and their subsequent removals after ultrasonication. The XRD profiles supported the presence of mineral matters in the coals. The TG-DTG profiles of the beneficiated coals revealed their improved quality for using in thermal plants with better combustion efficiency.

  6. Coal surface control for advanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Fuerstenau, D.W.; Sastry, K.V.S.; Hanson, J.S.; Harris, G.; Sotillo, F.; Diao, J. (California Univ., Berkeley, CA (USA)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (USA)); Hu, Weibai; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (USA)); Choudhry, V.; Sehgal, R.; Ghosh, A. (Praxis Engineers, Inc., Milpitas, CA (USA))

    1990-08-15

    The primary objective of this research project is to develop advanced flotation methods for coal cleaning in order to achieve near total pyritic-sulfur removal at 90% Btu recovery, using coal samples procured from six major US coal seams. Concomitantly, the ash content of these coals is to be reduced to 6% or less. Work this quarter concentrated on the following: washability studies, which included particle size distribution of the washability samples, and chemical analysis of washability test samples; characterization studies of induction time measurements, correlation between yield, combustible-material recovery (CMR), and heating-value recovery (HVR), and QA/QC for standard flotation tests and coal analyses; surface modification and control including testing of surface-modifying reagents, restoration of hydrophobicity to lab-oxidized coals, pH effects on coal flotation, and depression of pyritic sulfur in which pyrite depression with calcium cyanide and pyrite depression with xanthated reagents was investigated; flotation optimization and circuitry included staged reagent addition, cleaning and scavenging, and scavenging and middling recycling. Weathering studies are also discussed. 19 figs., 28 tabs.

  7. Notes on the origin of copromacrinite based on nitrogen functionalities and δ13C and δ15N determined on samples from the Peach Orchard coal bed, southern Magoffin County, Kentucky

    Science.gov (United States)

    Valentim, Bruno; Algarra, Manuel; Guedes, Alexandra; Ruppert, Leslie F.; Hower, James C.

    2016-01-01

    This paper represents the first attempt to show, by means other than just petrographic ones, that one type of macrinite, herein designated copromacrinite, may result from macrofauna feces. For that purpose a combination of coal petrography, X-ray photoelectron spectroscopy, and elemental-analysis continuous-flow isotope ratio mass spectrometry methods were used to determine nitrogen functionalities and δ13C andδ15N compositions in 1) vitrinite-rich, 2) fusinite + semifusinite-rich, and 3) macrinite-rich (with a possible coprolitic origin) samples of the high volatile A bituminous Peach Orchard coal (Bolsovian; Middle Pennsylvanian) from Magoffin County, Kentucky. There were no significant differences between pyridinic-N and quaternary-N abundance in the three samples, however, pyrrolic-N was higher (~ 54%) in the macrinite-rich sample than in the other two samples (~ 38%). The data suggest that pyridinic-N and quaternary-N are independent of maceral group composition and that pyrrolic-N is dependent on maceral composition (fusinite + semifusinite versus macrinite). δ13C values obtained for bulk and demineralized coal of the vitrinite- and fusinite + semifusinite-rich samples are similar with δ13C values of − 24.80 ± 0.01‰ VPDB and − 24.61 ± 0.09‰ VPDB for bulk samples and − 24.81 ± 0.07‰ VPDB and − 24.52 ± 0.04‰ VPDB for demineralized samples. These values are within the expected range for vitrinite-rich samples and the slightly higher δ13C value of the fusinite + semifusinite-rich sample is expected as δ13C values for inertinite are higher than for vitrinite. However, there was a significant shift to a lower δ13C value (− 26.80 ± 0.01‰ VPDB for the bulk sample value) for the macrinite-rich sample. Because the samples are basically isorank, and δ13C (and δ15N) shifts do not occur during maturation until anthracite rank, the difference may be related to the presence or composition of the macrinite

  8. Characterization of Malaysian coals for carbon dioxide sequestration

    Science.gov (United States)

    Abunowara, M.; Bustam, M. A.; Sufian, S.; Eldemerdash, U.

    2016-06-01

    Coal samples from Mukah-Balingian and Merit-Pila coal mines were characterized with ultimate, approximate, petrographic analysis, FT-IR spectra patterns, FESEM images and BET measurements to obtain information on the chemical composition and chemical structure in the samples. Two coal samples were obtained from Merit-Pila coal mine namely sample1 (S1) and sample2 (S2). The other two coal samples were obtained from Mukah-Balingian coal mine namely sample3 (S3) and sample4 (S4), Sarawak, Malaysia. The results of ultimate analysis show that coal S1 has the highest carbon percentage by 54.47%, the highest hydrogen percentage by 10.56% and the lowest sulfur percentage by 0.19% and the coal S4 has the highest moisture content by 31.5%. The coal S1 has the highest fixed carbon percentage by 42.6%. The coal S4 has BET surface area by 2.39 m2/g and Langmuir surface area by 3.0684 m2/g respectively. Fourier-Transform Infrared (FT-IR) spectroscopy analysis of all coal samples shows a presence of oxygen containing functional groups which considered are as active sites on coal surface. The oxygen functional groups are mainly carboxyl (-COOH), hydroxyl (-OH), alkyl (-CH, -CH2, -CH3), aliphatic (C-O-C stretching associated with -OH), amino (-NH stretching vibrations), (-NH stretching vibrations), aromatic (C=C), vinylic (C=C) and clay minerals. In all FE-SEM images of coal samples matrix, it can be seen that there are luminous and as non luminous features which refer to the existence of various minerals types distributed in the coal organic matrix. The bright luminosity is due to the presence of sodium, potassium or aluminium. According to petrographic analysis, all coal sample samples are range in vitrinite reflectance from 0.38% to 56% (VRr) are sub-bituminous coals.

  9. Advanced development of fine coal desulfurization and recovery technology. Quarterly technical progress report, October 1, 1976--December 31, 1976. [53 references

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, R.W.; Wheelock, T.D.

    1977-02-01

    The improvement and technical development of promising methods for desulfurizing and recovering fine coal underway includes froth flotation, selective oil agglomeration, pelletization, and a chemical desulfurization process which involves leaching fine coal with a hot dilute solution of sodium carbonate containing dissolved oxygen under pressure. A preliminary assessment of the state of the art and review of the technical literature has been made. Equipment and apparatus have been assembled for small-scale laboratory experiments in froth flotation, oil agglomeration and chemical desulfurization. Preliminary froth flotation tests have been carried out on an Iowa coal to establish baseline data. Quite unexpectedly these tests indicated that aluminum nitrate may be an activator for coal because it served to increase the recovery of coal. Several potential flotation depressants for pyrite have been screened by measurement at the zeta potential and floatability of pyrite or coal in aqueous suspensions containing the potential depressants. The following reagents show some promise as pyrite depressants: ferric chloride, sodium cyanide, ammonium thiocyanate, and the disodium salt of ethylenediaminetetraacetic acid. Preliminary plans have been prepared for a continuous flow bench-scale system to demonstrate the process. This system will include equipment for grinding and pretreating the coal as well as equipment for demonstrating froth flotation, selective oil agglomeration and pelletization. An investigation of coal microstructure as it relates to coal beneficiation methods has also been initiated. The distribution of various forms of pyrite by size and crystal structure has been determined for two cannel samples of coal through application of scanning electron microscope techniques.

  10. 一种基于机器人自动化煤质分析系统的煤样微量添加与称量模块的特点与应用%Characteristics and application of trace add coal sample and the weighing module based on the robot automation coal quality analysis system

    Institute of Scientific and Technical Information of China (English)

    刘振中

    2015-01-01

    Articleabstract:This paper mainly introduces characteristics and main function of trace add coal sample and the weighing module based on the robot automation coal quality analysis system, through the elaboration of robotic automation coal quality analysis system development background, and clear the importance of the research and development of the module and its application prospect, and puts forward some technical problems need to be further solved, hope the perfected constantly, serve industry rapid development.%本文主要介绍了一种基于机器人自动化煤质分析系统的煤样微量添加与称量模块的技术特点与主要功能,通过阐述机器人自动化煤质分析系统的研发背景来说明该模块研发的重要性及其应用前景,同时提出了需要进一步解决的一些技术问题,希望其不断得以完善,为工业快速发展服务。

  11. Influence of Coal Particle Size on Coal Adsorption and Desorption Characteristics

    Science.gov (United States)

    Zhang, Lei; Aziz, Naj; Ren, Ting; Nemcik, Jan; Tu, Shihao

    2014-10-01

    Accurate testing coal isotherm can play a significant role in the areas of coal seam gas drainage, outburst control, CO2 geo-sequestration, coalbed methane (CBM) and enhanced coalbed methane recovery (ECBM) etc. The effect of particle size on the CO2 and CH4 sorption capacity of bituminous coal from Illawarra, Australia was investigated at 35°C and at pressure up to 4 MPa. A unique indirect gravimetric apparatus was used to measure the gas adsorption and desorption isotherms of coal of different particle sizes ranging from around 150 urn to 16 mm. Langmuir model was used to analysis the experimental results of all gases. Coal particle size was found to have an apparent effect on the coal ash content and helium density results. Coal with larger particle size had higher ash content and higher helium density. The sorption isotherm was found to be highly sensitive with helium density of coal which was determined in the procedure of testing the void volume of sample cell. Hence, coal particle size had a significant influence on the coal sorption characteristics including sorption capacity and desorption hysteresis for CO2 and CH4, especially calculated with dry basis of coal. In this study, the 150-212 um (150 um) coal samples achieved higher sorption capacity and followed by 2.36-3.35 mm (2.4 mm), 8-9.5 mm (8 mm) and 16-19 mm (16 mm) particle size samples. However, the differences between different coal particles were getting smaller when the sorption isotherms are calculated with dry ash free basis. Test with 150 um coal samples were also found to have relatively smaller desorption hysteresis compared with the other larger particle size samples. The different results including adsorption/desorption isotherm, Langmuir parameters and coal hysteresis were all analysed with the CO2 and CH4 gases.

  12. 基于PGNAA技术的煤炭成分在线检测中样品重量的影响及修正%Influence of Sample Weight in Coal Composition Online Analysis by PGNAA

    Institute of Scientific and Technical Information of China (English)

    贾文宝; 黑大千; 徐爱国; 陈晓文; 李安民

    2011-01-01

    The influence of the sample weight (or thickness) was investigated on the coal online measuring system (MJA) based on prompt gamma neutron activation analysis (PGNAA) technology. A series of the coal samples with different weights were tested and the experimental spectra were analyzed. An amended method was proposed to correct for the influence of the sample weight. Experimental results indicate that this method is feasible, and the measurement results can satisfy the request.%利用瞬发γ中子活化分析(PGNAA)技术的煤炭成分在线检测系统(MJA),对不同的煤炭样品进行实验测试,通过对不同重量煤样的实验谱进行分析研究,提出了容重补偿模型,利用修正函数校正了样品重量变化对测量结果的影响.经实验验证,模型切实可行,能满足生产现场要求.

  13. Coal mining: coal in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Arguelles Martinez, A.; Lugue Cabal, V.

    1984-01-01

    The Survey of Spanish Coal Resources published by the Centre for Energy Studies in 1979 is without doubt the most serious and full study on this subject. The coal boom of the last few years and the important role it will play in the future, as well as the wealth of new information which has come to light in the research carried out in Spanish coalfields by both the public and private sector, prompted the General Mine Management of the Ministry of Industry and Energy to commission IGME to review and update the previous Survey of Spanish Coal Resources of November 1981.

  14. Characterization of Some Nigerian Coals for Power Generation

    Directory of Open Access Journals (Sweden)

    M. Chukwu

    2016-01-01

    Full Text Available Five coal samples from Odagbo (Kogi State, Owukpa (Benue State, Ezimo (Enugu State, Amansiodo (Enugu State, and Inyi (Enugu State of Nigerian coal deposits were subjected to proximate analysis, ultimate analysis, calorific value determination, and petrographic and thermogravimetric analysis to determine their suitability for power generation. Based on results of tests carried out, Amansiodo coal is a bituminous, low sulphur, and medium ash coal, while Owukpa coal is a subbituminous A, low sulphur, low ash coal rich in huminites, Odagbo coal is a subbituminous B, medium sulphur, low ash coal rich in huminites, Ezimo coal is a subbituminous C, low sulphur, high ash coal, and Inyi coal is a subbituminous C, low sulphur, high ash coal. Between Odagbo and Owukpa subbituminous coals, Owukpa has a lower ignition temperature (283.63°C due to its higher volatile matter content (39.1%. However, Ezimo subbituminous coal, which has a lower volatile matter (31.1%, unexpectedly has the same ignition temperature as Owukpa (283.63°C due to its higher liptinite content (7.2% when compared with that of Owukpa (2.9%. The ease of combustion of the coal samples in decreasing order is Odagbo < Owukpa < Inyi < Ezimo < Amansiodo.

  15. Analysis of the dialectical relation between top coal caving and coal-gas outburst

    Institute of Scientific and Technical Information of China (English)

    MENG Xian-zheng; XIA Yong-jun; TANG Bing; ZHANG Yong-jiang

    2009-01-01

    According to the different engineering mechanical states of top coal caving and normal stoping of gaseous loose thick coal seams, the dialectical relation between this caving method and dynamic disasters was analyzed by simulating the change of stress states in the process of top coal initial caving with different mining and caving ratios based on the ANSYS10.0. The variation of elastic energy and methane expansion energy during first top coal caving was analyzed by first weighting and periodic weighting and combining with coal stress and deformation distribution of top coal normal stoping as well as positive and negative examples in top coal caving of outburst coal seam. The research shows that the outburst risk increases along with the increase of the caving ratio in the initial mining stage. In the period of normal stoping, when the mining and caving ratio is smaller than 1:3 and hard and massive overlying strata do not exist (periodic weighting is not obvious), it is beneficial to control ground stress leading type outburst. Thus, it is unreasonable to prohibit top coal caving in dangerous and outburst prone areas.

  16. Effects of coal rank on the chemical composition and toxicological activity of coal liquefaction materials

    Energy Technology Data Exchange (ETDEWEB)

    Wright, C.W.; Dauble, D.D.

    1986-05-01

    This report presents data from the chemical analysis and toxicological testing of coal liquefaction materials from the EDS and H-Coal processes operated using different ranks of coal. Samples of recycle solvent from the bottoms recycle mode of the EDS direct coal liquefaction process derived from bituminous, sub-bituminous, and lignite coals were analyzed. In addition, the H-Coal heavy fuel oils derived from bituminous and sub-bituminous coals were analyzed. Chemical methods of analysis included adsoprtion column chromatography, high-resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. The toxicological activity of selected samples was evaluated using the standard microbial mutagenicity assay, an initiation/promotion assay for mouse-skin tumorigenicity, and a static bioassy with Daphnia magna for aquatic toxicity of the water-soluble fractions. 22 refs., 16 figs., 14 tabs.

  17. Estimation of Coal Bed Methane Potential of Coal Seams of Margherita Coal Field, Assam, India

    Directory of Open Access Journals (Sweden)

    Prasenjit Talukdar

    2015-06-01

    Full Text Available The rapid industrialization and growing energy needs have put a great stress on the conventional energy resources. This is even more concerning for a country like India which is a net importer of oil. To meet the ever increasing need for energy, it is essential that the search for unconventional energy is intensified. This paper deals with the estimation of coal bed methane potential of the Margherita Coal Field of Assam, India. For this purpose, eight coal samples were collected from Tirap O.C.P., Ledo UG Incline and Tikak O.C.P collieries of the Margherita coal field. Proximate analysis, megascopic study and finally qualitative analysis of these eight samples was undertaken. After analysis, the inferred reserves of CBM at Margherita Coalfield, was found to be in the range of 42.5-49.04 Billion Cubic Meter.

  18. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, M.N.

    1994-12-31

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  19. A comparative investigation of the properties of coal-water slurries prepared from Australia and Shenhua coals

    Institute of Scientific and Technical Information of China (English)

    Yun Zengjie; Wu Guoguang; Meng Xianliang; Zhang Yuliang; Shi Frank; He Yaqun; Luo Xiaoqiang

    2011-01-01

    Two coal samples of similar rank were chosen from Australia and China to investigate the differences in Coal-Water Slurry (CWS) made from them.The effect of ash content and particle size gradation on these properties was also studied.Different grinding times were used when grinding the two coals and particle size analysis of these ground coals was used to select samples with a "double-peak" particle size distribution.All the "double-peak" samples were used to prepare a CWS.The concentration,viscosity,fluidity,and stability of each CWS were measured.The results show that the properties ofa CWS prepared from a coal sample with a "double-peak" size distribution are better than those CWS prepared from samples with a mono-modal particle distribution.The ash content of Australian coal is 21.72% higher than the ash content of Shenhua coal.The highest coal concentration in slurry from the Australia coal is 11.01%higher than in CWS from the Shenhua coal.The fluidity and stability of the CWS prepared from the Australian coal are both better than the fluidity and stability of slurry prepared from Shenhua coal.High ash content in the Australian coal improves the pulping results of a CWS made from it.

  20. Characterization of coal water slurry prepared for PRB coal

    Institute of Scientific and Technical Information of China (English)

    Fei Yi; Akshay Gopan; Richard L. Axelbaum

    2014-01-01

    Powder River Basin (PRB) coal, which accounts for over 40% of the coal consumed for power generation in the United States, was investigated for preparation of coal water slurry ( CWS). The static stability and rheology of the CWS were characterized as a function of loading. The coal loading was varied from 30% to 50% and both ionic ( sodium polystyrene sulphonate (PSS)) and nonionic (Triton X-100) surfactants were employed as additives. The addition of PSS to PRB slurries was found to yield poor static stability. On the other hand, Triton X-100 was found to be an effective surfactant, reducing the sedimentation by more than 50% compared to the one without surfactant in 45% CWS. Adding Triton X-100 reduces the viscosity of the CWS for coal loadings of 30% and 40% . Although the viscosities for coal loading of 42. 5% and 45% are higher when Triton X-100 is added, the static stability is significantly better than for samples without surfactant. The highest coal loading for PRB slurry with acceptable viscosity for pumping is 42. 5% .

  1. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China.

    Science.gov (United States)

    Sun, Y Z; Fan, J S; Qin, P; Niu, H Y

    2009-02-01

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.

  2. Pollution extents of organic substances from a coal gangue dump of Jiulong Coal Mine, China

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.Z.; Fan, J.S.; Qin, P.; Niu, H.Y. [Hebei University of Engineering, Handan (China)

    2009-02-15

    This paper addresses the distribution and occurrence of harmful organic substances in coal gangue dump from Jiulong Coal Mine and its influence on the environment. The samples were taken from the coal gangue dump and coal waste water stream and analyzed by organic geochemical methods. The results indicate that the coal gangues contain abundant harmful organic substances like polycyclic aromatic hydrocarbons. The TOC and sulfur contents of the samples are much higher than those of the background sample except Sample JL7. The contents of organic bulk parameters are relatively high. Ten carcinogenic PAHs were identified and these harmful organic substances have influenced the surrounding area. Along the waste water stream, organic substances pollute at least 1,800 m far from the coal gangue dump.

  3. COAL GEOLOGY

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>20091749 Cai Hou’an(College of Energy Geology,China University of Geosciences,Beijing 100083,China);Xu Debin SHRIMP U-Pb Isotope Age of Volcanic Rocks Distributed in the Badaohao Area,Liaoning Province and Its Significance(Coal Geology & Exploration,ISSN1001-1986,CN61-1155/P,36(4),2008,p.17-20,2 illus.,1 table,16 refs.)Key words:coal measures,volcanic rocks,U-Pb dating,LiaoningA set of andesite volcanic rocks distributes in the Badaohao area in Heishan County,Liaoning Province.It’s geological age and stratigraphy sequence relationship between the Lower Cretaceous Badaohao Formation and the volcanic rocks can not make sure till now and is influencing the further prospect for coals.Zircon

  4. Plant immune responses triggered by beneficial microbes

    NARCIS (Netherlands)

    Wees, A.C.M. van; Ent, S. van der; Pieterse, C.M.J.

    2008-01-01

    Beneficial soil-borne microorganisms, such as plant growth promoting rhizobacteria and mycorrhizal fungi,can improve plant performance by inducing systemic defense responses that confer broad-spectrum resistance to plant pathogens and even insect herbivores. Different beneficial microbe-associated m

  5. Activity and Structure of Calcined Coal Gangue

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Coal gangue was activated by means of calcination in seven temperature ranges. Systematic research was made about activation mechanism and structural evolution. Glycerin-ethanol method, SEM, MIP and XRD were used to determine the variation of structure and activation of coal gangue during the calcination.The experimental results show that because of heat treatment in the range of calcination temperature, mineral composition and microstructure of coal gangue are changed. In addition, its activity is improved evidently. The amount of lime absorbed by the sample calcined at 700 C is 2-4 times that by uncalcined coal gangue in the course of hydration. When NaOH is added to coal gangue-lime system, hydration reaction of the system is sped up and the microstructure of hydrating samples of coal gangue is improved.

  6. Integrated Energy System with Beneficial Carbon Dioxide (CO2) Use - Final Scientific/Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaolei; Rink, Nancy T

    2011-04-29

    This report presents an integrated energy system that combines the production of substitute natural gas through coal hydrogasification with an algae process for beneficial carbon dioxide (CO2) use and biofuel production (funded under Department of Energy (DOE) contract DE-FE0001099). The project planned to develop, test, operate and evaluate a 2 ton-per-day coal hydrogasification plant and 25-acre algae farm at the Arizona Public Service (APS) 1000 Megawatt (MW) Cholla coal-fired power plant in Joseph City, Arizona. Conceptual design of the integrated system was undertaken with APS partners Air Liquide (AL) and Parsons. The process engineering was separated into five major areas: flue gas preparation and CO2 delivery, algae farming, water management, hydrogasification, and biofuel production. The process flow diagrams, energy and material balances, and preliminary major equipment needs for each major area were prepared to reflect integrated process considerations and site infrastructure design basis. The total project also included research and development on a bench-scale hydrogasifier, one-dimensional (1-D) kinetic-model simulation, extensive algae stressing, oil extraction, lipid analysis and a half-acre algae farm demonstration at APS?s Redhawk testing facility. During the project, a two-acre algae testing facility with a half-acre algae cultivation area was built at the APS Redhawk 1000 MW natural gas combined cycle power plant located 55 miles west of Phoenix. The test site integrated flue gas delivery, CO2 capture and distribution, algae cultivation, algae nursery, algae harvesting, dewatering and onsite storage as well as water treatment. The site environmental, engineering, and biological parameters for the cultivators were monitored remotely. Direct biodiesel production from biomass through an acid-catalyzed transesterification reaction and a supercritical methanol transesterification reaction were evaluated. The highest oil-to-biodiesel conversion of 79

  7. 激光诱导煤样等离子体的表征%Characterization of Plasma Induced by Laser Effect on Coal Sample

    Institute of Scientific and Technical Information of China (English)

    张贵银; 季慧; 李松涛; 郑海明

    2016-01-01

    以脉冲 Nd·YAG激光器泵浦的光学参量发生/放大器输出为激发源,获得了一种家庭用煤样品的激光诱导等离子体(laser induced plasma,LIP)发射光谱。谱线线型呈洛伦兹线型,表明等离子体加宽以Stark展宽为主。利用发射谱线的 Stark展宽和强度,通过测量等离子体不同位置的发射光谱,确定了等离子体温度和电子密度的空间分布,发现二者在垂直等离子体发光火焰方向相对火焰中心对称分布,沿发光火焰方向不具有对称分布的特点。发光火焰中心的等离子体温度和电子密度最大,且发光强度较大,因此利用光谱技术测量等离子体特征量时,宜采集火焰中心的发射光谱。样品中有些元素的发射谱线线型显示,等离子体中存在很强的自吸收现象,自吸收程度和激发波长及激光能量密切相关,激发波长接近谱线中心波长时,自吸收现象最明显;随激光能量的增加,发射光谱强度增加的同时,自吸收的程度也增大。把这些现象归因于原子跃迁概率的增大及激光强度增加引起的等离子体中粒子数密度的增大。自吸收现象导致实验观测到的发射谱线强度小于 LIP的真实辐射强度,对等离子体进行测量时,应选取不存在自吸收现象的谱线,以便于提高测量准确度。%With the output of an OPG/OPA pumped by the third harmonic output 355 nm of a pulsed Nd·YAG laser as radia-tion source,the emission spectrum of laser induced coal sample plasma is created.The emission spectral line shows the character of Lorenz profile.So Stark broadening is the main widening way of this plasma system.The spatial distribution of the plasma temperature and electron density is measured from the intensity and Stark broadening of the spectral lines.It is found that in the direction from vertical to plasma luminous flame,both plasma temperature and electron density are symmetrically relative to the center.While in the

  8. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  9. Coal liquefaction process streams characterization and evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A.; Burke, F.P.

    1992-03-01

    CONSOL R D is conducting a three-year program to characterize process and product streams from direct coal liquefaction process development projects. The program objectives are two-fold: (1) to obtain and provide appropriate samples of coal liquids for the evaluation of analytical methodology, and (2) to support ongoing DOE-sponsored coal liquefaction process development efforts. The two broad objectives have considerable overlap and together serve to provide a bridge between process development and analytical chemistry.

  10. MECHANISMS AND OPTIMIZATION OF COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    Kyriacos Zygourakis

    1998-05-01

    We report the development of a novel experimental technique that combines video microscopy and thermogravimetric analysis to optimize the detection of coal and char particle ignitions. This technique is particularly effective for detecting ignitions occurring in coal or char samples containing multiple particles, where other commonly used techniques fail. The new approach also allows for visualization of ignition mechanism. Devolatilized char particles appear to ignite heterogeneously, while coal particles may ignite homogeneously, heterogeneously or through a combination of both mechanisms.

  11. Low-rank coal research. Quarterly report, January--March 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-08-01

    This document contains several quarterly progress reports for low-rank coal research that was performed from January-March 1990. Reports in Control Technology and Coal Preparation Research are in Flue Gas Cleanup, Waste Management, and Regional Energy Policy Program for the Northern Great Plains. Reports in Advanced Research and Technology Development are presented in Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Reports in Combustion Research cover Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Coal Fuels, Diesel Utilization of Low-Rank Coals, and Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications. Liquefaction Research is reported in Low-Rank Coal Direct Liquefaction. Gasification Research progress is discussed for Production of Hydrogen and By-Products from Coal and for Chemistry of Sulfur Removal in Mild Gas.

  12. The role of the existing utilities (continuing dominance of coal in Indian power industry)

    Energy Technology Data Exchange (ETDEWEB)

    Shahi, R.V. [BSES Ltd. (India)

    1997-12-31

    The consumption of coal for power generation in India has increased from 10 million tonnes in 1960-61 to 200 million tonnes in 1996-97. The increased demand has been met largely through an increase in surface mining. However, the Gross Calorific Value of the coal has declined from 5900 kcal/kg in 1960-61 to an estimated 3500 kcal/kg in 1995-96. Indian power stations have to use coal with ash contents of 30% to 40% and even up to 45%. There is a need for additional coal washeries. Coal India Ltd and the Ministry of Coal have been identifying agencies to beneficiate coal. BSES with assistance from USAID under the PACER programme, is building a coal washery at its 500 MW power plant at Dahanu which will both wash coal for the power plant and act as a test facility to investigate different levels of beneficiation. The plant should be operational in September 1998. The problems Indian Railways have with the volume of coal transported and possible solutions (eg increased maritime transportation or coal slurry pipelines) are also discussed. Beneficiation prior to transport may overcome some of these problems. The management of ash disposal is also discussed.

  13. Applicability of a dense-medium cyclone and Vorsyl separator for upgrading non-coking coal fines for use as a blast furnace injection fuel

    Energy Technology Data Exchange (ETDEWEB)

    A.K. Majumder; H. Shah; S. Choubey; J.P. Barnwal; A.K. Kundu; P.S. Dhillon [Advanced Materials and Processes Research Institute, Bhopal (India)

    2009-01-15

    Replacement of metallurgical coke by high injection rates of thermal coal into the blast furnace is an important technology as it reduces the cost of hot metals significantly. However, one of the main problems that prevents the use of thermal coals is their high mineral-matter contents. Although, the ash content of coals to be injected in a blast furnace should be as low as possible, a maximum of 16% ash is acceptable. A non-coking coal sample from Chhattisgarh area, India, having a feed ash content of around 27% was collected for beneficiation studies to a grade acceptable for the injection purposes. A series of experiments were conducted in a 76-mm diameter dense-medium cyclone (DMC) and a Vorsyl separator (VS). It is observed that a clean coal having around 16% ash can be produced using both the cyclones if the variables are properly optimized. Further, it is observed that at the same ash level the yield of clean coal was 5%-6% more in VS than in DMC. It has also been demonstrated that at the same ash level, the magnetite medium stability in a VS was better than a DMC. 4 refs.

  14. Appalachian clean coal technology consortium

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.-H.; Basim, B.; Luttrell, G.H.; Phillips, D.I. [Virginia Polytechnic Inst., Blacksburg, VA (United States); Jiang, D.; Tao, D.; Parekh, B.K. [Kentucky Univ., Lexington, KY (United States); Meloy, T. [West Virginia Univ., Morgantown, WV (United States)

    1997-01-28

    Novel chemicals that can be used for increasing the efficiency of fine coal dewatering was developed at Virginia Tech. During the past quarter, Reagent A was tested on three different coal samples in laboratory vacuum filtration tests. these included flotation products from Middle Fork plant, Elkview Mining Company, and CONSOL, Inc. the tests conducted with the Middle Fork coal sample (100 mesh x 0) showed that cake moisture can be reduced by more than 10% beyond what can be achieved without using dewatering aid. This improvement was achieved at 1 lb/ton of Reagent A and 0.1 inch cake thickness. At 0. 5 inches of cake thickness, this improvement was limited to 8% at the same reagent dosage. the results obtained with the Elkview coal (28 mesh x 0) showed similar advantages in using the novel dewatering aid. Depending on the reagent dosage, cake thickness, drying cycle time and temperature, it was possible to reduce the cake moisture to 12 to 14% rage. In addition to achieving lower cake moisture, the use of Reagent A substantially decreased the cake formation time, indicating that the reagent improves the kinetics of dewatering, The test results obtained with CONSOL coal were not as good as with the other coals tested in the present work, which may be attributed to possible oxidation and/or contamination.

  15. Coal industry annual 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  16. Coal industry annual 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

  17. Coal Industry Annual 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

  18. Hydrothermal pretreatment of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D.S.

    1989-12-21

    We have examined changes in Argonne Premium samples of Wyodak coal following 30 min treatment in liquid water at autogenous pressures at 150{degrees}, 250{degrees}, and 350{degrees}C. In most runs the coal was initially dried at 60{degrees}C/1 torr/20 hr. The changes were monitored by pyrolysis field ionization mass spectrometry (py-FIMS) operating at 2.5{degrees}C/min from ambient to 500{degrees}C. We recorded the volatility patterns of the coal tars evolved over that temperature range, and in all cases the tar yields were 25%--30% of the starting coal on mass basis. There was essentially no change after the 150{degrees}C treatment. Small increases in volatility were seen following the 250{degrees}C treatment, but major effects were seen in the 350{degrees} work. The tar quantity remained unchanged; however, the volatility increased so the temperature of half volatility for the as-received coal of 400{degrees}C was reduced to 340{degrees}C. Control runs with no water showed some thermal effect, but the net effect from the presence of liquid water was clearly evident. The composition was unchanged after the 150{degrees} and 250{degrees}C treatments, but the 350{degrees} treatment brought about a 30% loss of oxygen. The change corresponded to loss of the elements of water, although loss of OH'' seemed to fit the analysis data somewhat better. The water loss takes place both in the presence and in the absence of added water, but it is noteworthy that the loss in the hydrothermal runs occurs at p(H{sub 2}O) = 160 atm. We conclude that the process must involve the dehydration solely of chemically bound elements of water, the dehydration of catechol is a specific, likely candidate.

  19. Polar polycyclic aromatic compounds from different coal types show varying mutagenic potential, EROD induction and bioavailability depending on coal rank.

    Science.gov (United States)

    Meyer, Wiebke; Seiler, Thomas-Benjamin; Schwarzbauer, Jan; Püttmann, Wilhelm; Hollert, Henner; Achten, Christine

    2014-10-01

    Investigations of the bioavailability and toxicity of polycyclic aromatic compounds (PAC) have rarely considered the heterogeneity of coals and the impact of more polar PAC besides polycyclic aromatic hydrocarbons (PAH). Earlier, we investigated the toxicity of eight heterogeneous coals and their extracts. In the present study, the hazard potential with respect to mechanism-specific toxicity of polar fractions of dichloromethane extracts from coals was studied. Polar extract fractions of all coal types except for anthracite induced EROD activity (determined in RTL-W1 cells), independent of coal type (Bio-TEQs between 23 ± 16 and 52 ± 22 ng/g). The polar fractions of all bituminous coal extracts revealed mutagenic activity (determined using the Ames Fluctuation test). No significant mutation induction was detected for the polar extract fractions from the lignite, sub-bituminous coal and anthracite samples, which indicates a higher dependency on coal type for polar PAC here. Additionally, information on bioavailability was derived from a bioaccumulation test using the deposit-feeding oligochaete Lumbriculus variegatus which was exposed for 28 days to ground coal samples. Despite the high toxic potential of most coal extracts and a reduced biomass of Lumbriculus in bituminous coal samples, bioaccumulation of PAH and mortality after 28 days were found to be low. Limited bioaccumulation of PAH (up to 3.6 ± 3.8 mg/kg EPA-PAH) and polar PAC were observed for all coal samples. A significant reduction of Lumbriculus biomass was observed in the treatments containing bituminous coals (from 0.019 ± 0.004 g to 0.046 ± 0.011 g compared to 0.080 ± 0.025 g per replicate in control treatments). We conclude that bioavailability of native PAC from coals including polar PAC is low for all investigated coal types. In comparison to lignite, sub-bituminous coals and anthracite, the bioavailability of PAC from bituminous coals is slightly increased.

  20. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis;

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning....... Chemical cleaning can be optimized with regard to electricity, heat and methanol use for the hydrothermal washing step, and could have environmental impact comparable to that of physical cleaning if the overall resource intensiveness of chemical cleaning is reduced by a factor 5 to 10, depending...

  1. A geochemical investigation into the effect of coal rank on the potential environmental effects of CO2 sequestration in deep coal beds

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2005-01-01

    Coal samples of different rank were extracted in the laboratory with supercritical CO2 to evaluate the potential for mobilizing hydrocarbons during CO2 sequestration or enhanced coal bed methane recovery from deep coal beds. The concentrations of aliphatic hydrocarbons mobilized from the subbituminous C, high-volatile C bituminous, and anthracite coal samples were 41.2, 43.1, and 3.11 ?g g-1 dry coal, respectively. Substantial, but lower, concentrations of polycyclic aromatic hydrocarbons (PAHs) were mobilized from these samples: 2.19, 10.1, and 1.44 ?g g-1 dry coal, respectively. The hydrocarbon distributions within the aliphatic and aromatic fractions obtained from each coal sample also varied with coal rank and reflected changes to the coal matrix associated with increasing degree of coalification. Bitumen present within the coal matrix may affect hydrocarbon partitioning between coal and supercritical CO2. The coal samples continued to yield hydrocarbons during consecutive extractions with supercritical CO2. The amount of hydrocarbons mobilized declined with each successive extraction, and the relative proportion of higher molecular weight hydrocarbons increased during successive extractions. These results demonstrate that the potential for mobilizing hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating coal beds for CO2 storage.

  2. Estimation of coal quality parameters using disjunctive kriging

    Energy Technology Data Exchange (ETDEWEB)

    Tercan, A.E. [Hacettepe University, Department of Mining Engineering, Beytepe (Turkey)

    1998-07-01

    Disjunctive kriging is a nonlinear estimation technique that allows the conditional probability that the value of coal quality parameter is greater than a cutoff value. The method can be used in management decision making to help control blending and make coal quality sampling. The use of disjunctive kriging is illustrated using the data from Kangal coal deposit. 7 refs.

  3. Mechanistic study on the plastic phenomena of coal

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, M.; Kidena, K.; Hiro, M.; Murata, S. [Osaka University, Osaka (Japan). Dept. of Applied Chemistry

    2000-08-01

    Highly coking coal, Goonyella coal, and slightly coking coal, Witbank coal, were submitted to ruthenium ion catalyzed oxidation (RICO) reaction to clarify the structural features of the two coals. Expected structural differences between the two coking coals were meagre but interesting. Witbank coal has a slightly larger amount of longer methylene bridges (C15-C25) and longer alkyl chains (C15-C30) than Goonyella coal. NMR spectra gave information on the average aromatic ring size: Goonyella coal has larger aromatic rings than Witbank coal. Two steps of heat treatment of the coals were performed: the first step is heating to the softening temperature, and the second step is heating the resulting sample to resolidification temperature. Witbank coal gave a larger amount of tar in the first step of the heating than Goonyella coal, while Goonyella coal gave a larger amount of tar in the second step of the heating compared with the corresponding fraction of Witbank coal. These suggest that a larger amount of metaplast, which is indispensable for the appearance of fluidity, could be produced during the plastic range (the temperature range from the softening temperature to the resolidification temperature) in the case of Goonyella coal, this leading to its higher Gieseler maximum fluidity. These two coking coals have the same amount of transferable hydrogen. Therefore, Witbank coal is supposed to consume large amounts of transferable hydrogen for the formation of tar during the heating to softening temperature, probably via oxygen functional group related reactions and carbon-carbon bond breaking reactions. Due to a lower amount of transferable hydrogen in the char, subsequent bond cleavage reactions at the plastic range lead to recombination to show a low value of its Gieseler maximum fluidity, although the three-dimensional structure framework of Witbank coal collapses to a small extent. 29 refs., 4 figs., 3 tabs.

  4. Coal - proximate analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-06-14

    This Standard establishes a practice for the proximate analysis of coal, that is, the coal is analysed for the content of moisture, ash and volatile matter; fixed carbon is calculated. The standard provides a basis for the comparison of coals.

  5. Coal industry annual 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-06

    Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

  6. Mössbauer study of the inorganic sulfur removal from coals

    Science.gov (United States)

    Reyes Caballero, F.; Martínez Ovalle, S. A.

    2014-01-01

    Mössbauer Spectroscopy (MS) was applied to study the occurrence and behavior of the iron-sulfur-containing minerals in coal and coal fractions obtained by different separation methods: hydrocyclonic, flotation and chemical removal process. Samples of one high sulfur coal from Guachinte mine (Valle, Colombia) and three low sulfur coals from the El Salitre zone (Paipa-Boyacá, Colombia) were analyzed. MS evidenced only the presence of pyrite in Esmeralda and Las Casitas coals, while it identified pyrite and siderite on Cerezo coal. MS and SEM- EDX confirm the inorganic sulfur removal on Guachinte coal submitted to hydrocyclonic removal process. MS of the precipitated coal fraction from Las Casitas mine obtained by flotation in water showed the presence of ferrous sulfate because of coal-weathering process. Treatment with hot diluted HNO3 equal to 27 acid on raw coal sample from Las Casitas mine showed that almost all of the pyrite in raw coal was removed.

  7. Experimental study on influence of coal structural anisotropy to gas permeation

    Institute of Scientific and Technical Information of China (English)

    QIAO Yan-zhen

    2011-01-01

    Based on "true triaxial coal rock permeability of coal sample test system",the permeability under different gaspressure to coal specimen in bedding plane and the vertical bedding directions are tested.The results show that coal structuralanisotropy has a greater impact on gas permeability properties,differences in experimental coal permeability are roughly oneorder of magnitude.In view of the differences of the gas flow characteristics in the coal bedding plane and vertical bedding,established series and parallel choked flow model of coal sample gas seepage,and made a theoretical analysis to the influencesof the bedding structure to gas permeability properties.

  8. Research of Heating Rates Influence on Layer Coal Gasification of Krasnogorsky And Borodinsky Coal Deposit

    Directory of Open Access Journals (Sweden)

    Jankovskiy Stanislav

    2015-01-01

    Full Text Available Experimental research of heating rate influence on coal samples gasification process of Krasnogorsky and Borodinsky coal deposit ranks A and 2B was done to define optimal heating mode in high intensification of dispersal of inflammable gases conditions. Abundance ratio of carbon monoxide and nitrogen monoxide, water vapor, carbon dioxide at four values of heating rate within the range of 5 to 30 K/min. with further definition of optimal heating rate of coals was stated.

  9. Coal India Limited - technology strategy to meet the challenges of future

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, S.M.P.; Misra, S.B.C.

    1989-08-01

    The production increases of the next 5 and 10 years are challenges to Coal India. Organized and planned efforts are called for. Coal India is well aware of it and has started gearing itself up to meet the challenges right now. The proposed strategy is as follows: development and adoption of new technologies through indigenous means and by import wherever necessary; upgradation of technology; wider application of new/upgraded technologies already established; commercialization of technologies established with R D work; and R D work. The major areas where work on this strategy has been taken up are: coal exploration; shaft sinking, mine development and mine construction; underground mining; opencast mining; coal handling dispatch; coal beneficiation; coal combustion utilization; slurry pipeline transport of coal; environmental management; and electronics for coal sector, including surface telecommunication network, data base management (computer), and mining electronics, safety, communication and industrial electronics. This paper briefly describes the work being done in each of these areas.

  10. The concentration of fluorine in coals and gangue of China

    Institute of Scientific and Technical Information of China (English)

    AO Wei-hua; HUANG Wen-hui; CHEN Jing; WAN Huan

    2008-01-01

    A detailed comparison was done between the data about the F in coals pub-lished at home and abroad, and associated with the special situation in China. An intro-duction also was made to illuminate the forming, occurrence and accumulation of the F in coals and its potential hazard to human and environment. Analytical data of coal samples were referred to study the great difference of the F content between coals and gangue.The results show that the average value of the F in the coal samples collected in different coalfields of China is 304×10-6, while that of gangue samples is surprisingly 1 319×10-6,especially the F content of coal ash from Bangmai in Yunnan Province reaches 4 800x10-6.It has been proved in many provinces of China that burning the coal and clay mixture can produce F contamination.

  11. Differential scanning calorimetry of coal

    Science.gov (United States)

    Gold, P. I.

    1978-01-01

    Differential scanning calorimetry studies performed during the first year of this project demonstrated the occurrence of exothermic reactions associated with the production of volatile matter in or near the plastic region. The temperature and magnitude of the exothermic peak were observed to be strongly affected by the heating rate, sample mass and, to a lesser extent, by sample particle size. Thermal properties also were found to be influenced by oxidation of the coal sample due to weathering effects.

  12. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 2, appendices. Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., AL (United States); Chander, S. [Pennsylvania State Univ., College Park, PA (United States); Gutterman, C.

    1995-04-01

    Liquefaction experiments were undertaken using subbituminous Black Thunder mine coal to observe the effects of aqueous SO{sub 2} coal beneficiation and the introduction of various coal swelling solvents and catalyst precursors. Aqueous SO{sub 2} beneficiation of Black Thunder coal removed alkali metals and alkaline earth metals, increased the sulfur content and increased the catalytic liquefaction conversion to THF solubles compared to untreated Black Thunder coal. The liquefaction solvent had varying effects on coal conversion, depending upon the type of solvent added. The hydrogen donor solvent, dihydroanthracene, was most effective, while a coal-derived Wilsonville solvent promoted more coal conversion than did relatively inert 1-methylnaphthalene. Swelling of coal with hydrogen bonding solvents tetrahydrofuran (THF), isopropanol, and methanol, prior to reaction resulted in increased noncatalytic conversion of both untreated and SO{sub 2} treated Black Thunder coals, while dimethylsulfoxide (DMSO), which was absorbed more into the coal than any other swelling solvent, was detrimental to coal conversion. Swelling of SO{sub 2} treated coal before liquefaction resulted in the highest coal conversions; however, the untreated coal showed the most improvements in catalytic reactions when swelled in either THF, isopropanol, or methanol prior to liquefaction. The aprotic solvent DMSO was detrimental to coal conversion.

  13. Comparative Study of Coal and Biomass Co-Combustion With Coal Burning Separately Through Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Mohammad Siddique

    2016-06-01

    Full Text Available Appropriate eco-friendly methods to mitigate the problem of emissions from combustion of fossil fuel are highly demanded. The current study was focused on the effect of using coal & coal-biomass co-combustion on the gaseous emissions. Different biomass' were used along with coal. The coal used was lignite coal and the biomass' were tree waste, cow dung and banana tree leaves. Various ratios of coal and biomass were used to investigate the combustion behavior of coal-biomass blends and their emissions. The study revealed that the ratio of 80:20 of coal (lignite-cow dung and 100% banana tree leaves emits less emissions of CO, CO2, NOx and SO2 as compared to 100% coal. Maximum amount of CO emissions were 1510.5 ppm for banana tree waste and minimum amount obtained for lakhra coal and cow dung manure (70:30 of 684.667 ppm. Maximum percentage of SO2 (345.33 ppm was released from blend of lakhra coal and tree leaves (90:10 and minimum amount of SO2 present in samples is in lakhra coal-banana tree waste (80:20. The maximum amount of NO obtained for banana tree waste were 68 ppm whereas maximum amount of NOx was liberated from lakhra coal-tree leaves (60:40 and minimum amount from cow dung manure (30.83 ppm. The study concludes that utilization of biomass with coal could make remedial action against environment pollution.

  14. Permeability variation characteristics of coal after injecting carbon dioxide into a coal seam

    Institute of Scientific and Technical Information of China (English)

    Ni Xiaoming; Li Quanzhong; Wang Yanbin; Gao Shasha

    2015-01-01

    A theoretical basis for the optimization of carbon dioxide injection parameters and the development of the drainage system can be provided by identifying the permeability change characteristic of coal and rock after injection of carbon dioxide into the coal seam. Sihe, Yuwu, and Changcun mines were used as research sites. Scanning electron microscopy and permeability instruments were used to measure coal properties such as permeability and surface structure of the coal samples at different pH values of carbon dioxide solution and over different timescales. The results show that the reaction between minerals in coal and carbonate solution exhibit positive and negative aspects of permeability-the dissolution reaction between carbonate minerals in coal and acid solution improves the conductivity of coal whilst, on the other hand, the clay minerals in the coal (mainly including montmorillonite, illite and kaolinite) exhibit expansion as a result of ion exchange with the H+in acid solution, which has a negative effect on the per-meability of the coal. The permeability of coal samples increased at first and then decreased with immer-sion time, and when the soaking time is 2–3 months the permeability of the coal reached a maximum. In general, for coals with permeabilities less than 0.2 mD or greater than 2 mD, the effect on the permeabil-ity is low;when the permeability of the coal is in the range 0.2–2 mD, the effect on the permeability is highest. Research into permeability change characteristics can provide a theoretical basis for carbon diox-ide injection under different reservoir permeability conditions and subsequent drainage.

  15. Rapid pyrolysis of Serbian soft brown coals

    Energy Technology Data Exchange (ETDEWEB)

    Goran G. Jankes; Olga Cvetkovic; Nebojsa M. Milovanovic; Marko Ercegovaci Ercegovac; Miroljub Adzic; Mirjana Stamenic [University of Belgrade, Belgrade (Serbia). Faculty of Mechanical Engineering

    2009-07-01

    Soft brown coals of the open coal fields of Kolubara and Kostolac are the main domestic energy sources of Serbia. This paper presents the results of investigations on rapid devolatilization of these two coals which have covered kinetics of devolatilization (based on total volatile yield), forms of sulphur and petrographic analysis of coal and char. Experiments of devolatilization were performed in inert gas (N{sub 2}) at atmospheric pressure and in batch-type hot-wire screen reactor. The mass-loss values of both coals at selected final reaction temperatures (300-900{sup o}C) and retention times (3-28 s) were obtained. Anthony and Howard's kinetic model was applied over two temperature ranges (300-500 and 700-900{sup o}C). The types of sulphur as monosulphide, sulphate, pyritic, and organic sulphur were determined for chars and original coals. Strong transformation of pyrite was evident even at low temperatures (300{sup o}C). Devolatilization of all types of sulphur has started over 600 and at 900{sup o}C the content of sulphur in char remained only 66% of total sulphur in original coal. Microscopic investigations were carried out on samples prepared for reflected light measurements. The petrographic analysis included: the ratio of unchanged and changed coal, maceral types, the share of cenospheres, isotropic mixed carbonized grains, mixed grains, small fragments, clay, and pyrite. The change of the structure of devolatilized coal was also observed. 20 refs., 10 figs., 6 tabs.

  16. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Science.gov (United States)

    Jiang, Jingyu; Cheng, Yuanping; Mou, Junhui; Jin, Kan; Cui, Jie

    2015-01-01

    To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index). Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption) index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar occurrence conditions

  17. Effect of Water Invasion on Outburst Predictive Index of Low Rank Coals in Dalong Mine.

    Directory of Open Access Journals (Sweden)

    Jingyu Jiang

    Full Text Available To improve the coal permeability and outburst prevention, coal seam water injection and a series of outburst prevention measures were tested in outburst coal mines. These methods have become important technologies used for coal and gas outburst prevention and control by increasing the external moisture of coal or decreasing the stress of coal seam and changing the coal pore structure and gas desorption speed. In addition, techniques have had a significant impact on the gas extraction and outburst prevention indicators of coal seams. Globally, low rank coals reservoirs account for nearly half of hidden coal reserves and the most obvious feature of low rank coal is the high natural moisture content. Moisture will restrain the gas desorption and will affect the gas extraction and accuracy of the outburst prediction of coals. To study the influence of injected water on methane desorption dynamic characteristics and the outburst predictive index of coal, coal samples were collected from the Dalong Mine. The methane adsorption/desorption test was conducted on coal samples under conditions of different injected water contents. Selective analysis assessed the variations of the gas desorption quantities and the outburst prediction index (coal cutting desorption index. Adsorption tests indicated that the Langmuir volume of the Dalong coal sample is ~40.26 m3/t, indicating a strong gas adsorption ability. With the increase of injected water content, the gas desorption amount of the coal samples decreased under the same pressure and temperature. Higher moisture content lowered the accumulation desorption quantity after 120 minutes. The gas desorption volumes and moisture content conformed to a logarithmic relationship. After moisture correction, we obtained the long-flame coal outburst prediction (cutting desorption index critical value. This value can provide a theoretical basis for outburst prediction and prevention of low rank coal mines and similar

  18. Microbial ecology of coal mine refuse

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, R. E.; Miller, R. M.

    1977-01-01

    Baseline microbial and ecological studies of samples obtained from two abandoned coal mine refuse sites in the State of Illinois indicate that the unfavorable nature of refuse materials can be a very limiting factor for survival and growth of organisms. Despite the ''foothold'' obtained by some microorganisms, especially acidophilic fungi and some acidotolerant algae, the refuse materials should be amended or ameliorated to raise the pH, provide needed nutrients, especially nitrogen, and provide biodegradable organic matter, both for physical and biological purposes. Finally, the role of microbial populations, responses, and interactions in acid mine wastes must be put into larger perspective. Acid mine drainage amounts to over 4 million tons per year of acidity from active and abandoned mines. Microorganisms appear to be significantly responsible for this problem, but they also can play a beneficial and significant role in the amelioration or alleviation of this detrimental effect as abandoned mines are reclaimed and returned to useful productivity.

  19. Applied coal petrology: the role of petrology in coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Isabel Suarez-Ruiz; John Crelling [Instituto Nacional del Carbon (INCAR-CSIC), Oviedo (Spain)

    2008-08-15

    This book is an integrated approach towards the applications of coal (organic) petrology and discusses the role of this science in the field of coal and coal-related topics. Contents are: Introduction 2. Basic factors controlling coal quality and technological behaviour of coal 3. Mining and benefication 4. Coal combustion 5. Coal gasification 6. Coal liquefaction 7. Coal carbonisation 8. Coal-derived carbons 9. Coal as a Petroleum source rock and reservoir rock 10. Environmental and health aspects 11. Other applications of coal petrology.

  20. Optimization of chemical analysis methods for coal and fly ash. 1. Sampling, sample preparation and 'proximate' analysis. Optimalisatie analysemethoden voor steenkool en vliegas. 1. Monstername, monsterverwerking en 'proximate' analyse

    Energy Technology Data Exchange (ETDEWEB)

    Hissink, M.

    1983-01-01

    To support the experiments in the atmospheric fluid bed boiler (AFBB) many analyses of samples of fuel, additions and waste are needed. Therefore it was necessary to obtain experience with regard to sampling, sample preparation and analysis of these materials. For a correct interpretation of the experiments in the AFBB a knowledge of the accuracy of the results of these analyses is essential. This accuracy depends largely on the sampling method. As a guide for the methods to be used the instructions in the relevant ISO Standards have been followed usually. A description is given of the procedures for sampling and analysis as well as of the equipment used. The accuracy that can be expected for the various results of analysis has been established experimentally. It was found in general that the requirements were met.

  1. Optimization of chemical analysis methods for coal and fly ash. 1. Sampling, sample preparation and proximate analysis. Optimalisatie analysemethoden voor steenkool en vliegas. 1. Monstername monsterverwerking en 'proximate' analyse

    Energy Technology Data Exchange (ETDEWEB)

    Hissink, M.

    1983-01-01

    To support the experiments in the atmospheric fluid bed boiler (AFBB), many analyses of samples of fuel, additives and waste are needed. Therefore it was necessary to obtain experience with regard to sampling, sample preparation and analysis of these materials. For a correct interpretation of the experiments in the AFBB, a knowledge of accuracy of the results of these analyses is essential. This accuracy depends largely on the sampling method. As a guide for the methods to be used, the instructions in the relevant ISO Standards have been followed usually. A description is given of the procedures for sampling and analysis as well as of the equipment used. The accuracy that can be expected for the various results of analysis has been established experimentally. It was found in general that the requirements were met. (In Dutch)

  2. Effect of coal slurry on the corrosion of coal-mine equipment

    Institute of Scientific and Technical Information of China (English)

    Zhang Qi; Xie Jingxuan; Zhao Wei; Bai Shasha; Zhong Shiteng; Chu Zhenfeng

    2011-01-01

    The corrosion of coal mine equipment immersed in coal slurry is addressed.The corrosion of low carbon steel samples immersed in coal slurries of different concentrations (80,130,and 180g/L) prepared from coals of different rank (long-flame coal,meager lean coal,and anthracite) and different granularity (0.25-0.5 mm,0.074-0.25 mm,and less than 0.074 mm particle size) was studied by the electrochemical method of polarization curve measurement,controlled potential sweeping,and continuous scanning.The results show that the corrosion rate in an anthracite slurry,where the coal has high coalification,is far greater than corrosion in a long-flame or a meager lean coal slurry.Furthermore the corrosion current,polarization current,and corrosion rate of low carbon steel become larger,and the polarizability becomes smaller,as the coal particle size decreases.The same trend is seen as the concentration of the coal slurry increases.

  3. 7 CFR 1421.6 - Beneficial interest.

    Science.gov (United States)

    2010-01-01

    ... have control of the commodity, such person must have complete decision-making authority regarding...-MARKETING ASSISTANCE LOANS AND LOAN DEFICIENCY PAYMENTS FOR 2008 THROUGH 2012 General § 1421.6 Beneficial interest. (a) To be eligible to receive marketing assistance loans and loan deficiency payments, a...

  4. [Prebiotics: concept, properties and beneficial effects].

    Science.gov (United States)

    Corzo, N; Alonso, J L; Azpiroz, F; Calvo, M A; Cirici, M; Leis, R; Lombó, F; Mateos-Aparicio, I; Plou, F J; Ruas-Madiedo, P; Rúperez, P; Redondo-Cuenca, A; Sanz, M L; Clemente, A

    2015-02-07

    Prebiotics are non-digestible food ingredients (oligosaccharides) that reach the colon and are used as substrate by microorganisms producing energy, metabolites and micronutrients used for the host; in addition they also stimulate the selective growth of certain beneficial species (mainly bifidobacteria and lactobacilli) in the intestinal microbiota. In this article, a multidisciplinary approach to understand the concept of prebiotic carbohydrates, their properties and beneficial effects in humans has been carried out. Definitions of prebiotics, reported by relevant international organizations and researchers, are described. A comprehensive description of accepted prebiotics having strong scientific evidence of their beneficial properties in humans (inulin-type fructans, FOS, GOS, lactulose and human milk oligosaccharides) is reported. Emerging prebiotics and those which are in the early stages of study have also included in this study. Taken into account that the chemical structure greatly influences carbohydrates prebiotic properties, the analytical techniques used for their analysis and characterization are discussed. In vitro and in vivo models used to evaluate the gastrointestinal digestion, absorption resistance and fermentability in the colon of prebiotics as well as major criteria to design robust intervention trials in humans are described. Finally, a comprehensive summary of the beneficial effects of prebiotics for health at systemic and intestinal levels is reported. The research effort on prebiotics has been intensive in last decades and has demonstrated that a multidisciplinary approach is necessary in order to claim their health benefits.

  5. The Roles of Beneficiation in Lunar Work

    Science.gov (United States)

    Rickman, Doug L.

    2010-01-01

    Natural feedstocks used for any process are intrinsically variable. They may also contain deleterious components or low concentrations of desired fractions. For these three reasons it is standard industrial practice to beneficiate feedstocks. This is true across all industries which trans-form raw materials into standardized units. On the Moon there are three natural resources: vacuum, radiation and regolith. To utilize in situ resources on the Moon it is reasonable to presume some beneficiation of the regolith (ground rock) resource will be desirable if not essential. As on Earth, this will require fundamental understanding of the physics and chemistry of the relevant processes, which are exceeding complex in detail. Further, simulants are essential test articles for evaluation of components and systems planned for lunar deployment. Simulants are of course made from geologic feedstocks. Therefore, there is variation, deleterious components and incorrect concentrations of desired fractions in the feedstocks used for simulants. Thus, simulant production can benefit from beneficiation of the input feedstocks. Beneficiation of geologic feedstocks is the subject of extractive metallurgy. Clearly, NASA has two discrete interests pertaining to the science and technology of extractive metallurgy.

  6. Induced systemic resistance by beneficial microbes

    NARCIS (Netherlands)

    Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M.

    2014-01-01

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth–promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of patho

  7. Washability analysis of high sulfur coal gangue from a Coal mine in Guizhou

    Institute of Scientific and Technical Information of China (English)

    TANG Yun; DAI Wen-zhi; ZHANG Qin; NIE Guang-hua; CHENG Jiang-guo; TUO Bi-yang; MAO Song; NIU Fang-yin

    2007-01-01

    Fulfill the screen test and float-and-sink analysis for high sulfur coal gangue from a Guizhou coal mine,analyzed the washability of its tail coal.Seen from the results:most of sulfur in sample is pyrite,the Sulfur content of different particle classification shall be reduced with the decreasing of size and specific gravity,most of sulfur distributed in the coal particles with large-size and high specific gravity.Part of sulfur may be eliminated through special gravity separation,however,most of inorganic sulfur should be removed with the combination of floatation process.

  8. Petrographic and mineral characterization of Balkan coals and their solid waste products from coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Yossifova, M. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Institute of Applied Mineralogy

    1995-12-31

    This paper is part of a complex petrographic, mineralogical and chemical investigation on Balkan bituminous coals and their solid waste products from coal preparation. The petrographic and phase-mineralogical composition in ten composite samples and four water extracts have been studied by optical microscopy, scanning electron microscopy and X-ray diffraction. 4 refs., 4 tabs.

  9. A remote coal deposit revisited

    DEFF Research Database (Denmark)

    Bojesen-Kofoed, Jørgen A.; Kalkreuth, Wolfgang; Petersen, Henrik I.

    2012-01-01

    In 1908, members of the “Danmark Expedition” discovered a coal deposit in a very remote area in western Germania Land, close to the margin of the inland ice in northeast Greenland. The deposit was, however, neither sampled nor described, and was revisited in 2009 for the first time since its...... environment related to meandering river channels. Spores and pollen in the lower fluvial deposits reflect abundant vegetation of ferns along the river banks. In contrast, a sparse spore and pollen flora in the coals show a mixed vegetation of ferns and gymnosperms. Based on proximate and petrographic analyses...

  10. Coal combustion products

    Science.gov (United States)

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  11. Coal markets in transition

    Energy Technology Data Exchange (ETDEWEB)

    Romer, R.

    1990-01-01

    Describes Colorado's coal industry, and the implementation of a nine point mining plan announced in 1988. This plan includes an environmental regulatory review, coal royalty reform, production and marketing incentives, clean coal and clean air issues, and promotion of the coal industry. Other issues to be addressed are abandoned mine reclamation, abandoned mine safety and land reclamation after surface mining. International markets for Colorado coal are also discussed.

  12. Assessing coal burnout

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, A. [Pacific Power, Sydney, NSW (Australia)

    1999-11-01

    Recent research has allowed a quantitative description of the basic process of burnout for pulverized coals to be made. The Cooperative Research Centre for Black Coal Utilization has built on this work to develop a coal combustion model which will allow plant engineers and coal company representatives to assess their coals for combustion performance. The paper describes the model and its validation and outlines how it is run. 2 figs.

  13. Emission factors of gaseous carbonaceous species from residential combustion of coal and crop residue briquettes

    Institute of Scientific and Technical Information of China (English)

    Qin WANG; Chunmei GENG; Sihua LU; Wentai CHEN; Min SHAO

    2013-01-01

    Experiments were performed to measure the emission factors (EFs) of gaseous carbonaceous species, such as CO2, CO, CH4, and non-methane volatile organic compounds (NMVOCs), from the combustion of five types of coal of varying organic maturity and two types of biomass briquettes under residential burning conditions. Samples were collected in stainless steel canisters and 2,4- dinitrophenylhydrazine (DNPH) cartridges and were analyzed by GC FID/MS and HPLC, respectively. The EFs from crop residue briquette burning were generally higher than those from coals, with the exception of CO2. The dominant NMVOC species identified in coal smoke were carbonyls (41.7%), followed by C2 unsaturated hydrocarbons (29.1%) and aromatics (12.1%), while C2 unsaturated hydrocarbons were the dominant species (68.9%) emitted from the combustion of crop residue briquettes, followed by aromatics (14.4%). A comparison of burning normal crop residues in stoves and the open field indicated that briquettes emitted a larger proportion of ethene and acetylene. Both combustion efficiency and coal organic maturity had a significant impact on NMVOC EFs from burning coal: NMVOC emissions increased with increasing coal organic maturity but decreased as the combustion efficiency improved. Emissions from the combustion of crop residue briquettes from stoves occurred mainly during the smoldering process, with low combustion efficiency. Therefore, an improved stove design to allow higher combustion efficiency would be beneficial for reducing emissions of carbonaceous air pollutants.

  14. 贵州省典型煤矿区水体水质分析及其急性生物毒性%Water Quality Analysis and Acute Toxicity to Daphnia Carinata of Various Water Samples from Typical Coal Mining Areas in Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    王俭; 吴永贵; 刘方; 喻阳华; 曾理; 王兰; 秦中

    2011-01-01

    Some water samples around 4 coal mines were collected in Guizhou Province to investigate the impact of coal mine exploitation on surface water environment. Physical and chemical characteristics of water samples were determined,and acute toxicity experiments were done for water samples with Daphnia carinata. Results indicated that the exploitation of coal mines caused serious pollution to water of the study area, with the highest contents of SO42-, Fe and Mn in water samples up to 2, 588.96 mg/L, 58.301mg/L and 7.097 mg/L respectively, as well as the lowest pH value 2.85. Coal acid mine drainage has a very strong acute toxicity to Daphnia carinata, with the 24 h LC50 ranges between 2.27% and 82.09%.Water in different coal mining areas has different biological toxicity, experimentresults showed that water samples from Maiping Coal Mine has the strongest acute biological toxicity, while from Dahebian Coal Mine in Shuicheng has the weakest biological toxicity, causing non-lethal effect to Daphnia carinata in 24 h.%为了解煤矿开采对周围水环境的影响,对贵州四个煤矿区水体的理化指标进行了测定,并用隆线溞对水样进行了急性生物毒件实验.结果表明,各煤矿的开采对研究区的地表水体均造成了不同程度污染,水体中SO42-、Fe与Mn的最高含量分别达到了2 588.96 mg/L.58.301 mg/L,7.097 mg/L.pH值最低为2.85.煤矿酸性废水对隆线溞有极强的急性生物毒性,其24 h LC50范围为2.27%~82.09%.不同煤矿区水体的生物毒性差异较大,花溪麦坪煤矿废水生物毒性最大,而水城大河边煤矿区水体最小,24 h内对隆线溞无致死作用.

  15. Coal data: A reference

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

  16. Variations in pore characteristics in high volatile bituminous coals: Implications for coal bed gas content

    Science.gov (United States)

    Mastalerz, Maria; Drobniak, A.; Strapoc, D.; Solano-Acosta, W.; Rupp, J.

    2008-01-01

    The Seelyville Coal Member of the Linton Formation (Pennsylvanian) in Indiana was studied to: 1) understand variations in pore characteristics within a coal seam at a single location and compare these variations with changes occurring between the same coal at different locations, 2) elaborate on the influence of mineral-matter and maceral composition on mesopore and micropore characteristics, and 3) discuss implications of these variations for coal bed gas content. The coal is high volatile bituminous rank with R0 ranging from 0.57% to 0.60%. BET specific surface areas (determined by nitrogen adsorption) of the coals samples studied range from 1.8 to 22.9??m2/g, BJH adsorption mesopore volumes from 0.0041 to 0.0339??cm3/g, and micropore volumes (determined by carbon dioxide adsorption) from 0.0315 to 0.0540??cm3/g. The coals that had the largest specific surface areas and largest mesopore volumes occur at the shallowest depths, whereas the smallest values for these two parameters occur in the deepest coals. Micropore volumes, in contrast, are not depth-dependent. In the coal samples examined for this study, mineral-matter content influenced both specific surface area as well as mesopore and micropore volumes. It is especially clear in the case of micropores, where an increase in mineral-matter content parallels the decrease of micropore volume of the coal. No obvious relationships were observed between the total vitrinite content and pore characteristics but, after splitting vitrinite into individual macerals, we see that collotelinite influences both meso- and micropore volume positively, whereas collodetrinite contributes to the reduction of mesopore and micropore volumes. There are large variations in gas content within a single coal at a single location. Because of this variability, the entire thickness of the coal must be desorbed in order to determine gas content reliably and to accurately calculate the level of gas saturation. ?? 2008 Elsevier B.V. All

  17. Characterization of feed coal and coal combustion products from power plants in Indiana and Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; O' Connor, J.T.; Brownfield, I.K.

    1999-07-01

    The US Geological Survey, Kentucky Geological Survey, and the University of Kentucky Center for Applied Energy Research are collaborating with Indiana and Kentucky utilities to determine the physical and chemical properties of feed coal and coal combustion products (CCP) from three coal-fired power plants. These three plants are designated as Units K1, K2, and I1 and burn high-, moderate-, and low-sulfur coals, respectively. Over 200 samples of feed coal and CCP were analyzed by various chemical and mineralogical methods to determine mode of occurrence and distribution of trace elements in the CCP. Generally, feed coals from all 3 Units contain mostly well-crystallized kaolinite and quartz. Comparatively, Unit K1 feed coals have higher amounts of carbonates, pyrite and sphalerite. Unit K2 feed coals contain higher kaolinite and illite/muscovite when compared to Unit K1 coals. Unit I1 feed coals contain beta-form quartz and alumino-phosphates with minor amounts of calcite, micas, anatase, and zircon when compared to K1 and K2 feed coals. Mineralogy of feed coals indicate that the coal sources for Units K1 and K2 are highly variable, with Unit K1 displaying the greatest mineralogic variability; Unit I1 feed coal however, displayed little mineralogic variation supporting a single source. Similarly, element contents of Units K1 and K2 feed coals show more variability than those of Unit I1. Fly ash samples from Units K1 and K2 consist mostly of glass, mullite, quartz, and spines group minerals. Minor amounts of illite/muscovite, sulfates, hematite, and corundum are also present. Spinel group minerals identified include magnetite, franklinite, magnesioferrite, trevorite, jacobisite, and zincochromite. Scanning Electron Microscope analysis reveals that most of the spinel minerals are dendritic intergrowths within aluminum silicate glass. Unit I1 fly ash samples contain glass, quartz, perovskite, lime, gehlenite, and apatite with minor amounts of periclase, anhydrite

  18. Microbial Beneficiation of Salem Iron Ore Using Penicillium purpurogenum

    Science.gov (United States)

    Mishra, M.; Pradhan, M.; Sukla, L. B.; Mishra, B. K.

    2011-02-01

    High alumina and silica content in the iron ore affects coke rate, reducibility, and productivity in a blast furnace. Iron ore is being beneficiated all around the world to meet the quality requirement of iron and steel industries. Choosing a beneficiation treatment depends on the nature of the gangue present and its association with the ore structure. The advanced physicochemical methods used for the beneficiation of iron ore are generally unfriendly to the environment. Biobeneficiation is considered to be ecofriendly, promising, and revolutionary solutions to these problems. A characterization study of Salem iron ore indicates that the major iron-bearing minerals are hematite, magnetite, and goethite. Samples on average contains (pct) Fe2O3-84.40, Fe (total)-59.02, Al2O3-7.18, and SiO2-7.53. Penicillium purpurogenum (MTCC 7356) was used for the experiment . It removed 35.22 pct alumina and 39.41 pct silica in 30 days in a shake flask at 10 pct pulp density, 308 K (35 °C), and 150 rpm. In a bioreactor experiment at 2 kg scale using the same organism, it removed 23.33 pct alumina and 30.54 pct silica in 30 days at 300 rpm agitation and 2 to 3 l/min aeration. Alumina and silica dissolution follow the shrinking core model for both shake flask and bioreactor experiments.

  19. Biogenic Methane from Coal: The Oxidation Factor

    Science.gov (United States)

    Gallagher, L. K.; Glossner, A. W.; Landkamer, L.; Figueroa, L. A.; Mandernack, K. W.; Munakata Marr, J.

    2011-12-01

    Vast reserves of coal represent an untapped resource that can be used to produce methane gas, a cleaner energy alternative compared to standard fossil fuels. Microorganisms have demonstrated the ability to utilize coal as a carbon source, producing biogenic methane. With increasing demand for cleaner energy resources, understanding and enhancing biogenic methane production has become an area of active research. The conversion of coal to methane by microorganisms has been demonstrated experimentally by a number of research groups, but the state of the coal used as a substrate has not always been reported and may impact biogenic methane production. Microcosm experiments were designed in order to assess how the oxidation state of coal might influence methane production (e.g. as in a dewatered coal-bed natural gas system). Oxidized and un-oxidized coal samples from the Powder River Basin were incubated in microcosms inoculated with an enrichment culture that was derived from coal. Microcosms were characterized by headspace gas analysis, organic acid production, functional gene abundance (qPCR), and pyrosequencing of the 16S rRNA gene. Although the microbial consortium demonstrated the ability to utilize both oxidized and un-oxidized coal as a sole carbon source to generate methane, it was produced in higher quantities from the un-oxidized coal. This microbial community was dominated by Methanobacteriaceae (45%), epsilon-Proteobacteria (32%) and delta-Proteobacteria (13%). The results of this study provide a basis to develop strategies to enhance biogenic methane production from coal, as well as demonstrate the need for careful substrate preparation for inter-study comparisons.

  20. A Monte Carlo Library Least Square approach in the Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) process in bulk coal samples

    Science.gov (United States)

    Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis

    2017-01-01

    A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.

  1. The beneficial biological properties of salicylic acid

    OpenAIRE

    Randjelović Pavle; Veljković Slavimir; Stojiljković Nenad; Sokolović Dušan; Ilić Ivan; Laketić Darko; Randjelović Dušica; Randjelović Nebojša

    2015-01-01

    Salicylic acid is a phytochemical with beneficial effects on human well-being. Salicylic acid is a phenolic compound and is present in various plants where it has a vital role in protection against pathogenic agents. Natural sources include fruits, vegetables and spices. The most famous and defined effect of salicylic acid is prostaglandin synthesis inhibition. Salicylic acid has antiinflammatory effects through suppression of transcription of genes for cyclooxygenase. Most of the pharmacolog...

  2. GIS representation of coal-bearing areas in Antarctica

    Science.gov (United States)

    Merrill, Matthew D.

    2016-03-11

    Understanding the distribution of coal-bearing geologic units in Antarctica provides information that can be used in sedimentary, geomorphological, paleontological, and climatological studies. This report is a digital compilation of information on Antarctica’s coal-bearing geologic units found in the literature. It is intended to be used in small-scale spatial geographic information system (GIS) investigations and as a visual aid in the discussion of Antarctica’s coal resources or in other coal-based geologic investigations. Instead of using spatially insignificant point markers to represent large coal-bearing areas, this dataset uses polygons to represent actual coal-bearing lithologic units. Specific locations of coal deposits confirmed from the literature are provided in the attribution for the coal-bearing unit polygons. Coal-sample-location data were used to confirm some reported coal-bearing geology. The age and extent of the coal deposits indicated in the literature were checked against geologic maps ranging from local scale at 1:50,000 to Antarctic continental scale at 1:5,000,000; if satisfactory, the map boundaries were used to generate the polygons for the coal-bearing localities.

  3. The effect of biomass on pollutant emission and burnout in co-combustion with coal

    Energy Technology Data Exchange (ETDEWEB)

    Kruczek, H.; Raczka, P.; Tatarek, A. [Wroclaw Technical University, Wroclaw (Poland)

    2006-08-15

    This paper presents experimental and numerical results on the co-combustion of different types of biomass with hard and brown coal. The main aim of this work was to assess the impact of the cocombustion of biomass in brown and hard coal-fired systems on the combustion process itself and on the level of pollutant formation and its dependence on combustion temperature stoichiometry. The experimental results obtained have shown that in general biomass addition leads to decreased NO and SO{sub 2} emissions, except with the hard coal Bogdanka. In addition, the biomass has a beneficial effect on the burnout of the coal/biomass mixture. To help to account for this effect, the behaviour of coal and biomass, the coal/biomass mixture and of fuel-N was studied by thermal analysis, in nitrogen and in air. The results obtained have shown that gas phase interactions are dominant in the combustion of biomass/coal mixtures.

  4. Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 chinese and american coals and their relation to coal rank and weathering

    Science.gov (United States)

    Wang, R.; Liu, Gaisheng; Zhang, Jiahua; Chou, C.-L.; Liu, J.

    2010-01-01

    The abundances of 16 polycyclic aromatic hydrocarbons (PAHs) on the priority list of the United States Environmental Protection Agency (U.S. EPA) have been determined in 14 Chinese and American coals. The ranks of the samples range from lignite, bituminous coal, anthracite, to natural coke. Soxhlet extraction was conducted on each coal for 48 h. The extract was analyzed on a gas chromatograph-mass spectrometer (GC-MS). The results show that the total PAH content ranged from 0.31 to 57.6 ??g/g of coal (on a dry basis). It varied with coal rank and is highest in the maturity range of bituminous coal rank. High-molecular-weight (HMW) PAHs are predominant in low-rank coals, but low-molecular-weight (LMW) PAHs are predominant in high-rank coals. The low-sulfur coals have a higher PAH content than high-sulfur coals. It may be explained by an increasing connection between disulfide bonds and PAHs in high-sulfur coal. In addition, it leads us to conclude that the PAH content of coals may be related to the depositional environment. ?? 2010 American Chemical Society.

  5. Coal char fragmentation during pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, L.L.

    1995-07-01

    A series of investigations of coal and char fragmentation during pulverized coal combustion is reported for a suite of coals ranging in rank from lignite to low-volatile (lv) bituminous coal under combustion conditions similar to those found in commercial-scale boilers. Experimental measurements are described that utilize identical particle sizing characteristics to determine initial and final size distributions. Mechanistic interpretation of the data suggest that coal fragmentation is an insignificant event and that char fragmentation is controlled by char structure. Chars forming cenospheres fragment more extensively than solid chars. Among the chars that fragment, large particles produce more fine material than small particles. In all cases, coal and char fragmentation are seen to be sufficiently minor as to be relatively insignificant factors influencing fly ash size distribution, particle loading, and char burnout.

  6. Upgraded Coal Interest Group

    Energy Technology Data Exchange (ETDEWEB)

    Evan Hughes

    2009-01-08

    The Upgraded Coal Interest Group (UCIG) is an EPRI 'users group' that focuses on clean, low-cost options for coal-based power generation. The UCIG covers topics that involve (1) pre-combustion processes, (2) co-firing systems and fuels, and (3) reburn using coal-derived or biomass-derived fuels. The UCIG mission is to preserve and expand the economic use of coal for energy. By reducing the fuel costs and environmental impacts of coal-fired power generation, existing units become more cost effective and thus new units utilizing advanced combustion technologies are more likely to be coal-fired.

  7. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    Science.gov (United States)

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  8. Significance of coal petrological investigations in coal bed methane exploration - Indian context

    Energy Technology Data Exchange (ETDEWEB)

    Misra, B.K.; Singh, B.D.; Singh, A. [Birbal Sahni Institute of Paleobotany, Lucknow (India)

    2006-11-25

    Understanding of sorption and desorption processes of gas by coal is important in coal bed methane (CBM) estimation and determining its producibility. The results of the investigations carried out so far in Australia, on the role of coal type and rank in CBM storage and recovery are found to be inapplicable in the context of Indian coals. This is probably because the Australian Permian coals were considered as a two-component system - vitrinite- and inertinite-rich (liptinite macerals being present in negligible amount), when tested through sorption and desorption experiments. Liptinite maceral group, the third component of almost all high-volatile bituminous Permian coals of India, comprising hydrogen-rich plant parts (mostly the sporinite, spores and pollen), was not acknowledged in the model studies. Likewise, two lithotype bands - bright and dull including bulk coal samples were tested for the preceding experiments, whereas a third lithotype band semi-bright, the common lithotype of Permian coals was not included in such studies. Besides some general and specific comments on observations made, it is suggested to explore the role of liptinite macerals in sorption properties in different lithotypes; and assess coal permeability on three band components.

  9. International perspectives on coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The report consists of the vugraphs from the presentations which covered the following topics: Summaries of the US Department of Energy`s coal preparation research programs; Preparation trends in Russia; South African coal preparation developments; Trends in hard coal preparation in Germany; Application of coal preparation technology to oil sands extraction; Developments in coal preparation in China; and Coal preparation in Australia.

  10. TOXIC SUBSTANCES FROM COAL COMBUSTION

    Energy Technology Data Exchange (ETDEWEB)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was

  11. Coal Combustion Science

    Energy Technology Data Exchange (ETDEWEB)

    Hardesty, D.R. (ed.); Fletcher, T.H.; Hurt, R.H.; Baxter, L.L. (Sandia National Labs., Livermore, CA (United States))

    1991-08-01

    The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency Coal Combustion Science Project. Specific tasks for this activity include: (1) coal devolatilization - the objective of this risk is to characterize the physical and chemical processes that constitute the early devolatilization phase of coal combustion as a function of coal type, heating rate, particle size and temperature, and gas phase temperature and oxidizer concentration; (2) coal char combustion -the objective of this task is to characterize the physical and chemical processes involved during coal char combustion as a function of coal type, particle size and temperature, and gas phase temperature and oxygen concentration; (3) fate of mineral matter during coal combustion - the objective of this task is to establish a quantitative understanding of the mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distribution of mineral species in the unreacted coal, and the local gas temperature and composition.

  12. Vibrated fluidized bed air classification of moist raw coal

    Institute of Scientific and Technical Information of China (English)

    杨国华; 赵跃民; 陈清如

    2002-01-01

    Vibrated fluidized bed air classification is completely different from traditional screening in principle. It extracts fine coal from moist raw coal by entrainment of an ascending airflow in a vibrated fluidized bed. Pilot tests showed that air classification efficiencies varied from 74.85% to 93.84% at cut-size 6, 4, 3, 2, 1, and 0.5 mm when free moisture of coal is in the range of 1.7% to 9.5%, and ash contents of fine coal products were 2%~3% lower than those of the same size fractions in feed, and 4%~10% lower than those of feeds for most cases because of the density differences between coal and waste, which is beneficial to producing lower ash fine coal from raw coal as fuel of blast furnaces or pulverized coal firing boilers. A commercial unit of 100 t/h has been in smooth operation, and several 300~400 t/h units are in plan or construction.

  13. Coal and coke - analysis and testing. Part 3. Proximate analysis of higher rank coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This Standard sets out methods for the determination of moisture, ash and volatile matter on the analysis sample of higher rank coal in order to obtain its proximate analysis. Fixed carbon is calculated by difference.

  14. Primary beneficiation of tantalite using magnetic separation and acid leaching

    Institute of Scientific and Technical Information of China (English)

    M Nete; F Koko; T Theron; W Purcell; JT Nel

    2014-01-01

    Primary beneficiation was successfully performed prior to dissolution of manganotantalite (sample A) and ferrotantalite (sample C) samples obtained from two different mines in the Naquissupa area, Mozambique. Magnetic separation removed the majority of iron and tita-nium, whereas H2SO4 leaching removed a large portion of thorium and uranium in these samples. Analytical results indicated that 64.14wt%and 72.04wt%of the total Fe and Ti, respectively, and~2wt%each of Nb2O5 and Ta2O5 were removed from sample C (ferrotantalite) using the magnetic separation method, whereas only 9.64wt%and 8.66wt%of total Fe2O3 and TiO2, respectively, and~2wt%each of Nb2O5 and Ta2O5 were removed from sample A (manganotantalite). A temperature of 50°C and a leaching time of 3 h in the presence of concentrated H2SO4 were observed to be the most appropriate leaching conditions for removal of radioactive elements from the tantalite ores. The results obtained for sample A under these conditions indicated that 64.14wt%U3O8 and 60.77wt%ThO2 were leached into the acidic solution, along with 4.45wt%and 0.99wt%of Nb2O5 and Ta2O5, respectively.

  15. Thermal properties of different rank coals

    Energy Technology Data Exchange (ETDEWEB)

    Serdar Yaman; Hanzade Haykiri-Acma [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2007-07-01

    Thermal properties of various coal samples which have different rank and petrography were investigated under both inert and oxidizing conditions up to 900{sup o}C in a thermal analysis system. Peat, anthracite, and bituminous coal samples from different countries and various lignites from Turkey such as Askale, Soma, and Elbistan were used. DTA (Differential Thermal Analysis) and TGA (Thermogravimetric Analysis) techniques were applied. DTG (Derivative Thermogravimetric) curves were derived and interpreted considering the physical and chemical properties, and the rank of coals. Pyrolytic chars obtained from the inert atmosphere experiments were examined applying SEM (Scanning Electron Microscopy) and XRD (X-ray Diffractometry) techniques. It was found that the thermal reactivity and the apparent thermal properties of different rank coals differ considerably under both conditions. 6 refs., 4 figs., 3 tabs.

  16. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  17. Supply Chain Cooperation between Coal Enterprise and Electric Power Enterprise in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on the two-stage Stackelberg game method, value creation of supply chain cooperation between coal enterprise and power utilities is studied by formulating profit functions of coal and power enterprises and calculating the maximum profit. According to the analysis, it is found that the profit from supply chain cooperation between coal and power enterprises is more than that of non-cooperation. The cooperation is validated to be beneficial for both units; however, the profit is mainly taken by the power enterprise. Thus, it is necessary to set up the incentive mechanism to distribute cooperation value between coal and power enterprises to promote their continual cooperation.

  18. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA

    Science.gov (United States)

    Greb, S.F.; Eble, C.F.; Hower, J.C.

    2005-01-01

    The Lower Broas-Stockton coal is a heavily mined coal of the Central Appalachian Basin. Coal thickness, distribution, composition, and stratigraphic position were compared with basement structure, gas and oil field trends, and sequence strat- igraphic and paleoclimate interpretations to better understand the geology of the Stockton coal bed in eastern Kentucky. The thickest coal occurs south of the Warfield structural trend and east of the Paint Creek Uplift, two basement-related structures. Along the Warfield trend, coal beds in the underlying Peach Orchard coal zone locally merge with the Stockton coal to form a seam more than 3 m thick. Other areas of thick coal occur in elongate trends. Two pairs of elongate, conjugate trends in Stockton coal thickness are interpreted as regional paleofractures that influenced paleotopography and groundwater during peat accumulation. Compositional group analyses indicate that the Stockton peat infilled depressions in the paleotopography as a topogenous to soligenous mire codominated by tree ferns and lycopsid trees. Flooding from adjacent paleochannels is indicated by partings and seam splits along the margins of the mineable coal body. One or more increments of low-vitrinite coal, dominated by tree ferns and shrubby, Densosporites-producing lycopsids occur at all sample sites. Similar assemblages have been previously used to identify ombrogenous, domed mire origins for Early and Middle Pennsylvanian coals in which ash yields were less than 10%. It is difficult, however, to reconcile ombrogenous conditions with the partings in the Stockton coal in this area. Low-ash, low-vitrinite increments may have been formed in topogenous to soligenous mires with periodic drying or water-table fluctuations, rather than widespread doming. This is consistent with interpretations of increasingly seasonal paleoclimates in the late Middle and Late Pennsylvanian and fracture-influenced groundwater conditions. ??2005 Geological Society of America.

  19. Coal worker's pneumoconiosis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000130.htm Coal worker's pneumoconiosis To use the sharing features on this page, please enable JavaScript. Coal worker's pneumoconiosis is a lung disease that results ...

  20. Fluidized coal combustion

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  1. Coal fires in China

    Institute of Scientific and Technical Information of China (English)

    CHE Yao(车遥); HUANG Wen-hui(黄文辉); ZHANG Ai-yun(张爱云)

    2004-01-01

    Coal fires have a very long history in China; the oldest coal fires have being burning for many million years. Up to now more than 56 coal fires spots were distinguished. They mainly locate in West-North of China, North of China and East-North of China. About millions of tons of coal have been burned in fires every year. Xinjiang Autonomy is the most serious region in coal fires as it has 38 coal fires spots and about 6.85 million tons of coal was burned every year. Coal fires in China ignited by wildfires, spontaneous combustion and human being during mining activities. These fires have released about 0.9 million tons of gasses (including CO, CO2, SO2, NO2 CH4, CO2, H2S etc.) into the atmosphere every year, most of which are brought to the east by wind and resulting more heavier air pollution in northern China.

  2. Continuous coal processing method

    Science.gov (United States)

    Ryason, P. R.

    1980-06-01

    A coal pump is provided in which solid coal is heated in the barrel of an extruder under pressure to a temperature at which the coal assumes plastic properties. The coal is continuously extruded, without static zones, using, for example, screw extrusion preferably without venting through a reduced diameter die to form a dispersed spray. As a result, the dispersed coal may be continuously injected into vessels or combustors at any pressure up to the maximum pressure developed in the extrusion device. The coal may be premixed with other materials such as desulfurization aids or reducible metal ores so that reactions occur, during or after conversion to its plastic state. Alternatively, the coal may be processed and caused to react after extrusion, through the die, with, for example, liquid oxidizers, whereby a coal reactor is provided.

  3. Chemicals from coal

    Energy Technology Data Exchange (ETDEWEB)

    Harold A. Wittcoff; Bryan G. Reuben; Jeffrey S. Plotkin

    2004-12-01

    This chapter contains sections titled: Chemicals from Coke Oven Distillate; The Fischer-Tropsch Reaction; Coal Hydrogenation; Substitute Natural Gas (SNG); Synthesis Gas Technology; Calcium Carbide; Coal and the Environment; and Notes and References

  4. Experimental Study of the Ignition of Single Drops of Coal Suspensions and Coal Particles in the Oxidizer Flow

    Science.gov (United States)

    Vershinina, K. Yu.; Glushkov, D. O.; Kuznetsov, G. V.; Strizhak, P. A.

    2017-01-01

    An experimental study has been made of the process of ignition of single drops of water-coal and organic water-coal suspensions and coal particles heated by the oxidizer flow. The low-temperature (400-600°C) regime of the initiation of combustion of commensurate (from 1 to 3 mm) drops of water-coal and organic water-coal suspensions and coal particles has been considered. With the use of a high-speed (up to 105 frames/s) video camera and Tema Automative software, the influence of the oxidizer temperature, the gas flow velocity, the size of suspension fuel drops, and the coal particle size on the conditions and integral characteristics of the induction period has been determined. The ignition delay times and the duration of the combustion process of the investigated fuel samples have been established. The features of the stages of stable low-temperature initiation of combustion have been determined.

  5. Dynamic failure in coal seams:Implications of coal composition for bump susceptibility

    Institute of Scientific and Technical Information of China (English)

    Lawson Heather; Weakley Andrew; Miller Arthur

    2016-01-01

    As a contributing factor in the dynamic failure (bumping) of coal pillars, a bump-prone coal seam has been described as one that is ‘uncleated or poorly cleated, strong. . .that sustains high stresses.”Despite extensive research regarding engineering controls to help reduce the risk for coal bumps, there is a paucity of research related to the properties of coal itself and how those properties might contribute to the mechanics of failures. Geographic distribution of reportable dynamic failure events reveals a highly localized clustering of incidents despite widespread mining activities. This suggests that unique, contributing geologic characteristics exist within these regions that are less prevalent elsewhere. To investigate a new approach for identifying coal characteristics that might lead to bumping, a principal component analysis (PCA) was performed on 306 coal records from the Pennsylvania State Coal Sample database to determine which characteristics were most closely linked with a positive history of reportable bumping. Selected material properties from the data records for coal samples were chosen as variables for the PCA and included petrographic, elemental, and molecular properties. Results of the PCA suggest a clear correlation between low organic sulfur content and the occurrence of dynamic failure, and a secondary correlation between volatile matter and dynamic failure phenomena. The ratio of vola-tile matter to sulfur in the samples shows strong correlation with bump-prone regions, with a minimum threshold value of approximately 20, while correlations determined for other petrographic and elemental variables were more ambiguous. Results suggest that the composition of the coal itself is directly linked to how likely a coal is to have experienced a reportable dynamic failure event. These compositional controls are distinct from other previously established engineering and geologic criteria and represent a missing piece to the bump prediction puzzle.

  6. Emissions of air pollutants from household stoves: honeycomb coal versus coal cake

    Energy Technology Data Exchange (ETDEWEB)

    Su Ge; Xu Xu; Judith C. Chow; John Watson [and others] [Am-As Corporation, Portland, OR (United States)

    2004-09-01

    Domestic coal combustion can emit various air pollutants. In the present study, the authors measured emissions of particulate matter (PM) and gaseous pollutants from burning a specially formulated honeycomb coal (H-coal) developed in China and a coal cake (C-coal). Flue gas samples for PM{sub 2.5}, PM coarse (PM{sub 2.5-10}), and TSP were collected isokinetically using a cascade impactor; PM mass concentrations were determined gravimetrically. Concentrations of SO{sub 2}, NOx, and ionic Cr(VI) in PM were analyzed using spectrometric methods. Fluoride concentrations were measured using a specific ion electrode method. PM elemental components were analyzed using an X-ray fluorescence technique. Total (gas and particle phase) benzo(a)pyrene (BaP) concentration was determined using an HPLC/fluorescence method. Elemental and organic carbon contents of PM were analyzed using a thermal/optical reflectance technique. The compositional and structural differences between the H-coal and C-coal resulted in different emission characteristics. In generating 1 MJ of delivered energy, the H-coal resulted in a significant reduction in emissions of SO{sub 2} (by 68%), NOx (by 47%), and TSP (by 56%) as compared to the C-coal, whereas the emissions of PM{sub 2.5} and total BaP from the H-coal combustion were 2-3-fold higher, indicating that improvements are needed to further reduce emissions of these pollutants in developing future honeycomb coals. Although the H-coal and the C-coal had similar emission factors for gas-phase fluoride, the H-coal had a particle-phase fluoride emission factor that was only half that of the C-coal. The H-coal had lower energy-based emissions of all the measured toxic elements in TSP but higher emissions of Cd and Ni in PM{sub 2.5.}. 42 refs., 3 figs., 7 tabs.

  7. The effect of coal bed dewatering and partial oxidation on biogenic methane potential

    Science.gov (United States)

    Jones, Elizabeth J.P.; Harris, Steve H.; Barnhart, Elliott P.; Orem, William H.; Clark, Arthur C.; Corum, Margo D.; Kirshtein, Julie D.; Varonka, Matthew S.; Voytek, Mary A.

    2013-01-01

    Coal formation dewatering at a site in the Powder River Basin was associated with enhanced potential for secondary biogenic methane determined by using a bioassay. We hypothesized that dewatering can stimulate microbial activity and increase the bioavailability of coal. We analyzed one dewatered and two water-saturated coals to examine possible ways in which dewatering influences coal bed natural gas biogenesis by looking at differences with respect to the native coal microbial community, coal-methane organic intermediates, and residual coal oxidation potential. Microbial biomass did not increase in response to dewatering. Small Subunit rRNA sequences retrieved from all coals sampled represented members from genera known to be aerobic, anaerobic and facultatively anaerobic. A Bray Curtis similarity analysis indicated that the microbial communities in water-saturated coals were more similar to each other than to the dewatered coal, suggesting an effect of dewatering. There was a higher incidence of long chain and volatile fatty acid intermediates in incubations of the dewatered coal compared to the water-saturated coals, and this could either be due to differences in microbial enzymatic activities or to chemical oxidation of the coal associated with O2 exposure. Dilute H2O2 treatment of two fractions of structural coal (kerogen and bitumen + kerogen) was used as a proxy for chemical oxidation by O2. The dewatered coal had a low residual oxidation potential compared to the water-saturated coals. Oxidation with 5% H2O2 did increase the bioavailability of structural coal, and the increase in residual oxidation potential in the water saturated coals was approximately equivalent to the higher methanogenic potential measured in the dewatered coal. Evidence from this study supports the idea that coal bed dewatering could stimulate biogenic methanogenesis through partial oxidation of the structural organics in coal once anaerobic conditions are restored.

  8. CO{sub 2} Sequestration Potential of Charqueadas Coal Field in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, V [NETL

    2012-10-23

    The I2B coal seam in the Charqueadas coal field has been evaluated as a target for enhanced coal bed methane production and CO{sub 2} sequestration. The samples were low rank coals (high volatile bituminous and sub-bituminous) obtained from the I2B seam as 3 cores. Such properties as sorption capacity, internal structure of the samples, porosity and permeability were of primary interest in this characterization study.

  9. Tribocharging Lunar Soil for Electrostatic Beneficiation

    Science.gov (United States)

    2008-01-01

    Future human lunar habitation requires using in situ materials for both structural components and oxygen production. Lunar bases must be constructed from thermal-and radiation-shielding materials that will provide significant protection from the harmful cosmic energy which normally bombards the lunar surface. In addition, shipping oxygen from Earth is weight-prohibitive, and therefore investigating the production of breathable oxygen from oxidized mineral components is a major ongoing NASA research initiative. Lunar regolith may meet the needs for both structural protection and oxygen production. Already a number of oxygen production technologies are being tested, and full-scale bricks made of lunar simulant have been sintered. The beneficiation, or separation, of lunar minerals into a refined industrial feedstock could make production processes more efficient, requiring less energy to operate and maintain and producing higher-performance end products. The method of electrostatic beneficiation used in this research charges mineral powders (lunar simulant) by contact with materials of a different composition. The simulant acquires either a positive or negative charge depending upon its composition relative to the charging material.

  10. SRS stainless steel beneficial reuse program

    Energy Technology Data Exchange (ETDEWEB)

    Boettinger, W.L.

    1997-02-01

    The US Department of Energy`s (DOE) Savannah River Site (SRS) has thousands of tons of stainless steel radioactive scrap metal (RSNI). Much of the metal is volumetrically contaminated. There is no {open_quotes}de minimis{close_quotes} free release level for volumetric material, and therefore no way to recycle the metal into the normal commercial market. If declared waste, the metal would qualify as low level radioactive waste (LLW) and ultimately be dispositioned through shallow land buried at a cost of millions of dollars. The metal however could be recycled in a {open_quotes}controlled release{close_quote} manner, in the form of containers to hold other types of radioactive waste. This form of recycle is generally referred to as {open_quotes}Beneficial Reuse{close_quotes}. Beneficial reuse reduces the amount of disposal space needed and reduces the need for virgin containers which would themselves become contaminated. Stainless steel is particularly suited for long term storage because of its resistance to corrosion. To assess the practicality of stainless steel RSM recycle the SRS Benficial Reuse Program began a demonstration in 1994, funded by the DOE Office of Science and Technology. This paper discusses the experiences gained in this program.

  11. Considerations on coal gasification

    Science.gov (United States)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  12. Coal production 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  13. Standard sample supply system; Hyojun shiryo kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S. [Center for Coal Utilization Japan, Tokyo (Japan)

    1997-03-20

    More than 20 universities and research institutes participate in the study of developing basic technology of coal utilization, and the `Standard sample supply system` prepares, keeps and supplys standard samples so that common samples can be used in the study. Coal samples of 50 to 100 will be prepared for 5 years. A coal sample is about 160 kg. The samples are collected from coal yards of big consumers such as power stations, etc. and coal suppliers. How to smash and keep coal are also described. Main facilities and machinery and their specification are given. Each standard sample is analyzed by means of the coal and ash analysis method of JIS and the data are distributed. The items of the analysis are shown in table. A database system will be prepared by the end of 1996. 2 figs., 2 tabs.

  14. Vitrinite-rich coal concentrate intrinsic reactivity index

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2010-07-01

    Full Text Available This work defines a new reactivity coal combustion parameter called intrinsic reactivity index (IRI, combining reactive maceral fraction (vitrinite/liptinite, non-reactive maceral fraction (inertinite/intrinsic mineral matter and vitirinite reflectance averages. Coal samples from La Yolanda and Guachinte (Valle del Cauca collieries were used to evaluate the IRI; samples consisted of original and vitrinite concentrated fractions obtained from froth flotation column. This new parameter was compared to three conventional parameters: weighted mean activation energy (WMAE, peak temperature (PT and final temperature (FT. Results revealed that vitrinite concentrated fractions had higher IRI figures than original coal. This meant that vitrinite concentrated fractions presented higher reactivity to combustion than original coal. Results also showed that EAMP, TP and TF decreased with an increase in IRI, suggesting that coal combustion reactivity becomes improved when vitirinite concentration in coal is increased.

  15. Basic properties of Japanese and foreign coals selected for liquefaction. 1. A consideration of the method for proximate analysis of coals

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, R.

    1984-10-01

    The use of thermogravimetry for the proximate analysis of coals is compared with the Japanese Standard method (JIS M8812). The thermogravimetric method was found to be applicable to a wide range of brown coals, lignites and bituminous coals providing a rapid and simple method requiring only a small sample and giving a direct determination of fixed carbon.

  16. ELECTROSTATIC SURFACE STRUCTURES OF COAL AND MINERAL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    It is the purpose of this research to study electrostatic charging mechanisms related to electrostatic beneficiation of coal with the goal of improving models of separation and the design of electrostatic separators. Areas addressed in this technical progress report are (a) electrostatic beneficiation of Pittsburgh #8 coal powders as a function of grind size and processing atmosphere; (b) the use of fluorescent micro-spheres to probe the charge distribution on the surfaces of coal particles; (c) the use of electrostatic beneficiation to recover unburned carbon from flyash; (d) the development of research instruments for investigation of charging properties of coal. Pittsburgh #8 powders were beneficiated as a function of grind size and under three atmosphere conditions: fresh ground in air , after 24 hours of air exposure, or under N2 atmosphere. The feed and processed powders were analyzed by a variety of methods including moisture, ash, total sulfur, and pyritic sulfur content. Mass distribution and cumulative charge of the processed powders were also measured. Fresh ground coal performed the best in electrostatic beneficiation. Results are compared with those of similar studies conducted on Pittsburgh #8 powders last year (April 1, 1997 to September 30, 1997). Polystyrene latex spheres were charged and deposited onto coal particles that had been passed through the electrostatic separator and collected onto insulating filters. The observations suggest bipolar charging of individual particles and patches of charge on the particles which may be associated with particular maceral types or with mineral inclusions. A preliminary investigation was performed on eletrostatic separation of unburned carbon particles from flyash. Approximately 25% of the flyash acquired positive charge in the copper tribocharger. This compares with 75% of fresh ground coal. The negatively charged material had a slightly reduced ash content suggesting some enrichment of carbonaceous material

  17. Petrography, palynology and depositional environment of Gelibolu coals, NW Turkey

    Science.gov (United States)

    Demirtaş, Ferdi; Bozcu, Mustafa; Koşun, Erdal

    2014-05-01

    Upper Oligocene and Miocene coal samples collected from two outcrops in the Gelibolu Peninsula, NW Turkey were analyzed petrographically and palynologically to determine the depositional environment of the coals. Microscopic studies reveal that the studied coal samples from both locations are characterized by high amount of huminite group macerals, ranging from 46 to 78% (mineral-included basis). The prevailing maceral from this group is gelinite (31-65%), it can be easily seen on all studied samples, indicative of high gelification degree of organic matter. Relatively low amount of liptinite (does not exceed 9%) and inertinite (does not exceed 8%) are also observed in the coals. The mineral matter content is variable but generally high, varying from 5 to 37%, as in other Turkish coals and consists mostly of clay minerals, quartz, calcite and pyrite. The mean reflectance values range from 0.502 to 0.564% suggesting that rank of coal is subbituminous (ASTM). The chemical properties of coal including calorific value, volatile matter and fixed carbon content are also in accordance with rank of coal. Facies indices based on maceral ratios (Tissue Preservation Index vs. Gelification Index and ABC ternary diagrams) were used to interpret to depositional environment of coals. Low tissue preservation index (TPI) and high gelification index (GI) values are observed. These indices indicate that the coals deposited in limnic environment. High pH and strongly reducing conditions inferred from the presence of framboidal pyrite and also evidenced by low TPI values. The palynological assembly of the coals dominated by angiosperm pollen and spore, however, gymnosperms were rarely seen. Herbaceous/sedge plants are common in Miocene coal samples.

  18. The economics of coal

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Global aspects of the production, consumption and trade in coal are described. World reserves and resources, production (both by region and country), international trade (exporters and importers), coal consumption (by region and sector), and the demand for primary energy (1960-1979). Each of the producing and consuming countries are discussed individually. The electricity sector and its future demand for coal, and the future demand for coking coal are covered. Prices for metallurgical and steam coal are also given. Statistics are presented in tables.

  19. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    Energy Technology Data Exchange (ETDEWEB)

    STERN, E.A.; LODGE, J.; JONES, K.W.; CLESCERI, N.L.; FENG, H.; DOUGLAS, W.S.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including the use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.

  20. Electrostatic Separator for Beneficiation of Lunar Soil

    Science.gov (United States)

    Quinn, Jacqueline; Arens, Ellen; Trigwell, Steve; Captain, James

    2010-01-01

    A charge separator has been constructed for use in a lunar environment that will allow for separation of minerals from lunar soil. In the present experiments, whole lunar dust as received was used. The approach taken here was that beneficiation of ores into an industrial feedstock grade may be more efficient. Refinement or enrichment of specific minerals in the soil before it is chemically processed may be more desirable as it would reduce the size and energy requirements necessary to produce the virgin material, and it may significantly reduce the process complexity. The principle is that minerals of different composition and work function will charge differently when tribocharged against different materials, and hence be separated in an electric field.

  1. Induced systemic resistance by beneficial microbes.

    Science.gov (United States)

    Pieterse, Corné M J; Zamioudis, Christos; Berendsen, Roeland L; Weller, David M; Van Wees, Saskia C M; Bakker, Peter A H M

    2014-01-01

    Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.

  2. Produced Water Management and Beneficial Use

    Energy Technology Data Exchange (ETDEWEB)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  3. Chemometric Study of Trace Elements in Hard Coals of the Upper Silesian Coal Basin, Poland

    Directory of Open Access Journals (Sweden)

    Adam Smoliński

    2014-01-01

    Full Text Available The objective of the study was the analysis of trace elements contents in coals of the Upper Silesian Coal Basin (USCB, which may pose a potential threat to the environment when emitted from coal processing systems. Productive carbon overburden in central and southern zones of the USCB is composed mostly of insulating tertiary formations of a thickness from a few m to 1,100 m, and is represented by Miocene and Pliocene formations. In the data study the geological conditions of the coal seams of particular zones of the USCB were taken into account and the hierarchical clustering analysis was applied, which enabled the exploration of the dissimilarities between coal samples of various zones of the USCB in terms of basic physical and chemical parameters and trace elements contents. Coals of the northern and eastern zones of the USCB are characterized by high average Hg and low average Ba, Cr, and Ni contents, whereas coals of southern and western zones are unique due to high average concentrations of Ba, Co, Cu, Ni, and V. Coals of the central part of the USCB are characterized by the highest average concentration of Mn and the lowest average concentrations of As, Cd, Pb, V, and Zn.

  4. The CIS coal summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The presentations (overhead/viewgraphs) include: the impacts of EU environmental legislation on Russian coal market (A. Sankovski); how Caterpillar and Cat dealers create value in the global mining industry (D. Mohr); new coal preparation technology and application in the Russian coal market (D. Morris); UK demand outlook and import growth (G. Parker); new technologies in blasting operations and services (J. Petzold and others); a global bank's view of the coal sector (M. Seleznev); ELGA coal deposit, Republic of Sakha (Yakutia), Russia (M. Tsikanov); Russia's economic outlook (P. Forrest); Renaissance Capital (investment bank) (R. Edwards); Russian coal for Korean gencos (S. Kim); and coking coal in Ukraine (V. Khilko).

  5. Coal; Le charbon

    Energy Technology Data Exchange (ETDEWEB)

    Teissie, J.; Bourgogne, D. de; Bautin, F. [TotalFinaElf, La Defense, 92 - Courbevoie (France)

    2001-12-15

    Coal world production represents 3.5 billions of tons, plus 900 millions of tons of lignite. 50% of coal is used for power generation, 16% by steel making industry, 5% by cement plants, and 29% for space heating and by other industries like carbo-chemistry. Coal reserves are enormous, about 1000 billions of tons (i.e. 250 years of consumption with the present day rate) but their exploitation will be in competition with less costly and less polluting energy sources. This documents treats of all aspects of coal: origin, composition, calorific value, classification, resources, reserves, production, international trade, sectoral consumption, cost, retail price, safety aspects of coal mining, environmental impacts (solid and gaseous effluents), different technologies of coal-fired power plants and their relative efficiency, alternative solutions for the recovery of coal energy (fuel cells, liquefaction). (J.S.)

  6. Study on ascending mining roadway layout of close distance coal seams in deep mine

    Institute of Scientific and Technical Information of China (English)

    SHI Yong-kui; MO Ji

    2007-01-01

    To solve the problems appeared in mining process of No.2 seam, the ascending stress-releasing mining method was adopted. Studying on the reasonable layout of actual mining roadway in upper coal seams is the precondition of successful ascending mining.By using "device of leak measuring by blocking up double ends", it detected the height of overburden water flowing fractured zone originated from sub-coal seams mining. Thus it proved that the actual mining roadway of No.2 upper ascending seam was located in the smooth sagging zone. On the basis of analyzing the stress-releasing effect of sub-coal seams mining to upper coal seams by using RFPA software, it analyzed the stability of up-face coal seams and the reasonable location of starting cut in up-face coal seams. It also analyzed the reasonable gateway location in upper coal seams, which ensured the crossheading in upper coal seams out of the effect of sub-coal work face mining by using theory of underground pressure. Meanwhile, the reasonable pillars dimensions in upper coal seams by building the structure mechanics model of stope were researched. It can make the roadway driven along next goaf to be located in low stress zone, and be beneficial to keeping roads stable owing to less stress of surrounding rock. Finally, it tested the rationality of the layout method of roads in upper coal seams by engineering field measurement in 3221 working face.

  7. CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

    2005-09-01

    An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 οC and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

  8. Effects of pyrite on the spontaneous combustion of coal

    Institute of Scientific and Technical Information of China (English)

    Jun Deng; Xiaofeng Ma; Yutao Zhang; Yaqing Li; Wenwen Zhu

    2015-01-01

    Pyrite has a significant effect on the spontaneous combustion of coal. The presence of pyrite can change the propensity of coal towards spontaneous combustion. The influences of various pyrite contents on the parameters of spontaneous combustion, such as index gases, temperature and released heat etc., were investigated in this study. Coal samples with different pyrite contents (0%, 3%, 5%, 7%and 9%) were made by mixing coal and pyrite. The oxidation experiments under temperature-programmed condition were carried out to test the release rate of gaseous oxidation products at different temperatures. Differential scanning calorimeter (DSC) was employed to measure the intensity of heat release during coal oxidation for various pyrite contents. The results indicate that pyrite can nonlinearly accelerate the process of spontaneous combustion. The coal sample with a pyrite content of 5% has the largest CO release rate and oxygen adsorption as well. However, the coal sample with a pyrite content of 7% has the largest rate of heat flow according to the results from the DSC tests. Pyrite contents of 5%–7% in coal has the most significant effects on spontaneous combustion within the range of this study. The conclusions are conducive to the evaluation and control for the spontaneous combustion of coal.

  9. Fundamental bioprocessing research for coal applications

    Energy Technology Data Exchange (ETDEWEB)

    Kaufman, E.N.; Scott, T.C.

    1995-06-01

    The purpose of this program is to gain a fundamental understanding and sound scientific and technical basis for evaluating the potential roles of innovative bioprocessing concepts for the utilization and conversion of coal. The aim is to explore the numerous ways in which advanced biological processes and techniques can open new opportunities for coal utilization or can replace more conventional techniques by using milder conditions with less energy consumption or loss. There are several roles where biotechnology is likely to be important in coal utilization and conversion. These include potential bioprocessing systems such as conversion of coal to liquids or gases; biocatalytic beneficiation of coal-derived liquids and conversion to useful chemical feedstocks; biocatalytic removal of SO{sub x} and NO{sub x} from coal combustion off-gas; environmental control technology for the removal or destruction of hazardous materials in process effluents and/or solid residues; and the removal and utilization of CO{sub 2} from combustion off-gas. Effective bioprocesses for such applications will require detailed knowledge of the biological process mechanisms and advanced bioreactor technology than can be optimized for high productivity, as well as supporting upstream and downstream processes that will allow an effective integrated bioprocess. Of particular interest is the development of predictive models that can be used for process design and scaleup. In this program, a generic approach is taken so that there will be utility over a broad range of applications. In conjunction with the generic approach, model experimental systems that address real-world problems are used to verify the results.

  10. Separation and Purification of Mineral Salts from Spacecraft Wastewater Processing via Electrostatic Beneficiation

    Science.gov (United States)

    Miles, John D., II; Lunn, Griffin

    2013-01-01

    Electrostatic separation is a class of material processing technologies commonly used for the sorting of coarse mixtures by means of electrical forces acting on charged or polarized particles. Most if not all of the existing tribo-electrostatic separators had been initially developed for mineral ores beneficiation. It is a well-known process that has been successfully used to separate coal from minerals. Potash (potassium) enrichment where underground salt mines containing large amounts of sodium is another use of this techno logy. Through modification this technology can be used for spacecraft wastewater brine beneficiation. This will add in closing the gap beeen traveling around Earth's Gravity well and long-term space explorations. Food has been brought on all man missions, which is why plant growth for food crops continues to be of interest to NASA. For long-term mission considerations food productions is one of the top priorities. Nutrient recovery is essential for surviving in or past low earth orbit. In our advance bio-regenerative process instead of nitrogen gas produced; soluble nitrate salts that can be recovered for plant fertilizer would be produced instead. The only part missing is the beneficiation of brine to separate the potassium from the sodium. The use of electrostatic beneficiation in this experiment utilizes the electrical charge differences between aluminum and dried brine by surface contact. The helixes within the aluminum tribocharger allows for more surface contact when being agitated. When two materials are in contact, the material with the highest affinity for electrons becomes negatively charged, while the other becomes positively charged. This contact exchange of charge may cause the particles to agglomerate depending on their residence time within the tribocharger, compromising the efficiency of separation. The aim of this experiment is to further the development in electrostatic beneficiation by optimizing the separation of ersatz and

  11. Gaseous phase coal surface modification. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Okoh, J.M.; Pinion, J.; Thiensatit, S.

    1992-05-07

    In this report, we present an improved, feasible and potentially cost effective method of cleaning and beneficiating ultrafine coal. Increased mechanization of mining methods and the need towards depyritization, and demineralization have led to an increase in the quantity of coal fines generated in recent times. For example, the amount of {minus}100 mesh coal occurring in coal preparation plant feeds now typically varies from 5 to 25% of the total feed. Environmental constraints coupled with the greatly increased cost of coal have made it increasingly important to recover more of these fines. Our method chemically modifies the surface of such coals by a series of gaseous phase treatments employing Friedel-Crafts reactions. By using olefins (ethene, propene and butene) and hydrogen chloride catalyst at elevated temperature, the surface hydrophobicity of coal is enhanced. This increased hydrophobicity is manifest in surface phenomena which reflect conditions at the solid/liquid interphase (zeta potential) and those which reflect conditions at the solid/liquid/gas interphases (contact angle, wettability and floatability).

  12. Study on comprehensive gas control techniques and practice in coal mines

    Institute of Scientific and Technical Information of China (English)

    LUO Yong; QI Qi

    2011-01-01

    The origins and main control methods of gas in coal seams were introduced cursorily, and the processes that need to be done in controlling gas, which includes prediction of gas emissions, drainage systems, the means of prevention of gas outbursts, and some suggestions were put forward. The characteristic of different gas emissions and the corresponding counter measures were presented, and a case study of simultaneous extraction of coal and gas in Xieyi Coal Mine was carried out by coal mining and gas extraction without coal-pillar. The field application shows that gas drainage ratio in panel 5121(0) averages about 90% and reaches as high as 95%, which will give beneficial references to gas control in coal mines.

  13. Development of a Coal Quality Expert

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-06-20

    , some coals may be beneficiated or blended to a quality level where significantly less costly desulfurization systems are needed. Coal cleaning processes may also be used to remove the precursors of other troublesome emissions that can be identified now or in the future. An added benefit of coal cleaning and blending is the reduction in concentrations of mineral impurities in the fuel leading to improved performance and operation of the'' boiler in which it is fired. The ash removed during the pre-combustion cleaning process can be more easily and safely disposed of at the mine than at the utility plant after combustion. EPRI's Coal Quality Impact Model (CQIM) has shown that improved fuel quality can result in savings in unit capital and operating costs. This project produced new and improved software to select coal types and specifications resulting in the best quality and lowest cost fuel to meet specific environmental requirements.

  14. Regional Effort to Deploy Clean Coal Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gerald Hill; Kenneth Nemeth; Gary Garrett; Kimberly Sams

    2009-01-31

    The Southern States Energy Board's (SSEB) 'Regional Effort to Deploy Clean Coal Technologies' program began on June 1, 2003, and was completed on January 31, 2009. The project proved beneficial in providing state decision-makers with information that assisted them in removing barriers or implementing incentives to deploy clean coal technologies. This was accomplished through two specific tasks: (1) domestic energy security and diversity; and (2) the energy-water interface. Milestones accomplished during the project period are: (1) Presentations to Annual Meetings of SSEB Members, Associate Member Meetings, and the Gasification Technologies Council. (2) Energy: Water reports - (A) Regional Efforts to Deploy Clean Coal Technologies: Impacts and Implications for Water Supply and Quality. June 2004. (B) Energy-Water Interface Challenges: Coal Bed Methane and Mine Pool Water Characterization in the Southern States Region. 2004. (C) Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S. June 2008. (3) Blackwater Interactive Tabletop Exercise - Decatur, Georgia April 2007. (4) Blackwater Report: Blackwater: Energy and Water Interdependency Issues: Best Practices and Lessons Learned. August 2007. (5) Blackwater Report: BLACKWATER: Energy Water Interdependency Issues REPORT SUMMARY. April 2008.

  15. Evaluation of coal bed methane potential of coal seams of Sawang Colliery, Jharkhand, India

    Indian Academy of Sciences (India)

    Anil M Pophare; Vinod A Mendhe; A Varade

    2008-04-01

    The coal seams of Sawang Colliery, East Bokaro Coalfields are bituminous to sub-bituminous in nature and categorized as high gaseous seams (degree II to degree III level). These seams have the potential for coal bed methane (CBM) and their maturity increases with increasing depth, as a result of enhanced pressure-temperature conditions in the underground. The vitrinite maceral group composition of the investigated coal seams ranges from 62.50-83.15%, whereas the inertinite content varies from 14.93-36.81%. The liptinite content varies from 0.66% to 3.09%. The maximum micro-pores are confined within the vitrinite group of macerals. The coal seams exhibit vitrinite reflectance values (Ro% calculated) from 0.94% (sample CG-97) to 1.21% (sample CG-119). Proximate analyses of the investigated coal samples reveal that the moisture content (M%) ranges from 1.28% to 2.98%, whereas, volatile matter (VM%) content is placed in the range of 27.01% to 33.86%. The ash content (A%) ranges from 10.92% to 30.01%. Fixed carbon (FC%) content varies from 41.53% to 55.93%. Fuel ratio variation shows a restricted range from 1.53 to 1.97. All the coal samples were found to be strongly caking and forming coke buttons. The present study is based on the adsorption isotherm experiments carried out under controlled P-T conditions for determination of actual gas adsorption capacity of the coal seams. This analysis shows that the maximum methane gas adsorbed in the coal sample CG-81 is 17m3/t (Std. daf), at maximum pressure of 5.92MPa and experimental temperature of 30°C. The calculated Langmuir regression parameters PL and VL range from 2.49 to 3.75MPa and 22.94 to 26.88m3/t (Std. daf), respectively.

  16. MECHANISM AND APPLICATION OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Coaldrybeneficiationwithair-densemediumfluidizedbedhasbeenestablishedasahighefi-ciencydryseparationtechniquewhichappliesflu-i...

  17. Motion analysis of waste rock in gas-solids fluidized bed in coal dry beneficiation

    Institute of Scientific and Technical Information of China (English)

    郭迎福; 陈安华; 张永忠; 邓志鹏; 毛树楷

    2002-01-01

    Through the analysis of forces acting on the waste rock in the gas-solid fluidized bed, the waste rock velocity equations and displacement equations in the gas-solids fluidized bed were achieved and the influential factors of the waste rock motion in the fluidized bed were studied in this paper. The conclusions show that the primary factors influencing the waste rock motion are the waste rock grain size and the scraper velocity according to the computer simulation. This has provided the theoretical foundation both for improving the separating effect and ascertaining the length of the separating cell.

  18. FINE COAL AND THREE PRODUCT DRY BENEFICIATION WITH VIBRATION AND DOUBLE-DENSITY FLUIDIZED BEDS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Thedrybeneficiationtechnologywithairdensemediumfluidizedbedcaneficientlybenefici-atethecoarsecoalofsize50~6mm.However,thistec...

  19. Steam pretreatment for coal liquefaction

    Science.gov (United States)

    Ivanenko, Olga

    The objectives of this work are to test the application of steam pretreatment to direct coal liquefaction, to investigate the reaction of model compounds with water, and to explore the use of zeolites in these processes. Previous work demonstrated the effectiveness of steam pretreatment in a subsequent flash pyrolysis. Apparently, subcritical steam ruptures nearly all of the ether cross links, leaving a partially depolymerized structure. It was postulated that very rapid heating of the pretreated coal to liquefaction conditions would be required to preserve the effects of such treatment. Accordingly, a method was adopted in which coal slurry is injected into a hot autoclave containing solvent. Since oxygen is capable of destroying the pretreatment effect, precautions were taken for its rigorous exclusion. Tests were conducted with Illinois No. 6 coal steam treated at 340sp°C, 750 psia for 15 minutes. Both raw and pretreated samples were liquified in deoxygenated tetralin at high severity (400sp°C, 30 min.) and low severity (a: 350sp°C, 30 min., and b: 385sp°C, 15 min.) conditions under 1500 psia hydrogen. Substantial improvement in liquid product quality was obtained and the need for rapid heating and oxygen exclusion demonstrated. Under low severity conditions, the oil yield was more than doubled, going from 12.5 to 29 wt%. Also chemistry of the pretreatment process was studied using aromatic ethers as model compounds. alpha-Benzylnaphthyl ether (alpha-BNE), alpha-naphthylmethyl phenyl (alpha-NMPE), and 9-phenoxyphenanthrene were exposed to steam and inert gas at pretreatment conditions and in some cases to liquid water at 315sp°C. alpha-BNE and alpha-NMPE showed little difference in conversion in inert gas and in steam. Hence, these compounds are poor models for coal in steam pretreatment. Thermally stable 9-phenoxyphenanthrene, however, was completely converted in one hour by liquid water at 315sp°C. At pretreatment conditions mostly rearranged starting

  20. Proximate analysis of coal and solid products from coal conversion by thermogravimetric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Iacchelli, A.; Selucky, M.

    1983-01-01

    Proximate analysis of coals consists of the determination of moisture, volatile matter, ash and fixed carbon in a sample. This report shows that this analysis can be accomplished using thermal gravimetric analysis (TGA) as a procedure which can simulate all conditions involved. The influence of various variables, such as sample size, purge gas flow rate, temperature program and coal rank have been studied using coal samples ranging in rank from low volatile bituminous coals to lignites. The TGA procedure practically eliminates sample contact with ambient air and reduces sample handling to detemining (automatically) its original weight before the start of the analysis. The whole proximate analysis is essentially a one-step procedure. The use of oxygen after volatile matter removal allows direct burning of fixed carbon as a direct determination of its weight. The method is fast and well repeatable and is recommended as a semiroutine procedure, especially for very small samples from minibomb experiments, or where additional information on the course of sample devolatilization is of interest, such as in the analysis of pyridine and toluene extracts and the various insoluble materials form coal conversion experiments. 7 refs., 13 figs., 4 tabs.

  1. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  2. Mobilization of iron from coal fly ash was dependent upon the particle size and the source of coal.

    Science.gov (United States)

    Smith, K R; Veranth, J M; Lighty, J S; Aust, A E

    1998-12-01

    Particulate air pollution, including coal fly ash, contains iron, and some of the pathological effects after inhalation may be due to reactive oxygen species produced by iron-catalyzed reactions. The objective of this study was to determine whether iron, present in coal fly ash, was mobilized, leading to ferritin induction in human airway epithelial cells, and whether the size of the particles affected the amount of iron mobilized. Three types of coal were used to generate the three size fractions of fly ash collected. The Utah coal fly ash was generated from a bituminous b coal, the Illinois coal fly ash from a bituminous c coal, and the North Dakota coal fly ash from a lignite a coal. Three size fractions were studied to compare the amount of iron mobilized in human airway epithelial (A549) cells and by citrate in cell-free suspensions. The size fractions selected were fine (airborne particulate matter fraction greater than 10 microm. Coal fly ash samples were incubated with 1 mM citrate to determine if iron associated with coal fly ash could be mobilized. Iron was mobilized by citrate from all three size fractions of all three coal types to levels as high as 56.7 nmol of Fe/mg of coal fly ash after 24 h. With all three coal types, more iron was mobilized by citrate from the fraction than from the >2.5 microm fractions. Further, the mobilized iron was in the Fe(III) form. To determine if iron associated with the coal fly ash could be mobilized by A549 cells, cells were treated with coal fly ash, and the amount of the iron storage protein ferritin was determined after 24 h. Ferritin levels were increased by as much as 11.9-fold in cells treated with coal fly ash. With two of the three types of coal studied, more ferritin was induced in cells treated with the fraction than with the >2.5 microm fractions. Further, inhibition of the endocytosis of the coal fly ash by the cells resulted in ferritin levels that were near that of the untreated cells, suggesting that

  3. SURFACE-MODIFIED COALS FOR ENHANCED CATALYST DISPERSION AND LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Yaw D. Yeboah

    1999-09-01

    This is the final report of the Department of Energy Sponsored project DE-FGF22-95PC95229 entitled, surface modified coals for enhanced catalyst dispersion and liquefaction. The aims of the study were to enhance catalyst loading and dispersion in coal for improved liquefaction by preadsorption of surfactants and catalysts on the coal and to train and educate minority scientists in catalysts and separation science. Illinois No. 6 Coal (DEC-24) was selected for the study. The surfactants investigated included dodecyl dimethyl ethyl ammonium bromide (DDAB), a cationic surfactant, sodium dodecyl sulfate, an anionic surfactant, and Triton x-100, a neutral surfactant. Ammonium molybdate tetrahydrate was used as the molybdenum catalyst precursor. Zeta potential, BET, FTIR, AFM, UV-Vis and luminescence intensity measurements were undertaken to assess the surface properties and the liquefaction activities of the coal. The parent coal had a net negative surface charge over the pH range 2-12. However, in the presence of DDAB the negativity of the surface charge decreased. At higher concentrations of DDAB, a positive surface charge resulted. In contrast to the effect of DDAB, the zeta potential of the coal became more negative than the parent coal in the presence of SDS. Adsorption of Triton reduced the net negative charge density of the coal samples. The measured surface area of the coal surface was about 30 m{sup 2}/g compared to 77m{sup 2}/g after being washed with deionized water. Addition of the surfactants decreased the surface area of the samples. Adsorption of the molybdenum catalyst increased the surface area of the coal sample. The adsorption of molybdenum on the coal was significantly promoted by preadsorption of DDAB and SDS. Molybdenum adsorption showed that, over a wide range of concentrations and pH values, the DDAB treated coal adsorbed a higher amount of molybdenum than the samples treated with SDS. The infrared spectroscopy (FTIR) and the atomic force

  4. Soil risk assessment of As and Zn contamination in a coal mining region using geostatistics [corrected].

    Science.gov (United States)

    Komnitsas, Kostas; Modis, Kostas

    2006-12-01

    The present paper aims to map As and Zn contamination and assess the risk for agricultural soils in a wider disposal site containing wastes derived from coal beneficiation. Geochemical data related to environmental studies show that the waste characteristics favor solubilisation and mobilization of inorganic contaminants and in some cases the generation of acidic leachates. 135 soil samples were collected from a 34 km(2) area and analysed by using geostatistics under the maximum entropy principle in order to produce risk assessment maps and estimate the probability of soil contamination. In addition, the present paper discusses the main issues related to risk assessment in wider mining and waste disposal sites in order to assist decision makers in selecting feasible rehabilitation schemes.

  5. FACEBOOK AND WHATSAPP: BENEFICIAL OR HARMFUL?

    Directory of Open Access Journals (Sweden)

    Sankalp Raj

    2015-04-01

    Full Text Available New innovations and advances in science and technology in the present day have made considerable and significant changes in the lifestyle of people all around the globe. Communication from one part of the world to another is possible at the hit of a button . Social networking is being rampantly used everywhere and by everybody, be it youngsters or the older generation. Facebook and Whatsapp are the most commonly used means of communication in social networking at present. Smart phones functioning as minicomp uters with fast internet connectivity in the pockets of today’s technosavy generation have made them create and spend most of their time interacting with people in a virtual world. There is an urgent need to understand the dynamics of social media and its effects on the lifestyle of people. Studies documenting the same have been very few. This study was conducted to understand the benefits and harms towards health and academics of MBBS students. This cross - sectional study on 147 MBBS students revealed inter esting findings and opinions of the students. Effects of Facebook and What Sapp on productivity and sleep disturbances due to it were the significant findings of the study. Facebook and Whatsapp can be considered both beneficial and harmful and it solely d epends on how it is being put to use

  6. Beneficial and adverse effects of chemopreventive agents

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Mu; Park, Kwang-Kyun

    2003-03-01

    The beneficial and adverse effects of some chemopreventive agents, such as Vitamins A, C, E, beta-carotene, indole-3-carbinol, capsaicin, garlic, and aloe are reviewed. Two large randomized trials with a lung cancer endpoint, the Alpha-Tocopherol, Beta-Carotene (ATBC) Prevention Study and the Beta-Carotene and Retinol Efficacy Trial (CARET), suggested that antioxidants might be harmful in smokers. However, the results of the Linxian study and of the ATBC or the CARET studies were significantly different in this respect, and therefore, the relationship between antioxidant and carcinogenesis remains open to debate. Indole-3-carbinol has cancer promoting activities in the colon, thyroid, pancreas, and liver, whereas capsaicin alters the metabolism of chemical carcinogens and may promote carcinogenesis at high doses. Organosulfur compounds and selenium from garlic have no or a little enhancing effect on cancer promotion stage. Information upon chemopreventive mechanisms that inhibit carcinogenesis is imperfect, although the causes and natures of certain human cancers are known. Therefore, definitive preventive guidelines should be carefully offered for various types of tumors, which properly consider ethnic variations, and the efficacies and the safety of chemopreventive agents.

  7. Composition and Trace Element Content of Coal in Taiwan

    Institute of Scientific and Technical Information of China (English)

    蔡龙贻

    2002-01-01

    Researches on trace elements in coal and their influence on environment and human health were introduced. Some 4 coal samples were taken from Taiwan to test the content of trace elements. The author holds that a further study is needed for understanding the modes of occurrence of elements during the deposition and coalification stage in the studying area.

  8. Flocculation, hydrophobic agglomeration and filtration of ultrafine coal

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Z. [University of British Columbia, Vancouver, BC (Canada). Department of Mineral and Mineral Process Engineering

    1999-07-01

    Selective flocculation tests were run on three types of coal and three additives in tests on a new hydrophobic agglomeration process using hydrophobic latices. The coals differed widely in surface wettability. The additives were hydrophobic latexes, a semi-hydrophobic flocculant, and a typical hydrophilic polyelectrolyte. The results show that coal wettability is very important in selective flocculation. UBC-1 hydrophobic latex flocculated hydrophobic coal particles only, while the polyelectrolyte flocculated all the coal samples and minerals that were tested. Tests of oil agglomeration using kerosene emulsified with surfactants of various ionic properties show that even oxidized coals can be agglomerated, if cationic surfactants are used to emulsify the oil. The hydrophobic latex and emulsified oils also significantly increase filtration rate and reduce filter cake moisture content.

  9. A method of determining the permeability coefficient of coal seam based on the permeability of loaded coal

    Institute of Scientific and Technical Information of China (English)

    Li Bo; Wei Jianping; Wang Kai; Li Peng; Wang Ke

    2014-01-01

    This study developed the equipment for thermo-fluid-solid coupling of methane-containing coal, and investigated the seepage character of loaded coal under different working conditions. Regarding the effective pressure as a variable, the variation characteristics of the gas permeability of loaded meth-ane-containing coal has been studied under the conditions of different confining pressures and pore pres-sures. The qualitative and quantitative relationship between effective stress and permeability of loaded methane-containing coal has been established, considering the adsorption of deformation, amount of pore gas compression and temperature variation. The results show that the permeability of coal samples decreases along with the increasing effective stress. Based on the Darcy law, the correlation equation between the effective stress and permeability coefficient of coal seam has been established by combining the permeability coefficient of loaded coal and effective stress. On the basis of experimental data, this equation is used for calculation, and the results are in accordance with the measured gas permeability coefficient of coal seam. In conclusion, this method can be accurate and convenient to determine the gas permeability coefficient of coal seam, and provide evidence for forecasting that of the deep coal seam.

  10. Coal tar in dermatology

    Energy Technology Data Exchange (ETDEWEB)

    Roelofzen, J.H.J.; Aben, K.K.H.; Van Der Valk, P.G.M.; Van Houtum, J.L.M.; Van De Kerkhof, P.C.M.; Kiemeney, L.A.L.M. [Radboud University Nijmegen Medical Center, Nijmegen (Netherlands). Dept. of Dermatology

    2007-07-01

    Coal tar is one of the oldest treatments for psoriasis and eczema. It has anti-inflammatory, antibacterial, antipruritic and antimitotic effects. The short-term side effects are folliculitis, irritation and contact allergy. Coal tar contains carcinogens. The carcinogenicity of coal tar has been shown in animal studies and studies in occupational settings. There is no clear evidence of an increased risk of skin tumors or internal tumors. Until now, most studies have been fairly small and they did not investigate the risk of coal tar alone, but the risk of coal tar combined with other therapies. New, well-designed, epidemiological studies are necessary to assess the risk of skin tumors and other malignancies after dermatological use of coal tar.

  11. Coal: ditching the dirt

    Energy Technology Data Exchange (ETDEWEB)

    Russell, E.

    2006-01-01

    At the time when the British government is considering building new nuclear power plants, this article gives an overview of how the coal industry has been developing technologies to reduce greenhouse gas emissions and increase combustion efficiency which make coal a more attractive power source that should not be overlooked. Technologies mentioned include integrated gasification combined cycle, fluidized bed combustion, low NOx burners, and combustion control. Research is under way on capturing greenhouse gas emissions from fossil fuels. Use of fly ash in cement manufacture help reduce CO{sub 2} emissions. Clean coal technologies in the UK are supported by the IEA Clean Coal Centre, the World Coal Institute and the Coal Research Forum. 3 photos. 3 figs.

  12. Coal, culture and community

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    16 papers are presented with the following titles: the miners; municipalisation and the millenium - Bolton-upon-Dearne Urban District Council 1899-1914; the traditional working class community revisited; the cultural capital of coal mining communities; activities, strike-breakers and coal communities; the limits of protest - media coverage of the Orgreave picket during the miners` strike; in defence of home and hearth? Families, friendships and feminism in mining communities; young people`s attitudes to the police in mining communities; the determinants of productivity growth in the British coal mining industry, 1976-1989; strategic responses to flexibility - a case study in coal; no coal turned in Yorkshire?; the North-South divide in the Central Coalfields; the psychological effects of redundancy and worklessness - a case study from the coalfields; the Dearne Valley initiative; the future under labour: and coal, culture and the community.

  13. Cooperative research program in coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. (ed.)

    1991-01-01

    This Quarterly Report on coal liquefaction research includes discussion in the areas of (1) Iron Based Catalysts for Coal Liquefaction; (2) Exploratory Research on Coal Conversion; (3) Novel Coal Liquefaction Concepts; (4) Novel Catalysts for Coal Liquefaction. (VC)

  14. Health impacts of domestic coal use in China

    Science.gov (United States)

    Finkelman, R.B.; Belkin, H.E.; Zheng, B.

    1999-01-01

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  15. Behavior of South Yakutsk coals during prolonged stockpiling

    Energy Technology Data Exchange (ETDEWEB)

    Fatkulin, I.Ya.; Gebler, I.I.; Tager, A.N.; Panteleev, E.V.

    1981-01-01

    When brought to the surface, coal starts to react with atmospheric oxygen, leading to irreversible structural changes in the coal substance and a gradual change in every property. Above all, oxidation causes a deterioration in caking capacity and coking properties, which largely determine the technological value of coals as a raw material for the production of metallurgical coke. These problems are very acute for the South Yakutsk coalfield, which holds major reserves of high-grade coking coals and is starting to be developed in certain areas such as Neryungrinsk. Limiting stockpiling periods have been established on the basis of special research and practical experience for various types of coals from the well-known USSR coalfields (Donbas, Kuzbas, Karaganda), but no such information is available on South Yakutsk coals apart from some references to their unusually high oxidation resistance. Coals can oxidize at various rates after their extraction, depending on many factors including rank, petrographic constitution, degree of comminution during mining and conditions at the stockpile (temperature, humidity, etc.). During stockpiling, the smaller coal particles oxidize more rapidly than the larger, by reason of their greater specific surface area; hence, the caking capacity of the fines (<1 mm) from a homogeneous vitrinite coal is always below that of the lump coals.As the ambient temperature and humidity of the stockpile are raised, oxidation proceeds more rapidly. It is greatly inhibited at subzero temperatures. As a result of experiments, it was found that: (1) coals in the South Yakutsk coalfield are exceptionally resistant to oxidation; (2) it is possible to establish substantial reserves in the stockyards of coal cleaning and processing undertakings; and (3) samples of South Yakutsk coals remain representative (for normal standard analytical and testing purposes) over a storage period up to 1 year.

  16. Health impacts of domestic coal use in China.

    Science.gov (United States)

    Finkelman, R B; Belkin, H E; Zheng, B

    1999-03-30

    Domestic coal combustion has had profound adverse effects on the health of millions of people worldwide. In China alone several hundred million people commonly burn raw coal in unvented stoves that permeate their homes with high levels of toxic metals and organic compounds. At least 3,000 people in Guizhou Province in southwest China are suffering from severe arsenic poisoning. The primary source of the arsenic appears to be consumption of chili peppers dried over fires fueled with high-arsenic coal. Coal samples in the region were found to contain up to 35,000 ppm arsenic. Chili peppers dried over high-arsenic coal fires adsorb 500 ppm arsenic on average. More than 10 million people in Guizhou Province and surrounding areas suffer from dental and skeletal fluorosis. The excess fluorine is caused by eating corn dried over burning briquettes made from high-fluorine coals and high-fluorine clay binders. Polycyclic aromatic hydrocarbons formed during coal combustion are believed to cause or contribute to the high incidence of esophageal and lung cancers in parts of China. Domestic coal combustion also has caused selenium poisoning and possibly mercury poisoning. Better knowledge of coal quality parameters may help to reduce some of these health problems. For example, information on concentrations and distributions of potentially toxic elements in coal may help delineate areas of a coal deposit to be avoided. Information on the modes of occurrence of these elements and the textural relations of the minerals and macerals in coal may help predict the behavior of the potentially toxic components during coal combustion.

  17. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  18. Environmental epidemic characteristics of coal-burning endemic fluorosis and the safety threshold of coal fluoride in China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.H.; Wang, W.Y.; Yang, L.S.; Li, H.R. [Chinese Academy of Sciences, Beijing (China)

    2003-05-01

    Data on coal-burning endemic fluorosis throughout China and on the exposure-response relationship between concentrations of fluoride determined in coal samples and the prevalence of dental fluorosis reported from 17 representative surveillance stations in Southwest China were used to estimate the safety threshold for coal fluoride. Coal-burning endemic fluorosis occurs mainly in the mountainous areas of this part of China, where the prevalence of the disease is closely linked to geochemical parameters of the local environment. In these regions the incidence of dental fluorosis has a significant positive correlation with the concentration of fluoride in coal. The safety threshold of coal fluoride is estimated to be 190 mg/kg by the criterion of 0% incidence of dental fluorosis.

  19. Chemistry of thermally altered high volatile bituminous coals from southern Indiana

    Science.gov (United States)

    Walker, R.; Mastalerz, Maria; Brassell, S.; Elswick, E.; Hower, J.C.; Schimmelmann, A.

    2007-01-01

    The optical properties and chemical characteristics of two thermally altered Pennsylvanian high volatile bituminous coals, the non-coking Danville Coal Member (Ro = 0.55%) and the coking Lower Block Coal Member (Ro = 0.56%) were investigated with the purpose of understanding differences in their coking behavior. Samples of the coals were heated to temperatures of 275????C, 325????C, 375????C and 425????C, with heating times of up to one hour. Vitrinite reflectance (Ro%) rises with temperature in both coals, with the Lower Block coal exhibiting higher reflectance at 375????C and 425????C compared to the Danville coal. Petrographic changes include the concomitant disappearance of liptinites and development of vesicles in vitrinites in both coals, although neither coal developed anisotropic coke texture. At 375????C, the Lower Block coal exhibits a higher aromatic ratio, higher reflectance, higher carbon content, and lower oxygen content, all of which indicate a greater degree of aromatization at this temperature. The Lower Block coal maintains a higher CH2/CH3 ratio than the Danville coal throughout the heating experiment, indicating that the long-chain unbranched aliphatics contained in Lower Block coal liptinites are more resistant to decomposition. As the Lower Block coal contains significant amounts of liptinite (23.6%), the contribution of aliphatics from these liptinites appears to be the primary cause of its large plastic range and high fluidity. ?? 2006 Elsevier B.V. All rights reserved.

  20. CLEANER ENERGY FROM COAL

    Directory of Open Access Journals (Sweden)

    Adina-MilenaTĂTAR

    2016-12-01

    Full Text Available With the ever-increasing demand for coal, particularly in the developing world, the use of low emission coal technologies becomes increasingly important if international targets on climate change are to be achieved. The two principal avenues for reducing carbon emissions from coal-fired power generation are through use of high efficiency, low emission power plantsand carbon capture, use and storage.

  1. Inhibition Effect of Phosphorus Flame Retardants on the Fire Disasters Induced by Spontaneous Combustion of Coal

    Directory of Open Access Journals (Sweden)

    Yibo Tang

    2017-01-01

    Full Text Available Coal spontaneous combustion (CSC generally induces fire disasters in underground mines, thus causing serious casualties, environmental pollution, and property loss around the world. By using six P-containing additives to process three typical coal samples, this study investigated the variations of the self-ignition characteristics of the coal samples before and after treatment. The analysis was performed by combining thermogravimetric analysis/differential scanning calorimetry (TG/DSC Fourier transform infrared spectrometer (FTIR and low temperature oxidation. Experimental results showed that P-containing inhibitors could effectively restrain the heat emitted in the combustion of coal samples and therefore the ignition temperature of the coal samples was delayed at varying degrees. The combustion rate of the coal samples was reduced as well. At the temperatures ranging from 50°C to 150°C, the activation energy of the coal samples after the treatment was found to increase, which indicated that the coal samples were more difficult to be oxidized. After being treated with phosphorus flame retardants (PFRs, the content of several active groups represented by the C-O structure in the three coal samples was proved to be obviously changed. This suggested that PFRs could significantly inhibit the content of CO generated by the low temperature oxidation of coal, and the flame-retardant efficiency grew with the increasing temperature. At 200°C, the maximal inhibition efficiency reached approximately 85%.

  2. Pyrolysis of Coal

    Directory of Open Access Journals (Sweden)

    Rađenović, A.

    2006-07-01

    Full Text Available The paper presents a review of relevant literature on coal pyrolysis.Pyrolysis, as a process technology, has received considerable attention from many researchers because it is an important intermediate stage in coal conversion.Reactions parameters as the temperature, pressure, coal particle size, heating rate, soak time, type of reactor, etc. determine the total carbon conversion and the transport of volatiles and therebythe product distribution. Part of the possible environmental pollutants could be removed by optimising the pyrolysis conditions. Therefore, this process will be subsequently interesting for coal utilization in the future

  3. Monte Carlo simulation of moderator and reflector in coal analyzer based on a D-T neutron generator.

    Science.gov (United States)

    Shan, Qing; Chu, Shengnan; Jia, Wenbao

    2015-11-01

    Coal is one of the most popular fuels in the world. The use of coal not only produces carbon dioxide, but also contributes to the environmental pollution by heavy metals. In prompt gamma-ray neutron activation analysis (PGNAA)-based coal analyzer, the characteristic gamma rays of C and O are mainly induced by fast neutrons, whereas thermal neutrons can be used to induce the characteristic gamma rays of H, Si, and heavy metals. Therefore, appropriate thermal and fast neutrons are beneficial in improving the measurement accuracy of heavy metals, and ensure that the measurement accuracy of main elements meets the requirements of the industry. Once the required yield of the deuterium-tritium (d-T) neutron generator is determined, appropriate thermal and fast neutrons can be obtained by optimizing the neutron source term. In this article, the Monte Carlo N-Particle (MCNP) Transport Code and Evaluated Nuclear Data File (ENDF) database are used to optimize the neutron source term in PGNAA-based coal analyzer, including the material and shape of the moderator and neutron reflector. The optimized targets include two points: (1) the ratio of the thermal to fast neutron is 1:1 and (2) the total neutron flux from the optimized neutron source in the sample increases at least 100% when compared with the initial one. The simulation results show that, the total neutron flux in the sample increases 102%, 102%, 85%, 72%, and 62% with Pb, Bi, Nb, W, and Be reflectors, respectively. Maximum optimization of the targets is achieved when the moderator is a 3-cm-thick lead layer coupled with a 3-cm-thick high-density polyethylene (HDPE) layer, and the neutron reflector is a 27-cm-thick hemispherical lead layer.

  4. Studies of coal structure using carbene chemistry

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The object of this grant was to react coal, derivatized forms of coal, and solvent swelled coal with carbenes (divalent carbon species) under mild conditions. These carbenes were to be prepared by treating the coal with several diazo compounds and then thermally decomposing them at relatively low temperatures (80--130{degree}C). The carbenes were to be chosen to show varying selectively toward aromatic rings containing heteroatom functionalities and toward polynuclear aromatic systems. In some instances, where selectivities toward aromatic and heteroaromatic ring systems were not known, model studies were to be carried out. Because of the generally mild conditions employed and the good selectivity anticipated, and actually observed with one particular system, it was expected that this methodology would provide structural information about the coal, along with data on the extent of occurrence and type of aromatic systems. After carbene reactions, treatment of the coal samples was to include extractions and thermolysis. Physical studies included thermogravimetric analysis, diffuse reflectance FT-IR spectroscopy, NMR ({sup 1}H and {sup 13}C) spectroscopy, gas chromatography, GC/MS and GC/FT-IR. 7 figs., 10 tabs.

  5. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  6. Mice housed on coal dust-contaminated sand: A model to evaluate the impacts of coal mining on health.

    Science.gov (United States)

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus

    2016-03-01

    Coal dust is the most important air pollutant in coal mining in regards to producing deleterious health effects. It permeates the surrounding environment threatening public health. The aim of this study was to evaluate the toxic effects associated with exposure to sand contaminated with coal dust particles below 38 μm in diameter, obtained from a mineral sample collected in the largest coal mine in South America, La Loma, Cesar, Colombia. Sterilized sand was spiked with coal dust to obtain concentrations ranging from zero to 4% coal dust. To model natural exposure, mice were housed for eight weeks in boxes containing this mixture as bedding after which, they were euthanized and blood and tissue samples were collected. Real time PCR analysis revealed an increase in Cyp1A1 mRNA for living on sand with coal dust concentrations greater than 2% compared to mice living on sand without coal dust. Unexpectedly, for mice on coal dust-polluted sand, Sod1, Scd1 and Nqo1 hepatic mRNA were downregulated. The Comet assay in peripheral blood cells and the micronucleus test in blood smears, showed a significant potential genotoxic effect only at the highest coal dust concentration. Histopathological analysis revealed vascular congestion and peribronchial inflammation in the lungs. A dose-response relationship for the presence of hepatic steatosis, vacuolization and nuclei enlargements was observed in the exposed animals. The data suggest living on a soil polluted with coal dust induces molecular, cellular and histopathological changes in mice. Accordingly, the proposed model can be used to identify deleterious effects of exposure to coal dust deposited in soils that may pose health risks for surrounding wildlife populations.

  7. Characteristics of process oils from HTI coal/plastics co-liquefaction runs

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, G.A.; Brandes, S.D.; Winschel, R.A. [and others

    1995-12-31

    The objective of this project is to provide timely analytical support to DOE`s liquefaction development effort. Specific objectives of the work reported here are presented. During a few operating periods of Run POC-2, HTI co-liquefied mixed plastics with coal, and tire rubber with coal. Although steady-state operation was not achieved during these brief tests periods, the results indicated that a liquefaction plant could operate with these waste materials as feedstocks. CONSOL analyzed 65 process stream samples from coal-only and coal/waste portions of the run. Some results obtained from characterization of samples from Run POC-2 coal/plastics operation are presented.

  8. Proximate analysis of New Zealand and Australian coals by thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Beamish, B.B. [University of Auckland, Auckland (New Zealand). Dept. of Geology

    1994-12-31

    A technique has been developed at The University of Auckland for proximate analysis of coals by thermogravimetry using sample weights of {lt}20 mg. Samples from three New Zealand coalfields and the Bowen Basin of Queensland, Australia, have been analysed. Coals tested range in rank from subbituminous to semianthracite, and have ash contents from 3.1 to 21.4% on a dry basis. Results obtained using the technique are within acceptable precision limits of the standard procedure. Volatile matter content of the coal shows a logarithmic increase with decreasing sample weight. To minimise this effect on repeatability, and to optimise the equipment capabilities, sample weights of 15.5 +/- 0.5 mg should be used. The technique is ideally suited to (1) analysing samples where insufficient material is available for standard proximate analysis, and (2) correlation with microstudies of coal.

  9. Experiment study of optimization on prediction index gases of coal spontaneous combustion

    Institute of Scientific and Technical Information of China (English)

    牛会永; 邓湘陵; 李石林; 蔡康旭; 朱豪; 李芳; 邓军

    2016-01-01

    The coal of Anyuan Mine has the characteristic of easy spontaneous combustion. Conventional method is difficult to predict it. Coal samples from this mine were tested in laboratory. The data obtained from laboratory determination were initialized for the value which was defined as “K”. The ratio of each index gas and value of “K”, and the ratio of combination index gases and value of “K”, were analyzed simultaneously. The research results show that for this coal mine, if there is carbon monoxide in the gas sample, the phenomenon of oxidation and temperature rising for coal exists in this mine; if there is C2H4 in the gas sample, the temperature of coal perhaps exceeds 130 °C. If the coal temperature is between 35 °C and 130 °C, prediction and forecast for coal spontaneous combustion depend on the value ofΦ(CO)/K mainly; if the temperature of coal is between 130 °C and 300 °C, prediction and forecast for coal spontaneous combustion depend on the value ofΦ(C2H6)/Φ(C2H2)andΦ(C2H6)/K. The research results provide experimental basis for the prediction of coal spontaneous combustion in Anyuan coal mine, and have better guidance on safe production of this coal mine.

  10. Effect of impulse and bedding on impact toughness of coal

    Institute of Scientific and Technical Information of China (English)

    YU Yong-jiang; WANG Lai-gui; LI Jian-xin

    2008-01-01

    In order to understand the properties of impact toughness of coal at different impact speeds,and the change of impact toughness of lump coal to joint directivity of lump coal,a series of impact tests were conducted on Beijing Da'anshan Lump Coal at different impact speeds and in different impact direction.Through analyzing the test result,it is shown that the change of testing samples is similar when impact is exerted on the vertical bedding and the parallel bedding when the impulse is less than 20 Nos,and the difference increases with the impulse increasing when the impulse is more than 20 Nos.At the same time,the expanding energy of fracture in samples increases with its expanding speed,and the expanding energy of fracture has close relation with the impact direction of the tested samples.And the difference of impact toughness of lump coal produced by different impact direction increase with the impact speed.The fracture surface of lump coal when impact is exerted on the vertical bedding is smooth and the broken block number is fewer;but the fracture surface of lump coal when impact is exerted on the parallel bedding isn't smooth and the broken block number is more,which inflects impact toughness of coal is sensitive to some deficiency.

  11. Effect of impulse and bedding on impact toughness of coal

    Institute of Scientific and Technical Information of China (English)

    YU Yong-jiang; WANG Lai-gui; LI Jian-xin

    2008-01-01

    In order to understand the properties of impact toughness of coal at different impact speeds, and the change of impact toughness of lump coal to joint directivity of lump coal, a series of impact tests were conducted on Beijing Da'anshan Lump Coal at different impact speeds and in different impact direction. Through analyzing the test result, it is shown that the change of testing samples is similar when impact is exerted on the vertical bedding and the parallel bedding when the impulse is less than 20 Nos, and the difference increases with the impulse increasing when the impulse is more than 20 Nos. At the same time, the expanding energy of fracture in samples increases with its expanding speed, and the expanding energy of fracture has close relation with the impact direction of the tested samples. And the difference of impact toughness of lump coal produced by different im-pact direction increase with the impact speed. The fracture surface of lump coal when im-pact is exerted on the vertical bedding is smooth and the broken block number is fewer; but the fracture surface of lump coal when impact is exerted on the parallel bedding isn't smooth and the broken block number is more, which inflects impact toughness of coal is sensitive to some deficiency.

  12. Assessment of Hydrocarbon Generation Potential of Permian Gondwana Coals, Bangladesh

    Directory of Open Access Journals (Sweden)

    H. M. Zakir Hossain

    2013-06-01

    Full Text Available This paper represents the geochemical characteristics of Gondwana coals from the Barapukuria coal mine, Bangladesh in order to investigate the potential for hydrocarbon generation. A total number of twenty three coal samples were analyzed Rock-Eval pyrolysis, CHNS elemental analyses, maceral analysis and vitrinite reflectance. The samples were collected from drill hole GDH-40 of the Barapukuria coal mine encountered within Gondwana succession of Permian age. The TOC contents of the coal samples range between ~50 and 76 wt.% and the organic matter consists predominantly of type III and type IV kerogen with respect to hydrocarbon generation. The GP, HI, PI and Tmax values range between 7 and 35 mg HC/g rock, 20 and 62 mg HC/g TOC, 0.02 and 0.04, and 430 and 437oC, respectively. The organic matter is mainly gas prone and thermally immature to early mature level. The potential coal bed methane (CBM generation of the Barapukuria basin is estimated to be 11 Gm3. Thus, underground coal gasification (UCG is helpful for better development of subsurface coals at the Barapukuria basin, Bangladesh.

  13. Low-rank coal research. Final technical report, April 1, 1988--June 30, 1989, including quarterly report, April--June 1989

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    This work is a compilation of reports on ongoing research at the University of North Dakota. Topics include: Control Technology and Coal Preparation Research (SO{sub x}/NO{sub x} control, waste management), Advanced Research and Technology Development (turbine combustion phenomena, combustion inorganic transformation, coal/char reactivity, liquefaction reactivity of low-rank coals, gasification ash and slag characterization, fine particulate emissions), Combustion Research (fluidized bed combustion, beneficiation of low-rank coals, combustion characterization of low-rank coal fuels, diesel utilization of low-rank coals), Liquefaction Research (low-rank coal direct liquefaction), and Gasification Research (hydrogen production from low-rank coals, advanced wastewater treatment, mild gasification, color and residual COD removal from Synfuel wastewaters, Great Plains Gasification Plant, gasifier optimization).

  14. EVALUATION OF BROWN COAL SPONTANEOUS COMBUSTION AND SOURCES GENESIS PROGNOSES

    Directory of Open Access Journals (Sweden)

    Vlastimil MONI

    2014-10-01

    Full Text Available This article presents summarizing information about the solution of partial part of research problem of prognoses of deposited brown coal spontaneous combustion sources genesis as a part of project TA01020351 – program ALFA. We will gradually describe the results of long term measurements carried out on selected brown coal heaps realized from 2011 to 2013. The attention is devoted to characterization of key parameters. These parameters influence the genesis of combustion. The second problem is the comparison of results of thermal imaging with laboratory results of gas and coal samples sampled in situ, with the influence of atmospheric conditions (insolation, aeration, rainfall, atmospheric pressure changes etc., with influence of coal mass degradation, physical and chemical factors and another failure factors to brown coal spontaneous combustion processes.

  15. Co-pyrolysis of different type coals with hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Hanzade Haykiri-Acma; Serdar Yaman [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering

    2007-07-01

    The aim of this study is to investigate the co-pyrolysis characteristics of different rank coals such as peat, lignite, and anthracite in the presence of hybrid poplar. For this purpose, non-isothermal thermogravimetry technique was applied up to 900{sup o}C with a heating rate of 40{sup o}C/min under dynamic nitrogen flow of 40 mL/min. Hybrid poplar was added into each coal as much as 10 wt % of the coal sample and the experiments were repeated. Pyrolytic properties such as the char yields, gasification rates, and reactivity of the original samples and the blends were compared from the thermal analysis data, and interpreted. Addition of hybrid poplar to coal had some influences on the pyrolytic properties of coals that might be explained by the synergistic interaction approach. 15 refs., 3 figs., 4 tabs.

  16. Physical Cleaning of Lakhra Coal by Dense Medium Separation Method

    Directory of Open Access Journals (Sweden)

    Sikandar Ali Channa

    2015-07-01

    Full Text Available This research is an attempt to upgrade Lakhra Lignite Coal using ?Dense Medium Separation? technique, to make it techno-environmentally acceptable product for different industries. The air-dried samples of ROM (Run of Mine coal were crushed, screened, ground and subjected to initial analysis and specific gravity based sink-float tests. The initial analysis of air-dried samples shows the average values of moisture 19%, volatile matter 22.33%, ash 27.41%, fixed carbon 31.26% and sulphur 4.98%. The investigational results of sink-float analysis indicate that physical cleaning at particle size range from -5.6 to +0.3 mm and 75% clean coal recovery can potentially reduce the ash yield and sulphur content of Lakhra coal up to 41 and 42.4% respectively. This washed coal is techno-environmentally acceptable yield and simultaneously qualifies the quality parameters set by various industries of Pakistan

  17. Beneficial Reuse of San Ardo Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Liske

    2006-07-31

    This DOE funded study was performed to evaluate the potential for treatment and beneficial reuse of produced water from the San Ardo oilfield in Monterey County, CA. The potential benefits of a successful full-scale implementation of this project include improvements in oil production efficiency and additional recoverable oil reserves as well as the addition of a new reclaimed water resource. The overall project was conducted in two Phases. Phase I identified and evaluated potential end uses for the treated produced water, established treated water quality objectives, reviewed regulations related to treatment, transport, storage and use of the treated produced water, and investigated various water treatment technology options. Phase II involved the construction and operation of a small-scale water treatment pilot facility to evaluate the process's performance on produced water from the San Ardo oilfield. Cost estimates for a potential full-scale facility were also developed. Potential end uses identified for the treated water include (1) agricultural use near the oilfield, (2) use by Monterey County Water Resources Agency (MCWRA) for the Salinas Valley Water Project or Castroville Seawater Intrusion Project, (3) industrial or power plant use in King City, and (4) use for wetlands creation in the Salinas Basin. All of these uses were found to have major obstacles that prevent full-scale implementation. An additional option for potential reuse of the treated produced water was subsequently identified. That option involves using the treated produced water to recharge groundwater in the vicinity of the oil field. The recharge option may avoid the limitations that the other reuse options face. The water treatment pilot process utilized: (1) warm precipitation softening to remove hardness and silica, (2) evaporative cooling to meet downstream temperature limitations and facilitate removal of ammonia, and (3) reverse osmosis (RO) for removal of dissolved salts, boron

  18. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    Fine particles formed from combustion of a bituminous coal and co-combustion of coal with 7 th% (thermal percentage) solid recovered fuel (SRF) in a pulverized coal-fired power plant were sampled and characterized in this study. The particles from dedicated coal combustion and co-combustion both...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  19. State coal profiles, January 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-02

    The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

  20. Development of coal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    It is an important issue to expand stable coal supply areas for Japan, especially to assure stable supply of overseas coals. The investigations on geological structures in foreign countries perform surveys on geological structures in overseas coal producing countries and basic feasibility studies. The investigations select areas with greater business risks in coal producing countries and among private business entities. The geological structure investigations were carried out on China, Indonesia and Malaysia and the basic feasibility studies on Indonesia during fiscal 1994. The basic coal resource development investigations refer to the results of previous physical explorations and drilling tests to develop practical exploration technologies for coal resources in foreign countries. The development feasibility studies on overseas coals conduct technological consultation, surface surveys, physical explorations, and trial drilling operations, and provide fund assistance to activities related thereto. Fiscal 1994 has provided fund assistance to two projects in Indonesia and America. Fund loans are provided on investigations for development and import of overseas coals and other related activities. Liability guarantee for development fund is also described.

  1. Coal Industry Burns Hot

    Institute of Scientific and Technical Information of China (English)

    JadaFu

    2003-01-01

    After a rapid boom last year, China's coal industry has continued to grow in 2003. The country has produced 177.27 million tons of coal in the first two months of the year, a year-on-year rise of 17.7 percent.

  2. Improving coal handling effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Walker, S.

    2003-10-01

    Appropriate coal handling systems are essential for successful coal utilisation. The paper looks at some of the options available, including crushers and hammer mills, wear-resistant liners for chutes and wagons, and dewatering systems. These are individual components within larger systems such as stockyard stacking and reclaiming installations. 5 photos.

  3. COAL USE REPORT

    Science.gov (United States)

    The world's coal reserves have been estimated to be about one exagram accessible with current extraction technology. The energy content has been valued at 290 zettajourles. Using a value of 15 terawatt as the current global energy consumption, the coal supply could global needs f...

  4. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    Science.gov (United States)

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  5. Size distribution of rare earth elements in coal ash

    Science.gov (United States)

    Scott, Clinton T.; Deonarine, Amrika; Kolker, Allan; Adams, Monique; Holland, James F.

    2015-01-01

    Rare earth elements (REEs) are utilized in various applications that are vital to the automotive, petrochemical, medical, and information technology industries. As world demand for REEs increases, critical shortages are expected. Due to the retention of REEs during coal combustion, coal fly ash is increasingly considered a potential resource. Previous studies have demonstrated that coal fly ash is variably enriched in REEs relative to feed coal (e.g, Seredin and Dai, 2012) and that enrichment increases with decreasing size fractions (Blissett et al., 2014). In order to further explore the REE resource potential of coal ash, and determine the partitioning behavior of REE as a function of grain size, we studied whole coal and fly ash size-fractions collected from three U.S commercial-scale coal-fired generating stations burning Appalachian or Powder River Basin coal. Whole fly ash was separated into , 5 um, to 5 to 10 um and 10 to 100 um particle size fractions by mechanical shaking using trace-metal clean procedures. In these samples REE enrichments in whole fly ash ranges 5.6 to 18.5 times that of feedcoals. Partitioning results for size separates relative to whole coal and whole fly ash will also be reported. 

  6. Sorption and deformation of coals in liquid and gas medium

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Aipshtein; D.L. Shirochin; V.I. Minaev; A.V. Bunin; A.A. Belyi [Moscow State University of Mining (MSMU), Moscow (Russian Federation)

    2007-07-01

    The collection of coals from Kuznetsk and Donetsk basins was selected with the following criteria: a) different rank; b) different genetic types. Sorption and deformation of coals have been investigated in the medium of carbonic gas and at interaction with dimethylformaldehyde (DMFA). The experimental data on the gas sorption were obtained through a laser method. Such method allows to measure the dependence of adsorption values {zeta} and sorption deformations x (t) simultaneously on the same sample in wide interval of gas pressure P (from 10{sup 2} Pa up to 10 MPa). Sorption processes of carbon dioxide on different rank coals of identical genotypes were investigated. The influence of rank on coal sorption and deformation was established. Differences in structures of isometamorphic coals of different genetic types were established. Using the independent analytical methods with investigation of sorption DMFA by coals have been allowed to establish feature of structure of isometamorphic coals of different genotype types. It was established, the sorption DMFA by coals of 'a'- genotype led to essential transformation coals' organic substance. 8 refs., 5 figs., 5 tabs.

  7. DEVELOPMENT OF AN ON-LINE COAL WASHABILITY ANALYZER

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Miller; C.L. Lin; G.H. Luttrell; G.T. Adel; Barbara Marin

    2001-06-26

    Washability analysis is the basis for nearly all coal preparation plant separations. Unfortunately, there are no on- line techniques for determining this most fundamental of all coal cleaning information. In light of recent successes at the University of Utah, it now appears possible to determine coal washability on-line through the use of x-ray computed tomography (CT) analysis. The successful development of such a device is critical to the establishment of process control and automated coal blending systems. In this regard, Virginia Tech, Terra Tek Inc., and U.S. coal producers have joined with the University of Utah and to undertake the development of an X-ray CT-based on- line coal washability analyzer with financial assistance from DOE. Each project participant brought special expertise to the project in order to create a new dimension in coal cleaning technology. The project involves development of appropriate software and extensive testing/evaluation of well-characterized coal samples from operating coal preparation plants. Data collected to date suggest that this new technology is capable of serving as a universal analyzer that can not only provide washability analysis, but also particle size distribution analysis, ash analysis, and perhaps pyritic sulfur analysis.

  8. DEVELOPMENT OF AN ON-LINE COAL WASHABILITY ANALYZER

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Miller

    1999-09-30

    Washability analysis is the basis for nearly all coal preparation plant separations. Unfortunately, there are no on-line techniques for determining this most fundamental of all coal cleaning information. In light of recent successes at the University of Utah, it now appears possible to determine coal washability on-line through the use of x-ray computed tomography (CT) analysis. The successful development of such a device is critical to the establishment of process control and automated coal blending systems. In this regard, Virginia Tech, Terra Tek Inc., and several eastern coal companies have joined with the University of Utah and agreed to undertake the development of a x-ray CT-based on-line coal washability analyzer with financial assistance from DOE. The three-year project will cost $594,571, of which 33% ($194,575) will be cost-shared by the participants. The project involves development of appropriate software and extensive testing/evaluation of well-characterized coal samples from operating coal preparation plants. Each project participant brings special expertise to the project which is expected to create a new dimension in coal cleaning technology. Finally, it should be noted that the analyzer may prove to be a universal analyzer capable of providing not only washability analysis, but also particle size distribution analysis, ash analysis and perhaps pyritic sulfur analysis.

  9. Apparatus and method for feeding coal into a coal gasifier

    Science.gov (United States)

    Bissett, Larry A.; Friggens, Gary R.; McGee, James P.

    1979-01-01

    This invention is directed to a system for feeding coal into a gasifier operating at high pressures. A coal-water slurry is pumped to the desired pressure and then the coal is "dried" prior to feeding the coal into the gasifier by contacting the slurry with superheated steam in an entrained bed dryer for vaporizing the water in the slurry.

  10. The effects of moderate coal cleaning on the microbial removal of organic sulfur. [Rhodococcuc rhodochrous

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.J.

    1991-01-01

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

  11. Underground Coal Thermal Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Deo, M. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Sarofim, A. [Univ. of Utah, Salt Lake City, UT (United States); Gueishen, K. [Univ. of Utah, Salt Lake City, UT (United States); Hradisky, M. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States); Mandalaparty, P. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, H. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  12. Enzymatic desulfurization of coal

    Energy Technology Data Exchange (ETDEWEB)

    Boyer, Y.N.; Crooker, S.C.; Kitchell, J.P.; Nochur, S.V.

    1991-05-16

    The overall objective of this program was to investigate the feasibility of an enzymatic desulfurization process specifically intended for organic sulfur removal from coal. Toward that end, a series of specific objectives were defined: (1) establish the feasibility of (bio)oxidative pretreatment followed by biochemical sulfate cleavage for representative sulfur-containing model compounds and coals using commercially-available enzymes; (2) investigate the potential for the isolation and selective use of enzyme preparations from coal-utilizing microbial systems for desulfurization of sulfur-containing model compounds and coals; and (3) develop a conceptual design and economic analysis of a process for enzymatic removal of organic sulfur from coal. Within the scope of this program, it was proposed to carry out a portion of each of these efforts concurrently. (VC)

  13. Industrial coal utilization

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The effects of the National Energy Act on the use of coal in US industrial and utility power plants are considered. Innovative methods of using coal in an environmentally acceptable way are discussed: furnace types, fluidized-bed combustion, coal-oil-mixtures, coal firing in kilns and combustion of synthetic gas and liquid fuels. Fuel use in various industries is discussed with trends brought about by uncertain availability and price of natural gas and fuel oils: steel, chemical, cement, pulp and paper, glass and bricks. The symposium on Industrial Coal Utilization was sponsored by the US DOE, Pittsburgh Energy Technology Center, April 3 to 4, 1979. Twenty-one papers have been entered individually into the EDB. (LTN)

  14. Pyrolysis of Indonesian coal

    Energy Technology Data Exchange (ETDEWEB)

    Rachimoellah; Endah [Institut Teknologi Sepuluh Nopemba, Surabaya (Indonesia). Department of Chemical Engineering; Karaman, N.; Kusuma, S.A. [UPN Surabaya, (Indonesia). Department of Chemical Engineering

    1997-04-01

    It has been estimated that there is 36 billion tons of coal resource potential in Indonesia. Over 21.4 billion tons is classified as low rank (lignitic) coal. The coal deposits are located mainly in Sumatra and Kalimantan. As an energy source, low rank coals are not widely used, because of their high moisture content, low calorific value and variable ash content. One of the key questions for utilizing low rank coal is whether lignite can be upgraded into another form which is more economically viable. In this study tests were carried out in a pilot plant fixed bed pyrolysis reactor unit provided with hopper, electric heater, coolers and product receivers. The yield of char, tar and gases was found to depend on temperature which also affected the composition of gas produced. Results also indicated the temperature and particle size giving maximum tar yield, gas concentration, and the atmosphere of inert nitrogen. 1 tab., 2 figs., 10 refs.

  15. AN INVESTIGATION OF THE HYDROPHOBIC AGGLOMERATION CHARACTERISTICS OF EASY DEGRADATION COAL FINES IN WATER

    Institute of Scientific and Technical Information of China (English)

    王力; 陈鹏

    1997-01-01

    The separation of ultrafine coal from three Chinese coal samples of easy degradation coal fines in water has been investigated by the application of a hydrophobic agglomeration process. In addition to yielding clean coal with high recovery, this process requires significantly less oil concentration for agglomeration (less than 0.4% in oil-water weight ratio) and produces stabler agglomerates than general oil agglomeration process, the cost of the oil would no longer be an important consideration for its commercial application. Neutral diesel oil was used to make oleophilic coal particles agglomerated with good rejection of clay minerals under little oil consumption and certain agitation speed at 2000 r/min. An important advantage of this process compared with other cleaning fine coal methods is that it can extremely reduce or eliminate the effects of coal degradation and some clay minerals on coal preparation.

  16. Co-pyrolysis characteristic of biomass and bituminous coal.

    Science.gov (United States)

    Li, Shuaidan; Chen, Xueli; Liu, Aibin; Wang, Li; Yu, Guangsuo

    2015-03-01

    Co-pyrolysis characteristics of biomass and bituminous coal have been studied in this work. The temperature was up to 900°C with the heating rates of 10, 15, 20, 25 and 30°C/min. Rice straw, saw dust, microcrystalline cellulose, lignin and Shenfu bituminous coal were chosen as samples. Six different biomass ratios were used. The individual thermal behavior of each sample was obtained. The experimental weight fractions of the blended samples and the calculated values were compared. The results show that the weight fractions of the blended samples behave differently with calculated ones during the co-pyrolysis process. With the increasing biomass ratio, relative deviations between experimental weight fractions and calculated ones are larger. H/C molar ratio, heat transfer properties of biomass would affect to the interaction between biomass and coal. The maximum degradation rates are slower than the calculated ones. The activation energy distributions also changed by adding some biomass into coal.

  17. Stratum energy of coal-bed gas reservoir and their control on the coal-bed gas reservoir formation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Stratum energy of coal-bed gas reservoir, including coal-radix flexibility energy, groundwater flexibility energy and gas flexibility energy (hereinafter "three energy"), depends on the energy homeostasis system, the core process of which is the effective transfer of energy and the geological selective process. Combining with the mechanics experimentations of coal samples, different flexibility energy has been analyzed and researched quantificationally, and a profound discussion to their controls on the coal-bed gas reservoir formation has been made. It is shown that when gas reservoir is surrounded by edge water and bottom water, the deposited energy in the early phase of forming gas reservoir is mostly coal-radix and gas flexibility energy, but the effect of groundwater flexibility energy increases while water-body increases. The deposited energy in the middle and later phase of forming gas reservoir is mostly gas flexibility energy, which is greater than 80% of all deposited energy. In the whole process, larger groundwater body exerts greater influences on gas accumulation. The paper indicated that higher stratum energy is more propitious to forming coal-bed gas reservoir. And higher coal-radix flexibility energy and gas flexibility energy are more propitious to higher yield of gas reservoirs, while higher groundwater flexibility energy is more propitious to stable yield of gas reservoirs. Therefore, the key to evaluating the coal-bed gas reservoir formation is the stratum energy of coal-bed gas reservoir.

  18. Chemical and toxicological evaluation of underground coal gasification (UCG) effluents. The coal rank effect.

    Science.gov (United States)

    Kapusta, Krzysztof; Stańczyk, Krzysztof

    2015-02-01

    The effect of coal rank on the composition and toxicity of water effluents resulting from two underground coal gasification experiments with distinct coal samples (lignite and hard coal) was investigated. A broad range of organic and inorganic parameters was determined in the sampled condensates. The physicochemical tests were supplemented by toxicity bioassays based on the luminescent bacteria Vibrio fischeri as the test organism. The principal component analysis and Pearson correlation analysis were adopted to assist in the interpretation of the raw experimental data, and the multiple regression statistical method was subsequently employed to enable predictions of the toxicity based on the values of the selected parameters. Significant differences in the qualitative and quantitative description of the contamination profiles were identified for both types of coal under study. Independent of the coal rank, the most characteristic organic components of the studied condensates were phenols, naphthalene and benzene. In the inorganic array, ammonia, sulphates and selected heavy metals and metalloids were identified as the dominant constituents. Except for benzene with its alkyl homologues (BTEX), selected polycyclic aromatic hydrocarbons (PAHs), zinc and selenium, the values of the remaining parameters were considerably greater for the hard coal condensates. The studies revealed that all of the tested UCG condensates were extremely toxic to V. fischeri; however, the average toxicity level for the hard coal condensates was approximately 56% higher than that obtained for the lignite. The statistical analysis provided results supporting that the toxicity of the condensates was most positively correlated with the concentrations of free ammonia, phenols and certain heavy metals.

  19. Whole-coal versus ash basis in coal geochemistry: a mathematical approach to consistent interpretations

    Science.gov (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Hower, James C.

    2013-01-01

    Several standard methods require coal to be ashed prior to geochemical analysis. Researchers, however, are commonly interested in the compositional nature of the whole-coal, not its ash. Coal geochemical data for any given sample can, therefore, be reported in the ash basis on which it is analyzed or the whole-coal basis to which the ash basis data are back calculated. Basic univariate (mean, variance, distribution, etc.) and bivariate (correlation coefficients, etc.) measures of the same suite of samples can be very different depending which reporting basis the researcher uses. These differences are not real, but an artifact resulting from the compositional nature of most geochemical data. The technical term for this artifact is subcompositional incoherence. Since compositional data are forced to a constant sum, such as 100% or 1,000,000 ppm, they possess curvilinear properties which make the Euclidean principles on which most statistical tests rely inappropriate, leading to erroneous results. Applying the isometric logratio (ilr) transformation to compositional data allows them to be represented in Euclidean space and evaluated using traditional tests without fear of producing mathematically inconsistent results. When applied to coal geochemical data, the issues related to differences between the two reporting bases are resolved as demonstrated in this paper using major oxide and trace metal data from the Pennsylvanian-age Pond Creek coal of eastern Kentucky, USA. Following ilr transformation, univariate statistics, such as mean and variance, still differ between the ash basis and whole-coal basis, but in predictable and calculated manners. Further, the stability between two different components, a bivariate measure, is identical, regardless of the reporting basis. The application of ilr transformations addresses both the erroneous results of Euclidean-based measurements on compositional data as well as the inconsistencies observed on coal geochemical data

  20. Economic Limit of Coal Mining Closedown in Restructuring Coal Industry

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    One of the key points in restructuring the coal industry is to close some deficient coal mines which haveneither economic result nor social benefit. Based on the relationship among production, cost, and profit, differenteconomic limits for closing coal mines in different cases were put forward. The relationship between the profit andclosedown cost of deficient coal mines was analyzed and an overall economic limit for closing a deficient coal minewas also proposed.

  1. Transportation of coal by pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Round, G.F.

    1982-01-01

    Discusses Canada's coal resources, technology of long distance coal slurry pipelines, existing and planned coal slurry pipelines, their economics, liquid carbon dioxide, methanol and crude oil instead of water as carrier fluid, and coal slurry research in Canada.

  2. Coal Activities for Secondary Students.

    Science.gov (United States)

    American Coal Foundation, Washington, DC.

    This collection of lesson plans designed for teachers of 4th- through 12th-grade students utilizes an assortment of teaching strategies for topics related to coal and the coal industry. Activities cover the following topics: coal formation; coal identification; "the geologist's dilemma" (a supply and demand activity); geologic time and the…

  3. Oxydesulphurization of coal using trona mineral

    Energy Technology Data Exchange (ETDEWEB)

    Yaman, S.; Kuecuekbayrak, S. [Istanbul Technical Univ. (Turkey)

    1995-12-31

    In this study, the desulphurization of coal by oxydesulphunzation method using raw trona mineral was investigated. The experiments were carried out on a Turkish lignite sample which has both high pyritic and high organic sulphur contents. Some experimental parameters such as temperature, partial pressure of oxygen, concentration and time were investigated.

  4. Biodesulfurization of Malaysian coals using mixed microbial cultures in batch and continuous processes

    Energy Technology Data Exchange (ETDEWEB)

    Najafpour, G.D.; Azizan, A.; Harun, A. [Universiti Sains Malaysia, Darul Ridzuan (Malaysia). School of Chemical Engineering

    2001-07-01

    The determination of chemolithotrophic microorganisms capable to grown on coal with high sulfur content, made it possible to develop mixed culture processes for coal desulfurization. The ability of the microbial cultures to metabolize different sulfur compounds originated from coal in the range of 3-5% sulfur, were demonstrated in batch experimental stage. Biodesulfurization of coal as suspended solid coal particles were carried out in a broth media for coal content of 1-5% solid. Four species of microbial culture were grown on coal and acclimated for optimal growth. The coal samples obtained from Malaysian coal mine with 2-5% of sulfur content were used in batch and continuous cultures experiments. The microbial cultures were used to reduce pyrite sulfur, inorganic sulfur content of coal. The culture isolated from pharmaceutical wastewater shown that more than 80% of sulfur content of coal was reduced. The growth of microorganisms on coal shown that maximum solid content of 5% was tolerable maximum grow on 3% coal shown high cell density. Nutrient media with acidic PH value of 3-4 was required for growth of Thiobacillus thiooxidans and Thiobacillus fierrooxidans. The growth was limited at PH = 2 but at PH 3-4 growth was stimulated. Phosphate buffer was used with coal solution to monitor the PH. The PH was initially adjusted but was not controlled during the period of incubation. An optimum PH for Thiobacillus species with maximum desulfuriation was 2.65. High coal content about 10% was shown that bacterial was unable to grow. The cell dry weight, cell optical density and sulfur content of coal samples using TGA and elemental analyzer were conducted for all experiments. 10 refs., 11 figs.

  5. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production.

    Science.gov (United States)

    Li, Qiansheng; Chen, Jianjun; Li, Yuncong

    2008-02-01

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 microg per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  6. Heavy metal leaching from coal fly ash amended container substrates during Syngonium production

    Energy Technology Data Exchange (ETDEWEB)

    Li, Q.S.; Chen, J.J.; Li, Y.C. [University of Florida, Apopka, FL (United States)

    2008-02-15

    Coal fly ash has been proposed to be an alternative to lime amendment and a nutrient source of container substrates for ornamental plant production. A great concern over this proposed beneficial use, however, is the potential contamination of surface and ground water by heavy metals. In this study, three fly ashes collected from Florida, Michigan, and North Carolina and a commercial dolomite were amended in a basal substrate. The formulated substrates were used to produce Syngonium podophyllum Schott 'Berry Allusion' in 15-cm diameter containers in a shaded greenhouse. Leachates from the containers were collected during the entire six months of plant production and analyzed for heavy metal concentrations. There were no detectable As, Cr, Hg, Pb, and Se in the leachates; Cd and Mo were only detected in few leachate samples. The metals constantly detected were Cu, Mn, Ni, and Zn. The total amounts of Cu, Mn, Ni, and Zn leached during the six-month production period were 95, 210, 44, and 337 {mu} g per container, indicating that such amounts in leachates may contribute little to contamination of surface and ground water. In addition, plant growth indices and fresh and dry weights of S. podophyllum 'Berry Allusion' produced from fly ash and dolomite-amended substrates were comparable except for the plants produced from the substrate amended with fly ash collected from Michigan which had reduced growth indices and fresh and dry weights. Thus, selected fly ashes can be alternatives to commercial dolomites as amendments to container substrates for ornamental plant production. The use of fly ashes as container substrate amendments should represent a new market for the beneficial use of this coal combustion byproduct.

  7. Methods for the analysis and testing of coal and coke. Part 3: proximate analysis of higher rank coal

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    This standard sets out methods for the determination of moisture, ash and volatile matter on the analysis sample of higher rank coal in order to obtain its proximate analysis. Fixed carbon is calculated by difference.

  8. Boiler Briquette Coal versus Raw Coal: Part I-Stack Gas Emissions.

    Science.gov (United States)

    Ge, Su; Bai, Zhipeng; Liu, Weili; Zhu, Tan; Wang, Tongjian; Qing, Sheng; Zhang, Junfeng

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM25, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2 5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM25, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/ steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  9. Boiler briquette coal versus raw coal: Part I--Stack gas emissions.

    Science.gov (United States)

    Ge, S; Bai, Z; Liu, W; Zhu, T; Wang, T; Qing, S; Zhang, J

    2001-04-01

    Stack gas emissions were characterized for a steam-generating boiler commonly used in China. The boiler was tested when fired with a newly formulated boiler briquette coal (BB-coal) and when fired with conventional raw coal (R-coal). The stack gas emissions were analyzed to determine emission rates and emission factors and to develop chemical source profiles. A dilution source sampling system was used to collect PM on both Teflon membrane filters and quartz fiber filters. The Teflon filters were analyzed gravimetrically for PM10 and PM2.5 mass concentrations and by X-ray fluorescence (XRF) for trace elements. The quartz fiber filters were analyzed for organic carbon (OC) and elemental carbon (EC) using a thermal/optical reflectance technique. Sulfur dioxide was measured using the standard wet chemistry method. Carbon monoxide was measured using an Orsat combustion analyzer. The emission rates of the R-coal combustion (in kg/hr), determined using the measured stack gas concentrations and the stack gas emission rates, were 0.74 for PM10, 0.38 for PM2.5, 20.7 for SO2, and 6.8 for CO, while those of the BB-coal combustion were 0.95 for PM10, 0.30 for PM2.5, 7.5 for SO2, and 5.3 for CO. The fuel-mass-based emission factors (in g/kg) of the R-coal, determined using the emission rates and the fuel burn rates, were 1.68 for PM10, 0.87 for PM2.5, 46.7 for SO2, and 15 for CO, while those of the BB-coal were 2.51 for PM10, 0.79 for PM2.5, 19.9 for SO2, and 14 for CO. The task-based emission factors (in g/ton steam generated) of the R-coal, determined using the fuel-mass-based emission factors and the coal/steam conversion factors, were 0.23 for PM10, 0.12 for PM2.5, 6.4 for SO2, and 2.0 for CO, while those of the BB-coal were 0.30 for PM10, 0.094 for PM2.5, 2.4 for SO2, and 1.7 for CO. PM10 and PM2.5 elemental compositions are also presented for both types of coal tested in the study.

  10. Hydrogeochemistry and coal-associated bacterial populations from a methanogenic coal bed

    Science.gov (United States)

    Barnhart, Elliott P.; Weeks, Edwin P.; Jones, Elizabeth J.P.; Ritter, Daniel J.; McIntosh, Jennifer C.; Clark, Arthur C.; Ruppert, Leslie F.; Cunningham, Alfred B.; Vinson, David S.; Orem, William H.; Fields, Matthew W.

    2016-01-01

    Biogenic coalbed methane (CBM), a microbially-generated source of natural gas trapped within coal beds, is an important energy resource in many countries. Specific bacterial populations and enzymes involved in coal degradation, the potential rate-limiting step of CBM formation, are relatively unknown. The U.S. Geological Survey (USGS) has established a field site, (Birney test site), in an undeveloped area of the Powder River Basin (PRB), with four wells completed in the Flowers-Goodale coal bed, one in the overlying sandstone formation, and four in overlying and underlying coal beds (Knoblach, Nance, and Terret). The nine wells were positioned to characterize the hydraulic conductivity of the Flowers-Goodale coal bed and were selectively cored to investigate the hydrogeochemistry and microbiology associated with CBM production at the Birney test site. Aquifer-test results indicated the Flowers-Goodale coal bed, in a zone from about 112 to 120 m below land surface at the test site, had very low hydraulic conductivity (0.005 m/d) compared to other PRB coal beds examined. Consistent with microbial methanogenesis, groundwater in the coal bed and overlying sandstone contain dissolved methane (46 mg/L average) with low δ13C values (−67‰ average), high alkalinity values (22 meq/kg average), relatively positive δ13C-DIC values (4‰ average), and no detectable higher chain hydrocarbons, NO3−, or SO42−. Bioassay methane production was greatest at the upper interface of the Flowers-Goodale coal bed near the overlying sandstone. Pyrotag analysis identified Aeribacillus as a dominant in situbacterial community member in the coal near the sandstone and statistical analysis indicated Actinobacteria predominated coal core samples compared to claystone or sandstone cores. These bacteria, which previously have been correlated with hydrocarbon-containing environments such as oil reservoirs, have demonstrated the ability to produce biosurfactants to break down

  11. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  12. Enzymantic Conversion of Coal to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Richard Troiano

    2011-01-31

    The work in this project focused on the conversion of bituminous coal to liquid hydrocarbons. The major steps in this process include mechanical pretreatment, chemical pretreatment, and finally solubilization and conversion of coal to liquid hydrocarbons. Two different types of mechanical pretreatment were considered for the process: hammer mill grinding and jet mill grinding. After research and experimentation, it was decided to use jet mill grinding, which allows for coal to be ground down to particle sizes of 5 {mu}m or less. A Fluid Energy Model 0101 JET-O-MIZER-630 size reduction mill was purchased for this purpose. This machine was completed and final testing was performed on the machine at the Fluid Energy facilities in Telford, PA. The test results from the machine show that it can indeed perform to the required specifications and is able to grind coal down to a mean particle size that is ideal for experimentation. Solubilization and conversion experiments were performed on various pretreated coal samples using 3 different approaches: (1) enzymatic - using extracellular Laccase and Manganese Peroxidase (MnP), (2) chemical - using Ammonium Tartrate and Manganese Peroxidase, and (3) enzymatic - using the live organisms Phanerochaete chrysosporium. Spectral analysis was used to determine how effective each of these methods were in decomposing bituminous coal. After analysis of the results and other considerations, such as cost and environmental impacts, it was determined that the enzymatic approaches, as opposed to the chemical approaches using chelators, were more effective in decomposing coal. The results from the laccase/MnP experiments and Phanerochaete chrysosporium experiments are presented and compared in this final report. Spectra from both enzymatic methods show absorption peaks in the 240nm to 300nm region. These peaks correspond to aromatic intermediates formed when breaking down the coal structure. The peaks then decrease in absorbance over time

  13. Low-rank coal research, Task 5.1. Topical report, April 1986--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-02-01

    This document is a topical progress report for Low-Rank Coal Research performed April 1986 - December 1992. Control Technology and Coal Preparation Research is described for Flue Gas Cleanup, Waste Management, Regional Energy Policy Program for the Northern Great Plains, and Hot-Gas Cleanup. Advanced Research and Technology Development was conducted on Turbine Combustion Phenomena, Combustion Inorganic Transformation (two sections), Liquefaction Reactivity of Low-Rank Coals, Gasification Ash and Slag Characterization, and Coal Science. Combustion Research is described for Atmospheric Fluidized-Bed Combustion, Beneficiation of Low-Rank Coals, Combustion Characterization of Low-Rank Fuels (completed 10/31/90), Diesel Utilization of Low-Rank Coals (completed 12/31/90), Produce and Characterize HWD (hot-water drying) Fuels for Heat Engine Applications (completed 10/31/90), Nitrous Oxide Emission, and Pressurized Fluidized-Bed Combustion. Liquefaction Research in Low-Rank Coal Direct Liquefaction is discussed. Gasification Research was conducted in Production of Hydrogen and By-Products from Coals and in Sulfur Forms in Coal.

  14. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  15. A review of state-of-the-art processing operations in coal preparation

    Institute of Scientific and Technical Information of China (English)

    Noble Aaron; Luttrell Gerald H.

    2015-01-01

    Coal preparation is an integral part of the coal commodity supply chain. This stage of post-mining, pre-utilization beneficiation uses low-cost separation technologies to remove unwanted mineral matter and moisture which hinder the value of the coal product. Coal preparation plants typically employ several parallel circuits of cleaning and dewatering operations, with each circuit designed to optimally treat a specific size range of coal. Recent innovations in coal preparation have increased the efficiency and capac-ity of individual unit operations while reinforcing the standard parallel cleaning approach. This article, which describes the historical influences and state-of-the-art design for the various coal preparation unit operations, is organized to distinguish between coarse/intermediate coal cleaning and fine/ultrafine coal cleaning. Size reduction, screening, classification, cleaning, dewatering, waste disposal unit operations are particularly highlighted, with a special focus on the U.S. design philosophy. Notable differences between the U.S. and international operations are described as appropriate.

  16. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Volume 1, Final technical report, October 1, 1991--September 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, C.W. [Auburn Univ., (United States); Gutterman, C. [Foster Wheeler Development Corp., Livingston, NJ (United States); Chander, S. [Pennsylvania State Univ., (United States)

    1994-12-31

    The overall objective of this project was to develop a new approach for the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrated coal selection, pretreatment, coal swelling with catalyst impregnation, liquefaction, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. Heterofunctional solvents were the most effective in swelling coals. Also solvent blends such as isopropanol/water were more effective than pure solvents alone. Impregnating slurry catalysts simultaneously during coal swelling showed that better uptake was achieved with nonswelling solvent and higher impregnation temperature. Some enhancement in initial coal conversion was seen liquefying SO{sub 2}-treated Black Thunder coal with slurry catalysts, and also when hydrogen donor liquefaction solvents were used. Noncatalytic reactions showed no benefit from SO{sub 2} treatment. Coupling coal swelling and SO{sub 2} treatment with slurry catalysts was also not beneficial, although high conversion was seen with continuous operation and long residence time, however, similar high conversion was observed with untreated coal. SO{sub 2} treatment is not economically attractive unless it provides about 17% increase in coal reactivity. In most cases, the best results were obtained when the coal was untreated and the slurry catalyst was added directly into the reactor. Foster Wheeler`s ASCOT process had better average liquid yields than either Wilsonville`s vacuum tower/ROSE combination or delayed coking process. This liquid product also had good quality.

  18. Coal Mines Security System

    Directory of Open Access Journals (Sweden)

    Ankita Guhe

    2012-05-01

    Full Text Available Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, automatic detection, communication and microcontroller technologies, to realize the operational parameters of the mining area. The data acquisition terminal take the PIC 16F877A chip integrated circuit as a core for sensing the data, which carries on the communication through the RS232 interface with the main control machine, which has realized the intelligent monitoring. Data management system uses EEPROM chip as a Black box to store data permanently and also use CCTV camera for recording internal situation. The system implements the real-time monitoring and displaying for data undermine, query, deletion and maintenance of history data, graphic statistic, report printing, expert diagnosis and decision-making support. The Research, development and Promote Application will provide the safeguard regarding the mine pit control in accuracy, real-time capacity and has high reliability.

  19. Beneficiation-hydroretort processing of US oil shales, engineering study

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Riley, R.H.

    1988-12-01

    This report describes a beneficiation facility designed to process 1620 tons per day of run-of-mine Alabama oil shale containing 12.7 gallons of kerogen per ton of ore (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay). The beneficiation facility will produce briquettes of oil shale concentrate containing 34.1 gallons of kerogen per ton (based on Fischer Assay) suitable for feed to a hydroretort oil extraction facility of nominally 20,000 barrels per day capacity. The beneficiation plant design prepared includes the operations of crushing, grinding, flotation, thickening, filtering, drying, briquetting, conveying and tailings empoundment. A complete oil shale beneficiation plant is described including all anticipated ancillary facilities. For purposes of determining capital and operating costs, the beneficiation facility is assumed to be located on a generic site in the state of Alabama. The facility is described in terms of the individual unit operations with the capital costs being itemized in a similar manner. Additionally, the beneficiation facility estimated operating costs are presented to show operating costs per ton of concentrate produced, cost per barrel of oil contained in concentrate and beneficiation cost per barrel of oil extracted from concentrate by hydroretorting. All costs are presented in fourth quarter of 1988 dollars.

  20. DEVELOPMENT OF ACTIVATED CARBONS FROM COAL COMBUSTION BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Harold H. Schobert; M. Mercedes Maroto-Valer; Zhe Lu

    2003-09-30

    inferred from their physical and chemical properties. The developed porosity of the activated carbon was a function of the oxygen content, porosity and H/C ratio of the parent unburned carbon feedstock. It was observed that extended activation times and high activation temperatures increased the porosity of the produced activated carbon at the expense of the solid yield. The development of activated carbon from unburned carbon in fly ash has been proven to be a success by this study in terms of the higher surface areas of the resultant activated carbons, which are comparable with commercial activated carbons. However, unburned carbon samples obtained from coal-fired power plants as by-product have high ash content, which is unwanted for the production of activated carbons. Therefore, the separation of unburned carbon from the fly ash is expected to be beneficial for the utilization of unburned carbon to produce activated carbons with low ash content.

  1. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.

    Science.gov (United States)

    Chen, Bingyu; Liu, Guijian; Sun, Ruoyu

    2016-05-01

    A better understanding on the partitioning behavior of mercury (Hg) during coal combustion in large-scale coal-fired power plants is fundamental for drafting Hg-emission control regulations. Two large coal-fired utility boilers, equipped with electrostatic precipitators (ESPs) and a wet flue gas desulfurization (WFGD) system, respectively, in coal energy-dominant Huainan City, China, were selected to investigate the distribution and fate of Hg during coal combustion. In three sampling campaigns, we found that Hg in bottom ash was severely depleted with a relative enrichment (RE) index coal. We estimated that Hg emissions in all Huainan coal-fired power plants varied from 1.8 Mg in 2003 to 7.3 Mg in 2010.

  2. A Systematic Analysis of Coal Accumulation Process

    Institute of Scientific and Technical Information of China (English)

    CHENG Aiguo

    2008-01-01

    Formation of coal seam and coal-rich zone is an integrated result of a series of factors in coal accumulation process. The coal accumulation system is an architectural aggregation of coal accumulation factors. It can be classified into 4 levels: the global coal accumulation super-system, the coal accumulation domain mega.system, the coal accumulation basin system, and the coal seam or coal seam set sub-system. The coal accumulation process is an open, dynamic, and grey system, and is meanwhile a system with such natures as aggregation, relevance, entirety, purpose-orientated, hierarchy, and environment adaptability. In this paper, we take coal accumulation process as a system to study origin of coal seam and coal-rich zone; and we will discuss a methodology of the systematic analysis of coal accumulation process. As an example, the Ordos coal basin was investigated to elucidate the application of the method of the coal accumulation system analysis.

  3. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  4. The development of coal-based technologies for Department of Defense facilities. Volume 1, Technical report. Semiannual technical progress report, September 28, 1994--March 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Hatcher, P. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-15

    This program is being conducted as a cooperative agreement between the Consortium for Coal Water Mixture Technology and the U.S. Department of Energy. Activities this reporting period are summarized by phase. Phase I is nearly completed. During this reporting period, coal beneficiation/preparation studies, engineering designs and economics for retrofitting the Crane, Indiana boiler to fire coal-based fuels, and a 1,000-hour demonstration of dry, micronized coal were completed. In addition, a demonstration-scale micronized-coal water mixture (MCWM) preparation circuit was constructed and a 1,000-hour demonstration firing MCWM began. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations involved literature surveys of NO{sub x}, SO{sub 2}, trace metals, volatile organic compounds, and fine particulate matter capture. In addition, vendors and engineering firms were contacted to identify the appropriate emissions technologies for the installation of commercial NO{sub x} and SO{sub 2} removal systems on the demonstration boiler. Information from the literature surveys and engineering firms will be used to identify, design, and install a control system(s). Work continued on the refinement and optimization of coal grinding and MCWM preparation procedures, and on the development of advanced processes for beneficiating high ash, high sulfur coals. Work also continued on determining the basic cost estimation of boiler retrofits, and evaluating environmental, regulatory, and regional economic impacts. In addition, the feasibility of technology adoption, and the public`s perception of the benefits and costs of coal usage was studied. A coal market analysis was completed. Work in Phase III focused on coal preparation studies, emissions reductions and economic analyses of coal use.

  5. Determination of cadmium in coal by low temperature ashing-slurry sampling graphite furnace atomic absorption spectrometry%低温灰化-悬浮液进样石墨炉原子吸收光谱法测定煤中镉

    Institute of Scientific and Technical Information of China (English)

    龙安应; 刘全亨; 吴胜金; 王士魁; 李悦

    2016-01-01

    The composition of coal is complicated .The content of cadmium in coal is low ,and it is easily volatile .According to these characteristics ,the coal was firstly pretreated by oxygen plasma low tempera‐ture ashing .Then ,the palladium nitrate was added as matrix modifier to make cadmium form non‐dissoci‐ative substance in ashing process .The determination method of cadmium in coal by graphite furnace atomic absorption spectrometry(GFAAS) with slurry sampling was established .The influence of sample matrix was mainly studied .The samples before and after low temperature ashing were compared and analyzed . The results indicated that the analytical sensitivity and precision could be significantly improved by low temperature ashing treatment .T he ashing temperature and atomization temperature of slurry sample and the dosage of matrix modifier were optimized .The ashing temperature and atomization temperature was 650 ℃ and 2 200 ℃ ,respectively .T he optimal mass concentration of matrix modifier (i .e .,palladium ni‐trate) was 1.0 g/L .Under the optimized conditions ,the standard slurry sample showed good linear in range of 0.1‐2.0 μg/L for cadmium .The linear correlation coefficient was 0.999 5 .The detection limit was 0.012 mg/kg .The actual sample and certified reference material of coal were analyzed according to the experimental method .The relative standard deviation (RSD ,n=5) was between 2.9% and 5.9% .The found results were consistent with those obtained by airtight digestion method or the certified values .%针对煤质复杂,而煤中的镉元素具有低含量且易挥发的特点,提出了采用氧等离子体低温灰化技术对煤进行预处理,再加入硝酸钯作为基体改进剂使镉在灰化过程中生成难离解物质,建立了悬浮液进样石墨炉原子吸收光谱法(GFAAS)测定煤中镉的方法。研究过程中主要探讨了样品基质的影响,通过对比分析低温灰化前后的样品,发现低

  6. Nanominerals, fullerene aggregates, and hazardous elements in coal and coal combustion-generated aerosols: An environmental and toxicological assessment.

    Science.gov (United States)

    Saikia, Jyotilima; Narzary, Bardwi; Roy, Sonali; Bordoloi, Manobjyoti; Saikia, Prasenjit; Saikia, Binoy K

    2016-12-01

    Studies on coal-derived nanoparticles as well as nano-minerals are important in the context of the human health and the environment. The coal combustion-generated aerosols also affect human health and environmental quality aspects in any coal-fired station. In this study, the feed coals and their combustion-generated aerosols from coal-fired boilers of two tea industry facilities were investigated for the presence of nanoparticles/nano minerals, fullerene aggregates, and potentially hazardous elements (PHEs). The samples were characterized by using X-ray diffraction (XRD), Time-of-flight secondary ion mass spectroscopy (TOF-SIMS), High resolution-transmission electron microscopy/energy dispersive spectroscopy (HR-TEM/EDS) and Ultra Violet-visible spectroscopy (UV-Vis) to know their extent of environmental risks to the human health when present in coals and aerosols. The feed coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals occur in lesser quantities. The PM samples contain potentially hazardous elements (PHEs) like As, Pb, Cd and Hg. Enrichment factor of the trace elements in particulate matters (PMs) was calculated to determine their sources. The aerosol samples were also found to contain nanomaterials and ultrafine particles. The fullerene aggregates along with potentially hazardous elements were also detected in the aerosol samples. The cytotoxicity studies on the coal combustion-generated PM samples show their potential risk to the human health. This detailed investigation on the inter-relationship between the feed coals and their aerosol chemistry will be useful for understanding the extent of environmental hazards and related human health risk.

  7. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  8. Coal-fired generation

    CERN Document Server

    Breeze, Paul

    2015-01-01

    Coal-Fired Generation is a concise, up-to-date and readable guide providing an introduction to this traditional power generation technology. It includes detailed descriptions of coal fired generation systems, demystifies the coal fired technology functions in practice as well as exploring the economic and environmental risk factors. Engineers, managers, policymakers and those involved in planning and delivering energy resources will find this reference a valuable guide, to help establish a reliable power supply address social and economic objectives. Focuses on the evolution of the traditio

  9. Controlling air toxics through advanced coal preparation

    Energy Technology Data Exchange (ETDEWEB)

    Straszheim, W.E.; Buttermore, W.H.; Pollard, J.L. [Iowa State Univ., Ames, IA (United States)

    1995-11-01

    This project involves the assessment of advanced coal preparation methods for removing trace elements from coal to reduce the potential for air toxic emissions upon combustion. Scanning electron microscopy-based automated image analysis (SEM-AIA) and advanced washability analyses are being applied with state-of-the-art analytical procedures to predict the removal of elements of concern by advanced column flotation and to confirm the effectiveness of preparation on the quality of quantity of clean coal produced. Specific objectives are to maintain an acceptable recovery of combustible product, while improving the rejection of mineral-associated trace elements. Current work has focused on determining conditions for controlling column flotation system across its operating range and on selection and analysis of samples for determining trace element cleanability.

  10. Incipient motion of gravel and coal beds

    Indian Academy of Sciences (India)

    Subhasish Dey; Uddaraju V Raju

    2002-10-01

    An experimental study on incipient motion of gravel and coal beds under unidirectional steady-uniform flow is presented. Experiments were carried out in a flume with various sizes of gravel and coal samples. The critical bed shear stresses for the experimental runs determined using side-wall correction show considerable disagreement with the standard curves. The characteristic parameters affecting the incipient motion of particles in rough-turbulent regime, identified based on physical reasoning and dimensional analysis, are the Shields parameter, particle Froude number, non-dimensional particle diameter and non-dimensional flow depth. Equations of critical bed shear stress for the initial movement of gravel and coal beds were obtained using experimental data. The method of application of critical bed shear stress equations is also mentioned.

  11. THE APPLICATION OF REVERSE FLOCCULATION METHOD IN HIGH SULFUR COAL DESULFURIZATION

    Institute of Scientific and Technical Information of China (English)

    王力; 陈鹏; 张素清

    1999-01-01

    The reverse flocculation method for removing pyritic sulfur from high sulfur coals has been conceptually developed and investigated. The tentative tests on China high sulfur coals have shown that this advanced physical separation technique can be very efficient in coal desulfurization, provided the process parameters are properly optimized. Under the circumstances of acquiring high coal recovery, the total sulfur rejection with four kinds of coal samples normally falls in the range 5?% to 71% by one-step reverse flocculation, and within the range 40% to 59% by one-step normal flocculation process.

  12. Structure and Pozzolanic Activity of Calcined Coal Gangue during the Process of Mechanical Activation

    Institute of Scientific and Technical Information of China (English)

    GUO Wei; LI Dongxu; CHEN Jianhua; YANG Nanru

    2009-01-01

    On the basis of analyzing coal gangue's chemical and mineral compositions, the structure change of coal gangue during the mechanical activation was investigated by XRD, FTIR,NMR, and the mechanical strength of the cement doped coal gangue with various specific surface area was tested. The experimental results indicate that, the lattice structure of metakaolin in coal gangue samples calcined at 700 ℃ disorganizes gradually and becomes disordered, and the lattice structure of α-quartz is distorted slightly. The pozzolanic activity of the coal gangue increases obviously with its structural disorganization.

  13. Combustion characteristics of coal and refuse from passenger trains.

    Science.gov (United States)

    Fu-min, Ren; Feng, Yue; Ming, Gao; Min, Yu

    2010-07-01

    Refuse from passenger trains is becoming a significant issue with the development of the Chinese railway. Co-firing is regarded as a promising thermal technology, both environmentally and economically, in reducing the quantity of refuse. The co-firing property of passenger train refuse with coal, however, may differ due to the differences in the composition of the refuse. In the present study, combustion properties of refuse from passenger train samples and the mixture of refuse with coal were studied in a tube furnace. Thermo analysis methods, such as thermogravimetry (TG), differential scanning calorimetry (DSC), differential thermal analysis (DTA) and derivative thermogravimetry (DTG) analyses were employed to evaluate combustion performance. We found that the mixture of passenger train refuse and coal at a ratio of 1:1 has a lower ignition and burnout temperature than the coal-only sample. Moreover, refuse from railway passenger trains has more reactive combustion properties than the coal-only sample, and the addition of railway passenger train refuse to coal can promote the reactivity of coal.

  14. Grindability and combustion behavior of coal and torrefied biomass blends.

    Science.gov (United States)

    Gil, M V; García, R; Pevida, C; Rubiera, F

    2015-09-01

    Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased.

  15. Gas and coal outbursts in Polish minescauses and assessing methods

    Institute of Scientific and Technical Information of China (English)

    WIERZBICKI Miroslaw

    2011-01-01

    The paper presents some information about gas and coal outbursts threat in Polish coal mines.It shows the methodology for threat identification and monitoring for gas and coal outbursts in the Polish coal mines.One of the main methods of assessing threats in the mining industry in Poland and China is desorbometric method.The paper presents some results of estimation of uncertainties of the desorption rate Ap,determined in situ,by use of liquid manometric desorbometer gauge.It was observed that,if there are coal subgrains in desorbometer contaminator,the results of desorption rate may be even up to 60% higher than results obtained for the normative sample.Possibly method of the uncertainty reduction are presented in the paper as well.

  16. Coal slurry - a problem of the brown coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, H.; Hielscher, R.; Mohry, J.

    1983-01-01

    Technological and economic aspects are examined for processing coal-containing waste water from brown coal preparation plants in the German Democratic Republic. In 1979, 106.8 Mm/sup 3/ of coal slurry were produced by the GDR brown coal industry, with a coal fine content ranging between 7.8 g/l and 20.4 g/l. This amounts to 2.6 Mt/y of coal which is 1% of the annual brown coal production. Technological variants of processing and utilizing coal slurry are discussed. At a number of major coal preparation plants, coal slurry is flushed into sedimentation lakes. After a 2 to 3 year drying period, a 6 to 10 m thick layer of coal is recovered. Technologies of coal slurry processing with the aim of recovering coal fines are enumerated. Equipment for these processes include, filters, centrifuges, dryers, etc. Recovered coal can be used as fuel or processed into fertilizer in combination with fly ash and other waste products. 12 references.

  17. Mode of occurrence of arsenic in four US coals

    Science.gov (United States)

    Kolker, A.; Huggins, Frank E.; Palmer, C.A.; Shah, N.; Crowley, S.S.; Huffman, G.P.; Finkelman, R.B.

    2000-01-01

    An integrated analytical approach has been used to determine the mode of occurrence of arsenic in samples of four widely used US coals: the Pittsburgh, Illinois #6, Elkhorn/Hazard, and Wyodak. Results from selective leaching, X-ray absorption fine structure (XAFS) spectroscopy, and electron microprobe analysis show that pyrite is the principal source of arsenic in the three bituminous coals, but the concentration of As in pyrite varies widely. The Wyodak sample contains very little pyrite; its arsenic appears to be primarily associated with organics, as As3+, or as arsenate. Significant (10-40%) fractions of arsenate, derived from pyrite oxidation, are also present in the three bituminous coal samples. This information is essential in developing predictive models for arsenic behavior during coal combustion and in other environmental settings.

  18. Beneficial Reuse of San Ardo Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Liske

    2003-09-26

    This report summarizes the work performed from 1 April 2003 to 30 September 2003 and recommends the tasks to be performed during Phase II (Pilot Evaluation). During this period discussions were held with various water agencies regarding use of the treated produced water either directly or indirectly through a water trading arrangement. In particular, several discussions were held with Monterey County Water Resources Agency, that has been charged with the long-term management and preservation of water resources in Monterey County. The Agency is very supportive of the program. However, they would like to see water quality/cost estimate data for the treated produced water from the pilot study prior to evaluating water use/water trade options. The agency sent a letter encouraging the project team to perform the pilot study to evaluate feasibility of the project. In addition, the regulations related to use of the treated water for various applications were updated during this period. Finally, the work plan, health and safety plan and sample analyses plan for performing pilot study to treat the oilfield produced water were developed during this period.

  19. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    Science.gov (United States)

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  20. Tianjin smokeless coal project

    Energy Technology Data Exchange (ETDEWEB)

    Reuvid, J.M. [Information Services Trans Europe B.V. (Netherlands)

    1997-08-01

    A feasibility study was started to evaluate the technical barriers and the commercial possibilities of forming a joint venture between the Tianjin Coal and Building Materials Company (TCBM) and Coalite hereby coal from the Shanxi coalfields would be converted by the Coalite process to a smokeless fuel, which would reduce Taijin`s heavy level of air pollution. The project was, however, aborted in October 1996 because Tianjin had been allocated a connection to domestic natural gas fields. The project did identify the suitability of coals from the Shanxi coalfields for the Coalite process and the likely market acceptability of the product. It demonstrated the necessity of establishing good contacts in the relevant industries and Ministries in China - and highlighted the benefits of an effective collaboration between three types of organisation - an investment and consultancy company with expertise in China, a UK clean coal technology company, and a local consultant. 4 apps.

  1. Coal terminal directory

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-06-15

    The directory gives a comprehensive listing of the world's coal terminals, in a total of 50 countries including information on throughput, facilities, storage capacity, and vessel size limitation.

  2. Coal Mine Permit Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — ESRI ArcView shapefile depicting New Mexico coal mines permitted under the Surface Mining Control and Reclamation Act of 1977 (SMCRA), by either the NM Mining these...

  3. Prospects for coal and clean coal technology in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-15

    This report examines the current energy outlook for the Philippines in regard not only to coal but also other energy resources. The history of the power sector, current state of play and future plans to meet the increasing energy demand from a growing population are discussed. There is also analysis of the trends for coal demand and production, imports and exports of coal and the types of coal-fired power stations that have been built. This includes examination of the legislation involving coal and the promotion of clean coal technologies.

  4. Isolation and characterization of beneficial bacteria associated with citrus roots in Florida.

    Science.gov (United States)

    Trivedi, Pankaj; Spann, Timothy; Wang, Nian

    2011-08-01

    Cultivable diversity of bacteria associated with citrus was investigated as part of a larger study to understand the roles of beneficial bacteria and utilize them to increase the productive capacity and sustainability of agro-ecosystems. Citrus roots from Huanglongbing (HLB) diseased symptomatic and asymptomatic citrus were used in this study. A total of 227 and 125 morphologically distinct colonies were isolated and characterized from HLB asymptomatic and symptomatic trees, respectively. We observed that the frequency of bacterial isolates possessing various plant beneficial properties was significantly higher in the asymptomatic samples. A total of 39 bacterial isolates showing a minimum of five beneficial traits related to mineral nutrition [phosphate (P) solubilization, siderophore production, nitrogen (N) fixation], development [indole acetic acid (IAA) synthesis], health [production of antibiotic and lytic enzymes (chitinase)], induction of systemic resistance [salicylic acid (SA) production], stress relief [production of 1-amino-cyclopropane-1-carboxylate deaminase] and production of quorum sensing [N-acyl homoserine lactones] signals were characterized. A bioassay using ethidium monoazide (EMA)-qPCR was developed to select bacteria antagonistic to Candidatus Liberibacter asiaticus. Using the modified EMA-qPCR assay, we found six bacterial isolates showing maximum similarity to Paenibacillus validus, Lysinibacillus fusiformis, Bacillus licheniformis, Pseudomonas putida, Microbacterium oleivorans, and Serratia plymutica could significantly reduce the population of viable Ca. L. asiaticus in HLB symptomatic leaf samples. In conclusion, we have isolated and characterized multiple beneficial bacterial strains from citrus roots which have the potential to enhance plant growth and suppress diseases.

  5. Coal facies studies in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Kalkreuth, Wolfgang D. [Laboratorio de Carvao e de Petrologia Organica, Instituto de Geociencias, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, 91501-970 Porto Alegre, RS (Brazil)

    2004-04-23

    The present study is a compilation of published data on coal facies studies in Canada based on coal petrological and other methods. The geological age of the coals range from the Devonian coal deposits in Arctic Canada to coals of Tertiary age in the Western Canada Sedimentary Basin, intermontane British Columbia and Arctic Canada. In terms of rank, the coal deposits studied range from lignite to low volatile bituminous. Coal petrological methods include maceral and microlithotype analyses, frequently integrated with data from palynological and geochemical analyses. Most recently, a number of studies have applied sequence stratigraphic concepts to the coal-bearing strata including the interpretation of coal petrological data in the context of this concept.

  6. COAL QUALITY CONTROL

    Institute of Scientific and Technical Information of China (English)

    孟祥瑞

    1998-01-01

    Coal storing and loading have much more influence on coal quality. In the paper, a goalprogramming model has been constructed to determine the ideal quantity extracting from stockpileand silos and a quality control model is inferred under the guidance of maximum theory ofdispersed number and practice methods are given to meet production demand, with which a coalmine has achieved a better tech-economic result.

  7. Experimental Study on the Feasibility of Methane Drainage in Coal Seams with Compound Technique of Perforating and Fracturing

    Institute of Scientific and Technical Information of China (English)

    Luo Yong; Shen Zhaowu

    2007-01-01

    Compound technique of perforating and fracturing can effectively control the perforating direction and the fracturing expansion. The feasibility of this technique used in fracturing coal seams is analyzed. In this paper, the experiments of perforating and fracturing are carried out on samples of coal and the experimental effects are satisfactory. Compound technique of perforating and fracturing is promising in coal seams.

  8. The role of ecological infrastructure on beneficial arthropods in vineyards

    Directory of Open Access Journals (Sweden)

    Gabrijela Kuštera

    2016-03-01

    Full Text Available Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive. Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard. Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%; among insects, Coleoptera was the most abundant taxonomic group (10.6%; Neuroptera showed the lowest value (0.88%. Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46 was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests.

  9. The role of ecological infrastructure on beneficial arthropods in vineyards

    Energy Technology Data Exchange (ETDEWEB)

    Franin, K.; Barić, B.; Kuštera, G.

    2016-11-01

    Weeds and non-cultivated plants have a great impact on abundance and diversity of beneficial arthropods in agriculture. The main aim of this work was to study the influence of the ecological infrastructure (meadows and weedy margins) on the arthropod composition in vineyard surrounding landscape. Research was carried out from May to October during three years. Sampling took place in the ecological infrastructure of three differently managed vineyards (organic, integrated and extensive). Three zones were chosen in each vineyard (3 m, 10 m, and 30 m from the edge of the vineyard). Samples were taken using a standardised sweep net method. In total, we captured 6032 spiders and 1309 insects belonging to 4 orders and 10 families. Arthropod fauna was numerically dominated by Aranea (82.1%); among insects, Coleoptera was the most abundant taxonomic group (10.6%); Neuroptera showed the lowest value (0.88%). Significant differences were found between sites and zones. Organic vineyard showed the highest abundance of arthropods (92.41% were spiders) and in the integrated vineyard there was a 23% of insects. Both the highest abundance of arthropods and the highest Shannon Index value (2.46) was found 3 m away from the edge of the vineyard. Results showed that spiders were the dominant arthropods and ladybugs the dominant insects. Weedy strips near the edge of the vineyard contained a high number of insects and spiders. Our results support the importance of weedy margins in enhancing the population of arthropods as well as in biodiversity promotion. Well-managed field margins could play important role in biological control of vineyard pests. (Author)

  10. Coal in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    McConville, L.; Broadbent, J.; Rousaki, K.

    1999-01-01

    Bulgaria`s national energy strategy includes plans to restructure the energy sector by introducing competition and privatisation, to promote energy efficiency and environmental protection and to prepare the country for integration into the EU energy market. Energy prices are still under government control and coal mining is heavily subsidised. Bulgaria is a major producer of coal, all of which is consumed locally. Most of the domestic production is low quality lignite used for electricity generation. Demand for hard coal is met by imports, mainly from the former USSR and the USA. Bulgaria generates almost half of its electricity needs from coal. Total reserves of lignite are estimated at 2.5 Gt. Coal production declined between 1987 and 1991 reflecting the economic disturbance following the break up of the USSR. In 1996, production was 32 Mt. The mining industry is being restructured as Bulgaria is slowly moving from a centrally-controlled economy to a market-based economy. Environmental damage as a result of coal production has been serious in Bulgaria, due to the use of low grade high sulphur content lignite. 84 refs., 10 figs., 9 tabs.

  11. Indicators of coal metamorphism

    Energy Technology Data Exchange (ETDEWEB)

    Proskuryakov, A.E.

    1982-06-01

    Important in determining metamorphism of coal is the reliability of indicators of coalification. Both the reflection of vitrinite and emission of volatile matter have been used for this purpose. To determine which indicator more accurately characterizes metamorphism of coal, their conformity to the following demands was established: 1. uniformity in direction of change of parameters with degree of metamorphism; 2. independence of the indicator of the genetic characteristics of coal (petrographic composition, reduction and oxidation of coal); 3. sensitivity of indicator. Both indicators conform to the first requirement. Emission of volatile substance decreases and reflective capacity of vitrinite increases uniformly with degree of metamorphism. However, the reflectivity of vitrinite is not influenced by petrographic composition of coals and is less dependent on the oxidation and reduction of coal than emission of volatile matter. It is also a more sensitive indicator distinguishing more degrees of metamorphism than emission of volatile matter. Reflectivity of vitrinite is a more reliable indicator of metamorphism than emission of volatile matter. However, in many laboratories this indicator is not measured with sufficient accuracy. To correct this, measuring equipment must be standardized.

  12. Geochemistry of environmentally sensitive trace elements in Permian coals from the Huainan coalfield, Anhui, China

    Science.gov (United States)

    Chen, J.; Liu, Gaisheng; Jiang, M.; Chou, C.-L.; Li, H.; Wu, B.; Zheng, Lingyun; Jiang, D.

    2011-01-01

    To study the geochemical characteristics of 11 environmentally sensitive trace elements in the coals of the Permian Period from the Huainan coalfield, Anhui province, China, borehole samples of 336 coals, two partings, and four roof and floor mudstones were collected from mineable coal seams. Major elements and selected trace elements were determined by inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled plasma mass spectrometry (ICP-MS), and hydride generation atomic absorption spectrometry (HAAS). The depositional environment, abundances, distribution, and modes of occurrence of trace elements were investigated. Results show that clay and carbonate minerals are the principal inorganic constituents in the coals. A lower deltaic plain, where fluvial channel systems developed successively, was the likely depositional environment of the Permian coals in the Huainan coalfield. All major elements have wider variation ranges than those of Chinese coals except for Mg and Fe. The contents of Cr, Co, Ni, and Se are higher than their averages for Chinese coals and world coals. Vertical variations of trace elements in different formations are not significant except for B and Ba. Certain roof and partings are distinctly higher in trace elements than underlying coal bench samples. The modes of occurrence of trace elements vary in different coal seams as a result of different coal-forming environments. Vanadium, Cr, and Th are associated with aluminosilicate minerals, Ba with carbonate minerals, and Cu, Zn, As, Se, and Pb mainly with sulfide minerals. ?? 2011 Elsevier B.V.

  13. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  14. Microbiota of coal pit waste heaps of Chervonograd Mining Region after coal ash application

    Directory of Open Access Journals (Sweden)

    S. V. Kuzmishyna

    2015-02-01

    Full Text Available The aim of this work was to determine the impact of addition of coal ash from Dobrotvir TPP to waste heaps gangue (Chervonograd Mining Region on the number of different groups of microorganisms. 20 samples from three waste heaps, from the black and red gangue, under the mosses and from bare substrate and also from terrace, top and base of each waste heap, were selected. Waste heaps gangues with coal ash from Dobrotir TPP were mixed in vitro and left for 10 days. We used proportion of coal ash to gangue as 1 to 5. Microorganisms were grown in Petri dishes containing 20–30 ml agar medium and in 22 ml tubes at temperature of 28 °C. Microscopic fungi were revealed on Mash-agar; oligonitrophilic bacteria – on Ashby medium; actinomycetes – on Chapek’s medium; cellulose decomposing aerobic bacteria – on Hetchenson medium; colorless sulfur oxidizing bacteria: neutrophilic – on Beyerinck medium, acidophilic – on Silverman and Lundgren 9К medium. The acidity value of waste heaps gangue samples was determined by рН meter рН-150М. We observed that samples collected under the mosses had lower acidity compared to samples from the bare substrate. We also revealed lower acidity of the overburn red gangue than the acidity of freshly deposited black gangue. To sum up, application of coal ash resulted in lowering of acidity value among all samples under study. Coal ash addition led to increase in number of microscopic fungi cells compared to the appropriate control samples. The highest quantity of microscopic fungi (16.2 ± 0.79 х 105 CFU/g of gangue was revealed in sample from red rock of the main waste heap of Central Enrichment Plant (CEP. At the same time, we observed the highest cell number in the control sample under the mosses of “Nadija” coal pit waste heap, (6.1 ± 0.3 х 105 CFU/g of gangue. After coal ash addition, most samples featured 2–3 times higher quantities of colorless sulfur-oxidizing neutrophilic bacteria cells. The

  15. A thermal investigation on coals from Assam (India)

    Energy Technology Data Exchange (ETDEWEB)

    Saikia, Binoy K.; Boruah, Rajani K.; Baruah, Bimala P. [North-East Institute of Science and Technology (CSIR), Jorhat-785 006 (India); Gogoi, Pradip K. [Department of Chemistry, Dibrugarh University, Dibrugarh-786 004 (India)

    2009-02-15

    A thermal characterization of two coal samples from Ledo and Tikak collieries of Makum coalfield, Assam, India using XRD, FT-IR, and TGA was reported in this paper. The coal samples were heated for 20, 40 and 60 min in a 1000-watt heater (temperature {proportional_to} 250 C) in presence of air and characterized by XRD and FT-IR spectroscopy. Both the coals contain amorphous and crystalline phases. The raw coals also contain very small peaks due to quartz, calcite, gypsum, pyrite, and chlorite. The XRD patterns were found to change upon heating. In the coals heated for 20 and 40 min, it was observed that both amorphous and crystalline parts are common in them; crystalline part being the major one in the 40 min heated samples. The XRD patterns of the samples heated for 60 min indicate the presence of major quantities of {alpha}-quartz, hematite, and chlorite in them. They also show some new peaks, which are assigned to be kaolinite, illite, magnetite and very small in comparison to the amorphous portion in raw coals. {alpha}-quartz was found to be most stable crystalline phase of silica in the coals. The crystallinity % (X-ray) of the coals heat-treated for different times was determined and found to be increasing with time of heating. The FT-IR spectra of raw and heat-treated coal samples at 250 C were also recorded and compared. The spectra were observed to be almost similar and it was observed that few functional groups disappear on heating at 250 C. The same coal samples were also characterized by thermogravimetric analysis (TGA) and differential thermal analysis (DTA) techniques. On heat treatment in air atmosphere up to 800 C, 20-27% weight loss occurs due to removal of various volatile materials. DTA results indicate the chemical reactivity of the coal sample initially at 80-110 C due to loss of water, and two other major reactions at around 420 and 530 C due to primary and secondary volatization. (author)

  16. Journal of Coal Science & Engineering(China)

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Guide for Authors Journal of Coal Science & Engineering(English Edition), a comprehensive academic periodical of the China Coal Society, covers the fields of coal science and technology including coal geology, exploration,mine survey, mine project assessment, mine construction, coal mining, coal mine electrical machinery,mine safety, coal processing and utilization, coal mine environmental protection, etc. It reflects the latest research results and findings.

  17. Changes in steam coal during storage. Kivihiilen kemiallisten ja fysikaalisten ominaisuuksien vaikutusmekanismien selvittaeminen pitkaeaikaisvarastoinnissa ja varastointihaevioeiden pienentaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Nieminen, M.; Moilanen, A.

    1989-01-01

    Changes in steam coal during storage were studied under laboratory conditions. The samples were aged under conditions equal to storage in practice. Samples were taken from the coals during laboratory weathering and proximate and ultimate analyses were carried out for them. In addition, changes in coal structure were monitored by microscopy using petrographic methods. Changes in coal mass during the weathering test were also studied. The aim of the study was to evaluate the significance of changes in coal during storage with regard to the use of steam coal and to study possible differences in storage resistance between different steam coal grades. In the laboratory weathering tests nine steam coal samples were aged for 98-110 days. The samples were produced from larges coal lamps by crushing and sieving certain particle size fractions from the crush. The samples were aged under thermostated conditions in vertical tubes by blowing air through the samples at a flow rate equal to storage in practice. Moisture was added at times to air. 5-8 samples of about 15g were taken from each coal sample during the tests. Moisture, ash, and volatile contents, heat value and elemental analysis (C, H and N) were determined for the samples. Typical signs of weathering (fissure formation) developed in the structure of the samples were monitored by microscopy. Signs of changes were monitored in the above characteristics of the aged samples. The mass of the samples seemed to increase during ageing (probably due to oxygen adsorption). Changes in other characteristics are explained by the increase in mass. In the microscopical study signs of weathering were found also in original coal samples. However, all the monitored changes in the characteristics of steam coal samples during ageing test were fairly small.

  18. Coal facies studies in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Ruiz, Isabel [INCAR (CSIC), Ap. Co., 73, 33080, Oviedo (Spain); Jimenez, Amalia [Geology, University of Oviedo, 33005, Oviedo (Spain)

    2004-04-23

    This work is a synthesis of the distribution of the main coal basins and sub-basins in Spain as well as the research carried out on their coal facies. The coal fields are distributed through the Paleozoic (mainly Pennsylvanian), Mesozoic (Cretaceous) and Cenozoic times. Peats also exist in the southeast Spain (Granada area), although these types of deposits are not included in this review. Spanish coal basins are both of a paralic and intramontane type and the coal rank is highly variable, from lignite in the case of the younger coal seams to anthracite for those of Carboniferous age.

  19. Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)

    2012-07-01

    Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter

  20. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested

  1. Catalytic spectrophotometric determination of iodine in coal by pyrohydrolysis decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Wu Daishe [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China)], E-mail: dswu@ncu.edu.cn; Deng Haiwen [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China); Wang Wuyi [Institute of Geographic Sciences and Resources Research, CAS, Beijing 100101 (China); Xiao Huayun [School of Environmental Science and Engineering, Nanchang University, Nanchang 330031 (China)

    2007-10-10

    A method for the determination of iodine in coal using pyrohydrolysis for sample decomposition was proposed. A pyrohydrolysis apparatus system was constructed, and the procedure was designed to burn and hydrolyse coal steadily and completely. The parameters of pyrohydrolysis were optimized through the orthogonal experimental design. Iodine in the absorption solution was evaluated by the catalytic spectrophotometric method, and the absorbance at 420 nm was measured by a double-beam UV-visible spectrophotometer. The limit of detection and quantification of the proposed method were 0.09 {mu}g g{sup -1} and 0.29 {mu}g g{sup -1}, respectively. After analysing some Chinese soil reference materials (SRMs), a reasonable agreement was found between the measured values and the certified values. The accuracy of this approach was confirmed by the analysis of eight coals spiked with SRMs with an indexed recovery from 94.97 to 109.56%, whose mean value was 102.58%. Six repeated tests were conducted for eight coal samples, including high sulfur coal and high fluorine coal. A good repeatability was obtained with a relative standard deviation value from 2.88 to 9.52%, averaging 5.87%. With such benefits as simplicity, precision, accuracy and economy, this approach can meet the requirements of the limits of detection and quantification for analysing iodine in coal, and hence it is highly suitable for routine analysis.

  2. Raton Coal Basin boundary, 1999 Coal Resource Assessment

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This ArcView shape file contains a polygon representing the extent of the Raton Coal Basin boundary. This theme was created specifically for the National Coal...

  3. Method of extracting coal from a coal refuse pile

    Science.gov (United States)

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  4. Study of coals by high resolution solid state nuclear magnetic resonance

    Institute of Scientific and Technical Information of China (English)

    杨保联; 冯继文; 周建威; 李丽云; 叶朝辉

    1999-01-01

    By using high resolution solid state nuclear magnetic resonance method, six coal samples coming from four countries were investigated. Twelve structural parameters of these samples were measured and compared with those of Chinese coals. Spectral editing experiment was carried out and 15N NMR spectrum was obtained.

  5. Lunar Oxygen and Silicon Beneficiation Using Only Solar Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Element beneficiation from a moving, ionized plasma can be accomplished through the principles of mass spectroscopy. Two US patents were recently awarded to the PI...

  6. Graphene-based composite materials beneficial to wound healing

    Science.gov (United States)

    Lu, Bingan; Li, Ting; Zhao, Haitao; Li, Xiaodong; Gao, Caitian; Zhang, Shengxiang; Xie, Erqing

    2012-04-01

    We use electrospinning to prepare chitosan-PVA nanofibers containing graphene. The nanofibers can be directly used in wound healing: graphene, as an antibacterial material, can be beneficial for this. A possible antibacterial mechanism for graphene is presented.

  7. Beneficial effect of Curcumin in Letrozole induced polycystic ovary syndrome

    Directory of Open Access Journals (Sweden)

    P. Sushma Reddy

    2016-04-01

    Conclusion: Curcumin showed beneficial effects in Letrozole induced PCOS in female Wistar rats. Its effect was comparable to that of Clomiphene citrate, most widely used treatment for ovulation induction in PCOS condition.

  8. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  9. Permeability changes in coal resulting from gas desorption. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Johnson, P.W.

    1992-11-30

    This report documents studies on the effects of gas sorption on coal, with the intent of eventually evaluating how sorption and strain affect permeability. These studies were, carried out at the University of Alabama during the period from 1989 through 1992. Two major experimental methods were developed and used. In the strain experiments, electronic strain gauges were attached to polished blocks of coal in order to measure linear and volumetric swelling due to gas sorption. The effects of bedding plane orientation, of gas type, and of coal type were investigated. In the gravimetric experiment the weight of small samples of coal was measured during exposure to high pressure gases. Sample measurements were corrected for buoyancy effects and for sample swelling, and the results were plotted in the form of Langmuir isotherms. Experiments were conducted to determine the effect of grain size, coal type, moisture, and of sorbant gas. The advantage of this method is that it can be applied to very small samples, and it enabled comparison liptinite versus vitrinite concentrates, and kerogen rich versus kerogen depleted oil shales. Also included is a detailed discussion of the makeup of coal and its effect on gas sorption behavior.

  10. Combustion char morphology related to combustion temperature and coal petrography

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, P.; Petersen, H.I.; Thomsen, E. [Geological Survey of Denmark, Copenhagen (Denmark)

    1996-07-01

    Chars produced from different reactors were found to lack consistency of morphological charactersitics. Therefore, the morphology of chars sampled from various laboratory-scale reactors operating at temperatures from 800 to {gt} 1400{degree}C, together with chars collected directly in the flame zone in a full-scale pulverised fuel combustion experiment, was examined. A coal and coal blend dominated by vitrinite-rich microlithotypes together with four coals dominated by inertinite-rich microlithotypes were used to produce the combustion chars. Char samples produced at temperatures above {approximately} 1300{degree}C have a morphotype composition very similar to the composition of the full-scale char samples, whereas the morphotype compositions of those produced at {approximately} 1550{degree}C or lower are significantly different. Correlation between coal petrography and char morphology and determination of char reactivity should thus be attempted only using chars produced at temperatures comparable with those for the intended use of the coal. A clear distinction between the high-temperature char samples (burnout 50-60wt% daf) emerges which is related mainly to the parent coal petrography and probably secondarily to the rank. Vitrite, clarite and vitrinertie V may be correlated with the porous tenuisphere and crassisphere morphotypes, whereas inertite, durite, vitrinertite I, duroclarite and charodurite may be correlated with the crassinetwork-mixed-network-mixed morphotype group. 29 refs., 7 figs., 7 tabs.

  11. Geochemical database of feed coal and coal combustion products (CCPs) from five power plants in the United States

    Science.gov (United States)

    Affolter, Ronald H.; Groves, Steve; Betterton, William J.; William, Benzel; Conrad, Kelly L.; Swanson, Sharon M.; Ruppert, Leslie F.; Clough, James G.; Belkin, Harvey E.; Kolker, Allan; Hower, James C.

    2011-01-01

    The principal mission of the U.S. Geological Survey (USGS) Energy Resources Program (ERP) is to (1) understand the processes critical to the formation, accumulation, occurrence, and alteration of geologically based energy resources; (2) conduct scientifically robust assessments of those resources; and (3) study the impacts of energy resource occurrence and (or) their production and use on both the environment and human health. The ERP promotes and supports research resulting in original, geology-based, non-biased energy information products for policy and decision makers, land and resource managers, other Federal and State agencies, the domestic energy industry, foreign governments, non-governmental groups, and academia. Investigations include research on the geology of oil, gas, and coal, and the impacts associated with energy resource occurrence, production, quality, and utilization. The ERP's focus on coal is to support investigations into current issues pertaining to coal production, beneficiation and (or) conversion, and the environmental impact of the coal combustion process and coal combustion products (CCPs). To accomplish these studies, the USGS combines its activities with other organizations to address domestic and international issues that relate to the development and use of energy resources.

  12. Coal recovery from a coal waste dump

    Directory of Open Access Journals (Sweden)

    Rozanski Zenon

    2016-01-01

    Full Text Available The possibilities and efficiency of coal recovery from the waste material located at the Central Coal Waste Dump in Poland were presented in this paper. The waste material includes significant amount of fly ash. Research conducted into determination of energetic properties of such wastes showed that the average ash content was 75.75% and the average gross calorific value was 7.81 MJ/kg. Coal was gravitationally separated from the waste material in a pulsatory jig and in a spiral washer including size fractions: 30-5 and 8-0 mm (this was crushed to a size <3.2 mm, respectively. The application of the pulsatory jig (pulse classifier allowed to obtain a high-quality energetic concentrate with the ash content lower than 12% and the gross calorific value higher than 26 MJ/kg (with average yield 7.8%. The spiral separator gave much worse results. The average gross calorific value for the concentrate was 11.6 MJ/kg, with the high ash content 56.5% and yield approximately 26%.

  13. Coal 99; Kol 99

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    2000-07-01

    The following report deals with the use of coal and coke during 1998. Some information about techniques, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used. The use of steam coal for heating purposes during 1998 was 680 000 tons and somewhat lower than in 1997. The extremely high figures of 1996 were due to twice the production of electricity because of lack of waterpower. The co-generation plants were the main users of coal. The minor plants have increased their use of forest fuels. Probably the use of steam coal will go down in the immediate years both in the heat generating and the co-generating plants. During the top year 1987 coal was used in 18 hot water plants and 11 co-generation plants. During 1998 these figures are 1 and 8. Taxes and environmental reasons explain this trend. The use of steam coal in the industry has been constant at the level 700 000 tons. This level is supposed to be constant or to vary with business cycles. Steel-works, however, increase their use of steam coal in order to replace the more expensive coke. The import of metallurgical coal in 1998 was 1.6 mill tons like the year before. 1.1 mill tons of coke were produced. The coke consumption in the industry was 1.4 mill tons from which 0.3 mill tons were imported. Several other plants have plans to replace the coal with forest fuels, waste fuels and NG. Even the biggest plant, Vaesteraas, has ordered a block for bio fuels. Helsingborg has started to use wood pellets. The pellets replace most of the coal for the heat production in the co-generation plant. Norrkoeping Kraft AB has put a fluid bed boiler for various fuels into operation, leading to more than half the coal consumption compared with previous years. They have also rebuilt one of their travelling grates for bio fuels. Stockholm Energi, Haesselbyverket, has invested

  14. Interpolation and Sampling Errors of the Ash and Sulphur Contents in Selected Polish Bituminous Coal Deposit (Upper Silesian Coal Basin - USCB) / Błędy Interpolacji I Opróbowania Zawartości Popiołu I Siarki W Wytypowanych Polskich Złożach Węgla Kamiennego (Górnośląskie Zagłębie Węglowe)

    Science.gov (United States)

    Mucha, Jacek; Wasilewska-Błaszczyk, Monika

    2015-09-01

    The basic sources of information on the parameters characterizing the quality of coal (i.e. its ash and sulphur contents) in the deposits of The Upper Silesian Coal Basin (Poland) are drill core sampling (the first stage of exploration) and channel sampling in mine workings (the second stage of exploration). Boreholes are irregularly spaced but provide relatively uniform coverage over an entire deposit area. Channel samples are taken regularly in mine workings, but only in the developed parts of the deposit. The present study considers selected seams of two mines. The methodology used is based on detailed geostatistical analysis, point kriging procedure and P. Gy's theory of sampling. Its purpose is: • defining and comparing geostatistical models for variability of the ash and sulphur contents for data originating from boreholes and mine workings, • predicting by means of point kriging the values of the parameters and errors of interpolation using data from boreholes at grid points where underground mine workings were later channel-sampled, • assessing the accuracy of interpolation by comparison of predicted values of parameters with real values (found by channel sampling), • evaluating the variances of total secondary sampling error (error of preparation of assay samples) and analytical error introduced by assaying of sulphur and ash, • assessing the contribution of sampling and analytical errors (global estimation error) to the interpolation errors. The authors found that the interpolation errors for ash or sulphur content are very large, with mean relative values of 35%-60%, mainly caused by the considerable natural variability, a significant role of random component of variability, and heterogeneity of spatial distribution of these characteristics. The sampling and analytical errors play a negligible role. Their values are smaller than 11% of interpolation error values. Presenting estimates of the spatial distribution of ash and sulphur contents in

  15. Coal fires in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Whitehouse, Alfred E.; Mulyana, Asep A.S. [Office of Surface Mining/Ministry of Energy and Mineral Resources Coal Fire Project, Ministry of Energy and Mineral Resources, Agency for Training and Education, Jl. Gatot Subroto, Kav. 49, Jakarta 12950 (Indonesia)

    2004-07-12

    Indonesia's fire and haze problem is increasingly being ascribed to large-scale forest conversion and land clearing activities making way for pulpwood, rubber and oil palm plantations. Fire is the cheapest tool available to small holders and plantation owners to reduce vegetation cover and prepare and fertilize extremely poor soils. Fires that escaped from agricultural burns have ravaged East Kalimantan forests on the island of Borneo during extreme drought periods in 1982-1983, 1987, 1991, 1994 and 1997-1998. Estimates based on satellite data and ground observations are that more than five million hectares were burned in East Kalimantan during the 1997/1998 dry season. Not only were the economic losses and ecological damage from these surface fires enormous, they ignited coal seams exposed at the ground surface along their outcrops.Coal fires now threaten Indonesia's shrinking ecological resources in Kutai National Park and Sungai Wain Nature Reserve. Sungai Wain has one of the last areas of unburned primary rainforest in the Balikpapan-Samarinda area with an extremely rich biodiversity. Although fires in 1997/1998 damaged nearly 50% of this Reserve and ignited 76 coal fires, it remains the most valuable water catchment area in the region and it has been used as a reintroduction site for the endangered orangutan. The Office of Surface Mining provided Indonesia with the capability to take quick action on coal fires that presented threats to public health and safety, infrastructure or the environment. The US Department of State's Southeast Asia Environmental Protection Initiative through the US Agency for International Development funded the project. Technical assistance and training transferred skills in coal fire management through the Ministry of Energy and Mineral Resource's Training Agency to the regional offices; giving the regions the long-term capability to manage coal fires. Funding was also included to extinguish coal fires as

  16. Kinetic study of coals gasification into carbon dioxide atmosphere

    Directory of Open Access Journals (Sweden)

    Korotkikh A.G.

    2015-01-01

    Full Text Available The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The mass loss and gasification time dependencies from temperature were defined to calculate chemical reaction frequency factor and activation energy. Two coal char gasification physico-mathematical models were proposed and recommendations for them were formed.

  17. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  18. Trace elements and mercury levels in Indian coals used for thermal power generation

    Energy Technology Data Exchange (ETDEWEB)

    Selva Kumaran, P.; Sivasubramanian, R.; Lawrence, A.; Reddy, M.K. [DGM/Coal Research, BHEL, Tiruchi (India)

    2008-03-15

    In this paper the emphasis is on the trace elements, as they exist in Indian coal. Emissions of trace elements to the atmosphere, their concentrations in the environment and their effects, are of concern now, as the environmental importance of the trace elements in coal remains high for the future goal of zero emissions. The US Clean Air Act Amendments of 1990 identified eleven trace elements and their compounds commonly found in coals, the potentially 'hazardous air pollutants'. Values of seven trace elements out of these elements in the input coals in India are listed. Over 53 samples were analysed for 24 trace elements in Indian coals. The database is available for the scientific analysis. Reduction of mercury in washed coals compared to corresponding ROM coals is deduced from direct lab analysis. Future needs of R & D in trace elements are identified. 11 refs., 4 figs., 5 tabs.

  19. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  20. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  1. Adsorption mechanism of different coal ranks under variable temperature and pressure conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-ling

    2008-01-01

    Variable temperature and pressure adsorption tests were conducted on four coal samples with different coal ranks, under simulated temperatures and pressures corresponding to coal reservoirs at different depths. The regularity of the variation in the amounts of adsorption by coals under variable temperature and pressure and 30 ~C isothermal conditions are compared and the adsorption characteristics of coal under the composite effect of temperature and pressure were obtained. The adsorption test and data processing method of coal under variable temperature and pressure are presented and the effect of the mechanism of tempera-ture and pressure on the adsorption capacity of coal has been studied. The research results are of significant importance in the in-vestigation of coalbed methane storage mechanism and for the prediction of the amounts of coalbed methane at various depths.

  2. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  4. Biological liquefaction characteristics of Jurassic weak & non-stick coal in Hengshan, North Shaanxi Province

    Institute of Scientific and Technical Information of China (English)

    DU Mei-li; CHEN Hong-gui; JIANG Su-rong

    2008-01-01

    Jurassic weak & non-stick coal in Hengshan of North Shaanxi Province waspretreated by the nitric acid. Then, it was biodegraded by Phanerochaete chrysosporium.The biodegradation role of the white-rot fungus for coal is extremely significant. Orthogo-nal test demonstrate that liquefied time, liquefaction temperature and the amount of fun-gus liquids etc. are the main factors affecting the coal biodegradation rate. The best tech-nical condition of the coal biological liquefaction was got. Comparing the coal sample be-fore biodegradation with that after biodegradation, it is found that the ash of the coal resi-due after biodegradation reduces significantly, H and O contents increase, C and N con-tents decrease. The biodegradation change the coal macromolecular structure.

  5. Cooperative research in coal liquefaction. Technical progress report, May 1, 1993--April 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, G.P. [ed.

    1994-10-01

    Accomplishments for the past year are presented for the following tasks: coliquefaction of coal with waste materials; catalysts for coal liquefaction to clean transportation fuels; fundamental research in coal liquefaction; and in situ analytical techniques for coal liquefaction and coal liquefaction catalysts some of the highlights are: very promising results have been obtained from the liquefaction of plastics, rubber tires, paper and other wastes, and the coliquefaction of wastes with coal; a number of water soluble coal liquefaction catalysts, iron, cobalt, nickel and molybdenum, have been comparatively tested; mossbauer spectroscopy, XAFS spectroscopy, TEM and XPS have been used to characterize a variety of catalysts and other samples from numerous consortium and DOE liquefaction projects and in situ ESR measurements of the free radical density have been conducted at temperatures from 100 to 600{degrees}C and H{sub 2} pressures up to 600 psi.

  6. Coal liquefaction process streams characterization and evaluation. FIMS analysis of direct coal liquefaction process streams

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, R.; McMillen, D.F. [SRI International, Menlo Park, CA (United States)

    1994-03-01

    This study was designed to apply the method of field ionization mass spectrometry (FIMS) for the analysis of direct coal liquefaction process-stream samples. The FIMS method was shown to have a high potential for application to direct coal liquefaction-derived samples in a Phase 1 project in this program. In this Phase 3 project, the FIMS method was applied to a set of samples produced in HRI bench-scale liquefaction Runs CC-15 and CC-16. FIMS was used to obtain the molecular weight profile of the samples and to identify specific prominent peaks in the low end (160--420 Da) region of the molecular weight profile. In the samples examined in this study, species were identified which previously were recognized as precursors to the formation of high molecular weight structures associated with the formation of coke in petroleum vacuum gas oils.

  7. Coal 95; Kol - 95

    Energy Technology Data Exchange (ETDEWEB)

    Sparre, C.

    1995-12-31

    The report deals with the use of coal and coke in Sweden during 1994. Some information about technology, environmental questions and markets are also given. Data have been collected by questionnaires to major users and by telephone to minor users. Preliminary statistical data from Statistics Sweden have also been used.The use of steam coal for heating purposes has been unchanged during 1994 at a level of 1 Mtons. The production in the cogeneration plants has been constant, but has increased for electricity production. The minor plants have increased their use of forest fuels. The use of steam coal will probably go down in the next years both for heat and cogeneration plants. During the top year 1987 coal was used in 18 hot water and 11 cogeneration plants. 1994 these figures are 3 and 12. Taxes and environmental reasons explain this trend. The use of steam coal in industry has been constant at the level 0.7 Mtons. The import of metallurgical coal in 1993 was 1.6 Mtons, like 1992. Import of 0.3 Mtons of coke gives the total consumption of coke in industry as 1.5 Mtons. the average price of steam coal imported to Sweden was 317 SEK/ton, 3% higher than 1993. All Swedish plants meet their emission limit of dust, SO{sub 2} and NO{sub x} as given by county administrations or concession boards. The cogeneration plants all have some SO{sub 2} removal system. The biggest cogeneration plant (Vaesteraas) has recently invested in a SCR NO{sub x} cleaning system. Most other plants use low NO{sub x} burners or SNR injection systems based on ammonia or urea. 2 figs, 13 tabs.

  8. Blending effects on coal burnout and NO emissions

    Energy Technology Data Exchange (ETDEWEB)

    B. Arias; R. Backreedy; A. Arenillas; J.M. Jones; F. Rubiera; M. Pourkashanian; A. Williams; J.J. Pis [Instituto Nacional del Carbon, CSIC Oviedo (Spain)

    2003-07-01

    In this work, the combustion behaviour of individual coals of different rank and their blends was evaluated. The study was focused on burnout and NO emissions during blend combustion. Preliminary combustion tests of the coals and their blends were carried out in a thermogravimetric analyser (TGA). Some characteristic temperatures were obtained to evaluate the combustibility of the samples. These temperatures indicate an improvement in the combustibility of the less reactive coal when it is blended. An entrained flow reactor (EFR) was employed to study the behaviour of the samples at high heating rates and short residence times. Burnout and NO emissions were measured during EFR combustion tests. In some blends the results can be predicted from the weighted average of the values of the individual coals. However, other blends show an increase, from the averaged values, in burnout and especially in NO emissions. 14 refs., 10 figs., 3 tabs.

  9. Magnetic seeding sedimentation (MSS) of coal slimes

    Science.gov (United States)

    Wu, Xiqing; Yue, Tao; Dai, Liang

    2017-01-01

    Magnetic seeding sedimentation (MSS), i.e. adding magnetic seeds and pre-magnetization for sedimentation, is a technique especially for sedimentation of fine slimes, improving the sedimentation performance by introducing the magnetic interactions between particles in a suspension and enlarging the apparent size of the fine particles. The fine coal slimes with a size of 66.68%-38μm were investigated by the MSS. Sedimentation tests were conducted, and some measurements, such as laser size analysis, magnetic susceptibility by vibrating sample magnetometer (VSM), were also applied in order to probe the mechanism of the MSS. Based on the tests, measurements and calculations it was demonstrated that the sedimentation of coal slimes increased with the additions of the magnetic seeds, and in the presence of the polyacrylamide, and also there appeared a relatively large apparent size of slimes after additions of magnetic seeds and/or polyacrylamide. So, the reason for the influence of MSS lies in fact that the presence of the polyacrylamide intensified the adsorption of magnetic seeds on the coal particles and the coverage of the magnetic seeds on the coal surface from 0.2% wt. to1.3% wt., resulting in increased magnetic susceptibility of coal particles from 9.13×10-9m3/kg to 22.17×10-9m3/kg and thus a low magnetic field strength of pre-magnetization needed for the magnetic agglomeration to happen among the coal particles (the threshold of magnetic field strength for agglomeration) from 602mT to 24mT prior to proper sedimentation.

  10. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  11. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  12. Clean coal - a national urgency

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.M.; Sahai, R. [Indian Bureau of Mines, Nagpur (India). Technical Consultancy Division

    2000-07-01

    India is the third largest producer and consumer of coal in the world. Coal generally has a high ash content, thereby requiring that it be cleaned for proper use. Technological advances now make it possible to reduce pollution considerably, even as energy use increases. However, to reduce environmental impacts, technologies for cleaning coal before combustion need to be developed. The paper focuses on the need for clean coal production and the benefits associated with it. Although the country is rich in coal reserves, the generally inferior quality of coal will lead to its depletion if it is not used cleanly. Increasing the proportion of prepared coal from the current level of less than 5% (i.e. 10-11 million tonnes per annum) of all coal consumed will lead to a massive saving. This can be achieved if new washeries are set up, preferably near the coalfields. 2 figs.

  13. China's post-coal growth

    Science.gov (United States)

    Qi, Ye; Stern, Nicholas; Wu, Tong; Lu, Jiaqi; Green, Fergus

    2016-08-01

    Slowing GDP growth, a structural shift away from heavy industry, and more proactive policies on air pollution and clean energy have caused China's coal use to peak. It seems that economic growth has decoupled from growth in coal consumption.

  14. Online compositional analysis in coal gasification environment using laser-induced plasma technology

    Science.gov (United States)

    Deng, Kung-Li; Wu, Juntao; Wang, Zhe; Lee, Boon; Guida, Renato

    2006-08-01

    Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.

  15. Natural radioactivity level of associated bone-coal mining area in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    YE Ji-Da; ZHENG Hui-Di; SONG Wei-Li; ZENG Guang-Jian; WANG Sha-Ling; WU Zong-Mei

    2005-01-01

    The geographic distribution, γ-radiation level and specific activity of radionuclides of the bone-coal mines in Zhejiang Province were reported. The weighted average of γ-radiation dose rate of the bone-coal mines is 566 nGy/h for 107 main bone-coal mines. The weighted mean activity of 238U, 226Ra, 232Th and 40K in the samples are 949, 918, 34 and 554 Bq/kg for 171 samples of bone-coal, respectively.

  16. 30 CFR 90.208 - Bimonthly sampling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Bimonthly sampling. 90.208 Section 90.208... MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.208 Bimonthly sampling. (a) Each operator shall take one valid respirable dust sample...

  17. 30 CFR 90.207 - Compliance sampling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compliance sampling. 90.207 Section 90.207... MANDATORY HEALTH STANDARDS-COAL MINERS WHO HAVE EVIDENCE OF THE DEVELOPMENT OF PNEUMOCONIOSIS Sampling Procedures § 90.207 Compliance sampling. (a) The operator shall take five valid respirable dust samples...

  18. Prediction of oxygen concentration and temperature distribution in loose coal based on B P neural network

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong-jian; WU Guo-guang; XU Hong-feng; MENG Xian-liang; WANG Guang-you

    2009-01-01

    An effective method for preventing spontaneous combustion of coal stockpiles on the ground is to control the air-flow in loose coal. In order to determine and predict accurately oxygen concentrations and temperatures within coal stockpiles, it is vital to obtain information of self-heating conditions and tendencies of spontaneous coal combustion. For laboratory conditions, we de-signed our own experimental equipment composed of a control-heating system, a coal column and an oxygen concentration and temperature monitoring system, for simulation of spontaneous combustion of block coal (13-25 ram) covered with fine coal (0-3 mm). A BP artificial neural network (ANN) with 150 training samples was gradually established over the course of our experiment. Heating time, relative position of measuring points, the ratio of fine coal thickness, artificial density, voidage and activation energy were selected as input variables and oxygen concentration and temperature of coal column as output variables. Then our trained network was applied to predict the trend on the untried experimental data. The results show that the oxygen concentration in the coal column could be reduced below the minimum still able to induce spontaneous combustion of coal-6% by covering the coal pile with fine coal, which would meet the requirement to prevent spontaneous combustion of coal stockpiles. Based on the predic-tion of this ANN, the average errors of oxygen concentration and temperature were respectively 0.5% and 7 ~C, which meet actual tolerances. The implementation of the method would provide a practical guide in understanding the course of self-heating and spontaneous combustion of coal stockpiles.

  19. Permeability changes in coal resulting from gas desorption

    Energy Technology Data Exchange (ETDEWEB)

    Levine, J.R.; Tsay, F.

    1990-01-01

    Measurement of sorption capacity of coals by microbalance in a high pressure environment requires that corrections be made for the buoyancy of the gas that is displaced by the solid coal. As the pressure increases, the gas density increases, requiring that a correction factor be applied to the weight of the sample as measured by microbalance. A brief report summarizing this correction is attached as Appendix A.

  20. Kinetic study of coals gasification into carbon dioxide atmosphere

    OpenAIRE

    Korotkikh A.G.; Slyusarskiy K.V.

    2015-01-01

    The solid fuel gasification process was investigated to define chemical reactions rate and activation energy for a gas-generator designing and regime optimizing. An experimental procedure includes coal char samples of Kuznetskiy and Kansko-Achinskiy deposits consequent argon pyrolysis into argon and oxidating into carbon dioxide with different temperatures. The thermogravimetric analysis data of coal char gasification into carbon dioxide was obtained in the temperature range 900–1200 ºC. The ...

  1. Enhanced coal and mineral flotation by selective clay agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Fan, M.M.; Zhou, X.H.; Zhao, C.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)

    2006-07-01

    The purpose is to evaluate the performance of clay binding agents for enhancing coal and mineral flotation. Mechanical and column flotation tests were conducted on coal and potash samples. Several process parameters were examined, e.g. impeller rotation speed, binder dosage, slurry solids content, and collector dosage. The results show that the Georgia-Pacific reagents improved flotation efficiency under some process conditions, especially at higher solids percentage and higher impeller rotation speed. 26 refs., 9 figs., 3 tabs.

  2. Coal liquefaction processes

    Energy Technology Data Exchange (ETDEWEB)

    Baker, N.R.; Blazek, C.F.; Tison, R.R.

    1979-07-01

    Coal liquefaction is an emerging technology receiving great attention as a possible liquid fuel source. Currently, four general methods of converting coal to liquid fuel are under active development: direct hydrogenation; pyrolysis/hydrocarbonization; solvent extraction; and indirect liquefaction. This work is being conducted at the pilot plant stage, usually with a coal feed rate of several tons per day. Several conceptual design studies have been published recently for large (measured in tens of thousands of tons per day coal feed rate) commercial liquefaction plants, and these reports form the data base for this evaluation. Products from a liquefaction facility depend on the particular method and plant design selected, and these products range from synthetic crude oils up through the lighter hydrocarbon gases, and, in some cases, electricity. Various processes are evaluated with respect to product compositions, thermal efficiency, environmental effects, operating and maintenance requirements, and cost. Because of the large plant capacities of current conceptual designs, it is not clear as to how, and on what scale, coal liquefaction may be considered appropriate as an energy source for Integrated Community Energy Systems (CES). Development work, both currently under way and planned for the future, should help to clarify and quantify the question of applicability.

  3. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  4. Integrated coal gasification combined cycle

    Science.gov (United States)

    Richards, P. C.; Wijffels, J.-B.; Zuideveld, P. L.

    Features of the integrated coal gasification combined cycle power plants are described against the backdrop of the development and first commercial application of the shell coal gasification process. Focus is on the efficiency and excellent environmental performance of the integrated coal gasification combined power plants. Current IGCC projects are given together with an outline of some of the options for integrating coal gasification with combined cycles and also other applications of synthesis gas.

  5. ADVANCED MULTI-PRODUCT COAL UTILIZATION BY-PRODUCT PROCESSING PLANT

    Energy Technology Data Exchange (ETDEWEB)

    Robert Jewell; Thomas Robl; John Groppo

    2005-03-01

    The objective of the project is to build a multi-product ash beneficiation plant at Kentucky Utilities 2,200-MW Ghent Generating Station, located in Carroll County, Kentucky. This part of the study includes the examination of the feedstocks for the beneficiation plant. The ash, as produced by the plant, and that stored in the lower pond were examined. The ash produced by the plant was found to be highly variable as the plant consumes high and low sulfur bituminous coal, in Units 1 and 2 and a mixture of subbituminous and bituminous coal in Units 3 and 4. The ash produced reflected this consisting of an iron-rich ({approx}24%, Fe{sub 2}O{sub 3}), aluminum rich ({approx}29% Al{sub 2}O{sub 3}) and high calcium (6%-7%, CaO) ash, respectively. The LOI of the ash typically was in the range of 5.5% to 6.5%, but individual samples ranged from 1% to almost 9%. The lower pond at Ghent is a substantial body, covering more than 100 acres, with a volume that exceeds 200 million cubic feet. The sedimentation, stratigraphy and resource assessment of the in place ash was investigated with vibracoring and three-dimensional, computer-modeling techniques. Thirteen cores to depths reaching nearly 40 feet, were retrieved, logged in the field and transported to the lab for a series of analyses for particle size, loss on ignition, petrography, x-ray diffraction, and x-ray fluorescence. Collected data were processed using ArcViewGIS, Rockware, and Microsoft Excel to create three-dimensional, layered iso-grade maps, as well as stratigraphic columns and profiles, and reserve estimations. The ash in the pond was projected to exceed 7 million tons and contain over 1.5 million tons of coarse carbon, and 1.8 million tons of fine (<10 {micro}m) glassy pozzolanic material. The size, quality and consistency of the ponded material suggests that it is the better feedstock for the beneficiation plant.

  6. Measuring Apparatus for Coal Powder

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The measuring apparatus for coal powder, equipped with radioactive source, is a set of device andcan be used to measure the density in the pipes and cumulative consumed amount of coal powder in apower plant, and to examine and display the status of the coal powder input system. It is sketched asFig. 1.

  7. Wanted: Clean Coal Burning Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:

  8. Coal mining in socioeconomic aspect

    OpenAIRE

    ZALOZNOVA YU. S.

    2014-01-01

    The article investigate the correlation of economic and social factors in the development of coal mining on example of vertically integrated companies with both domestic and foreign assets. The effect of socioeconomic aspects which have led to the American paradox of coal is studied to understand the essence of the coal mining industry at the present stage of the global economic management.

  9. Coal type and burnout performance

    Energy Technology Data Exchange (ETDEWEB)

    Lester, E.; Cloke, M. [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    1999-07-01

    A variety of coals underwent refire tests in a drop tube furnace. Characteristics of the coal fractions, the pyrolysed char fractions and the refired char fractions were compared to determine links between coal composition, intermediate char products and burnout. 9 refs., 1 fig., 2 tabs.

  10. [Emission factors of polycyclic aromatic hydrocarbons (PAHs) in residential coal combustion and its influence factors].

    Science.gov (United States)

    Hai, Ting-Ting; Chen, Ying-Jun; Wang, Yan; Tian, Chong-Guo; Lin, Tian

    2013-07-01

    As the emission source of polycyclic aromatic hydrocarbons (PAHs), domestic coal combustion has attracted increasing attention in China. According to the coal maturity, combustion form and stove type associated with domestic coal combustion, a large-size, full-flow dilution tunnel and fractional sampling system was employed to collect the emissions from five coals with various maturities, which were burned in the form of raw-coal-chunk (RCC)/honeycomb-coal-briquettes (HCB) in different residential stoves, and then the emission factors of PAHs (EF(PAHs)) were achieved. The results indicate that the EF(PAHs) of bituminous coal ranged from 1.1 mg x kg(-1) to 3.9 mg x kg(-1) for RCC and 2.5 mg x kg(-1) to 21. 1 mg x kg(-1) for HCB, and the anthracite EF(PAH8) were 0.2 mg x kg(-1) for RCC and 0.6 mg x kg(-1) for HCB, respectively. Among all the influence factors of emission factors of PAHs from domestic coal combustion, the maturity of coal played a major role, the range of variance reaching 1 to 2 orders of magnitude in coals with different maturity. Followed by the form of combustion (RCC/HCB), the EF(PAHs) of HCB was 2-6 times higher than that of RCC for the same geological maturity of the coal. The type of stove had little influence on EF(PAHs).

  11. Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal

    Institute of Scientific and Technical Information of China (English)

    Jian Kuo; Lei Dongji; Fu Xuehai; Zhang Yugui; Li Hengle

    2015-01-01

    The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg-ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal–gas system conductivity in an electrostatic field. The quantity of gas adsorbed and DP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ-ity, and the Joule heating effect. DP peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity, DP, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the DP.

  12. Study on Permeability Change Rule of Different Rank Coals by Injecting Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Guo Hui

    2015-01-01

    Full Text Available This paper provides an experimental support for increasing the flow conductivity of coal reservoir by identifying permeability change rule caused by reactions with different minerals in coal after injecting carbon dioxide. Based on measurement of nitrogen adsorption, mineral composition and permeability of medium-high rank coal in Tunlan mine and Sihe mine, it is used to investigate the permeability change rule caused by reactions with different minerals in coal and its improving effect after injecting carbon dioxide. A permeability change model was established by making a nonlinear regression analysis of the initial permeability, the reaction time and the improved permeability. The results showed that as a result of CO2-water-rock interaction, permeability of medium-high rank coal increases at first and then decreases with time going by after injecting carbon dioxide. The permeability of Sihe coal samples reaches maximum value earlier than that of Tunlan coal samples. Improving effect of permeability of Sihe coal samples is better than that of Tunlan coal samples. The initial permeability which is too large or too small is insensitive to the change of permeability, while the medium permeability within 0.1--0.2×10-3μm2 is more favorable. The reliability of the mathematical model is verified by the experiment. The results can also provide a theoretical basis for the analysis of permeability change after injecting carbon dioxide.

  13. Anatomic composition of plant tissues of highly metamorphosed coals

    Energy Technology Data Exchange (ETDEWEB)

    Kizil' shtein, L.Ya.; Shpitsgluz, A.L.

    1985-09-01

    Method is described to improve microscopic study of highly metamorphosed coals (anthracite). Study of such coals with aid of reflected polarized light is enhanced by means of ionic etching of surface of slides that enables observation not only of structures of basic microcomponents but also of finest structural details of individual cells by reflected non-polarized light. Figures illustrate results of studying many samples by ionic etching (bombing a polished surface in a vacuum with ions and pulverizing material of microcomponents to reveal heterogeneity of crystal chemistry of surface) which reveals great variety of structures of plant tissues and their component cells. Pictures of 35 slides depict gelified coal-forming plants of Donbass and central Ural coal fields; fusainized coal-forming plants of Donetsk, Gorlovsk and Tungus basins; organs of Donbass plants; structure of cells and organs of plants of Donbass. Method of ionic etching opens new perspectives for studying anatomy and histology in area of classical paleobotany by making available a large number of samples of plant material and components of highly metamorphosed coals compared with the rare samples obtained by using the polarized light method. 14 references.

  14. The effects of moderate coal cleaning on the microbial removal of organic sulfur. Technical report, September 1--November 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.J.

    1991-12-31

    The purpose of this project is to investigate the possibilities of developing an integrated physical/chemical/microbial process for the precombustion removal of sulfur from coal. An effective pre- combustion coal desulfurization process should ideally be capable of removing both organic and inorganic sulfur. A variety of techniques exist for the removal of inorganic sulfur from coal, but there is currently no cost-effective method for the pre-combustion removal of organic sulfur. Recent developments have demonstrated that microorganisms are capable of specifically cleaving carbon-sulfur bonds and removing substantial amounts of organic sulfur from coal. However, lengthy treatment times are required. Moreover, the removal of organic sulfur form coal by microorganisms is hampered by the fact that, as a solid substrate, it is difficult to bring microorganisms in contact with the entirety of a coal sample. This study will examine the suitability of physically/chemically treated coal sample for subsequent biodesulfurization. Physical/chemical processes primarily designed for the removal of pyritic sulfur may also cause substantial increases in the porosity and surface area of the coal which may facilitate the subsequent removal of organic sulfur by microoganisms. During the current quarter, coal samples that have been chemically pretreated with methanol, ammonia, and isopropanol were examined for the removal of organic sulfur by the microbial culture IGTS8, an assay for the presence of protein in coal samples was developed, and a laboratory-scale device for the explosive comminution of coal was designed and constructed.

  15. Influence of liquid water on coalbed methane adsorption: An experimental research on coal reservoirs in the south of Qinshui Basin

    Institute of Scientific and Technical Information of China (English)

    SANG Shuxun; ZHU Yanming; ZHANG Jing; ZHANG Xiaodong; ZHANG Shiyin

    2005-01-01

    Using Isothermal Adsorption/Desorption System Model IS-100 and Electrohydraulic Servo Rock System Model MTS815 as the main apparatuses and collecting samples from the major coal reservoirs in the south of Qinshui Basin, a hot point region of coalbed methane exploration, the paper carries out systematical comparisons of the isothermal adsorption experimental data for injection water coal sampies, equilibrium moisture samples and dry coal samples,probes and establishes an experimental method of injection water coal sample preparation and isothermal experiment to simulate real reservoir conditions, and then summaries the experimental regulations and discusses the mechanism of liquid water influencing coal methane adsorption. Results of the experiment indicate that: The Langmuir volume of injection water coal samples is notably larger than that of equilibrium moisture samples, as well as larger than or equivalent to that of dry coal samples; the Langmuir pressure of injection water coal samples is the highest, the next is equilibrium moisture samples, while the dry samples is the lowest, of which the experimental results of injection water samples to simulate real reservoir conditions are more close to the fact.Under the conditions of in-position reservoirs, liquid water in coals has evident influence on methane adsorption ability of coal matrix, which can increase the adsorbability of coal and make the adsorption regulation fit to Langmuir model better.Its major reason is the increase of wetting coal matrix adsorbability. The above experimental results overthrow the conventional cognition that liquid water has no influence on coalbed methane adsorption, which may lead to an improvement of the coalbed methane isothermal adsorption experimental method and of the reliability of coalbed methane resource evaluation and prediction.

  16. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  17. Physical properties of solid fuel briquettes from bituminous coal waste and biomass

    Institute of Scientific and Technical Information of China (English)

    ZARRINGHALAM-MOGHADDAM A; GHOLIPOUR-ZANJANI N; DOROSTIS; VAEZ M

    2011-01-01

    Biomass and bituminous coal fines from four different coalfields were used to produce fuel briquettes.Two physical properties of briquettes,water resistance index and compressive strength were analyzed.The influence of type and quantity of biomass on physical properties was also studied.The results reveal that depending on the mineral content of the coal,the physical properties of the briquettes differ noticeably.The comparison of briquettes with and without biomass showed that the presence of the beet pulp increased CS in all types of coal samples.Samples containing beet pulp had better physical properties than sawdust.Mezino Ⅱ coal briquettes had highest CS and WRI than the other ones.Calorific value of biomass/Mezino Ⅱ coal briquettes was lessened in comparison with raw coal,but it remained in an acceptable range.

  18. Geochemistry of arsenic and selenium in a Ge-poor coal from the Wulantuga coal-hosted Ge ore deposit, Inner Mongolia, North China

    Institute of Scientific and Technical Information of China (English)

    Panpan Xie; Qingqian Li; Jingjing Liu; Hongjian Song; Jianpeng Wei

    2014-01-01

    This paper reports new data for arsenic (As) and selenium (Se) in a total of twelve bench samples of Ge-rich and Ge-poor coals in the No. 6 coal seam from the Wulantuga ore deposit, Inner Mongolia, Northeastern China. The Ge-poor coals are characterized by low-ash (with a weighted average ash yield 10.59%). The coal samples were digested using an UltraClave microwave high pressure reactor (milestone) and trace elements were detected by inductively coupled plasma mass spectrometry—collision/reaction cell technology, a reliable method for As and Se determination in coal samples. The contents of As and Se in the Ge-poor (with a weighted average content of 9.14 and 0.30μg/g, respectively) and Ge-rich coal samples in the present study (varies from 16.88 to 17,776μg/g and from 0.26 to 14.39μg/g, respectively) are in a sharp contrast. The As in the Ge-poor coals is of both organic- and pyrite-associations, and its enrichment is attributed to the sediment source, and to a lesser extent, to hydrothermal fluids. Se is predominantly connected with organic matter in the Wulantuga Ge-poor coals.

  19. CO2 SEQUESTRATION POTENTIAL OF TEXAS LOW-RANK COALS

    Energy Technology Data Exchange (ETDEWEB)

    Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

    2004-11-01

    The objectives of this project are to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. there were two main objectives for this reporting period. first, they wanted to collect wilcox coal samples from depths similar to those of probable sequestration sites, with the objective of determining accurate parameters for reservoir model description and for reservoir simulation. The second objective was to pursue opportunities for determining permeability of deep Wilcox coal to use as additional, necessary data for modeling reservoir performance during CO{sub 2} sequestration and enhanced coalbed methane recovery. In mid-summer, Anadarko Petroleum Corporation agreed to allow the authors to collect Wilcox Group coal samples from a well that was to be drilled to the Austin Chalk, which is several thousand feet below the Wilcox. In addition, they agreed to allow them to perform permeability tests in coal beds in an existing shut-in well. Both wells are in the region of the Sam K. Seymour power station, a site that they earlier identified as a major point source of CO{sub 2}. They negotiated contracts for sidewall core collection and core analyses, and they began discussions with a service company to perform permeability testing. To collect sidewall core samples of the Wilcox coals, they made structure and isopach maps and cross sections to select coal beds and to determine their depths for coring. On September 29, 10 sidewall core samples were obtained from 3 coal beds of the Lower Calvert Bluff Formation of the Wilcox Group. The samples were desorbed in 4 sidewall core canisters. Desorbed gas samples were sent to a laboratory for gas compositional analyses, and the coal samples were sent to another laboratory to measure CO{sub 2}, CH{sub 4}, and N{sub 2} sorption isotherms. All analyses should be finished by the end of

  20. Progression in sulfur isotopic compositions from coal to fly ash: Examples from single-source combustion in Indiana

    Science.gov (United States)

    Yaofa, Jiang; Elswick, E.R.; Mastalerz, Maria

    2008-01-01

    Sulfur occurs in multiple mineral forms in coals, and its fate in coal combustion is still not well understood. The sulfur isotopic composition of coal from two coal mines in Indiana and fly ash from two power plants that use these coals were studied using geological and geochemical methods. The two coal beds are Middle Pennsylvanian in age; one seam is the low-sulfur ( 5%) Springfield Coal Member of the Petersburg Formation. Both seams have ash contents of approximately 11%. Fly-ash samples were collected at various points in the ash-collection system in the two plants. The results show notable difference in ??34S for sulfur species within and between the low-sulfur and high-sulfur coal. The ??34S values for all sulfur species are exclusively positive in the low-sulfur Danville coal, whereas the ??34S values for sulfate, pyritic, and organic sulfur are both positive and negative in the high-sulfur Springfield coal. Each coal exhibits a distinct pattern of stratigraphic variation in sulfur isotopic composition. Overall, the ??34S for sulfur species values increase up the section in the low-sulfur Danville coal, whereas they show a decrease up the vertical section in the high-sulfur Springfield coal. Based on the evolution of ??34S for sulfur species, it is suggested that there was influence of seawater on peat swamp, with two marine incursions occurring during peat accumulation of the high-sulfur Springfield coal. Therefore, bacterial sulfate reduction played a key role in converting sulfate into hydrogen sulfide, sulfide minerals, and elemental sulfur. The differences in ??34S between sulfate sulfur and pyritic sulfur is very small between individual benches of both coals, implying that some oxidation occurred during deposition or postdeposition. The ??34S values for fly ash from the high-sulfur Springfield coal (averaging 9.7???) are greatly enriched in 34S relative to those in the parent coal (averaging 2.2???). This indicates a fractionation of sulfur isotopes

  1. Fractal classification and natural classification of coal pore structure based on migration of coal bed methane

    Institute of Scientific and Technical Information of China (English)

    FU Xuehai; QIN Yong; ZHANG Wanhong; WEI Chongtao; ZHOU Rongfu

    2005-01-01

    According to the data of 146 coal samples measured by mercury penetration, coal pores are classified into two levels of <65 nm diffusion pore and >65 nm seeping pore by fractal method based on the characteristics of diffusion, seepage of coal bed methane(CBM) and on the research results of specific pore volume and pore structure. The diffusion pores are further divided into three categories: <8 nm micropore, 8-20 nm transitional pore, and 20-65 nm minipore based on the relationship between increment of specific surface area and diameter of pores, while seepage pores are further divided into three categories: 65-325 nm mesopore,325-1000 nm transitional pore, and >1000 nm macropore based on the abrupt change in the increment of specific pore volume.

  2. Climate change effects on beneficial plant-microorganism interactions.

    Science.gov (United States)

    Compant, Stéphane; van der Heijden, Marcel G A; Sessitsch, Angela

    2010-08-01

    It is well known that beneficial plant-associated microorganisms may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors such as elevated CO(2), drought and warming on beneficial plant-microorganism interactions are increasingly being explored. This now makes it possible to test whether some general patterns occur and whether different groups of plant-associated microorganisms respond differently or in the same way to climate change. Here, we review the results of 135 studies investigating the effects of climate change factors on beneficial microorganisms and their interaction with host plants. The majority of studies showed that elevated CO(2) had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant growth-promoting bacteria and endophytic fungi were more variable. In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2). The effects of increased temperature on beneficial plant-associated microorganisms were more variable, positive and neutral, and negative effects were equally common and varied considerably with the study system and the temperature range investigated. Moreover, numerous studies indicated that plant growth-promoting microorganisms (both bacteria and fungi) positively affected plants subjected to drought stress. Overall, this review shows that plant-associated microorganisms are an important factor influencing the response of plants to climate change.

  3. The coal cleat system: A new approach to its study

    Directory of Open Access Journals (Sweden)

    C.F. Rodrigues

    2014-06-01

    Full Text Available After a general analysis regarding the concept of coal “cleat system”, its genetic origin and practical applications to coalbed methane (CBM commercial production and to CO2 geological sequestration projects, the authors have developed a method to answer, quickly and accurately in accordance with the industrial practice and needs, the following yet unanswered questions: (1 how to define the spatial orientation of the different classes of cleats presented in a coal seam and (2 how to determine the frequency of their connectivites. The new available and presented techniques to answer these questions have a strong computer based tool (geographic information system, GIS, able to build a complete georeferentiated database, which will allow to three-dimensionally locate the laboratory samples in the coalfield. It will also allow to better understand the coal cleat system and consequently to recognize the best pathways to gas flow through the coal seam. Such knowledge is considered crucial for understanding what is likely to be the most efficient opening of cleat network, then allowing the injection with the right spatial orientation, of pressurized fluids in order to directly drain the maximum amount of gas flow to a CBM exploitation well. The method is also applicable to the CO2 geological sequestration technologies and operations corresponding to the injection of CO2 sequestered from industrial plants in coal seams of abandoned coal mines or deep coal seams.

  4. Hydraulic and Seismic Properties of Methane-Bearing Coal

    Science.gov (United States)

    Kneafsey, T. J.; Gritto, R.; Tomutsa, L.

    2002-12-01

    In the last 10 years, coalbed methane (CBM) has transformed from being a coal mine hazard to a low-risk source of long term dry natural gas. The benefit of this clean burning natural gas as an energy source in conjunction with vast amounts stored in coal basins has led to the development of an industry that produces CBM. Reduction of carbon emissions to the atmosphere through carbon dioxide injection into coal has added another benefit to the production of CMB, as carbon dioxide may be used to desorb methane from coal seams. In order to successfully produce CBM, more information is needed on the migration of methane through fractures and cleats and on the replacement of methane by carbon dioxide in the coal seam. Laboratory experiments are underway to address these questions. Tests on core samples are being performed under in-situ pressure to gain insights on processes occurring in CBM extraction and carbon dioxide sequestration. A variety of techniques are being used including measuring physical properties, electrical resistivity, and saturation and phase location us