WorldWideScience

Sample records for benchmark core appendix

  1. Vver-1000 Mox core computational benchmark

    International Nuclear Information System (INIS)

    2006-01-01

    The NEA Nuclear Science Committee has established an Expert Group that deals with the status and trends of reactor physics, fuel performance and fuel cycle issues related to disposing of weapons-grade plutonium in mixed-oxide fuel. The objectives of the group are to provide NEA member countries with up-to-date information on, and to develop consensus regarding, core and fuel cycle issues associated with burning weapons-grade plutonium in thermal water reactors (PWR, BWR, VVER-1000, CANDU) and fast reactors (BN-600). These issues concern core physics, fuel performance and reliability, and the capability and flexibility of thermal water reactors and fast reactors to dispose of weapons-grade plutonium in standard fuel cycles. The activities of the NEA Expert Group on Reactor-based Plutonium Disposition are carried out in close co-operation (jointly, in most cases) with the NEA Working Party on Scientific Issues in Reactor Systems (WPRS). A prominent part of these activities include benchmark studies. At the time of preparation of this report, the following benchmarks were completed or in progress: VENUS-2 MOX Core Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); VVER-1000 LEU and MOX Benchmark (completed); KRITZ-2 Benchmarks: carried out jointly with the WPRS (formerly the WPPR) (completed); Hollow and Solid MOX Fuel Behaviour Benchmark (completed); PRIMO MOX Fuel Performance Benchmark (ongoing); VENUS-2 MOX-fuelled Reactor Dosimetry Calculation (ongoing); VVER-1000 In-core Self-powered Neutron Detector Calculational Benchmark (started); MOX Fuel Rod Behaviour in Fast Power Pulse Conditions (started); Benchmark on the VENUS Plutonium Recycling Experiments Configuration 7 (started). This report describes the detailed results of the benchmark investigating the physics of a whole VVER-1000 reactor core using two-thirds low-enriched uranium (LEU) and one-third MOX fuel. It contributes to the computer code certification process and to the

  2. RB reactor benchmark cores

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    A selected set of the RB reactor benchmark cores is presented in this paper. The first results of validation of the well-known Monte Carlo MCNP TM code and adjoining neutron cross section libraries are given. They confirm the idea for the proposal of the new U-D 2 O criticality benchmark system and support the intention to include this system in the next edition of the recent OECD/NEA Project: International Handbook of Evaluated Criticality Safety Experiment, in near future. (author)

  3. In-core fuel management benchmarks for PHWRs

    International Nuclear Information System (INIS)

    1996-06-01

    Under its in-core fuel management activities, the IAEA set up two co-ordinated research programmes (CRPs) on complete in-core fuel management code packages. At a consultant meeting in November 1988 the outline of the CRP on in-core fuel management benchmars for PHWRs was prepared, three benchmarks were specified and the corresponding parameters were defined. At the first research co-ordination meeting in December 1990, seven more benchmarks were specified. The objective of this TECDOC is to provide reference cases for the verification of code packages used for reactor physics and fuel management of PHWRs. 91 refs, figs, tabs

  4. A 3D stylized half-core CANDU benchmark problem

    International Nuclear Information System (INIS)

    Pounders, Justin M.; Rahnema, Farzad; Serghiuta, Dumitru; Tholammakkil, John

    2011-01-01

    A 3D stylized half-core Canadian deuterium uranium (CANDU) reactor benchmark problem is presented. The benchmark problem is comprised of a heterogeneous lattice of 37-element natural uranium fuel bundles, heavy water moderated, heavy water cooled, with adjuster rods included as reactivity control devices. Furthermore, a 2-group macroscopic cross section library has been developed for the problem to increase the utility of this benchmark for full-core deterministic transport methods development. Monte Carlo results are presented for the benchmark problem in cooled, checkerboard void, and full coolant void configurations.

  5. Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report. Appendix

    Science.gov (United States)

    Achieve, Inc., 2010

    2010-01-01

    This appendix accompanies the report "Taking the Lead in Science Education: Forging Next-Generation Science Standards. International Science Benchmarking Report," a study conducted by Achieve to compare the science standards of 10 countries. This appendix includes the following: (1) PISA and TIMSS Assessment Rankings; (2) Courses and…

  6. Analysis of a multigroup stylized CANDU half-core benchmark

    International Nuclear Information System (INIS)

    Pounders, Justin M.; Rahnema, Farzad; Serghiuta, Dumitru

    2011-01-01

    Highlights: → This paper provides a benchmark that is a stylized model problem in more than two energy groups that is realistic with respect to the underlying physics. → An 8-group cross section library is provided to augment a previously published 2-group 3D stylized half-core CANDU benchmark problem. → Reference eigenvalues and selected pin and bundle fission rates are included. → 2-, 4- and 47-group Monte Carlo solutions are compared to analyze homogenization-free transport approximations that result from energy condensation. - Abstract: An 8-group cross section library is provided to augment a previously published 2-group 3D stylized half-core Canadian deuterium uranium (CANDU) reactor benchmark problem. Reference eigenvalues and selected pin and bundle fission rates are also included. This benchmark is intended to provide computational reactor physicists and methods developers with a stylized model problem in more than two energy groups that is realistic with respect to the underlying physics. In addition to transport theory code verification, the 8-group energy structure provides reactor physicist with an ideal problem for examining cross section homogenization and collapsing effects in a full-core environment. To this end, additional 2-, 4- and 47-group full-core Monte Carlo benchmark solutions are compared to analyze homogenization-free transport approximations incurred as a result of energy group condensation.

  7. Integral Full Core Multi-Physics PWR Benchmark with Measured Data

    Energy Technology Data Exchange (ETDEWEB)

    Forget, Benoit; Smith, Kord; Kumar, Shikhar; Rathbun, Miriam; Liang, Jingang

    2018-04-11

    In recent years, the importance of modeling and simulation has been highlighted extensively in the DOE research portfolio with concrete examples in nuclear engineering with the CASL and NEAMS programs. These research efforts and similar efforts worldwide aim at the development of high-fidelity multi-physics analysis tools for the simulation of current and next-generation nuclear power reactors. Like all analysis tools, verification and validation is essential to guarantee proper functioning of the software and methods employed. The current approach relies mainly on the validation of single physic phenomena (e.g. critical experiment, flow loops, etc.) and there is a lack of relevant multiphysics benchmark measurements that are necessary to validate high-fidelity methods being developed today. This work introduces a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading and re-loading patterns. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from 58 instrumented assemblies. The benchmark description is now available online and has been used by many groups. However, much work remains to be done on the quantification of uncertainties and modeling sensitivities. This work aims to address these deficiencies and make this benchmark a true non-proprietary international benchmark for the validation of high-fidelity tools. This report details the BEAVRS uncertainty quantification for the first two cycle of operations and serves as the final report of the project.

  8. Prismatic Core Coupled Transient Benchmark

    International Nuclear Information System (INIS)

    Ortensi, J.; Pope, M.A.; Strydom, G.; Sen, R.S.; DeHart, M.D.; Gougar, H.D.; Ellis, C.; Baxter, A.; Seker, V.; Downar, T.J.; Vierow, K.; Ivanov, K.

    2011-01-01

    The Prismatic Modular Reactor (PMR) is one of the High Temperature Reactor (HTR) design concepts that have existed for some time. Several prismatic units have operated in the world (DRAGON, Fort St. Vrain, Peach Bottom) and one unit is still in operation (HTTR). The deterministic neutronics and thermal-fluids transient analysis tools and methods currently available for the design and analysis of PMRs have lagged behind the state of the art compared to LWR reactor technologies. This has motivated the development of more accurate and efficient tools for the design and safety evaluations of the PMR. In addition to the work invested in new methods, it is essential to develop appropriate benchmarks to verify and validate the new methods in computer codes. The purpose of this benchmark is to establish a well-defined problem, based on a common given set of data, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events. The benchmark-working group is currently seeking OECD/NEA sponsorship. This benchmark is being pursued and is heavily based on the success of the PBMR-400 exercise.

  9. Proposal of a benchmark for core burnup calculations for a VVER-1000 reactor core

    International Nuclear Information System (INIS)

    Loetsch, T.; Khalimonchuk, V.; Kuchin, A.

    2009-01-01

    In the framework of a project supported by the German BMU the code DYN3D should be further validated and verified. During the work a lack of a benchmark on core burnup calculations for VVER-1000 reactors was noticed. Such a benchmark is useful for validating and verifying the whole package of codes and data libraries for reactor physics calculations including fuel assembly modelling, fuel assembly data preparation, few group data parametrisation and reactor core modelling. The benchmark proposed specifies the core loading patterns of burnup cycles for a VVER-1000 reactor core as well as a set of operational data such as load follow, boron concentration in the coolant, cycle length, measured reactivity coefficients and power density distributions. The reactor core characteristics chosen for comparison and the first results obtained during the work with the reactor physics code DYN3D are presented. This work presents the continuation of efforts of the projects mentioned to estimate the accuracy of calculated characteristics of VVER-1000 reactor cores. In addition, the codes used for reactor physics calculations of safety related reactor core characteristics should be validated and verified for the cases in which they are to be used. This is significant for safety related evaluations and assessments carried out in the framework of licensing and supervision procedures in the field of reactor physics. (authors)

  10. HEP specific benchmarks of virtual machines on multi-core CPU architectures

    International Nuclear Information System (INIS)

    Alef, M; Gable, I

    2010-01-01

    Virtualization technologies such as Xen can be used in order to satisfy the disparate and often incompatible system requirements of different user groups in shared-use computing facilities. This capability is particularly important for HEP applications, which often have restrictive requirements. The use of virtualization adds flexibility, however, it is essential that the virtualization technology place little overhead on the HEP application. We present an evaluation of the practicality of running HEP applications in multiple Virtual Machines (VMs) on a single multi-core Linux system. We use the benchmark suite used by the HEPiX CPU Benchmarking Working Group to give a quantitative evaluation relevant to the HEP community. Benchmarks are packaged inside VMs and then the VMs are booted onto a single multi-core system. Benchmarks are then simultaneously executed on each VM to simulate highly loaded VMs running HEP applications. These techniques are applied to a variety of multi-core CPU architectures and VM configurations.

  11. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    Science.gov (United States)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  12. Monte Carlo benchmark calculations for 400MWTH PBMR core

    International Nuclear Information System (INIS)

    Kim, H. C.; Kim, J. K.; Kim, S. Y.; Noh, J. M.

    2007-01-01

    A large interest in high-temperature gas-cooled reactors (HTGR) has been initiated in connection with hydrogen production in recent years. In this study, as a part of work for establishing Monte Carlo computation system for HTGR core analysis, some benchmark calculations for pebble-type HTGR were carried out using MCNP5 code. The core of the 400MW t h Pebble-bed Modular Reactor (PBMR) was selected as a benchmark model. Recently, the IAEA CRP5 neutronics and thermal-hydraulics benchmark problem was proposed for the testing of existing methods for HTGRs to analyze the neutronics and thermal-hydraulic behavior for the design and safety evaluations of the PBMR. This study deals with the neutronic benchmark problems, for fresh fuel and cold conditions (Case F-1), and first core loading with given number densities (Case F-2), proposed for PBMR. After the detailed MCNP modeling of the whole facility, benchmark calculations were performed. Spherical fuel region of a fuel pebble is divided into cubic lattice element in order to model a fuel pebble which contains, on average, 15000 CFPs (Coated Fuel Particles). Each element contains one CFP at its center. In this study, the side length of each cubic lattice element to have the same amount of fuel was calculated to be 0.1635 cm. The remaining volume of each lattice element was filled with graphite. All of different 5 concentric shells of CFP were modeled. The PBMR annular core consists of approximately 452000 pebbles in the benchmark problems. In Case F-1 where the core was filled with only fresh fuel pebble, a BCC(body-centered-cubic) lattice model was employed in order to achieve the random packing core with the packing fraction of 0.61. The BCC lattice was also employed with the size of the moderator pebble increased in a manner that reproduces the specified F/M ratio of 1:2 while preserving the packing fraction of 0.61 in Case F-2. The calculations were pursued with ENDF/B-VI cross-section library and used sab2002 S(α,

  13. Research reactor core conversion guidebook. V. 3: Analytical verification (Appendices G and H)

    International Nuclear Information System (INIS)

    1992-04-01

    Volume 3 consists of Appendix G which contains detailed results of a safety-related benchmark problem for an idealized reactor and Appendix H which contains detailed comparisons of calculated and measured data for actual cores with moderately enriched uranium and low enriched uranium fuels. The results of the benchmark calculations in Appendix G are summarized in Chapter 7 of Volume 1 and the results of the comparisons between calculations and measurements are summarized in Chapter 8 of Volume 1. Both the approaches described in these appendices are very useful in ensuring that the calculational methods employed in the preparation of a Safety Report are accurate. As a first step, it is recommended that reactor operators/physicists use their own methods and codes to first calculate the benchmark problem, and then compare the results of calculations with measurements in their own reactor or in one of the reactors for which measured data is available in Appendix H. (author). Refs, figs and tabs

  14. Results of LWR core transient benchmarks

    International Nuclear Information System (INIS)

    Finnemann, H.; Bauer, H.; Galati, A.; Martinelli, R.

    1993-10-01

    LWR core transient (LWRCT) benchmarks, based on well defined problems with a complete set of input data, are used to assess the discrepancies between three-dimensional space-time kinetics codes in transient calculations. The PWR problem chosen is the ejection of a control assembly from an initially critical core at hot zero power or at full power, each for three different geometrical configurations. The set of problems offers a variety of reactivity excursions which efficiently test the coupled neutronic/thermal - hydraulic models of the codes. The 63 sets of submitted solutions are analyzed by comparison with a nodal reference solution defined by using a finer spatial and temporal resolution than in standard calculations. The BWR problems considered are reactivity excursions caused by cold water injection and pressurization events. In the present paper, only the cold water injection event is discussed and evaluated in some detail. Lacking a reference solution the evaluation of the 8 sets of BWR contributions relies on a synthetic comparative discussion. The results of this first phase of LWRCT benchmark calculations are quite satisfactory, though there remain some unresolved issues. It is therefore concluded that even more challenging problems can be successfully tackled in a suggested second test phase. (authors). 46 figs., 21 tabs., 3 refs

  15. Solution of the 'MIDICORE' WWER-1000 core periphery power distribution benchmark by KARATE and MCNP

    International Nuclear Information System (INIS)

    Temesvari, E.; Hegyi, G.; Hordosy, G.; Maraczy, C.

    2011-01-01

    The 'MIDICORE' WWER-1000 core periphery power distribution benchmark was proposed by Mr. Mikolas on the twentieth Symposium of AER in Finland in 2010. This MIDICORE benchmark is a two-dimensional calculation benchmark based on the WWER-1000 reactor core cold state geometry with taking into account the geometry of explicit radial reflector. The main task of the benchmark is to test the pin by pin power distribution in selected fuel assemblies at the periphery of the WWER-1000 core. In this paper we present our results (k eff , integral fission power) calculated by MCNP and the KARATE code system in KFKI-AEKI and the comparison to the preliminary reference Monte Carlo calculation results made by NRI, Rez. (Authors)

  16. Benchmark for Neutronic Analysis of Sodium-cooled Fast Reactor Cores with Various Fuel Types and Core Sizes

    International Nuclear Information System (INIS)

    Stauff, N.E.; Kim, T.K.; Taiwo, T.A.; Buiron, L.; Rimpault, G.; Brun, E.; Lee, Y.K.; Pataki, I.; Kereszturi, A.; Tota, A.; Parisi, C.; Fridman, E.; Guilliard, N.; Kugo, T.; Sugino, K.; Uematsu, M.M.; Ponomarev, A.; Messaoudi, N.; Lin Tan, R.; Kozlowski, T.; Bernnat, W.; Blanchet, D.; Brun, E.; Buiron, L.; Fridman, E.; Guilliard, N.; Kereszturi, A.; Kim, T.K.; Kozlowski, T.; Kugo, T.; Lee, Y.K.; Lin Tan, R.; Messaoudi, N.; Parisi, C.; Pataki, I.; Ponomarev, A.; Rimpault, G.; Stauff, N.E.; Sugino, K.; Taiwo, T.A.; Tota, A.; Uematsu, M.M.; Monti, S.; Yamaji, A.; Nakahara, Y.; Gulliford, J.

    2016-01-01

    One of the foremost Generation IV International Forum (GIF) objectives is to design nuclear reactor cores that can passively avoid damage of the reactor when control rods fail to scram in response to postulated accident initiators (e.g. inadvertent reactivity insertion or loss of coolant flow). The analysis of such unprotected transients depends primarily on the physical properties of the fuel and the reactivity feedback coefficients of the core. Within the activities of the Working Party on Scientific Issues of Reactor Systems (WPRS), the Sodium Fast Reactor core Feed-back and Transient response (SFR-FT) Task Force was proposed to evaluate core performance characteristics of several Generation IV Sodium-cooled Fast Reactor (SFR) concepts. A set of four numerical benchmark cases was initially developed with different core sizes and fuel types in order to perform neutronic characterisation, evaluation of the feedback coefficients and transient calculations. Two 'large' SFR core designs were proposed by CEA: those generate 3 600 MW(th) and employ oxide and carbide fuel technologies. Two 'medium' SFR core designs proposed by ANL complete the set. These medium SFR cores generate 1 000 MW(th) and employ oxide and metallic fuel technologies. The present report summarises the results obtained by the WPRS for the neutronic characterisation benchmark exercise proposed. The benchmark definition is detailed in Chapter 2. Eleven institutions contributed to this benchmark: Argonne National Laboratory (ANL), Commissariat a l'energie atomique et aux energies alternatives (CEA of Cadarache), Commissariat a l'energie atomique et aux energies alternatives (CEA of Saclay), Centre for Energy Research (CER-EK), Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Helmholtz Zentrum Dresden Rossendorf (HZDR), Institute of Nuclear Technology and Energy Systems (IKE), Japan Atomic Energy Agency (JAEA), Karlsruhe Institute of Technology (KIT

  17. Power-Energy Simulation for Multi-Core Processors in Bench-marking

    Directory of Open Access Journals (Sweden)

    Mona A. Abou-Of

    2017-01-01

    Full Text Available At Microarchitectural level, multi-core processor, as a complex System on Chip, has sophisticated on-chip components including cores, shared caches, interconnects and system controllers such as memory and ethernet controllers. At technological level, architects should consider the device types forecast in the International Technology Roadmap for Semiconductors (ITRS. Energy simulation enables architects to study two important metrics simultaneously. Timing is a key element of the CPU performance that imposes constraints on the CPU target clock frequency. Power and the resulting heat impose more severe design constraints, such as core clustering, while semiconductor industry is providing more transistors in the die area in pace with Moore’s law. Energy simulators provide a solution for such serious challenge. Energy is modelled either by combining performance benchmarking tool with a power simulator or by an integrated framework of both performance simulator and power profiling system. This article presents and asses trade-offs between different architectures using four cores battery-powered mobile systems by running a custom-made and a standard benchmark tools. The experimental results assure the Energy/ Frequency convexity rule over a range of frequency settings on different number of enabled cores. The reported results show that increasing the number of cores has a great effect on increasing the power consumption. However, a minimum energy dissipation will occur at a lower frequency which reduces the power consumption. Despite that, increasing the number of cores will also increase the effective cores value which will reflect a better processor performance.

  18. VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, RJ

    2001-02-02

    The Task Force on Reactor-Based Plutonium Disposition, now an Expert Group, was set up through the Organization for Economic Cooperation and Development/Nuclear Energy Agency to facilitate technical assessments of burning weapons-grade plutonium mixed-oxide (MOX) fuel in U.S. pressurized-water reactors and Russian VVER nuclear reactors. More than ten countries participated to advance the work of the Task Force in a major initiative, which was a blind benchmark study to compare code benchmark calculations against experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At the Oak Ridge National Laboratory, the HELIOS-1.4 code was used to perform a comprehensive study of pin-cell and core calculations for the VENUS-2 benchmark.

  19. Defining core elements and outstanding practice in Nutritional Science through collaborative benchmarking.

    Science.gov (United States)

    Samman, Samir; McCarthur, Jennifer O; Peat, Mary

    2006-01-01

    Benchmarking has been adopted by educational institutions as a potentially sensitive tool for improving learning and teaching. To date there has been limited application of benchmarking methodology in the Discipline of Nutritional Science. The aim of this survey was to define core elements and outstanding practice in Nutritional Science through collaborative benchmarking. Questionnaires that aimed to establish proposed core elements for Nutritional Science, and inquired about definitions of " good" and " outstanding" practice were posted to named representatives at eight Australian universities. Seven respondents identified core elements that included knowledge of nutrient metabolism and requirement, food production and processing, modern biomedical techniques that could be applied to understanding nutrition, and social and environmental issues as related to Nutritional Science. Four of the eight institutions who agreed to participate in the present survey identified the integration of teaching with research as an indicator of outstanding practice. Nutritional Science is a rapidly evolving discipline. Further and more comprehensive surveys are required to consolidate and update the definition of the discipline, and to identify the optimal way of teaching it. Global ideas and specific regional requirements also need to be considered.

  20. Criticality safety benchmark experiment on 10% enriched uranyl nitrate solution using a 28-cm-thickness slab core

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Miyoshi, Yoshinori; Kikuchi, Tsukasa; Watanabe, Shouichi

    2002-01-01

    The second series of critical experiments with 10% enriched uranyl nitrate solution using 28-cm-thick slab core have been performed with the Static Experiment Critical Facility of the Japan Atomic Energy Research Institute. Systematic critical data were obtained by changing the uranium concentration of the fuel solution from 464 to 300 gU/l under various reflector conditions. In this paper, the thirteen critical configurations for water-reflected cores and unreflected cores are identified and evaluated. The effects of uncertainties in the experimental data on k eff are quantified by sensitivity studies. Benchmark model specifications that are necessary to construct a calculational model are given. The uncertainties of k eff 's included in the benchmark model specifications are approximately 0.1%Δk eff . The thirteen critical configurations are judged to be acceptable benchmark data. Using the benchmark model specifications, sample calculation results are provided with several sets of standard codes and cross section data. (author)

  1. Calculational benchmark comparisons for a low sodium void worth actinide burner core design

    International Nuclear Information System (INIS)

    Hill, R.N.; Kawashima, M.; Arie, K.; Suzuki, M.

    1992-01-01

    Recently, a number of low void worth core designs with non-conventional core geometries have been proposed. Since these designs lack a good experimental and computational database, benchmark calculations are useful for the identification of possible biases in performance characteristics predictions. In this paper, a simplified benchmark model of a metal fueled, low void worth actinide burner design is detailed; and two independent neutronic performance evaluations are compared. Calculated performance characteristics are evaluated for three spatially uniform compositions (fresh uranium/plutonium, batch-averaged uranium/transuranic, and batch-averaged uranium/transuranic with fission products) and a regional depleted distribution obtained from a benchmark depletion calculation. For each core composition, the flooded and voided multiplication factor, power peaking factor, sodium void worth (and its components), flooded Doppler coefficient and control rod worth predictions are compared. In addition, the burnup swing, average discharge burnup, peak linear power, and fresh fuel enrichment are calculated for the depletion case. In general, remarkably good agreement is observed between the evaluations. The most significant difference is predicted performance characteristics is a 0.3--0.5% Δk/(kk) bias in the sodium void worth. Significant differences in the transmutation rate of higher actinides are also observed; however, these differences do not cause discrepancies in the performing predictions

  2. Utilizing benchmark data from the ANL-ZPR diagnostic cores program

    International Nuclear Information System (INIS)

    Schaefer, R. W.; McKnight, R. D.

    2000-01-01

    The support of the criticality safety community is allowing the production of benchmark descriptions of several assemblies from the ZPR Diagnostic Cores Program. The assemblies have high sensitivities to nuclear data for a few isotopes. This can highlight limitations in nuclear data for selected nuclides or in standard methods used to treat these data. The present work extends the use of the simplified model of the U9 benchmark assembly beyond the validation of k eff . Further simplifications have been made to produce a data testing benchmark in the style of the standard CSEWG benchmark specifications. Calculations for this data testing benchmark are compared to results obtained with more detailed models and methods to determine their biases. These biases or corrections factors can then be applied in the use of the less refined methods and models. Data testing results using Versions IV, V, and VI of the ENDF/B nuclear data are presented for k eff , f 28 /f 25 , c 28 /f 25 , and β eff . These limited results demonstrate the importance of studying other integral parameters in addition to k eff in trying to improve nuclear data and methods and the importance of accounting for methods and/or modeling biases when using data testing results to infer the quality of the nuclear data files

  3. A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard.

    Science.gov (United States)

    Cereda, Carlo W; Christensen, Søren; Campbell, Bruce Cv; Mishra, Nishant K; Mlynash, Michael; Levi, Christopher; Straka, Matus; Wintermark, Max; Bammer, Roland; Albers, Gregory W; Parsons, Mark W; Lansberg, Maarten G

    2016-10-01

    Differences in research methodology have hampered the optimization of Computer Tomography Perfusion (CTP) for identification of the ischemic core. We aim to optimize CTP core identification using a novel benchmarking tool. The benchmarking tool consists of an imaging library and a statistical analysis algorithm to evaluate the performance of CTP. The tool was used to optimize and evaluate an in-house developed CTP-software algorithm. Imaging data of 103 acute stroke patients were included in the benchmarking tool. Median time from stroke onset to CT was 185 min (IQR 180-238), and the median time between completion of CT and start of MRI was 36 min (IQR 25-79). Volumetric accuracy of the CTP-ROIs was optimal at an rCBF threshold of benchmarking tool can play an important role in optimizing CTP software as it provides investigators with a novel method to directly compare the performance of alternative CTP software packages. © The Author(s) 2015.

  4. Benchmarking NWP Kernels on Multi- and Many-core Processors

    Science.gov (United States)

    Michalakes, J.; Vachharajani, M.

    2008-12-01

    Increased computing power for weather, climate, and atmospheric science has provided direct benefits for defense, agriculture, the economy, the environment, and public welfare and convenience. Today, very large clusters with many thousands of processors are allowing scientists to move forward with simulations of unprecedented size. But time-critical applications such as real-time forecasting or climate prediction need strong scaling: faster nodes and processors, not more of them. Moreover, the need for good cost- performance has never been greater, both in terms of performance per watt and per dollar. For these reasons, the new generations of multi- and many-core processors being mass produced for commercial IT and "graphical computing" (video games) are being scrutinized for their ability to exploit the abundant fine- grain parallelism in atmospheric models. We present results of our work to date identifying key computational kernels within the dynamics and physics of a large community NWP model, the Weather Research and Forecast (WRF) model. We benchmark and optimize these kernels on several different multi- and many-core processors. The goals are to (1) characterize and model performance of the kernels in terms of computational intensity, data parallelism, memory bandwidth pressure, memory footprint, etc. (2) enumerate and classify effective strategies for coding and optimizing for these new processors, (3) assess difficulties and opportunities for tool or higher-level language support, and (4) establish a continuing set of kernel benchmarks that can be used to measure and compare effectiveness of current and future designs of multi- and many-core processors for weather and climate applications.

  5. VENUS-2 MOX Core Benchmark: Results of ORNL Calculations Using HELIOS-1.4 - Revised Report

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, RJ

    2001-06-01

    The Task Force on Reactor-Based Plutonium Disposition (TFRPD) was formed by the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) to study reactor physics, fuel performance, and fuel cycle issues related to the disposition of weapons-grade (WG) plutonium as mixed-oxide (MOX) reactor fuel. To advance the goals of the TFRPD, 10 countries and 12 institutions participated in a major TFRPD activity: a blind benchmark study to compare code calculations to experimental data for the VENUS-2 MOX core at SCK-CEN in Mol, Belgium. At Oak Ridge National Laboratory, the HELIOS-1.4 code system was used to perform the comprehensive study of pin-cell and MOX core calculations for the VENUS-2 MOX core benchmark study.

  6. Thermal reactor benchmark tests on JENDL-2

    International Nuclear Information System (INIS)

    Takano, Hideki; Tsuchihashi, Keichiro; Yamane, Tsuyoshi; Akino, Fujiyoshi; Ishiguro, Yukio; Ido, Masaru.

    1983-11-01

    A group constant library for the thermal reactor standard nuclear design code system SRAC was produced by using the evaluated nuclear data JENDL-2. Furthermore, the group constants for 235 U were calculated also from ENDF/B-V. Thermal reactor benchmark calculations were performed using the produced group constant library. The selected benchmark cores are two water-moderated lattices (TRX-1 and 2), two heavy water-moderated cores (DCA and ETA-1), two graphite-moderated cores (SHE-8 and 13) and eight critical experiments for critical safety. The effective multiplication factors and lattice cell parameters were calculated and compared with the experimental values. The results are summarized as follows. (1) Effective multiplication factors: The results by JENDL-2 are considerably improved in comparison with ones by ENDF/B-IV. The best agreement is obtained by using JENDL-2 and ENDF/B-V (only 235 U) data. (2) Lattice cell parameters: For the rho 28 (the ratio of epithermal to thermal 238 U captures) and C* (the ratio of 238 U captures to 235 U fissions), the values calculated by JENDL-2 are in good agreement with the experimental values. The rho 28 (the ratio of 238 U to 235 U fissions) are overestimated as found also for the fast reactor benchmarks. The rho 02 (the ratio of epithermal to thermal 232 Th captures) calculated by JENDL-2 or ENDF/B-IV are considerably underestimated. The functions of the SRAC system have been continued to be extended according to the needs of its users. A brief description will be given, in Appendix B, to the extended parts of the SRAC system together with the input specification. (author)

  7. CFD-calculations to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-04-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long term behaviour of a corium expanded in a core catcher. The difficulty consists in the experimental simulation of the decay heat that can be neglected for the short-run course of events like relocation and spreading, which must, however, be considered during investigation of the long time behaviour. Therefore the German GRS, defined together with Battelle Ingenieurtechnik a benchmark problem in order to determine particular problems and differences of CFD codes simulating an expanded corium and from this, requirements for a reasonable measurement of experiments, that will be performed later. First the finite-volume-codes Comet 1.023, CFX 4.2 and CFX-TASCflow were used. To be able to make comparisons to a finite-element-code, now calculations are performed at the Institute of Safety Research at the Forschungszentrum Rossendorf with the code ANSYS/FLOTRAN. For the benchmark calculations of stage 1 a pure and liquid melt with internal heat sources was assumed uniformly distributed over the area of the planned core catcher of a EPR plant. Using the Standard-k-ε-turbulence model and assuming an initial state of a motionless superheated melt several large convection rolls will establish within the melt pool. The temperatures at the surface do not sink to a solidification level due to the enhanced convection heat transfer. The temperature gradients at the surface are relatively flat while there are steep gradients at the ground where the no slip condition is applied. But even at the ground no solidification temperatures are observed. Although the problem in the ANSYS-calculations is handled two-dimensional and not three-dimensional like in the finite-volume-codes, there are no fundamental deviations to the results of the other codes. (orig.)

  8. BN-600 hybrid core benchmark analyses

    International Nuclear Information System (INIS)

    Kim, Y.I.; Stanculescu, A.; Finck, P.; Hill, R.N.; Grimm, K.N.

    2003-01-01

    Benchmark analyses for the hybrid BN-600 reactor that contains three uranium enrichment zones and one plutonium zone in the core, have been performed within the frame of an IAEA sponsored Coordinated Research Project. The results for several relevant reactivity parameters obtained by the participants with their own state-of-the-art basic data and codes, were compared in terms of calculational uncertainty, and their effects on the ULOF transient behavior of the hybrid BN-600 core were evaluated. The comparison of the diffusion and transport results obtained for the homogeneous representation generally shows good agreement for most parameters between the RZ and HEX-Z models. The burnup effect and the heterogeneity effect on most reactivity parameters also show good agreement for the HEX-Z diffusion and transport theory results. A large difference noticed for the sodium and steel density coefficients is mainly due to differences in the spatial coefficient predictions for non fuelled regions. The burnup reactivity loss was evaluated to be 0.025 (4.3 $) within ∼ 5.0% standard deviation. The heterogeneity effect on most reactivity coefficients was estimated to be small. The heterogeneity treatment reduced the control rod worth by 2.3%. The heterogeneity effect on the k-eff and control rod worth appeared to differ strongly depending on the heterogeneity treatment method. A substantial spread noticed for several reactivity coefficients did not give a significant impact on the transient behavior prediction. This result is attributable to compensating effects between several reactivity effects and the specific design of the partially MOX fuelled hybrid core. (author)

  9. Analysis on First Criticality Benchmark Calculation of HTR-10 Core

    International Nuclear Information System (INIS)

    Zuhair; Ferhat-Aziz; As-Natio-Lasman

    2000-01-01

    HTR-10 is a graphite-moderated and helium-gas cooled pebble bed reactor with an average helium outlet temperature of 700 o C and thermal power of 10 MW. The first criticality benchmark problem of HTR-10 in this paper includes the loading number calculation of nuclear fuel in the form of UO 2 ball with U-235 enrichment of 17% for the first criticality under the helium atmosphere and core temperature of 20 o C, and the effective multiplication factor (k eff ) calculation of full core (5 m 3 ) under the helium atmosphere and various core temperatures. The group constants of fuel mixture, moderator and reflector materials were generated with WlMS/D4 using spherical model and 4 neutron energy group. The critical core height of 150.1 cm obtained from CITATION in 2-D R-Z reactor geometry exists in the calculation range of INET China, JAERI Japan and BATAN Indonesia, and OKBM Russia. The k eff calculation result of full core at various temperatures shows that the HTR-10 has negative temperature coefficient of reactivity. (author)

  10. Joint European contribution to phase 5 of the BN600 hybrid reactor benchmark core analysis (European ERANOS formulaire for fast reactor core analysis)

    International Nuclear Information System (INIS)

    Rimpault, G.

    2004-01-01

    Hybrid UOX/MOX fueled core of the BN-600 reactor was endorsed as an international benchmark. BFS-2 critical facility was designed for full size simulation of core and shielding of large fast reactors (up tp 3000 MWe). Wide experimental programme including measurements of criticality, fission rates, rod worths, and SVRE was established. Four BFS-62 critical assemblies have been designed to study changes in BN-600 reactor physics-when moving to a hybrid MOX core. BFS-62-3A assembly is a full scale model of the BN-600 reactor hybrid core. it consists of three regions of UO 2 fuel, axial and radial fertile blankets, MOX fuel added in a ring between MC and OC zones, 120 deg sector of stainless steel reflector included within radial blanket. Joint European contribution to the Phase 5 benchmark analysis was performed by Serco Assurance Winfrith (UK) and CEA Cadarache (France). Analysis was carried out using Version 1.2 of the ERANOS code; and data system for advanced and fast reactor core applications. Nuclear data is based on the JEF2.2 nuclear data evaluation (including sodium). Results for Phase 5 of the BN-600 benchmark have been determined for criticality and SVRE in both diffusion and transport theory. Full details of the results are presented in a paper posted on the IAEA Business Collaborator website nad a brief summary is provided in this paper

  11. Preliminary analysis of the proposed BN-600 benchmark core

    International Nuclear Information System (INIS)

    John, T.M.

    2000-01-01

    The Indira Gandhi Centre for Atomic Research is actively involved in the design of Fast Power Reactors in India. The core physics calculations are performed by the computer codes that are developed in-house or by the codes obtained from other laboratories and suitably modified to meet the computational requirements. The basic philosophy of the core physics calculations is to use the diffusion theory codes with the 25 group nuclear cross sections. The parameters that are very sensitive is the core leakage, like the power distribution at the core blanket interface etc. are calculated using transport theory codes under the DSN approximations. All these codes use the finite difference approximation as the method to treat the spatial variation of the neutron flux. Criticality problems having geometries that are irregular to be represented by the conventional codes are solved using Monte Carlo methods. These codes and methods have been validated by the analysis of various critical assemblies and calculational benchmarks. Reactor core design procedure at IGCAR consists of: two and three dimensional diffusion theory calculations (codes ALCIALMI and 3DB); auxiliary calculations, (neutron balance, power distributions, etc. are done by codes that are developed in-house); transport theory corrections from two dimensional transport calculations (DOT); irregular geometry treated by Monte Carlo method (KENO); cross section data library used CV2M (25 group)

  12. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  13. Core Benchmarks Descriptions

    International Nuclear Information System (INIS)

    Pavlovichev, A.M.

    2001-01-01

    Actual regulations while designing of new fuel cycles for nuclear power installations comprise a calculational justification to be performed by certified computer codes. It guarantees that obtained calculational results will be within the limits of declared uncertainties that are indicated in a certificate issued by Gosatomnadzor of Russian Federation (GAN) and concerning a corresponding computer code. A formal justification of declared uncertainties is the comparison of calculational results obtained by a commercial code with the results of experiments or of calculational tests that are calculated with an uncertainty defined by certified precision codes of MCU type or of other one. The actual level of international cooperation provides an enlarging of the bank of experimental and calculational benchmarks acceptable for a certification of commercial codes that are being used for a design of fuel loadings with MOX fuel. In particular, the work is practically finished on the forming of calculational benchmarks list for a certification of code TVS-M as applied to MOX fuel assembly calculations. The results on these activities are presented

  14. Benchmark calculations on nuclear characteristics of JRR-4 HEU core by SRAC code system

    International Nuclear Information System (INIS)

    Arigane, Kenji

    1987-04-01

    The reduced enrichment program for the JRR-4 has been progressing based on JAERI's RERTR (Reduced Enrichment Research and Test Reactor) program. The SRAC (JAERI Thermal Reactor Standard Code System for Reactor Design and Analysis) is used for the neutronic design of the JRR-4 LEU Core. This report describes the benchmark calculations on the neutronic characteristics of the JRR-4 HEU Core in order to validate the calculation method. The benchmark calculations were performed on the various kind of neutronic characteristics such as excess reactivity, criticality, control rod worth, thermal neutron flux distribution, void coefficient, temperature coefficient, mass coefficient, kinetic parameters and poisoning effect by Xe-135 build up. As the result, it was confirmed that these calculated values are in satisfactory agreement with the measured values. Therefore, the calculational method by the SRAC was validated. (author)

  15. ZZ-PBMR-400, OECD/NEA PBMR Coupled Neutronics/Thermal Hydraulics Transient Benchmark - The PBMR-400 Core Design

    International Nuclear Information System (INIS)

    Reitsma, Frederik

    2007-01-01

    Description of benchmark: This international benchmark, concerns Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transients based on the PBMR-400 MW design. The deterministic neutronics, thermal-hydraulics and transient analysis tools and methods available to design and analyse PBMRs lag, in many cases, behind the state of the art compared to other reactor technologies. This has motivated the testing of existing methods for HTGRs but also the development of more accurate and efficient tools to analyse the neutronics and thermal-hydraulic behaviour for the design and safety evaluations of the PBMR. In addition to the development of new methods, this includes defining appropriate benchmarks to verify and validate the new methods in computer codes. The scope of the benchmark is to establish well-defined problems, based on a common given set of cross sections, to compare methods and tools in core simulation and thermal hydraulics analysis with a specific focus on transient events through a set of multi-dimensional computational test problems. The benchmark exercise has the following objectives: - Establish a standard benchmark for coupled codes (neutronics/thermal-hydraulics) for PBMR design; - Code-to-code comparison using a common cross section library ; - Obtain a detailed understanding of the events and the processes; - Benefit from different approaches, understanding limitations and approximations. Major Design and Operating Characteristics of the PBMR (PBMR Characteristic and Value): Installed thermal capacity: 400 MW(t); Installed electric capacity: 165 MW(e); Load following capability: 100-40-100%; Availability: ≥ 95%; Core configuration: Vertical with fixed centre graphite reflector; Fuel: TRISO ceramic coated U-235 in graphite spheres; Primary coolant: Helium; Primary coolant pressure: 9 MPa; Moderator: Graphite; Core outlet temperature: 900 C.; Core inlet temperature: 500 C.; Cycle type: Direct; Number of circuits: 1; Cycle

  16. Benchmark calculation for water reflected STACY cores containing low enriched uranyl nitrate solution

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Yamamoto, Toshihiro; Nakamura, Takemi

    2001-01-01

    In order to validate the availability of criticality calculation codes and related nuclear data library, a series of fundamental benchmark experiments on low enriched uranyl nitrate solution have been performed with a Static Experiment Criticality Facility, STACY in JAERI. The basic core composed of a single tank with water reflector was used for accumulating the systematic data with well-known experimental uncertainties. This paper presents the outline of the core configurations of STACY, the standard calculation model, and calculation results with a Monte Carlo code and JENDL 3.2 nuclear data library. (author)

  17. Comparison of the results of the fifth dynamic AER benchmark-a benchmark for coupled thermohydraulic system/three-dimensional hexagonal kinetic core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    The fifth dynamic benchmark was defined at seventh AER-Symposium, held in Hoernitz, Germany in 1997. It is the first benchmark for coupled thermohydraulic system/three-dimensional hexagonal neutron kinetic core models. In this benchmark the interaction between the components of a WWER-440 NPP with the reactor core has been investigated. The initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one control rod group stucking. This break causes an overcooling of the primary circuit. During this overcooling the scram reactivity is compensated and the scrammed reactor becomes re critical. The calculation was continued until the highly-borated water from the high pressure injection system terminated the power excursion. Each participant used own best-estimate nuclear cross section data. Only the initial subcriticality at the beginning of the transient was given. Solutions were received from Kurchatov Institute Russia with the code BIPR8/ATHLET, VTT Energy Finland with HEXTRAN/SMABRE, NRI Rez Czech Republic with DYN3/ATHLET, KFKI Budapest Hungary with KIKO3D/ATHLET and from FZR Germany with the code DYN3D/ATHLET.In this paper the results are compared. Beside the comparison of global results, the behaviour of several thermohydraulic and neutron kinetic parameters is presented to discuss the revealed differences between the solutions.(Authors)

  18. Solution of the 6th dynamic AER benchmark using the coupled core DYN3D/ATHLET

    International Nuclear Information System (INIS)

    Seidel, A.; Kliem, S.

    2001-01-01

    The 6 th dynamic benchmark is a logical continuation of the work to validate systematically coupled neutron kinetics/thermohydraulics code systems for the estimation of the transient behaviour of WWER type nuclear power plant which was started in the 5 th dynamic benchmark. This benchmark concerns a double ended break of the main steam line (asymmetrical MSLB) in a WWER plant. The core is at the end of first cycle in full power conditions. The asymmetric leak causes a different depressurization of all steam generators. New features in comparison to the 5 th dynamic benchmark were included: asymmetric operation of the feed water system, consideration of incomplete coolant mixing in the reactor vessel, and the definition of a fixed isothermal recriticality temperature for normalising the nuclear data (Authors)

  19. Boiling water reactor turbine trip (TT) benchmark. Volume II: Summary Results of Exercise 1

    International Nuclear Information System (INIS)

    Akdeniz, Bedirhan; Ivanov, Kostadin N.; Olson, Andy M.

    2005-06-01

    benchmark and identifies the key parameters and important issues concerning the thermal-hydraulic system modelling of the TT transient with specified core average axial power distribution and fission power (or reactivity) time transient history. Exercise 1 helped the participants initialise and test their system code models for further use in Exercise 3 on coupled 3-D kinetics/system thermal-hydraulics simulations. This report is based on the comparative analysis of the submitted results for Exercise 1. In total, fourteen results were submitted by participants representing fourteen organisations from eight countries. A more detailed description of each code is presented in Appendix A and the modelling assumptions made by each participant are given in Appendix B. Chapter 2 contains a description of Exercise 1, including the initial conditions. Chapter 3 discusses the utilised comparative statistical methodology for integral parameters, one-dimensional (1-D) values and time histories. Chapter 4 provides a comparative analysis of the final results for this first exercise. Finally, Chapter 5 provides a brief summary of the conclusions drawn from the analysis of Exercise 1

  20. IAEA sodium void reactivity benchmark calculations

    International Nuclear Information System (INIS)

    Hill, R.N.; Finck, P.J.

    1992-01-01

    In this paper, the IAEA-1 992 ''Benchmark Calculation of Sodium Void Reactivity Effect in Fast Reactor Core'' problem is evaluated. The proposed design is a large axially heterogeneous oxide-fueled fast reactor as described in Section 2; the core utilizes a sodium plenum above the core to enhance leakage effects. The calculation methods used in this benchmark evaluation are described in Section 3. In Section 4, the calculated core performance results for the benchmark reactor model are presented; and in Section 5, the influence of steel and interstitial sodium heterogeneity effects is estimated

  1. Coupled fast-thermal core 'HERBE', as the benchmark experiment at the RB reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2003-10-01

    Validation of the well-known Monte Carlo code MCNP TM against measured criticality data for the coupled fast-thermal HERBE. System at the RB research reactor is shown in this paper. Experimental data are obtained for regular HERBE core and for the cases of controlled flooding of the neutron converter zone by heavy water. Earlier calculations of these criticality parameters, done by combination of transport and diffusion codes using 2D geometry model are also compared to new calculations carried out by the MCNP code in 3D geometry, applying new detailed 3D model of the HEU fuel slug, developed recently. Satisfactory agreements in comparison of the HERBE criticality calculation results with experimental data, in spite complex heterogeneous composition of the HERBE core, are obtained and confirmed that HERBE core could be used as a criticality benchmark for coupled fast-thermal core. (author)

  2. PANTHER solution to the NEA-NSC 3-D PWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1994-10-01

    This report contains the results of PANTHER calculations for the ``NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power``. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.).

  3. Final PANTHER solution to the NEA-NSC3-DPWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1996-10-01

    This report contains the final results of PANTHER calculations for the 'NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power'. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.)

  4. PANTHER solution to the NEA-NSC 3-D PWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    International Nuclear Information System (INIS)

    Kuijper, J.C.

    1994-10-01

    This report contains the results of PANTHER calculations for the ''NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power''. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.)

  5. Final PANTHER solution to the NEA-NSC3-DPWR core transient benchmark. Uncontrolled withdrawal of control rods at zero power

    Energy Technology Data Exchange (ETDEWEB)

    Kuijper, J.C.

    1996-10-01

    This report contains the final results of PANTHER calculations for the `NEA-NSC 3-D PWR Core Transient Benchmark: Uncontrolled Withdrawal of Control Rods at Zero Power`. PANTHER was able to model the benchmark problems without modifications to the code. All the calculations were performed in 3-D. (orig.).

  6. Analysis of the European results on the HTTR's core physics benchmarks

    International Nuclear Information System (INIS)

    Raepsaet, X.; Damian, F.; Ohlig, U.A.; Brockmann, H.J.; Haas, J.B.M. de; Wallerboss, E.M.

    2002-01-01

    Within the frame of the European contract HTR-N1 calculations are performed on the benchmark problems of the HTTR's start-up core physics experiments initially proposed by the IAEA in a Co-ordinated Research Programme. Three European partners, the FZJ in Germany, NRG and IRI in the Netherlands, and CEA in France, have joined this work package with the aim to validate their calculational methods. Pre-test and post-test calculational results, obtained by the partners, are compared with each other and with the experiment. Parts of the discrepancies between experiment and pre-test predictions are analysed and tackled by different treatments. In the case of the Monte Carlo code TRIPOLI4, used by CEA, the discrepancy between measurement and calculation at the first criticality is reduced to Δk/k∼0.85%, when considering the revised data of the HTTR benchmark. In the case of the diffusion codes, this discrepancy is reduced to: Δk/k∼0.8% (FZJ) and 2.7 or 1.8% (CEA). (author)

  7. WWER in-core fuel management benchmark definition

    International Nuclear Information System (INIS)

    Apostolov, T.; Alekova, G.; Prodanova, R.; Petrova, T.; Ivanov, K.

    1994-01-01

    Two benchmark problems for WWER-440, including design parameters, operating conditions and measured quantities are discussed in this paper. Some benchmark results for infinitive multiplication factor -K eff , natural boron concentration - C β and relative power distribution - K q obtained by use of the code package are represented. (authors). 5 refs., 3 tabs

  8. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  9. Stylized whole-core benchmark of the Integral Inherently Safe Light Water Reactor (I2S-LWR) concept

    International Nuclear Information System (INIS)

    Hon, Ryan; Kooreman, Gabriel; Rahnema, Farzad; Petrovic, Bojan

    2017-01-01

    Highlights: • A stylized benchmark specification of the I2S-LWR core. • A library of cross sections were generated in both 8 and 47 groups. • Monte Carlo solutions generated for the 8 group library using MCNP5. • Cross sections and pin fission densities provided in journal’s repository. - Abstract: The Integral, Inherently Safe Light Water Reactor (I 2 S-LWR) is a pressurized water reactor (PWR) concept under development by a multi-institutional team led by Georgia Tech. The core is similar in size to small 2-loop PWRs while having the power level of current large reactors (∼1000 MWe) but using uranium silicide fuel and advanced stainless steel cladding. A stylized benchmark specification of the I 2 S-LWR core has been developed in order to test whole-core neutronics codes and methods. For simplification the core was split into 57 distinct material regions for cross section generation. Cross sections were generated using the lattice physics code HELIOS version 1.10 in both 8 and 47 groups. Monte Carlo solutions, including eigenvalue and pin fission densities, were generated for the 8 group library using MCNP5. Due to space limitations in this paper, the full cross section library and normalized pin fission density results are provided in the journal’s electronic repository.

  10. Benchmarking and qualification of the nufreq-npw code for best estimate prediction of multi-channel core stability margins

    International Nuclear Information System (INIS)

    Taleyarkhan, R.; McFarlane, A.F.; Lahey, R.T. Jr.; Podowski, M.Z.

    1988-01-01

    The work described in this paper is focused on the development, verification and benchmarking of the NUFREQ-NPW code at Westinghouse, USA for best estimate prediction of multi-channel core stability margins in US BWRs. Various models incorporated into NUFREQ-NPW are systematically compared against the Westinghouse channel stability analysis code MAZDA, which the Mathematical Model was developed in an entirely different manner. The NUFREQ-NPW code is extensively benchmarked against experimental stability data with and without nuclear reactivity feedback. Detailed comparisons are next performed against nuclear-coupled core stability data. A physically based algorithm is developed to correct for the effect of flow development on subcooled boiling. Use of this algorithm (to be described in the full paper) captures the peak magnitude as well as the resonance frequency with good accuracy

  11. An analysis of the CSNI/GREST core concrete interaction chemical thermodynamic benchmark exercise using the MPEC2 computer code

    International Nuclear Information System (INIS)

    Muramatsu, Ken; Kondo, Yasuhiko; Uchida, Masaaki; Soda, Kunihisa

    1989-01-01

    Fission product (EP) release during a core concrete interaction (CCI) is an important factor of the uncertainty associated with a source term estimation for an LWR severe accident. An analysis was made on the CCI Chemical Thermodynamic Benchmark Exercise organized by OECD/NEA/CSNI Group of Experts on Source Terms (GREST) for investigating the uncertainty in thermodynamic modeling for CCI. The benchmark exercise was to calculate the equilibrium FP vapor pressure for given system of temperature, pressure, and debris composition. The benchmark consisted of two parts, A and B. Part A was a simplified problem intended to test the numerical techniques. In part B, the participants were requested to use their own best estimate thermodynamic data base to examine the variability of the results due to the difference in thermodynamic data base. JAERI participated in this benchmark exercise with use of the MPEC2 code. Chemical thermodynamic data base needed for analysis of Part B was taken from the VENESA code. This report describes the computer code used, inputs to the code, and results from the calculation by JAERI. The present calculation indicates that the FP vapor pressure depends strongly on temperature and Oxygen potential in core debris and the pattern of dependency may be different for different FP elements. (author)

  12. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  13. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  14. MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

    Directory of Open Access Journals (Sweden)

    Daniel J. Kelly, III

    2017-09-01

    Full Text Available The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of 0.99994 ± 6.8E-6 (95% confidence interval. Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

  15. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland; Köberl, Oliver

    2014-01-01

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the 235 U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  16. Selection and benchmarking of computer codes for research reactor core conversions

    International Nuclear Information System (INIS)

    Yilmaz, E.; Jones, B.G.

    1983-01-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC 2 , COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of Illinois. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general

  17. A Benchmark Study of a Seismic Analysis Program for a Single Column of a HTGR Core

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A seismic analysis program, SAPCOR (Seismic Analysis of Prismatic HTGR Core), was developed in Korea Atomic Energy Research Institute. The program is used for the evaluation of deformed shapes and forces on the graphite blocks which using point-mass rigid bodies with Kelvin-Voigt impact models. In the previous studies, the program was verified using theoretical solutions and benchmark problems. To validate the program for more complicated problems, a free vibration analysis of a single column of a HTGR core was selected and the calculation results of the SAPCOR and a commercial FEM code, Abaqus, were compared in this study.

  18. Development of an ICSBEP Benchmark Evaluation, Nearly 20 Years of Experience

    International Nuclear Information System (INIS)

    Briggs, J. Blair; Bess, John D.

    2011-01-01

    The basic structure of all ICSBEP benchmark evaluations is essentially the same and includes (1) a detailed description of the experiment; (2) an evaluation of the experiment, including an exhaustive effort to quantify the effects of uncertainties on measured quantities; (3) a concise presentation of benchmark-model specifications; (4) sample calculation results; and (5) a summary of experimental references. Computer code input listings and other relevant information are generally preserved in appendixes. Details of an ICSBEP evaluation is presented.

  19. A simplified 2D HTTR benchmark problem

    International Nuclear Information System (INIS)

    Zhang, Z.; Rahnema, F.; Pounders, J. M.; Zhang, D.; Ougouag, A.

    2009-01-01

    To access the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of relevant whole core configurations. In this paper we have created a numerical benchmark problem in 2D configuration typical of a high temperature gas cooled prismatic core. This problem was derived from the HTTR start-up experiment. For code-to-code verification, complex details of geometry and material specification of the physical experiments are not necessary. To this end, the benchmark problem presented here is derived by simplifications that remove the unnecessary details while retaining the heterogeneity and major physics properties from the neutronics viewpoint. Also included here is a six-group material (macroscopic) cross section library for the benchmark problem. This library was generated using the lattice depletion code HELIOS. Using this library, benchmark quality Monte Carlo solutions are provided for three different configurations (all-rods-in, partially-controlled and all-rods-out). The reference solutions include the core eigenvalue, block (assembly) averaged fuel pin fission density distributions, and absorption rate in absorbers (burnable poison and control rods). (authors)

  20. Simplified two and three dimensional HTTR benchmark problems

    International Nuclear Information System (INIS)

    Zhang Zhan; Rahnema, Farzad; Zhang Dingkang; Pounders, Justin M.; Ougouag, Abderrafi M.

    2011-01-01

    To assess the accuracy of diffusion or transport methods for reactor calculations, it is desirable to create heterogeneous benchmark problems that are typical of whole core configurations. In this paper we have created two and three dimensional numerical benchmark problems typical of high temperature gas cooled prismatic cores. Additionally, a single cell and single block benchmark problems are also included. These problems were derived from the HTTR start-up experiment. Since the primary utility of the benchmark problems is in code-to-code verification, minor details regarding geometry and material specification of the original experiment have been simplified while retaining the heterogeneity and the major physics properties of the core from a neutronics viewpoint. A six-group material (macroscopic) cross section library has been generated for the benchmark problems using the lattice depletion code HELIOS. Using this library, Monte Carlo solutions are presented for three configurations (all-rods-in, partially-controlled and all-rods-out) for both the 2D and 3D problems. These solutions include the core eigenvalues, the block (assembly) averaged fission densities, local peaking factors, the absorption densities in the burnable poison and control rods, and pin fission density distribution for selected blocks. Also included are the solutions for the single cell and single block problems.

  1. Toxicological benchmarks for wildlife. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Opresko, D.M.; Sample, B.E.; Suter, G.W.

    1993-09-01

    This report presents toxicological benchmarks for assessment of effects of 55 chemicals on six representative mammalian wildlife species (short-tailed shrew, white-footed mouse, cottontail ink, red fox, and whitetail deer) and eight avian wildlife species (American robin, woodcock, wild turkey, belted kingfisher, great blue heron, barred owl, Cooper`s hawk, and redtailed hawk) (scientific names are presented in Appendix C). These species were chosen because they are widely distributed and provide a representative range of body sizes and diets. The chemicals are some of those that occur at United States Department of Energy (DOE) waste sites. The benchmarks presented in this report are values believed to be nonhazardous for the listed wildlife species.

  2. Selection and benchmarking of computer codes for research reactor core conversions

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Emin [School of Aerospace, Mechanical and Nuclear Engineering, University of Oklahoma, Norman, OK (United States); Jones, Barclay G [Nuclear Engineering Program, University of IL at Urbana-Champaign, Urbana, IL (United States)

    1983-09-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC{sup 2}, COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k{sub eff} is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)

  3. Selection and benchmarking of computer codes for research reactor core conversions

    International Nuclear Information System (INIS)

    Yilmaz, Emin; Jones, Barclay G.

    1983-01-01

    A group of computer codes have been selected and obtained from the Nuclear Energy Agency (NEA) Data Bank in France for the core conversion study of highly enriched research reactors. ANISN, WIMSD-4, MC 2 , COBRA-3M, FEVER, THERMOS, GAM-2, CINDER and EXTERMINATOR were selected for the study. For the final work THERMOS, GAM-2, CINDER and EXTERMINATOR have been selected and used. A one dimensional thermal hydraulics code also has been used to calculate temperature distributions in the core. THERMOS and CINDER have been modified to serve the purpose. Minor modifications have been made to GAM-2 and EXTERMINATOR to improve their utilization. All of the codes have been debugged on both CDC and IBM computers at the University of IL. IAEA 10 MW Benchmark problem has been solved. Results of this work has been compared with the IAEA contributor's results. Agreement is very good for highly enriched fuel (HEU). Deviations from IAEA contributor's mean value for low enriched fuel (LEU) exist but they are small enough in general. Deviation of k eff is about 0.5% for both enrichments at the beginning of life (BOL) and at the end of life (EOL). Flux ratios deviate only about 1.5% from IAEA contributor's mean value. (author)

  4. HS06 Benchmark for an ARM Server

    Science.gov (United States)

    Kluth, Stefan

    2014-06-01

    We benchmarked an ARM cortex-A9 based server system with a four-core CPU running at 1.1 GHz. The system used Ubuntu 12.04 as operating system and the HEPSPEC 2006 (HS06) benchmarking suite was compiled natively with gcc-4.4 on the system. The benchmark was run for various settings of the relevant gcc compiler options. We did not find significant influence from the compiler options on the benchmark result. The final HS06 benchmark result is 10.4.

  5. HS06 benchmark for an ARM server

    International Nuclear Information System (INIS)

    Kluth, Stefan

    2014-01-01

    We benchmarked an ARM cortex-A9 based server system with a four-core CPU running at 1.1 GHz. The system used Ubuntu 12.04 as operating system and the HEPSPEC 2006 (HS06) benchmarking suite was compiled natively with gcc-4.4 on the system. The benchmark was run for various settings of the relevant gcc compiler options. We did not find significant influence from the compiler options on the benchmark result. The final HS06 benchmark result is 10.4.

  6. Benchmarking ENDF/B-VII.0

    International Nuclear Information System (INIS)

    Marck, Steven C. van der

    2006-01-01

    The new major release VII.0 of the ENDF/B nuclear data library has been tested extensively using benchmark calculations. These were based upon MCNP-4C3 continuous-energy Monte Carlo neutronics simulations, together with nuclear data processed using the code NJOY. Three types of benchmarks were used, viz., criticality safety benchmarks (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 700 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6 Li, 7 Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D 2 O, H 2 O, concrete, polyethylene and teflon). For testing delayed neutron data more than thirty measurements in widely varying systems were used. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, and two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. In criticality safety, many benchmarks were chosen from the category with a thermal spectrum, low-enriched uranium, compound fuel (LEU-COMP-THERM), because this is typical of most current-day reactors, and because these benchmarks were previously underpredicted by as much as 0.5% by most nuclear data libraries (such as ENDF/B-VI.8, JEFF-3.0). The calculated results presented here show that this underprediction is no longer there for ENDF/B-VII.0. The average over 257

  7. MC21 Monte Carlo analysis of the Hoogenboom-Martin full-core PWR benchmark problem - 301

    International Nuclear Information System (INIS)

    Kelly, D.J.; Sutton, Th.M.; Trumbull, T.H.; Dobreff, P.S.

    2010-01-01

    At the 2009 American Nuclear Society Mathematics and Computation conference, Hoogenboom and Martin proposed a full-core PWR model to monitor the improvement of Monte Carlo codes to compute detailed power density distributions. This paper describes the application of the MC21 Monte Carlo code to the analysis of this benchmark model. With the MC21 code, we obtained detailed power distributions over the entire core. The model consisted of 214 assemblies, each made up of a 17x17 array of pins. Each pin was subdivided into 100 axial nodes, thus resulting in over seven million tally regions. Various cases were run to assess the statistical convergence of the model. This included runs of 10 billion and 40 billion neutron histories, as well as ten independent runs of 4 billion neutron histories each. The 40 billion neutron-history calculation resulted in 43% of all regions having a 95% confidence level of 2% or less implying a relative standard deviation of 1%. Furthermore, 99.7% of regions having a relative power density of 1.0 or greater have a similar confidence level. We present timing results that assess the MC21 performance relative to the number of tallies requested. Source convergence was monitored by analyzing plots of the Shannon entropy and eigenvalue versus active cycle. We also obtained an estimate of the dominance ratio. Additionally, we performed an analysis of the error in an attempt to ascertain the validity of the confidence intervals predicted by MC21. Finally, we look forward to the prospect of full core 3-D Monte Carlo depletion by scoping out the required problem size. This study provides an initial data point for the Hoogenboom-Martin benchmark model using a state-of-the-art Monte Carlo code. (authors)

  8. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  9. MCNP simulation of the TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Jeraj, R.; Glumac, B.; Maucec, M.

    1996-01-01

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  10. Benchmark for evaluation and validation of reactor simulations (BEAVRS)

    Energy Technology Data Exchange (ETDEWEB)

    Horelik, N.; Herman, B.; Forget, B.; Smith, K. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-07-01

    Advances in parallel computing have made possible the development of high-fidelity tools for the design and analysis of nuclear reactor cores, and such tools require extensive verification and validation. This paper introduces BEAVRS, a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading patterns, and numerous in-vessel components. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from fifty-eight instrumented assemblies. Initial comparisons between calculations performed with MIT's OpenMC Monte Carlo neutron transport code and measured cycle 1 HZP test data are presented, and these results display an average deviation of approximately 100 pcm for the various critical configurations and control rod worth measurements. Computed HZP radial fission detector flux maps also agree reasonably well with the available measured data. All results indicate that this benchmark will be extremely useful in validation of coupled-physics codes and uncertainty quantification of in-core physics computational predictions. The detailed BEAVRS specification and its associated data package is hosted online at the MIT Computational Reactor Physics Group web site (http://crpg.mit.edu/), where future revisions and refinements to the benchmark specification will be made publicly available. (authors)

  11. Verification of MVP-II and SRAC2006 code to the core physics vera benchmark problem

    International Nuclear Information System (INIS)

    Jati Susilo

    2014-01-01

    In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT) of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by. Westinghouse, arranged from 193 unit of 17 x 17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC) and hot zero power (HZP). In this calculation, MVP-II and CITATION module of SRAC2006 computer code has been used with ENDF/B-VII.0. cross section data library. Calculation result showed that differences value of k-eff for the core at controlled and uncontrolled condition between reference with MVP-II (-0,07% and -0,014%) and SRAC2006 (0,92% and 0,99%) are very small or below 1%. Differences value of radial power peaking factor at controlled and uncontrolled of the core between reference value with MVP-II are 0,38% and 1,53%, even though with SRAC2006 are 1,13% and -2,45%. It can be said that the calculation result by both computer code showing suitability with reference value. In order to determinate of criticality of the core, the calculation result using MVP-II code is more conservative compare with SRAC2006 code. (author)

  12. 3-D core modelling of RIA transient: the TMI-1 benchmark

    International Nuclear Information System (INIS)

    Ferraresi, P.; Studer, E.; Avvakumov, A.; Malofeev, V.; Diamond, D.; Bromley, B.

    2001-01-01

    The increase of fuel burn up in core management poses actually the problem of the evaluation of the deposited energy during Reactivity Insertion Accidents (RIA). In order to precisely evaluate this energy, 3-D approaches are used more and more frequently in core calculations. This 'best-estimate' approach requires the evaluation of code uncertainties. To contribute to this evaluation, a code benchmark has been launched. A 3-D modelling for the TMI-1 central Ejected Rod Accident with zero and intermediate initial powers was carried out with three different methods of calculation for an inserted reactivity respectively fixed at 1.2 $ and 1.26 $. The studies implemented by the neutronics codes PARCS (BNL) and CRONOS (IPSN/CEA) describe an homogeneous assembly, whereas the BARS (KI) code allows a pin-by-pin representation (CRONOS has both possibilities). All the calculations are consistent, the variation in figures resulting mainly from the method used to build cross sections and reflectors constants. The maximum rise in enthalpy for the intermediate initial power (33 % P N ) calculation is, for this academic calculation, about 30 cal/g. This work will be completed in a next step by an evaluation of the uncertainty induced by the uncertainty on model parameters, and a sensitivity study of the key parameters for a peripheral Rod Ejection Accident. (authors)

  13. 3-D core modelling of RIA transient: the TMI-1 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferraresi, P. [CEA Cadarache, Institut de Protection et de Surete Nucleaire, Dept. de Recherches en Securite, 13 - Saint Paul Lez Durance (France); Studer, E. [CEA Saclay, Dept. Modelisation de Systemes et Structures, 91 - Gif sur Yvette (France); Avvakumov, A.; Malofeev, V. [Nuclear Safety Institute of Russian Research Center, Kurchatov Institute, Moscow (Russian Federation); Diamond, D.; Bromley, B. [Nuclear Energy and Infrastructure Systems Div., Brookhaven National Lab., BNL, Upton, NY (United States)

    2001-07-01

    The increase of fuel burn up in core management poses actually the problem of the evaluation of the deposited energy during Reactivity Insertion Accidents (RIA). In order to precisely evaluate this energy, 3-D approaches are used more and more frequently in core calculations. This 'best-estimate' approach requires the evaluation of code uncertainties. To contribute to this evaluation, a code benchmark has been launched. A 3-D modelling for the TMI-1 central Ejected Rod Accident with zero and intermediate initial powers was carried out with three different methods of calculation for an inserted reactivity respectively fixed at 1.2 $ and 1.26 $. The studies implemented by the neutronics codes PARCS (BNL) and CRONOS (IPSN/CEA) describe an homogeneous assembly, whereas the BARS (KI) code allows a pin-by-pin representation (CRONOS has both possibilities). All the calculations are consistent, the variation in figures resulting mainly from the method used to build cross sections and reflectors constants. The maximum rise in enthalpy for the intermediate initial power (33 % P{sub N}) calculation is, for this academic calculation, about 30 cal/g. This work will be completed in a next step by an evaluation of the uncertainty induced by the uncertainty on model parameters, and a sensitivity study of the key parameters for a peripheral Rod Ejection Accident. (authors)

  14. Gas cooled fast reactor benchmarks for JNC and Cea neutronic tools assessment

    International Nuclear Information System (INIS)

    Rimpault, G.; Sugino, K.; Hayashi, H.

    2005-01-01

    In order to verify the adequacy of JNC and Cea computational tools for the definition of GCFR (gas cooled fast reactor) core characteristics, GCFR neutronic benchmarks have been performed. The benchmarks have been carried out on two different cores: 1) a conventional Gas-Cooled fast Reactor (EGCR) core with pin-type fuel, and 2) an innovative He-cooled Coated-Particle Fuel (CPF) core. Core characteristics being studied include: -) Criticality (Effective multiplication factor or K-effective), -) Instantaneous breeding gain (BG), -) Core Doppler effect, and -) Coolant depressurization reactivity. K-effective and coolant depressurization reactivity at EOEC (End Of Equilibrium Cycle) state were calculated since these values are the most critical characteristics in the core design. In order to check the influence due to the difference of depletion calculation systems, a simple depletion calculation benchmark was performed. Values such as: -) burnup reactivity loss, -) mass balance of heavy metals and fission products (FP) were calculated. Results of the core design characteristics calculated by both JNC and Cea sides agree quite satisfactorily in terms of core conceptual design study. Potential features for improving the GCFR computational tools have been discovered during the course of this benchmark such as the way to calculate accurately the breeding gain. Different ways to improve the accuracy of the calculations have also been identified. In particular, investigation on nuclear data for steel is important for EGCR and for lumped fission products in both cores. The outcome of this benchmark is already satisfactory and will help to design more precisely GCFR cores. (authors)

  15. Boiling water reactor turbine trip (TT) benchmark

    International Nuclear Information System (INIS)

    2001-06-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts, as well as for current nuclear applications Recently developed 'best-estimate' computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for the coupling of core phenomena and system dynamics (PWR, BWR, VVER) need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for the purpose. The present volume describes the specification of such a benchmark. The transient addressed is a turbine trip (TT) in a BWR involving pressurization events in which the coupling between core phenomena and system dynamics plays an important role. In addition, the data made available from experiments carried out at the plant make the present benchmark very valuable. The data used are from events at the Peach Bottom 2 reactor (a GE-designed BWR/4). (authors)

  16. Toxicological Benchmarks for Wildlife

    Energy Technology Data Exchange (ETDEWEB)

    Sample, B.E. Opresko, D.M. Suter, G.W.

    1993-01-01

    -tailed hawk, osprey) (scientific names for both the mammalian and avian species are presented in Appendix B). [In this document, NOAEL refers to both dose (mg contaminant per kg animal body weight per day) and concentration (mg contaminant per kg of food or L of drinking water)]. The 20 wildlife species were chosen because they are widely distributed and provide a representative range of body sizes and diets. The chemicals are some of those that occur at U.S. Department of Energy (DOE) waste sites. The NOAEL-based benchmarks presented in this report represent values believed to be nonhazardous for the listed wildlife species; LOAEL-based benchmarks represent threshold levels at which adverse effects are likely to become evident. These benchmarks consider contaminant exposure through oral ingestion of contaminated media only. Exposure through inhalation and/or direct dermal exposure are not considered in this report.

  17. Benchmarking of FA2D/PARCS Code Package

    International Nuclear Information System (INIS)

    Grgic, D.; Jecmenica, R.; Pevec, D.

    2006-01-01

    FA2D/PARCS code package is used at Faculty of Electrical Engineering and Computing (FER), University of Zagreb, for static and dynamic reactor core analyses. It consists of two codes: FA2D and PARCS. FA2D is a multigroup two dimensional transport theory code for burn-up calculations based on collision probability method, developed at FER. It generates homogenised cross sections both of single pins and entire fuel assemblies. PARCS is an advanced nodal code developed at Purdue University for US NRC and it is based on neutron diffusion theory for three dimensional whole core static and dynamic calculations. It is modified at FER to enable internal 3D depletion calculation and usage of neutron cross section data in a format produced by FA2D and interface codes. The FA2D/PARCS code system has been validated on NPP Krsko operational data (Cycles 1 and 21). As we intend to use this code package for development of IRIS reactor loading patterns the first logical step was to validate the FA2D/PARCS code package on a set of IRIS benchmarks, starting from simple unit fuel cell, via fuel assembly, to full core benchmark. The IRIS 17x17 fuel with erbium burnable absorber was used in last full core benchmark. The results of modelling the IRIS full core benchmark using FA2D/PARCS code package have been compared with reference data showing the adequacy of FA2D/PARCS code package model for IRIS reactor core design.(author)

  18. Boiling water reactor turbine trip (TT) benchmark

    International Nuclear Information System (INIS)

    2005-01-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts as well as for current applications. Recently developed 'best-estimate' computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for coupling core phenomena and system dynamics (PWR, BWR, VVER) need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for this purpose. The present report is the second in a series of four and summarises the results of the first benchmark exercise, which identifies the key parameters and important issues concerning the thermalhydraulic system modelling of the transient, with specified core average axial power distribution and fission power time transient history. The transient addressed is a turbine trip in a boiling water reactor, involving pressurization events in which the coupling between core phenomena and system dynamics plays an important role. In addition, the data made available from experiments carried out at the Peach Bottom 2 reactor (a GE-designed BWR/4) make the present benchmark particularly valuable. (author)

  19. KAERI results for BN600 full MOX benchmark (Phase 4)

    International Nuclear Information System (INIS)

    Lee, Kibog Lee

    2003-01-01

    The purpose of this document is to report the results of KAERI's calculation for the Phase-4 of BN-600 full MOX fueled core benchmark analyses according to the RCM report of IAEA CRP Action on U pdated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects. T he BN-600 full MOX core model is based on the specification in the document, F ull MOX Model (Phase4. doc ) . This document addresses the calculational methods employed in the benchmark analyses and benchmark results carried out by KAERI

  20. Verification of NUREC Code Transient Calculation Capability Using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem

    International Nuclear Information System (INIS)

    Joo, Hyung Kook; Noh, Jae Man; Lee, Hyung Chul; Yoo, Jae Woon

    2006-01-01

    In this report, we verified the NUREC code transient calculation capability using OECD NEA/US NRC PWR MOX/UO2 Core Transient Benchmark Problem. The benchmark problem consists of Part 1, a 2-D problem with given T/H conditions, Part 2, a 3-D problem at HFP condition, Part 3, a 3-D problem at HZP condition, and Part 4, a transient state initiated by a control rod ejection at HZP condition in Part 3. In Part 1, the results of NUREC code agreed well with the reference solution obtained from DeCART calculation except for the pin power distributions at the rodded assemblies. In Part 2, the results of NUREC code agreed well with the reference DeCART solutions. In Part 3, some results of NUREC code such as critical boron concentration and core averaged delayed neutron fraction agreed well with the reference PARCS 2G solutions. But the error of the assembly power at the core center was quite large. The pin power errors of NUREC code at the rodded assemblies was much smaller the those of PARCS code. The axial power distribution also agreed well with the reference solution. In Part 4, the results of NUREC code agreed well with those of PARCS 2G code which was taken as the reference solution. From the above results we can conclude that the results of NUREC code for steady states and transient states of the MOX loaded LWR core agree well with those of the other codes

  1. Benchmarking Benchmarks

    NARCIS (Netherlands)

    D.C. Blitz (David)

    2011-01-01

    textabstractBenchmarking benchmarks is a bundle of six studies that are inspired by the prevalence of benchmarking in academic finance research as well as in investment practice. Three studies examine if current benchmark asset pricing models adequately describe the cross-section of stock returns.

  2. Full sphere hydrodynamic and dynamo benchmarks

    KAUST Repository

    Marti, P.

    2014-01-26

    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that alloweasy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier-finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results. © The Authors 2014. Published by Oxford University Press on behalf of The Royal Astronomical Society.

  3. Guideline for benchmarking thermal treatment systems for low-level mixed waste

    International Nuclear Information System (INIS)

    Hoffman, D.P.; Gibson, L.V. Jr.; Hermes, W.H.; Bastian, R.E.; Davis, W.T.

    1994-01-01

    A process for benchmarking low-level mixed waste (LLMW) treatment technologies has been developed. When used in conjunction with the identification and preparation of surrogate waste mixtures, and with defined quality assurance and quality control procedures, the benchmarking process will effectively streamline the selection of treatment technologies being considered by the US Department of Energy (DOE) for LLMW cleanup and management. Following the quantitative template provided in the benchmarking process will greatly increase the technical information available for the decision-making process. The additional technical information will remove a large part of the uncertainty in the selection of treatment technologies. It is anticipated that the use of the benchmarking process will minimize technology development costs and overall treatment costs. In addition, the benchmarking process will enhance development of the most promising LLMW treatment processes and aid in transferring the technology to the private sector. To instill inherent quality, the benchmarking process is based on defined criteria and a structured evaluation format, which are independent of any specific conventional treatment or emerging process technology. Five categories of benchmarking criteria have been developed for the evaluation: operation/design; personnel health and safety; economics; product quality; and environmental quality. This benchmarking document gives specific guidance on what information should be included and how it should be presented. A standard format for reporting is included in Appendix A and B of this document. Special considerations for LLMW are presented and included in each of the benchmarking categories

  4. Benchmark calculations for VENUS-2 MOX -fueled reactor dosimetry

    International Nuclear Information System (INIS)

    Kim, Jong Kung; Kim, Hong Chul; Shin, Chang Ho; Han, Chi Young; Na, Byung Chan

    2004-01-01

    As a part of a Nuclear Energy Agency (NEA) Project, it was pursued the benchmark for dosimetry calculation of the VENUS-2 MOX-fueled reactor. In this benchmark, the goal is to test the current state-of-the-art computational methods of calculating neutron flux to reactor components against the measured data of the VENUS-2 MOX-fuelled critical experiments. The measured data to be used for this benchmark are the equivalent fission fluxes which are the reaction rates divided by the U 235 fission spectrum averaged cross-section of the corresponding dosimeter. The present benchmark is, therefore, defined to calculate reaction rates and corresponding equivalent fission fluxes measured on the core-mid plane at specific positions outside the core of the VENUS-2 MOX-fuelled reactor. This is a follow-up exercise to the previously completed UO 2 -fuelled VENUS-1 two-dimensional and VENUS-3 three-dimensional exercises. The use of MOX fuel in LWRs presents different neutron characteristics and this is the main interest of the current benchmark compared to the previous ones

  5. The fifth AER dynamic benchmark calculation with hextran-smabre

    International Nuclear Information System (INIS)

    Haemaelaeinen, A.; Kyrki-Rajamaeki, R.

    1998-01-01

    The first AER benchmark for coupling of the thermohydraulic codes and three-dimensional reactordynamic core models is discussed. HEXTRAN 2.7 is used for the core dynamics and SMABRE 4.6 as a thermohydraulic model for the primary and secondary loops. The plant model for SMABRE is based mainly on two input models, the Loviisa model and standard VVER-440/213 plant model. The primary circuit includes six separate loops, totally 505 nodes and 652 junctions. The reactor pressure vessel is divided into six parallel channels. In HEXTRAN calculation 1/6 symmetry is used in the core. In the calculations nuclear data is based on the ENDF/B-IV library and it has been evaluated with the CASMO-HEX code. The importance of the nuclear data was illustrated by repeating the benchmark calculation with using three different data sets. Optimal extensive data valid from hot to cold conditions were not available for all types of fuel enrichments needed in this benchmark. (author)

  6. Precursors to potential severe core damage accidents: 1994, a status report. Volume 22: Appendix I

    International Nuclear Information System (INIS)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N.; Dolan, B.W.; Minarick, J.W.

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 x 10 -6 . These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1

  7. Precursors to potential severe core damage accidents: 1994, a status report. Volume 22: Appendix I

    Energy Technology Data Exchange (ETDEWEB)

    Belles, R.J.; Cletcher, J.W.; Copinger, D.A.; Vanden Heuvel, L.N. [Oak Ridge National Lab., TN (United States); Dolan, B.W.; Minarick, J.W. [Oak Ridge National Lab., TN (United States)]|[Science Applications International Corp., Oak Ridge, TN (United States)

    1995-12-01

    Nine operational events that affected eleven commercial light-water reactors (LWRs) during 1994 and that are considered to be precursors to potential severe core damage are described. All these events had conditional probabilities of subsequent severe core damage greater than or equal to 1.0 {times} 10{sup {minus}6}. These events were identified by computer-screening the 1994 licensee event reports from commercial LWRs to identify those that could be potential precursors. Candidate precursors were then selected and evaluated in a process similar to that used in previous assessments. Selected events underwent engineering evaluation that identified, analyzed, and documented the precursors. Other events designated by the Nuclear Regulatory Commission (NRC) also underwent a similar evaluation. Finally, documented precursors were submitted for review by licensees and NRC headquarters and regional offices to ensure that the plant design and its response to the precursor were correctly characterized. This study is a continuation of earlier work, which evaluated 1969--1981 and 1984--1993 events. The report discusses the general rationale for this study, the selection and documentation of events as precursors, and the estimation of conditional probabilities of subsequent severe core damage for events. This document is bound in two volumes: Vol. 21 contains the main report and Appendices A--H; Vol. 22 contains Appendix 1.

  8. An analytical model for the study of a small LFR core dynamics: development and benchmark

    International Nuclear Information System (INIS)

    Bortot, S.; Cammi, A.; Lorenzi, S.; Moisseytsev, A.

    2011-01-01

    An analytical model for the study of a small Lead-cooled Fast Reactor (LFR) control-oriented dynamics has been developed aimed at providing a useful, very flexible and straightforward, though accurate, tool allowing relatively quick transient design-basis and stability analyses. A simplified lumped-parameter approach has been adopted to couple neutronics and thermal-hydraulics: the point-kinetics approximation has been employed and an average-temperature heat-exchange model has been implemented. The reactor transient responses following postulated accident initiators such as Unprotected Control Rod Withdrawal (UTOP), Loss of Heat Sink (ULOHS) and Loss of Flow (ULOF) have been studied for a MOX and a metal-fuelled core at the Beginning of Cycle (BoC) and End of Cycle (EoC) configurations. A benchmark analysis has been then performed by means of the SAS4A/SASSYS-1 Liquid Metal Reactor Code System, in which a core model based on three representative channels has been built with the purpose of providing verification for the analytical outcomes and indicating how the latter relate to more realistic one-dimensional calculations. As a general result, responses concerning the main core characteristics (namely, power, reactivity, etc.) have turned out to be mutually consistent in terms of both steady-state absolute figures and transient developments, showing discrepancies of the order of only some percents, thus confirming a very satisfactory agreement. (author)

  9. Survey of the results of a two- and three-dimensional kinetics benchmark problem typical for a thermal reactor

    International Nuclear Information System (INIS)

    Werner, W.

    1975-01-01

    In 1973, NEACRP and CSNI posed a number of kinetic benchmark problems intended to be solved by different groups. Comparison of the submitted results should lead to estimates on the accuracy and efficiency of the employed codes. This was felt to be of great value since the codes involved become more and more important in the field of reactor safety. In this paper the results of the 2d and 3d benchmark problem for a BWR are presented. The specification of the problem is included in the appendix of this survey. For the 2d benchmark problem, 5 contributions have been obtained, while for the 3d benchmark problem 2 contributions have been submitted. (orig./RW) [de

  10. Benchmark calculations of power distribution within assemblies

    International Nuclear Information System (INIS)

    Cavarec, C.; Perron, J.F.; Verwaerde, D.; West, J.P.

    1994-09-01

    The main objective of this Benchmark is to compare different techniques for fine flux prediction based upon coarse mesh diffusion or transport calculations. We proposed 5 ''core'' configurations including different assembly types (17 x 17 pins, ''uranium'', ''absorber'' or ''MOX'' assemblies), with different boundary conditions. The specification required results in terms of reactivity, pin by pin fluxes and production rate distributions. The proposal for these Benchmark calculations was made by J.C. LEFEBVRE, J. MONDOT, J.P. WEST and the specification (with nuclear data, assembly types, core configurations for 2D geometry and results presentation) was distributed to correspondents of the OECD Nuclear Energy Agency. 11 countries and 19 companies answered the exercise proposed by this Benchmark. Heterogeneous calculations and homogeneous calculations were made. Various methods were used to produce the results: diffusion (finite differences, nodal...), transport (P ij , S n , Monte Carlo). This report presents an analysis and intercomparisons of all the results received

  11. BN-600 MOX Core Benchmark Analysis. Results from Phases 4 and 6 of a Coordinated Research Project on Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects

    International Nuclear Information System (INIS)

    2013-12-01

    For those Member States that have or have had significant fast reactor development programmes, it is of utmost importance that they have validated up to date codes and methods for fast reactor physics analysis in support of R and D and core design activities in the area of actinide utilization and incineration. In particular, some Member States have recently focused on fast reactor systems for minor actinide transmutation and on cores optimized for consuming rather than breeding plutonium; the physics of the breeder reactor cycle having already been widely investigated. Plutonium burning systems may have an important role in managing plutonium stocks until the time when major programmes of self-sufficient fast breeder reactors are established. For assessing the safety of these systems, it is important to determine the prediction accuracy of transient simulations and their associated reactivity coefficients. In response to Member States' expressed interest, the IAEA sponsored a coordinated research project (CRP) on Updated Codes and Methods to Reduce the Calculational Uncertainties of the LMFR Reactivity Effects. The CRP started in November 1999 and, at the first meeting, the members of the CRP endorsed a benchmark on the BN-600 hybrid core for consideration in its first studies. Benchmark analyses of the BN-600 hybrid core were performed during the first three phases of the CRP, investigating different nuclear data and levels of approximation in the calculation of safety related reactivity effects and their influence on uncertainties in transient analysis prediction. In an additional phase of the benchmark studies, experimental data were used for the verification and validation of nuclear data libraries and methods in support of the previous three phases. The results of phases 1, 2, 3 and 5 of the CRP are reported in IAEA-TECDOC-1623, BN-600 Hybrid Core Benchmark Analyses, Results from a Coordinated Research Project on Updated Codes and Methods to Reduce the

  12. European benchmark on the ASTRID-like low-void-effect core characterization: neutronic parameters and safety coefficients - 15361

    International Nuclear Information System (INIS)

    Bortot, S.; Mikityuk, K.; Panadero, A.L.; Pelloni, S.; Alvarez-Velarde, F.; Lopez, D.; Fridman, E.; Cruzado, I.G.; Herranz, N.G.; Ponomarev, A.; Sciora, P.; Vasile, A.; Seubert, A.; Tsige-Tamirat, H.

    2015-01-01

    A neutronic benchmark was launched with the participation of 8 European institutions using 10 codes and 4 data libraries, in order to study the main characteristics of a low-void-effect sodium-cooled fast spectrum core similar to the one of ASTRID at End-Of-Cycle conditions. The first results of this exercise are presented in this paper. As a major outcome of the study, the negative reactivity effect ensuing from the total voiding of the core was unanimously confirmed. Moreover, the code-to-code comparison allowed identifying a number of issues that require further clarifications and improvements. Some of them are mentioned here. The power generation in the non-fuel regions of the core was calculated by only 2 codes and the resulting result discrepancies reach 100%. Unexpected large discrepancies (up to 100 pcm) were observed in the Doppler constants predictions. The deviation of the Doppler effect's temperature dependence from a logarithmic law is also worth additional analysis. A discrepancy between nuclear data libraries (particularly between JEFF 3.1 and ENDF/B-VII.0) was observed in particular for the prediction of the CR worth

  13. CEA-IPSN Participation in the MSLB Benchmark

    International Nuclear Information System (INIS)

    Royer, E.; Raimond, E.; Caruge, D.

    2001-01-01

    The OECD/NEA Main Steam Line Break (MSLB) Benchmark allows the comparison of state-of-the-art and best-estimate models used to compute reactivity accidents. The three exercises of the MSLB benchmark are defined with the aim of analyzing the space and time effects in the core and their modeling with computational tools. Point kinetics (exercise 1) simulation results in a return to power (RTP) after scram, whereas 3-D kinetics (exercises 2 and 3) does not display any RTP. The objective is to understand the reasons for the conservative solution of point kinetics and to assess the benefits of best-estimate models. First, the core vessel mixing model is analyzed; second, sensitivity studies on point kinetics are compared to 3-D kinetics; third, the core thermal hydraulics model and coupling with neutronics is presented; finally, RTP and a suitable model for MSLB are discussed

  14. Present Status and Extensions of the Monte Carlo Performance Benchmark

    Science.gov (United States)

    Hoogenboom, J. Eduard; Petrovic, Bojan; Martin, William R.

    2014-06-01

    The NEA Monte Carlo Performance benchmark started in 2011 aiming to monitor over the years the abilities to perform a full-size Monte Carlo reactor core calculation with a detailed power production for each fuel pin with axial distribution. This paper gives an overview of the contributed results thus far. It shows that reaching a statistical accuracy of 1 % for most of the small fuel zones requires about 100 billion neutron histories. The efficiency of parallel execution of Monte Carlo codes on a large number of processor cores shows clear limitations for computer clusters with common type computer nodes. However, using true supercomputers the speedup of parallel calculations is increasing up to large numbers of processor cores. More experience is needed from calculations on true supercomputers using large numbers of processors in order to predict if the requested calculations can be done in a short time. As the specifications of the reactor geometry for this benchmark test are well suited for further investigations of full-core Monte Carlo calculations and a need is felt for testing other issues than its computational performance, proposals are presented for extending the benchmark to a suite of benchmark problems for evaluating fission source convergence for a system with a high dominance ratio, for coupling with thermal-hydraulics calculations to evaluate the use of different temperatures and coolant densities and to study the correctness and effectiveness of burnup calculations. Moreover, other contemporary proposals for a full-core calculation with realistic geometry and material composition will be discussed.

  15. Present status and extensions of the Monte Carlo performance benchmark

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.; Petrovic, B.; Martin, W.R.

    2013-01-01

    The NEA Monte Carlo Performance benchmark started in 2011 aiming to monitor over the years the abilities to perform a full-size Monte Carlo reactor core calculation with a detailed power production for each fuel pin with axial distribution. This paper gives an overview of the contributed results thus far. It shows that reaching a statistical accuracy of 1 % for most of the small fuel zones requires about 100 billion neutron histories. The efficiency of parallel execution of Monte Carlo codes on a large number of processor cores shows clear limitations for computer clusters with common type computer nodes. However, using true supercomputers the speedup of parallel calculations is increasing up to large numbers of processor cores. More experience is needed from calculations on true supercomputers using large numbers of processors in order to predict if the requested calculations can be done in a short time. As the specifications of the reactor geometry for this benchmark test are well suited for further investigations of full-core Monte Carlo calculations and a need is felt for testing other issues than its computational performance, proposals are presented for extending the benchmark to a suite of benchmark problems for evaluating fission source convergence for a system with a high dominance ratio, for coupling with thermal-hydraulics calculations to evaluate the use of different temperatures and coolant densities and to study the correctness and effectiveness of burnup calculations. Moreover, other contemporary proposals for a full-core calculation with realistic geometry and material composition will be discussed. (authors)

  16. EBR-II Reactor Physics Benchmark Evaluation Report

    Energy Technology Data Exchange (ETDEWEB)

    Pope, Chad L. [Idaho State Univ., Pocatello, ID (United States); Lum, Edward S [Idaho State Univ., Pocatello, ID (United States); Stewart, Ryan [Idaho State Univ., Pocatello, ID (United States); Byambadorj, Bilguun [Idaho State Univ., Pocatello, ID (United States); Beaulieu, Quinton [Idaho State Univ., Pocatello, ID (United States)

    2017-12-28

    This report provides a reactor physics benchmark evaluation with associated uncertainty quantification for the critical configuration of the April 1986 Experimental Breeder Reactor II Run 138B core configuration.

  17. Benchmark problem suite for reactor physics study of LWR next generation fuels

    International Nuclear Information System (INIS)

    Yamamoto, Akio; Ikehara, Tadashi; Ito, Takuya; Saji, Etsuro

    2002-01-01

    This paper proposes a benchmark problem suite for studying the physics of next-generation fuels of light water reactors. The target discharge burnup of the next-generation fuel was set to 70 GWd/t considering the increasing trend in discharge burnup of light water reactor fuels. The UO 2 and MOX fuels are included in the benchmark specifications. The benchmark problem consists of three different geometries: fuel pin cell, PWR fuel assembly and BWR fuel assembly. In the pin cell problem, detailed nuclear characteristics such as burnup dependence of nuclide-wise reactivity were included in the required calculation results to facilitate the study of reactor physics. In the assembly benchmark problems, important parameters for in-core fuel management such as local peaking factors and reactivity coefficients were included in the required results. The benchmark problems provide comprehensive test problems for next-generation light water reactor fuels with extended high burnup. Furthermore, since the pin cell, the PWR assembly and the BWR assembly problems are independent, analyses of the entire benchmark suite is not necessary: e.g., the set of pin cell and PWR fuel assembly problems will be suitable for those in charge of PWR in-core fuel management, and the set of pin cell and BWR fuel assembly problems for those in charge of BWR in-core fuel management. (author)

  18. An improved benchmark model for the Big Ten critical assembly - 021

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    2010-01-01

    A new benchmark specification is developed for the BIG TEN uranium critical assembly. The assembly has a fast spectrum, and its core contains approximately 10 wt.% enriched uranium. Detailed specifications for the benchmark are provided, and results from the MCNP5 Monte Carlo code using a variety of nuclear-data libraries are given for this benchmark and two others. (authors)

  19. VENUS-2 Benchmark Problem Analysis with HELIOS-1.9

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Jun; Choe, Jiwon; Lee, Deokjung

    2014-01-01

    Since there are reliable results of benchmark data from the OECD/NEA report of the VENUS-2 MOX benchmark problem, by comparing benchmark results users can identify the credibility of code. In this paper, the solution of the VENUS-2 benchmark problem from HELIOS 1.9 using the ENDF/B-VI library(NJOY91.13) is compared with the result from HELIOS 1.7 with consideration of the MCNP-4B result as reference data. The comparison contains the results of pin cell calculation, assembly calculation, and core calculation. The eigenvalues from those are considered by comparing the results from other codes. In the case of UOX and MOX assemblies, the differences from the MCNP-4B results are about 10 pcm. However, there is some inaccuracy in baffle-reflector condition, and relatively large differences were found in the MOX-reflector assembly and core calculation. Although HELIOS 1.9 utilizes an inflow transport correction, it seems that it has a limited effect on the error in baffle-reflector condition

  20. Integral benchmark test of JENDL-4.0 for U-233 systems with ICSBEP handbook

    International Nuclear Information System (INIS)

    Kuwagaki, Kazuki; Nagaya, Yasunobu

    2017-03-01

    The integral benchmark test of JENDL-4.0 for U-233 systems using the continuous-energy Monte Carlo code MVP was conducted. The previous benchmark test was performed only for U-233 thermal solution and fast metallic systems in the ICSBEP handbook. In this study, MVP input files were prepared for uninvestigated benchmark problems in the handbook including compound thermal systems (mainly lattice systems) and integral benchmark test was performed. The prediction accuracy of JENDL-4.0 was evaluated for effective multiplication factors (k eff 's) of the U-233 systems. As a result, a trend of underestimation was observed for all the categories of U-233 systems. In the benchmark test of ENDF/B-VII.1 for U-233 systems with the ICSBEP handbook, it is reported that a decreasing trend of calculated k eff values in association with a parameter ATFF (Above-Thermal Fission Fraction) is observed. The ATFF values were also calculated in this benchmark test of JENDL-4.0 and the same trend as ENDF/B-VII.1 was observed. A CD-ROM is attached as an appendix. (J.P.N.)

  1. Summary of the First Workshop on OECD/NRC boiling water reactor turbine trip benchmark

    International Nuclear Information System (INIS)

    2000-11-01

    The reference problem chosen for simulation in a BWR is a Turbine Trip transient, which begins with a sudden Turbine Stop Valve (TSV) closure. The pressure oscillation generated in the main steam piping propagates with relatively little attenuation into the reactor core. The induced core pressure oscillation results in dramatic changes of the core void distribution and fluid flow. The magnitude of the neutron flux transient taking place in the BWR core is strongly affected by the initial rate of pressure rise caused by pressure oscillation and has a strong spatial variation. The correct simulation of the power response to the pressure pulse and subsequent void collapse requires a 3-D core modeling supplemented by 1-D simulation of the remainder of the reactor coolant system. A BWR TT benchmark exercise, based on a well-defined problem with complete set of input specifications and reference experimental data, has been proposed for qualification of the coupled 3-D neutron kinetics/thermal-hydraulic system transient codes. Since this kind of transient is a dynamically complex event with reactor variables changing very rapidly, it constitutes a good benchmark problem to test the coupled codes on both levels: neutronics/thermal-hydraulic coupling and core/plant system coupling. Subsequently, the objectives of the proposed benchmark are: comprehensive feedback testing and examination of the capability of coupled codes to analyze complex transients with coupled core/plant interactions by comparison with actual experimental data. The benchmark consists of three separate exercises: Exercise 1 - Power vs. Time Plant System Simulation with Fixed Axial Power Profile Table (Obtained from Experimental Data). Exercise 2 - Coupled 3-D Kinetics/Core Thermal-Hydraulic BC Model and/or 1-D Kinetics Plant System Simulation. Exercise 3 - Best-Estimate Coupled 3-D Core/Thermal-Hydraulic System Modeling. This first workshop was focused on technical issues connected with the first draft of

  2. A GFR benchmark comparison of transient analysis codes based on the ETDR concept

    International Nuclear Information System (INIS)

    Bubelis, E.; Coddington, P.; Castelliti, D.; Dor, I.; Fouillet, C.; Geus, E. de; Marshall, T.D.; Van Rooijen, W.; Schikorr, M.; Stainsby, R.

    2007-01-01

    A GFR (Gas-cooled Fast Reactor) transient benchmark study was performed to investigate the ability of different code systems to calculate the transition in the core heat removal from the main circuit forced flow to natural circulation cooling using the Decay Heat Removal (DHR) system. This benchmark is based on a main blower failure in the Experimental Technology Demonstration Reactor (ETDR) with reactor scram. The codes taking part into the benchmark are: RELAP5, TRAC/AAA, CATHARE, SIM-ADS, MANTA and SPECTRA. For comparison purposes the benchmark was divided into several stages: the initial steady-state solution, the main blower flow run-down, the opening of the DHR loop and the transition to natural circulation and finally the 'quasi' steady heat removal from the core by the DHR system. The results submitted by the participants showed that all the codes gave consistent results for all four stages of the benchmark. In the steady-state the calculations revealed some differences in the clad and fuel temperatures, the core and main loop pressure drops and in the total Helium mass inventory. Also some disagreements were observed in the Helium and water flow rates in the DHR loop during the final natural circulation stage. Good agreement was observed for the total main blower flow rate and Helium temperature rise in the core, as well as for the Helium inlet temperature into the core. In order to understand the reason for the differences in the initial 'blind' calculations a second round of calculations was performed using a more precise set of boundary conditions

  3. Storage-Intensive Supercomputing Benchmark Study

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, J; Dossa, D; Gokhale, M; Hysom, D; May, J; Pearce, R; Yoo, A

    2007-10-30

    Critical data science applications requiring frequent access to storage perform poorly on today's computing architectures. This project addresses efficient computation of data-intensive problems in national security and basic science by exploring, advancing, and applying a new form of computing called storage-intensive supercomputing (SISC). Our goal is to enable applications that simply cannot run on current systems, and, for a broad range of data-intensive problems, to deliver an order of magnitude improvement in price/performance over today's data-intensive architectures. This technical report documents much of the work done under LDRD 07-ERD-063 Storage Intensive Supercomputing during the period 05/07-09/07. The following chapters describe: (1) a new file I/O monitoring tool iotrace developed to capture the dynamic I/O profiles of Linux processes; (2) an out-of-core graph benchmark for level-set expansion of scale-free graphs; (3) an entity extraction benchmark consisting of a pipeline of eight components; and (4) an image resampling benchmark drawn from the SWarp program in the LSST data processing pipeline. The performance of the graph and entity extraction benchmarks was measured in three different scenarios: data sets residing on the NFS file server and accessed over the network; data sets stored on local disk; and data sets stored on the Fusion I/O parallel NAND Flash array. The image resampling benchmark compared performance of software-only to GPU-accelerated. In addition to the work reported here, an additional text processing application was developed that used an FPGA to accelerate n-gram profiling for language classification. The n-gram application will be presented at SC07 at the High Performance Reconfigurable Computing Technologies and Applications Workshop. The graph and entity extraction benchmarks were run on a Supermicro server housing the NAND Flash 40GB parallel disk array, the Fusion-io. The Fusion system specs are as follows

  4. Summary of the OECD/NRC Boiling Water Reactor Turbine Trip Benchmark - Fifth Workshop (BWR-TT5)

    International Nuclear Information System (INIS)

    2003-01-01

    The reference problem chosen for simulation in a BWR is a Turbine Trip transient, which begins with a sudden Turbine Stop Valve (TSV) closure. The pressure oscillation generated in the main steam piping propagates with relatively little attenuation into the reactor core. The induced core pressure oscillation results in dramatic changes of the core void distribution and fluid flow. The magnitude of the neutron flux transient taking place in the BWR core is strongly affected by the initial rate of pressure rise caused by pressure oscillation and has a strong spatial variation. The correct simulation of the power response to the pressure pulse and subsequent void collapse requires a 3-D core modeling supplemented by 1-D simulation of the remainder of the reactor coolant system. A BWR TT benchmark exercise, based on a well-defined problem with complete set of input specifications and reference experimental data, has been proposed for qualification of the coupled 3-D neutron kinetics/thermal-hydraulic system transient codes. Since this kind of transient is a dynamically complex event with reactor variables changing very rapidly, it constitutes a good benchmark problem to test the coupled codes on both levels: neutronics/thermal-hydraulic coupling and core/plant system coupling. Subsequently, the objectives of the proposed benchmark are: comprehensive feedback testing and examination of the capability of coupled codes to analyze complex transients with coupled core/plant interactions by comparison with actual experimental data. The benchmark consists of three separate exercises: Exercise 1 - Power vs. Time Plant System Simulation with Fixed Axial Power Profile Table (Obtained from Experimental Data). Exercise 2 - Coupled 3-D Kinetics/Core Thermal-Hydraulic BC Model and/or 1-D Kinetics Plant System Simulation. Exercise 3 - Best-Estimate Coupled 3-D Core/Thermal-Hydraulic System Modeling. The purpose of this fifth workshop was to discuss the results from Phase III (best

  5. Analysis of an OECD/NEA high-temperature reactor benchmark

    International Nuclear Information System (INIS)

    Hosking, J. G.; Newton, T. D.; Koeberl, O.; Morris, P.; Goluoglu, S.; Tombakoglu, T.; Colak, U.; Sartori, E.

    2006-01-01

    This paper describes analyses of the OECD/NEA HTR benchmark organized by the 'Working Party on the Scientific Issues of Reactor Systems (WPRS)', formerly the 'Working Party on the Physics of Plutonium Fuels and Innovative Fuel Cycles'. The benchmark was specifically designed to provide inter-comparisons for plutonium and thorium fuels when used in HTR systems. Calculations considering uranium fuel have also been included in the benchmark, in order to identify any increased uncertainties when using plutonium or thorium fuels. The benchmark consists of five phases, which include cell and whole-core calculations. Analysis of the benchmark has been performed by a number of international participants, who have used a range of deterministic and Monte Carlo code schemes. For each of the benchmark phases, neutronics parameters have been evaluated. Comparisons are made between the results of the benchmark participants, as well as comparisons between the predictions of the deterministic calculations and those from detailed Monte Carlo calculations. (authors)

  6. Calculation of the 5th AER dynamic benchmark with APROS

    International Nuclear Information System (INIS)

    Puska, E.K.; Kontio, H.

    1998-01-01

    The model used for calculation of the 5th AER dynamic benchmark with APROS code is presented. In the calculation of the 5th AER dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic VVER-440 plant model created by IVO PE. (author)

  7. Benchmarking

    OpenAIRE

    Meylianti S., Brigita

    1999-01-01

    Benchmarking has different meaning to different people. There are five types of benchmarking, namely internal benchmarking, competitive benchmarking, industry / functional benchmarking, process / generic benchmarking and collaborative benchmarking. Each type of benchmarking has its own advantages as well as disadvantages. Therefore it is important to know what kind of benchmarking is suitable to a specific application. This paper will discuss those five types of benchmarking in detail, includ...

  8. Development of common user data model for APOLLO3 and MARBLE and application to benchmark problems

    International Nuclear Information System (INIS)

    Yokoyama, Kenji

    2009-07-01

    A Common User Data Model, CUDM, has been developed for the purpose of benchmark calculations between APOLLO3 and MARBLE code systems. The current version of CUDM was designed for core calculation benchmark problems with 3-dimensional Cartesian, 3-D XYZ, geometry. CUDM is able to manage all input/output data such as 3-D XYZ geometry, effective macroscopic cross section, effective multiplication factor and neutron flux. In addition, visualization tools for geometry and neutron flux were included. CUDM was designed by the object-oriented technique and implemented using Python programming language. Based on the CUDM, a prototype system for a benchmark calculation, CUDM-benchmark, was also developed. The CUDM-benchmark supports input/output data conversion for IDT solver in APOLLO3, and TRITAC and SNT solvers in MARBLE. In order to evaluate pertinence of CUDM, the CUDM-benchmark was applied to benchmark problems proposed by T. Takeda, G. Chiba and I. Zmijarevic. It was verified that the CUDM-benchmark successfully reproduced the results calculated with reference input data files, and provided consistent results among all the solvers by using one common input data defined by CUDM. In addition, a detailed benchmark calculation for Chiba benchmark was performed by using the CUDM-benchmark. Chiba benchmark is a neutron transport benchmark problem for fast criticality assembly without homogenization. This benchmark problem consists of 4 core configurations which have different sodium void regions, and each core configuration is defined by more than 5,000 fuel/material cells. In this application, it was found that the results by IDT and SNT solvers agreed well with the reference results by Monte-Carlo code. In addition, model effects such as quadrature set effect, S n order effect and mesh size effect were systematically evaluated and summarized in this report. (author)

  9. VVER-1000 coolant transient benchmark. Phase 1 (V1000CT-1). Vol. 3: summary results of exercise 2 on coupled 3-D kinetics/core thermal-hydraulics

    International Nuclear Information System (INIS)

    2007-01-01

    In the field of coupled neutronics/thermal-hydraulics computation there is a need to enhance scientific knowledge in order to develop advanced modelling techniques for new nuclear technologies and concepts, as well as current applications. (authors) Recently developed best-estimate computer code systems for modelling 3-D coupled neutronics/thermal-hydraulics transients in nuclear cores and for the coupling of core phenomena and system dynamics need to be compared against each other and validated against results from experiments. International benchmark studies have been set up for this purpose. The present volume is a follow-up to the first two volumes. While the first described the specification of the benchmark, the second presented the results of the first exercise that identified the key parameters and important issues concerning the thermal-hydraulic system modelling of the simulated transient caused by the switching on of a main coolant pump when the other three were in operation. Volume 3 summarises the results for Exercise 2 of the benchmark that identifies the key parameters and important issues concerning the 3-D neutron kinetics modelling of the simulated transient. These studies are based on an experiment that was conducted by Bulgarian and Russian engineers during the plant-commissioning phase at the VVER-1000 Kozloduy Unit 6. The final volume will soon be published, completing Phase 1 of this study. (authors)

  10. Stationary PWR-calculations by means of LWRSIM at the NEACRP 3D-LWRCT benchmark

    International Nuclear Information System (INIS)

    Van de Wetering, T.F.H.

    1993-01-01

    Within the framework of participation in an international benchmark, calculations were executed by means of an adjusted version of the computer code Light Water Reactor SIMulation (LWRSIM) for three-dimensional reactor core calculations of pressurized water reactors. The 3-D LWR Core Transient Benchmark was set up aimed at the comparison of 3-D computer codes for transient calculations in LWRs. Participation in the benchmark provided more insight in the accuracy of the code when applied for other pressurized water reactors than applied for the nuclear power plant Borssele in the Netherlands, for which the code has been developed and used originally

  11. The fifth Atomic Energy Research dynamic benchmark calculation with HEXTRAN-SMABRE

    International Nuclear Information System (INIS)

    Haenaelaeinen, Anitta

    1998-01-01

    The fifth Atomic Energy Research dynamic benchmark is the first Atomic Energy Research benchmark for coupling of the thermohydraulic codes and three-dimensional reactor dynamic core models. In VTT HEXTRAN 2.7 is used for the core dynamics and SMABRE 4.6 as a thermohydraulic model for the primary and secondary loops. The plant model for SMABRE is based mainly on two input models. the Loviisa model and standard WWER-440/213 plant model. The primary circuit includes six separate loops, totally 505 nodes and 652 junctions. The reactor pressure vessel is divided into six parallel channels. In HEXTRAN calculation 176 symmetry is used in the core. In the sequence of main steam header break at the hot standby state, the liquid temperature is decreased symmetrically in the core inlet which leads to return to power. In the benchmark, no isolations of the steam generators are assumed and the maximum core power is about 38 % of the nominal power at four minutes after the break opening in the HEXTRAN-SMABRE calculation. Due to boric acid in the high pressure safety injection water, the power finally starts to decrease. The break flow is pure steam in the HEXTRAN-SMABRE calculation during the whole transient even in the swell levels in the steam generators are very high due to flashing. Because of sudden peaks in the preliminary results of the steam generator heat transfer, the SMABRE drift-flux model was modified. The new model is a simplified version of the EPRI correlation based on test data. The modified correlation behaves smoothly. In the calculations nuclear data is based on the ENDF/B-IV library and it has been evaluated with the CASMO-HEX code. The importance of the nuclear data was illustrated by repeating the benchmark calculation with using three different data sets. Optimal extensive data valid from hot to cold conditions were not available for all types of fuel enrichments needed in this benchmark.(Author)

  12. MOx Depletion Calculation Benchmark

    International Nuclear Information System (INIS)

    San Felice, Laurence; Eschbach, Romain; Dewi Syarifah, Ratna; Maryam, Seif-Eddine; Hesketh, Kevin

    2016-01-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of Reactor Systems (WPRS) has been established to study the reactor physics, fuel performance, radiation transport and shielding, and the uncertainties associated with modelling of these phenomena in present and future nuclear power systems. The WPRS has different expert groups to cover a wide range of scientific issues in these fields. The Expert Group on Reactor Physics and Advanced Nuclear Systems (EGRPANS) was created in 2011 to perform specific tasks associated with reactor physics aspects of present and future nuclear power systems. EGRPANS provides expert advice to the WPRS and the nuclear community on the development needs (data and methods, validation experiments, scenario studies) for different reactor systems and also provides specific technical information regarding: core reactivity characteristics, including fuel depletion effects; core power/flux distributions; Core dynamics and reactivity control. In 2013 EGRPANS published a report that investigated fuel depletion effects in a Pressurised Water Reactor (PWR). This was entitled 'International Comparison of a Depletion Calculation Benchmark on Fuel Cycle Issues' NEA/NSC/DOC(2013) that documented a benchmark exercise for UO 2 fuel rods. This report documents a complementary benchmark exercise that focused on PuO 2 /UO 2 Mixed Oxide (MOX) fuel rods. The results are especially relevant to the back-end of the fuel cycle, including irradiated fuel transport, reprocessing, interim storage and waste repository. Saint-Laurent B1 (SLB1) was the first French reactor to use MOx assemblies. SLB1 is a 900 MWe PWR, with 30% MOx fuel loading. The standard MOx assemblies, used in Saint-Laurent B1 reactor, include three zones with different plutonium enrichments, high Pu content (5.64%) in the center zone, medium Pu content (4.42%) in the intermediate zone and low Pu content (2.91%) in the peripheral zone

  13. How to Advance TPC Benchmarks with Dependability Aspects

    Science.gov (United States)

    Almeida, Raquel; Poess, Meikel; Nambiar, Raghunath; Patil, Indira; Vieira, Marco

    Transactional systems are the core of the information systems of most organizations. Although there is general acknowledgement that failures in these systems often entail significant impact both on the proceeds and reputation of companies, the benchmarks developed and managed by the Transaction Processing Performance Council (TPC) still maintain their focus on reporting bare performance. Each TPC benchmark has to pass a list of dependability-related tests (to verify ACID properties), but not all benchmarks require measuring their performances. While TPC-E measures the recovery time of some system failures, TPC-H and TPC-C only require functional correctness of such recovery. Consequently, systems used in TPC benchmarks are tuned mostly for performance. In this paper we argue that nowadays systems should be tuned for a more comprehensive suite of dependability tests, and that a dependability metric should be part of TPC benchmark publications. The paper discusses WHY and HOW this can be achieved. Two approaches are introduced and discussed: augmenting each TPC benchmark in a customized way, by extending each specification individually; and pursuing a more unified approach, defining a generic specification that could be adjoined to any TPC benchmark.

  14. Benchmarking infrastructure for mutation text mining.

    Science.gov (United States)

    Klein, Artjom; Riazanov, Alexandre; Hindle, Matthew M; Baker, Christopher Jo

    2014-02-25

    Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption.

  15. Benchmarking infrastructure for mutation text mining

    Science.gov (United States)

    2014-01-01

    Background Experimental research on the automatic extraction of information about mutations from texts is greatly hindered by the lack of consensus evaluation infrastructure for the testing and benchmarking of mutation text mining systems. Results We propose a community-oriented annotation and benchmarking infrastructure to support development, testing, benchmarking, and comparison of mutation text mining systems. The design is based on semantic standards, where RDF is used to represent annotations, an OWL ontology provides an extensible schema for the data and SPARQL is used to compute various performance metrics, so that in many cases no programming is needed to analyze results from a text mining system. While large benchmark corpora for biological entity and relation extraction are focused mostly on genes, proteins, diseases, and species, our benchmarking infrastructure fills the gap for mutation information. The core infrastructure comprises (1) an ontology for modelling annotations, (2) SPARQL queries for computing performance metrics, and (3) a sizeable collection of manually curated documents, that can support mutation grounding and mutation impact extraction experiments. Conclusion We have developed the principal infrastructure for the benchmarking of mutation text mining tasks. The use of RDF and OWL as the representation for corpora ensures extensibility. The infrastructure is suitable for out-of-the-box use in several important scenarios and is ready, in its current state, for initial community adoption. PMID:24568600

  16. Calculation of the fifth atomic energy research dynamic benchmark with APROS

    International Nuclear Information System (INIS)

    Puska Eija Karita; Kontio Harii

    1998-01-01

    The band-out presents the model used for calculation of the fifth atomic energy research dynamic benchmark with APROS code. In the calculation of the fifth atomic energy research dynamic benchmark the three-dimensional neutronics model of APROS was used. The core was divided axially into 20 nodes according to the specifications of the benchmark and each six identical fuel assemblies were placed into one one-dimensional thermal hydraulic channel. The five-equation thermal hydraulic model was used in the benchmark. The plant process and automation was described with a generic WWER-440 plant model created by IVO Power Engineering Ltd. - Finland. (Author)

  17. Burn-up TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Persic, A.; Ravnik, M.; Zagar, T.

    1998-01-01

    Different reactor codes are used for calculations of reactor parameters. The accuracy of the programs is tested through comparison of the calculated values with the experimental results. Well-defined and accurately measured benchmarks are required. The experimental results of reactivity measurements, fuel element reactivity worth distribution and fuel-up measurements are presented in this paper. The experiments were performed with partly burnt reactor core. The experimental conditions were well defined, so that the results can be used as a burn-up benchmark test case for a TRIGA Mark II reactor calculations.(author)

  18. Summary of the OECD/NRC Boiling Water Reactor Turbine Trip Benchmark - Fourth Workshop (BWR-TT4)

    International Nuclear Information System (INIS)

    2002-01-01

    The reference problem chosen for simulation in a BWR is a Turbine Trip transient, which begins with a sudden Turbine Stop Valve (TSV) closure. The pressure oscillation generated in the main steam piping propagates with relatively little attenuation into the reactor core. The induced core pressure oscillation results in dramatic changes of the core void distribution and fluid flow. The magnitude of the neutron flux transient taking place in the BWR core is strongly affected by the initial rate of pressure rise caused by pressure oscillation and has a strong spatial variation. The correct simulation of the power response to the pressure pulse and subsequent void collapse requires a 3-D core modeling supplemented by 1-D simulation of the remainder of the reactor coolant system. A BWR TT benchmark exercise, based on a well-defined problem with complete set of input specifications and reference experimental data, has been proposed for qualification of the coupled 3-D neutron kinetics/thermal-hydraulic system transient codes. Since this kind of transient is a dynamically complex event with reactor variables changing very rapidly, it constitutes a good benchmark problem to test the coupled codes on both levels: neutronics/thermal-hydraulic coupling and core/plant system coupling. Subsequently, the objectives of the proposed benchmark are: comprehensive feedback testing and examination of the capability of coupled codes to analyze complex transients with coupled core/plant interactions by comparison with actual experimental data. The benchmark consists of three separate exercises: Exercise 1 - Power vs. Time Plant System Simulation with Fixed Axial Power Profile Table (Obtained from Experimental Data). Exercise 2 - Coupled 3-D Kinetics/Core Thermal-Hydraulic BC Model and/or 1-D Kinetics Plant System Simulation. Exercise 3 - Best-Estimate Coupled 3-D Core/Thermal-Hydraulic System Modeling. The purpose of this fourth workshop was to present and discuss final results of

  19. JNC results of BN-600 benchmark calculation (phase 4)

    International Nuclear Information System (INIS)

    Ishikawa, Makoto

    2003-01-01

    The present work is the results of JNC, Japan, for the Phase 4 of the BN-600 core benchmark problem (Hex-Z fully MOX fuelled core model) organized by IAEA. The benchmark specification is based on 1) the RCM report of IAEA CRP on 'Updated Codes and Methods to Reduce the Calculational Uncertainties of LMFR Reactivity Effects, Action 3.12' (Calculations for BN-600 fully fuelled MOX core for subsequent transient analyses). JENDL-3.2 nuclear data library was used for calculating 70 group ABBN-type group constants. Cell models for fuel assembly and control rod calculations were applied: homogeneous and heterogeneous (cylindrical supercell) model. Basic diffusion calculation was three-dimensional Hex-Z model, 18 group (Citation code). Transport calculations were 18 group, three-dimensional (NSHEC code) based on Sn-transport nodal method developed at JNC. The generated thermal power per fission was based on Sher's data corrected on the basis of ENDF/B-IV data library. Calculation results are presented in Tables for intercomparison

  20. Developing and modeling of the 'Laguna Verde' BWR CRDA benchmark

    International Nuclear Information System (INIS)

    Solis-Rodarte, J.; Fu, H.; Ivanov, K.N.; Matsui, Y.; Hotta, A.

    2002-01-01

    Reactivity initiated accidents (RIA) and design basis transients are one of the most important aspects related to nuclear power reactor safety. These events are re-evaluated whenever core alterations (modifications) are made as part of the nuclear safety analysis performed to a new design. These modifications usually include, but are not limited to, power upgrades, longer cycles, new fuel assembly and control rod designs, etc. The results obtained are compared with pre-established bounding analysis values to see if the new core design fulfills the requirements of safety constraints imposed on the design. The control rod drop accident (CRDA) is the design basis transient for the reactivity events of BWR technology. The CRDA is a very localized event depending on the control rod insertion position and the fuel assemblies surrounding the control rod falling from the core. A numerical benchmark was developed based on the CRDA RIA design basis accident to further asses the performance of coupled 3D neutron kinetics/thermal-hydraulics codes. The CRDA in a BWR is a mostly neutronic driven event. This benchmark is based on a real operating nuclear power plant - unit 1 of the Laguna Verde (LV1) nuclear power plant (NPP). The definition of the benchmark is presented briefly together with the benchmark specifications. Some of the cross-sections were modified in order to make the maximum control rod worth greater than one dollar. The transient is initiated at steady-state by dropping the control rod with maximum worth at full speed. The 'Laguna Verde' (LV1) BWR CRDA transient benchmark is calculated using two coupled codes: TRAC-BF1/NEM and TRAC-BF1/ENTREE. Neutron kinetics and thermal hydraulics models were developed for both codes. Comparison of the obtained results is presented along with some discussion of the sensitivity of results to some modeling assumptions

  1. The OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark - Steady-state results and status

    International Nuclear Information System (INIS)

    Reitsma, F.; Han, J.; Ivanov, K.; Sartori, E.

    2008-01-01

    The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated. Since only a few pebble-bed HTR experimental facilities or plant data are available the use of code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MW design and a representative set of transient cases is defined as an OECD benchmark. The scope of the benchmark is to establish a series of well-defined multi-dimensional computational benchmark problems with a common given set of cross-sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. The OECD benchmark includes steady-state and transients cases. Although the focus of the benchmark is on the modelling of the transient behaviour of the PBMR core, it was also necessary to define some steady-state cases to ensure consistency between the different approaches before results of transient cases could be compared. This paper describes the status of the benchmark project and shows the results for the three steady state exercises defined as a standalone neutronics calculation, a standalone thermal-hydraulic core calculation, and a coupled neutronics/thermal-hydraulic simulation. (authors)

  2. EPRI depletion benchmark calculations using PARAGON

    International Nuclear Information System (INIS)

    Kucukboyaci, Vefa N.

    2015-01-01

    Highlights: • PARAGON depletion calculations are benchmarked against the EPRI reactivity decrement experiments. • Benchmarks cover a wide range of enrichments, burnups, cooling times, and burnable absorbers, and different depletion and storage conditions. • Results from PARAGON-SCALE scheme are more conservative relative to the benchmark data. • ENDF/B-VII based data reduces the excess conservatism and brings the predictions closer to benchmark reactivity decrement values. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality analyses, code validation for both fresh and used fuel is required. Fresh fuel validation is typically done by modeling experiments from the “International Handbook.” A depletion validation can determine a bias and bias uncertainty for the worth of the isotopes not found in the fresh fuel critical experiments. Westinghouse’s burnup credit methodology uses PARAGON™ (Westinghouse 2-D lattice physics code) and its 70-group cross-section library, which have been benchmarked, qualified, and licensed both as a standalone transport code and as a nuclear data source for core design simulations. A bias and bias uncertainty for the worth of depletion isotopes, however, are not available for PARAGON. Instead, the 5% decrement approach for depletion uncertainty is used, as set forth in the Kopp memo. Recently, EPRI developed a set of benchmarks based on a large set of power distribution measurements to ascertain reactivity biases. The depletion reactivity has been used to create 11 benchmark cases for 10, 20, 30, 40, 50, and 60 GWd/MTU and 3 cooling times 100 h, 5 years, and 15 years. These benchmark cases are analyzed with PARAGON and the SCALE package and sensitivity studies are performed using different cross-section libraries based on ENDF/B-VI.3 and ENDF/B-VII data to assess that the 5% decrement approach is conservative for determining depletion uncertainty

  3. ZZ ECN-BUBEBO, ECN-Petten Burnup Benchmark Book, Inventories, Afterheat

    International Nuclear Information System (INIS)

    Kloosterman, Jan Leen

    1999-01-01

    Description of program or function: Contains experimental benchmarks which can be used for the validation of burnup code systems and accompanied data libraries. Although the benchmarks presented here are thoroughly described in literature, it is in many cases not straightforward to retrieve unambiguously the correct input data and corresponding results from the benchmark Descriptions. Furthermore, results which can easily be measured, are sometimes difficult to calculate because of conversions to be made. Therefore, emphasis has been put to clarify the input of the benchmarks and to present the benchmark results in such a way that they can easily be calculated and compared. For more thorough Descriptions of the benchmarks themselves, the literature referred to here should be consulted. This benchmark book is divided in 11 chapters/files containing the following in text and tabular form: chapter 1: Introduction; chapter 2: Burnup Credit Criticality Benchmark Phase 1-B; chapter 3: Yankee-Rowe Core V Fuel Inventory Study; chapter 4: H.B. Robinson Unit 2 Fuel Inventory Study; chapter 5: Turkey Point Unit 3 Fuel Inventory Study; chapter 6: Turkey Point Unit 3 Afterheat Power Study; chapter 7: Dickens Benchmark on Fission Product Energy Release of U-235; chapter 8: Dickens Benchmark on Fission Product Energy Release of Pu-239; chapter 9: Yarnell Benchmark on Decay Heat Measurements of U-233; chapter 10: Yarnell Benchmark on Decay Heat Measurements of U-235; chapter 11: Yarnell Benchmark on Decay Heat Measurements of Pu-239

  4. Appendix BB: long coring facility (LCF)

    International Nuclear Information System (INIS)

    Driscoll, A.H.; Silva, A.J.

    1981-01-01

    During the 1979 performance period the Engineering Design of the Long Coring Facility has addressed a variety of tasks relating to the establishment of a series of operating parameters for a conceptual 50 meter long coring system. The results of these efforts have indicated that an operational system capable of the recovery of 50 meter long cores, from oceanic depths in sediments of 400 gm cm 2 is wholly possible given existing technology. Specific tasks included in the 1979 Engineering Design are as follows: (1) Hydrodynamic Stability; (2) Corer Structural Stability; (3) Corer Penetration Mechanics; (4) Anticipated Corer Pullout forces; (5) LCF Cable Dynamics; and (6) Core Head Instrumentation. Within the realm of Subseabed Disposal Programs Master Plan the LCF, as a part of the Instrumentation Development activity, is currently on schedule. Delays in receiving funding during 1979 have reduced, some what, the latitude enjoyed by the LCF project and have limited our progress to a point where any future delay can result in the LCF's falling behind the program schedule. However, at this time the LCF is considered to be on schedule, but lacking in flexibility to respond to any major contingency that may arise in the future

  5. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Bess, John D.; Fujimoto, Nozomu

    2014-01-01

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  6. CONSUL code package application for LMFR core calculations

    Energy Technology Data Exchange (ETDEWEB)

    Chibinyaev, A.V.; Teplov, P.S.; Frolova, M.V. [RNC ' Kurchatovskiy institute' , Kurchatov sq.1, Moscow (Russian Federation)

    2008-07-01

    CONSUL code package designed for the calculation of reactor core characteristics has been developed at the beginning of 90's. The calculation of nuclear reactor core characteristics is carried out on the basis of correlated neutron, isotope and temperature distributions. The code package has been generally used for LWR core characteristics calculations. At present CONSUL code package was adapted to calculate liquid metal fast reactors (LMFR). The comparisons with IAEA computational test 'Evaluation of benchmark calculations on a fast power reactor core with near zero sodium void effect' and BN-1800 testing calculations are presented in the paper. The IAEA benchmark core is based on the innovative core concept with sodium plenum above the core BN-800. BN-1800 core is the next development step which is foreseen for the Russian fast reactor concept. The comparison of the operational parameters has shown good agreement and confirms the possibility of CONSUL code package application for LMFR core calculation. (authors)

  7. Calculation of Single Cell and Fuel Assembly IRIS Benchmarks Using WIMSD5B and GNOMER Codes

    International Nuclear Information System (INIS)

    Pevec, D.; Grgic, D.; Jecmenica, R.

    2002-01-01

    IRIS reactor (an acronym for International Reactor Innovative and Secure) is a modular, integral, light water cooled, small to medium power (100-335 MWe/module) reactor, which addresses the requirements defined by the United States Department of Energy for Generation IV nuclear energy systems, i.e., proliferation resistance, enhanced safety, improved economics, and waste reduction. An international consortium led by Westinghouse/BNFL was created for development of IRIS reactor; it includes universities, institutes, commercial companies, and utilities. Faculty of Electrical Engineering and Computing, University of Zagreb joined the consortium in year 2001, with the aim to take part in IRIS neutronics design and safety analyses of IRIS transients. A set of neutronic benchmarks for IRIS reactor was defined with the objective to compare results of all participants with exactly the same assumptions. In this paper a calculation of Benchmark 44 for IRIS reactor is described. Benchmark 44 is defined as a core depletion benchmark problem for specified IRIS reactor operating conditions (e.g., temperatures, moderator density) without feedback. Enriched boron, inhomogeneously distributed in axial direction, is used as an integral fuel burnable absorber (IFBA). The aim of this benchmark was to enable a more direct comparison of results of different code systems. Calculations of Benchmark 44 were performed using the modified CORD-2 code package. The CORD-2 code package consists of WIMSD and GNOMER codes. WIMSD is a well-known lattice spectrum calculation code. GNOMER solves the neutron diffusion equation in three-dimensional Cartesian geometry by the Green's function nodal method. The following parameters were obtained in Benchmark 44 analysis: effective multiplication factor as a function of burnup, nuclear peaking factor as a function of burnup, axial offset as a function of burnup, core-average axial power profile, core radial power profile, axial power profile for selected

  8. Pericles and Attila results for the C5G7 MOX benchmark problems

    International Nuclear Information System (INIS)

    Wareing, T.A.; McGhee, J.M.

    2002-01-01

    Recently the Nuclear Energy Agency has published a new benchmark entitled, 'C5G7 MOX Benchmark.' This benchmark is to test the ability of current transport codes to treat reactor core problems without spatial homogenization. The benchmark includes both a two- and three-dimensional problem. We have calculated results for these benchmark problems with our Pericles and Attila codes. Pericles is a one-,two-, and three-dimensional unstructured grid discrete-ordinates code and was used for the twodimensional benchmark problem. Attila is a three-dimensional unstructured tetrahedral mesh discrete-ordinate code and was used for the three-dimensional problem. Both codes use discontinuous finite element spatial differencing. Both codes use diffusion synthetic acceleration (DSA) for accelerating the inner iterations.

  9. OECD/NEA benchmark for time-dependent neutron transport calculations without spatial homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Jason, E-mail: jason.hou@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Ivanov, Kostadin N. [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Boyarinov, Victor F.; Fomichenko, Peter A. [National Research Centre “Kurchatov Institute”, Kurchatov Sq. 1, Moscow (Russian Federation)

    2017-06-15

    Highlights: • A time-dependent homogenization-free neutron transport benchmark was created. • The first phase, known as the kinetics phase, was described in this work. • Preliminary results for selected 2-D transient exercises were presented. - Abstract: A Nuclear Energy Agency (NEA), Organization for Economic Co-operation and Development (OECD) benchmark for the time-dependent neutron transport calculations without spatial homogenization has been established in order to facilitate the development and assessment of numerical methods for solving the space-time neutron kinetics equations. The benchmark has been named the OECD/NEA C5G7-TD benchmark, and later extended with three consecutive phases each corresponding to one modelling stage of the multi-physics transient analysis of the nuclear reactor core. This paper provides a detailed introduction of the benchmark specification of Phase I, known as the “kinetics phase”, including the geometry description, supporting neutron transport data, transient scenarios in both two-dimensional (2-D) and three-dimensional (3-D) configurations, as well as the expected output parameters from the participants. Also presented are the preliminary results for the initial state 2-D core and selected transient exercises that have been obtained using the Monte Carlo method and the Surface Harmonic Method (SHM), respectively.

  10. Nuclear data uncertainties for local power densities in the Martin-Hoogenboom benchmark

    International Nuclear Information System (INIS)

    Van der Marck, S.C.; Rochman, D.A.

    2013-01-01

    The recently developed method of fast Total Monte Carlo to propagate nuclear data uncertainties was applied to the Martin-Hoogenboom benchmark. This Martin- Hoogenboom benchmark prescribes that one calculates local pin powers (of light water cooled reactor) with a statistical uncertainty lower than 1% everywhere. Here we report, for the first time, an estimate of the nuclear data uncertainties for these local pin powers. For each of the more than 6 million local power tallies, the uncertainty due to nuclear data uncertainties was calculated, based on random variation of data for 235 U, 238 U, 239 Pu and H in H 2 O thermal scattering. In the center of the core region, the nuclear data uncertainty is 0.9%. Towards the edges of the core, this uncertainty increases to roughly 3%. The nuclear data uncertainties have been shown to be larger than the statistical uncertainties that the benchmark prescribes

  11. TRX and UO2 criticality benchmarks with SAM-CE

    International Nuclear Information System (INIS)

    Beer, M.; Troubetzkoy, E.S.; Lichtenstein, H.; Rose, P.F.

    1980-01-01

    A set of thermal reactor benchmark calculations with SAM-CE which have been conducted at both MAGI and at BNL are described. Their purpose was both validation of the SAM-CE reactor eigenvalue capability developed by MAGI and a substantial contribution to the data testing of both ENDF/B-IV and ENDF/B-V libraries. This experience also resulted in increased calculational efficiency of the code and an example is given. The benchmark analysis included the TRX-1 infinite cell using both ENDF/B-IV and ENDF/B-V cross section sets and calculations using ENDF/B-IV of the TRX-1 full core and TRX-2 cell. BAPL-UO2-1 calculations were conducted for the cell using both ENDF/B-IV and ENDF/B-V and for the full core with ENDF/B-V

  12. International handbook of evaluated criticality safety benchmark experiments

    International Nuclear Information System (INIS)

    2010-01-01

    The Criticality Safety Benchmark Evaluation Project (CSBEP) was initiated in October of 1992 by the United States Department of Energy. The project quickly became an international effort as scientists from other interested countries became involved. The International Criticality Safety Benchmark Evaluation Project (ICSBEP) became an official activity of the Organization for Economic Cooperation and Development - Nuclear Energy Agency (OECD-NEA) in 1995. This handbook contains criticality safety benchmark specifications that have been derived from experiments performed at various nuclear critical facilities around the world. The benchmark specifications are intended for use by criticality safety engineers to validate calculational techniques used to establish minimum subcritical margins for operations with fissile material and to determine criticality alarm requirement and placement. Many of the specifications are also useful for nuclear data testing. Example calculations are presented; however, these calculations do not constitute a validation of the codes or cross section data. The evaluated criticality safety benchmark data are given in nine volumes. These volumes span over 55,000 pages and contain 516 evaluations with benchmark specifications for 4,405 critical, near critical, or subcritical configurations, 24 criticality alarm placement / shielding configurations with multiple dose points for each, and 200 configurations that have been categorized as fundamental physics measurements that are relevant to criticality safety applications. Experiments that are found unacceptable for use as criticality safety benchmark experiments are discussed in these evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 770 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be

  13. International Criticality Safety Benchmark Evaluation Project (ICSBEP) - ICSBEP 2015 Handbook

    International Nuclear Information System (INIS)

    Bess, John D.

    2015-01-01

    evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 829 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be added to this document periodically. The document is organized in a manner that allows easy inclusion of additional evaluations as they become available. This handbook was prepared by a working group comprised of experienced criticality safety personnel from the United States, the United Kingdom, Japan, the Russian Federation, France, Hungary, Republic of Korea, Slovenia, Serbia, Kazakhstan, Israel, Spain, Brazil, Czech Republic, Poland, India, Canada, P.R. China, Sweden and Argentina

  14. Pool critical assembly pressure vessel facility benchmark

    International Nuclear Information System (INIS)

    Remec, I.; Kam, F.B.K.

    1997-07-01

    This pool critical assembly (PCA) pressure vessel wall facility benchmark (PCA benchmark) is described and analyzed in this report. Analysis of the PCA benchmark can be used for partial fulfillment of the requirements for the qualification of the methodology for pressure vessel neutron fluence calculations, as required by the US Nuclear Regulatory Commission regulatory guide DG-1053. Section 1 of this report describes the PCA benchmark and provides all data necessary for the benchmark analysis. The measured quantities, to be compared with the calculated values, are the equivalent fission fluxes. In Section 2 the analysis of the PCA benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed for three ENDF/B-VI-based multigroup libraries: BUGLE-93, SAILOR-95, and BUGLE-96. An excellent agreement of the calculated (C) and measures (M) equivalent fission fluxes was obtained. The arithmetic average C/M for all the dosimeters (total of 31) was 0.93 ± 0.03 and 0.92 ± 0.03 for the SAILOR-95 and BUGLE-96 libraries, respectively. The average C/M ratio, obtained with the BUGLE-93 library, for the 28 measurements was 0.93 ± 0.03 (the neptunium measurements in the water and air regions were overpredicted and excluded from the average). No systematic decrease in the C/M ratios with increasing distance from the core was observed for any of the libraries used

  15. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  16. Activities of the AZTLAN team on the OECD/Nea benchmark on fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lopez S, R.; Gomez T, A.; Puente E, F. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E.; Arriaga R, L., E-mail: armando.gomez@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, 07738 Ciudad de Mexico (Mexico)

    2017-09-15

    In the present paper, the activities of the AZTLAN Platform Fast Reactor Group on the OECD/Nea Benchmark will be described. The main objective of these activities is to test the group staff and capabilities as well as the domestic code reliability by putting them into test in this exercise with different institutions from around the world. Six different core configurations were treated; these are described in two different versions of the Benchmark document. The main tools used by the group were the Finnish stochastic Monte Carlo code Serpent for full core calculations and macroscopic Cross Sections (X S) generation, and the domestic deterministic code AZNHEX for full core calculations. Different calculations were performed, such as full core calculations under nominal conditions, with control rods fully and partially inserted and with the sodium voided in the active zone as well as different reactivity shift values due to various conditions of radial and axial expansion of the fuel elements and structural material. The results obtained in the full core calculations and most of the reactivity shift calculations obtained by our group were indeed comparable to the ones obtained by different institutions when using similar methodologies. Given these favorable results it can be said that the main objective was met and the group showed their capabilities, as well as its possibility to collaborate with other institutes, placing Mexico in a good position in fast reactor analysis. Future work will continue with the calculations not yet treated and with the new core specifications on the new versions of the Benchmark document. (Author)

  17. Thermal lattice benchmarks for testing basic evaluated data files, developed with MCNP4B

    International Nuclear Information System (INIS)

    Maucec, M.; Glumac, B.

    1996-01-01

    The development of unit cell and full reactor core models of DIMPLE S01A and TRX-1 and TRX-2 benchmark experiments, using Monte Carlo computer code MCNP4B is presented. Nuclear data from ENDF/B-V and VI version of cross-section library were used in the calculations. In addition, a comparison to results obtained with the similar models and cross-section data from the EJ2-MCNPlib library (which is based upon the JEF-2.2 evaluation) developed in IRC Petten, Netherlands is presented. The results of the criticality calculation with ENDF/B-VI data library, and a comparison to results obtained using JEF-2.2 evaluation, confirm the MCNP4B full core model of a DIMPLE reactor as a good benchmark for testing basic evaluated data files. On the other hand, the criticality calculations results obtained using the TRX full core models show less agreement with experiment. It is obvious that without additional data about the TRX geometry, our TRX models are not suitable as Monte Carlo benchmarks. (author)

  18. Start-up of a cold loop in a VVER-440, the 7th AER benchmark calculation with HEXTRAN-SMABRE-PORFLO

    International Nuclear Information System (INIS)

    Hovi, Ville; Taivassalo, Veikko; Haemaelaeinen, Anitta; Raety, Hanna; Syrjaelahti, Elina

    2017-01-01

    The 7 th dynamic AER benchmark is the first in which three-dimensional thermal hydraulics codes are supposed to be applied. The aim is to get a more precise core inlet temperature profile than the sector temperatures available typically with system codes. The benchmark consists of a start-up of the sixth, isolated loop in a VVER-440 plant. The isolated loop initially contains cold water without boric acid and the start-up leads to a somewhat asymmetrical core power increase due to feedbacks in the core. In this study, the 7 th AER benchmark is calculated with the three-dimensional nodal reactor dynamics code HEXTRAN-SMABRE coupled with the porous computational fluid dynamics code PORFLO. These three codes are developed at VTT. A novel two-way coupled simulation of the 7 th AER benchmark was performed successfully demonstrating the feasibility and advantages of the new reactor analysis framework. The modelling issues for this benchmark are reported and some evaluation against the previously reported comparisons between the system codes is provided.

  19. Dynamic benchmarking of simulation codes

    International Nuclear Information System (INIS)

    Henry, R.E.; Paik, C.Y.; Hauser, G.M.

    1996-01-01

    Computer simulation of nuclear power plant response can be a full-scope control room simulator, an engineering simulator to represent the general behavior of the plant under normal and abnormal conditions, or the modeling of the plant response to conditions that would eventually lead to core damage. In any of these, the underlying foundation for their use in analysing situations, training of vendor/utility personnel, etc. is how well they represent what has been known from industrial experience, large integral experiments and separate effects tests. Typically, simulation codes are benchmarked with some of these; the level of agreement necessary being dependent upon the ultimate use of the simulation tool. However, these analytical models are computer codes, and as a result, the capabilities are continually enhanced, errors are corrected, new situations are imposed on the code that are outside of the original design basis, etc. Consequently, there is a continual need to assure that the benchmarks with important transients are preserved as the computer code evolves. Retention of this benchmarking capability is essential to develop trust in the computer code. Given the evolving world of computer codes, how is this retention of benchmarking capabilities accomplished? For the MAAP4 codes this capability is accomplished through a 'dynamic benchmarking' feature embedded in the source code. In particular, a set of dynamic benchmarks are included in the source code and these are exercised every time the archive codes are upgraded and distributed to the MAAP users. Three different types of dynamic benchmarks are used: plant transients; large integral experiments; and separate effects tests. Each of these is performed in a different manner. The first is accomplished by developing a parameter file for the plant modeled and an input deck to describe the sequence; i.e. the entire MAAP4 code is exercised. The pertinent plant data is included in the source code and the computer

  20. ICSBEP-2007, International Criticality Safety Benchmark Experiment Handbook

    International Nuclear Information System (INIS)

    Blair Briggs, J.

    2007-01-01

    unacceptable for use as criticality safety benchmark experiments are discussed in these evaluations; however, benchmark specifications are not derived for such experiments (in some cases models are provided in an appendix). Approximately 676 experimental configurations are categorized as unacceptable for use as criticality safety benchmark experiments. Additional evaluations are in progress and will be added to this documents periodically. The document is organized in a manner that allows easy inclusion of additional evaluations as they become available. This handbook was prepared by a working group comprised of experienced criticality safety personnel from the United States, the United Kingdom, Japan, the Russian Federation, France, Hungary, Republic of Korea, Slovenia, Serbia, Kazakhstan, Israel, Spain, Brazil, Czech Republic, Poland, India, Canada and Sweden

  1. Benchmarking high performance computing architectures with CMS’ skeleton framework

    Science.gov (United States)

    Sexton-Kennedy, E.; Gartung, P.; Jones, C. D.

    2017-10-01

    In 2012 CMS evaluated which underlying concurrency technology would be the best to use for its multi-threaded framework. The available technologies were evaluated on the high throughput computing systems dominating the resources in use at that time. A skeleton framework benchmarking suite that emulates the tasks performed within a CMSSW application was used to select Intel’s Thread Building Block library, based on the measured overheads in both memory and CPU on the different technologies benchmarked. In 2016 CMS will get access to high performance computing resources that use new many core architectures; machines such as Cori Phase 1&2, Theta, Mira. Because of this we have revived the 2012 benchmark to test it’s performance and conclusions on these new architectures. This talk will discuss the results of this exercise.

  2. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Elina Syrjaelahti; Anitta Haemaelaeinen [VTT Processes, P.O.Box 1604, FIN-02044 VTT (Finland)

    2005-07-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  3. Hextran-Smabre calculation of the VVER-1000 coolant transient benchmark

    International Nuclear Information System (INIS)

    Elina Syrjaelahti; Anitta Haemaelaeinen

    2005-01-01

    Full text of publication follows: The VVER-1000 Coolant Transient benchmark is intended for validation of couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a switching on a main coolant pump when the other three main coolant pumps are in operation. Problem is based on experiment performed in Kozloduy NPP in Bulgaria. In addition to the real plant transient, two extreme scenarios concerning control rod ejection after switching on a main coolant pump were calculated. In VTT the three-dimensional advanced nodal code HEXTRAN is used for the core kinetics and dynamics, and thermohydraulic system code SMABRE as a thermal hydraulic model for the primary and secondary loop. Parallelly coupled HEXTRAN-SMABRE code has been in production use since early 90's, and it has been extensively used for analysis of VVER NPPs. The SMABRE input model is based on the standard VVER-1000 input used in VTT. Last plant specific modifications to the input model have been made in EU projects. The whole core calculation is performed in the core with HEXTRAN. Also the core model is based on earlier VVER-1000 models. Nuclear data for the calculation was specified in the benchmark. The paper outlines the input models used for both codes. Calculated results are introduced both for the coupled core system with inlet and outlet boundary conditions and for the whole plant model. Sensitivity studies have been performed for selected parameters. (authors)

  4. Start-up of a cold loop in a VVER-440, the 7{sup th} AER benchmark calculation with HEXTRAN-SMABRE-PORFLO

    Energy Technology Data Exchange (ETDEWEB)

    Hovi, Ville; Taivassalo, Veikko; Haemaelaeinen, Anitta; Raety, Hanna; Syrjaelahti, Elina [VTT Technical Research Centre of Finland Ltd, VTT (Finland)

    2017-09-15

    The 7{sup th} dynamic AER benchmark is the first in which three-dimensional thermal hydraulics codes are supposed to be applied. The aim is to get a more precise core inlet temperature profile than the sector temperatures available typically with system codes. The benchmark consists of a start-up of the sixth, isolated loop in a VVER-440 plant. The isolated loop initially contains cold water without boric acid and the start-up leads to a somewhat asymmetrical core power increase due to feedbacks in the core. In this study, the 7{sup th} AER benchmark is calculated with the three-dimensional nodal reactor dynamics code HEXTRAN-SMABRE coupled with the porous computational fluid dynamics code PORFLO. These three codes are developed at VTT. A novel two-way coupled simulation of the 7{sup th} AER benchmark was performed successfully demonstrating the feasibility and advantages of the new reactor analysis framework. The modelling issues for this benchmark are reported and some evaluation against the previously reported comparisons between the system codes is provided.

  5. Benchmark test of JENDL-3T and -3T/Rev.1

    International Nuclear Information System (INIS)

    Takano, Hideki; Kaneko, Kunio.

    1989-10-01

    The fast reactor 70-group constant set JFS-3-J3T has been generated by using the JENDL-3T nuclear data. One-dimensional 21-benchmark cores and the ZPPR-9 core were analysed with the JFS-3-J3T set. The results obtained are summarized as follows: (1) The values of keff are underestimated by 0.6% for Pu-fueled cores and overestimated by 2% for U-fueled cores. (2) The central reaction rate ratio 239 σ f φ/ 235 σ f φ is in a good agreement with the experimental value, though 238 σ c φ/ 239 σ f φ and 238 σ f φ/ 235 σ f φ are overestimated. (3) Doppler and Na-void reactivities are in a good agreement with the measured data. (4) The prediction accuracy of radial reaction rate distributions are improved in the comparison of the results obtained with the JENDL-2 data. Furthermore, the benchmark test of JENDL-3T/Rev. 1 which was revised from JENDL-3T for several important nuclides has been again performed. It was shown that JENDL-3T/Rev. 1 would predict nuclear characteristics more satisfactorily than JENDL-3T. (author)

  6. Proceedings: The Appendix 'K' relief workshop

    International Nuclear Information System (INIS)

    1989-11-01

    The licensing and operation of commercial LWRs were impacted significantly when Appendix 'K' requirements for loss-of-coolant accident (LOCA) and emergency core cooling systems (ECCS) analyses were implemented in 1974. The Appendix K requirements included both criteria and mandatory assumptions for LOCA analysis. Plants must meet these criteria, using analysis methods that have included very conservative assumptions, such as estimating decay heat energy as 20% greater than the 1971 American Nuclear Society standard. Additional constraints were placed on the application of specific models and correlations. The Appendix K requirements had a significant impact on licensing, analysis, fuel design, reload management, plant operation, and some supporting equipment. The overall impact of Appendix K could be translated into increased costs of millions of dollars per year to utilities. The Appendix 'K' Relief Workshop provided an improved understanding of the trade-offs -- both benefits and efforts required -- inherent in continuing to use existing analysis methods or adopting BE analysis under revised NRC rule. A range of options is available to each utility. The workshop explored options and benefits to the utility industry from LOCA/ECCS rule change. A forum for complete and open discussion of the issues germaine to the question of BE methodology versus existing methodology in view of LOCA/ECCS rule changes was incorporated. Both regulatory and utility perspectives on the implementation of proposed changes were discussed. Existing and planned efforts in developing and implementing BE uncertainty methodologies for plant-licensing application have been included. The individual papers have been cataloged separately

  7. Solution of the fifth dynamic Atomic Energy Research benchmark problem using the coupled code DIN3/ATHLET

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    The fifth dynamic benchmark is the first benchmark for coupled thermohydraulic system/three dimensional hexagonal neutron kinetic core models. In this benchmark the interaction between the components of a WWER-440 NPP with the reactor core has been investigated. The initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and the shutdown conditions with one control rod group s tucking. This break causes an overcooling of the primary circuit. During this overcooling the scram reactivity is compensated and the scrammed reactor becomes re critical. The calculation was continued until the highly-borated water from the high pressure injection system terminated the power excursion. Several aspects of the very complex and complicated benchmark problem are analyzed in detail. Sensitivity studies with different hydraulic parameters are made. The influence on the course of the transient and on the solution is discussed.(Author)

  8. Benchmark of the CASMO-3G/MICROBURN-B codes for Commonwealth Edison boiling water reactors

    International Nuclear Information System (INIS)

    Wheeler, J.K.; Pallotta, A.S.

    1992-01-01

    The Commonwealth Edison Company has performed an extensive benchmark against measured data from three boiling water reactors using the Studsvik lattice physics code CASMO-3G and the Siemens Nuclear Power three-dimensional simulator code MICROBURN-B. The measured data of interest for this benchmark are the hot and cold reactivity, and the core power distributions as measured by the traversing incore probe system and gamma scan data for fuel pins and assemblies. A total of nineteen unit-cycles were evaluated. The database included fuel product lines manufactured by General Electric and Siemens Nuclear Power, wit assemblies containing 7 x 7 to 9 x 9 pin configurations, several water rod designs, various enrichments and gadolina loadings, and axially varying lattice designs throughout the enriched portion of the bundle. The results of the benchmark present evidence that the CASMO-3G/MICROBURN-B code package can adequately model the range of fuel and core types in the benchmark, and the codes are acceptable for performing neutronic analyses of Commonwealth Edison's boiling water reactors

  9. Sensitivity Analysis of OECD Benchmark Tests in BISON

    Energy Technology Data Exchange (ETDEWEB)

    Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schmidt, Rodney C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williamson, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    This report summarizes a NEAMS (Nuclear Energy Advanced Modeling and Simulation) project focused on sensitivity analysis of a fuels performance benchmark problem. The benchmark problem was defined by the Uncertainty Analysis in Modeling working group of the Nuclear Science Committee, part of the Nuclear Energy Agency of the Organization for Economic Cooperation and Development (OECD ). The benchmark problem involv ed steady - state behavior of a fuel pin in a Pressurized Water Reactor (PWR). The problem was created in the BISON Fuels Performance code. Dakota was used to generate and analyze 300 samples of 17 input parameters defining core boundary conditions, manuf acturing tolerances , and fuel properties. There were 24 responses of interest, including fuel centerline temperatures at a variety of locations and burnup levels, fission gas released, axial elongation of the fuel pin, etc. Pearson and Spearman correlatio n coefficients and Sobol' variance - based indices were used to perform the sensitivity analysis. This report summarizes the process and presents results from this study.

  10. Status on benchmark testing of CENDL-3

    CERN Document Server

    Liu Ping

    2002-01-01

    CENDL-3, the newest version of China Evaluated Nuclear Data Library has been finished, and distributed for some benchmarks analysis recently. The processing was carried out using the NJOY nuclear data processing code system. The calculations and analysis of benchmarks were done with Monte Carlo code MCNP and reactor lattice code WIMSD5A. The calculated results were compared with the experimental results based on ENDF/B6. In most thermal and fast uranium criticality benchmarks, the calculated k sub e sub f sub f values with CENDL-3 were in good agreements with experimental results. In the plutonium fast cores, the k sub e sub f sub f values were improved significantly with CENDL-3. This is duo to reevaluation of the fission spectrum and elastic angular distributions of sup 2 sup 3 sup 9 Pu and sup 2 sup 4 sup 0 Pu. CENDL-3 underestimated the k sub e sub f sub f values compared with other evaluated data libraries for most spherical or cylindrical assemblies of plutonium or uranium with beryllium

  11. Verification of HELIOS-MASTER system through benchmark of Halden boiling water reactor (HBWR)

    International Nuclear Information System (INIS)

    Kim, Ha Yong; Song, Jae Seung; Cho, Jin Young; Kim, Kang Seok; Lee, Chung Chan; Zee, Sung Quun

    2004-01-01

    To verify the HELIOS-MASTER computer code system for a nuclear design, we have been performed benchmark calculations for various reactor cores. The Halden reactor is a boiling, heavy water moderated reactor. At a full power of 18-20MWt, the moderator temperature is 240 .deg. C and the pressure is 33 bar. This study describes the verification of the HELIOS-MASTER computer code system for a nuclear design and the analysis of a hexagonal and D 2 O moderated core through a benchmark of the Halden reactor core. HELIOS, developed by Scandpower A/S, is a two-dimensional transport program for the generation of group cross-sections, and MASTER, developed by KAERI, is a three-dimensional nuclear design and analysis code based on the two-group diffusion theory. It solves the neutronics model with the TPEN (Triangle based Polynomial Expansion Nodal) method for a hexagonal geometry

  12. JENDL-4.0 benchmarking for effective delayed neutron fraction with a continuous-energy Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Nagaya, Yasunobu

    2013-01-01

    Benchmark calculations with a continuous-energy Monte Carlo code have been performed for delayed neutron data of JENDL-4.0. JENDL-4.0 gives good prediction for the effective delayed neutron fraction in the present benchmarks but further detailed analysis is required for some cores. (author)

  13. Neutron radiography (NRAD) reactor 64-element core upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA (registered) (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The interim critical configuration developed during the core upgrade, which contains only 62 fuel elements, has been evaluated as an acceptable benchmark experiment. The final 64-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (approximately ±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  14. AER benchmark specification sheet

    International Nuclear Information System (INIS)

    Aszodi, A.; Toth, S.

    2009-01-01

    In the VVER-440/213 type reactors, the core outlet temperature field is monitored with in-core thermocouples, which are installed above 210 fuel assemblies. These measured temperatures are used in determination of the fuel assembly powers and they have important role in the reactor power limitation. For these reasons, correct interpretation of the thermocouple signals is an important question. In order to interpret the signals in correct way, knowledge of the coolant mixing in the assembly heads is necessary. Computational Fluid Dynamics (CFD) codes and experiments can help to understand better these mixing processes and they can provide information which can support the more adequate interpretation of the thermocouple signals. This benchmark deals with the 3D CFD modeling of the coolant mixing in the heads of the profiled fuel assemblies with 12.2 mm rod pitch. Two assemblies of the 23rd cycle of the Paks NPP's Unit 3 are investigated. One of them has symmetrical pin power profile and another possesses inclined profile. (authors)

  15. The OECD/NEA/NSC PBMR 400 MW coupled neutronics thermal hydraulics transient benchmark: transient results - 290

    International Nuclear Information System (INIS)

    Strydom, G.; Reitsma, F.; Ngeleka, P.T.; Ivanov, K.N.

    2010-01-01

    The PBMR is a High-Temperature Gas-cooled Reactor (HTGR) concept developed to be built in South Africa. The analysis tools used for core neutronic design and core safety analysis need to be verified and validated, and code-to-code comparisons are an essential part of the V and V plans. As part of this plan the PBMR 400 MWth design and a representative set of transient exercises are defined as an OECD benchmark. The scope of the benchmark is to establish a series of well defined multi-dimensional computational benchmark problems with a common given set of cross sections, to compare methods and tools in coupled neutronics and thermal hydraulics analysis with a specific focus on transient events. This paper describes the current status of the benchmark project and shows the results for the six transient exercises, consisting of three Loss of Cooling Accidents, two Control Rod Withdrawal transients, a power load-follow transient, and a Helium over-cooling Accident. The participants' results are compared using a statistical method and possible areas of future code improvement are identified. (authors)

  16. Self-benchmarking Guide for Cleanrooms: Metrics, Benchmarks, Actions

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Sartor, Dale; Tschudi, William

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  17. Benchmarking local healthcare-associated infections: Available benchmarks and interpretation challenges

    Directory of Open Access Journals (Sweden)

    Aiman El-Saed

    2013-10-01

    Full Text Available Summary: Growing numbers of healthcare facilities are routinely collecting standardized data on healthcare-associated infection (HAI, which can be used not only to track internal performance but also to compare local data to national and international benchmarks. Benchmarking overall (crude HAI surveillance metrics without accounting or adjusting for potential confounders can result in misleading conclusions. Methods commonly used to provide risk-adjusted metrics include multivariate logistic regression analysis, stratification, indirect standardization, and restrictions. The characteristics of recognized benchmarks worldwide, including the advantages and limitations are described. The choice of the right benchmark for the data from the Gulf Cooperation Council (GCC states is challenging. The chosen benchmark should have similar data collection and presentation methods. Additionally, differences in surveillance environments including regulations should be taken into consideration when considering such a benchmark. The GCC center for infection control took some steps to unify HAI surveillance systems in the region. GCC hospitals still need to overcome legislative and logistic difficulties in sharing data to create their own benchmark. The availability of a regional GCC benchmark may better enable health care workers and researchers to obtain more accurate and realistic comparisons. Keywords: Benchmarking, Comparison, Surveillance, Healthcare-associated infections

  18. Benchmark experiments of effective delayed neutron fraction βeff at FCA

    International Nuclear Information System (INIS)

    Sakurai, Takeshi; Okajima, Shigeaki

    1999-01-01

    Benchmark experiments of effective delayed neutron fraction β eff were performed at Fast Critical Assembly (FCA) in the Japan Atomic Energy Research Institute. The experiments were made in three cores providing systematic change of nuclide contribution to the β eff : XIX-1 core fueled with 93% enriched uranium, XIX-2 core fueled with plutonium and uranium (23% enrichment) and XIX-3 core fueled with plutonium (92% fissile Pu). Six organizations from five countries participated in these experiments and measured the β eff by using their own methods and instruments. Target accuracy in the β eff was achieved to be better than ±3% by averaging the β eff values measured using a wide variety of experimental methods. (author)

  19. Benchmark Specification for an HTR Fuelled with Reactor-grade Plutonium (or Reactor-grade Pu/Th and U/Th). Proposal version 2

    International Nuclear Information System (INIS)

    Hosking, J.G.; Newton, T.D.; Morris, P.

    2007-01-01

    This benchmark proposal builds upon that specified in NEA/NSC/DOC(2003)22 report. In addition to the three phases described in that report, another two phases have now been defined. Additional items for calculation have also been added to the existing phases. It is intended that further items may be added to the benchmark after consultation with its participants. Although the benchmark is specifically designed to provide inter-comparisons for plutonium- and thorium-containing fuels, it is proposed that phases considering simple calculations for a uranium fuel cell and uranium core be included. The purpose of these is to identify any increased uncertainties, relative to uranium fuel, associated with the lesser-known fuels to be investigated in different phases of this benchmark. The first phase considers an infinite array of fuel pebbles fuelled with uranium fuel. Phase 2 considers a similar array of pebbles but for plutonium fuel. Phase 3 continues the plutonium fuel inter-comparisons within the context of whole core calculations. Calculations for Phase 4 are for a uranium-fuelled core. Phase 5 considers an infinite array of pebbles containing thorium. In setting the benchmark the requirements in the definition of the LEUPRO-12 PROTEUS benchmark have been considered. Participants were invited to submit both deterministic results as well as, where appropriate, results from Monte Carlo calculations. Fundamental nuclear data, Avogadro's number, natural abundance data and atomic weights have been taken from the references indicated in the document

  20. Self-benchmarking Guide for Laboratory Buildings: Metrics, Benchmarks, Actions

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Paul; Greenberg, Steve; Sartor, Dale

    2009-07-13

    This guide describes energy efficiency metrics and benchmarks that can be used to track the performance of and identify potential opportunities to reduce energy use in laboratory buildings. This guide is primarily intended for personnel who have responsibility for managing energy use in existing laboratory facilities - including facilities managers, energy managers, and their engineering consultants. Additionally, laboratory planners and designers may also use the metrics and benchmarks described in this guide for goal-setting in new construction or major renovation. This guide provides the following information: (1) A step-by-step outline of the benchmarking process. (2) A set of performance metrics for the whole building as well as individual systems. For each metric, the guide provides a definition, performance benchmarks, and potential actions that can be inferred from evaluating this metric. (3) A list and descriptions of the data required for computing the metrics. This guide is complemented by spreadsheet templates for data collection and for computing the benchmarking metrics. This guide builds on prior research supported by the national Laboratories for the 21st Century (Labs21) program, supported by the U.S. Department of Energy and the U.S. Environmental Protection Agency. Much of the benchmarking data are drawn from the Labs21 benchmarking database and technical guides. Additional benchmark data were obtained from engineering experts including laboratory designers and energy managers.

  1. JENDL-3.3 thermal reactor benchmark test

    International Nuclear Information System (INIS)

    Akie, Hiroshi

    2001-01-01

    Integral tests of JENDL-3.2 nuclear data library have been carried out by Reactor Integral Test WG of Japanese Nuclear Data Committee. The most important problem in the thermal reactor benchmark testing was the overestimation of the multiplication factor of the U fueled cores. With several revisions of the data of 235 U and the other nuclides, JENDL-3.3 data library gives a good estimation of multiplication factors both for U and Pu fueled thermal reactors. (author)

  2. Operating experience, measurements, and analysis of the LEU whole core demonstration at the FNR

    International Nuclear Information System (INIS)

    Weha, D.K.; Drumm, C.R.; King, J.S.; Martin, W.R.; Lee, J.C.

    1984-01-01

    The 2-MW Ford Nuclear Reactor at the University of Michigan is serving as the demonstration reactor for the MTR-type low enrichment (LEU) fuel for the Reduced Enrichment for Research and Test Reactor program. Operational experience gained through six months of LEU core operation and seven months of mixed HEU-LEU core operation is presented. Subcadmium flux measurements performed with rhodium self-powered neutron detectors and iron wire activations are compared with calculations. Measured reactivity parameters are compared for HEU and LEU cores. Finally, the benchmark calculations for several HEU, LEU, and mixed HEU-LEU FNR cores and the International Atomic Energy Agency (IAEA) benchmark problem are presented. (author)

  3. Validation and applicability of the 3D core kinetics and thermal hydraulics coupled code SPARKLE

    International Nuclear Information System (INIS)

    Miyata, Manabu; Maruyama, Manabu; Ogawa, Junto; Otake, Yukihiko; Miyake, Shuhei; Tabuse, Shigehiko; Tanaka, Hirohisa

    2009-01-01

    The SPARKLE code is a coupled code system based on three individual codes whose physical models have already been verified and validated. Mitsubishi Heavy Industries (MHI) confirmed the coupling calculation, including data transfer and the total reactor coolant system (RCS) behavior of the SPARKLE code. The confirmation uses the OECD/NEA MSLB benchmark problem, which is based on Three Mile Island Unit 1 (TMI-1) nuclear power plant data. This benchmark problem has been used to verify coupled codes developed and used by many organizations. Objectives of the benchmark program are as follows. Phase 1 is to compare the results of the system transient code using point kinetics. Phase 2 is to compare the results of the coupled three-dimensional (3D) core kinetics code and 3D core thermal-hydraulics (T/H) code, and Phase 3 is to compare the results of the combined coupled system transient code, 3D core kinetics code, and 3D core T/H code as a total validation of the coupled calculation. The calculation results of the SPARKLE code indicate good agreement with other benchmark participants' results. Therefore, the SPARKLE code is validated through these benchmark problems. In anticipation of applying the SPARKLE code to licensing analyses, MHI and Japanese PWR utilities have established a safety analysis method regarding the calculation conditions such as power distributions, reactivity coefficients, and event-specific features. (author)

  4. Neutron Fluence, Dosimetry and Damage Response Determination in In-Core/Ex-Core Components of the VENUS CEN/SCK LWR Using 3-D Monte Carlo Simulations: NEA's VENUS-3 Benchmark

    International Nuclear Information System (INIS)

    Perlado, J. Manuel; Marian, Jaime; Sanz, Jesus Garcia

    2000-01-01

    Validating state-of-the-art methods used to predict fluence exposure to reactor pressure vessels (RPVs) has become an important issue in identifying the sources of uncertainty in the estimated RPV fluence for pressurized water reactors. This is a very important aspect in evaluating irradiation damage leading to the hardening and embrittlement of such structural components. One of the major benchmark experiments carried out to test three-dimensional methodologies is the VENUS-3 Benchmark Experiment in which three-dimensional Monte Carlo and S n codes have proved more efficient than synthesis methods. At the Instituto de Fusion Nuclear (DENIM) at the Universidad Politecnica de Madrid, a detailed full three-dimensional model of the Venus Critical Facility has been developed making use of the Monte Carlo transport code MCNP4B. The problem geometry and source modeling are described, and results, including calculated versus experimental (C/E) ratios as well as additional studies, are presented. Evidence was found that the great majority of C/E values fell within the 10% tolerance and most within 5%. Tolerance limits are discussed on the basis of evaluated data library and fission spectra sensitivity, where a value ranging between 10 to 15% should be accepted. Also, a calculation of the atomic displacement rate has been carried out in various locations throughout the reactor, finding that values of 0.0001 displacements per atom in external components such as the core barrel are representative of this type of reactor during a 30-yr time span

  5. 3-D extension C5G7 MOX benchmark calculation using threedant code

    International Nuclear Information System (INIS)

    Kim, H.Ch.; Han, Ch.Y.; Kim, J.K.; Na, B.Ch.

    2005-01-01

    It pursued the benchmark on deterministic 3-D MOX fuel assembly transport calculations without spatial homogenization (C5G7 MOX Benchmark Extension). The goal of this benchmark is to provide a more through test results for the abilities of current available 3-D methods to handle the spatial heterogeneities of reactor core. The benchmark requires solutions in the form of normalized pin powers as well as the eigenvalue for each of the control rod configurations; without rod, with A rods, and with B rods. In this work, the DANTSYS code package was applied to analyze the 3-D Extension C5G7 MOX Benchmark problems. The THREEDANT code within the DANTSYS code package, which solves the 3-D transport equation in x-y-z, and r-z-theta geometries, was employed to perform the benchmark calculations. To analyze the benchmark with the THREEDANT code, proper spatial and angular approximations were made. Several calculations were performed to investigate the effects of the different spatial approximations on the accuracy. The results from these sensitivity studies were analyzed and discussed. From the results, it is found that the 4*4 grid per pin cell is sufficiently refined so that very little benefit is obtained by increasing the mesh size. (authors)

  6. Benchmarking of the PHOENIX-P/ANC [Advanced Nodal Code] advanced nuclear design system

    International Nuclear Information System (INIS)

    Nguyen, T.Q.; Liu, Y.S.; Durston, C.; Casadei, A.L.

    1988-01-01

    At Westinghouse, an advanced neutronic methods program was designed to improve the quality of the predictions, enhance flexibility in designing advanced fuel and related products, and improve design lead time. Extensive benchmarking data is presented to demonstrate the accuracy of the Advanced Nodal Code (ANC) and the PHOENIX-P advanced lattice code. Qualification data to demonstrate the accuracy of ANC include comparison of key physics parameters against a fine-mesh diffusion theory code, TORTISE. Benchmarking data to demonstrate the validity of the PHOENIX-P methodologies include comparison of physics predictions against critical experiments, isotopics measurements and measured power distributions from spatial criticals. The accuracy of the PHOENIX-P/ANC Advanced Design System is demonstrated by comparing predictions of hot zero power physics parameters and hot full power core follow against measured data from operating reactors. The excellent performance of this system for a broad range of comparisons establishes the basis for implementation of these tools for core design, licensing and operational follow of PWR [pressurized water reactor] cores at Westinghouse

  7. AER Benchmark Specification Sheet

    International Nuclear Information System (INIS)

    Aszodi, A.; Toth, S.

    2009-01-01

    In the WWER-440/213 type reactors, the core outlet temperature field is monitored with in-core thermocouples, which are installed above 210 fuel assemblies. These measured temperatures are used in determination of the fuel assembly powers and they have important role in the reactor power limitation. For these reasons, correct interpretation of the thermocouple signals is an important question. In order to interpret the signals in correct way, knowledge of the coolant mixing in the assembly heads is necessary. Computational fluid dynamics codes and experiments can help to understand better these mixing processes and they can provide information which can support the more adequate interpretation of the thermocouple signals. This benchmark deals with the 3D computational fluid dynamics modeling of the coolant mixing in the heads of the profiled fuel assemblies with 12.2 mm rod pitch. Two assemblies of the twenty third cycle of the Paks NPPs Unit 3 are investigated. One of them has symmetrical pin power profile and another possesses inclined profile. (Authors)

  8. Analysis of Homogeneous BFS-73-1 MA Benchmark Core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong Il; Yoo, Jae Woon; Song, Hoon; Jang, Jin Wook; Kim, Yeong Il

    2007-06-15

    Analysis of BFS-73-1 critical assembly for MA transmutation has been carried out by using K-CORE system mainly, DIF3D code. All of measured data are compared with the results of analysis and sensitiveness of calculation conditions, for example, number of neutron energy groups, mesh size used, and analysis method, are assessed. Effective multiplication factor was in good agreement within experimental uncertainty in both transport and diffusion calculations. Fission rate distribution of U-235 and U-238 is also fairly good agreed with experimental results within maximum 5% in core region. But large discrepancy was seen in blanket region and it tends to increase as the location closes to core boundary. Largest error of relative reaction rate ratio was seen in Am-243 fission and U-238 capture. For the case of Am-243, the error lay on appropriate range considering the measurement uncertainty of that as 4.6%. Sample reactivity worths for scattering dominant isotope was greatly differ from the experimental results, which can be explained in terms of sample heterogeneity effect, sample self shielding and finally resonance bilinear correction effect. These effects will be evaluated as future study. C/E of effective delayed neutron fraction is within 4%, which is within the measurement uncertainty.

  9. Analysis of Homogeneous BFS-73-1 MA Benchmark Core

    International Nuclear Information System (INIS)

    Kim, Yeong Il; Yoo, Jae Woon; Song, Hoon; Jang, Jin Wook; Kim, Yeong Il

    2007-06-01

    Analysis of BFS-73-1 critical assembly for MA transmutation has been carried out by using K-CORE system mainly, DIF3D code. All of measured data are compared with the results of analysis and sensitiveness of calculation conditions, for example, number of neutron energy groups, mesh size used, and analysis method, are assessed. Effective multiplication factor was in good agreement within experimental uncertainty in both transport and diffusion calculations. Fission rate distribution of U-235 and U-238 is also fairly good agreed with experimental results within maximum 5% in core region. But large discrepancy was seen in blanket region and it tends to increase as the location closes to core boundary. Largest error of relative reaction rate ratio was seen in Am-243 fission and U-238 capture. For the case of Am-243, the error lay on appropriate range considering the measurement uncertainty of that as 4.6%. Sample reactivity worths for scattering dominant isotope was greatly differ from the experimental results, which can be explained in terms of sample heterogeneity effect, sample self shielding and finally resonance bilinear correction effect. These effects will be evaluated as future study. C/E of effective delayed neutron fraction is within 4%, which is within the measurement uncertainty

  10. Two-dimensional benchmark calculations for PNL-30 through PNL-35

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    1997-01-01

    Interest in critical experiments with lattices of mixed-oxide (MOX) fuel pins has been revived by the possibility that light water reactors will be used for disposition of weapons-grade plutonium. A series of six experiments with MOX lattices, designated PNL-30 through PNL-35, was performed at Pacific Northwest Laboratories in 1975 and 1976, and a set of benchmark specifications for these experiments subsequently was adopted by the Cross Section Evaluation Working Group (CSEWG). Although there appear to be some problems with these experiments, they remain the only CSEWG benchmarks for MOX lattices. The number of fuel pins in these experiments is relatively low, corresponding to fewer than 4 typical pressurized-water-reactor fuel assemblies. Accordingly, they are more appropriate as benchmarks for lattice-physics codes than for reactor-core simulator codes. Unfortunately, the CSEWG specifications retain the full three-dimensional (3D) detail of the experiments, while lattice-physics codes almost universally are limited to two dimensions (2D). This paper proposes an extension of the benchmark specifications to include a 2D model, and it justifies that extension by comparing results from the MCNP Monte Carlo code for the 2D and 3D specifications

  11. In-core fuel management code package validation for BWRs

    International Nuclear Information System (INIS)

    1995-12-01

    The main goal of the present CRP (Coordinated Research Programme) was to develop benchmarks which are appropriate to check and improve the fuel management computer code packages and their procedures. Therefore, benchmark specifications were established which included a set of realistic data for running in-core fuel management codes. Secondly, the results of measurements and/or operating data were also provided to verify and compare with these parameters as calculated by the in-core fuel management codes or code packages. For the BWR it was established that the Mexican Laguna Verde 1 BWR would serve as the model for providing data on the benchmark specifications. It was decided to provide results for the first 2 cycles of Unit 1 of the Laguna Verde reactor. The analyses of the above benchmarks are performed in two stages. In the first stage, the lattice parameters are generated as a function of burnup at different voids and with and without control rod. These lattice parameters form the input for 3-dimensional diffusion theory codes for over-all reactor analysis. The lattice calculations were performed using different methods, such as, Monte Carlo, 2-D integral transport theory methods. Supercell Model and transport-diffusion model with proper correction for burnable absorber. Thus the variety of results should provide adequate information for any institute or organization to develop competence to analyze In-core fuel management codes. 15 refs, figs and tabs

  12. The OECD/NEA/NSC PBMR coupled neutronics/thermal hydraulics transient benchmark: The PBMR-400 core design

    International Nuclear Information System (INIS)

    Reitsma, F.; Ivanov, K.; Downar, T.; De Haas, H.; Gougar, H. D.

    2006-01-01

    The Pebble Bed Modular Reactor (PBMR) is a High-Temperature Gas-cooled Reactor (HTGR) concept to be built in South Africa. As part of the verification and validation program the definition and execution of code-to-code benchmark exercises are important. The Nuclear Energy Agency (NEA) of the Organisation for Economic Cooperation and Development (OECD) has accepted, through the Nuclear Science Committee (NSC), the inclusion of the Pebble-Bed Modular Reactor (PBMR) coupled neutronics/thermal hydraulics transient benchmark problem in its program. The OECD benchmark defines steady-state and transients cases, including reactivity insertion transients. It makes use of a common set of cross sections (to eliminate uncertainties between different codes) and includes specific simplifications to the design to limit the need for participants to introduce approximations in their models. In this paper the detailed specification is explained, including the test cases to be calculated and the results required from participants. (authors)

  13. Reactor based plutonium disposition - physics and fuel behaviour benchmark studies of an OECD/NEA experts group

    International Nuclear Information System (INIS)

    D'Hondt, P.; Gehin, J.; Na, B.C.; Sartori, E.; Wiesenack, W.

    2001-01-01

    One of the options envisaged for disposing of weapons grade plutonium, declared surplus for national defence in the Russian Federation and Usa, is to burn it in nuclear power reactors. The scientific/technical know-how accumulated in the use of MOX as a fuel for electricity generation is of great relevance for the plutonium disposition programmes. An Expert Group of the OECD/Nea is carrying out a series of benchmarks with the aim of facilitating the use of this know-how for meeting this objective. This paper describes the background that led to establishing the Expert Group, and the present status of results from these benchmarks. The benchmark studies cover a theoretical reactor physics benchmark on a VVER-1000 core loaded with MOX, two experimental benchmarks on MOX lattices and a benchmark concerned with MOX fuel behaviour for both solid and hollow pellets. First conclusions are outlined as well as future work. (author)

  14. Definition of the seventh dynamic AER benchmark-WWER-440 pressure vessel coolant mixing by re-connection of an isolated loop

    International Nuclear Information System (INIS)

    Kotsarev, A.; Lizorkin, M.; Petrin, R.

    2010-01-01

    The seventh dynamic benchmark is a continuation of the efforts to validate systematically codes for the estimation of the transient behavior of VVER type nuclear power plants. This benchmark is a continuation of the work in the sixth dynamic benchmark. It is proposed to be simulated the transient - re-connection of an isolated circulating loop with low temperature or low boron concentration in a VVER-440 plant. It is supposed to expand the benchmark to other cases when a different number of loops are in operation leading to different symmetric and asymmetric core boundary conditions. The purposes of the proposed benchmark are: 1) Best-estimate simulations of an transient with a coolant flow mixing in the Reactor Pressure Vessel of WWER-440 plant by re-connection of one coolant loop to the several ones on operation, 2) Performing of code-to-code comparisons. The core is at the end of its first cycle with a power of 1196.25 MWt. The basic additional difference of the 7-seventh benchmark is in the detailed description of the downcomer and bottom part of the reactor vessel that allow describing the effects of coolant mixing in the Reactor Pressure Vessel without any additional conservative assumptions. The burn-up and the power distributions at this reactor state have to be calculated by the participants. The thermohydraulic conditions of the core in the beginning of the transient are specified. Participants self-generated best estimate nuclear data is to be used. The main geometrical parameters of the plant and the characteristics of the control and safety systems are also specified. Use generated input data decks developed for a WWER-440 plant and for the applied codes should be used. The behaviour of the plant should be studied applying coupled system codes, which combine a three-dimensional neutron kinetics description of the core with a pseudo or real 3D thermohydraulics system code. (Authors)

  15. Regulatory inspection practices on fuel elements and core lay-out at NPPs

    International Nuclear Information System (INIS)

    Van Binnebeek, J.J.; Liuhto, Pekka; Badel, D.; Klonk, H.; Seidel, F.; Fichtinger, G.; Manzella, P.; Koizumi, Hiroyoshi; Delgado, Jose Luis; Gutierrez Ruiz, Luis Miguel; Bouvrie, E. des; Gil, J.; Forsberg, Staffan; Wand, H.; Warren, Tom; Gallo, R.

    1998-01-01

    The basic description of the reactor core of a nuclear power plant (NPP) is an important part of the Safety Analysis Report in all countries. Due to increased interest by regulatory authorities in the Member countries, in 1996 WGIP proposed looking at inspection aspects on fuel elements and core lay-out at nuclear power plants. The CNRA subsequently approved proceeding with this report. The report deals primarily with inspection practices and inspection requirements during nuclear power plant (NPP) operation with special emphasis on refuelling procedures. All license related topics, such as fuel and core design (mechanical, neutronic, thermal-hydraulic), as well as inspection philosophy and practices on fuel fabrication are included as appropriate serving as background information and may not be completely described. WGIP members describe their country's inspection programme according to the structure of a questionnaire (appendix 1). The individual contributions are contained in the appendix 2 and are compiled within the main chapters (1 through 3). Report Structure: 1. Licensing and Quality Assurance (QA) requirements for nuclear fuel; 2. Regulatory inspection programme during NPP operation and refuelling outages; 3. Procedures for inspection practices and inspection programme. Appendix: Questionnaire and Country specific contributions. Contributions are presented by Belgium, Finland, France, Germany, Hungary, Italy, Japan, Mexico, The Netherlands, Spain, Sweden, Switzerland, United Kingdom, USA

  16. Benchmarking of SIMULATE-3 on engineering workstations

    International Nuclear Information System (INIS)

    Karlson, C.F.; Reed, M.L.; Webb, J.R.; Elzea, J.D.

    1990-01-01

    The nuclear fuel management department of Arizona Public Service Company (APS) has evaluated various computer platforms for a departmental engineering and business work-station local area network (LAN). Historically, centralized mainframe computer systems have been utilized for engineering calculations. Increasing usage and the resulting longer response times on the company mainframe system and the relative cost differential between a mainframe upgrade and workstation technology justified the examination of current workstations. A primary concern was the time necessary to turn around routine reactor physics reload and analysis calculations. Computers ranging from a Definicon 68020 processing board in an AT compatible personal computer up to an IBM 3090 mainframe were benchmarked. The SIMULATE-3 advanced nodal code was selected for benchmarking based on its extensive use in nuclear fuel management. SIMULATE-3 is used at APS for reload scoping, design verification, core follow, and providing predictions of reactor behavior under nominal conditions and planned reactor maneuvering, such as axial shape control during start-up and shutdown

  17. Benchmarking ENDF/B-VII.1, JENDL-4.0 and JEFF-3.1.1 with MCNP6

    International Nuclear Information System (INIS)

    Marck, Steven C. van der

    2012-01-01

    Recent releases of three major world nuclear reaction data libraries, ENDF/B-VII.1, JENDL-4.0, and JEFF-3.1.1, have been tested extensively using benchmark calculations. The calculations were performed with the latest release of the continuous energy Monte Carlo neutronics code MCNP, i.e. MCNP6. Three types of benchmarks were used, viz. criticality safety benchmarks, (fusion) shielding benchmarks, and reference systems for which the effective delayed neutron fraction is reported. For criticality safety, more than 2000 benchmarks from the International Handbook of Criticality Safety Benchmark Experiments were used. Benchmarks from all categories were used, ranging from low-enriched uranium, compound fuel, thermal spectrum ones (LEU-COMP-THERM), to mixed uranium-plutonium, metallic fuel, fast spectrum ones (MIX-MET-FAST). For fusion shielding many benchmarks were based on IAEA specifications for the Oktavian experiments (for Al, Co, Cr, Cu, LiF, Mn, Mo, Si, Ti, W, Zr), Fusion Neutronics Source in Japan (for Be, C, N, O, Fe, Pb), and Pulsed Sphere experiments at Lawrence Livermore National Laboratory (for 6 Li, 7 Li, Be, C, N, O, Mg, Al, Ti, Fe, Pb, D2O, H2O, concrete, polyethylene and teflon). The new functionality in MCNP6 to calculate the effective delayed neutron fraction was tested by comparison with more than thirty measurements in widely varying systems. Among these were measurements in the Tank Critical Assembly (TCA in Japan) and IPEN/MB-01 (Brazil), both with a thermal spectrum, two cores in Masurca (France) and three cores in the Fast Critical Assembly (FCA, Japan), all with fast spectra. The performance of the three libraries, in combination with MCNP6, is shown to be good. The results for the LEU-COMP-THERM category are on average very close to the benchmark value. Also for most other categories the results are satisfactory. Deviations from the benchmark values do occur in certain benchmark series, or in isolated cases within benchmark series. Such

  18. Phenix: a story of core and energy

    International Nuclear Information System (INIS)

    Sauvage, J.F.

    2005-01-01

    Phenix is the name of a legendary bird which could have several successive lives thanks to a rebirth from its ashes. It is by analogy the name given to an original sodium-cooled fast breeder reactor capable to generate new quantities of energy using the by products of its core burnup. This book tells the story of this reactor: construction (1968-1974), first years of operation (1974-1980), success era (1980-1986), first problems (1986-1992), safety re-evaluation (1992-1998), renovation of the core (1998-2003), re-start up of operation (2003-2009). A description of the power plant is given in appendix: core, reactor vessel, circuits, handling, instrumentation and control, safety, buildings, operation. (J.S.)

  19. A highly simplified 3D BWR benchmark problem

    International Nuclear Information System (INIS)

    Douglass, Steven; Rahnema, Farzad

    2010-01-01

    The resurgent interest in reactor development associated with the nuclear renaissance has paralleled significant advancements in computer technology, and allowed for unprecedented computational power to be applied to the numerical solution of neutron transport problems. The current generation of core-level solvers relies on a variety of approximate methods (e.g. nodal diffusion theory, spatial homogenization) to efficiently solve reactor problems with limited computer power; however, in recent years, the increased availability of high-performance computer systems has created an interest in the development of new methods and codes (deterministic and Monte Carlo) to directly solve whole-core reactor problems with full heterogeneity (lattice and core level). This paper presents the development of a highly simplified heterogeneous 3D benchmark problem with physics characteristic of boiling water reactors. The aim of this work is to provide a problem for developers to use to validate new whole-core methods and codes which take advantage of the advanced computational capabilities that are now available. Additionally, eigenvalues and an overview of the pin fission density distribution are provided for the benefit of the reader. (author)

  20. Benchmark analysis of SPERT-IV reactor with Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Motalab, M.A.; Mahmood, M.S.; Khan, M.J.H.; Badrun, N.H.; Lyric, Z.I.; Altaf, M.H.

    2014-01-01

    Highlights: • MVP was used for SPERT-IV core modeling. • Neutronics analysis of SPERT-IV reactor was performed. • Calculation performed to estimate critical rod height, excess reactivity. • Neutron flux, time integrated neutron flux and Cd-ratio also calculated. • Calculated values agree with experimental data. - Abstract: The benchmark experiment of the SPERT-IV D-12/25 reactor core has been analyzed with the Monte Carlo code MVP using the cross-section libraries based on JENDL-3.3. The MVP simulation was performed for the clean and cold core. The estimated values of K eff at the experimental critical rod height and the core excess reactivity were within 5% with the experimental data. Thermal neutron flux profiles at different vertical and horizontal positions of the core were also estimated. Cadmium Ratio at different point of the core was also estimated. All estimated results have been compared with the experimental results. Generally good agreement has been found between experimentally determined and the calculated results

  1. Benchmark Analysis Of The High Temperature Gas Cooled Reactors Using Monte Carlo Technique

    International Nuclear Information System (INIS)

    Nguyen Kien Cuong; Huda, M.Q.

    2008-01-01

    Information about several past and present experimental and prototypical facilities based on High Temperature Gas-Cooled Reactor (HTGR) concepts have been examined to assess the potential of these facilities for use in this benchmarking effort. Both reactors and critical facilities applicable to pebble-bed type cores have been considered. Two facilities - HTR-PROTEUS of Switzerland and HTR-10 of China and one conceptual design from Germany - HTR-PAP20 - appear to have the greatest potential for use in benchmarking the codes. This study presents the benchmark analysis of these reactors technologies by using MCNP4C2 and MVP/GMVP Codes to support the evaluation and future development of HTGRs. The ultimate objective of this work is to identify and develop new capabilities needed to support Generation IV initiative. (author)

  2. Benchmarking in University Toolbox

    Directory of Open Access Journals (Sweden)

    Katarzyna Kuźmicz

    2015-06-01

    Full Text Available In the face of global competition and rising challenges that higher education institutions (HEIs meet, it is imperative to increase innovativeness and efficiency of their management. Benchmarking can be the appropriate tool to search for a point of reference necessary to assess institution’s competitive position and learn from the best in order to improve. The primary purpose of the paper is to present in-depth analysis of benchmarking application in HEIs worldwide. The study involves indicating premises of using benchmarking in HEIs. It also contains detailed examination of types, approaches and scope of benchmarking initiatives. The thorough insight of benchmarking applications enabled developing classification of benchmarking undertakings in HEIs. The paper includes review of the most recent benchmarking projects and relating them to the classification according to the elaborated criteria (geographical range, scope, type of data, subject, support and continuity. The presented examples were chosen in order to exemplify different approaches to benchmarking in higher education setting. The study was performed on the basis of the published reports from benchmarking projects, scientific literature and the experience of the author from the active participation in benchmarking projects. The paper concludes with recommendations for university managers undertaking benchmarking, derived on the basis of the conducted analysis.

  3. A SAS2H/KENO-V Methodology for 3D Full Core depletion analysis

    International Nuclear Information System (INIS)

    Milosevic, M.; Greenspan, E.; Vujic, J.; Petrovic, B.

    2003-04-01

    This paper describes the use of a SAS2H/KENO-V methodology for 3D full core depletion analysis and illustrates its capabilities by applying it to burnup analysis of the IRIS core benchmarks. This new SAS2H/KENO-V sequence combines a 3D Monte Carlo full core calculation of node power distribution and a 1D Wigner-Seitz equivalent cell transport method for independent depletion calculation of each of the nodes. This approach reduces by more than an order of magnitude the time required for getting comparable results using the MOCUP code system. The SAS2H/KENO-V results for the asymmetric IRIS core benchmark are in good agreement with the results of the ALPHA/PHOENIX/ANC code system. (author)

  4. Analysis of the OECD main steam line break benchmark using ANC-K/MIDAC code

    International Nuclear Information System (INIS)

    Aoki, Shigeaki; Tahara, Yoshihisa; Suemura, Takayuki; Ogawa, Junto

    2004-01-01

    A three-dimensional (3D) neutronics and thermal-and-hydraulics (T/H) coupling code ANC-K/MIDAC has been developed. It is the combination of the 3D nodal kinetic code ANC-K and the 3D drift flux thermal hydraulic code MIDAC. In order to verify the adequacy of this code, we have performed several international benchmark problems. In this paper, we show the calculation results of ''OECD Main Steam Line Break Benchmark (MSLB benchmark)'', which gives the typical local power peaking problem. And we calculated the return-to-power scenario of the Phase II problem. The comparison of the results shows the very good agreement of important core parameters between the ANC-K/MIDAC and other participant codes. (author)

  5. Library Benchmarking

    Directory of Open Access Journals (Sweden)

    Wiji Suwarno

    2017-02-01

    Full Text Available The term benchmarking has been encountered in the implementation of total quality (TQM or in Indonesian termed holistic quality management because benchmarking is a tool to look for ideas or learn from the library. Benchmarking is a processof measuring and comparing for continuous business process of systematic and continuous measurement, the process of measuring and comparing for continuous business process of an organization to get information that can help these organization improve their performance efforts.

  6. Benchmark tests of JENDL-1

    International Nuclear Information System (INIS)

    Kikuchi, Yasuyuki; Hasegawa, Akira; Takano, Hideki; Kamei, Takanobu; Hojuyama, Takeshi; Sasaki, Makoto; Seki, Yuji; Zukeran, Atsushi; Otake, Iwao.

    1982-02-01

    Various benchmark tests were made on JENDL-1. At the first stage, various core center characteristics were tested for many critical assemblies with one-dimensional model. At the second stage, applicability of JENDL-1 was further tested to more sophisticated problems for MOZART and ZPPR-3 assemblies with two-dimensional model. It was proved that JENDL-1 predicted various quantities of fast reactors satisfactorily as a whole. However, the following problems were pointed out: 1) There exists discrepancy of 0.9% in the k sub(eff)-values between the Pu- and U-cores. 2) The fission rate ratio of 239 Pu to 235 U is underestimated by 3%. 3) The Doppler reactivity coefficients are overestimated by about 10%. 4) The control rod worths are underestimated by 4%. 5) The fission rates of 235 U and 239 Pu are underestimated considerably in the outer core and radial blanket regions. 6) The negative sodium void reactivities are overestimated, when the sodium is removed from the outer core. As a whole, most of problems of JENDL-1 seem to be related with the neutron leakage and the neutron spectrum. It was found through the further study that most of these problems came from too small diffusion coefficients and too large elastic removal cross sections above 100 keV, which might be probably caused by overestimation of the total and elastic scattering cross sections for structural materials in the unresolved resonance region up to several MeV. (author)

  7. FENDL neutronics benchmark: Specifications for the calculational neutronics and shielding benchmark

    International Nuclear Information System (INIS)

    Sawan, M.E.

    1994-12-01

    During the IAEA Advisory Group Meeting on ''Improved Evaluations and Integral Data Testing for FENDL'' held in Garching near Munich, Germany in the period 12-16 September 1994, the Working Group II on ''Experimental and Calculational Benchmarks on Fusion Neutronics for ITER'' recommended that a calculational benchmark representative of the ITER design should be developed. This report describes the neutronics and shielding calculational benchmark available for scientists interested in performing analysis for this benchmark. (author)

  8. Benchmarking and Performance Measurement.

    Science.gov (United States)

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  9. Nonlinear Resonance Benchmarking Experiment at the CERN Proton Synchrotron

    CERN Document Server

    Hofmann, I; Giovannozzi, Massimo; Martini, M; Métral, Elias

    2003-01-01

    As a first step of a space charge - nonlinear resonance benchmarking experiment over a large number of turns, beam loss and emittance evolution were measured over 1 s on a 1.4 GeV kinetic energy flat-bottom in the presence of a single octupole. By lowering the working point towards the resonance a gradual transition from a loss-free core emittance blow-up to a regime dominated by continuous loss was found. Our 3D simulations with analytical space charge show that trapping on the resonance due to synchrotron oscillation causes the observed core emittance growth as well as halo formation, where the latter is explained as the source of the observed loss.

  10. Benchmarking in the Netherlands

    International Nuclear Information System (INIS)

    1999-01-01

    In two articles an overview is given of the activities in the Dutch industry and energy sector with respect to benchmarking. In benchmarking operational processes of different competitive businesses are compared to improve your own performance. Benchmark covenants for energy efficiency between the Dutch government and industrial sectors contribute to a growth of the number of benchmark surveys in the energy intensive industry in the Netherlands. However, some doubt the effectiveness of the benchmark studies

  11. Benchmarking health IT among OECD countries: better data for better policy.

    Science.gov (United States)

    Adler-Milstein, Julia; Ronchi, Elettra; Cohen, Genna R; Winn, Laura A Pannella; Jha, Ashish K

    2014-01-01

    To develop benchmark measures of health information and communication technology (ICT) use to facilitate cross-country comparisons and learning. The effort is led by the Organisation for Economic Co-operation and Development (OECD). Approaches to definition and measurement within four ICT domains were compared across seven OECD countries in order to identify functionalities in each domain. These informed a set of functionality-based benchmark measures, which were refined in collaboration with representatives from more than 20 OECD and non-OECD countries. We report on progress to date and remaining work to enable countries to begin to collect benchmark data. The four benchmarking domains include provider-centric electronic record, patient-centric electronic record, health information exchange, and tele-health. There was broad agreement on functionalities in the provider-centric electronic record domain (eg, entry of core patient data, decision support), and less agreement in the other three domains in which country representatives worked to select benchmark functionalities. Many countries are working to implement ICTs to improve healthcare system performance. Although many countries are looking to others as potential models, the lack of consistent terminology and approach has made cross-national comparisons and learning difficult. As countries develop and implement strategies to increase the use of ICTs to promote health goals, there is a historic opportunity to enable cross-country learning. To facilitate this learning and reduce the chances that individual countries flounder, a common understanding of health ICT adoption and use is needed. The OECD-led benchmarking process is a crucial step towards achieving this.

  12. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Aurelian F., E-mail: aurelian.badea@kit.edu [Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany); Cacuci, Dan G. [Center for Nuclear Science and Energy/Dept. of ME, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

    2017-03-15

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  13. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    International Nuclear Information System (INIS)

    Badea, Aurelian F.; Cacuci, Dan G.

    2017-01-01

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  14. INL Results for Phases I and III of the OECD/NEA MHTGR-350 Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Javier Ortensi; Sonat Sen; Hans Hammer

    2013-09-01

    The Idaho National Laboratory (INL) Very High Temperature Reactor (VHTR) Technology Development Office (TDO) Methods Core Simulation group led the construction of the Organization for Economic Cooperation and Development (OECD) Modular High Temperature Reactor (MHTGR) 350 MW benchmark for comparing and evaluating prismatic VHTR analysis codes. The benchmark is sponsored by the OECD's Nuclear Energy Agency (NEA), and the project will yield a set of reference steady-state, transient, and lattice depletion problems that can be used by the Department of Energy (DOE), the Nuclear Regulatory Commission (NRC), and vendors to assess their code suits. The Methods group is responsible for defining the benchmark specifications, leading the data collection and comparison activities, and chairing the annual technical workshops. This report summarizes the latest INL results for Phase I (steady state) and Phase III (lattice depletion) of the benchmark. The INSTANT, Pronghorn and RattleSnake codes were used for the standalone core neutronics modeling of Exercise 1, and the results obtained from these codes are compared in Section 4. Exercise 2 of Phase I requires the standalone steady-state thermal fluids modeling of the MHTGR-350 design, and the results for the systems code RELAP5-3D are discussed in Section 5. The coupled neutronics and thermal fluids steady-state solution for Exercise 3 are reported in Section 6, utilizing the newly developed Parallel and Highly Innovative Simulation for INL Code System (PHISICS)/RELAP5-3D code suit. Finally, the lattice depletion models and results obtained for Phase III are compared in Section 7. The MHTGR-350 benchmark proved to be a challenging simulation set of problems to model accurately, and even with the simplifications introduced in the benchmark specification this activity is an important step in the code-to-code verification of modern prismatic VHTR codes. A final OECD/NEA comparison report will compare the Phase I and III

  15. WLUP benchmarks

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2002-01-01

    The IAEA-WIMS Library Update Project (WLUP) is on the end stage. The final library will be released on 2002. It is a result of research and development made by more than ten investigators during 10 years. The organization of benchmarks for testing and choosing the best set of data has been coordinated by the author of this paper. It is presented the organization, name conventions, contents and documentation of WLUP benchmarks, and an updated list of the main parameters for all cases. First, the benchmarks objectives and types are given. Then, comparisons of results from different WIMSD libraries are included. Finally it is described the program QVALUE for analysis and plot of results. Some examples are given. The set of benchmarks implemented on this work is a fundamental tool for testing new multigroup libraries. (author)

  16. Numerical and computational aspects of the coupled three-dimensional core/ plant simulations: organization for economic cooperation and development/ U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-II. 2. TRAB-3D/SMABRE Calculation of the OECD/ NRC PWR MSLB Benchmark

    International Nuclear Information System (INIS)

    Daavittila, A.; Haemaelaeinen, A.; Kyrki-Rajamaki, R.

    2001-01-01

    All three exercises of the OECD/NRC Pressurized Water Reactor (PWR) Main-Steam-Line-Break (MSLB) Benchmark were calculated at VTT Energy. The SMABRE thermal-hydraulics code was used for the first exercise, the plant simulation with point-kinetics neutronics. The second exercise was calculated with the TRAB-3D three-dimensional reactor dynamics code. The third exercise was calculated with the combination TRAB-3D/SMABRE. Both codes have been developed at VTT Energy. The results of all the exercises agree reasonably well with those of the other participants; thus, instead of reporting the results, this paper concentrates on describing the computational aspects of the calculation with the foregoing codes and on some observations of the sensitivity of the results. In the TRAB-3D neutron kinetics, the two-group diffusion equations are solved in homogenized fuel assembly geometry with an efficient two-level nodal method. The point of the two-level iteration scheme is that only one unknown variable per node, the average neutron flux, is calculated during the inner iteration. The nodal flux shapes and cross sections are recalculated only once in the outer iteration loop. The TRAB-3D core model includes also parallel one-dimensional channel hydraulics with detailed fuel models. Advanced implicit time discretization methods are used in all submodels. SMABRE is a fast-running five-equation model completed by a drift-flux model, with a time discretization based on a non-iterative semi-implicit algorithm. For the third exercise of the benchmark, the TMI-1 models of TRAB-3D and SMABRE were coupled. This was the first time these codes were coupled together. However, similar coupling of the HEXTRAN and SMABRE codes has been shown to be stable and efficient, when used in safety analyses of Finnish and foreign VVER-type reactors. The coupling used between the two codes is called a parallel coupling. SMABRE solves the thermal hydraulics both in the cooling circuit and in the core

  17. Benchmarking electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Watts, K. [Department of Justice and Attorney-General, QLD (Australia)

    1995-12-31

    Benchmarking has been described as a method of continuous improvement that involves an ongoing and systematic evaluation and incorporation of external products, services and processes recognised as representing best practice. It is a management tool similar to total quality management (TQM) and business process re-engineering (BPR), and is best used as part of a total package. This paper discusses benchmarking models and approaches and suggests a few key performance indicators that could be applied to benchmarking electricity distribution utilities. Some recent benchmarking studies are used as examples and briefly discussed. It is concluded that benchmarking is a strong tool to be added to the range of techniques that can be used by electricity distribution utilities and other organizations in search of continuous improvement, and that there is now a high level of interest in Australia. Benchmarking represents an opportunity for organizations to approach learning from others in a disciplined and highly productive way, which will complement the other micro-economic reforms being implemented in Australia. (author). 26 refs.

  18. Performance of Artificial Intelligence Workloads on the Intel Core 2 Duo Series Desktop Processors

    Directory of Open Access Journals (Sweden)

    Abdul Kareem PARCHUR

    2010-12-01

    Full Text Available As the processor architecture becomes more advanced, Intel introduced its Intel Core 2 Duo series processors. Performance impact on Intel Core 2 Duo processors are analyzed using SPEC CPU INT 2006 performance numbers. This paper studied the behavior of Artificial Intelligence (AI benchmarks on Intel Core 2 Duo series processors. Moreover, we estimated the task completion time (TCT @1 GHz, @2 GHz and @3 GHz Intel Core 2 Duo series processors frequency. Our results show the performance scalability in Intel Core 2 Duo series processors. Even though AI benchmarks have similar execution time, they have dissimilar characteristics which are identified using principal component analysis and dendogram. As the processor frequency increased from 1.8 GHz to 3.167 GHz the execution time is decreased by ~370 sec for AI workloads. In the case of Physics/Quantum Computing programs it was ~940 sec.

  19. Benchmarking semantic web technology

    CERN Document Server

    García-Castro, R

    2009-01-01

    This book addresses the problem of benchmarking Semantic Web Technologies; first, from a methodological point of view, proposing a general methodology to follow in benchmarking activities over Semantic Web Technologies and, second, from a practical point of view, presenting two international benchmarking activities that involved benchmarking the interoperability of Semantic Web technologies using RDF(S) as the interchange language in one activity and OWL in the other.The book presents in detail how the different resources needed for these interoperability benchmarking activities were defined:

  20. Comparison of typical inelastic analysis predictions with benchmark problem experimental results

    International Nuclear Information System (INIS)

    Clinard, J.A.; Corum, J.M.; Sartory, W.K.

    1975-01-01

    The results of exemplary inelastic analyses for experimental benchmark problems on reactor components are presented. Consistent analytical procedures and constitutive relations were used in each of the analyses, and the material behavior data presented in the Appendix were used in all cases. Two finite-element inelastic computer programs were employed. These programs implement the analysis procedures and constitutive equations for type 304 stainless steel that are currently used in many analyses of elevated-temperature nuclear reactor system components. The analysis procedures and constitutive relations are briefly discussed, and representative analytical results are presented and compared to the test data. The results that are presented demonstrate the feasibility of performing inelastic analyses for the types of problems discussed, and they are indicative of the general level of agreement that the analyst might expect when using conventional inelastic analysis procedures. (U.S.)

  1. Calculations with ANSYS/FLOTRAN to a core catcher benchmark

    International Nuclear Information System (INIS)

    Willschuetz, H.G.

    1999-01-01

    There are numerous experiments for the exploration of the corium spreading behaviour, but comparable data have not been available up to now in the field of the long-term behaviour of a corium expanded in a core catcher. For the calculations a pure liquid oxidic melt with a homogeneous internal heat source was assumed. The melt was distributed uniformly over the spreading area of the EPR core catcher. All codes applied the well known k-ε-turbulence-model to simulate the turbulent flow regime of this melt configuration. While the FVM-code calculations were performed with three dimensional models using a simple symmetry, the problem was modelled two-dimensionally with ANSYS due to limited CPU performance. In addition, the 2D results of ANSYS should allow a comparison for the planned second stage of the calculations. In this second stage, the behaviour of a segregated metal oxide melt should be examined. However, first estimates and pre-calculations showed that a 3D simulation of the problem is not possible with any of the codes due to lacking computer performance. (orig.)

  2. RUNE benchmarks

    DEFF Research Database (Denmark)

    Peña, Alfredo

    This report contains the description of a number of benchmarks with the purpose of evaluating flow models for near-shore wind resource estimation. The benchmarks are designed based on the comprehensive database of observations that the RUNE coastal experiment established from onshore lidar...

  3. MCNP neutron benchmarks

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.

    1991-01-01

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  4. Discussion of OECD LWR Uncertainty Analysis in Modelling Benchmark

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.; Royer, E.; Gillford, J.

    2013-01-01

    The demand for best estimate calculations in nuclear reactor design and safety evaluations has increased in recent years. Uncertainty quantification has been highlighted as part of the best estimate calculations. The modelling aspects of uncertainty and sensitivity analysis are to be further developed and validated on scientific grounds in support of their performance and application to multi-physics reactor simulations. The Organization for Economic Co-operation and Development (OECD) / Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC) has endorsed the creation of an Expert Group on Uncertainty Analysis in Modelling (EGUAM). Within the framework of activities of EGUAM/NSC the OECD/NEA initiated the Benchmark for Uncertainty Analysis in Modelling for Design, Operation, and Safety Analysis of Light Water Reactor (OECD LWR UAM benchmark). The general objective of the benchmark is to propagate the predictive uncertainties of code results through complex coupled multi-physics and multi-scale simulations. The benchmark is divided into three phases with Phase I highlighting the uncertainty propagation in stand-alone neutronics calculations, while Phase II and III are focused on uncertainty analysis of reactor core and system respectively. This paper discusses the progress made in Phase I calculations, the Specifications for Phase II and the incoming challenges in defining Phase 3 exercises. The challenges of applying uncertainty quantification to complex code systems, in particular the time-dependent coupled physics models are the large computational burden and the utilization of non-linear models (expected due to the physics coupling). (authors)

  5. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    International Nuclear Information System (INIS)

    Han, Yu; Jiang, Xiaofeng; Wang, Dezhong

    2014-01-01

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times

  6. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  7. Validations of BWR nuclear design code using ABWR MOX numerical benchmark problems

    International Nuclear Information System (INIS)

    Takano, Shou; Sasagawa, Masaru; Yamana, Teppei; Ikehara, Tadashi; Yanagisawa, Naoki

    2017-01-01

    BWR core design code package (the HINES assembly code and the PANACH core simulator), being used for full MOX-ABWR core design, has been benchmarked against the high-fidelity numerical solutions as references, for the purpose of validating its capability of predicting the BWR core design parameters systematically from UO 2 to 100% MOX cores. The reference solutions were created by whole core critical calculations using MCNPs with the precisely modeled ABWR cores both in hot and cold conditions at BOC and EOC of the equilibrium cycle. A Doppler-Broadening Rejection Correction (DCRB) implemented MCNP5-1.4 with ENDF/B-VII.0 was mainly used to evaluate the core design parameters, except for effective delayed neutron fraction (β eff ) and prompt neutron lifetime (l) with MCNP6.1. The discrepancies in the results between the design codes HINES-PANACH and MCNPs for the core design parameters such as the bundle powers, hot pin powers, control rod worth, boron worth, void reactivity, Doppler reactivity, β eff and l, are almost within target accuracy, leading to the conclusion that HINES-PANACH has sufficient fidelity for application to full MOX-ABWR core design. (author)

  8. Development of a set of benchmark problems to verify numerical methods for solving burnup equations

    International Nuclear Information System (INIS)

    Lago, Daniel; Rahnema, Farzad

    2017-01-01

    Highlights: • Description transmutation chain benchmark problems. • Problems for validating numerical methods for solving burnup equations. • Analytical solutions for the burnup equations. • Numerical solutions for the burnup equations. - Abstract: A comprehensive set of transmutation chain benchmark problems for numerically validating methods for solving burnup equations was created. These benchmark problems were designed to challenge both traditional and modern numerical methods used to solve the complex set of ordinary differential equations used for tracking the change in nuclide concentrations over time due to nuclear phenomena. Given the development of most burnup solvers is done for the purpose of coupling with an established transport solution method, these problems provide a useful resource in testing and validating the burnup equation solver before coupling for use in a lattice or core depletion code. All the relevant parameters for each benchmark problem are described. Results are also provided in the form of reference solutions generated by the Mathematica tool, as well as additional numerical results from MATLAB.

  9. Two-dimensional full-core transport theory Benchmarks for the WWER reactors

    International Nuclear Information System (INIS)

    Petkov, P.T.

    2002-01-01

    Several two-dimensional full-core real geometry many-group steady-state problems for the WWER-440 and WWER-1000 reactors have been solved by the MARIKO code, based on the method of characteristics. The reference transport theory solutions include assembly-wise and pin-wise power distributions. Homogenized two-group diffusion parameters and discontinuity factors have been calculated by MARIKO for each assembly type both for the whole assembly and for each cell in the smallest sector of symmetry, using the B1 method for calculation of the critical spectrum. Accurate albedo-type boundary conditions have been calculated by MARIKO for the core-reflector and core-absorber boundaries, both for each outer assembly face and for each outer cell face. Comparison with the reference solutions of the two-group nodal diffusion code SPPS-1.6 and the few-group fine-mesh diffusion codes HEX2DA and HEX2DB are presented (Authors)

  10. Interim results of the sixth three-dimensional AER dynamic benchmark problem calculation. Solution of problem with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Hadek, J.; Kral, P.; Macek, J.

    2001-01-01

    The paper gives a brief survey of the 6 th three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAPS-3D at NRI Rez. This benchmark was defined at the 10 th AER Symposium. Its initiating event is a double ended break in the steam line of steam generator No. I in a WWER-440/213 plant at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations as well as tuning of initial state before the transient were performed with the code DYN3D. Transient calculations were made with the system code RELAPS-3D.The KASSETA library was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the 6 th AER dynamic benchmark purposes. The RELAPS-3D full core neutronic model was connected with seven coolant channels thermal-hydraulic model of the core (Authors)

  11. Benchmark selection

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2002-01-01

    Within a production theoretic framework, this paper considers an axiomatic approach to benchmark selection. It is shown that two simple and weak axioms; efficiency and comprehensive monotonicity characterize a natural family of benchmarks which typically becomes unique. Further axioms are added...... in order to obtain a unique selection...

  12. Benchmarking school nursing practice: the North West Regional Benchmarking Group

    OpenAIRE

    Littler, Nadine; Mullen, Margaret; Beckett, Helen; Freshney, Alice; Pinder, Lynn

    2016-01-01

    It is essential that the quality of care is reviewed regularly through robust processes such as benchmarking to ensure all outcomes and resources are evidence-based so that children and young people’s needs are met effectively. This article provides an example of the use of benchmarking in school nursing practice. Benchmarking has been defined as a process for finding, adapting and applying best practices (Camp, 1994). This concept was first adopted in the 1970s ‘from industry where it was us...

  13. Three-dimensional coupled kinetics/thermal- hydraulic benchmark TRIGA experiments

    International Nuclear Information System (INIS)

    Feltus, Madeline Anne; Miller, William Scott

    2000-01-01

    This research project provides separate effects tests in order to benchmark neutron kinetics models coupled with thermal-hydraulic (T/H) models used in best-estimate codes such as the Nuclear Regulatory Commission's (NRC) RELAP and TRAC code series and industrial codes such as RETRAN. Before this research project was initiated, no adequate experimental data existed for reactivity initiated transients that could be used to assess coupled three-dimensional (3D) kinetics and 3D T/H codes which have been, or are being developed around the world. Using various Test Reactor Isotope General Atomic (TRIGA) reactor core configurations at the Penn State Breazeale Reactor (PSBR), it is possible to determine the level of neutronics modeling required to describe kinetics and T/H feedback interactions. This research demonstrates that the small compact PSBR TRIGA core does not necessarily behave as a point kinetics reactor, but that this TRIGA can provide actual test results for 3D kinetics code benchmark efforts. This research focused on developing in-reactor tests that exhibited 3D neutronics effects coupled with 3D T/H feedback. A variety of pulses were used to evaluate the level of kinetics modeling needed for prompt temperature feedback in the fuel. Ramps and square waves were used to evaluate the detail of modeling needed for the delayed T/H feedback of the coolant. A stepped ramp was performed to evaluate and verify the derived thermal constants for the specific PSBR TRIGA core loading pattern. As part of the analytical benchmark research, the STAR 3D kinetics code (, STAR: Space and time analysis of reactors, Version 5, Level 3, Users Guide, Yankee Atomic Electric Company, YEAC 1758, Bolton, MA) was used to model the transient experiments. The STAR models were coupled with the one-dimensional (1D) WIGL and LRA and 3D COBRA (, COBRA IIIC: A digital computer program for steady-state and transient thermal-hydraulic analysis of rod bundle nuclear fuel elements, Battelle

  14. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    Science.gov (United States)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  15. Benchmark physics tests in the metallic-fuelled assembly ZPPR-15

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.

    1987-01-01

    In the last two years a shift in emphasis to inherent safety and economic competitiveness has led to a resurgence in US interest in metallic-alloy fuels for LMRs. Argonne National Laboratory initiated an extensive testing program for metallic-fuelled LMR technology that has included benchmark physics as one component. The tests done in the ZPPR-15 Program produced the first physics results in over 20 years for a metal-composition LMR core

  16. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Abanades, Alberto; Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto; Bornos, Victor; Kiyavitskaya, Anna; Carta, Mario; Janczyszyn, Jerzy; Maiorino, Jose; Pyeon, Cheolho; Stanculescu, Alexander; Titarenko, Yury; Westmeier, Wolfram

    2008-01-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  17. Development of three dimensional transient analysis code STTA for SCWR core

    International Nuclear Information System (INIS)

    Wang, Lianjie; Zhao, Wenbo; Chen, Bingde; Yao, Dong; Yang, Ping

    2015-01-01

    Highlights: • A coupled three dimensional neutronics/thermal-hydraulics code STTA is developed for SCWR core transient analysis. • The Dynamic Link Libraries method is adopted for coupling computation for SCWR multi-flow core transient analysis. • The NEACRP-L-335 PWR benchmark problems are studied to verify STTA. • The SCWR rod ejection problems are studied to verify STTA. • STTA meets what is expected from a code for SCWR core 3-D transient preliminary analysis. - Abstract: A coupled three dimensional neutronics/thermal-hydraulics code STTA (SCWR Three dimensional Transient Analysis code) is developed for SCWR core transient analysis. Nodal Green’s Function Method based on the second boundary condition (NGFMN-K) is used for solving transient neutron diffusion equation. The SCWR sub-channel code ATHAS is integrated into NGFMN-K through the serial integration coupling approach. The NEACRP-L-335 PWR benchmark problem and SCWR rod ejection problems are studied to verify STTA. Numerical results show that the PWR solution of STTA agrees well with reference solutions and the SCWR solution is reasonable. The coupled code can be well applied to the core transients and accidents analysis with 3-D core model during both subcritical pressure and supercritical pressure operation

  18. Finite element program ARKAS: verification for IAEA benchmark problem analysis on core-wide mechanical analysis of LMFBR cores

    International Nuclear Information System (INIS)

    Nakagawa, M.; Tsuboi, Y.

    1990-01-01

    ''ARKAS'' code verification, with the problems set in the International Working Group on Fast Reactors (IWGFR) Coordinated Research Programme (CRP) on the inter-comparison between liquid metal cooled fast breeder reactor (LMFBR) Core Mechanics Codes, is discussed. The CRP was co-ordinated by the IWGFR around problems set by Dr. R.G. Anderson (UKAEA) and arose from the IWGFR specialists' meeting on The Predictions and Experience of Core Distortion Behaviour (ref. 2). The problems for the verification (''code against code'') and validation (''code against experiment'') were set and calculated by eleven core mechanics codes from nine countries. All the problems have been completed and were solved with the core structural mechanics code ARKAS. Predictions by ARKAS agreed very well with other solutions for the well-defined verification problems. For the validation problems based on Japanese ex-reactor 2-D thermo-elastic experiments, the agreements between measured and calculated values were fairly good. This paper briefly describes the numerical model of the ARKAS code, and discusses some typical results. (author)

  19. Common Nearest Neighbor Clustering—A Benchmark

    Directory of Open Access Journals (Sweden)

    Oliver Lemke

    2018-02-01

    Full Text Available Cluster analyses are often conducted with the goal to characterize an underlying probability density, for which the data-point density serves as an estimate for this probability density. We here test and benchmark the common nearest neighbor (CNN cluster algorithm. This algorithm assigns a spherical neighborhood R to each data point and estimates the data-point density between two data points as the number of data points N in the overlapping region of their neighborhoods (step 1. The main principle in the CNN cluster algorithm is cluster growing. This grows the clusters by sequentially adding data points and thereby effectively positions the border of the clusters along an iso-surface of the underlying probability density. This yields a strict partitioning with outliers, for which the cluster represents peaks in the underlying probability density—termed core sets (step 2. The removal of the outliers on the basis of a threshold criterion is optional (step 3. The benchmark datasets address a series of typical challenges, including datasets with a very high dimensional state space and datasets in which the cluster centroids are aligned along an underlying structure (Birch sets. The performance of the CNN algorithm is evaluated with respect to these challenges. The results indicate that the CNN cluster algorithm can be useful in a wide range of settings. Cluster algorithms are particularly important for the analysis of molecular dynamics (MD simulations. We demonstrate how the CNN cluster results can be used as a discretization of the molecular state space for the construction of a core-set model of the MD improving the accuracy compared to conventional full-partitioning models. The software for the CNN clustering is available on GitHub.

  20. Effects of neutron data libraries and criticality codes on IAEA criticality benchmark problems

    International Nuclear Information System (INIS)

    Sarker, Md.M.; Takano, Makoto; Masukawa, Fumihiro; Naito, Yoshitaka

    1993-10-01

    In order to compare the effects of neutron data libraries and criticality codes to thermal reactors (LWR), the IAEA criticality benchmark calculations have been performed. The experiments selected in this study include TRX-1 and TRX-2 with a simple geometric configuration. Reactor lattice calculation codes WIMS-D/4, MCNP-4, JACS (MGCL, KENO), and SRAC were used in the present calculations. The TRX cores were analyzed by WIMS-D/4 using WIMS original library and also by MCNP-4, JACS (MGCL, KENO), and SRAC using the libraries generated from JENDL-3 and ENDF/B-IV nuclear data files. An intercomparison work for the above mentioned code systems and cross section libraries was performed by analyzing the LWR benchmark experiments TRX-1 and TRX-2. The TRX cores were also analyzed for supercritical and subcritical conditions and these results were compared. In the case of critical condition, the results were in good agreement. But for the supercritical and subcritical conditions, the difference of the results obtained by using the different cross section libraries become larger than for the critical condition. (author)

  1. NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) Benchmark. Volume II: uncertainty and sensitivity analyses of void distribution and critical power - Specification

    International Nuclear Information System (INIS)

    Aydogan, F.; Hochreiter, L.; Ivanov, K.; Martin, M.; Utsuno, H.; Sartori, E.

    2010-01-01

    experimental cases from the BFBT database for both steady-state void distribution and steady-state critical power uncertainty analyses. In order to study the basic thermal-hydraulics in a single channel, where the concern regarding the cross-flow effect modelling could be removed, an elemental task is proposed, consisting of two sub-tasks that are placed in each phase of the benchmark scope as follows: - Sub-task 1: Void fraction in elemental channel benchmark; - Sub-task 2: Critical power in elemental channel benchmark. The first task can also be utilised as an uncertainty analysis exercise for fine computational fluid dynamics (CFD) models for which the full bundle sensitivity or uncertainty analysis is more difficult. The task is added to the second volume of the specification as an optional exercise. Chapter 2 of this document provides the definition of UA/SA terms. Chapter 3 provides the selection and characterisation of the input uncertain parameters for the BFBT benchmark and the description of the elemental task. Chapter 4 describes the suggested approach for UA/SA of the BFBT benchmark. Chapter 5 provides the selection of data sets for the uncertainty analysis and the elemental task from the BFBT database. Chapter 6 specifies the requested output for void distribution and critical power uncertainty analyses (Exercises I-4 and II-3) as well as for the elemental task. Chapter 7 provides conclusions. Appendix 1 discusses the UA/SA methods. Appendix 2 presents the Phenomena Identification Ranking Tables (PIRT) developed at PSU for void distribution and critical power predictions in order to assist participants in selecting the most sensitive/uncertain code model parameters

  2. Interactive benchmarking

    DEFF Research Database (Denmark)

    Lawson, Lartey; Nielsen, Kurt

    2005-01-01

    We discuss individual learning by interactive benchmarking using stochastic frontier models. The interactions allow the user to tailor the performance evaluation to preferences and explore alternative improvement strategies by selecting and searching the different frontiers using directional...... in the suggested benchmarking tool. The study investigates how different characteristics on dairy farms influences the technical efficiency....

  3. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  4. Evaluation of the computer code system RADHEAT-V4 by analysing benchmark problems on radiation shielding

    International Nuclear Information System (INIS)

    Sakamoto, Yukio; Naito, Yoshitaka

    1990-11-01

    A computer code system RADHEAT-V4 has been developed for safety evaluation on radiation shielding of nuclear fuel facilities. To evaluate the performance of the code system, 18 benchmark problem were selected and analysed. Evaluated radiations are neutron and gamma-ray. Benchmark problems consist of penetration, streaming and skyshine. The computed results show more accurate than those by the Sn codes ANISN and DOT3.5 or the Monte Carlo code MORSE. Big core memory and many times I/O are, however, required for RADHEAT-V4. (author)

  5. The KMAT: Benchmarking Knowledge Management.

    Science.gov (United States)

    de Jager, Martha

    Provides an overview of knowledge management and benchmarking, including the benefits and methods of benchmarking (e.g., competitive, cooperative, collaborative, and internal benchmarking). Arthur Andersen's KMAT (Knowledge Management Assessment Tool) is described. The KMAT is a collaborative benchmarking tool, designed to help organizations make…

  6. Benchmarking in Mobarakeh Steel Company

    OpenAIRE

    Sasan Ghasemi; Mohammad Nazemi; Mehran Nejati

    2008-01-01

    Benchmarking is considered as one of the most effective ways of improving performance in companies. Although benchmarking in business organizations is a relatively new concept and practice, it has rapidly gained acceptance worldwide. This paper introduces the benchmarking project conducted in Esfahan's Mobarakeh Steel Company, as the first systematic benchmarking project conducted in Iran. It aims to share the process deployed for the benchmarking project in this company and illustrate how th...

  7. The Monte Carlo performance benchmark test - AIMS, specifications and first results

    Energy Technology Data Exchange (ETDEWEB)

    Hoogenboom, J. Eduard, E-mail: j.e.hoogenboom@tudelft.nl [Faculty of Applied Sciences, Delft University of Technology (Netherlands); Martin, William R., E-mail: wrm@umich.edu [Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States); Petrovic, Bojan, E-mail: Bojan.Petrovic@gatech.edu [Nuclear and Radiological Engineering, Georgia Institute of Technology, Atlanta, GA (United States)

    2011-07-01

    The Monte Carlo performance benchmark for detailed power density calculation in a full-size reactor core is organized under the auspices of the OECD NEA Data Bank. It aims at monitoring over a range of years the increase in performance, measured in terms of standard deviation and computer time, of Monte Carlo calculation of the power density in small volumes. A short description of the reactor geometry and composition is discussed. One of the unique features of the benchmark exercise is the possibility to upload results from participants at a web site of the NEA Data Bank which enables online analysis of results and to graphically display how near we are at the goal of doing a detailed power distribution calculation with acceptable statistical uncertainty in an acceptable computing time. First results are discussed which show that 10 to 100 billion histories must be simulated to reach a standard deviation of a few percent in the estimated power of most of the requested the fuel zones. Even when using a large supercomputer, a considerable speedup is still needed to reach the target of 1 hour computer time. An outlook is given of what to expect from this benchmark exercise over the years. Possible extensions of the benchmark for specific issues relevant in current Monte Carlo calculation for nuclear reactors are also discussed. (author)

  8. The Monte Carlo performance benchmark test - AIMS, specifications and first results

    International Nuclear Information System (INIS)

    Hoogenboom, J. Eduard; Martin, William R.; Petrovic, Bojan

    2011-01-01

    The Monte Carlo performance benchmark for detailed power density calculation in a full-size reactor core is organized under the auspices of the OECD NEA Data Bank. It aims at monitoring over a range of years the increase in performance, measured in terms of standard deviation and computer time, of Monte Carlo calculation of the power density in small volumes. A short description of the reactor geometry and composition is discussed. One of the unique features of the benchmark exercise is the possibility to upload results from participants at a web site of the NEA Data Bank which enables online analysis of results and to graphically display how near we are at the goal of doing a detailed power distribution calculation with acceptable statistical uncertainty in an acceptable computing time. First results are discussed which show that 10 to 100 billion histories must be simulated to reach a standard deviation of a few percent in the estimated power of most of the requested the fuel zones. Even when using a large supercomputer, a considerable speedup is still needed to reach the target of 1 hour computer time. An outlook is given of what to expect from this benchmark exercise over the years. Possible extensions of the benchmark for specific issues relevant in current Monte Carlo calculation for nuclear reactors are also discussed. (author)

  9. Benchmarking road safety performance: Identifying a meaningful reference (best-in-class).

    Science.gov (United States)

    Chen, Faan; Wu, Jiaorong; Chen, Xiaohong; Wang, Jianjun; Wang, Di

    2016-01-01

    For road safety improvement, comparing and benchmarking performance are widely advocated as the emerging and preferred approaches. However, there is currently no universally agreed upon approach for the process of road safety benchmarking, and performing the practice successfully is by no means easy. This is especially true for the two core activities of which: (1) developing a set of road safety performance indicators (SPIs) and combining them into a composite index; and (2) identifying a meaningful reference (best-in-class), one which has already obtained outstanding road safety practices. To this end, a scientific technique that can combine the multi-dimensional safety performance indicators (SPIs) into an overall index, and subsequently can identify the 'best-in-class' is urgently required. In this paper, the Entropy-embedded RSR (Rank-sum ratio), an innovative, scientific and systematic methodology is investigated with the aim of conducting the above two core tasks in an integrative and concise procedure, more specifically in a 'one-stop' way. Using a combination of results from other methods (e.g. the SUNflower approach) and other measures (e.g. Human Development Index) as a relevant reference, a given set of European countries are robustly ranked and grouped into several classes based on the composite Road Safety Index. Within each class the 'best-in-class' is then identified. By benchmarking road safety performance, the results serve to promote best practice, encourage the adoption of successful road safety strategies and measures and, more importantly, inspire the kind of political leadership needed to create a road transport system that maximizes safety. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. How Activists Use Benchmarks

    DEFF Research Database (Denmark)

    Seabrooke, Leonard; Wigan, Duncan

    2015-01-01

    Non-governmental organisations use benchmarks as a form of symbolic violence to place political pressure on firms, states, and international organisations. The development of benchmarks requires three elements: (1) salience, that the community of concern is aware of the issue and views...... are put to the test. The first is a reformist benchmarking cycle where organisations defer to experts to create a benchmark that conforms with the broader system of politico-economic norms. The second is a revolutionary benchmarking cycle driven by expert-activists that seek to contest strong vested...... interests and challenge established politico-economic norms. Differentiating these cycles provides insights into how activists work through organisations and with expert networks, as well as how campaigns on complex economic issues can be mounted and sustained....

  11. Benchmarking in Mobarakeh Steel Company

    Directory of Open Access Journals (Sweden)

    Sasan Ghasemi

    2008-05-01

    Full Text Available Benchmarking is considered as one of the most effective ways of improving performance incompanies. Although benchmarking in business organizations is a relatively new concept and practice, ithas rapidly gained acceptance worldwide. This paper introduces the benchmarking project conducted in Esfahan’s Mobarakeh Steel Company, as the first systematic benchmarking project conducted in Iran. It aimsto share the process deployed for the benchmarking project in this company and illustrate how the projectsystematic implementation led to succes.

  12. Aquatic Life Benchmarks

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aquatic Life Benchmarks is an EPA-developed set of criteria for freshwater species. These benchmarks are based on toxicity values reviewed by EPA and used in the...

  13. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of bench-marking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  14. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  15. Benchmarking and the laboratory

    Science.gov (United States)

    Galloway, M; Nadin, L

    2001-01-01

    This article describes how benchmarking can be used to assess laboratory performance. Two benchmarking schemes are reviewed, the Clinical Benchmarking Company's Pathology Report and the College of American Pathologists' Q-Probes scheme. The Clinical Benchmarking Company's Pathology Report is undertaken by staff based in the clinical management unit, Keele University with appropriate input from the professional organisations within pathology. Five annual reports have now been completed. Each report is a detailed analysis of 10 areas of laboratory performance. In this review, particular attention is focused on the areas of quality, productivity, variation in clinical practice, skill mix, and working hours. The Q-Probes scheme is part of the College of American Pathologists programme in studies of quality assurance. The Q-Probes scheme and its applicability to pathology in the UK is illustrated by reviewing two recent Q-Probe studies: routine outpatient test turnaround time and outpatient test order accuracy. The Q-Probes scheme is somewhat limited by the small number of UK laboratories that have participated. In conclusion, as a result of the government's policy in the UK, benchmarking is here to stay. Benchmarking schemes described in this article are one way in which pathologists can demonstrate that they are providing a cost effective and high quality service. Key Words: benchmarking • pathology PMID:11477112

  16. Benchmarking for Higher Education.

    Science.gov (United States)

    Jackson, Norman, Ed.; Lund, Helen, Ed.

    The chapters in this collection explore the concept of benchmarking as it is being used and developed in higher education (HE). Case studies and reviews show how universities in the United Kingdom are using benchmarking to aid in self-regulation and self-improvement. The chapters are: (1) "Introduction to Benchmarking" (Norman Jackson…

  17. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  18. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  19. RETRAN-3D Analysis Of The OECD/NRC Peach Bottom 2 Turbine Trip Benchmark

    International Nuclear Information System (INIS)

    Barten, W.; Coddington, P.

    2003-01-01

    This paper presents the PSI results on the different Phases of the Peach Bottom BWR Turbine Trip Benchmark using the RETRAN-3D code. In the first part of the paper, the analysis of Phase 1 is presented, in which the system pressure is predicted based on a pre-defined core power distribution. These calculations demonstrate the importance of accurate modelling of the non-equilibrium effects within the steam separator region. In the second part, a selection of the RETRAN-3D results for Phase 2 are given, where the power is predicted using a 3-D core with pre-defined core flow and pressure boundary conditions. A comparison of calculations using the different (Benchmark-specified) boundary conditions illustrates the sensitivity of the power maximum on the various resultant system parameters. In the third part of the paper, the results of the Phase 3 calculation are presented. This phase, which is a combination of the analytical work of Phases 1 and 2, gives good agreement with the measured data. The coupling of the pressure and flow oscillations in the steam line, the mass balance in the core, the (void) reactivity and the core power are all discussed. It is shown that the reactivity effects resulting from the change in the core void can explain the overall behaviour of the transient prior to the reactor scram. The time-dependent, normalized power for different thermal-hydraulic channels in the core is discussed in some detail. Up to the time of reactor scram, the power change was similar in all channels, with differences of the order of only a few percent. The axial shape of the channel powers at the time of maximum (overall) power increased in the core centre (compared with the shape at time zero). These changes occur as a consequence of the relative change in the channel void, which is largest in the region of the onset of boiling, and the influence on the different fuel assemblies of the complex ring pattern of the control rods. (author)

  20. RETRAN-3D Analysis Of The OECD/NRC Peach Bottom 2 Turbine Trip Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Barten, W.; Coddington, P

    2003-03-01

    This paper presents the PSI results on the different Phases of the Peach Bottom BWR Turbine Trip Benchmark using the RETRAN-3D code. In the first part of the paper, the analysis of Phase 1 is presented, in which the system pressure is predicted based on a pre-defined core power distribution. These calculations demonstrate the importance of accurate modelling of the non-equilibrium effects within the steam separator region. In the second part, a selection of the RETRAN-3D results for Phase 2 are given, where the power is predicted using a 3-D core with pre-defined core flow and pressure boundary conditions. A comparison of calculations using the different (Benchmark-specified) boundary conditions illustrates the sensitivity of the power maximum on the various resultant system parameters. In the third part of the paper, the results of the Phase 3 calculation are presented. This phase, which is a combination of the analytical work of Phases 1 and 2, gives good agreement with the measured data. The coupling of the pressure and flow oscillations in the steam line, the mass balance in the core, the (void) reactivity and the core power are all discussed. It is shown that the reactivity effects resulting from the change in the core void can explain the overall behaviour of the transient prior to the reactor scram. The time-dependent, normalized power for different thermal-hydraulic channels in the core is discussed in some detail. Up to the time of reactor scram, the power change was similar in all channels, with differences of the order of only a few percent. The axial shape of the channel powers at the time of maximum (overall) power increased in the core centre (compared with the shape at time zero). These changes occur as a consequence of the relative change in the channel void, which is largest in the region of the onset of boiling, and the influence on the different fuel assemblies of the complex ring pattern of the control rods. (author)

  1. Benchmarking and Learning in Public Healthcare

    DEFF Research Database (Denmark)

    Buckmaster, Natalie; Mouritsen, Jan

    2017-01-01

    This research investigates the effects of learning-oriented benchmarking in public healthcare settings. Benchmarking is a widely adopted yet little explored accounting practice that is part of the paradigm of New Public Management. Extant studies are directed towards mandated coercive benchmarking...... applications. The present study analyses voluntary benchmarking in a public setting that is oriented towards learning. The study contributes by showing how benchmarking can be mobilised for learning and offers evidence of the effects of such benchmarking for performance outcomes. It concludes that benchmarking...... can enable learning in public settings but that this requires actors to invest in ensuring that benchmark data are directed towards improvement....

  2. Benchmark job – Watch out!

    CERN Multimedia

    Staff Association

    2017-01-01

    On 12 December 2016, in Echo No. 259, we already discussed at length the MERIT and benchmark jobs. Still, we find that a couple of issues warrant further discussion. Benchmark job – administrative decision on 1 July 2017 On 12 January 2017, the HR Department informed all staff members of a change to the effective date of the administrative decision regarding benchmark jobs. The benchmark job title of each staff member will be confirmed on 1 July 2017, instead of 1 May 2017 as originally announced in HR’s letter on 18 August 2016. Postponing the administrative decision by two months will leave a little more time to address the issues related to incorrect placement in a benchmark job. Benchmark job – discuss with your supervisor, at the latest during the MERIT interview In order to rectify an incorrect placement in a benchmark job, it is essential that the supervisor and the supervisee go over the assigned benchmark job together. In most cases, this placement has been done autom...

  3. OECD/NRC BWR Turbine Trip Transient Benchmark as a Basis for Comprehensive Qualification and Studying Best-Estimate Coupled Codes

    International Nuclear Information System (INIS)

    Ivanov, Kostadin; Olson, Andy; Sartori, Enrico

    2004-01-01

    An Organisation for Economic Co-operation and Development (OECD)/U.S. Nuclear Regulatory Commission (NRC)-sponsored coupled-code benchmark has been initiated for a boiling water reactor (BWR) turbine trip (TT) transient. Turbine trip transients in a BWR are pressurization events in which the coupling between core space-dependent neutronic phenomena and system dynamics plays an important role. In addition, the available real plant experimental data make this benchmark problem very valuable. Over the course of defining and coordinating the BWR TT benchmark, a systematic approach has been established to validate best-estimate coupled codes. This approach employs a multilevel methodology that not only allows for a consistent and comprehensive validation process but also contributes to the study of different numerical and computational aspects of coupled best-estimate simulations. This paper provides an overview of the OECD/NRC BWR TT benchmark activities with emphasis on the discussion of the numerical and computational aspects of the benchmark

  4. A simplified approach to WWER-440 fuel assembly head benchmark

    International Nuclear Information System (INIS)

    Muehlbauer, P.

    2010-01-01

    The WWER-440 fuel assembly head benchmark was simulated with FLUENT 12 code as a first step of validation of the code for nuclear reactor safety analyses. Results of the benchmark together with comparison of results provided by other participants and results of measurement will be presented in another paper by benchmark organisers. This presentation is therefore focused on our approach to this simulation as illustrated on the case 323-34, which represents a peripheral assembly with five neighbours. All steps of the simulation and some lessons learned are described. Geometry of the computational region supplied as STEP file by organizers of the benchmark was first separated into two parts (inlet part with spacer grid, and the rest of assembly head) in order to keep the size of the computational mesh manageable with regard to the hardware available (HP Z800 workstation with Intel Zeon four-core CPU 3.2 GHz, 32 GB of RAM) and then further modified at places where shape of the geometry would probably lead to highly distorted cells. Both parts of the geometry were connected via boundary profile file generated at cross section, where effect of grid spacers is still felt but the effect of out flow boundary condition used in the computations of the inlet part of geometry is negligible. Computation proceeded in several steps: start with basic mesh, standard k-ε model of turbulence with standard wall functions and first order upwind numerical schemes; after convergence (scaled residuals lower than 10-3) and near-wall meshes local adaptation when needed, realizable k-ε of turbulence was used with second order upwind numerical schemes for momentum and energy equations. During iterations, area-average temperature of thermocouples and area-averaged outlet temperature which are the main figures of merit of the benchmark were also monitored. In this 'blind' phase of the benchmark, effect of spacers was neglected. After results of measurements are available, standard validation

  5. Benchmarking reference services: an introduction.

    Science.gov (United States)

    Marshall, J G; Buchanan, H S

    1995-01-01

    Benchmarking is based on the common sense idea that someone else, either inside or outside of libraries, has found a better way of doing certain things and that your own library's performance can be improved by finding out how others do things and adopting the best practices you find. Benchmarking is one of the tools used for achieving continuous improvement in Total Quality Management (TQM) programs. Although benchmarking can be done on an informal basis, TQM puts considerable emphasis on formal data collection and performance measurement. Used to its full potential, benchmarking can provide a common measuring stick to evaluate process performance. This article introduces the general concept of benchmarking, linking it whenever possible to reference services in health sciences libraries. Data collection instruments that have potential application in benchmarking studies are discussed and the need to develop common measurement tools to facilitate benchmarking is emphasized.

  6. RB reactor as the U-D2O benchmark criticality system

    International Nuclear Information System (INIS)

    Pesic, M.

    1998-01-01

    From a rich and valuable database fro 580 different reactor cores formed up to now in the RB nuclear reactor, a selected and well recorded set is carefully chosen and preliminarily proposed as a new uranium-heavy water benchmark criticality system for validation od reactor design computer codes and data libraries. The first results of validation of the MCNP code and adjoining neutron cross section libraries are resented in this paper. (author)

  7. Internet based benchmarking

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Nielsen, Kurt

    2005-01-01

    We discuss the design of interactive, internet based benchmarking using parametric (statistical) as well as nonparametric (DEA) models. The user receives benchmarks and improvement potentials. The user is also given the possibility to search different efficiency frontiers and hereby to explore...

  8. Appraisement and benchmarking of third-party logistic service provider by exploration of risk-based approach

    Directory of Open Access Journals (Sweden)

    Nitin Kumar Sahu

    2015-12-01

    Full Text Available In the present era, Reverse Logistics Support has monitored as a momentous realm, where stuffs are transferred from point of consumption to origin. The companies who provide the logistic equipments, i.e. Truck, Joseph Cyril Bomford, and Shipment, etc. to its partner’s firms called Third-Party Logistics (3PL service provider. Today, the feasible 3PL service provider evaluation-opt problem is yet an amorous dilemma. The appraisement and benchmarking of logistics service providers in extent of index; allied risk-based indices and their interrelated metrics; outlooked as a great tool for each international firm, in order that firm could obtain their core goals. The novelty of manuscript is that here, a hairy-based approach has been integrated and then implemented upon a novel developed multi hierarchical third-party logistics (3PL service providers appraisement index in purpose to umpire the 3PL provider for their strong and ill’s core indices. Moreover, the overall score (Si system has also been carried out for benchmarking the 3PL provider companies, where s1 has been found as the best 3PL service provider. The developed approach enabled the manager of firms to make the verdict towards the best inclusive evaluation process of 3PL performance appraisement and benchmarking. A numerical illustration has also been provided to validate the verdict support system.

  9. JNC results of BN-600 benchmark calculation (phase 3)

    International Nuclear Information System (INIS)

    Ishikawa, M.

    2002-01-01

    The present work is the result of phase 3 BN-600 core benchmark problem, meaning burnup and heterogeneity. Analytical method applied consisted of: JENDL-3.2 nuclear data library, group constants (70 group, ABBN type self shielding transport factors), heterogeneous cell model for fuel and control rod, basic diffusion calculation (CITATION code), transport theory and mesh size correction (NSHEX code based on SN transport nodal method developed by JNC). Burnup and heterogeneity calculation results are presented obtained by applying both diffusion and transport approach for beginning and end of cycle

  10. Real-time advanced nuclear reactor core model

    International Nuclear Information System (INIS)

    Koclas, J.; Friedman, F.; Paquette, C.; Vivier, P.

    1990-01-01

    The paper describes a multi-nodal advanced nuclear reactor core model. The model is based on application of modern equivalence theory to the solution of neutron diffusion equation in real time employing the finite differences method. The use of equivalence theory allows the application of the finite differences method to cores divided into hundreds of nodes, as opposed to the much finer divisions (in the order of ten thousands of nodes) where the unmodified method is currently applied. As a result the model can be used for modelling of the core kinetics for real time full scope training simulators. Results of benchmarks, validate the basic assumptions of the model and its applicability to real-time simulation. (orig./HP)

  11. Track 3: growth of nuclear technology and research numerical and computational aspects of the coupled three-dimensional core/plant simulations: organization for economic cooperation and development/U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-I. 5. Analyses of the OECD MSLB Benchmark with the Codes DYN3D and DYN3D/ATHLET

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.

    2001-01-01

    The code DYN3D coupled with ATHLET was used for the analysis of the OECD Main-Steam-Line-Break (MSLB) Benchmark, which is based on real plant design and operational data of the TMI-1 pressurized water reactor (PWR). Like the codes RELAP or TRAC,ATHLET is a thermal-hydraulic system code with point or one-dimensional neutron kinetic models. ATHLET, developed by the Gesellschaft for Anlagen- und Reaktorsicherheit, is widely used in Germany for safety analyses of nuclear power plants. DYN3D consists of three-dimensional nodal kinetic models and a thermal-hydraulic part with parallel coolant channels of the reactor core. DYN3D was coupled with ATHLET for analyzing more complex transients with interactions between coolant flow conditions and core behavior. It can be applied to the whole spectrum of operational transients and accidents, from small and intermediate leaks to large breaks of coolant loops or steam lines at PWRs and boiling water reactors. The so-called external coupling is used for the benchmark, where the thermal hydraulics is split into two parts: DYN3D describes the thermal hydraulics of the core, while ATHLET models the coolant system. Three exercises of the benchmark were simulated: Exercise 1: point kinetics plant simulation (ATHLET) Exercise 2: coupled three-dimensional neutronics/core thermal-hydraulics evaluation of the core response for given core thermal-hydraulic boundary conditions (DYN3D) Exercise 3: best-estimate coupled core-plant transient analysis (DYN3D/ATHLET). Considering the best-estimate cases (scenarios 1 of exercises 2 and 3), the reactor does not reach criticality after the reactor trip. Defining more serious tests for the codes, the efficiency of the control rods was decreased (scenarios 2 of exercises 2 and 3) to obtain recriticality during the transient. Besides the standard simulation given by the specification, modifications are introduced for sensitivity studies. The results presented here show (a) the influence of a reduced

  12. Benchmarking in academic pharmacy departments.

    Science.gov (United States)

    Bosso, John A; Chisholm-Burns, Marie; Nappi, Jean; Gubbins, Paul O; Ross, Leigh Ann

    2010-10-11

    Benchmarking in academic pharmacy, and recommendations for the potential uses of benchmarking in academic pharmacy departments are discussed in this paper. Benchmarking is the process by which practices, procedures, and performance metrics are compared to an established standard or best practice. Many businesses and industries use benchmarking to compare processes and outcomes, and ultimately plan for improvement. Institutions of higher learning have embraced benchmarking practices to facilitate measuring the quality of their educational and research programs. Benchmarking is used internally as well to justify the allocation of institutional resources or to mediate among competing demands for additional program staff or space. Surveying all chairs of academic pharmacy departments to explore benchmarking issues such as department size and composition, as well as faculty teaching, scholarly, and service productivity, could provide valuable information. To date, attempts to gather this data have had limited success. We believe this information is potentially important, urge that efforts to gather it should be continued, and offer suggestions to achieve full participation.

  13. Benchmark tests for fast and thermal reactor applications

    International Nuclear Information System (INIS)

    Seki, Yuji

    1984-01-01

    Integral tests of JENDL-2 library for fast and thermal reactor applications are reviewed including relevant analyses of JUPITER experiments. Criticality and core center characteristics were tested with one-dimensional models for a total of 27 fast critical assemblies. More sofisticated problems such as reaction rate distributions, control rod worths and sodium void reactivities were tested using two-dimensional models for MOZART and ZPPR-3 assemblies. Main observations from the fast core benchmark tests are as follows. 1) The criticality is well predicted; the average C/E value is 0.999+-0.008 for uranium cores and 0.997+-0.005 for plutonium cores. 2) The calculation underpredicts the reaction rate ratio 239 Pusub(fis)/ 235 Usub(fis) by 3% and overpredicts 238 Usub(cap)/ 239 Pusub(fis) by 6%. The results are consistent with those of JUPITER analyses. 3) The reaction rate distributions in the cores of prototype size are well predicted within +-3%. In larger JUPITER cores, however, the C/E value increases with the radial distance from the core center up to 6% at the outer core edge. 4) The prediction of control rod worths is satisfactory; C/E values are within the range from 0.92 to 0.97 with no apparent dependence on 10 B enrichment and the number of control rods inserted. Spatial dependence of C/E is also observed in the JUPITER cores. 5) The sodium void reactivity is overpredicted by 30% to 50% to the positive side. 1) The criticality is well predicted, as is the same in the fast core tests; the average C/E is 0.997+-0.003. 2) The calculation overpredicts 238 Usub(fis)/ 235 Usub(fis) by 3% to 6%, which shows the same tendency as in the small and medium size fast assemblies. The 238 Usub(cap)/ 235 Usub(fis) ratio is well predicted in the thermal cores. The calculated reaction rate ratios of 232 Th deviate from the measurements by 10% to 15%. (author)

  14. Proposed biopsy performance benchmarks for MRI based on an audit of a large academic center.

    Science.gov (United States)

    Sedora Román, Neda I; Mehta, Tejas S; Sharpe, Richard E; Slanetz, Priscilla J; Venkataraman, Shambhavi; Fein-Zachary, Valerie; Dialani, Vandana

    2018-05-01

    Performance benchmarks exist for mammography (MG); however, performance benchmarks for magnetic resonance imaging (MRI) are not yet fully developed. The purpose of our study was to perform an MRI audit based on established MG and screening MRI benchmarks and to review whether these benchmarks can be applied to an MRI practice. An IRB approved retrospective review of breast MRIs was performed at our center from 1/1/2011 through 12/31/13. For patients with biopsy recommendation, core biopsy and surgical pathology results were reviewed. The data were used to derive mean performance parameter values, including abnormal interpretation rate (AIR), positive predictive value (PPV), cancer detection rate (CDR), percentage of minimal cancers and axillary node negative cancers and compared with MG and screening MRI benchmarks. MRIs were also divided by screening and diagnostic indications to assess for differences in performance benchmarks amongst these two groups. Of the 2455 MRIs performed over 3-years, 1563 were performed for screening indications and 892 for diagnostic indications. With the exception of PPV2 for screening breast MRIs from 2011 to 2013, PPVs were met for our screening and diagnostic populations when compared to the MRI screening benchmarks established by the Breast Imaging Reporting and Data System (BI-RADS) 5 Atlas ® . AIR and CDR were lower for screening indications as compared to diagnostic indications. New MRI screening benchmarks can be used for screening MRI audits while the American College of Radiology (ACR) desirable goals for diagnostic MG can be used for diagnostic MRI audits. Our study corroborates established findings regarding differences in AIR and CDR amongst screening versus diagnostic indications. © 2017 Wiley Periodicals, Inc.

  15. Benchmarking: applications to transfusion medicine.

    Science.gov (United States)

    Apelseth, Torunn Oveland; Molnar, Laura; Arnold, Emmy; Heddle, Nancy M

    2012-10-01

    Benchmarking is as a structured continuous collaborative process in which comparisons for selected indicators are used to identify factors that, when implemented, will improve transfusion practices. This study aimed to identify transfusion medicine studies reporting on benchmarking, summarize the benchmarking approaches used, and identify important considerations to move the concept of benchmarking forward in the field of transfusion medicine. A systematic review of published literature was performed to identify transfusion medicine-related studies that compared at least 2 separate institutions or regions with the intention of benchmarking focusing on 4 areas: blood utilization, safety, operational aspects, and blood donation. Forty-five studies were included: blood utilization (n = 35), safety (n = 5), operational aspects of transfusion medicine (n = 5), and blood donation (n = 0). Based on predefined criteria, 7 publications were classified as benchmarking, 2 as trending, and 36 as single-event studies. Three models of benchmarking are described: (1) a regional benchmarking program that collects and links relevant data from existing electronic sources, (2) a sentinel site model where data from a limited number of sites are collected, and (3) an institutional-initiated model where a site identifies indicators of interest and approaches other institutions. Benchmarking approaches are needed in the field of transfusion medicine. Major challenges include defining best practices and developing cost-effective methods of data collection. For those interested in initiating a benchmarking program, the sentinel site model may be most effective and sustainable as a starting point, although the regional model would be the ideal goal. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. IAEA coordinated research project on 'analytical and experimental benchmark analyses of accelerator driven systems'

    International Nuclear Information System (INIS)

    Ait-Abderrahim, H.; Stanculescu, A.

    2006-01-01

    This paper provides the general background and the main specifications of the benchmark exercises performed within the framework of the IAEA Coordinated Research Project (CRP) on Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWG-FR) of IAEA's Nuclear Energy Dept., is to contribute to the generic R and D efforts in various fields common to innovative fast neutron system development, i.e. heavy liquid metal thermal hydraulics, dedicated transmutation fuels and associated core designs, theoretical nuclear reaction models, measurement and evaluation of nuclear data for transmutation, and development and validation of calculational methods and codes. (authors)

  17. German (GRS) approach to accident analysis (part I). German licensing basis for accident analyses. Applicants accident analyses in second part license for Konvoi-plants. Appendix 1. Assessor accident analyses in second part license for Konvoi-plants. Appendix 2. Reference list of DBA to be considered in the safety status analysis of a PSR. Appendix 3a. Reference list of special very rare and BDB plant conditions to be considered in the safety status analysis of a PSE. Appendix 3b

    International Nuclear Information System (INIS)

    Velkov, K.

    2002-01-01

    Appendix 1: The Safety Analysis Report (S.A.R.) is presented from 3 Handbooks - ECC Handbook (LOCA), Plant Dynamics Handbook (Transients incl. ATWS), and Core Design Handbook. The first one Conceived as Living handbook, Basis for design, catalogue of transients, specifications and licensing. Handbook contains LOCA in primary system, it contains also core damage analysis, and description of codes, description of essential plant data and code input data. The second one consists of Basis for design, commissioning, operation, and catalogue of transients, specifications and licensing, as well as specified operation, disturbed operation, incidents, non-LOCA, SS-procedures and Code description. The third book consists of Reactivity balance and reactivity coefficients, efficiency of shutdown systems. Calculation of burn up cycle, power density distribution, and critical boron concentration. Also Codes used, as SAV79A standard analysis methodology including FASER for nuclear data generation, MEDIUM and PANBOX for static and transient core calculations. Appendix 2: The three TUEV (Technical Inspection Agencies) responsible for the three individual plants of type KONVOI: TUEV Bayern for ISAR-2, TUV-Hanover for KKE, TUEV-Stuttgart for GKN-2 and GRS performed the safety assessment. TUV-Bayern for disturbance and failure of secondary heat sink without loss of coolant (failure of main heat sink, erroneous operation of valves in MS and in FW system, failure of MFW supply), long term LONOP, performance of selected SBLOCA analyses. TUV Hanover for disturbances due to failure of MCPs, short term LONOP, damages of SG tubes incl. SGTR, performance of selected LOCA analyses (blowdown phase of LBLOCA). TUV-Stuttgart for breaks and leaks in MS and FW system with and without leaks in SG tubes. GRS for ATWS, sub-cooling transients due to disturbances on secondary side, initial and boundary conditions for transients with opening of pressurizer valves with and without stuck-open, most of the

  18. Depletion benchmarks calculation of random media using explicit modeling approach of RMC

    International Nuclear Information System (INIS)

    Liu, Shichang; She, Ding; Liang, Jin-gang; Wang, Kan

    2016-01-01

    Highlights: • Explicit modeling of RMC is applied to depletion benchmark for HTGR fuel element. • Explicit modeling can provide detailed burnup distribution and burnup heterogeneity. • The results would serve as a supplement for the HTGR fuel depletion benchmark. • The method of adjacent burnup regions combination is proposed for full-core problems. • The combination method can reduce memory footprint, keeping the computing accuracy. - Abstract: Monte Carlo method plays an important role in accurate simulation of random media, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. Three stochastic geometry modeling methods including Random Lattice Method, Chord Length Sampling and explicit modeling approach with mesh acceleration technique, have been implemented in RMC to simulate the particle transport in the dispersed fuels, in which the explicit modeling method is regarded as the best choice. In this paper, the explicit modeling method is applied to the depletion benchmark for HTGR fuel element, and the method of combination of adjacent burnup regions has been proposed and investigated. The results show that the explicit modeling can provide detailed burnup distribution of individual TRISO particles, and this work would serve as a supplement for the HTGR fuel depletion benchmark calculations. The combination of adjacent burnup regions can effectively reduce the memory footprint while keeping the computational accuracy.

  19. OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark. Summary Record of the Third Workshop (V1000-CT3)

    International Nuclear Information System (INIS)

    2005-01-01

    The overall objective of the VVER-1000 coolant transient (V1000CT) benchmark is to assess computer codes used in the safety analysis of VVER power plants, specifically for their use in analysis of reactivity transients in a VVER-1000. The V1000CT benchmark consists of two phases: V1000CT-1 is a simulation of the switching on of one main coolant pump (MCP) when the other three MCPs are in operation, and V1000CT-2 concerns calculation of coolant mixing tests and main steam line break (MSLB) scenarios. Each of the two phases contains three exercises. The reference problem chosen for simulation in Phase 1 is a MCP switching on when the other three main coolant pumps are in operation in a VVER-1000. This event is characterized by rapid increase in the flow through the core resulting in a coolant temperature decrease, which is spatially dependent. This leads to insertion of spatially distributed positive reactivity due to the modelled feedback mechanisms and non-symmetric power distribution. Simulation of the transient requires evaluation of core response from a multi-dimensional perspective (coupled three-dimensional neutronics/core thermal-hydraulics) supplemented by a one-dimensional simulation of the remainder of the reactor coolant system. Three exercises are defined in the framework of Phase 1: a) Exercise 1 - Point kinetics plant simulation; b) Exercise 2 - Coupled 3-D neutronics/core thermal-hydraulics response evaluation; c) Exercise 3 - Best-estimate coupled 3-D core/plant system transient modelling. In addition to the measured (experiment) scenario, extreme calculation scenarios were defined in the frame of Exercise 3 for better testing 3-D neutronics/thermal-hydraulics techniques. The proposals concerned: rod ejection simulations with scram set points at two different power levels. The technical topics presented at this workshop were: Review of the benchmark activities after the 2. Workshop; - Discussion of participant's feedback and introduced modifications

  20. Performance of Artificial Intelligence Workloads on the Intel Core 2 Duo Series Desktop Processors

    OpenAIRE

    Abdul Kareem PARCHUR; Kuppangari Krishna RAO; Fazal NOORBASHA; Ram Asaray SINGH

    2010-01-01

    As the processor architecture becomes more advanced, Intel introduced its Intel Core 2 Duo series processors. Performance impact on Intel Core 2 Duo processors are analyzed using SPEC CPU INT 2006 performance numbers. This paper studied the behavior of Artificial Intelligence (AI) benchmarks on Intel Core 2 Duo series processors. Moreover, we estimated the task completion time (TCT) @1 GHz, @2 GHz and @3 GHz Intel Core 2 Duo series processors frequency. Our results show the performance scalab...

  1. Development of concept and neutronic calculation method for large LMFBR core

    International Nuclear Information System (INIS)

    Shirakata, K.; Ishikawa, M.; Ikegami, T.; Sanda, T.; Kaneto, K.; Kawashima, M.; Kaise, Y.; Shirakawa, M.; Hibi, K.

    1991-01-01

    Presented in this paper is the state of the art of reactor physics R and Ds for the development of concept and neutronic calculation method for large Liquid Metal Fast Breeder Reactor (LMFBR) core. Physics characteristics of concepts for mixed oxide (MOX) fueled large FBR core were investigated by a series of benchmark critical experiments. Next, an adequacy and accuracy of the current neutronic calculation method was assessed by the experiments analyses, and then neutronic prediction accuracies by the method were evaluated for physics characteristics of the large core. Concerns on core development were discussed in terms of neutronics. (author)

  2. EGS4 benchmark program

    International Nuclear Information System (INIS)

    Yasu, Y.; Hirayama, H.; Namito, Y.; Yashiro, S.

    1995-01-01

    This paper proposes EGS4 Benchmark Suite which consists of three programs called UCSAMPL4, UCSAMPL4I and XYZDOS. This paper also evaluates optimization methods of recent RISC/UNIX systems, such as IBM, HP, DEC, Hitachi and Fujitsu, for the benchmark suite. When particular compiler option and math library were included in the evaluation process, system performed significantly better. Observed performance of some of the RISC/UNIX systems were beyond some so-called Mainframes of IBM, Hitachi or Fujitsu. The computer performance of EGS4 Code System on an HP9000/735 (99MHz) was defined to be the unit of EGS4 Unit. The EGS4 Benchmark Suite also run on various PCs such as Pentiums, i486 and DEC alpha and so forth. The performance of recent fast PCs reaches that of recent RISC/UNIX systems. The benchmark programs have been evaluated with correlation of industry benchmark programs, namely, SPECmark. (author)

  3. Accelerating the SCE-UA Global Optimization Method Based on Multi-Core CPU and Many-Core GPU

    Directory of Open Access Journals (Sweden)

    Guangyuan Kan

    2016-01-01

    Full Text Available The famous global optimization SCE-UA method, which has been widely used in the field of environmental model parameter calibration, is an effective and robust method. However, the SCE-UA method has a high computational load which prohibits the application of SCE-UA to high dimensional and complex problems. In recent years, the hardware of computer, such as multi-core CPUs and many-core GPUs, improves significantly. These much more powerful new hardware and their software ecosystems provide an opportunity to accelerate the SCE-UA method. In this paper, we proposed two parallel SCE-UA methods and implemented them on Intel multi-core CPU and NVIDIA many-core GPU by OpenMP and CUDA Fortran, respectively. The Griewank benchmark function was adopted in this paper to test and compare the performances of the serial and parallel SCE-UA methods. According to the results of the comparison, some useful advises were given to direct how to properly use the parallel SCE-UA methods.

  4. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferroukhi, H.; Coddington, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    2001-07-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  5. Analysis and sensitivity studies with CORETRAN and RETRAN-3D of the NEACRP PWR rod ejection benchmark

    International Nuclear Information System (INIS)

    Ferroukhi, H.; Coddington, P.

    2001-01-01

    The OECD/NEA PWR rod ejection benchmark has been analysed using the 3-D nodal spatial-kinetic codes CORETRAN and RETRAN-3D. The following results were obtained. A) The agreement in 3-D solution between CORETRAN and RETRAN-3D was found to be very good both during steady-state and transient conditions. In particular at HZP (hot zero power), an excellent agreement in the initial steady-state 3-D power distribution and with regard to the core power excursion during the super-prompt critical phase of the transient (i.e. when the negative reactivity feedback is still very weak) was found. This illustrates the consistency in the neutronic solution between both codes. B) At both HZP and FP (full power) conditions, the CORETRAN and RETRAN-3D results lie well within the range of the previous benchmark solutions. In particular at HZP, both codes predict a power excursion and an increase in maximum pellet temperature that are among the closest results to those obtained with the benchmark reference solution. It must here be emphasised that these analyses are by no means a validation of the codes. However, the good agreement of both CORETRAN and RETRAN-3D with other 3-D solutions provides confidence in the ability of these codes to analyse LWR (light water reactor) core transients. In addition, it was found appropriate to perform, for this well-defined international benchmark problem, some sensitivity studies in order to assess the impact of modelling options on the CORETRAN and RETRAN-3D results. (authors)

  6. California commercial building energy benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2003-07-01

    Building energy benchmarking is the comparison of whole-building energy use relative to a set of similar buildings. It provides a useful starting point for individual energy audits and for targeting buildings for energy-saving measures in multiple-site audits. Benchmarking is of interest and practical use to a number of groups. Energy service companies and performance contractors communicate energy savings potential with ''typical'' and ''best-practice'' benchmarks while control companies and utilities can provide direct tracking of energy use and combine data from multiple buildings. Benchmarking is also useful in the design stage of a new building or retrofit to determine if a design is relatively efficient. Energy managers and building owners have an ongoing interest in comparing energy performance to others. Large corporations, schools, and government agencies with numerous facilities also use benchmarking methods to compare their buildings to each other. The primary goal of Task 2.1.1 Web-based Benchmarking was the development of a web-based benchmarking tool, dubbed Cal-Arch, for benchmarking energy use in California commercial buildings. While there were several other benchmarking tools available to California consumers prior to the development of Cal-Arch, there were none that were based solely on California data. Most available benchmarking information, including the Energy Star performance rating, were developed using DOE's Commercial Building Energy Consumption Survey (CBECS), which does not provide state-level data. Each database and tool has advantages as well as limitations, such as the number of buildings and the coverage by type, climate regions and end uses. There is considerable commercial interest in benchmarking because it provides an inexpensive method of screening buildings for tune-ups and retrofits. However, private companies who collect and manage consumption data are concerned that the

  7. Benchmarking in Foodservice Operations

    National Research Council Canada - National Science Library

    Johnson, Bonnie

    1998-01-01

    The objective of this study was to identify usage of foodservice performance measures, important activities in foodservice benchmarking, and benchmarking attitudes, beliefs, and practices by foodservice directors...

  8. Numerical and computational aspects of the coupled three-dimensional core/ plant simulations: organization for economic cooperation and development/ U.S. nuclear regulatory commission pressurized water reactor main-steam-line-break benchmark-II. 5. TMI-1 Benchmark Performed by Different Coupled Three-Dimensional Neutronics Thermal- Hydraulic Codes

    International Nuclear Information System (INIS)

    D'Auria, F.; Galassi, G.M.; Spadoni, A.; Gago, J.L.; Grgic, D.

    2001-01-01

    A comprehensive analysis of a double-ended main-steam-line-break (MSLB) accident assumed to have occurred in the Babcock and Wilcox Three Mile Island (TMI) Unit 1 nuclear power plant (NPP) has been carried out at the Dipartimento di Ingegneria Meccanica, Nucleare e della Produzione of the University of Pisa, Italy. The research has been carried out in cooperation with the University of Zagreb, Croatia, and with partial financial support from the European Union through a grant to one of the authors. The overall activity has been completed within the framework of the participation in the Organization for Economic Cooperation and Development Committee on the Safety of Nuclear Installations-Nuclear Science Committee PWR MSLB Benchmark. Different code versions have been adopted in the analysis. Results from the following codes (or code versions) are described in this paper: 1. RELAP5/mod 3.2.2, gamma version, coupled with the three-dimensional (3-D) neutron kinetics PARCS code; 2. RELAP5/mod 3.2.2, gamma version, coupled with the 3-D neutron kinetics QUABBOX code; 3. RELAP5/3D code coupled with the 3-D neutron kinetics NESTLE code. Boundary and initial conditions of the system, including those relevant to the fuel status, have been supplied by The Pennsylvania State University in cooperation with GPU Nuclear (the utility, owner of TMI) and the U.S. Nuclear Regulatory Commission (NRC). The main challenge for the calculation was the prediction of the return to power (RTP) following the inlet of cold water into the core and one 'stuck-withdrawn' control rod. Non-realistic assumptions were proposed to augment the core power peak following scram. Zero-dimensional neutronics codes were capable of detecting the RTP after scram. However, the application of 3-D neutronics codes to the same scenario allowed the calculation of a similar value for overall core power peak but showed power increase occurrence in about one-tenth of the core volume. The results achieved in phase 1 of

  9. Benchmarking, benchmarks, or best practices? Applying quality improvement principles to decrease surgical turnaround time.

    Science.gov (United States)

    Mitchell, L

    1996-01-01

    The processes of benchmarking, benchmark data comparative analysis, and study of best practices are distinctly different. The study of best practices is explained with an example based on the Arthur Andersen & Co. 1992 "Study of Best Practices in Ambulatory Surgery". The results of a national best practices study in ambulatory surgery were used to provide our quality improvement team with the goal of improving the turnaround time between surgical cases. The team used a seven-step quality improvement problem-solving process to improve the surgical turnaround time. The national benchmark for turnaround times between surgical cases in 1992 was 13.5 minutes. The initial turnaround time at St. Joseph's Medical Center was 19.9 minutes. After the team implemented solutions, the time was reduced to an average of 16.3 minutes, an 18% improvement. Cost-benefit analysis showed a potential enhanced revenue of approximately $300,000, or a potential savings of $10,119. Applying quality improvement principles to benchmarking, benchmarks, or best practices can improve process performance. Understanding which form of benchmarking the institution wishes to embark on will help focus a team and use appropriate resources. Communicating with professional organizations that have experience in benchmarking will save time and money and help achieve the desired results.

  10. Benchmarking i den offentlige sektor

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj; Dietrichson, Lars; Sandalgaard, Niels

    2008-01-01

    I artiklen vil vi kort diskutere behovet for benchmarking i fraværet af traditionelle markedsmekanismer. Herefter vil vi nærmere redegøre for, hvad benchmarking er med udgangspunkt i fire forskellige anvendelser af benchmarking. Regulering af forsyningsvirksomheder vil blive behandlet, hvorefter...

  11. Regional Competitive Intelligence: Benchmarking and Policymaking

    OpenAIRE

    Huggins , Robert

    2010-01-01

    Benchmarking exercises have become increasingly popular within the sphere of regional policymaking in recent years. The aim of this paper is to analyse the concept of regional benchmarking and its links with regional policymaking processes. It develops a typology of regional benchmarking exercises and regional benchmarkers, and critically reviews the literature, both academic and policy oriented. It is argued that critics who suggest regional benchmarking is a flawed concept and technique fai...

  12. Benchmarking Using Basic DBMS Operations

    Science.gov (United States)

    Crolotte, Alain; Ghazal, Ahmad

    The TPC-H benchmark proved to be successful in the decision support area. Many commercial database vendors and their related hardware vendors used these benchmarks to show the superiority and competitive edge of their products. However, over time, the TPC-H became less representative of industry trends as vendors keep tuning their database to this benchmark-specific workload. In this paper, we present XMarq, a simple benchmark framework that can be used to compare various software/hardware combinations. Our benchmark model is currently composed of 25 queries that measure the performance of basic operations such as scans, aggregations, joins and index access. This benchmark model is based on the TPC-H data model due to its maturity and well-understood data generation capability. We also propose metrics to evaluate single-system performance and compare two systems. Finally we illustrate the effectiveness of this model by showing experimental results comparing two systems under different conditions.

  13. High Energy Physics (HEP) benchmark program

    International Nuclear Information System (INIS)

    Yasu, Yoshiji; Ichii, Shingo; Yashiro, Shigeo; Hirayama, Hideo; Kokufuda, Akihiro; Suzuki, Eishin.

    1993-01-01

    High Energy Physics (HEP) benchmark programs are indispensable tools to select suitable computer for HEP application system. Industry standard benchmark programs can not be used for this kind of particular selection. The CERN and the SSC benchmark suite are famous HEP benchmark programs for this purpose. The CERN suite includes event reconstruction and event generator programs, while the SSC one includes event generators. In this paper, we found that the results from these two suites are not consistent. And, the result from the industry benchmark does not agree with either of these two. Besides, we describe comparison of benchmark results using EGS4 Monte Carlo simulation program with ones from two HEP benchmark suites. Then, we found that the result from EGS4 in not consistent with the two ones. The industry standard of SPECmark values on various computer systems are not consistent with the EGS4 results either. Because of these inconsistencies, we point out the necessity of a standardization of HEP benchmark suites. Also, EGS4 benchmark suite should be developed for users of applications such as medical science, nuclear power plant, nuclear physics and high energy physics. (author)

  14. HEXTRAN-SMABRE calculation of the 6th AER Benchmark, main steam line break in a WWER-440 NPP

    International Nuclear Information System (INIS)

    Haemaelaeinen, A.; Kyrki-Rajamaeki, R.

    2003-01-01

    The sixth AER benchmark is the second AER benchmark for couplings of the thermal hydraulic codes and three dimensional neutron kinetic core models. It concerns a double end break of one main steam line in a WWER-440 plant. The core is at the end of its first cycle in full power conditions. In VTT HEXTRAN2.9 is used for the core kinetics and dynamics and SMABRE4.8 as a thermal hydraulic model for the primary and secondary loop. The plant model for SMABRE consists mainly of two input models, Loviisa model and a standard WWER-440/213 plant model. The primary loop includes six separate loops, the pressure vessel is divided into six parallel channels in SMABRE and the whole core calculation is performed in the core with HEXTRAN. The horizontal steam generators are modelled with heat transfer tubes in five levels and vertically with two parts, riser and downcomer. With this kind of detailed modelling of steam generators there occurs strong flashing after break opening. As a sequence of the main steam line break at nominal power level, the reactor trip is followed quite soon. The liquid temperature continues to decrease in one core inlet sector which may lead to recriticality and neuron power increase. The situation is very sensitive to small changes in the steam generator and break flow modelling and therefore several sensitivity calculations have been done. Also two stucked control rods have been assumed. Due to boric acid concentration in the high pressure safety injection subcriticality is finally guaranteed in the transient (Authors)

  15. Benchmarking Tool Kit.

    Science.gov (United States)

    Canadian Health Libraries Association.

    Nine Canadian health libraries participated in a pilot test of the Benchmarking Tool Kit between January and April, 1998. Although the Tool Kit was designed specifically for health libraries, the content and approach are useful to other types of libraries as well. Used to its full potential, benchmarking can provide a common measuring stick to…

  16. Potential thermal margin available from changes in the appendix K rule

    International Nuclear Information System (INIS)

    Cadek, F.F.; Gresham, J.A.; Hochreiter, L.E.; McIntyre, B.A.

    1984-01-01

    Over a decade of research has been completed on light water reactor safety. This research was the result of the 1972 core cooling hearing in the United States which resulted in the Appendix K rule for evaluating safety system performance. The objectives of the research were to confirm that the Appendix K rule was conservative, determine and quantify the amount of conservatism such that the excess conservatism could be reviewed by future rule changes, and provide a basis for future rule changes. The lightwater reactor research for the large break LOCA has, in the main, been completed and the first two objectives of the research program have been achieved. Presently there are ongoing efforts in the United States to find methods of factoring into the licensing process the results of this research. This paper discusses the impact on the W safety analysis if some of the Appendix K requirements could be relaxed. Calculations are presented with revised models which have been shown, by the LWR program, to be more accurate and which have the identified excessive conservatisms removed. LOCA calculations are presented to show the increased power capability, as well as power peaking margin which can result from such changes. These calculations are also compared with best estimate calculations using more mechanistic computer codes

  17. OECD/DOE/CEA VVER-1000 Coolant Transient Benchmark. Summary Record of the Fourth Workshop (V100-CT4)

    International Nuclear Information System (INIS)

    2006-01-01

    The overall objective of the VVER-1000 coolant transient (V1000CT) benchmark is to assess computer codes used in the safety analysis of VVER power plants, specifically for their use in analysis of reactivity transients in a VVER-1000. The V1000CT benchmark consists of two phases: V1000CT-1 is a simulation of the switching on of one main coolant pump (MCP) when the other three MCPs are in operation, and V1000CT-2 concerns calculation of coolant mixing tests and main steam line break (MSLB) scenarios. Each of the two phases contains three exercises. The reference problem chosen for simulation in Phase 1 is a MCP switching on when the other three main coolant pumps are in operation in a VVER-1000. This event is characterized by rapid increase in the flow through the core resulting in a coolant temperature decrease, which is spatially dependent. This leads to insertion of spatially distributed positive reactivity due to the modelled feedback mechanisms and non-symmetric power distribution. Simulation of the transient requires evaluation of core response from a multi-dimensional perspective (coupled three-dimensional neutronics/core thermal-hydraulics) supplemented by a one-dimensional simulation of the remainder of the reactor coolant system. Three exercises are defined in the framework of Phase 1: a) Exercise 1 - Point kinetics plant simulation; b) Exercise 2 - Coupled 3-D neutronics/core thermal-hydraulics response evaluation; c) Exercise 3 - Best-estimate coupled 3-D core/plant system transient modelling. In addition to the measured (experiment) scenario, extreme calculation scenarios were defined in the frame of Exercise 3 for better testing 3-D neutronics/thermal-hydraulics techniques. The proposals concerned: rod ejection simulations with scram set points at two different power levels. Since the previous coupled code benchmarks indicated that further development of the mixing computation models in the integrated codes is necessary, a coolant mixing experiment and

  18. A Global Vision over Benchmarking Process: Benchmarking Based Enterprises

    OpenAIRE

    Sitnikov, Catalina; Giurca Vasilescu, Laura

    2008-01-01

    Benchmarking uses the knowledge and the experience of others to improve the enterprise. Starting from the analysis of the performance and underlying the strengths and weaknesses of the enterprise it should be assessed what must be done in order to improve its activity. Using benchmarking techniques, an enterprise looks at how processes in the value chain are performed. The approach based on the vision “from the whole towards the parts” (a fragmented image of the enterprise’s value chain) redu...

  19. Solution of a benchmark set problems for BWR and PWR reactors with UO2 and MOX fuels using CASMO-4

    International Nuclear Information System (INIS)

    Martinez F, M.A.; Valle G, E. del; Alonso V, G.

    2007-01-01

    In this work some of the results for a group of benchmark problems of light water reactors that allow to study the physics of the fuels of these reactors are presented. These benchmark problems were proposed by Akio Yamamoto and collaborators in 2002 and they include two fuel types; uranium dioxide (UO 2 ) and mixed oxides (MOX). The range of problems that its cover embraces three different configurations: unitary cell for a fuel bar, fuel assemble of PWR and fuel assemble of BWR what allows to carry out an understanding analysis of the problems related with the fuel performance of new generation in light water reactors with high burnt. Also these benchmark problems help to understand the fuel administration in core of a BWR like of a PWR. The calculations were carried out with CMS (of their initials in English Core Management Software), particularly with CASMO-4 that is a code designed to carry out analysis of fuels burnt of fuel bars cells as well as fuel assemblies as much for PWR as for BWR and that it is part in turn of the CMS code. (Author)

  20. A study on Monte Carlo analysis of Pebble-type VHTR core for hydrogen production

    International Nuclear Information System (INIS)

    Kim, Hong Chul

    2005-02-01

    In order to pursue exact the core analysis for VHTR core which will be developed in future, a study on Monte Carol method was carried out. In Korea, pebble and prism type core are under investigation for VHTR core analysis. In this study, pebble-type core was investigated because it was known that it should not only maintain the nuclear fuel integrity but also have the advantage in economical efficiency and safety. The pebble-bed cores of HTR-PROTEUS critical facility in Swiss were selected for the benchmark model. After the detailed MCNP modeling of the whole facility, calculations of nuclear characteristics were performed. The two core configurations, Core 4.3 and Core 5 (reference state no. 3), among the 10 configurations of the HTR-PROTEUS cores were chosen to be analyzed in order to treat different fuel loading pattern and modeled. The former is a random packing core and the latter deterministic packing core. Based on the experimental data and the benchmark result of other research groups for the two different cores, some nuclear characteristics were calculated. Firstly, keff was calculated for these cores. The effect for TRIO homogeneity model was investigated. Control rod and shutdown rod worths also were calculated and the sensitivity analysis on cross-section library and reflector thickness was pursued. Lastly, neutron flux profiles were investigated in reflector regions. It is noted that Monte Carlo analysis of pebble-type VHTR core was firstly carried out in Korea. Also, this study should not only provide the basic data for pebble-type VHTR core analysis for hydrogen production but also be utilized as the verified data to validate a computer code for VHTR core analysis which will be developed in future

  1. Argonne Code Center: Benchmark problem book.

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1977-06-01

    This book is an outgrowth of activities of the Computational Benchmark Problems Committee of the Mathematics and Computation Division of the American Nuclear Society. This is the second supplement of the original benchmark book which was first published in February, 1968 and contained computational benchmark problems in four different areas. Supplement No. 1, which was published in December, 1972, contained corrections to the original benchmark book plus additional problems in three new areas. The current supplement. Supplement No. 2, contains problems in eight additional new areas. The objectives of computational benchmark work and the procedures used by the committee in pursuing the objectives are outlined in the original edition of the benchmark book (ANL-7416, February, 1968). The members of the committee who have made contributions to Supplement No. 2 are listed below followed by the contributors to the earlier editions of the benchmark book.

  2. Random geometry capability in RMC code for explicit analysis of polytype particle/pebble and applications to HTR-10 benchmark

    International Nuclear Information System (INIS)

    Liu, Shichang; Li, Zeguang; Wang, Kan; Cheng, Quan; She, Ding

    2018-01-01

    Highlights: •A new random geometry was developed in RMC for mixed and polytype particle/pebble. •This capability was applied to the full core calculations of HTR-10 benchmark. •Reactivity, temperature coefficient and control rod worth of HTR-10 were compared. •This method can explicitly model different packing fraction of different pebbles. •Monte Carlo code with this method can simulate polytype particle/pebble type reactor. -- Abstract: With the increasing demands of high fidelity neutronics analysis and the development of computer technology, Monte Carlo method is becoming more and more attractive in accurate simulation of pebble bed High Temperature gas-cooled Reactor (HTR), owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. For the double-heterogeneous geometry of pebble bed, traditional Monte Carlo codes can treat it by explicit geometry description. However, packing methods such as Random Sequential Addition (RSA) can only produce a sphere packing up to 38% volume packing fraction, while Discrete Element Method (DEM) is troublesome and also time consuming. Moreover, traditional Monte Carlo codes are difficult and inconvenient to simulate the mixed and polytype particles or pebbles. A new random geometry method was developed in Monte Carlo code RMC to simulate the particle transport in polytype particle/pebble in double heterogeneous geometry systems. This method was verified by some test cases, and applied to the full core calculations of HTR-10 benchmark. The reactivity, temperature coefficient and control rod worth of HTR-10 were compared for full core and initial core in helium and air atmosphere respectively, and the results agree well with the benchmark results and experimental results. This work would provide an efficient tool for the innovative design of pebble bed, prism HTRs and molten salt reactors with polytype particles or pebbles using Monte Carlo method.

  3. The coupled code system DORT-TD/THERMIX and its application to the OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark

    International Nuclear Information System (INIS)

    Pautz, A.; Tyobeka, B.; Ivanov, K.

    2009-01-01

    In new reactor designs that are still under review such as the Pebble Bed Modular Reactor (PBMR), not much experimental data exists to benchmark newly developed computer codes against. Such a situation requires that nuclear engineers and designers of this novel reactor design must resort to the validation of a newly developed code through a code-to-code benchmarking exercise because there are validated codes that are currently in use to analyze this reactor design, albeit very few of them. There are numerous HTR core physics benchmarks that are currently being pursued by different organizations, for different purposes. One such benchmark exercise is the PBMR-400MW OECD/NEA coupled neutronics/thermal hydraulics transient benchmark. In this paper, a newly developed coupled neutronics thermal hydraulics code system, DORT-TD/THERMIX with both transport and diffusion theory options, is used to simulate both the steady-state as well as several transient scenarios in this benchmark problem. (orig.)

  4. Benchmarks for GADRAS performance validation

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Rhykerd, Charles L. Jr.

    2009-01-01

    The performance of the Gamma Detector Response and Analysis Software (GADRAS) was validated by comparing GADRAS model results to experimental measurements for a series of benchmark sources. Sources for the benchmark include a plutonium metal sphere, bare and shielded in polyethylene, plutonium oxide in cans, a highly enriched uranium sphere, bare and shielded in polyethylene, a depleted uranium shell and spheres, and a natural uranium sphere. The benchmark experimental data were previously acquired and consist of careful collection of background and calibration source spectra along with the source spectra. The calibration data were fit with GADRAS to determine response functions for the detector in each experiment. A one-dimensional model (pie chart) was constructed for each source based on the dimensions of the benchmark source. The GADRAS code made a forward calculation from each model to predict the radiation spectrum for the detector used in the benchmark experiment. The comparisons between the GADRAS calculation and the experimental measurements are excellent, validating that GADRAS can correctly predict the radiation spectra for these well-defined benchmark sources.

  5. Benchmarking in Czech Higher Education

    Directory of Open Access Journals (Sweden)

    Plaček Michal

    2015-12-01

    Full Text Available The first part of this article surveys the current experience with the use of benchmarking at Czech universities specializing in economics and management. The results indicate that collaborative benchmarking is not used on this level today, but most actors show some interest in its introduction. The expression of the need for it and the importance of benchmarking as a very suitable performance-management tool in less developed countries are the impetus for the second part of our article. Based on an analysis of the current situation and existing needs in the Czech Republic, as well as on a comparison with international experience, recommendations for public policy are made, which lie in the design of a model of a collaborative benchmarking for Czech economics and management in higher-education programs. Because the fully complex model cannot be implemented immediately – which is also confirmed by structured interviews with academics who have practical experience with benchmarking –, the final model is designed as a multi-stage model. This approach helps eliminate major barriers to the implementation of benchmarking.

  6. Comparison of different LMFBR primary containment codes applied to a Benchmark problem

    International Nuclear Information System (INIS)

    Benuzzi, A.

    1986-01-01

    The Cont Benchmark calculation exercise is a project sponsored by the Containment Loading and Response Group, a subgroup of the Safety Working Group of the Fast Reactor Coordinating Committee - CEC. A full-size typical Pool type LMFBR undergoing a postulated Core Disruptive Accident (CDA) has been defined by Belgonucleaire-Brussels under a study contract financed by the CEC and has been submitted to seven containment code calculations. The results of these calculations are presented and discussed in this paper

  7. featsel: A framework for benchmarking of feature selection algorithms and cost functions

    OpenAIRE

    Marcelo S. Reis; Gustavo Estrela; Carlos Eduardo Ferreira; Junior Barrera

    2017-01-01

    In this paper, we introduce featsel, a framework for benchmarking of feature selection algorithms and cost functions. This framework allows the user to deal with the search space as a Boolean lattice and has its core coded in C++ for computational efficiency purposes. Moreover, featsel includes Perl scripts to add new algorithms and/or cost functions, generate random instances, plot graphs and organize results into tables. Besides, this framework already comes with dozens of algorithms and co...

  8. IAEA coordinated research project (CRP) on 'Analytical and experimental benchmark analyses of accelerator driven systems'

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, Alberto [Universidad Politecnica de Madrid (Spain); Aliberti, Gerardo; Gohar, Yousry; Talamo, Alberto [ANL, Argonne (United States); Bornos, Victor; Kiyavitskaya, Anna [Joint Institute of Power Eng. and Nucl. Research ' Sosny' , Minsk (Belarus); Carta, Mario [ENEA, Casaccia (Italy); Janczyszyn, Jerzy [AGH-University of Science and Technology, Krakow (Poland); Maiorino, Jose [IPEN, Sao Paulo (Brazil); Pyeon, Cheolho [Kyoto University (Japan); Stanculescu, Alexander [IAEA, Vienna (Austria); Titarenko, Yury [ITEP, Moscow (Russian Federation); Westmeier, Wolfram [Wolfram Westmeier GmbH, Ebsdorfergrund (Germany)

    2008-07-01

    In December 2005, the International Atomic Energy Agency (IAEA) has started a Coordinated Research Project (CRP) on 'Analytical and Experimental Benchmark Analyses of Accelerator Driven Systems'. The overall objective of the CRP, performed within the framework of the Technical Working Group on Fast Reactors (TWGFR) of IAEA's Nuclear Energy Department, is to increase the capability of interested Member States in developing and applying advanced reactor technologies in the area of long-lived radioactive waste utilization and transmutation. The specific objective of the CRP is to improve the present understanding of the coupling of an external neutron source (e.g. spallation source) with a multiplicative sub-critical core. The participants are performing computational and experimental benchmark analyses using integrated calculation schemes and simulation methods. The CRP aims at integrating some of the planned experimental demonstration projects of the coupling between a sub-critical core and an external neutron source (e.g. YALINA Booster in Belarus, and Kyoto University's Critical Assembly (KUCA)). The objective of these experimental programs is to validate computational methods, obtain high energy nuclear data, characterize the performance of sub-critical assemblies driven by external sources, and to develop and improve techniques for sub-criticality monitoring. The paper summarizes preliminary results obtained to-date for some of the CRP benchmarks. (authors)

  9. ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms

    DEFF Research Database (Denmark)

    Aumüller, Martin; Bernhardsson, Erik; Faithfull, Alexander

    2017-01-01

    This paper describes ANN-Benchmarks, a tool for evaluating the performance of in-memory approximate nearest neighbor algorithms. It provides a standard interface for measuring the performance and quality achieved by nearest neighbor algorithms on different standard data sets. It supports several...... visualise these as images, Open image in new window plots, and websites with interactive plots. ANN-Benchmarks aims to provide a constantly updated overview of the current state of the art of k-NN algorithms. In the short term, this overview allows users to choose the correct k-NN algorithm and parameters...... for their similarity search task; in the longer term, algorithm designers will be able to use this overview to test and refine automatic parameter tuning. The paper gives an overview of the system, evaluates the results of the benchmark, and points out directions for future work. Interestingly, very different...

  10. Benchmarking Swiss electricity grids

    International Nuclear Information System (INIS)

    Walti, N.O.; Weber, Ch.

    2001-01-01

    This extensive article describes a pilot benchmarking project initiated by the Swiss Association of Electricity Enterprises that assessed 37 Swiss utilities. The data collected from these utilities on a voluntary basis included data on technical infrastructure, investments and operating costs. These various factors are listed and discussed in detail. The assessment methods and rating mechanisms that provided the benchmarks are discussed and the results of the pilot study are presented that are to form the basis of benchmarking procedures for the grid regulation authorities under the planned Switzerland's electricity market law. Examples of the practical use of the benchmarking methods are given and cost-efficiency questions still open in the area of investment and operating costs are listed. Prefaces by the Swiss Association of Electricity Enterprises and the Swiss Federal Office of Energy complete the article

  11. HTR core physics analysis at NRG

    International Nuclear Information System (INIS)

    Kuijper, J.C.; Haas, J.B.M. de; Oppe, J.

    2002-01-01

    Since a number of years NRG is developing the HTR reactor physics code system PANTHERMIX. In PANTHERMIX the 3-D steady-state and transient core physics code PANTHER has been interfaced with the HTR thermal hydraulics code THERMIX to enable core follow and transient analyses on both pebble bed and block type HTR systems. Recently the capabilities of PANTHERMIX have been extended with the possibility to simulate the flow of pebbles through the core cavity and the (re)loading of pebbles on top of the core.The PANTHERMIX code system is being applied for the benchmark exercises for the Chinese HTR-10 and Japanese HTTR first criticality, calculating the critical loading, control rod worth and the isothermal temperature coefficients at zero power conditions. Also core physics calculations have been performed on an early version the South African PBMR design. The reactor physics properties of the reactor at equilibrium core loading have been studied as well as a selected run-in scenario, starting form fresh fuel. The recently developed reload option of PANTHERMIX was used extensively in these analyses. The examples shown demonstrate the capabilities of PANTHERMIX for performing steady-state and transient HTR core physics analyses. However, additional validation, especially for transient analyses, remains desirable. (author)

  12. Appendix A : literature review.

    Science.gov (United States)

    2013-03-01

    This appendix contains a review of the literature and other background information : germane to the experimental and analytical research presented in subsequent appendices. Table : 1 lists the sections and topics contained in this appendix and those ...

  13. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2011-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  14. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maddock, Thomas L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Marshall, Margaret A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Montierth, Leland M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ning [Idaho National Lab. (INL), Idaho Falls, ID (United States); Phillips, Ann Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schreck, Kenneth A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Briggs, J. Blair [Idaho National Lab. (INL), Idaho Falls, ID (United States); Woolstenhulme, Eric W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bolin, John M. [General Atomics, San Diego, CA (United States); Veca, Anthony [General Atomics, San Diego, CA (United States); McKnight, Richard D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lell, Richard M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has been evaluated as an acceptable benchmark experiment. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has not been evaluated as it is very similar to the evaluated core configuration. The benchmark eigenvalue is 1.0012 ± 0.0029. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  15. Benchmarking af kommunernes sagsbehandling

    DEFF Research Database (Denmark)

    Amilon, Anna

    Fra 2007 skal Ankestyrelsen gennemføre benchmarking af kommuernes sagsbehandlingskvalitet. Formålet med benchmarkingen er at udvikle praksisundersøgelsernes design med henblik på en bedre opfølgning og at forbedre kommunernes sagsbehandling. Dette arbejdspapir diskuterer metoder for benchmarking...

  16. Reactor physics tests and benchmark analyses of STACY

    International Nuclear Information System (INIS)

    Miyoshi, Yoshinori; Umano, Takuya

    1996-01-01

    The Static Experiment Critical Facility, STACY in the Nuclear Fuel Cycle Safety Engineering Research Facility, NUCEF is a solution type critical facility to accumulate fundamental criticality data on uranyl nitrate solution, plutonium nitrate solution and their mixture. A series of critical experiments have been performed for 10 wt% enriched uranyl nitrate solution using a cylindrical core tank. In these experiments, systematic data of the critical height, differential reactivity of the fuel solution, kinetic parameter and reactor power were measured with changing the uranium concentration of the fuel solution from 313 gU/l to 225 gU/l. Critical data through the first series of experiments for the basic core are reported in this paper for evaluating the accuracy of the criticality safety calculation codes. Benchmark calculations of the neutron multiplication factor k eff for the critical condition were made using a neutron transport code TWOTRAN in the SRAC system and a continuous energy Monte Carlo code MCNP 4A with a Japanese evaluated nuclear data library, JENDL 3.2. (J.P.N.)

  17. Preliminary results of the seventh three-dimensional AER dynamic benchmark problem calculation. Solution with DYN3D and RELAP5-3D codes

    International Nuclear Information System (INIS)

    Bencik, M.; Hadek, J.

    2011-01-01

    The paper gives a brief survey of the seventh three-dimensional AER dynamic benchmark calculation results received with the codes DYN3D and RELAP5-3D at Nuclear Research Institute Rez. This benchmark was defined at the twentieth AER Symposium in Hanassari (Finland). It is focused on investigation of transient behaviour in a WWER-440 nuclear power plant. Its initiating event is opening of the main isolation valve and re-connection of the loop with its main circulation pump in operation. The WWER-440 plant is at the end of the first fuel cycle and in hot full power conditions. Stationary and burnup calculations were performed with the code DYN3D. Transient calculation was made with the system code RELAP5-3D. The two-group homogenized cross sections library HELGD05 created by HELIOS code was used for the generation of reactor core neutronic parameters. The detailed six loops model of NPP Dukovany was adopted for the seventh AER dynamic benchmark purposes. The RELAP5-3D full core neutronic model was coupled with 49 core thermal-hydraulic channels and 8 reflector channels connected with the three-dimensional model of the reactor vessel. The detailed nodalization of reactor downcomer, lower and upper plenum was used. Mixing in lower and upper plenum was simulated. The first part of paper contains a brief characteristic of RELAP5-3D system code and a short description of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. (Authors)

  18. Validation of VHTRC calculation benchmark of critical experiment using the MCB code

    Directory of Open Access Journals (Sweden)

    Stanisz Przemysław

    2016-01-01

    Full Text Available The calculation benchmark problem Very High Temperature Reactor Critical (VHTR a pin-in-block type core critical assembly has been investigated with the Monte Carlo Burnup (MCB code in order to validate the latest version of Nuclear Data Library based on ENDF format. Executed benchmark has been made on the basis of VHTR benchmark available from the International Handbook of Evaluated Reactor Physics Benchmark Experiments. This benchmark is useful for verifying the discrepancies in keff values between various libraries and experimental values. This allows to improve accuracy of the neutron transport calculations that may help in designing the high performance commercial VHTRs. Almost all safety parameters depend on the accuracy of neutron transport calculation results that, in turn depend on the accuracy of nuclear data libraries. Thus, evaluation of the libraries applicability to VHTR modelling is one of the important subjects. We compared the numerical experiment results with experimental measurements using two versions of available nuclear data (ENDF-B-VII.1 and JEFF-3.2 prepared for required temperatures. Calculations have been performed with the MCB code which allows to obtain very precise representation of complex VHTR geometry, including the double heterogeneity of a fuel element. In this paper, together with impact of nuclear data, we discuss also the impact of different lattice modelling inside the fuel pins. The discrepancies of keff have been successfully observed and show good agreement with each other and with the experimental data within the 1 σ range of the experimental uncertainty. Because some propagated discrepancies observed, we proposed appropriate corrections in experimental constants which can improve the reactivity coefficient dependency. Obtained results confirm the accuracy of the new Nuclear Data Libraries.

  19. Preliminary Results for the OECD/NEA Time Dependent Benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO

    Energy Technology Data Exchange (ETDEWEB)

    DeHart, Mark D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mausolff, Zander [Univ. of Florida, Gainesville, FL (United States); Weems, Zach [Univ. of Florida, Gainesville, FL (United States); Popp, Dustin [Univ. of Florida, Gainesville, FL (United States); Smith, Kristin [Univ. of Florida, Gainesville, FL (United States); Shriver, Forrest [Univ. of Florida, Gainesville, FL (United States); Goluoglu, Sedat [Univ. of Florida, Gainesville, FL (United States); Prince, Zachary [Texas A & M Univ., College Station, TX (United States); Ragusa, Jean [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\cite{Rattlesnake} and the fuels performance code BISON. Other validation projects outside of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.

  20. Preliminary Results for the OECD/NEA Time Dependent Benchmark using Rattlesnake, Rattlesnake-IQS and TDKENO

    International Nuclear Information System (INIS)

    DeHart, Mark D.; Mausolff, Zander; Weems, Zach; Popp, Dustin; Smith, Kristin; Shriver, Forrest; Goluoglu, Sedat; Prince, Zachary; Ragusa, Jean

    2016-01-01

    One goal of the MAMMOTH M&S project is to validate the analysis capabilities within MAMMOTH. Historical data has shown limited value for validation of full three-dimensional (3D) multi-physics methods. Initial analysis considered the TREAT startup minimum critical core and one of the startup transient tests. At present, validation is focusing on measurements taken during the M8CAL test calibration series. These exercises will valuable in preliminary assessment of the ability of MAMMOTH to perform coupled multi-physics calculations; calculations performed to date are being used to validate the neutron transport solver Rattlesnake\\citelesnake) and the fuels performance code BISON. Other validation projects outside of TREAT are available for single-physics benchmarking. Because the transient solution capability of Rattlesnake is one of the key attributes that makes it unique for TREAT transient simulations, validation of the transient solution of Rattlesnake using other time dependent kinetics benchmarks has considerable value. The Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) has recently developed a computational benchmark for transient simulations. This benchmark considered both two-dimensional (2D) and 3D configurations for a total number of 26 different transients. All are negative reactivity insertions, typically returning to the critical state after some time.

  1. MFTF TOTAL benchmark

    International Nuclear Information System (INIS)

    Choy, J.H.

    1979-06-01

    A benchmark of the TOTAL data base management system as applied to the Mirror Fusion Test Facility (MFTF) data base was implemented and run in February and March of 1979. The benchmark was run on an Interdata 8/32 and involved the following tasks: (1) data base design, (2) data base generation, (3) data base load, and (4) develop and implement programs to simulate MFTF usage of the data base

  2. The Drill Down Benchmark

    NARCIS (Netherlands)

    P.A. Boncz (Peter); T. Rühl (Tim); F. Kwakkel

    1998-01-01

    textabstractData Mining places specific requirements on DBMS query performance that cannot be evaluated satisfactorily using existing OLAP benchmarks. The DD Benchmark - defined here - provides a practical case and yardstick to explore how well a DBMS is able to support Data Mining applications. It

  3. Benchmarking and Learning in Public Healthcare

    DEFF Research Database (Denmark)

    Buckmaster, Natalie; Mouritsen, Jan

    2017-01-01

    This research investigates the effects of learning-oriented benchmarking in public healthcare settings. Benchmarking is a widely adopted yet little explored accounting practice that is part of the paradigm of New Public Management. Extant studies are directed towards mandated coercive benchmarking...

  4. Benchmarking & European Sustainable Transport Policies

    DEFF Research Database (Denmark)

    Gudmundsson, H.

    2003-01-01

    , Benchmarking is one of the management tools that have recently been introduced in the transport sector. It is rapidly being applied to a wide range of transport operations, services and policies. This paper is a contribution to the discussion of the role of benchmarking in the future efforts to...... contribution to the discussions within the Eusponsored BEST Thematic Network (Benchmarking European Sustainable Transport) which ran from 2000 to 2003....

  5. Benchmarking – A tool for judgment or improvement?

    DEFF Research Database (Denmark)

    Rasmussen, Grane Mikael Gregaard

    2010-01-01

    perceptions of benchmarking will be presented; public benchmarking and best practice benchmarking. These two types of benchmarking are used to characterize and discuss the Danish benchmarking system and to enhance which effects, possibilities and challenges that follow in the wake of using this kind......Change in construction is high on the agenda for the Danish government and a comprehensive effort is done in improving quality and efficiency. This has led to an initiated governmental effort in bringing benchmarking into the Danish construction sector. This paper is an appraisal of benchmarking...... as it is presently carried out in the Danish construction sector. Many different perceptions of benchmarking and the nature of the construction sector, lead to an uncertainty in how to perceive and use benchmarking, hence, generating an uncertainty in understanding the effects of benchmarking. This paper addresses...

  6. BONFIRE: benchmarking computers and computer networks

    OpenAIRE

    Bouckaert, Stefan; Vanhie-Van Gerwen, Jono; Moerman, Ingrid; Phillips, Stephen; Wilander, Jerker

    2011-01-01

    The benchmarking concept is not new in the field of computing or computer networking. With “benchmarking tools”, one usually refers to a program or set of programs, used to evaluate the performance of a solution under certain reference conditions, relative to the performance of another solution. Since the 1970s, benchmarking techniques have been used to measure the performance of computers and computer networks. Benchmarking of applications and virtual machines in an Infrastructure-as-a-Servi...

  7. Benchmark tests of JENDL-3.2 for thermal and fast reactors

    International Nuclear Information System (INIS)

    Takano, Hideki

    1995-01-01

    Benchmark calculations for a variety of thermal and fast reactors have been performed by using the newly evaluated JENDL-3 Version-2 (JENDL-3.2) file. In the thermal reactor calculations for the uranium and plutonium fueled cores of TRX and TCA, the k eff and lattice parameters were well predicted. The fast reactor calculations for ZPPR-9 and FCA assemblies showed that the k eff , reactivity worth of Doppler, sodium void and control rod, and reaction rate distribution were in a very good agreement with the experiments. (author)

  8. The Isprs Benchmark on Indoor Modelling

    Science.gov (United States)

    Khoshelham, K.; Díaz Vilariño, L.; Peter, M.; Kang, Z.; Acharya, D.

    2017-09-01

    Automated generation of 3D indoor models from point cloud data has been a topic of intensive research in recent years. While results on various datasets have been reported in literature, a comparison of the performance of different methods has not been possible due to the lack of benchmark datasets and a common evaluation framework. The ISPRS benchmark on indoor modelling aims to address this issue by providing a public benchmark dataset and an evaluation framework for performance comparison of indoor modelling methods. In this paper, we present the benchmark dataset comprising several point clouds of indoor environments captured by different sensors. We also discuss the evaluation and comparison of indoor modelling methods based on manually created reference models and appropriate quality evaluation criteria. The benchmark dataset is available for download at: html"target="_blank">http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html.

  9. Benchmarking the energy efficiency of commercial buildings

    International Nuclear Information System (INIS)

    Chung, William; Hui, Y.V.; Lam, Y. Miu

    2006-01-01

    Benchmarking energy-efficiency is an important tool to promote the efficient use of energy in commercial buildings. Benchmarking models are mostly constructed in a simple benchmark table (percentile table) of energy use, which is normalized with floor area and temperature. This paper describes a benchmarking process for energy efficiency by means of multiple regression analysis, where the relationship between energy-use intensities (EUIs) and the explanatory factors (e.g., operating hours) is developed. Using the resulting regression model, these EUIs are then normalized by removing the effect of deviance in the significant explanatory factors. The empirical cumulative distribution of the normalized EUI gives a benchmark table (or percentile table of EUI) for benchmarking an observed EUI. The advantage of this approach is that the benchmark table represents a normalized distribution of EUI, taking into account all the significant explanatory factors that affect energy consumption. An application to supermarkets is presented to illustrate the development and the use of the benchmarking method

  10. Numisheet2005 Benchmark Analysis on Forming of an Automotive Underbody Cross Member: Benchmark 2

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    This report presents an international cooperation benchmark effort focusing on simulations of a sheet metal stamping process. A forming process of an automotive underbody cross member using steel and aluminum blanks is used as a benchmark. Simulation predictions from each submission are analyzed via comparison with the experimental results. A brief summary of various models submitted for this benchmark study is discussed. Prediction accuracy of each parameter of interest is discussed through the evaluation of cumulative errors from each submission

  11. SKaMPI: A Comprehensive Benchmark for Public Benchmarking of MPI

    Directory of Open Access Journals (Sweden)

    Ralf Reussner

    2002-01-01

    Full Text Available The main objective of the MPI communication library is to enable portable parallel programming with high performance within the message-passing paradigm. Since the MPI standard has no associated performance model, and makes no performance guarantees, comprehensive, detailed and accurate performance figures for different hardware platforms and MPI implementations are important for the application programmer, both for understanding and possibly improving the behavior of a given program on a given platform, as well as for assuring a degree of predictable behavior when switching to another hardware platform and/or MPI implementation. We term this latter goal performance portability, and address the problem of attaining performance portability by benchmarking. We describe the SKaMPI benchmark which covers a large fraction of MPI, and incorporates well-accepted mechanisms for ensuring accuracy and reliability. SKaMPI is distinguished among other MPI benchmarks by an effort to maintain a public performance database with performance data from different hardware platforms and MPI implementations.

  12. Neutronics benchmark of a MOX assembly with near-weapons-grade plutonium

    International Nuclear Information System (INIS)

    Difilippo, F.C.; Fisher, S.E.

    1998-01-01

    One of the proposed ways to dispose of surplus weapons-grade plutonium (Pu) is to irradiate the high-fissile material in light-water reactors in order to reduce the Pu enrichment to the level of spent fuels from commercial reactors. Considerable experience has been accumulated about the behavior of mixed-oxide (MOX) uranium and plutonium fuels for plutonium recycling in commercial reactors, but the experience is related to Pu enrichments typical of spent fuels quite below the values of weapons-grade plutonium. Important decisions related to the kind of reactors to be used for the disposition of the plutonium are going to be based on calculations, so the validation of computational algorithms related to all aspects of the fuel cycle (power distributions, isotopics as function of the burnup, etc.), for weapons-grade isotopics is very important. Analysis of public domain data reveals that the cycle-2 irradiation in the Quad cities boiling-water reactor (BWR) is the most recent US destructive examination. This effort involved the irradiation of five MOX assemblies using 80 and 90% fissile plutonium. These benchmark data were gathered by General Electric under the sponsorship of the Electric Power Research Institute. It is emphasized, however, that global parameters are not the focus of this benchmark, since the five bundles containing MOX fuels did not significantly affect the overall core performance. However, since the primary objective of this work is to compare against measured post-irradiation assembly data, the term benchmark is applied here. One important reason for performing the benchmark on Quad Cities irradiation is that the fissile blends (up to 90%) are higher than reactor-grade and, quite close to, weapons-grade isotopics

  13. Entropy-based benchmarking methods

    NARCIS (Netherlands)

    Temurshoev, Umed

    2012-01-01

    We argue that benchmarking sign-volatile series should be based on the principle of movement and sign preservation, which states that a bench-marked series should reproduce the movement and signs in the original series. We show that the widely used variants of Denton (1971) method and the growth

  14. Out-of-Core Computations of High-Resolution Level Sets by Means of Code Transformation

    DEFF Research Database (Denmark)

    Christensen, Brian Bunch; Nielsen, Michael Bang; Museth, Ken

    2012-01-01

    We propose a storage efficient, fast and parallelizable out-of-core framework for streaming computations of high resolution level sets. The fundamental techniques are skewing and tiling transformations of streamed level set computations which allow for the combination of interface propagation, re...... computations are now CPU bound and consequently the overall performance is unaffected by disk latency and bandwidth limitations. We demonstrate this with several benchmark tests that show sustained out-of-core throughputs close to that of in-core level set simulations....

  15. Power reactor pressure vessel benchmarks

    International Nuclear Information System (INIS)

    Rahn, F.J.

    1978-01-01

    A review is given of the current status of experimental and calculational benchmarks for use in understanding the radiation embrittlement effects in the pressure vessels of operating light water power reactors. The requirements of such benchmarks for application to pressure vessel dosimetry are stated. Recent developments in active and passive neutron detectors sensitive in the ranges of importance to embrittlement studies are summarized and recommendations for improvements in the benchmark are made. (author)

  16. Shielding benchmark problems, (2)

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Shin, Kazuo; Tada, Keiko.

    1980-02-01

    Shielding benchmark problems prepared by Working Group of Assessment of Shielding Experiments in the Research Committee on Shielding Design in the Atomic Energy Society of Japan were compiled by Shielding Laboratory in Japan Atomic Energy Research Institute. Fourteen shielding benchmark problems are presented newly in addition to twenty-one problems proposed already, for evaluating the calculational algorithm and accuracy of computer codes based on discrete ordinates method and Monte Carlo method and for evaluating the nuclear data used in codes. The present benchmark problems are principally for investigating the backscattering and the streaming of neutrons and gamma rays in two- and three-dimensional configurations. (author)

  17. Electricity consumption in school buildings - benchmark and web tools; Elforbrug i skoler - benchmark og webvaerktoej

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The aim of this project has been to produce benchmarks for electricity consumption in Danish schools in order to encourage electricity conservation. An internet programme has been developed with the aim of facilitating schools' access to benchmarks and to evaluate energy consumption. The overall purpose is to create increased attention to the electricity consumption of each separate school by publishing benchmarks which take the schools' age and number of pupils as well as after school activities into account. Benchmarks can be used to make green accounts and work as markers in e.g. energy conservation campaigns, energy management and for educational purposes. The internet tool can be found on www.energiguiden.dk. (BA)

  18. Evaluation of tight-pitch PWR cores

    International Nuclear Information System (INIS)

    Correa, F.; Driscoll, M.J.; Lanning, D.D.

    1979-08-01

    The impact of tight pinch cores on the consumption of natural uranium ore has been evaluated for two systems of coupled PWR's namely one particular type of thorium system - 235 U/UO 2 : Pu/ThO 2 : 233 U/ThO 2 - and the conventional recycle-mode uranium system - 235 U/UO 2 : Pu/UO 2 . The basic parameter varied was the fuel-to-moderator volume ratio (F/M) of the (uniform) lattice for the last core in each sequence. Although methods and data verification in the range of present interest, 0.5 (current lattices) 1.0, the EPRI-LEOPARD and LASER programs used for the thorium and uranium calculations, respectively, were successfully benchmarked against several of the more pertinent experiments

  19. BEAVRS full core burnup calculation in hot full power condition by RMC code

    International Nuclear Information System (INIS)

    Liu, Shichang; Liang, Jingang; Wu, Qu; Guo, JuanJuan; Huang, Shanfang; Tang, Xiao; Li, Zeguang; Wang, Kan

    2017-01-01

    Highlights: • TMS and thermal scattering interpolation were developed to treat cross sections OTF. • Hybrid coupling system was developed for HFP burnup calculation of BEAVRS benchmark. • Domain decomposition was applied to handle memory problem of full core burnup. • Critical boron concentration with burnup by RMC agrees with the benchmark results. • RMC is capable of multi-physics coupling for simulations of nuclear reactors in HFP. - Abstract: Monte Carlo method can provide high fidelity neutronics analysis of different types of nuclear reactors, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. However, nuclear reactors are complex systems with multi-physics interacting and coupling. MC codes can couple with depletion solver and thermal-hydraulics (T/H) codes simultaneously for the “transport-burnup-thermal-hydraulics” coupling calculations. MIT BEAVRS is a typical “transport-burnup-thermal-hydraulics” coupling benchmark. In this paper, RMC was coupled with sub-channel code COBRA, equipped with on-the-fly temperature-dependent cross section treatment and large-scale detailed burnup calculation based on domain decomposition. Then RMC was applied to the full core burnup calculations of BEAVRS benchmark in hot full power (HFP) condition. The numerical tests show that domain decomposition method can achieve the consistent results compared with original version of RMC while enlarging the computational burnup regions. The results of HFP by RMC agree well with the reference values of BEAVRS benchmark and also agree well with those of MC21. This work proves the feasibility and accuracy of RMC in multi-physics coupling and lifecycle simulations of nuclear reactors.

  20. Emergency Victim Care. A Training Manual for Emergency Medical Technicians. Module 14. Appendix I: Communicating with Deaf and Hearing Impaired Patients. Appendix II: Medical Terminology. Appendix III: EMS Organizations. Appendix IV: Legislation (Ohio). Glossary of Terms. Index. Revised.

    Science.gov (United States)

    Ohio State Dept. of Education, Columbus. Div. of Vocational Education.

    This training manual for emergency medical technicians, one of 14 modules that comprise the Emergency Victim Care textbook, contains appendixes, a glossary, and an index. The first appendix is an article on communicating with deaf and hearing-impaired patients. Appendix 2, the largest section in this manual, is an introduction to medical…

  1. Performance Targets and External Benchmarking

    DEFF Research Database (Denmark)

    Friis, Ivar; Hansen, Allan; Vámosi, Tamás S.

    Research on relative performance measures, transfer pricing, beyond budgeting initiatives, target costing, piece rates systems and value based management has for decades underlined the importance of external benchmarking in performance management. Research conceptualises external benchmarking...... as a market mechanism that can be brought inside the firm to provide incentives for continuous improvement and the development of competitive advances. However, whereas extant research primarily has focused on the importance and effects of using external benchmarks, less attention has been directed towards...... the conditions upon which the market mechanism is performing within organizations. This paper aims to contribute to research by providing more insight to the conditions for the use of external benchmarking as an element in performance management in organizations. Our study explores a particular type of external...

  2. Benchmarking in Czech Higher Education

    OpenAIRE

    Plaček Michal; Ochrana František; Půček Milan

    2015-01-01

    The first part of this article surveys the current experience with the use of benchmarking at Czech universities specializing in economics and management. The results indicate that collaborative benchmarking is not used on this level today, but most actors show some interest in its introduction. The expression of the need for it and the importance of benchmarking as a very suitable performance-management tool in less developed countries are the impetus for the second part of our article. Base...

  3. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  4. A Seafloor Benchmark for 3-dimensional Geodesy

    Science.gov (United States)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone

  5. The Concepts "Benchmarks and Benchmarking" Used in Education Planning: Teacher Education as Example

    Science.gov (United States)

    Steyn, H. J.

    2015-01-01

    Planning in education is a structured activity that includes several phases and steps that take into account several kinds of information (Steyn, Steyn, De Waal & Wolhuter, 2002: 146). One of the sets of information that are usually considered is the (so-called) "benchmarks" and "benchmarking" regarding the focus of a…

  6. Final results of the fifth three-dimensional dynamic Atomic Energy Research benchmark problem calculations

    International Nuclear Information System (INIS)

    Hadek, J.

    1999-01-01

    The paper gives a brief survey of the fifth three-dimensional dynamic Atomic Energy Research benchmark calculation results received with the code DYN3D/ATHLET at NRI Rez. This benchmark was defined at the seventh Atomic Energy Research Symposium (Hoernitz near Zittau, 1997). Its initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one stuck out control rod group. The calculations were performed with the externally coupled codes ATHLET Mod.1.1 Cycle C and DYN3DH1.1/M3. The standard WWER-440/213 input deck of ATHLET code was adopted for benchmark purposes and for coupling with the code DYN3D. The first part of paper contains a brief characteristics of NPP input deck and reactor core model. The second part shows the time dependencies of important global and local parameters. In comparison with the results published at the eighth Atomic Energy Research Symposium (Bystrice nad Pernstejnem, 1998), the results published in this paper are based on improved ATHLET descriptions of control and safety systems. (Author)

  7. Aerodynamic Benchmarking of the Deepwind Design

    DEFF Research Database (Denmark)

    Bedona, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    2015-01-01

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... the blade solicitation and the cost of energy. Different parameters are considered for the benchmarking study. The DeepWind blade is characterized by a shape similar to the Troposkien geometry but asymmetric between the top and bottom parts: this shape is considered as a fixed parameter in the benchmarking...

  8. DORT-TD/THERMIX solutions for the OECD/NEA/NSC PBMR400 MW coupled neutronics thermal hydraulics transient benchmark

    International Nuclear Information System (INIS)

    Tyobeka, Bismark; Pautz, Andreas; Ivanov, Kostadin

    2008-01-01

    In new reactor designs that are still under review such as the PBMR, not much experimental data exists to benchmark newly developed computer codes against. Such a situation requires that nuclear engineers and designers of this novel reactor design must resort to the validation of a newly developed code through a code-to-code benchmarking exercise because there are validated codes that are currently in use to analyze this reactor design, albeit very few of them. There are numerous HTR core physics benchmarks that are currently being pursued by different organizations, for different purposes. One such benchmark exercise is the PBMR-400 MW OECD/NEA/NSC coupled neutronics/thermal hydraulics transient benchmark. In this paper, a newly developed coupled neutronics thermal hydraulics code system, DORT-TD/THERMIX with both transport and diffusion theory options, is used to simulate the transient scenarios in the above-mentioned benchmark problem. Steady-state calculations results are compared with selected participants' results as well as transient models in which the diffusion and transport theory solutions of the same code system are directly compared. Several sensitivity studies are also shown in order to determine how much the change in certain parameters influences the overall behaviour of a given transient. It is shown in this paper that DORT-TD/THERMIX is a versatile tool which can be deployed for design and safety analyses of high temperature reactors of pebble-bed type. (authors)

  9. ZPR-6 assembly 7 high {sup 240} PU core : a cylindrical assemby with mixed (PU, U)-oxide fuel and a central high {sup 240} PU zone.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; Schaefer, R. W.; McKnight, R. D.; Tsiboulia, A.; Rozhikhin, Y.; Nuclear Engineering Division; Inst. of Physics and Power Engineering

    2007-10-01

    Over a period of 30 years more than a hundred Zero Power Reactor (ZPR) critical assemblies were constructed at Argonne National Laboratory. The ZPR facilities, ZPR-3, ZPR-6, ZPR-9 and ZPPR, were all fast critical assembly facilities. The ZPR critical assemblies were constructed to support fast reactor development, but data from some of these assemblies are also well suited to form the basis for criticality safety benchmarks. Of the three classes of ZPR assemblies, engineering mockups, engineering benchmarks and physics benchmarks, the last group tends to be most useful for criticality safety. Because physics benchmarks were designed to test fast reactor physics data and methods, they were as simple as possible in geometry and composition. The principal fissile species was {sup 235}U or {sup 239}Pu. Fuel enrichments ranged from 9% to 95%. Often there were only one or two main core diluent materials, such as aluminum, graphite, iron, sodium or stainless steel. The cores were reflected (and insulated from room return effects) by one or two layers of materials such as depleted uranium, lead or stainless steel. Despite their more complex nature, a small number of assemblies from the other two classes would make useful criticality safety benchmarks because they have features related to criticality safety issues, such as reflection by soil-like material. The term 'benchmark' in a ZPR program connotes a particularly simple loading aimed at gaining basic reactor physics insight, as opposed to studying a reactor design. In fact, the ZPR-6/7 Benchmark Assembly (Reference 1) had a very simple core unit cell assembled from plates of depleted uranium, sodium, iron oxide, U3O8, and plutonium. The ZPR-6/7 core cell-average composition is typical of the interior region of liquid-metal fast breeder reactors (LMFBRs) of the era. It was one part of the Demonstration Reactor Benchmark Program,a which provided integral experiments characterizing the important features of

  10. Shielding benchmark problems

    International Nuclear Information System (INIS)

    Tanaka, Shun-ichi; Sasamoto, Nobuo; Oka, Yoshiaki; Kawai, Masayoshi; Nakazawa, Masaharu.

    1978-09-01

    Shielding benchmark problems were prepared by the Working Group of Assessment of Shielding Experiments in the Research Comittee on Shielding Design of the Atomic Energy Society of Japan, and compiled by the Shielding Laboratory of Japan Atomic Energy Research Institute. Twenty-one kinds of shielding benchmark problems are presented for evaluating the calculational algorithm and the accuracy of computer codes based on the discrete ordinates method and the Monte Carlo method and for evaluating the nuclear data used in the codes. (author)

  11. Processing and benchmarking of evaluated nuclear data file/b-viii.0β4 cross-section library by analysis of a series of critical experimental benchmark using the monte carlo code MCNP(X and NJOY2016

    Directory of Open Access Journals (Sweden)

    Kabach Ouadie

    2017-12-01

    Full Text Available To validate the new Evaluated Nuclear Data File (ENDF/B-VIII.0β4 library, 31 different critical cores were selected and used for a benchmark test of the important parameter keff. The four utilized libraries are processed using Nuclear Data Processing Code (NJOY2016. The results obtained with the ENDF/B-VIII.0β4 library were compared against those calculated with ENDF/B-VI.8, ENDF/B-VII.0, and ENDF/B-VII.1 libraries using the Monte Carlo N-Particle (MCNP(X code. All the MCNP(X calculations of keff values with these four libraries were compared with the experimentally measured results, which are available in the International Critically Safety Benchmark Evaluation Project. The obtained results are discussed and analyzed in this paper.

  12. Benchmarking von Krankenhausinformationssystemen – eine vergleichende Analyse deutschsprachiger Benchmarkingcluster

    Directory of Open Access Journals (Sweden)

    Jahn, Franziska

    2015-08-01

    Full Text Available Benchmarking is a method of strategic information management used by many hospitals today. During the last years, several benchmarking clusters have been established within the German-speaking countries. They support hospitals in comparing and positioning their information system’s and information management’s costs, performance and efficiency against other hospitals. In order to differentiate between these benchmarking clusters and to provide decision support in selecting an appropriate benchmarking cluster, a classification scheme is developed. The classification scheme observes both general conditions and examined contents of the benchmarking clusters. It is applied to seven benchmarking clusters which have been active in the German-speaking countries within the last years. Currently, performance benchmarking is the most frequent benchmarking type, whereas the observed benchmarking clusters differ in the number of benchmarking partners and their cooperation forms. The benchmarking clusters also deal with different benchmarking subjects. Assessing costs and quality application systems, physical data processing systems, organizational structures of information management and IT services processes are the most frequent benchmarking subjects. There is still potential for further activities within the benchmarking clusters to measure strategic and tactical information management, IT governance and quality of data and data-processing processes. Based on the classification scheme and the comparison of the benchmarking clusters, we derive general recommendations for benchmarking of hospital information systems.

  13. Medical school benchmarking - from tools to programmes.

    Science.gov (United States)

    Wilkinson, Tim J; Hudson, Judith N; Mccoll, Geoffrey J; Hu, Wendy C Y; Jolly, Brian C; Schuwirth, Lambert W T

    2015-02-01

    Benchmarking among medical schools is essential, but may result in unwanted effects. To apply a conceptual framework to selected benchmarking activities of medical schools. We present an analogy between the effects of assessment on student learning and the effects of benchmarking on medical school educational activities. A framework by which benchmarking can be evaluated was developed and applied to key current benchmarking activities in Australia and New Zealand. The analogy generated a conceptual framework that tested five questions to be considered in relation to benchmarking: what is the purpose? what are the attributes of value? what are the best tools to assess the attributes of value? what happens to the results? and, what is the likely "institutional impact" of the results? If the activities were compared against a blueprint of desirable medical graduate outcomes, notable omissions would emerge. Medical schools should benchmark their performance on a range of educational activities to ensure quality improvement and to assure stakeholders that standards are being met. Although benchmarking potentially has positive benefits, it could also result in perverse incentives with unforeseen and detrimental effects on learning if it is undertaken using only a few selected assessment tools.

  14. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  15. Issues in Benchmark Metric Selection

    Science.gov (United States)

    Crolotte, Alain

    It is true that a metric can influence a benchmark but will esoteric metrics create more problems than they will solve? We answer this question affirmatively by examining the case of the TPC-D metric which used the much debated geometric mean for the single-stream test. We will show how a simple choice influenced the benchmark and its conduct and, to some extent, DBMS development. After examining other alternatives our conclusion is that the “real” measure for a decision-support benchmark is the arithmetic mean.

  16. Benchmarking clinical photography services in the NHS.

    Science.gov (United States)

    Arbon, Giles

    2015-01-01

    Benchmarking is used in services across the National Health Service (NHS) using various benchmarking programs. Clinical photography services do not have a program in place and services have to rely on ad hoc surveys of other services. A trial benchmarking exercise was undertaken with 13 services in NHS Trusts. This highlights valuable data and comparisons that can be used to benchmark and improve services throughout the profession.

  17. Benchmarking Danish Industries

    DEFF Research Database (Denmark)

    Gammelgaard, Britta; Bentzen, Eric; Aagaard Andreassen, Mette

    2003-01-01

    compatible survey. The International Manufacturing Strategy Survey (IMSS) doesbring up the question of supply chain management, but unfortunately, we did not have access to thedatabase. Data from the members of the SCOR-model, in the form of benchmarked performance data,may exist, but are nonetheless...... not public. The survey is a cooperative project "Benchmarking DanishIndustries" with CIP/Aalborg University, the Danish Technological University, the DanishTechnological Institute and Copenhagen Business School as consortia partners. The project has beenfunded by the Danish Agency for Trade and Industry...

  18. Emittance increase caused by core depletion in collisions

    CERN Document Server

    Bruce, R

    2009-01-01

    A new effect is presented, which changes the emittance during colliding-beam operation in circular colliders. If the initial transverse distribution is Gaussian, the collision probability is much higher for particles in the core of the beam than in the tails. When small-amplitude particles are removed, the remaining ones therefore have a larger transverse emittance. This effect, called core depletion, may cause a decrease in luminosity. An approximate analytic model is developed to study the effect and benchmarked against a multiparticle tracking simulation. Finally, the time evolution of the intensity and emittances of a Pb bunch in the Large Hadron Collider (LHC) at CERN is calculated, taking into account also other processes than collisions. The results show that integrated luminosity drops by 3--4% if core depletion is taken into account. It is also found that core depletion causes the transverse emittance to be larger when more experiments are active. This observation could be checked against experimenta...

  19. Benchmarking of human resources management

    Directory of Open Access Journals (Sweden)

    David M. Akinnusi

    2008-11-01

    Full Text Available This paper reviews the role of human resource management (HRM which, today, plays a strategic partnership role in management. The focus of the paper is on HRM in the public sector, where much hope rests on HRM as a means of transforming the public service and achieving much needed service delivery. However, a critical evaluation of HRM practices in the public sector reveals that these services leave much to be desired. The paper suggests the adoption of benchmarking as a process to revamp HRM in the public sector so that it is able to deliver on its promises. It describes the nature and process of benchmarking and highlights the inherent difficulties in applying benchmarking in HRM. It concludes with some suggestions for a plan of action. The process of identifying “best” practices in HRM requires the best collaborative efforts of HRM practitioners and academicians. If used creatively, benchmarking has the potential to bring about radical and positive changes in HRM in the public sector. The adoption of the benchmarking process is, in itself, a litmus test of the extent to which HRM in the public sector has grown professionally.

  20. Integrating Best Practice and Performance Indicators To Benchmark the Performance of a School System. Benchmarking Paper 940317.

    Science.gov (United States)

    Cuttance, Peter

    This paper provides a synthesis of the literature on the role of benchmarking, with a focus on its use in the public sector. Benchmarking is discussed in the context of quality systems, of which it is an important component. The paper describes the basic types of benchmarking, pertinent research about its application in the public sector, the…

  1. Benchmarking and Sustainable Transport Policy

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik; Wyatt, Andrew; Gordon, Lucy

    2004-01-01

    Order to learn from the best. In 2000 the European Commission initiated research to explore benchmarking as a tool to promote policies for ‘sustainable transport’. This paper reports findings and recommendations on how to address this challenge. The findings suggest that benchmarking is a valuable...... tool that may indeed help to move forward the transport policy agenda. However, there are major conditions and limitations. First of all it is not always so straightforward to delimit, measure and compare transport services in order to establish a clear benchmark. Secondly ‘sustainable transport......’ evokes a broad range of concerns that are hard to address fully at the level of specific practices. Thirdly policies are not directly comparable across space and context. For these reasons attempting to benchmark ‘sustainable transport policies’ against one another would be a highly complex task, which...

  2. Simulation of the OECD Main-Steam-Line-Break Benchmark Exercise 3 Using the Coupled RELAP5/PANTHER Codes

    International Nuclear Information System (INIS)

    Schneidesch, Christophe R.; Zhang Jinzhao

    2004-01-01

    The RELAP5 best-estimate thermal-hydraulic system code has been coupled with the PANTHER three-dimensional neutron kinetics code via the TALINK dynamic data exchange control and processing tool. The coupled RELAP5/PANTHER code package has been qualified and will be used at Tractebel Engineering (TE) for analyzing asymmetric pressurized water reactor (PWR) accidents with strong core-system interactions. The Organization for Economic Cooperation and Development/U.S. Nuclear Regulatory Commission PWR main-steam-line-break benchmark problem was analyzed as part of the qualification efforts to demonstrate the capability of the coupled code package of simulating such transients. This paper reports the main results of TE's contribution to the benchmark Exercise 3

  3. Benchmarking Data Analysis and Machine Learning Applications on the Intel KNL Many-Core Processor

    OpenAIRE

    Byun, Chansup; Kepner, Jeremy; Arcand, William; Bestor, David; Bergeron, Bill; Gadepally, Vijay; Houle, Michael; Hubbell, Matthew; Jones, Michael; Klein, Anna; Michaleas, Peter; Milechin, Lauren; Mullen, Julie; Prout, Andrew; Rosa, Antonio

    2017-01-01

    Knights Landing (KNL) is the code name for the second-generation Intel Xeon Phi product family. KNL has generated significant interest in the data analysis and machine learning communities because its new many-core architecture targets both of these workloads. The KNL many-core vector processor design enables it to exploit much higher levels of parallelism. At the Lincoln Laboratory Supercomputing Center (LLSC), the majority of users are running data analysis applications such as MATLAB and O...

  4. Benchmarking for Cost Improvement. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    The US Department of Energy`s (DOE) Office of Environmental Restoration and Waste Management (EM) conducted the Benchmarking for Cost Improvement initiative with three objectives: Pilot test benchmarking as an EM cost improvement tool; identify areas for cost improvement and recommend actions to address these areas; provide a framework for future cost improvement. The benchmarking initiative featured the use of four principal methods (program classification, nationwide cost improvement survey, paired cost comparison and component benchmarking). Interested parties contributed during both the design and execution phases. The benchmarking initiative was conducted on an accelerated basis. Of necessity, it considered only a limited set of data that may not be fully representative of the diverse and complex conditions found at the many DOE installations. The initiative generated preliminary data about cost differences and it found a high degree of convergence on several issues. Based on this convergence, the report recommends cost improvement strategies and actions. This report describes the steps taken as part of the benchmarking initiative and discusses the findings and recommended actions for achieving cost improvement. The results and summary recommendations, reported below, are organized by the study objectives.

  5. Benchmarking for controllere: metoder, teknikker og muligheder

    DEFF Research Database (Denmark)

    Bukh, Per Nikolaj; Sandalgaard, Niels Erik; Dietrichson, Lars Grubbe

    2008-01-01

    Benchmarking indgår på mange måder i både private og offentlige virksomheders ledelsespraksis. I økonomistyring anvendes benchmark-baserede indikatorer (eller nøgletal), eksempelvis ved fastlæggelse af mål i resultatkontrakter eller for at angive det ønskede niveau for visse nøgletal i et Balanced...... Scorecard eller tilsvarende målstyringsmodeller. Artiklen redegør for begrebet benchmarking ved at præsentere og diskutere forskellige facetter af det, samt redegør for fire forskellige anvendelser af benchmarking for at vise begrebets bredde og væsentligheden af at klarlægge formålet med et...... benchmarkingprojekt. Dernæst bliver forskellen på resultatbenchmarking og procesbenchmarking behandlet, hvorefter brugen af intern hhv. ekstern benchmarking, samt brugen af benchmarking i budgetlægning og budgetopfølgning, behandles....

  6. Professional Performance and Bureaucratic Benchmarking Information

    DEFF Research Database (Denmark)

    Schneider, Melanie L.; Mahlendorf, Matthias D.; Schäffer, Utz

    Prior research documents positive effects of benchmarking information provision on performance and attributes this to social comparisons. However, the effects on professional recipients are unclear. Studies of professional control indicate that professional recipients often resist bureaucratic...... controls because of organizational-professional conflicts. We therefore analyze the association between bureaucratic benchmarking information provision and professional performance and suggest that the association is more positive if prior professional performance was low. We test our hypotheses based...... on archival, publicly disclosed, professional performance data for 191 German orthopedics departments, matched with survey data on bureaucratic benchmarking information given to chief orthopedists by the administration. We find a positive association between bureaucratic benchmarking information provision...

  7. NMR-MPar: A Fault-Tolerance Approach for Multi-Core and Many-Core Processors

    Directory of Open Access Journals (Sweden)

    Vanessa Vargas

    2018-03-01

    Full Text Available Multi-core and many-core processors are a promising solution to achieve high performance by maintaining a lower power consumption. However, the degree of miniaturization makes them more sensitive to soft-errors. To improve the system reliability, this work proposes a fault-tolerance approach based on redundancy and partitioning principles called N-Modular Redundancy and M-Partitions (NMR-MPar. By combining both principles, this approach allows multi-/many-core processors to perform critical functions in mixed-criticality systems. Benefiting from the capabilities of these devices, NMR-MPar creates different partitions that perform independent functions. For critical functions, it is proposed that N partitions with the same configuration participate of an N-modular redundancy system. In order to validate the approach, a case study is implemented on the KALRAY Multi-Purpose Processing Array (MPPA-256 many-core processor running two parallel benchmark applications. The traveling salesman problem and matrix multiplication applications were selected to test different device’s resources. The effectiveness of NMR-MPar is assessed by software-implemented fault-injection. For evaluation purposes, it is considered that the system is intended to be used in avionics. Results show the improvement of the application reliability by two orders of magnitude when implementing NMR-MPar on the system. Finally, this work opens the possibility to use massive parallelism for dependable applications in embedded systems.

  8. EPA's Benchmark Dose Modeling Software

    Science.gov (United States)

    The EPA developed the Benchmark Dose Software (BMDS) as a tool to help Agency risk assessors facilitate applying benchmark dose (BMD) method’s to EPA’s human health risk assessment (HHRA) documents. The application of BMD methods overcomes many well know limitations ...

  9. Potential of thorium-based fuel cycle for PWR core to reduce plutonium and long-term toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Hyung Kook; Kim, Taek Kyum; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    The cross section libraries and calculation methods of the participants were inter-compared through the first stage benchmark calculation. The multiplication factor of unit cell benchmark are in good agreement, but there is significant discrepancies of 2.3 to 3.5 %k at BOC and at EOC between the calculated infinite multiplication factors of each participants for the assembly benchmark. Our results with HELIOS show a reasonable agreement with the others except the MTC value at EOC. To verify the potential of the thorium-based fuel to consume the plutonium and to reduce the radioactivity from the spent fuel, the conceptual core with ThO{sub 2}-PuO{sub 2} or MOX fuel were constructed. The composition and quantity of plutonium isotopes and the radioactivity level of spent fuel for conceptual cores were analyzed, and the neutronic characteristics of conceptual cores were also calculated. The nuclear characteristics for ThO{sub 2}-PuO{sub 2} thorium fueled core was similar to MOX fueled core, mainly due to the same seed fuel material, plutonium. For the capability of plutonium consumption, ThO{sub 2}-PuO{sub 2} thorium fuel can consume plutonium 2.1-2.4 times MOX fuel. The fraction of fissile plutonium in the spent ThO{sub 2}-PuO{sub 2} thorium fuel is more favorable in view of plutonium consumption and non-proliferation than MOX fuel. The radioactivity of spent ThO{sub 2}-PuO{sub 2} thorium and MOX fuel batches were calculated. Since plutonium isotopes are dominant for the long-term radioactivity, ThO{sub 2}-PuO{sub 2} thorium has almost the same level of radioactivity as in MOX fuel for a long-term perspective. (author). 22 figs., 11 tabs.

  10. Validation of the ABBN/CONSYST constants system. Part 1: Validation through the critical experiments on compact metallic cores

    International Nuclear Information System (INIS)

    Ivanova, T.T.; Manturov, G.N.; Nikolaev, M.N.; Rozhikhin, E.V.; Semenov, M.Yu.; Tsiboulia, A.M.

    1999-01-01

    Worldwide compilation of criticality safety benchmark experiments, evaluated due to an activity of the International Criticality Safety Benchmark Evaluation Project (ICSBEP), discovers new possibilities for validation of the ABBN-93.1 cross section library for criticality safety analysis. Results of calculations of small assemblies with metal-fuelled cores are presented in this paper. It is concluded that ABBN-93.1 predicts criticality of such systems with required accuracy

  11. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  12. Core Competencies for Injury and Violence Prevention

    Science.gov (United States)

    Stephens-Stidham, Shelli; Peek-Asa, Corinne; Bou-Saada, Ingrid; Hunter, Wanda; Lindemer, Kristen; Runyan, Carol

    2009-01-01

    Efforts to reduce the burden of injury and violence require a workforce that is knowledgeable and skilled in prevention. However, there has been no systematic process to ensure that professionals possess the necessary competencies. To address this deficiency, we developed a set of core competencies for public health practitioners in injury and violence prevention programs. The core competencies address domains including public health significance, data, the design and implementation of prevention activities, evaluation, program management, communication, stimulating change, and continuing education. Specific learning objectives establish goals for training in each domain. The competencies assist in efforts to reduce the burden of injury and violence and can provide benchmarks against which to assess progress in professional capacity for injury and violence prevention. PMID:19197083

  13. Analysis of the TRIGA Mark-II benchmark IEU-COMP-THERM-003 with Monte Carlo code MVP

    International Nuclear Information System (INIS)

    Mahmood, Mohammad Sayem; Nagaya, Yasunobu; Mori, Takamasa

    2004-03-01

    The benchmark experiments of the TRIGA Mark-II reactor in the ICSBEP handbook have been analyzed with the Monte Carlo code MVP using the cross section libraries based on JENDL-3.3, JENDL-3.2 and ENDF/B-VI.8. The MCNP calculations have been also performed with the ENDF/B-VI.6 library for comparison between the MVP and MCNP results. For both cores labeled 132 and 133, which have different core configurations, the ratio of the calculated to the experimental results (C/E) for k eff obtained by the MVP code is 0.999 for JENDL-3.3, 1.003 for JENDL-3.2, and 0.998 for ENDF/B-VI.8. For the MCNP code, the C/E values are 0.998 for both Core 132 and 133. All the calculated results agree with the reference values within the experimental uncertainties. The results obtained by MVP with ENDF/B-VI.8 and MCNP with ENDF/B-VI.6 differ only by 0.02% for Core 132, and by 0.01% for Core 133. (author)

  14. Deviating From the Benchmarks

    DEFF Research Database (Denmark)

    Rocha, Vera; Van Praag, Mirjam; Carneiro, Anabela

    This paper studies three related questions: To what extent otherwise similar startups employ different quantities and qualities of human capital at the moment of entry? How persistent are initial human capital choices over time? And how does deviating from human capital benchmarks influence firm......, founders human capital, and the ownership structure of startups (solo entrepreneurs versus entrepreneurial teams). We then study the survival implications of exogenous deviations from these benchmarks, based on spline models for survival data. Our results indicate that (especially negative) deviations from...... the benchmark can be substantial, are persistent over time, and hinder the survival of firms. The implications may, however, vary according to the sector and the ownership structure at entry. Given the stickiness of initial choices, wrong human capital decisions at entry turn out to be a close to irreversible...

  15. Benchmark Two-Good Utility Functions

    NARCIS (Netherlands)

    de Jaegher, K.

    Benchmark two-good utility functions involving a good with zero income elasticity and unit income elasticity are well known. This paper derives utility functions for the additional benchmark cases where one good has zero cross-price elasticity, unit own-price elasticity, and zero own price

  16. Developing integrated benchmarks for DOE performance measurement

    Energy Technology Data Exchange (ETDEWEB)

    Barancik, J.I.; Kramer, C.F.; Thode, Jr. H.C.

    1992-09-30

    The objectives of this task were to describe and evaluate selected existing sources of information on occupational safety and health with emphasis on hazard and exposure assessment, abatement, training, reporting, and control identifying for exposure and outcome in preparation for developing DOE performance benchmarks. Existing resources and methodologies were assessed for their potential use as practical performance benchmarks. Strengths and limitations of current data resources were identified. Guidelines were outlined for developing new or improved performance factors, which then could become the basis for selecting performance benchmarks. Data bases for non-DOE comparison populations were identified so that DOE performance could be assessed relative to non-DOE occupational and industrial groups. Systems approaches were described which can be used to link hazards and exposure, event occurrence, and adverse outcome factors, as needed to generate valid, reliable, and predictive performance benchmarks. Data bases were identified which contain information relevant to one or more performance assessment categories . A list of 72 potential performance benchmarks was prepared to illustrate the kinds of information that can be produced through a benchmark development program. Current information resources which may be used to develop potential performance benchmarks are limited. There is need to develop an occupational safety and health information and data system in DOE, which is capable of incorporating demonstrated and documented performance benchmarks prior to, or concurrent with the development of hardware and software. A key to the success of this systems approach is rigorous development and demonstration of performance benchmark equivalents to users of such data before system hardware and software commitments are institutionalized.

  17. CT appearance of the normal appendix in adults

    International Nuclear Information System (INIS)

    Tamburrini, Stefania; Brunetti, Arturo; Brown, Michele; Sirlin, Claude B.; Casola, Giovanna

    2005-01-01

    The aims of this study were to identify (1) the normal range of the appendix on computed tomography (CT), (2) the correlation of patient age and sex with the visibility and appearance of the appendix on CT, and (3) the normal variations in wall thickness, intraluminal content, and location of the appendix. Three hundred seventy-two outpatients underwent abdominopelvic CT. The scans were reviewed on the picture archiving and communication system and appendiceal outer-to-outer wall diameter, wall thickness, location, content and its correlation with appendix diameter were analyzed. The appendix was visualized in 305/372 patients. Its location relative to the cecum was highly variable. The diameter range was 3-10 mm; in 42% of cases the diameter was greater than 6 mm. When the intraluminal content (185/305) was visualized, the diameter was slightly superior to the mean (p=0.0156). In 329 CT scans in which oral contrast material was given, the appendix was filled by contrast material in 74/329 patients. The appendix wall thickness was measurable in 22/305 patients (average 0.15 cm). There is significant overlap between the normal and abnormal CT appearance of the appendix. Consequently the diagnosis of acute appendicitis should be based not only on the appearance of the appendix but also on the presence of secondary signs. (orig.)

  18. Benchmarking gate-based quantum computers

    Science.gov (United States)

    Michielsen, Kristel; Nocon, Madita; Willsch, Dennis; Jin, Fengping; Lippert, Thomas; De Raedt, Hans

    2017-11-01

    With the advent of public access to small gate-based quantum processors, it becomes necessary to develop a benchmarking methodology such that independent researchers can validate the operation of these processors. We explore the usefulness of a number of simple quantum circuits as benchmarks for gate-based quantum computing devices and show that circuits performing identity operations are very simple, scalable and sensitive to gate errors and are therefore very well suited for this task. We illustrate the procedure by presenting benchmark results for the IBM Quantum Experience, a cloud-based platform for gate-based quantum computing.

  19. A Heterogeneous Medium Analytical Benchmark

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1999-01-01

    A benchmark, called benchmark BLUE, has been developed for one-group neutral particle (neutron or photon) transport in a one-dimensional sub-critical heterogeneous plane parallel medium with surface illumination. General anisotropic scattering is accommodated through the Green's Function Method (GFM). Numerical Fourier transform inversion is used to generate the required Green's functions which are kernels to coupled integral equations that give the exiting angular fluxes. The interior scalar flux is then obtained through quadrature. A compound iterative procedure for quadrature order and slab surface source convergence provides highly accurate benchmark qualities (4- to 5- places of accuracy) results

  20. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    Energy Technology Data Exchange (ETDEWEB)

    Kawaji, Masahiro [City College of New York, NY (United States); Valentin, Francisco I. [City College of New York, NY (United States); Artoun, Narbeh [City College of New York, NY (United States); Banerjee, Sanjoy [City College of New York, NY (United States); Sohal, Manohar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schultz, Richard [Idaho National Lab. (INL), Idaho Falls, ID (United States); McEligot, Donald M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  1. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    International Nuclear Information System (INIS)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh; Banerjee, Sanjoy; Sohal, Manohar; Schultz, Richard; McEligot, Donald M.

    2015-01-01

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spots in the VHTR core.

  2. Benchmarking i eksternt regnskab og revision

    DEFF Research Database (Denmark)

    Thinggaard, Frank; Kiertzner, Lars

    2001-01-01

    løbende i en benchmarking-proces. Dette kapitel vil bredt undersøge, hvor man med nogen ret kan få benchmarking-begrebet knyttet til eksternt regnskab og revision. Afsnit 7.1 beskæftiger sig med det eksterne årsregnskab, mens afsnit 7.2 tager fat i revisionsområdet. Det sidste afsnit i kapitlet opsummerer...... betragtningerne om benchmarking i forbindelse med begge områder....

  3. A framework for benchmarking land models

    Directory of Open Access Journals (Sweden)

    Y. Q. Luo

    2012-10-01

    Full Text Available Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1 targeted aspects of model performance to be evaluated, (2 a set of benchmarks as defined references to test model performance, (3 metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4 model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1 a priori thresholds of acceptable model performance and (2 a scoring system to combine data–model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties

  4. New Multi-group Transport Neutronics (PHISICS) Capabilities for RELAP5-3D and its Application to Phase I of the OECD/NEA MHTGR-350 MW Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom; Cristian Rabiti; Andrea Alfonsi

    2012-10-01

    PHISICS is a neutronics code system currently under development at the Idaho National Laboratory (INL). Its goal is to provide state of the art simulation capability to reactor designers. The different modules for PHISICS currently under development are a nodal and semi-structured transport core solver (INSTANT), a depletion module (MRTAU) and a cross section interpolation (MIXER) module. The INSTANT module is the most developed of the mentioned above. Basic functionalities are ready to use, but the code is still in continuous development to extend its capabilities. This paper reports on the effort of coupling the nodal kinetics code package PHISICS (INSTANT/MRTAU/MIXER) to the thermal hydraulics system code RELAP5-3D, to enable full core and system modeling. This will enable the possibility to model coupled (thermal-hydraulics and neutronics) problems with more options for 3D neutron kinetics, compared to the existing diffusion theory neutron kinetics module in RELAP5-3D (NESTLE). In the second part of the paper, an overview of the OECD/NEA MHTGR-350 MW benchmark is given. This benchmark has been approved by the OECD, and is based on the General Atomics 350 MW Modular High Temperature Gas Reactor (MHTGR) design. The benchmark includes coupled neutronics thermal hydraulics exercises that require more capabilities than RELAP5-3D with NESTLE offers. Therefore, the MHTGR benchmark makes extensive use of the new PHISICS/RELAP5-3D coupling capabilities. The paper presents the preliminary results of the three steady state exercises specified in Phase I of the benchmark using PHISICS/RELAP5-3D.

  5. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  6. Ad hoc committee on reactor physics benchmarks

    International Nuclear Information System (INIS)

    Diamond, D.J.; Mosteller, R.D.; Gehin, J.C.

    1996-01-01

    In the spring of 1994, an ad hoc committee on reactor physics benchmarks was formed under the leadership of two American Nuclear Society (ANS) organizations. The ANS-19 Standards Subcommittee of the Reactor Physics Division and the Computational Benchmark Problem Committee of the Mathematics and Computation Division had both seen a need for additional benchmarks to help validate computer codes used for light water reactor (LWR) neutronics calculations. Although individual organizations had employed various means to validate the reactor physics methods that they used for fuel management, operations, and safety, additional work in code development and refinement is under way, and to increase accuracy, there is a need for a corresponding increase in validation. Both organizations thought that there was a need to promulgate benchmarks based on measured data to supplement the LWR computational benchmarks that have been published in the past. By having an organized benchmark activity, the participants also gain by being able to discuss their problems and achievements with others traveling the same route

  7. Computational Chemistry Comparison and Benchmark Database

    Science.gov (United States)

    SRD 101 NIST Computational Chemistry Comparison and Benchmark Database (Web, free access)   The NIST Computational Chemistry Comparison and Benchmark Database is a collection of experimental and ab initio thermochemical properties for a selected set of molecules. The goals are to provide a benchmark set of molecules for the evaluation of ab initio computational methods and allow the comparison between different ab initio computational methods for the prediction of thermochemical properties.

  8. Benchmark calculation for GT-MHR using HELIOS/MASTER code package and MCNP

    International Nuclear Information System (INIS)

    Lee, Kyung Hoon; Kim, Kang Seog; Noh, Jae Man; Song, Jae Seung; Zee, Sung Quun

    2005-01-01

    The latest research associated with the very high temperature gas-cooled reactor (VHTR) is focused on the verification of a system performance and safety under operating conditions for the VHTRs. As a part of those, an international gas-cooled reactor program initiated by IAEA is going on. The key objectives of this program are the validation of analytical computer codes and the evaluation of benchmark models for the projected and actual VHTRs. New reactor physics analysis procedure for the prismatic VHTR is under development by adopting the conventional two-step procedure. In this procedure, a few group constants are generated through the transport lattice calculations using the HELIOS code, and the core physics analysis is performed by the 3-dimensional nodal diffusion code MASTER. We evaluated the performance of the HELIOS/MASTER code package through the benchmark calculations related to the GT-MHR (Gas Turbine-Modular Helium Reactor) to dispose weapon plutonium. In parallel, MCNP is employed as a reference code to verify the results of the HELIOS/MASTER procedure

  9. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and.analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  10. Analysis of internal events for the Unit 1 of the Laguna Verde Nuclear Power Station. Appendixes

    International Nuclear Information System (INIS)

    Huerta B, A.; Lopez M, R.

    1995-01-01

    This volume contains the appendices for the accident sequences analysis for those internally initiated events for Laguna Verde Unit 1, Nuclear Power Plant. The appendix A presents the comments raised by the Sandia National Laboratories technical staff as a result of the review of the Internal Event Analysis for Laguna Verde Unit 1 Nuclear Power Plant. This review was performed during a joint Sandia/CNSNS multi-day meeting by the end 1992. Also included is a brief evaluation on the applicability of these comments to the present study. The appendix B presents the fault tree models printed for each of the systems included and analyzed in the Internal Event Analysis for LVNPP. The appendice C presents the outputs of the TEMAC code, used for the cuantification of the dominant accident sequences as well as for the final core damage evaluation. (Author)

  11. MTCB: A Multi-Tenant Customizable database Benchmark

    NARCIS (Netherlands)

    van der Zijden, WIm; Hiemstra, Djoerd; van Keulen, Maurice

    2017-01-01

    We argue that there is a need for Multi-Tenant Customizable OLTP systems. Such systems need a Multi-Tenant Customizable Database (MTC-DB) as a backing. To stimulate the development of such databases, we propose the benchmark MTCB. Benchmarks for OLTP exist and multi-tenant benchmarks exist, but no

  12. Internal Benchmarking for Institutional Effectiveness

    Science.gov (United States)

    Ronco, Sharron L.

    2012-01-01

    Internal benchmarking is an established practice in business and industry for identifying best in-house practices and disseminating the knowledge about those practices to other groups in the organization. Internal benchmarking can be done with structures, processes, outcomes, or even individuals. In colleges or universities with multicampuses or a…

  13. Assessment of the fracture toughness of irradiated stainless steel for BWR core shrouds

    International Nuclear Information System (INIS)

    Carter, R.G.; Gamble, R.M.

    2002-01-01

    Data from previously performed experiments were collected and evaluated to determine the relationship between fracture toughness and neutron fluence for conditions representative of BWR core shrouds. This relationship together with EPFM (elastic-plastic fracture mechanics) analysis methods similar to those in Appendix K of Section XI of the ASME Code were used to compute margin against failure as a function of neutron fluence for postulated cracks in BWR core shrouds. The results indicate that EPFM analyses can be used for flaw evaluation of core shrouds at fluence levels less than 3.10 21 n/cm 2 (E > 1 MeV). At fluence levels equal to or greater than 3.10 21 n/cm 2 , LEFM (linear-elastic fracture mechanics) analyses should be used with K Ic = 55 MPa-(m) 0.5 . (authors)

  14. Benchmarking the Netherlands. Benchmarking for growth

    International Nuclear Information System (INIS)

    2003-01-01

    This is the fourth edition of the Ministry of Economic Affairs' publication 'Benchmarking the Netherlands', which aims to assess the competitiveness of the Dutch economy. The methodology and objective of the benchmarking remain the same. The basic conditions for economic activity (institutions, regulation, etc.) in a number of benchmark countries are compared in order to learn from the solutions found by other countries for common economic problems. This publication is devoted entirely to the potential output of the Dutch economy. In other words, its ability to achieve sustainable growth and create work over a longer period without capacity becoming an obstacle. This is important because economic growth is needed to increase prosperity in the broad sense and meeting social needs. Prosperity in both a material (per capita GDP) and immaterial (living environment, environment, health, etc) sense, in other words. The economy's potential output is determined by two structural factors: the growth of potential employment and the structural increase in labour productivity. Analysis by the Netherlands Bureau for Economic Policy Analysis (CPB) shows that in recent years the increase in the capacity for economic growth has been realised mainly by increasing the supply of labour and reducing the equilibrium unemployment rate. In view of the ageing of the population in the coming years and decades the supply of labour is unlikely to continue growing at the pace we have become accustomed to in recent years. According to a number of recent studies, to achieve a respectable rate of sustainable economic growth the aim will therefore have to be to increase labour productivity. To realise this we have to focus on for six pillars of economic policy: (1) human capital, (2) functioning of markets, (3) entrepreneurship, (4) spatial planning, (5) innovation, and (6) sustainability. These six pillars determine the course for economic policy aiming at higher productivity growth. Throughout

  15. Benchmarking the Netherlands. Benchmarking for growth

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-01-01

    This is the fourth edition of the Ministry of Economic Affairs' publication 'Benchmarking the Netherlands', which aims to assess the competitiveness of the Dutch economy. The methodology and objective of the benchmarking remain the same. The basic conditions for economic activity (institutions, regulation, etc.) in a number of benchmark countries are compared in order to learn from the solutions found by other countries for common economic problems. This publication is devoted entirely to the potential output of the Dutch economy. In other words, its ability to achieve sustainable growth and create work over a longer period without capacity becoming an obstacle. This is important because economic growth is needed to increase prosperity in the broad sense and meeting social needs. Prosperity in both a material (per capita GDP) and immaterial (living environment, environment, health, etc) sense, in other words. The economy's potential output is determined by two structural factors: the growth of potential employment and the structural increase in labour productivity. Analysis by the Netherlands Bureau for Economic Policy Analysis (CPB) shows that in recent years the increase in the capacity for economic growth has been realised mainly by increasing the supply of labour and reducing the equilibrium unemployment rate. In view of the ageing of the population in the coming years and decades the supply of labour is unlikely to continue growing at the pace we have become accustomed to in recent years. According to a number of recent studies, to achieve a respectable rate of sustainable economic growth the aim will therefore have to be to increase labour productivity. To realise this we have to focus on for six pillars of economic policy: (1) human capital, (2) functioning of markets, (3) entrepreneurship, (4) spatial planning, (5) innovation, and (6) sustainability. These six pillars determine the course for economic policy aiming at higher productivity

  16. Selected examples on multi physics researches at KFKI AEKI-results for phase I of the OECD/NEA UAM benchmark

    International Nuclear Information System (INIS)

    Panka, I.; Kereszturi, A.; Maraczy, C.

    2010-01-01

    Nowadays, there is a tendency to use best estimate plus uncertainty methods in the field of nuclear energy. This implies the application of best estimate code systems and the determination of the corresponding uncertainties. For the latter one an OECD benchmark was set up. The objective of the OECD/NEA Uncertainty Analysis in Best-Estimate Modeling (UAM) LWR benchmark is to determine the uncertainties of the coupled reactor physics/thermal hydraulics LWR calculations at all stages. In this paper the AEKI participation in Phase I will be presented. This Phase is dealing with the evaluation of the uncertainties of the neutronic calculations starting from the pin cell spectral calculations up to the stand-alone neutronics core simulations. (Authors)

  17. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to p...

  18. Benchmark for Strategic Performance Improvement.

    Science.gov (United States)

    Gohlke, Annette

    1997-01-01

    Explains benchmarking, a total quality management tool used to measure and compare the work processes in a library with those in other libraries to increase library performance. Topics include the main groups of upper management, clients, and staff; critical success factors for each group; and benefits of benchmarking. (Author/LRW)

  19. Revaluering benchmarking - A topical theme for the construction industry

    DEFF Research Database (Denmark)

    Rasmussen, Grane Mikael Gregaard

    2011-01-01

    and questioning the concept objectively. This paper addresses the underlying nature of benchmarking, and accounts for the importance of focusing attention on the sociological impacts benchmarking has in organizations. To understand these sociological impacts, benchmarking research needs to transcend...... the perception of benchmarking systems as secondary and derivative and instead studying benchmarking as constitutive of social relations and as irredeemably social phenomena. I have attempted to do so in this paper by treating benchmarking using a calculative practice perspective, and describing how...

  20. Establishing benchmarks and metrics for utilization management.

    Science.gov (United States)

    Melanson, Stacy E F

    2014-01-01

    The changing environment of healthcare reimbursement is rapidly leading to a renewed appreciation of the importance of utilization management in the clinical laboratory. The process of benchmarking of laboratory operations is well established for comparing organizational performance to other hospitals (peers) and for trending data over time through internal benchmarks. However, there are relatively few resources available to assist organizations in benchmarking for laboratory utilization management. This article will review the topic of laboratory benchmarking with a focus on the available literature and services to assist in managing physician requests for laboratory testing. © 2013.

  1. Waste-Management Education and Research Consortium (WERC) annual progress report, 1991--1992. Appendixes

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-07

    This report contains the following appendices: Appendix A - Requirements for Undergraduate Level; Appendix B - Requirements for Graduate Level; Appendix C - Graduate Degree In Environmental Engineering; Appendix D - Non-degree Certificate Program; Appendix E - Curriculum for Associate Degree Program; Appendix F - Curriculum for NCC Program; Appendix G - Information 1991 Teleconference Series; Appendix H - Information on 1992 Teleconference Series; Appendix I - WERC interactive Television Courses; Appendix J - WERC Research Seminar Series; Appendix K - Sites for Hazardous/Radioactive Waste Management Series; Appendix L- Summary of Technology Development of the Second Year; Appendix M - List of Major Publications Resulting from WERC; Appendix N - Types of Equipment at WERC Laboratories.

  2. Benchmark Comparison of Dual- and Quad-Core Processor Linux Clusters with Two Global Climate Modeling Workloads

    Science.gov (United States)

    McGalliard, James

    2008-01-01

    This viewgraph presentation details the science and systems environments that NASA High End computing program serves. Included is a discussion of the workload that is involved in the processing for the Global Climate Modeling. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is a system of models integrated using the Earth System Modeling Framework (ESMF). The GEOS-5 system was used for the Benchmark tests, and the results of the tests are shown and discussed. Tests were also run for the Cubed Sphere system, results for these test are also shown.

  3. How Benchmarking and Higher Education Came Together

    Science.gov (United States)

    Levy, Gary D.; Ronco, Sharron L.

    2012-01-01

    This chapter introduces the concept of benchmarking and how higher education institutions began to use benchmarking for a variety of purposes. Here, benchmarking is defined as a strategic and structured approach whereby an organization compares aspects of its processes and/or outcomes to those of another organization or set of organizations to…

  4. Benchmark for Evaluating Moving Object Indexes

    DEFF Research Database (Denmark)

    Chen, Su; Jensen, Christian Søndergaard; Lin, Dan

    2008-01-01

    that targets techniques for the indexing of the current and near-future positions of moving objects. This benchmark enables the comparison of existing and future indexing techniques. It covers important aspects of such indexes that have not previously been covered by any benchmark. Notable aspects covered......Progress in science and engineering relies on the ability to measure, reliably and in detail, pertinent properties of artifacts under design. Progress in the area of database-index design thus relies on empirical studies based on prototype implementations of indexes. This paper proposes a benchmark...... include update efficiency, query efficiency, concurrency control, and storage requirements. Next, the paper applies the benchmark to half a dozen notable moving-object indexes, thus demonstrating the viability of the benchmark and offering new insight into the performance properties of the indexes....

  5. Benchmarking: A Process for Improvement.

    Science.gov (United States)

    Peischl, Thomas M.

    One problem with the outcome-based measures used in higher education is that they measure quantity but not quality. Benchmarking, or the use of some external standard of quality to measure tasks, processes, and outputs, is partially solving that difficulty. Benchmarking allows for the establishment of a systematic process to indicate if outputs…

  6. OECD/DOE/CEA VVER-1000 coolant transient (V1000CT) benchmark - a consistent approach for assessing coupled codes for RIA analysis

    International Nuclear Information System (INIS)

    Boyan D Ivanov; Kostadin N Ivanov; Eric Royer; Sylvie Aniel; Nikola Kolev; Pavlin Groudev

    2005-01-01

    Full text of publication follows: The Rod Ejection Accident (REA) and Main Steam Line Break (MSLB) are two of the most important Design Basis Accidents (DBA) for VVER-1000 exhibiting significant localized space-time effects. A consistent approach for assessing coupled three-dimensional (3-D) neutron kinetics/thermal hydraulics codes for these Reactivity Insertion Accidents (RIA) is to first validate the codes using the available plant test (measured) data and after that perform cross code comparative analysis for REA and MSLB scenarios. In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled 3-D neutron kinetics/thermal hydraulics benchmark was defined. The benchmark is based on data from the Unit 6 of the Bulgarian Kozloduy Nuclear Power Plant (NPP). In performing this work the PSU, USA and CEA-Saclay, France have collaborated with Bulgarian organizations, in particular with the KNPP and the INRNE. The benchmark consists of two phases: Phase 1: Main Coolant Pump Switching On; Phase 2: Coolant Mixing Tests and MSLB. In addition to the measured (experiment) scenario, an extreme calculation scenario was defined for better testing 3-D neutronics/thermal-hydraulics techniques: rod ejection simulation with control rod being ejected in the core sector cooled by the switched on MCP. Since the previous coupled code benchmarks indicated that further development of the mixing computation models in the integrated codes is necessary, a coolant mixing experiment and MSLB transients are selected for simulation in Phase 2 of the benchmark. The MSLB event is characterized by a large asymmetric cooling of the core, stuck rods and a large primary coolant flow variation. Two scenarios are defined in Phase 2: the first scenario is taken from the current licensing practice and the second one is derived from the original one using aggravating

  7. ZZ BWRSB-RINGHALS1, Stability Benchmark Data from BWR RINGHALS-1

    International Nuclear Information System (INIS)

    2002-01-01

    Description of program or function: The purpose of this benchmark is to enable code developers to test their codes and also to validate the predictive capability of their respective codes and models for BWR stability analysis. Emphasis is put on the modelling of flow dynamics of the reactor core and in-vessel flow loop wit detailed neutronic and thermodynamic feedback. The secondary systems as well as the control and production systems will be neglected. Data provided comes from measurements in beginning of cycle (BOC) 14, 15, 16 and 17 and middle of cycle (MOC) 16 in the Swedish BWR reactor Ringhals 1. For these measurements complete data sets are given

  8. Hospital benchmarking: are U.S. eye hospitals ready?

    Science.gov (United States)

    de Korne, Dirk F; van Wijngaarden, Jeroen D H; Sol, Kees J C A; Betz, Robert; Thomas, Richard C; Schein, Oliver D; Klazinga, Niek S

    2012-01-01

    Benchmarking is increasingly considered a useful management instrument to improve quality in health care, but little is known about its applicability in hospital settings. The aims of this study were to assess the applicability of a benchmarking project in U.S. eye hospitals and compare the results with an international initiative. We evaluated multiple cases by applying an evaluation frame abstracted from the literature to five U.S. eye hospitals that used a set of 10 indicators for efficiency benchmarking. Qualitative analysis entailed 46 semistructured face-to-face interviews with stakeholders, document analyses, and questionnaires. The case studies only partially met the conditions of the evaluation frame. Although learning and quality improvement were stated as overall purposes, the benchmarking initiative was at first focused on efficiency only. No ophthalmic outcomes were included, and clinicians were skeptical about their reporting relevance and disclosure. However, in contrast with earlier findings in international eye hospitals, all U.S. hospitals worked with internal indicators that were integrated in their performance management systems and supported benchmarking. Benchmarking can support performance management in individual hospitals. Having a certain number of comparable institutes provide similar services in a noncompetitive milieu seems to lay fertile ground for benchmarking. International benchmarking is useful only when these conditions are not met nationally. Although the literature focuses on static conditions for effective benchmarking, our case studies show that it is a highly iterative and learning process. The journey of benchmarking seems to be more important than the destination. Improving patient value (health outcomes per unit of cost) requires, however, an integrative perspective where clinicians and administrators closely cooperate on both quality and efficiency issues. If these worlds do not share such a relationship, the added

  9. Radiation Detection Computational Benchmark Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  10. WWER-1000 Burnup Credit Benchmark (CB5)

    International Nuclear Information System (INIS)

    Manolova, M.A.

    2002-01-01

    In the paper the specification of WWER-1000 Burnup Credit Benchmark first phase (depletion calculations), given. The second phase - criticality calculations for the WWER-1000 fuel pin cell, will be given after the evaluation of the results, obtained at the first phase. The proposed benchmark is a continuation of the WWER benchmark activities in this field (Author)

  11. The role of benchmarking for yardstick competition

    International Nuclear Information System (INIS)

    Burns, Phil; Jenkins, Cloda; Riechmann, Christoph

    2005-01-01

    With the increasing interest in yardstick regulation, there is a need to understand the most appropriate method for realigning tariffs at the outset. Benchmarking is the tool used for such realignment and is therefore a necessary first-step in the implementation of yardstick competition. A number of concerns have been raised about the application of benchmarking, making some practitioners reluctant to move towards yardstick based regimes. We assess five of the key concerns often discussed and find that, in general, these are not as great as perceived. The assessment is based on economic principles and experiences with applying benchmarking to regulated sectors, e.g. in the electricity and water industries in the UK, The Netherlands, Austria and Germany in recent years. The aim is to demonstrate that clarity on the role of benchmarking reduces the concern about its application in different regulatory regimes. We find that benchmarking can be used in regulatory settlements, although the range of possible benchmarking approaches that are appropriate will be small for any individual regulatory question. Benchmarking is feasible as total cost measures and environmental factors are better defined in practice than is commonly appreciated and collusion is unlikely to occur in environments with more than 2 or 3 firms (where shareholders have a role in monitoring and rewarding performance). Furthermore, any concern about companies under-recovering costs is a matter to be determined through the regulatory settlement and does not affect the case for using benchmarking as part of that settlement. (author)

  12. OECD/NEA BENCHMARK FOR UNCERTAINTY ANALYSIS IN MODELING (UAM FOR LWRS – SUMMARY AND DISCUSSION OF NEUTRONICS CASES (PHASE I

    Directory of Open Access Journals (Sweden)

    RYAN N. BRATTON

    2014-06-01

    Full Text Available A Nuclear Energy Agency (NEA, Organization for Economic Co-operation and Development (OECD benchmark for Uncertainty Analysis in Modeling (UAM is defined in order to facilitate the development and validation of available uncertainty analysis and sensitivity analysis methods for best-estimate Light water Reactor (LWR design and safety calculations. The benchmark has been named the OECD/NEA UAM-LWR benchmark, and has been divided into three phases each of which focuses on a different portion of the uncertainty propagation in LWR multi-physics and multi-scale analysis. Several different reactor cases are modeled at various phases of a reactor calculation. This paper discusses Phase I, known as the “Neutronics Phase”, which is devoted mostly to the propagation of nuclear data (cross-section uncertainty throughout steady-state stand-alone neutronics core calculations. Three reactor systems (for which design, operation and measured data are available are rigorously studied in this benchmark: Peach Bottom Unit 2 BWR, Three Mile Island Unit 1 PWR, and VVER-1000 Kozloduy-6/Kalinin-3. Additional measured data is analyzed such as the KRITZ LEU criticality experiments and the SNEAK-7A and 7B experiments of the Karlsruhe Fast Critical Facility. Analyzed results include the top five neutron-nuclide reactions, which contribute the most to the prediction uncertainty in keff, as well as the uncertainty in key parameters of neutronics analysis such as microscopic and macroscopic cross-sections, six-group decay constants, assembly discontinuity factors, and axial and radial core power distributions. Conclusions are drawn regarding where further studies should be done to reduce uncertainties in key nuclide reaction uncertainties (i.e.: 238U radiative capture and inelastic scattering (n, n’ as well as the average number of neutrons released per fission event of 239Pu.

  13. Effects of existing evaluated nuclear data files on neutronics characteristics of the BFS-62-3A critical assembly benchmark model

    International Nuclear Information System (INIS)

    Semenov, Mikhail

    2002-11-01

    This report is continuation of studying of the experiments performed on BFS-62-3A critical assembly in Russia. The objective of work is definition of the cross section uncertainties on reactor neutronics parameters as applied to the hybrid core of the BN-600 reactor of Beloyarskaya NPP. Two-dimensional benchmark model of BFS-62-3A was created specially for these purposes and experimental values were reduced to it. Benchmark characteristics for this assembly are 1) criticality; 2) central fission rate ratios (spectral indices); and 3) fission rate distributions in stainless steel reflector. The effects of nuclear data libraries have been studied by comparing the results calculated using available modern data libraries - ENDF/B-V, ENDF/B-VI, ENDF/B-VI-PT, JENDL-3.2 and ABBN-93. All results were computed by Monte Carlo method with the continuous energy cross-sections. The checking of the cross sections of major isotopes on wide benchmark criticality collection was made. It was shown that ENDF/B-V data underestimate the criticality of fast reactor systems up to 2% Δk. As for the rest data, the difference between each other in criticality for BFS-62-3A is around 0.6% Δk. However, taking into account the results obtained for other fast reactor benchmarks (and steel-reflected also), it may conclude that the difference in criticality calculation results can achieve 1% Δk. This value is in a good agreement with cross section uncertainty evaluated for BN-600 hybrid core (±0.6% Δk). This work is related to the JNC-IPPE Collaboration on Experimental Investigation of Excess Weapons Grade Pu Disposition in BN-600 Reactor Using BFS-2 Facility. (author)

  14. SP2Bench: A SPARQL Performance Benchmark

    Science.gov (United States)

    Schmidt, Michael; Hornung, Thomas; Meier, Michael; Pinkel, Christoph; Lausen, Georg

    A meaningful analysis and comparison of both existing storage schemes for RDF data and evaluation approaches for SPARQL queries necessitates a comprehensive and universal benchmark platform. We present SP2Bench, a publicly available, language-specific performance benchmark for the SPARQL query language. SP2Bench is settled in the DBLP scenario and comprises a data generator for creating arbitrarily large DBLP-like documents and a set of carefully designed benchmark queries. The generated documents mirror vital key characteristics and social-world distributions encountered in the original DBLP data set, while the queries implement meaningful requests on top of this data, covering a variety of SPARQL operator constellations and RDF access patterns. In this chapter, we discuss requirements and desiderata for SPARQL benchmarks and present the SP2Bench framework, including its data generator, benchmark queries and performance metrics.

  15. Validation of the coupled neutron kinetic thermohydraulic code ATHLET/DYN3D with help of measured data of the OECD Turbine Trip Benchmarks. Final report

    International Nuclear Information System (INIS)

    Grundmann, U.; Kliem, S.

    2003-12-01

    The project consisted in the validation of the coupled neutron kinetic/thermal hydraulic code system ATHLET/DYN3D for boiling water reactors by the participation at the OECD/NRC turbine trip benchmark. The benchmark defined by the OECD and the American NRC is based on an experiment with closure of the turbine stop valve which was carried out in 1977 in the nuclear power plant Peach Bottom 2 within the framework of a series of 3 experiments. In the experiment, the closure of the valve caused a pressure wave which propagated with attenuation into the reactor core. The condensation of steam in the reactor core caused by the increase of pressure lead to a positive reactivity insertion. The following rise of power was limited by the feedback and the insertion of the control rods. In the frame of the benchmark, the codes could be validated by comparisons with the measured results and the result of the other participants. The benchmark was divided into 3 phases or exercises. Phase I was used for checking the thermo-hydraulic model of the system using a given power release in the core. In phase II, three-dimensional core calculations were performed for given thermal-hydraulic boundary conditions. Coupled calculations were carried out for the selected experiment and four extreme scenarios in the phase III. In the frame of the project, FZR took part in phases II and III of the benchmark. The calculations for phase II were performed with DYN3D by using the assembly discontinuity factors (ADF) and 764 thermal-hydraulic channels (1 channel/assembly). The ATHLET input data set for the coolant system was obtained form the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS). It was slightly modified for the phase III calculations carried out with the parallel coupling of ATHLET and DYN3D. For spatially averaged parameters, a good agreement with the results of measurement and the results of other codes was achieved. The influence of the different models was investigated with the

  16. Benchmarking specialty hospitals, a scoping review on theory and practice.

    Science.gov (United States)

    Wind, A; van Harten, W H

    2017-04-04

    Although benchmarking may improve hospital processes, research on this subject is limited. The aim of this study was to provide an overview of publications on benchmarking in specialty hospitals and a description of study characteristics. We searched PubMed and EMBASE for articles published in English in the last 10 years. Eligible articles described a project stating benchmarking as its objective and involving a specialty hospital or specific patient category; or those dealing with the methodology or evaluation of benchmarking. Of 1,817 articles identified in total, 24 were included in the study. Articles were categorized into: pathway benchmarking, institutional benchmarking, articles on benchmark methodology or -evaluation and benchmarking using a patient registry. There was a large degree of variability:(1) study designs were mostly descriptive and retrospective; (2) not all studies generated and showed data in sufficient detail; and (3) there was variety in whether a benchmarking model was just described or if quality improvement as a consequence of the benchmark was reported upon. Most of the studies that described a benchmark model described the use of benchmarking partners from the same industry category, sometimes from all over the world. Benchmarking seems to be more developed in eye hospitals, emergency departments and oncology specialty hospitals. Some studies showed promising improvement effects. However, the majority of the articles lacked a structured design, and did not report on benchmark outcomes. In order to evaluate the effectiveness of benchmarking to improve quality in specialty hospitals, robust and structured designs are needed including a follow up to check whether the benchmark study has led to improvements.

  17. Development of a California commercial building benchmarking database

    International Nuclear Information System (INIS)

    Kinney, Satkartar; Piette, Mary Ann

    2002-01-01

    Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database

  18. Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs - Volume I: Specification and Support Data for Neutronics Cases (Phase I)

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.; Kamerow, S.; Kodeli, I.; Sartori, E.; Ivanov, E.; Cabellos, O.

    2013-01-01

    released. This report presents benchmark specifications for Phase I (Neutronics Phase) of the OECD LWR UAM benchmark in a format similar to the previous OECD/NRC benchmark specifications. Phase I consists of the following exercises: - Exercise 1 (I-1): 'Cell Physics' focused on the derivation of the multi-group microscopic cross-section libraries and their uncertainties. - Exercise 2 (I-2): 'Lattice Physics' focused on the derivation of the few-group macroscopic cross-section libraries and their uncertainties. - Exercise 3 (I-3): 'Core Physics' focused on the core steady-state stand-alone neutronics calculations and their uncertainties. These exercises follow those established in the industry and regulation routine calculation scheme for LWR design and safety analysis. This phase is focused on understanding uncertainties in the prediction of key reactor core parameters associated with LWR stand-alone neutronics core simulation. Such uncertainties occur due to input data uncertainties, modelling errors, and numerical approximations. The chosen approach in Phase I is to select/propagate the most important contributors for each exercise which can be treated in a practical manner. The cross-section uncertainty information is considered as the most important source of input uncertainty for Phase I. The cross-section related uncertainties are propagated through the 3 Exercises of Phase I. In Exercise I-1 these are the variance and covariance data associated with continuous energy cross-sections in evaluated nuclear data files. In Exercise I-2 these are the variance and covariance data associated with multi-group cross-sections used as input in the lattice physics codes. In Exercise I-3 these are the variance and covariance data associated with few-group cross-sections used as input in the core simulators. Depending on the availability of different methods in the computer code of choice for a given exercise, the related methodological uncertainties can play a smaller or larger

  19. How benchmarking can improve patient nutrition.

    Science.gov (United States)

    Ellis, Jane

    Benchmarking is a tool that originated in business to enable organisations to compare their services with industry-wide best practice. Early last year the Department of Health published The Essence of Care, a benchmarking toolkit adapted for use in health care. It focuses on eight elements of care that are crucial to patients' experiences. Nurses and other health care professionals at a London NHS trust have begun a trust-wide benchmarking project. The aim is to improve patients' experiences of health care by sharing and comparing information, and by identifying examples of good practice and areas for improvement. The project began with two of the eight elements of The Essence of Care, with the intention of covering the rest later. This article describes the benchmarking process for nutrition and some of the consequent improvements in care.

  20. XWeB: The XML Warehouse Benchmark

    Science.gov (United States)

    Mahboubi, Hadj; Darmont, Jérôme

    With the emergence of XML as a standard for representing business data, new decision support applications are being developed. These XML data warehouses aim at supporting On-Line Analytical Processing (OLAP) operations that manipulate irregular XML data. To ensure feasibility of these new tools, important performance issues must be addressed. Performance is customarily assessed with the help of benchmarks. However, decision support benchmarks do not currently support XML features. In this paper, we introduce the XML Warehouse Benchmark (XWeB), which aims at filling this gap. XWeB derives from the relational decision support benchmark TPC-H. It is mainly composed of a test data warehouse that is based on a unified reference model for XML warehouses and that features XML-specific structures, and its associate XQuery decision support workload. XWeB's usage is illustrated by experiments on several XML database management systems.

  1. Benchmark Imagery FY11 Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pope, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-06-14

    This report details the work performed in FY11 under project LL11-GS-PD06, “Benchmark Imagery for Assessing Geospatial Semantic Extraction Algorithms.” The original LCP for the Benchmark Imagery project called for creating a set of benchmark imagery for verifying and validating algorithms that extract semantic content from imagery. More specifically, the first year was slated to deliver real imagery that had been annotated, the second year to deliver real imagery that had composited features, and the final year was to deliver synthetic imagery modeled after the real imagery.

  2. Effect of burnup history by moderator density on neutron-physical characteristics of WWER-1000 core

    International Nuclear Information System (INIS)

    Ovdiienko, I.; Kuchin, A.; Khalimonchuk, V.; Ieremenko, M.

    2011-01-01

    Results of assessment of burnup history effect by moderator density on neutron physical characteristics of WWER-1000 core are presented on example of stationary fuel loading with Russian design fuel assembly TWSA and AER benchmark for Khmelnitsky NPP that was proposed by TUV and SSTC NRC at nineteenth symposium. Assessment was performed by DYN3D code and cross section library sets generated by HELIOS code. Burnup history was taken into account by preparing of numerous cross section sets with different isotopic composition each of which was obtained by burning under different moderator density. For analysis of history effect 20 cross section sets were prepared for each fuel assembly corresponded to each of 20 axial layers of reactor core model for DYN3D code. Four fuel cycles were modeled both for stationary fuel loading with TWSA and AER benchmark for Khmelnitsky NPP to obtain steady value of error due to neglect of burnup history effect. Main attention of study was paid to effect of burnup history by moderator density to axial power distribution. Results of study for AER benchmark were compared with experimental values of axial power distribution for fuel assemblies of first, second, third and fourth year operation. (Authors)

  3. Review for session K - benchmarks

    International Nuclear Information System (INIS)

    McCracken, A.K.

    1980-01-01

    Eight of the papers to be considered in Session K are directly concerned, at least in part, with the Pool Critical Assembly (P.C.A.) benchmark at Oak Ridge. The remaining seven papers in this session, the subject of this review, are concerned with a variety of topics related to the general theme of Benchmarks and will be considered individually

  4. Tourism Destination Benchmarking: Evaluation and Selection of the Benchmarking Partners

    Directory of Open Access Journals (Sweden)

    Luštický Martin

    2012-03-01

    Full Text Available Tourism development has an irreplaceable role in regional policy of almost all countries. This is due to its undeniable benefits for the local population with regards to the economic, social and environmental sphere. Tourist destinations compete for visitors at tourism market and subsequently get into a relatively sharp competitive struggle. The main goal of regional governments and destination management institutions is to succeed in this struggle by increasing the competitiveness of their destination. The quality of strategic planning and final strategies is a key factor of competitiveness. Even though the tourism sector is not the typical field where the benchmarking methods are widely used, such approaches could be successfully applied. The paper focuses on key phases of the benchmarking process which lies in the search for suitable referencing partners. The partners are consequently selected to meet general requirements to ensure the quality if strategies. Following from this, some specific characteristics are developed according to the SMART approach. The paper tests this procedure with an expert evaluation of eight selected regional tourism strategies of regions in the Czech Republic, Slovakia and Great Britain. In this way it validates the selected criteria in the frame of the international environment. Hence, it makes it possible to find strengths and weaknesses of selected strategies and at the same time facilitates the discovery of suitable benchmarking partners.

  5. Statistical benchmarking in utility regulation: Role, standards and methods

    International Nuclear Information System (INIS)

    Newton Lowry, Mark; Getachew, Lullit

    2009-01-01

    Statistical benchmarking is being used with increasing frequency around the world in utility rate regulation. We discuss how and where benchmarking is in use for this purpose and the pros and cons of regulatory benchmarking. We then discuss alternative performance standards and benchmarking methods in regulatory applications. We use these to propose guidelines for the appropriate use of benchmarking in the rate setting process. The standards, which we term the competitive market and frontier paradigms, have a bearing on method selection. These along with regulatory experience suggest that benchmarking can either be used for prudence review in regulation or to establish rates or rate setting mechanisms directly

  6. Development of a California commercial building benchmarking database

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, Satkartar; Piette, Mary Ann

    2002-05-17

    Building energy benchmarking is a useful starting point for commercial building owners and operators to target energy savings opportunities. There are a number of tools and methods for benchmarking energy use. Benchmarking based on regional data can provides more relevant information for California buildings than national tools such as Energy Star. This paper discusses issues related to benchmarking commercial building energy use and the development of Cal-Arch, a building energy benchmarking database for California. Currently Cal-Arch uses existing survey data from California's Commercial End Use Survey (CEUS), a largely underutilized wealth of information collected by California's major utilities. Doe's Commercial Building Energy Consumption Survey (CBECS) is used by a similar tool, Arch, and by a number of other benchmarking tools. Future versions of Arch/Cal-Arch will utilize additional data sources including modeled data and individual buildings to expand the database.

  7. 40 CFR 141.172 - Disinfection profiling and benchmarking.

    Science.gov (United States)

    2010-07-01

    ... benchmarking. 141.172 Section 141.172 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Disinfection-Systems Serving 10,000 or More People § 141.172 Disinfection profiling and benchmarking. (a... sanitary surveys conducted by the State. (c) Disinfection benchmarking. (1) Any system required to develop...

  8. Raising Quality and Achievement. A College Guide to Benchmarking.

    Science.gov (United States)

    Owen, Jane

    This booklet introduces the principles and practices of benchmarking as a way of raising quality and achievement at further education colleges in Britain. Section 1 defines the concept of benchmarking. Section 2 explains what benchmarking is not and the steps that should be taken before benchmarking is initiated. The following aspects and…

  9. NEOPLASTIC LESIONS OF THE APPENDIX

    Directory of Open Access Journals (Sweden)

    Piotr Bryk

    2013-11-01

    Full Text Available The aim of the research was to present the clinical observations of neoplastic lesions of the appendix (one carcinoid and two mucous cysts and to discuss various manners of treatment and prognosis. Material and methods: The authors of the following paper present a description of three cases of appendix tumours, two patients with a mucous cyst and a patient with carcinoid, against the background of all the appendectomies performed at the Clinical Department of General, Endocrine and Oncological Surgery of the Provincial Polyclinical Hospital in Kielce in the years 2005–2011. Results : Within the 7-year period, a total of 11 719 surgical operations have been performed, where 834 (7.1% were that of appendectomy. Among all of the removed vermiform appendixes, neoplastic lesions occurred in three cases constituting a mere 0.3% of all of the appendectomies performed within that period. In two of the cases there was a suspicion of mucous cysts before the surgical operation. In none of the above-mentioned cases was is possible to ultimately establish the diagnosis before the operation. The patients were subjected to a simple appendectomy. The patients are in good clinical health, with no signs of relapse. Conclusions : The presented cases of patients with appendix tumours illustrate the difficulty of preoperative detection of a neoplastic lesion. This is mainly due to a scantily symptomatic course or symptoms typical of appendicitis. In light of this, histopathological examination of each appendix should be treated as obligatory.

  10. Benchmarking and Performance Management

    Directory of Open Access Journals (Sweden)

    Adrian TANTAU

    2010-12-01

    Full Text Available The relevance of the chosen topic is explained by the meaning of the firm efficiency concept - the firm efficiency means the revealed performance (how well the firm performs in the actual market environment given the basic characteristics of the firms and their markets that are expected to drive their profitability (firm size, market power etc.. This complex and relative performance could be due to such things as product innovation, management quality, work organization, some other factors can be a cause even if they are not directly observed by the researcher. The critical need for the management individuals/group to continuously improve their firm/company’s efficiency and effectiveness, the need for the managers to know which are the success factors and the competitiveness determinants determine consequently, what performance measures are most critical in determining their firm’s overall success. Benchmarking, when done properly, can accurately identify both successful companies and the underlying reasons for their success. Innovation and benchmarking firm level performance are critical interdependent activities. Firm level variables, used to infer performance, are often interdependent due to operational reasons. Hence, the managers need to take the dependencies among these variables into account when forecasting and benchmarking performance. This paper studies firm level performance using financial ratio and other type of profitability measures. It uses econometric models to describe and then propose a method to forecast and benchmark performance.

  11. POLCA-T simulation of OECD/NRC BWR turbine trip benchmark exercise 3 best estimate scenario TT2 test and four extreme scenarios

    International Nuclear Information System (INIS)

    Panayotov, D.

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and the 3D neutron kinetics core model. Code validation plan includes the calculations of Peach Bottom end of cycle 2 turbine trip transients and low-flow stability tests. The paper describes the objectives, method, and results of analyses performed in the final phase of OECD/NRC Peach Bottom 2 Boiling Water Reactor Turbine Trip Benchmark. Brief overview of the code features, the method of simulation, the developed 3D core model and system input deck for Peach Bottom 2 are given. The paper presents the results of benchmark exercise 3 best estimate scenario: coupled 3D core neutron kinetics with system thermal-hydraulics analyses. Performed sensitivity studies cover the SCRAM initiation, carry-under, and decay power. Obtained results including total power, steam dome, core exit, lower and upper plenum, main steam line and turbine inlet pressures showed good agreement with measured plant data Thus the POLCA-T code capabilities for correct simulation of turbine trip transients were proved The performed calculations and obtained results for extreme cases demonstrate the POLCA-T code wide range capabilities to simulate transients when scram, steam bypass, and safety and relief valves are not activated. The code is able to handle such transients even when the reactor power and pressure reach values higher than 600 % of rated power, and 10.8 MPa. (authors)

  12. Benchmarking of refinery emissions performance : Executive summary

    International Nuclear Information System (INIS)

    2003-07-01

    This study was undertaken to collect emissions performance data for Canadian and comparable American refineries. The objective was to examine parameters that affect refinery air emissions performance and develop methods or correlations to normalize emissions performance. Another objective was to correlate and compare the performance of Canadian refineries to comparable American refineries. For the purpose of this study, benchmarking involved the determination of levels of emission performance that are being achieved for generic groups of facilities. A total of 20 facilities were included in the benchmarking analysis, and 74 American refinery emission correlations were developed. The recommended benchmarks, and the application of those correlations for comparison between Canadian and American refinery performance, were discussed. The benchmarks were: sulfur oxides, nitrogen oxides, carbon monoxide, particulate, volatile organic compounds, ammonia and benzene. For each refinery in Canada, benchmark emissions were developed. Several factors can explain differences in Canadian and American refinery emission performance. 4 tabs., 7 figs

  13. Analysis of Benchmark 2 results

    International Nuclear Information System (INIS)

    Bacha, F.; Lefievre, B.; Maillard, J.; Silva, J.

    1994-01-01

    The code GEANT315 has been compared to different codes in two benchmarks. We analyze its performances through our results, especially in the thick target case. In spite of gaps in nucleus-nucleus interaction theories at intermediate energies, benchmarks allow possible improvements of physical models used in our codes. Thereafter, a scheme of radioactive waste burning system is studied. (authors). 4 refs., 7 figs., 1 tab

  14. Benchmarking for Best Practice

    CERN Document Server

    Zairi, Mohamed

    1998-01-01

    Benchmarking for Best Practice uses up-to-the-minute case-studies of individual companies and industry-wide quality schemes to show how and why implementation has succeeded. For any practitioner wanting to establish best practice in a wide variety of business areas, this book makes essential reading. .It is also an ideal textbook on the applications of TQM since it describes concepts, covers definitions and illustrates the applications with first-hand examples. Professor Mohamed Zairi is an international expert and leading figure in the field of benchmarking. His pioneering work in this area l

  15. HPCG Benchmark Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, Michael Allen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dongarra, Jack [Univ. of Tennessee, Knoxville, TN (United States); Luszczek, Piotr [Univ. of Tennessee, Knoxville, TN (United States)

    2013-10-01

    The High Performance Conjugate Gradient (HPCG) benchmark [cite SNL, UTK reports] is a tool for ranking computer systems based on a simple additive Schwarz, symmetric Gauss-Seidel preconditioned conjugate gradient solver. HPCG is similar to the High Performance Linpack (HPL), or Top 500, benchmark [1] in its purpose, but HPCG is intended to better represent how today’s applications perform. In this paper we describe the technical details of HPCG: how it is designed and implemented, what code transformations are permitted and how to interpret and report results.

  16. [Do you mean benchmarking?].

    Science.gov (United States)

    Bonnet, F; Solignac, S; Marty, J

    2008-03-01

    The purpose of benchmarking is to settle improvement processes by comparing the activities to quality standards. The proposed methodology is illustrated by benchmark business cases performed inside medical plants on some items like nosocomial diseases or organization of surgery facilities. Moreover, the authors have built a specific graphic tool, enhanced with balance score numbers and mappings, so that the comparison between different anesthesia-reanimation services, which are willing to start an improvement program, is easy and relevant. This ready-made application is even more accurate as far as detailed tariffs of activities are implemented.

  17. HTR-PROTEUS pebble bed experimental program cores 9 & 10: columnar hexagonal point-on-point packing with a 1:1 moderator-to-fuel pebble ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  18. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  19. Benchmarking in digital circuit design automation

    NARCIS (Netherlands)

    Jozwiak, L.; Gawlowski, D.M.; Slusarczyk, A.S.

    2008-01-01

    This paper focuses on benchmarking, which is the main experimental approach to the design method and EDA-tool analysis, characterization and evaluation. We discuss the importance and difficulties of benchmarking, as well as the recent research effort related to it. To resolve several serious

  20. Benchmarking, Total Quality Management, and Libraries.

    Science.gov (United States)

    Shaughnessy, Thomas W.

    1993-01-01

    Discussion of the use of Total Quality Management (TQM) in higher education and academic libraries focuses on the identification, collection, and use of reliable data. Methods for measuring quality, including benchmarking, are described; performance measures are considered; and benchmarking techniques are examined. (11 references) (MES)

  1. Toxicological benchmarks for wildlife: 1994 Revision

    International Nuclear Information System (INIS)

    Opresko, D.M.; Sample, B.E.; Suter, G.W. II.

    1994-09-01

    The process by which ecological risks of environmental contaminants are evaluated is two-tiered. The first tier is a screening assessment where concentrations of contaminants in the environment are compared to toxicological benchmarks which represent concentrations of chemicals in environmental media (water, sediment, soil, food, etc.) that are presumed to be nonhazardous to the surrounding biota. The second tier is a baseline ecological risk assessment where toxicological benchmarks are one of several lines of evidence used to support or refute the presence of ecological effects. The report presents toxicological benchmarks for assessment of effects of 76 chemicals on 8 representative mammalian wildlife species and 31 chemicals on 9 avian wildlife species. The chemicals are some of those that occur at United States Department of Energy waste sites; the wildlife species were chosen because they are widely distributed and provide a representative range of body sizes and diets. Further descriptions of the chosen wildlife species and chemicals are provided in the report. The benchmarks presented in this report represent values believed to be nonhazardous for the listed wildlife species. These benchmarks only consider contaminant exposure through oral ingestion of contaminated media; exposure through inhalation or direct dermal exposure are not considered in this report

  2. Toxicological benchmarks for wildlife: 1994 Revision

    Energy Technology Data Exchange (ETDEWEB)

    Opresko, D.M.; Sample, B.E.; Suter, G.W. II

    1994-09-01

    The process by which ecological risks of environmental contaminants are evaluated is two-tiered. The first tier is a screening assessment where concentrations of contaminants in the environment are compared to toxicological benchmarks which represent concentrations of chemicals in environmental media (water, sediment, soil, food, etc.) that are presumed to be nonhazardous to the surrounding biota. The second tier is a baseline ecological risk assessment where toxicological benchmarks are one of several lines of evidence used to support or refute the presence of ecological effects. The report presents toxicological benchmarks for assessment of effects of 76 chemicals on 8 representative mammalian wildlife species and 31 chemicals on 9 avian wildlife species. The chemicals are some of those that occur at United States Department of Energy waste sites; the wildlife species were chosen because they are widely distributed and provide a representative range of body sizes and diets. Further descriptions of the chosen wildlife species and chemicals are provided in the report. The benchmarks presented in this report represent values believed to be nonhazardous for the listed wildlife species. These benchmarks only consider contaminant exposure through oral ingestion of contaminated media; exposure through inhalation or direct dermal exposure are not considered in this report.

  3. Application of the SPH method in nodal diffusion analyses of SFR cores

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Evgeny; Fridman, Emil [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Reactor Safety; Mikityuk, K. [Paul Scherrer Institut, Villigen (Switzerland)

    2016-07-01

    The current study investigated the potential of the SPH method, applied to correct the few-group XS produced by Serpent, to further improve the accuracy of the nodal diffusion solutions. The procedure for the generation of SPH-corrected few-group XS is presented in the paper. The performance of the SPH method was tested on a large oxide SFR core from the OECD/NEA SFR benchmark. The reference SFR core was modeled with the DYN3D and PARCS nodal diffusion codes using the SPH-corrected few-group XS generated by Serpent. The nodal diffusion results obtained with and without SPH correction were compared to the reference full-core Serpent MC solution. It was demonstrated that the application of the SPH method improves the accuracy of the nodal diffusion solutions, particularly for the rodded core state.

  4. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-09-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR’06 are highlighted, and the future of the two projects is discussed.

  5. INTEGRAL BENCHMARKS AVAILABLE THROUGH THE INTERNATIONAL REACTOR PHYSICS EXPERIMENT EVALUATION PROJECT AND THE INTERNATIONAL CRITICALITY SAFETY BENCHMARK EVALUATION PROJECT

    International Nuclear Information System (INIS)

    J. Blair Briggs; Lori Scott; Enrico Sartori; Yolanda Rugama

    2008-01-01

    Interest in high-quality integral benchmark data is increasing as efforts to quantify and reduce calculational uncertainties accelerate to meet the demands of next generation reactor and advanced fuel cycle concepts. The International Reactor Physics Experiment Evaluation Project (IRPhEP) and the International Criticality Safety Benchmark Evaluation Project (ICSBEP) continue to expand their efforts and broaden their scope to identify, evaluate, and provide integral benchmark data for method and data validation. Benchmark model specifications provided by these two projects are used heavily by the international reactor physics, nuclear data, and criticality safety communities. Thus far, 14 countries have contributed to the IRPhEP, and 20 have contributed to the ICSBEP. The status of the IRPhEP and ICSBEP is discussed in this paper, and the future of the two projects is outlined and discussed. Selected benchmarks that have been added to the IRPhEP and ICSBEP handbooks since PHYSOR-06 are highlighted, and the future of the two projects is discussed

  6. Financial Integrity Benchmarks

    Data.gov (United States)

    City of Jackson, Mississippi — This data compiles standard financial integrity benchmarks that allow the City to measure its financial standing. It measure the City's debt ratio and bond ratings....

  7. Application of PHEBUS results to benchmarking of nuclear plant safety codes

    International Nuclear Information System (INIS)

    Birchley, J.; Cripps, R.; Guentay, S.; Hosemann, J.P.

    2001-01-01

    The PHEBUS Fission Product project comprises six nuclear reactor severe accident simulations, using prototypic core materials and representative geometry and boundary conditions for the coolant loop and containment. The data thus produced are being used to benchmark the computer tools used for nuclear plant accident analysis to reduce the excessive conservatism typical for estimates of the radiological source term. A set of calculations has been carried out to simulate the results of experiment PHEBUS FPT-1 through each of its main stages, using computer models and methods analogous to those currently employed at PSI for assessments of Swiss nuclear plants. Good agreement for the core degradation and containment behaviour builds confidence in the models, while some open questions remain concerning some aspects of the release of fission products from the fuel, their transport and chemical speciation. Of potentially great importance to the reduction in source term estimates is the formation of the non-volatile species, silver iodide. Current investigations are focused on the uncertainty concerning fission product behaviour and the stability of silver iodide under irradiation. (author)

  8. Analysis of a molten salt reactor benchmark

    International Nuclear Information System (INIS)

    Ghosh, Biplab; Bajpai, Anil; Degweker, S.B.

    2013-01-01

    This paper discusses results of our studies of an IAEA molten salt reactor (MSR) benchmark. The benchmark, proposed by Japan, involves burnup calculations of a single lattice cell of a MSR for burning plutonium and other minor actinides. We have analyzed this cell with in-house developed burnup codes BURNTRAN and McBURN. This paper also presents a comparison of the results of our codes and those obtained by the proposers of the benchmark. (author)

  9. Implementation of refined core thermal-hydraulic calculation feature in the MARS/MASTER code

    International Nuclear Information System (INIS)

    Joo, H. K.; Jung, J. J.; Cho, B. O.; Ji, S. K.; Lee, W. J.; Jang, M. H.

    2000-01-01

    As an effort to enhance the fidelity of the core thermal/hydraulic calculation in the MARS/MASTER code, a best-estimate system/core coupled code, the COBRA-III module of MASTER is activated that enables refined core T/H calculations. Since the COBRA-III module is capable of using fuel-assembly sized nodes, the resolution of the T/H solution is high so that accurate incorporation of local T/H feedback effects becomes possible. The COBRA-III module is utilized such that the refined core T/H calculation is performed using the coarse-mesh flow boundary conditions specified by MARS at both ends of the core. The results of application to the OECD MSLB benchmark analysis indicate that the local peaking factor can be reduced by upto 15% with the refined calculation through the accurate representation of the local Doppler effect evaluation, although the prediction of the global transient behaviors such as the total core power change remain essentially unaffected

  10. T1 bright appendix sign to exclude acute appendicitis in pregnant women

    International Nuclear Information System (INIS)

    Shin, Ilah; An, Chansik; Lim, Joon Seok; Kim, Myeong-Jin; Chung, Yong Eun

    2017-01-01

    To evaluate the diagnostic value of the T1 bright appendix sign for the diagnosis of acute appendicitis in pregnant women. This retrospective study included 125 pregnant women with suspected appendicitis who underwent magnetic resonance (MR) imaging. The T1 bright appendix sign was defined as a high intensity signal filling more than half length of the appendix on T1-weighted imaging. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the T1 bright appendix sign for normal appendix identification were calculated in all patients and in those with borderline-sized appendices (6-7 mm). The T1 bright appendix sign was seen in 51% of patients with normal appendices, but only in 4.5% of patients with acute appendicitis. The overall sensitivity, specificity, PPV, and NPV of the T1 bright appendix sign for normal appendix diagnosis were 44.9%, 95.5%, 97.6%, and 30.0%, respectively. All four patients with borderline sized appendix with appendicitis showed negative T1 bright appendix sign. The T1 bright appendix sign is a specific finding for the diagnosis of a normal appendix in pregnant women with suspected acute appendicitis. (orig.)

  11. T1 bright appendix sign to exclude acute appendicitis in pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ilah; An, Chansik; Lim, Joon Seok; Kim, Myeong-Jin; Chung, Yong Eun [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Severance Hospital, 50-1 Yonsei-ro, Seodaemun-gu, Seoul (Korea, Republic of)

    2017-08-15

    To evaluate the diagnostic value of the T1 bright appendix sign for the diagnosis of acute appendicitis in pregnant women. This retrospective study included 125 pregnant women with suspected appendicitis who underwent magnetic resonance (MR) imaging. The T1 bright appendix sign was defined as a high intensity signal filling more than half length of the appendix on T1-weighted imaging. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the T1 bright appendix sign for normal appendix identification were calculated in all patients and in those with borderline-sized appendices (6-7 mm). The T1 bright appendix sign was seen in 51% of patients with normal appendices, but only in 4.5% of patients with acute appendicitis. The overall sensitivity, specificity, PPV, and NPV of the T1 bright appendix sign for normal appendix diagnosis were 44.9%, 95.5%, 97.6%, and 30.0%, respectively. All four patients with borderline sized appendix with appendicitis showed negative T1 bright appendix sign. The T1 bright appendix sign is a specific finding for the diagnosis of a normal appendix in pregnant women with suspected acute appendicitis. (orig.)

  12. Reactor fuel depletion benchmark of TINDER

    International Nuclear Information System (INIS)

    Martin, W.J.; Oliveira, C.R.E. de; Hecht, A.A.

    2014-01-01

    Highlights: • A reactor burnup benchmark of TINDER, coupling MCNP6 to CINDER2008, was performed. • TINDER is a poor candidate for fuel depletion calculations using its current libraries. • Data library modification is necessary if fuel depletion is desired from TINDER. - Abstract: Accurate burnup calculations are key to proper nuclear reactor design, fuel cycle modeling, and disposal estimations. The TINDER code, originally designed for activation analyses, has been modified to handle full burnup calculations, including the widely used predictor–corrector feature. In order to properly characterize the performance of TINDER for this application, a benchmark calculation was performed. Although the results followed the trends of past benchmarked codes for a UO 2 PWR fuel sample from the Takahama-3 reactor, there were obvious deficiencies in the final result, likely in the nuclear data library that was used. Isotopic comparisons versus experiment and past code benchmarks are given, as well as hypothesized areas of deficiency and future work

  13. Properties of 5052 Aluminum For Use as Honeycomb Core in Manned Spaceflight

    Science.gov (United States)

    Lerch, Bradley A.

    2018-01-01

    This work explains that the properties of Al 5052 material used commonly for honeycomb cores in sandwich panels are highly dependent on the tempering condition. It has not been common to specify the temper when ordering HC material nor is it common for the supplier to state what the temper is. For aerospace uses, a temper of H38 or H39 is probably recommended. This temper should be stated in the bill of material and should be verified upon receipt of the core. To this end some properties provided herein can aid as benchmark values.

  14. Fast three-dimensional core optimization based on modified one-group model

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Fernando S. [ELETROBRAS Termonuclear S.A. - ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil). Dept. GCN-T], e-mail: freire@eletronuclear.gov.br; Martinez, Aquilino S.; Silva, Fernando C. da [Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear], e-mail: aquilino@con.ufrj.br, e-mail: fernando@con.ufrj.br

    2009-07-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  15. Fast three-dimensional core optimization based on modified one-group model

    International Nuclear Information System (INIS)

    Freire, Fernando S.; Martinez, Aquilino S.; Silva, Fernando C. da

    2009-01-01

    The optimization of any nuclear reactor core is an extremely complex process that consumes a large amount of computer time. Fortunately, the nuclear designer can rely on a variety of methodologies able to approximate the analysis of each available core loading pattern. Two-dimensional codes are usually used to analyze the loading scheme. However, when particular axial effects are present in the core, two-dimensional analysis cannot produce good results and three-dimensional analysis can be required at all time. Basically, in this paper are presented the major advantages that can be found when one use the modified one-group diffusion theory coupled with a buckling correction model in optimization process. The results of the proposed model are very accurate when compared to benchmark results obtained from detailed calculations using three-dimensional nodal codes (author)

  16. ONE OF THE LONGEST APPENDIX: A RARE CASE REPORT

    Directory of Open Access Journals (Sweden)

    Venkat Rao

    2015-03-01

    Full Text Available The vermiform appendix is an organ that can have variable sizes. We are prompted to report here one of the longest appendix removed, measuring about 16cm in length. INTRODUCTION : The vermiform appendix is an organ that can vary in size, site, and presence, as well as in other clinical and functional aspects. We describe here one of the longest appendix removed, measuring about 16cm in length in a case of acute appendicitis

  17. Benchmarking: contexts and details matter.

    Science.gov (United States)

    Zheng, Siyuan

    2017-07-05

    Benchmarking is an essential step in the development of computational tools. We take this opportunity to pitch in our opinions on tool benchmarking, in light of two correspondence articles published in Genome Biology.Please see related Li et al. and Newman et al. correspondence articles: www.dx.doi.org/10.1186/s13059-017-1256-5 and www.dx.doi.org/10.1186/s13059-017-1257-4.

  18. T1 bright appendix sign to exclude acute appendicitis in pregnant women.

    Science.gov (United States)

    Shin, Ilah; An, Chansik; Lim, Joon Seok; Kim, Myeong-Jin; Chung, Yong Eun

    2017-08-01

    To evaluate the diagnostic value of the T1 bright appendix sign for the diagnosis of acute appendicitis in pregnant women. This retrospective study included 125 pregnant women with suspected appendicitis who underwent magnetic resonance (MR) imaging. The T1 bright appendix sign was defined as a high intensity signal filling more than half length of the appendix on T1-weighted imaging. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the T1 bright appendix sign for normal appendix identification were calculated in all patients and in those with borderline-sized appendices (6-7 mm). The T1 bright appendix sign was seen in 51% of patients with normal appendices, but only in 4.5% of patients with acute appendicitis. The overall sensitivity, specificity, PPV, and NPV of the T1 bright appendix sign for normal appendix diagnosis were 44.9%, 95.5%, 97.6%, and 30.0%, respectively. All four patients with borderline sized appendix with appendicitis showed negative T1 bright appendix sign. The T1 bright appendix sign is a specific finding for the diagnosis of a normal appendix in pregnant women with suspected acute appendicitis. • Magnetic resonance imaging is increasingly used in emergency settings. • Acute appendicitis is the most common cause of acute abdomen. • Magnetic resonance imaging is widely used in pregnant population. • T1 bright appendix sign can be a specific sign representing normal appendix.

  19. Benchmark analysis of MCNP trademark ENDF/B-VI iron

    International Nuclear Information System (INIS)

    Court, J.D.; Hendricks, J.S.

    1994-12-01

    The MCNP ENDF/B-VI iron cross-section data was subjected to four benchmark studies as part of the Hiroshima/Nagasaki dose re-evaluation for the National Academy of Science and the Defense Nuclear Agency. The four benchmark studies were: (1) the iron sphere benchmarks from the Lawrence Livermore Pulsed Spheres; (2) the Oak Ridge National Laboratory Fusion Reactor Shielding Benchmark; (3) a 76-cm diameter iron sphere benchmark done at the University of Illinois; (4) the Oak Ridge National Laboratory Benchmark for Neutron Transport through Iron. MCNP4A was used to model each benchmark and computational results from the ENDF/B-VI iron evaluations were compared to ENDF/B-IV, ENDF/B-V, the MCNP Recommended Data Set (which includes Los Alamos National Laboratory Group T-2 evaluations), and experimental data. The results show that the ENDF/B-VI iron evaluations are as good as, or better than, previous data sets

  20. Diagnostic Algorithm Benchmarking

    Science.gov (United States)

    Poll, Scott

    2011-01-01

    A poster for the NASA Aviation Safety Program Annual Technical Meeting. It describes empirical benchmarking on diagnostic algorithms using data from the ADAPT Electrical Power System testbed and a diagnostic software framework.

  1. Verification of results of core physics on-line simulation by NGFM code

    International Nuclear Information System (INIS)

    Zhao Yu; Cao Xinrong; Zhao Qiang

    2008-01-01

    Nodal Green's Function Method program NGFM/TNGFM has been trans- planted to windows system. The 2-D and 3-D benchmarks have been checked by this program. And the program has been used to check the results of QINSHAN-II reactor simulation. It is proved that the NGFM/TNGFM program is applicable for reactor core physics on-line simulation system. (authors)

  2. Assessment of CANDU physics codes using experimental data - II: CANDU core physics measurements

    International Nuclear Information System (INIS)

    Roh, Gyu Hong; Jeong, Chang Joon; Choi, Hang Bok

    2001-11-01

    Benchmark calculations of the advanced CANDU reactor analysis tools (WIMS-AECL, SHETAN and RFSP) and the Monte Carlo code MCNP-4B have been performed using Wolsong Units 2 and 3 Phase-B measurement data. In this study, the benchmark calculations have been done for the criticality, boron worth, reactivity device worth, reactivity coefficient, and flux scan. For the validation of the WIMS-AECL/SHETANRFSP code system, the lattice parameters of the fuel channel were generated by the WIMS-AECL code, and incremental cross sections of reactivity devices and structural material were generated by the SHETAN code. The results have shown that the criticality is under-predicted by -4 mk. The reactivity device worths are generally consistent with the measured data except for the strong absorbers such as shutoff rod and mechanical control absorber. The heat transport system temperature coefficient and flux distributions are in good agreement with the measured data. However, the moderator temperature coefficient has shown a relatively large error, which could be caused by the incremental cross-section generation methodology for the reactivity device. For the MCNP-4B benchmark calculation, cross section libraries were newly generated from ENDF/B-VI release 3 through the NJOY97.114 data processing system and a three-dimensional full core model was developed. The simulation results have shown that the criticality is estimated within 4 mk and the estimated reactivity worth of the control devices are generally consistent with the measurement data, which implies that the MCNP code is valid for CANDU core analysis. In the future, therefore, the MCNP code could be used as a reference tool to benchmark design and analysis codes for the advanced fuels for which experimental data are not available

  3. 18 CFR Appendix B to Subpart H of... - Appendix B to Subpart H of Part 35

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Appendix B to Subpart H of Part 35 B Appendix B to Subpart H of Part 35 Conservation of Power and Water Resources FEDERAL... SCHEDULES AND TARIFFS Wholesale Sales of Electric Energy, Capacity and Ancillary Services at Market-Based...

  4. 18 CFR Appendix A to Subpart H of... - Appendix A to Subpart H of Part 35

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Appendix A to Subpart H of Part 35 A Appendix A to Subpart H of Part 35 Conservation of Power and Water Resources FEDERAL... SCHEDULES AND TARIFFS Wholesale Sales of Electric Energy, Capacity and Ancillary Services at Market-Based...

  5. MoMaS reactive transport benchmark using PFLOTRAN

    Science.gov (United States)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  6. 14 CFR Appendix C to Part 420 - Risk Analysis

    Science.gov (United States)

    2010-01-01

    .... Downrange from 100 nm beyond the launch point, world population data are available from: Total landmass area... appendix B. This appendix also provides an applicant options to simplify the method where population at... and, for an appendix B flight corridor, trajectory information. (2) Population data. Total population...

  7. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peiyuan [Univ. of Colorado, Boulder, CO (United States); Brown, Timothy [Univ. of Colorado, Boulder, CO (United States); Fullmer, William D. [Univ. of Colorado, Boulder, CO (United States); Hauser, Thomas [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States); Grout, Ray [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sitaraman, Hariswaran [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-29

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling of the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.

  8. Benchmarking Severe Accident Computer Codes for Heavy Water Reactor Applications

    International Nuclear Information System (INIS)

    2013-12-01

    Requests for severe accident investigations and assurance of mitigation measures have increased for operating nuclear power plants and the design of advanced nuclear power plants. Severe accident analysis investigations necessitate the analysis of the very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. The IAEA organizes coordinated research projects (CRPs) to facilitate technology development through international collaboration among Member States. The CRP on Benchmarking Severe Accident Computer Codes for HWR Applications was planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Group on Advanced Technologies for HWRs (the TWG-HWR). This publication summarizes the results from the CRP participants. The CRP promoted international collaboration among Member States to improve the phenomenological understanding of severe core damage accidents and the capability to analyse them. The CRP scope included the identification and selection of a severe accident sequence, selection of appropriate geometrical and boundary conditions, conduct of benchmark analyses, comparison of the results of all code outputs, evaluation of the capabilities of computer codes to predict important severe accident phenomena, and the proposal of necessary code improvements and/or new experiments to reduce uncertainties. Seven institutes from five countries with HWRs participated in this CRP

  9. Criteria of benchmark selection for efficient flexible multibody system formalisms

    Directory of Open Access Journals (Sweden)

    Valášek M.

    2007-10-01

    Full Text Available The paper deals with the selection process of benchmarks for testing and comparing efficient flexible multibody formalisms. The existing benchmarks are briefly summarized. The purposes for benchmark selection are investigated. The result of this analysis is the formulation of the criteria of benchmark selection for flexible multibody formalisms. Based on them the initial set of suitable benchmarks is described. Besides that the evaluation measures are revised and extended.

  10. Criticality safety benchmarking of PASC-3 and ECNJEF1.1

    International Nuclear Information System (INIS)

    Li, J.

    1992-09-01

    To validate the code system PASC-3 and the multigroup cross section library ECNJEF1.1 on various applications many benchmarks are required. This report presents the results of critically safety benchmarking for five calculational and four experimental benchmarks. These benchmarks are related to the transport package of fissile materials such as spent fuel. The fissile nuclides in these benchmarks are 235 U and 239 Pu. The modules of PASC-3 which have been used for the calculations are BONAMI, NITAWL and KENO.5A. The final results for the experimental benchmarks do agree well with experimental data. For the calculational benchmarks the results presented here are in reasonable agreement with the results from other investigations. (author). 8 refs.; 20 figs.; 5 tabs

  11. Revaluering benchmarking - A topical theme for the construction industry

    OpenAIRE

    Rasmussen, Grane Mikael Gregaard

    2011-01-01

    Over the past decade, benchmarking has increasingly gained foothold in the construction industry. The predominant research, perceptions and uses of benchmarking are valued so strongly and uniformly, that what may seem valuable, is actually abstaining researchers and practitioners from studying and questioning the concept objectively. This paper addresses the underlying nature of benchmarking, and accounts for the importance of focusing attention on the sociological impacts benchmarking has in...

  12. Numerical methods: Analytical benchmarking in transport theory

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1988-01-01

    Numerical methods applied to reactor technology have reached a high degree of maturity. Certainly one- and two-dimensional neutron transport calculations have become routine, with several programs available on personal computer and the most widely used programs adapted to workstation and minicomputer computational environments. With the introduction of massive parallelism and as experience with multitasking increases, even more improvement in the development of transport algorithms can be expected. Benchmarking an algorithm is usually not a very pleasant experience for the code developer. Proper algorithmic verification by benchmarking involves the following considerations: (1) conservation of particles, (2) confirmation of intuitive physical behavior, and (3) reproduction of analytical benchmark results. By using today's computational advantages, new basic numerical methods have been developed that allow a wider class of benchmark problems to be considered

  13. Benchmarking and validation activities within JEFF project

    Directory of Open Access Journals (Sweden)

    Cabellos O.

    2017-01-01

    Full Text Available The challenge for any nuclear data evaluation project is to periodically release a revised, fully consistent and complete library, with all needed data and covariances, and ensure that it is robust and reliable for a variety of applications. Within an evaluation effort, benchmarking activities play an important role in validating proposed libraries. The Joint Evaluated Fission and Fusion (JEFF Project aims to provide such a nuclear data library, and thus, requires a coherent and efficient benchmarking process. The aim of this paper is to present the activities carried out by the new JEFF Benchmarking and Validation Working Group, and to describe the role of the NEA Data Bank in this context. The paper will also review the status of preliminary benchmarking for the next JEFF-3.3 candidate cross-section files.

  14. Benchmarking and validation activities within JEFF project

    Science.gov (United States)

    Cabellos, O.; Alvarez-Velarde, F.; Angelone, M.; Diez, C. J.; Dyrda, J.; Fiorito, L.; Fischer, U.; Fleming, M.; Haeck, W.; Hill, I.; Ichou, R.; Kim, D. H.; Klix, A.; Kodeli, I.; Leconte, P.; Michel-Sendis, F.; Nunnenmann, E.; Pecchia, M.; Peneliau, Y.; Plompen, A.; Rochman, D.; Romojaro, P.; Stankovskiy, A.; Sublet, J. Ch.; Tamagno, P.; Marck, S. van der

    2017-09-01

    The challenge for any nuclear data evaluation project is to periodically release a revised, fully consistent and complete library, with all needed data and covariances, and ensure that it is robust and reliable for a variety of applications. Within an evaluation effort, benchmarking activities play an important role in validating proposed libraries. The Joint Evaluated Fission and Fusion (JEFF) Project aims to provide such a nuclear data library, and thus, requires a coherent and efficient benchmarking process. The aim of this paper is to present the activities carried out by the new JEFF Benchmarking and Validation Working Group, and to describe the role of the NEA Data Bank in this context. The paper will also review the status of preliminary benchmarking for the next JEFF-3.3 candidate cross-section files.

  15. Benchmarking

    OpenAIRE

    Beretta Sergio; Dossi Andrea; Grove Hugh

    2000-01-01

    Due to their particular nature, the benchmarking methodologies tend to exceed the boundaries of management techniques, and to enter the territories of managerial culture. A culture that is also destined to break into the accounting area not only strongly supporting the possibility of fixing targets, and measuring and comparing the performance (an aspect that is already innovative and that is worthy of attention), but also questioning one of the principles (or taboos) of the accounting or...

  16. Benchmarking in Identifying Priority Directions of Development of Telecommunication Operators

    Directory of Open Access Journals (Sweden)

    Zaharchenko Lolita A.

    2013-12-01

    Full Text Available The article analyses evolution of development and possibilities of application of benchmarking in the telecommunication sphere. It studies essence of benchmarking on the basis of generalisation of approaches of different scientists to definition of this notion. In order to improve activity of telecommunication operators, the article identifies the benchmarking technology and main factors, that determine success of the operator in the modern market economy, and the mechanism of benchmarking and component stages of carrying out benchmarking by a telecommunication operator. It analyses the telecommunication market and identifies dynamics of its development and tendencies of change of the composition of telecommunication operators and providers. Having generalised the existing experience of benchmarking application, the article identifies main types of benchmarking of telecommunication operators by the following features: by the level of conduct of (branch, inter-branch and international benchmarking; by relation to participation in the conduct (competitive and joint; and with respect to the enterprise environment (internal and external.

  17. Benchmark analyses for EBR-II shutdown heat removal tests SHRT-17 and SHRT-45R

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui (Japan); Muranaka, Kohmei; Asai, Takayuki [Graduate School of Engineering, University of Fukui (Japan); Rooijen, W.F.G. van, E-mail: rooijen@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui (Japan)

    2014-08-15

    Highlights: • The IAEA EBR-II benchmarks SHRT-17 and SHRT-45R are analyzed with a 1D system code. • The calculated result of SHRT-17 corresponds well to the measured results. • For SHRT-45R ERANOS is used for various core parameters and reactivity coefficients. • SHRT-45R peak temperature is overestimated with the ERANOS feedback coefficients. • The peak temperature is well predicted when the feedback coefficient is reduced. - Abstract: Benchmark problems of several experiments in EBR-II, proposed by ANL and coordinated by the IAEA, are analyzed using the plant system code NETFLOW++ and the neutronics code ERANOS. The SHRT-17 test conducted as a loss-of-flow test is calculated using only the NETFLOW++ code because it is a purely thermal–hydraulic problem. The measured data were made available to the benchmark participants after the results of the blind benchmark calculations were submitted. Our work shows that major parameters of the plant are predicted with good accuracy. The SHRT-45R test, an unprotected loss of flow test is calculated using the NETFLOW++ code with the aid of delayed neutron data and reactivity coefficients calculated by the ERANOS code. These parameters are used in the NETFLOW++ code to perform a semi-coupled analysis of the neutronics – thermal–hydraulic problem. The measured data are compared with our calculated results. In our work, the peak temperature is underestimated, indicating that the reactivity feedback coefficients are too strong. When the reactivity feedback coefficient for thermal expansion is adjusted, good agreement is obtained in general for the calculated plant parameters, with a few exceptions.

  18. IRPhEP-handbook, International Handbook of Evaluated Reactor Physics Benchmark Experiments

    International Nuclear Information System (INIS)

    Sartori, Enrico; Blair Briggs, J.

    2008-01-01

    experimental series that were performed at 17 different reactor facilities. The Handbook is organized in a manner that allows easy inclusion of additional evaluations, as they become available. Additional evaluations are in progress and will be added to the handbook periodically. Content: FUND - Fundamental; GCR - Gas Cooled (Thermal) Reactor; HWR - Heavy Water Moderated Reactor; LMFR - Liquid Metal Fast Reactor; LWR - Light Water Moderated Reactor; PWR - Pressurized Water Reactor; VVER - VVER Reactor; Evaluations published as drafts 2 - Related Information: International Criticality Safety Benchmark Evaluation Project (ICSBEP); IRPHE/B and W-SS-LATTICE, Spectral Shift Reactor Lattice Experiments; IRPHE-JAPAN, Reactor Physics Experiments carried out in Japan ; IRPHE/JOYO MK-II, JOYO MK-II core management and characteristics database ; IRPhE/RRR-SEG, Reactor Physics Experiments from Fast-Thermal Coupled Facility; IRPHE-SNEAK, KFK SNEAK Fast Reactor Experiments, Primary Documentation ; IRPhE/STEK, Reactor Physics Experiments from Fast-Thermal Coupled Facility ; IRPHE-ZEBRA, AEEW Fast Reactor Experiments, Primary Documentation ; IRPHE-DRAGON-DPR, OECD High Temperature Reactor Dragon Project, Primary Documents; IRPHE-ARCH-01, Archive of HTR Primary Documents ; IRPHE/AVR, AVR High Temperature Reactor Experience, Archival Documentation ; IRPHE-KNK-II-ARCHIVE, KNK-II fast reactor documents, power history and measured parameters; IRPhE/BERENICE, effective delayed neutron fraction measurements ; IRPhE-TAPIRO-ARCHIVE, fast neutron source reactor primary documents, reactor physics experiments. The International Handbook of Evaluated Reactor Physics Benchmark Experiments was prepared by a working party comprised of experienced reactor physics personnel from Belgium, Brazil, Canada, P.R. of China, Germany, Hungary, Japan, Republic of Korea, Russian Federation, Switzerland, United Kingdom, and the United States of America. The IRPhEP Handbook is available to authorised requesters from the

  19. HTR-Proteus Pebble Bed Experimental Program Cores 5,6,7,&8: Columnar Hexagonal Point-on-Point Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lengar, Igor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koberl, Oliver [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  20. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  1. Three-dimensional RAMA fluence methodology benchmarking

    International Nuclear Information System (INIS)

    Baker, S. P.; Carter, R. G.; Watkins, K. E.; Jones, D. B.

    2004-01-01

    This paper describes the benchmarking of the RAMA Fluence Methodology software, that has been performed in accordance with U. S. Nuclear Regulatory Commission Regulatory Guide 1.190. The RAMA Fluence Methodology has been developed by TransWare Enterprises Inc. through funding provided by the Electric Power Research Inst., Inc. (EPRI) and the Boiling Water Reactor Vessel and Internals Project (BWRVIP). The purpose of the software is to provide an accurate method for calculating neutron fluence in BWR pressure vessels and internal components. The Methodology incorporates a three-dimensional deterministic transport solution with flexible arbitrary geometry representation of reactor system components, previously available only with Monte Carlo solution techniques. Benchmarking was performed on measurements obtained from three standard benchmark problems which include the Pool Criticality Assembly (PCA), VENUS-3, and H. B. Robinson Unit 2 benchmarks, and on flux wire measurements obtained from two BWR nuclear plants. The calculated to measured (C/M) ratios range from 0.93 to 1.04 demonstrating the accuracy of the RAMA Fluence Methodology in predicting neutron flux, fluence, and dosimetry activation. (authors)

  2. Handbook of critical experiments benchmarks

    International Nuclear Information System (INIS)

    Durst, B.M.; Bierman, S.R.; Clayton, E.D.

    1978-03-01

    Data from critical experiments have been collected together for use as benchmarks in evaluating calculational techniques and nuclear data. These benchmarks have been selected from the numerous experiments performed on homogeneous plutonium systems. No attempt has been made to reproduce all of the data that exists. The primary objective in the collection of these data is to present representative experimental data defined in a concise, standardized format that can easily be translated into computer code input

  3. Comparative Neutronics Analysis of DIMPLE S06 Criticality Benchmark with Contemporary Reactor Core Analysis Computer Code Systems

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2015-01-01

    Full Text Available A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.

  4. Benchmarking computer platforms for lattice QCD applications

    International Nuclear Information System (INIS)

    Hasenbusch, M.; Jansen, K.; Pleiter, D.; Stueben, H.; Wegner, P.; Wettig, T.; Wittig, H.

    2004-01-01

    We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E; Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC

  5. Mucinous cystadenoma of the appendix: a case report | Alese ...

    African Journals Online (AJOL)

    Tumours of the appendix are emerging as diseases of increasing concern due to a rising incidence1. We present a case of mucinous cystadenoma of the appendix in an elderly patient. To our knowledge, this is the first report of mucinous cystadenoma of the appendix from Nigeria. Key Words: Appendiceal tumour, ...

  6. H.B. Robinson-2 pressure vessel benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Remec, I.; Kam, F.B.K.

    1998-02-01

    The H. B. Robinson Unit 2 Pressure Vessel Benchmark (HBR-2 benchmark) is described and analyzed in this report. Analysis of the HBR-2 benchmark can be used as partial fulfillment of the requirements for the qualification of the methodology for calculating neutron fluence in pressure vessels, as required by the U.S. Nuclear Regulatory Commission Regulatory Guide DG-1053, Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence. Section 1 of this report describes the HBR-2 benchmark and provides all the dimensions, material compositions, and neutron source data necessary for the analysis. The measured quantities, to be compared with the calculated values, are the specific activities at the end of fuel cycle 9. The characteristic feature of the HBR-2 benchmark is that it provides measurements on both sides of the pressure vessel: in the surveillance capsule attached to the thermal shield and in the reactor cavity. In section 2, the analysis of the HBR-2 benchmark is described. Calculations with the computer code DORT, based on the discrete-ordinates method, were performed with three multigroup libraries based on ENDF/B-VI: BUGLE-93, SAILOR-95 and BUGLE-96. The average ratio of the calculated-to-measured specific activities (C/M) for the six dosimeters in the surveillance capsule was 0.90 {+-} 0.04 for all three libraries. The average C/Ms for the cavity dosimeters (without neptunium dosimeter) were 0.89 {+-} 0.10, 0.91 {+-} 0.10, and 0.90 {+-} 0.09 for the BUGLE-93, SAILOR-95 and BUGLE-96 libraries, respectively. It is expected that the agreement of the calculations with the measurements, similar to the agreement obtained in this research, should typically be observed when the discrete-ordinates method and ENDF/B-VI libraries are used for the HBR-2 benchmark analysis.

  7. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    Energy Technology Data Exchange (ETDEWEB)

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  8. Hanford DST Thermal and Seismic Project - Dytran Analysis Of Seismically Induced Fluid-Structure Interaction In A Hanford Double-Shell Primary Tank

    International Nuclear Information System (INIS)

    Mackey, T.C.; Rinker, M.W.; Abatt, F.G.

    2007-01-01

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  9. Upgrade and benchmarking of the NIFS physics-engineering-cost code

    International Nuclear Information System (INIS)

    Dolan, T.J.; Yamazaki, K.

    2004-07-01

    The NIFS Physics-Engineering-Cost (PEC) code for helical and tokamak fusion reactors is upgraded by adding data from three blanket-shield designs, a new cost section based on the ARIES cost schedule, more recent unit costs, and improved algorithms for various computations. The PEC code is also benchmarked by modeling the ARIES-AT (advanced technology) tokamak and the ARIES-SPPS (stellarator power plant system). The PEC code succeeds in predicting many of the pertinent plasma parameters and reactor component masses within about 10%. There are cost differences greater than 10% for some fusion power core components, which may be attributed to differences of unit costs used by the codes. The COEs estimated by the PEC code differ from the COEs of the ARIES-AT and ARIES-SPPS studies by 5%. (author)

  10. HEU benchmark calculations and LEU preliminary calculations for IRR-1

    International Nuclear Information System (INIS)

    Caner, M.; Shapira, M.; Bettan, M.; Nagler, A.; Gilat, J.

    2004-01-01

    We performed neutronics calculations for the Soreq Research Reactor, IRR-1. The calculations were done for the purpose of upgrading and benchmarking our codes and methods. The codes used were mainly WIMS-D/4 for cell calculations and the three dimensional diffusion code CITATION for full core calculations. The experimental flux was obtained by gold wire activation methods and compared with our calculated flux profile. The IRR-1 is loaded with highly enriched uranium fuel assemblies, of the plate type. In the framework of preparation for conversion to low enrichment fuel, additional calculations were done assuming the presence of LEU fresh fuel. In these preliminary calculations we investigated the effect on the criticality and flux distributions of the increase of U-238 loading, and the corresponding uranium density.(author)

  11. The X40×10 Halogen Bonding Benchmark Revisited: Surprising Importance of (n-1)d Subvalence Correlation.

    Science.gov (United States)

    Kesharwani, Manoj K; Manna, Debashree; Sylvetsky, Nitai; Martin, Jan M L

    2018-03-01

    We have re-evaluated the X40×10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)-MP2 "high-level corrections" (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies and turns out to be more important for noncovalent interactions than is generally realized; (n-1)sp subvalence correlation is much less important. The (n-1)d subvalence term is dominated by core-valence correlation; with the smaller cc-pVDZ-F12-PP and cc-pVTZ-F12-PP basis sets, basis set convergence for the core-core contribution becomes sufficiently erratic that it may compromise results overall. The two factors conspire to generate discrepancies of up to 0.9 kcal/mol (0.16 kcal/mol RMS) between the original X40×10 data and the present revision.

  12. Benchmarking computer platforms for lattice QCD applications

    International Nuclear Information System (INIS)

    Hasenbusch, M.; Jansen, K.; Pleiter, D.; Wegner, P.; Wettig, T.

    2003-09-01

    We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC. (orig.)

  13. Regression Benchmarking: An Approach to Quality Assurance in Performance

    OpenAIRE

    Bulej, Lubomír

    2005-01-01

    The paper presents a short summary of our work in the area of regression benchmarking and its application to software development. Specially, we explain the concept of regression benchmarking, the requirements for employing regression testing in a software project, and methods used for analyzing the vast amounts of data resulting from repeated benchmarking. We present the application of regression benchmarking on a real software project and conclude with a glimpse at the challenges for the fu...

  14. Second benchmark problem for WIPP structural computations

    International Nuclear Information System (INIS)

    Krieg, R.D.; Morgan, H.S.; Hunter, T.O.

    1980-12-01

    This report describes the second benchmark problem for comparison of the structural codes used in the WIPP project. The first benchmark problem consisted of heated and unheated drifts at a depth of 790 m, whereas this problem considers a shallower level (650 m) more typical of the repository horizon. But more important, the first problem considered a homogeneous salt configuration, whereas this problem considers a configuration with 27 distinct geologic layers, including 10 clay layers - 4 of which are to be modeled as possible slip planes. The inclusion of layering introduces complications in structural and thermal calculations that were not present in the first benchmark problem. These additional complications will be handled differently by the various codes used to compute drift closure rates. This second benchmark problem will assess these codes by evaluating the treatment of these complications

  15. Multilevel parallel strategy on Monte Carlo particle transport for the large-scale full-core pin-by-pin simulations

    International Nuclear Information System (INIS)

    Zhang, B.; Li, G.; Wang, W.; Shangguan, D.; Deng, L.

    2015-01-01

    This paper introduces the Strategy of multilevel hybrid parallelism of JCOGIN Infrastructure on Monte Carlo Particle Transport for the large-scale full-core pin-by-pin simulations. The particle parallelism, domain decomposition parallelism and MPI/OpenMP parallelism are designed and implemented. By the testing, JMCT presents the parallel scalability of JCOGIN, which reaches the parallel efficiency 80% on 120,000 cores for the pin-by-pin computation of the BEAVRS benchmark. (author)

  16. Benchmarks: The Development of a New Approach to Student Evaluation.

    Science.gov (United States)

    Larter, Sylvia

    The Toronto Board of Education Benchmarks are libraries of reference materials that demonstrate student achievement at various levels. Each library contains video benchmarks, print benchmarks, a staff handbook, and summary and introductory documents. This book is about the development and the history of the benchmark program. It has taken over 3…

  17. 49 CFR Appendix B to Part 172 - Trefoil Symbol

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Trefoil Symbol B Appendix B to Part 172... SECURITY PLANS Pt. 172, App. B Appendix B to Part 172—Trefoil Symbol 1. Except as provided in paragraph 2 of this appendix, the trefoil symbol required for RADIOACTIVE labels and placards and required to be...

  18. Aerodynamic benchmarking of the DeepWind design

    DEFF Research Database (Denmark)

    Bedon, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... the blade solicitation and the cost of energy. Different parameters are considered for the benchmarking study. The DeepWind blade is characterized by a shape similar to the Troposkien geometry but asymmetric between the top and bottom parts. The blade shape is considered as a fixed parameter...

  19. Integral benchmarks with reference to thorium fuel cycle

    International Nuclear Information System (INIS)

    Ganesan, S.

    2003-01-01

    This is a power point presentation about the Indian participation in the CRP 'Evaluated Data for the Thorium-Uranium fuel cycle'. The plans and scope of the Indian participation are to provide selected integral experimental benchmarks for nuclear data validation, including Indian Thorium burn up benchmarks, post-irradiation examination studies, comparison of basic evaluated data files and analysis of selected benchmarks for Th-U fuel cycle

  20. Fresh-Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium-Zirconium-Hydride Fuel

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Thomas L. Maddock; Margaret A. Marshall; Leland M. Montierth

    2013-03-01

    The neutron radiography (NRAD) reactor is a 250 kW TRIGA® (Training, Research, Isotopes, General Atomics) Mark II , tank-type research reactor currently located in the basement, below the main hot cell, of the Hot Fuel Examination Facility (HFEF) at the Idaho National Laboratory (INL). It is equipped with two beam tubes with separate radiography stations for the performance of neutron radiography irradiation on small test components. The initial critical configuration developed during the fuel loading process, which contains only 56 fuel elements, has been evaluated as an acceptable benchmark experiment. The 60-fuel-element operational core configuration of the NRAD LEU TRIGA reactor has also been evaluated as an acceptable benchmark experiment. Calculated eigenvalues differ significantly (~±1%) from the benchmark eigenvalue and have demonstrated sensitivity to the thermal scattering treatment of hydrogen in the U-Er-Zr-H fuel.

  1. Present status and benchmark tests of JENDL-2

    International Nuclear Information System (INIS)

    Kikuchi, Y.

    1983-01-01

    The second version of Japanese Evaluated Nuclear Data Library (JENDL-2) consists of the evaluated data from 10 -5 eV to 20 MeV for 176 nuclides including 99 fission product nuclei. Complete reevaluation has been made to heavy actinide, fission product and main structural material nuclides. Benchmark tests have been made on JENDL-2 for fast reactor application. Various characteristics in core center have been tested with one-dimensional model for total of 27 assemblies, and more sophisticated problems have been examined for MOZART and ZPPR-3. Furthermore analyses of JUPITER project give useful information. Satisfactory results have been obtained as a whole. However, the spectrum is a little underestimated above a few hundred keV and below a few keV. The positive sodium void reactivity worth is much overestimated. As to the latter, the sensitivity analysis with the generalized perturbation method suggests that the fission cross section of 239 Pu below a few keV has an important role. (Auth.)

  2. The VULCANO VE-U7 Corium spreading benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Journeau, Christophe; Haquet, Jean-Francois [CEA Cadarache, Severe Accident Mastering experimental Laboratory (DEN/DTN/STRI/LMA), 13108 St Paul lez Durance (France); Spindler, Bertrand [CEA Grenoble, Physicochemistry and Multiphasic Thermalhydraulics Laboratory (DEN/DTN/SE2T/LPTM), 17 rue des Martyrs, F-38054 Grenoble CEDEX 9 (France); Spengler, Claus [Gesellschaft fuer Reaktorsicherheit mbH, Department for Thermohydraulics/Process Engineering, Schwertnergasse 1, D-50667 Koeln (Germany); Foit, Jerzy [Forschungszentrum Karlsruhe GmbH, Institut fuer Kern nd Energietechnik (IKET), P.O. Box 3640, D-76021 Karlsruhe (Germany)

    2006-07-01

    In a hypothetical nuclear reactor severe accident, corium spreading is one possible mitigation measure that has been selected for the EPR design. A post-test benchmark exercise has been organized on the VULCANO VE-U7 corium spreading experiment. In this test, a prototypic corium mixture representative of what could be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. The procedure used to estimate the corium physical properties from its composition and temperature provided a satisfactory data set. The CORFLOW, LAVA and THEMA codes provide satisfactory calculations of the spreading front evolution and of its final length. LAVA and THEMA estimations of the substrate temperatures, which are the initial conditions for longer term Molten Core Concrete Interaction or Corium Ceramic Interaction computations, are also close to the measured data, within the experimental uncertainties. (authors)

  3. The VULCANO VE-U7 Corium spreading benchmark

    International Nuclear Information System (INIS)

    Journeau, Christophe; Haquet, Jean-Francois; Spindler, Bertrand; Spengler, Claus; Foit, Jerzy

    2006-01-01

    In a hypothetical nuclear reactor severe accident, corium spreading is one possible mitigation measure that has been selected for the EPR design. A post-test benchmark exercise has been organized on the VULCANO VE-U7 corium spreading experiment. In this test, a prototypic corium mixture representative of what could be expected at the opening of EPR reactor-pit gate has been spread on siliceous concrete and on a reference channel in inert refractory ceramic. The spreading progression was not much affected by the presence of concrete and sparging gases. The procedure used to estimate the corium physical properties from its composition and temperature provided a satisfactory data set. The CORFLOW, LAVA and THEMA codes provide satisfactory calculations of the spreading front evolution and of its final length. LAVA and THEMA estimations of the substrate temperatures, which are the initial conditions for longer term Molten Core Concrete Interaction or Corium Ceramic Interaction computations, are also close to the measured data, within the experimental uncertainties. (authors)

  4. Simulation of Benchmark Cases with the Terminal Area Simulation System (TASS)

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    The hydrodynamic core of the Terminal Area Simulation System (TASS) is evaluated against different benchmark cases. In the absence of closed form solutions for the equations governing atmospheric flows, the models are usually evaluated against idealized test cases. Over the years, various authors have suggested a suite of these idealized cases which have become standards for testing and evaluating the dynamics and thermodynamics of atmospheric flow models. In this paper, simulations of three such cases are described. In addition, the TASS model is evaluated against a test case that uses an exact solution of the Navier-Stokes equations. The TASS results are compared against previously reported simulations of these banchmark cases in the literature. It is demonstrated that the TASS model is highly accurate, stable and robust.

  5. Numerical benchmark for the deep-burn modular helium-cooled reactor (DB-MHR)

    International Nuclear Information System (INIS)

    Taiwo, T. A.; Kim, T. K.; Buiron, L.; Varaine, F.

    2006-01-01

    Numerical benchmark problems for the deep-burn concept based on the prismatic modular helium-cooled reactor design (a Very High Temperature Reactor (VHTR)) are specified for joint analysis by U.S. national laboratories and industry and the French CEA. The results obtained with deterministic and Monte Carlo codes have been inter-compared and used to confirm the underlying feature of the DB-MHR concept (high transuranics consumption). The results are also used to evaluate the impact of differences in code methodologies and nuclear data files on the code predictions for DB-MHR core physics parameters. The code packages of the participating organizations (ANL and CEA) are found to give very similar results. (authors)

  6. ZPR-6 assembly 7 high {sup 240}Pu core experiments : a fast reactor core with mixed (Pu,U)-oxide fuel and a centeral high{sup 240}Pu zone.

    Energy Technology Data Exchange (ETDEWEB)

    Lell, R. M.; Morman, J. A.; Schaefer, R.W.; McKnight, R.D.; Nuclear Engineering Division

    2009-02-23

    ZPR-6 Assembly 7 (ZPR-6/7) encompasses a series of experiments performed at the ZPR-6 facility at Argonne National Laboratory in 1970 and 1971 as part of the Demonstration Reactor Benchmark Program (Reference 1). Assembly 7 simulated a large sodium-cooled LMFBR with mixed oxide fuel, depleted uranium radial and axial blankets, and a core H/D near unity. ZPR-6/7 was designed to test fast reactor physics data and methods, so configurations in the Assembly 7 program were as simple as possible in terms of geometry and composition. ZPR-6/7 had a very uniform core assembled from small plates of depleted uranium, sodium, iron oxide, U{sub 3}O{sub 8} and Pu-U-Mo alloy loaded into stainless steel drawers. The steel drawers were placed in square stainless steel tubes in the two halves of a split table machine. ZPR-6/7 had a simple, symmetric core unit cell whose neutronic characteristics were dominated by plutonium and {sup 238}U. The core was surrounded by thick radial and axial regions of depleted uranium to simulate radial and axial blankets and to isolate the core from the surrounding room. The ZPR-6/7 program encompassed 139 separate core loadings which include the initial approach to critical and all subsequent core loading changes required to perform specific experiments and measurements. In this context a loading refers to a particular configuration of fueled drawers, radial blanket drawers and experimental equipment (if present) in the matrix of steel tubes. Two principal core configurations were established. The uniform core (Loadings 1-84) had a relatively uniform core composition. The high {sup 240}Pu core (Loadings 85-139) was a variant on the uniform core. The plutonium in the Pu-U-Mo fuel plates in the uniform core contains 11% {sup 240}Pu. In the high {sup 240}Pu core, all Pu-U-Mo plates in the inner core region (central 61 matrix locations per half of the split table machine) were replaced by Pu-U-Mo plates containing 27% {sup 240}Pu in the plutonium

  7. The extent of benchmarking in the South African financial sector

    Directory of Open Access Journals (Sweden)

    W Vermeulen

    2014-06-01

    Full Text Available Benchmarking is the process of identifying, understanding and adapting outstanding practices from within the organisation or from other businesses, to help improve performance. The importance of benchmarking as an enabler of business excellence has necessitated an in-depth investigation into the current state of benchmarking in South Africa. This research project highlights the fact that respondents realise the importance of benchmarking, but that various problems hinder the effective implementation of benchmarking. Based on the research findings, recommendations for achieving success are suggested.

  8. Clean Energy Manufacturing Analysis Center Benchmark Report: Framework and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-23

    This report documents the CEMAC methodologies for developing and reporting annual global clean energy manufacturing benchmarks. The report reviews previously published manufacturing benchmark reports and foundational data, establishes a framework for benchmarking clean energy technologies, describes the CEMAC benchmark analysis methodologies, and describes the application of the methodologies to the manufacturing of four specific clean energy technologies.

  9. Appendix B

    DEFF Research Database (Denmark)

    Christensen, F. A.; Brincker, Rune

    1999-01-01

    In this appendix the failure behaviour of lightly reinforced concrete beams is investigated. A numerical model based on the fictitious crack approach according to Hillerborg [1] is established in order to estimate the load-deflection curve for lightly reinforced concrete beams. The debonding...

  10. The level 1 and 2 specification for parallel benchmark and a benchmark test of scalar-parallel computer SP2 based on the specifications

    International Nuclear Information System (INIS)

    Orii, Shigeo

    1998-06-01

    A benchmark specification for performance evaluation of parallel computers for numerical analysis is proposed. Level 1 benchmark, which is a conventional type benchmark using processing time, measures performance of computers running a code. Level 2 benchmark proposed in this report is to give the reason of the performance. As an example, scalar-parallel computer SP2 is evaluated with this benchmark specification in case of a molecular dynamics code. As a result, the main causes to suppress the parallel performance are maximum band width and start-up time of communication between nodes. Especially the start-up time is proportional not only to the number of processors but also to the number of particles. (author)

  11. Benchmarking to improve the quality of cystic fibrosis care.

    Science.gov (United States)

    Schechter, Michael S

    2012-11-01

    Benchmarking involves the ascertainment of healthcare programs with most favorable outcomes as a means to identify and spread effective strategies for delivery of care. The recent interest in the development of patient registries for patients with cystic fibrosis (CF) has been fueled in part by an interest in using them to facilitate benchmarking. This review summarizes reports of how benchmarking has been operationalized in attempts to improve CF care. Although certain goals of benchmarking can be accomplished with an exclusive focus on registry data analysis, benchmarking programs in Germany and the United States have supplemented these data analyses with exploratory interactions and discussions to better understand successful approaches to care and encourage their spread throughout the care network. Benchmarking allows the discovery and facilitates the spread of effective approaches to care. It provides a pragmatic alternative to traditional research methods such as randomized controlled trials, providing insights into methods that optimize delivery of care and allowing judgments about the relative effectiveness of different therapeutic approaches.

  12. Management of appendix mass in a Nigerian rural district | Umunna ...

    African Journals Online (AJOL)

    Background: The traditional management of an appendix mass is conservative, followed by interval appendicectomy. Interval appendicectomy is now controversial. Aim: To present an experience with the management of appendix mass among a rural people in Nigeria. Methods: Patients presenting with appendix masses ...

  13. Benchmarking and Regulation

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    . The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  14. Benchmarking multi-dimensional large strain consolidation analyses

    International Nuclear Information System (INIS)

    Priestley, D.; Fredlund, M.D.; Van Zyl, D.

    2010-01-01

    Analyzing the consolidation of tailings slurries and dredged fills requires a more extensive formulation than is used for common (small strain) consolidation problems. Large strain consolidation theories have traditionally been limited to 1-D formulations. SoilVision Systems has developed the capacity to analyze large strain consolidation problems in 2 and 3-D. The benchmarking of such formulations is not a trivial task. This paper presents several examples of modeling large strain consolidation in the beta versions of the new software. These examples were taken from the literature and were used to benchmark the large strain formulation used by the new software. The benchmarks reported here are: a comparison to the consolidation software application CONDES0, Townsend's Scenario B and a multi-dimensional analysis of long-term column tests performed on oil sands tailings. All three of these benchmarks were attained using the SVOffice suite. (author)

  15. Higher order polynomial expansion nodal method for hexagonal core neutronics analysis

    International Nuclear Information System (INIS)

    Jin, Young Cho; Chang, Hyo Kim

    1998-01-01

    A higher-order polynomial expansion nodal(PEN) method is newly formulated as a means to improve the accuracy of the conventional PEN method solutions to multi-group diffusion equations in hexagonal core geometry. The new method is applied to solving various hexagonal core neutronics benchmark problems. The computational accuracy of the higher order PEN method is then compared with that of the conventional PEN method, the analytic function expansion nodal (AFEN) method, and the ANC-H method. It is demonstrated that the higher order PEN method improves the accuracy of the conventional PEN method and that it compares very well with the other nodal methods like the AFEN and ANC-H methods in accuracy

  16. JENDL-4.0 benchmarking for fission reactor applications

    International Nuclear Information System (INIS)

    Chiba, Go; Okumura, Keisuke; Sugino, Kazuteru; Nagaya, Yasunobu; Yokoyama, Kenji; Kugo, Teruhiko; Ishikawa, Makoto; Okajima, Shigeaki

    2011-01-01

    Benchmark testing for the newly developed Japanese evaluated nuclear data library JENDL-4.0 is carried out by using a huge amount of integral data. Benchmark calculations are performed with a continuous-energy Monte Carlo code and with the deterministic procedure, which has been developed for fast reactor analyses in Japan. Through the present benchmark testing using a wide range of benchmark data, significant improvement in the performance of JENDL-4.0 for fission reactor applications is clearly demonstrated in comparison with the former library JENDL-3.3. Much more accurate and reliable prediction for neutronic parameters for both thermal and fast reactors becomes possible by using the library JENDL-4.0. (author)

  17. ORALLOY (93.15 235U) METAL ANNULI WITH BERYLLIUM CORE

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland M.; Reed, Raymond L.; Mihalczo, John T.

    2010-01-01

    A variety of critical experiments were constructed of enriched uranium metal during the 1960s and 1970s at the Oak Ridge Critical Experiments Facility (ORCEF) in support of criticality safety operations at the Y-12 Plant. The purposes of these experiments included the evaluation of storage, casting, and handling limits for the Y-12 Plant and providing data for verification of calculation methods and cross-sections for nuclear criticality safety applications. These included solid cylinders of various diameters, annuli of various inner and outer diameters, two and three interacting cylinders of various diameters, and graphite and polyethylene reflected cylinders and annuli. Of the hundreds of delayed critical experiments, two were performed that consisted of uranium metal annuli with a solid beryllium metal core. The outer diameter of the annuli was approximately 13 or 15 inches with an inner diameter of 7 inches. The diameter of the core was approximately 7 inches. The critical height of the configurations was approximately 5 and 4 inches, respectively. The uranium annuli consisted of multiple stacked rings with diametral thicknesses of approximately 2 inches apiece and varying heights. The 15-inch experiment was performed on June 4, 1963, and the 13-inch experiment on July 12, 1963 by J. T. Mihalczo and R. G. Taylor (Ref. 1) with accompanying logbook. Both detailed and simplified model specifications are provided in this evaluation. Both of these fast-spectra experiments were determined to represent acceptable benchmarks. The calculated eigenvalues for both the detailed and simple models are within approximately 0.6% of the benchmark values, but significantly greater than 3s from the benchmark value because the uncertainty in the benchmark is very small: eff of ∼0.67%. Unreflected and unmoderated experiments with the same highly enriched uranium metal parts were performed at the Oak Ridge Critical Experiments Facility in the 1960s and are evaluated in HEU MET

  18. Cordilleran metamorphic core complexes and their uranium favorability. Final report

    International Nuclear Information System (INIS)

    Coney, P.J.; Reynolds, S.J.

    1980-11-01

    The objective of this report is to provide a descriptive body of knowledge on Cordilleran metamorphic core complexes including their lithologic and structural characteristics, their distribution within the Cordillera, and their evolutionary history and tectonic setting. The occurrence of uranium in the context of possibility for uranium concentration is also examined. Chapter 1 is an overview of Cordilleran metamorphic core complexes which describes their physical characteristics, tectonic setting and geologic history. This overview is accompanied by a tectonic map. Chapter 2 is a discussion of the mantled gneiss dome concept. The purpose of including this work is to provide a basic history of this concept and to describe the characteristics and distribution of gneiss domes throughout the world to enable one to compare and contrast them with the metamorphic core complexes as discussed in this report. Some gneiss domes are known producers of uranium (as are also some core complexes). Chapter 3 is an examination of the effects of the core complex process on adjacent sedimentary and volcanic cover terranes. Also included is a discussion of the kinematic significance of these cover terranes as they are related to process within the cores of the complexes. Some of the cover terranes have uranium prospects in them. Chapter 4 is a detailed discussion of uranium in Cordilleran metamorphic core complexes and includes the conceptual basis for the various types of occurrences and the processes that might favor concentration of uranium. The report is supported by a 5-part Appendix. The majority of the core complexes discussed in this report either do not appear or are not recognizable on existing published geologic maps

  19. CORAL: aligning conserved core regions across domain families.

    Science.gov (United States)

    Fong, Jessica H; Marchler-Bauer, Aron

    2009-08-01

    Homologous protein families share highly conserved sequence and structure regions that are frequent targets for comparative analysis of related proteins and families. Many protein families, such as the curated domain families in the Conserved Domain Database (CDD), exhibit similar structural cores. To improve accuracy in aligning such protein families, we propose a profile-profile method CORAL that aligns individual core regions as gap-free units. CORAL computes optimal local alignment of two profiles with heuristics to preserve continuity within core regions. We benchmarked its performance on curated domains in CDD, which have pre-defined core regions, against COMPASS, HHalign and PSI-BLAST, using structure superpositions and comprehensive curator-optimized alignments as standards of truth. CORAL improves alignment accuracy on core regions over general profile methods, returning a balanced score of 0.57 for over 80% of all domain families in CDD, compared with the highest balanced score of 0.45 from other methods. Further, CORAL provides E-values to aid in detecting homologous protein families and, by respecting block boundaries, produces alignments with improved 'readability' that facilitate manual refinement. CORAL will be included in future versions of the NCBI Cn3D/CDTree software, which can be downloaded at http://www.ncbi.nlm.nih.gov/Structure/cdtree/cdtree.shtml. Supplementary data are available at Bioinformatics online.

  20. Benchmark problems for numerical implementations of phase field models

    International Nuclear Information System (INIS)

    Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.

    2016-01-01

    Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.